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Abstract Project scheduling is concerned with an optimal allocation of resources
to activities realized over time. To survive in today’s competitive environment, effi-
cient scheduling for project development becomes more and more important. The
classical project scheduling is based on the critical path method (CPM) in which
resources required are assumed unlimited. This is however impractical. To over-
come CPM’s drawback, several techniques and optimizations have been proposed
in project scheduling literature. In this chapter, we will present a state-of-art survey
on project scheduling from the optimization point of view. In particularly, we will
focus on the advancements of optimization formulations and solutions on project
scheduling in the recent years.

1 Introduction

A project is informally defined as a unique undertaking, composed of a set of prece-
dence related tasks that have to be executed using diverse andmostly limited company
resources. Project scheduling consists of deciding when tasks should be started and
finished, and how many resources should be allocated to them.

For more than two decades the industry has been going through an intense period
of introspection as a result of its poor performance and low productivity. In the 1990s
numerous reports recommended actions that need to be undertaken to address the
industry’s prevailing problems [1]. Since the commencement of the global finical
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crisis in 2008, construction industries worldwide have been subjected to signifi-
cant reductions in private and public sector investment. Hitherto, issues associated
with poor project performance and productivity remains a pervasive problem [2].
In Australia, the Queensland Department of Main Roads reported that 10% of
projects with a contract value greater than AU$1 m experienced an overrun of
over 10% [3]. Blake Waldron found that less than 48% of Australian infrastructure
projects surveyed were delivered on time, on budget and to the required quality [4]. A
survey exploring the completion of construction projects in Saudi Arabia showed that
76% of project contractors experienced delays of 10–30% of the projected duration
[5].

To improve the productivity and reduce the delay, various efforts have been applied
to improve scheduling in construction projects. The earliest work on this issue dates
back to 1950s. In the late of 1950s, the critical path method (CPM) was developed
as a result of the increasing complexity of construction projects. Since then, CPM
has been regarded as one of basic project scheduling and control tools for supporting
project managers to ensure project completion on time and on budget. In the Critical
PathMethod, each activity is listed, linked to another activity, and assigned durations.
Interdependency of an activity is added as either predecessors or successors to another
activity.Moreover, the duration of the activities are entered. Based on the dependency
and duration of the activities, the longest path is defined as the most critical path. In
CPM, resource limitation is not considered and an activity can always start as long
as all its predecessors are completed. This, however, is not practical, as resources
are not unlimited and the availability of resources would affect resource allocation
and project scheduling. On the other hand, CPM does not allow interruption of an
activity or overlap between two connected activities, which is also unpractical [6]. In
practice, an activity could be temporarily interrupted due to short-term transfer (e.g.,
one or two days) of resource(s) to a more important or urgent activity. Slight overlap
between two connected activities might happen to repetitive construction projects,
such as road pavement projects, etc. Furthermore, based on resource availability,
the duration of an activity might vary, which results in various execution modes
[6]. To overcome CPMmajor limitations, several techniques and optimizations have
been proposed in project management and scheduling literature and usually can be
classified in four categories: resource-constrained scheduling [7], time cost trade-off,
resource levelling and resource allocation.

For the predefined durations and demands on each of the given renewable
resources, the objective of resource-constrained project scheduling is to determine
the sequence of project activities and to allocate available resources to project activ-
ities in an attempt to optimize a given objective function such as minimizing project
makespan. The objective of time-cost trade off analysis is to find a time/cost trade-
off curve showing the relationship between activity duration and cost. The objec-
tive of resource levelling is to smooth day-to-day resource demand. The objective
of resource allocation is to allocate limited resources to activities so as to opti-
mize a certain goal such as cost minimization. In the past decades, there are many
optimization-based methods developed to solve these classes of project scheduling
problems. Although many survey papers available in this area [8–10], there are still
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many significant advances not included. The aim of this paper is two-fold. On one
hand, it services as a tutorial for both practical engineers and beginners in this area.
On the other hand, it will offer a comprehensive survey of the optimization methods
developed in the recent results.

2 Variants of Project Scheduling Problems

2.1 Resource-Constrained Project Scheduling (RCPS)

To formulate a project scheduling as an optimization problem, we first need to model
a project in mathematics. In general, there are two ways to represent the project
topology, i.e., activity-on-arc (AOA) network and activity-on-node (AON) network.
Since almost all the available literatures on project scheduling are based on AON
network representation, we here only introduce AON network.

Consider a project with J activities which are labelled as j = 1, · · ·, J . Let the
activity 0 represent by convention the start of the schedule and the activity J + 1
represent the end of the schedule. Denote V = {0, 1, · · ·, J, J + 1}. The precedence
relations are represented by a set E of index pairs such that (i, j) ∈ E means that
the execution of the activity i must precede that of the activity j . Then, the AON
network is a grapy G = (V, E). Let R = {1, · · ·, I } be the set of the renewable
resources. The availability of the resource i is Bi , i = 1, · · ·, I and their durations
are pi , i = 1, · · ·, I, respectively. Since the activities 0 and J + 1 are dummy
activities, define b0i = 0 and b j+1,i = 0 for all i ∈ R. A standard resource-
constrained project scheduling can be stated as: choose a schedule such that the
makespan is minimized while the resource constraints are satisfied. In general, there
are two different methods to formulate it as an optimization problem: discrete time
formulation (DTF) and continuous time formulation (CTF).

In discrete time formulations, the time horizon T is partitioned into T time slots
[t −1, t], t = 1, · · ·, T . Then, the time-indexed variables x jt is introduced to indicate
whether the j activity starts at time t , i.e.,

x jt =
{
1 if the activity j starts at time t
0 otherwise

The RCSP can now be formulated as the following optimization problem

min
T∑

t=0

t xJ+1,t , (1)

s.t.
T∑

t=0

x jt = 1,∀ j ∈ V, (2)
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T∑
t=0

t x j t −
T∑

t=0

t xit ≥ pi ,∀(i, j) ∈ E, (3)

J∑
j=1

b jk

t∑
τ=max{0,t−pi +1}

x jτ ≤ Bk, t = 1, · · ·, T, k = 1, · · ·, I, (4)

x jt ∈ {0, 1} ,∀ j ∈ A and t ∈ {0, 1, · · ·, T }. (5)

In the above optimization problem, (2) and (5) impose non-preemption of the project
activities, (3) is simple translation of precedence relations and (4) is the resource
constraints. This technique has been extended to solve the multi-mode resource
constrained project scheduling in which the variables x jt has one more subscript to
indicate which mode is used. More details for the multi-mode case can be referred
to [11, 12]. It is clear that the optimization problem defined by (1–5) is an integer
optimization problem in which the only variables are x jt .

Different fromDTF, CTF involves three types of decision variables: (i) the starting
time continuous variables Si for each activity i ∈ V , (ii) Sequential binary variables
xi j , (i, j) ∈ V × V to indicate whether the activity j starts before the activity i or
not, (iii) Continuous flow variables fi jk which are the quantities of resource k that
is transferred from the activity i to the activity j , (i, j, k) ∈ V × V × R. Then, a
standard optimization problem for the RCPS based on continuous time formulations
can be posed as:

min SJ+1 (6)

s.t. xi j + x ji ≤ 1,∀i, j ∈ V, i < j, (7)

xi j + x jh − xih ≤ 1,∀i, j, h ∈ V, (8)

S j − Si ≥ −Mi j + (pi + Mi j )xi j ,∀i, j ∈ V, (9)

fi jk ≤ min{bik, b jk}xi j ,∀i, j ∈ V, k ∈ R, (10)
J+1∑
j=0

fi jk = bik,∀i ∈ V, k ∈ R, (11)

J+1∑
i=0

fi jk = b jk,∀ j ∈ V, k ∈ R, (12)

f J+1,0,k = Bk,∀k ∈ R, (13)

xi j ∈ 0, 1, Si ≥ 0, fi jk ≥ 0,∀i, j ∈ V, k ∈ R, (14)

where Mi j = E Si − L Sj , E Si is the date before the activity i will not start and L Si

is the date before which it should start.
The constraint (7) states that for two distinct activities, either i precedes j , or j

precedes j or i and j are processed in parallel. The constraint (7) together with (8)
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ensures that no cycles can occur in the sequencing decisions. The constraint (9) links
the variables Si and xi j . The constraint (10) lines the variables fi jk with the variables
xi j . The constraints (11)–(13) are resource flow conservation constraints. In [13], this
technique has been extended to solve resource-constrained project scheduling with
scarce resources and generalized precedence relations. In [14], the facility layout
problem concept is introduced to formulate a project scheduling as an optimization
problem which is highly similar to CTF.

2.2 Time-Cost Trade-Off

In scheduling of construction projects, the project duration can be compressed
(crashed) by expediting some of its activities in several ways including: increasing
crew size above the normal level, working overtime, or using alternative construc-
tion methods. The objective of time-cost trade-off problem is to identify the set (or
sets) of time-cost alternatives that will provide the optimal schedule. The time-cost
relationship of a project activity can be either continuous or discrete. Accordingly
the time-cost trade-off problem (TCTP) can be categorized as continuous time-cost
trade-off problem (CTCTP) and discrete time-cost trade-off problem (DTCTP). In
the literature, almost all studies on this topic are concentrated on DTCTP [15] since
the activity is discrete. So here we only review the discrete DTCTP.

Up to now, three versions of the DTCTP have been studied in the literatures: the
deadline problem (DTCTP-D), the budget problem (DTCTP-B) and the efficiency
problem (DTCTP-E). In DTCTP-D, given a set of time/cost pairs (modes) and a
project deadline, each activity is assigned to one of the possible modes in such a
way that the total cost is minimized. Conversely, the budget problem minimizes the
project duration while not exceeding a given budget. On the other hand, DTCTP-E
is the problem of constructing efficient time/cost solutions over the set of feasible
project durations [16]. To formulate themas optimization problems, letAONnetwork
be G = (V, E), θ be a specific path of G and Θ be the set of all possible pathes of
G. For each θ ∈ Θ , denote t (θ) and c(θ) as the makespan and cost, respectively.
For the given deadline d and budget b, DTCTP-D can be posed as the following
optimization problem:

min
θ∈Θ

{c(θ) : t (θ) ≤ d}. (15)

Similarly, DTCTP-B can be posed as

min
θ∈Θ

{t (θ) : c(θ) ≤ b}. (16)

Different from (15) and (16) which are single-objective optimization problems,
DTCTP-E is a multi-objective optimization problem which can be stated as:

min
θ∈Θ

{t (θ), c(θ)}. (17)
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To solve the optimization problems (15), (16) and (17), we need to transform the
feasible set Θ from a graph to analytical expressions. This task can be achieved
by applying the techniques DTF and CTF introduced for RCSP to formulate (15),
(16) and (17) as either integer optimization problems or mixed-integer optimization
problems. To meet the requirements of real-life scheduling problems, the above
TCTPs have been further extended. For example, in [15], time-switch constraints,
work continuity constraints, and net present value optimization are included. In [17],
TCTP including generalized precedence relationship constraints between project
activities, project duration constraints, logical constraints and a budget constraint is
formulated as a mixed integer nonlinear optimization problem. In [18], DTCTP with
multi-mode case is studied.

2.3 Resource Levelling

Resource levelling arises whenever it is expedient to reduce the fluctuations in pat-
terns of resource utilizations over time, while maintaining compliance with a pre-
scribed project completion time. In particular, in cases where even slight variations in
resource needs represent financial burden or heightened risks of accidents, a resource
levelling approach helps to schedule the project activities such that the resource uti-
lization will be as smooth as possible over the entire planning horizon.

For a given AON network G = (V, E), a standard resource levelling problem can
be posed as the following optimization problem [19]:

min
T∑

t=1

(ut − ūt )
2, (18)

s.t. fi ≤ f j − di ,∀(i, j) ∈ E, (19)∑
i∈V

uit ≤ U. (20)

Here the objective function (18) expresses theminimization of the sum of the squared
deviations of the resource requirements around the average resource requirement for
each time period. In [20], the cost (18) is generalized in integral form including both
continuous- and discrete-time case.

2.4 Resource Allocation

Resource allocation is to distribute the limited resources to various projects reason-
ably so as to optimize a certain objective. According to the nature of the distrib-
uted resources, it can be categorized as discrete resource allocation and continuous
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resource allocation. In the construction industry, most of the materials are discrete.
So here we only survey the discrete resource allocation.

A standard discrete allocation problem can be formulated as [21, 22]:

max
N∑

i=1

M∑
j=0

ei j Xi j , (21)

min
N∑

i=1

M∑
j=0

ci j Xi j , (22)

s.t.
N∑

i=1

M∑
j=0

j Xi j ≤ M, (23)

M∑
j=0

Xi j = 1,∀i ∈ {1, · · ·, N }, (24)

Xi, j ∈ {0, 1},∀i, j. (25)

Here the objective function (21) is to maximize the total efficiencies for all the jobs,
and the objective function (22) is to minimize the total costs for all the workers.
Constraint (23) ensures that the workers cannot be assigned more than the total
numbers of workers. Constraint (24) ensures that each job i can be assigned to
workers only once.

In [23], the above problem is extended to the time-independent and multi-modal
case. In [24], the nonlinear resource allocation is studied which is formulated as a
nonlinear integer optimization problem.More variants on the resource allocation can
refer to [25].

2.5 Integrated Models

The integrated models is to consider more than one category above. For example,
in [26], a multi-mode resource-constrained discrete time-cost trade off problem is
studied. The objective is either to minimize the cost subject to constraints including
precedence relationship or tominimize project duration subject to budget constraints.
In [18], a multi-mode resource constrained discrete time-cost-resource is considered
in which resource allocation and levelling problem are taken into account simulta-
neously. This problem is formulated as a multi-objective optimization problem in
which three objectives: minimum duration, minimum cost and minimum resources
moment deviation on the project makespan, are included.
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3 Optimization Methods Solving Project Scheduling Problems

In the past several decades, numerous methods are developed to solve the project
scheduling problem including the exact and heuristic or meta-heuristic approaches.

3.1 Exact Methods

The exact procedures in the literature for the project scheduling are the branch and
bound algorithms [13, 27–29]. This kind of methods heavily relies on the lower
bound computation. In the literature, two classes of lower bounds are well known:
constructive and destructive lower bounds. The first class is computed through relax-
ation methods [13], such as the Lagrangian relaxation. The second class is obtained
by means of iterated binary search based routine [30]. In the recent, this class of
methods has been further extended to solve variants of project scheduling problems.

In [13], a project scheduling problem with generalized precedence relationships,
resource constraints and makespan minimization objective is studied. This problem
is first formulated as a mixed integer optimization problem. Then, the formulated
optimization problem is solved by branch and bound. During the branching process,
a lower bound based on Lagrangian relaxation is adopted to prune the tree of the
corresponding AON network.

In [27], a resource-constrained project scheduling problem to minimize the total
weighted resource tardiness penalty cost is studied in which the renewable resources
cannot be used before the ready date, but are permitted to be used after their due
dates by paying the associated penalty cost. Then, a depth-first branch and bound
algorithm is applied to solve it in which the lower bound is adopted from the concept
of constructing partial schedules [31]. Thismethod has been further extended to solve
the resource-constrained project scheduling problem with minimizing the weighted
late work criterion [28].

In [29], an alternative-technologies project scheduling problem is studied inwhich
the expected net present value is maximized. This problem is first formulated as a
nonlinear integer optimization problem and then solved by a branch and bound
algorithm. The bounding strategy is destructive which is based on three dominance
rules to fathom unvalued nodes. The first and the second dominance rules prevent
duplication of schedules while the third one fathoms low quality schedules.

In [32], a branch and bound algorithm is introduced to solve a resource levelling
problem in a machine environment. The upper bound is obtained by a heuristic
approach inwhich exhaustive neighborhood search is usedwith tabu list controlwhile
the lower bound is computed through the Lagrangian relaxation. In [13], a branch
and bound algorithm is introduced to solve resource levelling problems and overload
problems which are formulated as nonlinear mixed integer optimization problems.
To achieve fast computation, linearizing the corresponding objective functions and



Optimizations in Project Scheduling: A State-of-Art Survey 169

improving the quality of the resulting formulations are discussed. Then, the available
branch and bound algorithms for linear integer programming is applied.

3.2 Meta-Heuristic Methods

Although the exact methods can always find a global optimal schedule for the given
objectives, they are deficient to deal with large scale problems [33]. Instead of search-
ing the global optimal solutions, the researchers and practitioners have tried to design
efficient methods with the goal of producing optimal or near optimal solutions. Then,
meta-heuristic optimizationmethods come into play.Meta-heuristics are general pur-
pose high level search frameworks that can be applied to any optimization problem
with the use of appropriate local problem dependent solution procedures. Exam-
ples of meta-heuristics include simulated annealing (SA), ant colony optimization
(ACO), evolutionary algorithm (EA), genetic algorithm (GA), particle swarm opti-
mization (PSO), shuffled frog-leaping (SFL) and bee algorithm (BA). There are a
wide variety of meta-heuristics and a number of properties along which to classify
them. One of the fundamental classification of the meta-heuristic is Single-Solution
BasedMeta-heuristics and Population-BasedMeta-heuristics. Single-solution based
meta-heuristics are included tabu search and simulated annealing in which only one
solution is maintained at each cycle of the algorithm. The aim of these methods
is to find a new solution with better quality from the current solution iteratively.
Population-based meta-heuristics are included genetic algorithm, ant colony opti-
mization, and particle swarm optimization in which a set of solutions are maintained
at each cycle of the algorithm. These approaches solve the RCPSP by employing an
initial population of individuals each of which representing a candidate schedule for
the project. Then, they evolve the initial population by successively applying a set
of operators on the old solutions to transform them in to new solutions [34].

Regardless of the metaheuristic chosen for a study, there are common issues that
need to be addressed [8]: solution representation, generation of initial solution(s),
evaluation function, generation of neighborhood solutions, handling constraint vio-
lations and stopping criteria. In the following, wewill review the latest meta-heuristic
optimization methods in project scheduling.

3.2.1 Single-Solution Based Meta-Heuristics

In [35], a simulated annealing algorithm is developed for the resource-constrained
project scheduling problems with single andmulti-mode versions. There the solution
is represented by activity list in which a precedence-feasible solution is represented
by an ordered list of activities. Each activity in the list appears in a position after
all its predecessors. The generation of neighbor is based on a cyclical shift of all
the activities between the old and new positions for a randomly selected activity
from the current feasible list. The stopping criterion is chosen as the process time.
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This method has been further extended to solve the multi-mode resource-constrained
project scheduling problems with discounted cash flows in [36] in which four pay-
ment models have been examined: lump-sum payment at the completion of the
project, payments at activities’ completion times, payments at equal time intervals
and progress payments. ATabu searchmethod is also developed to solve it in [36] and
compared with SA. The numerical results show that each method may outperform
the other one for differentmodels. In [37], the Tabu searchmethod is further extended
to solve a project scheduling problem with the multi-mode and schedule-dependent
setup times where a schedule-dependent setup time is defined as a setup time depen-
dent on the assignment of resources to activities over time, when resources are, e.g.,
placed in different locations. In [38], a simulated annealing method is employed to
solve the resource-constrained project scheduling problem with a due date for each
activity in which the objective is chosen to minimize the net present value of the
earliness-tardiness penalty costs and the neighborhood solutions are generated in a
similar way in [35, 36]. In [39, 40], the simulated and Tabu search are introduced
to solve the multi-mode capital-constrained project payment scheduling problem,
where the objective is to assign activity modes and payments so as to maximize
the net present value (NPV) of the contractor under the constraint of capital avail-
ability. In [41], experimental evaluations of five variants of simulated algorithms
for time-cost trade off project scheduling problems are studied in which they have
in common the way to construct the new solutions, the initial temperature and the
cooling schedule, whereas with differ cycle size, the number of iterations in each
cycle, and the stopping criterion. The best identified variant generated local optima
there very close to point estimate of the global optimum but with the slowest time
satisfactory efficiency.

3.2.2 Population-Based Meta-Heuristics

Comparing with the single-solution based meta-heuristic methods, population-based
meta-heuristics are more popular in solving the project scheduling problems. The
most studied population-based methods are related to Evolutionary Computation
(EC) and Swarm Intelligence (SI).

Montoya-Torres et al. [42] developed a genetic algorithm to solve resource con-
strained project scheduling problems. The notable advantage of this algorithm is that
the chromosomes is represented by a multi-array object-oriented model. The numer-
ical simulations show that this algorithm outperforms some other genetic algorithms
for the project with 60 activities. Hartmann [11] developed a genetic algorithm for
the case with multiple execution modes for each activity and makespan minimiza-
tion as objective. The scheduling problem is formulated as an optimization problem
based on the representation of the project as an acyclic AON network. The genetic
encoding is based on a precedence feasible list of activities and a mode assignment.
The novelty of this genetic algorithm is that a local search based on the definition
of a multi-mode left shift is employed to improve the schedules found by the basic
genetic algorithm. In stead of local searchmethod introduced in [11], amagnet-based
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crossover operator that can preserve up to two contiguous parts from the receiver
and one contiguous part from the donator genotype is employed in [43]. Numerical
simulations of four sets of project scheduling problems with 30, 60, 90, and 120
activities are compared with some other genetic algorithms in literature. Peteghem
and Vanhoucke [44] developed a genetic algorithm to the preemptive multi-mode
resource constrained project scheduling which allows activities to be preempted at
any time instance and restarted later on at no additional cost. The consideration of
preemption is very effective to improve the optimal project makespan in the presence
of resource vacations and temporary resource unavailability and that the makespan
improvement is dependent on the parameters that impact resource utilization [45].
Long and Ohsato [46] developed a genetic algorithm for scheduling repetitive con-
struction projects with several objectives such as the project duration, the project
cost, or both of them. The method deals with constraints of precedence relationships
between activities, and constraints of resource work continuity. Ghoddousi et al. [18]
employed an elitist non-dominated sorting genetic algorithm in [47] to solve multi-
mode resource-constrained project scheduling problem (MRCPSP) while consider-
ing discrete time-cost trade-off problem (DTCTP) and also resource allocation and
resource levelling problem simultaneously which is formulated as a multi-objective
integer optimization problem.

Lorenzoni et al. [48] studied a scheduling problem of attending ships within
agreed time limits at a port under the condition of the first comefirst served order. This
problem is formulated as amathematicalmodel of amulti-mode resource-constrained
scheduling problem and then is solved by a differential evolution algorithmwhich has
been further discussed in [49]. Zamni [50] proposed a evolution algorithm to solve
time-cost trade off of multi-mode resource constrained project scheduling problems
in which activities are subject to finish-start precedence constraints under renewable
limited resources. In optimizing time-cost performance, the procedure treats the cost
as a non-renewable resource whose limit can affect the duration of the project and
balances cost versus time through the notion of priority-rank.

Wang and Fang [51] proposed an estimation of distribution algorithm to solve
the multi-mode resource-constrained project scheduling problem. The individuals
are encoded based on the activity-mode list and decoded by the multi-mode serial
schedule generation scheme. To improve the searching quality, a multi-mode for-
ward backward iteration and a multi-mode permutation based local search method
are incorporated to enhance the exploitation ability. Different from a univariate prob-
abilisticmodel in [51, 52] employed ensemble probabilisticmodels by combining the
univariate probabilistic model with the bi-variate probabilistic model which learns
different population characteristics in the estimation of distribution algorithm.Wang
et al. [53] proposed a Pareto-based estimation of distribution algorithm to solve the
multi-objective flexible job-shop problem in which the fitness evaluation based on
Pareto optimality was employed and a probability model was built with the Pareto
superior individuals for estimating the probability distribution of the solution space.
To avoid premature convergence and enhance local exploitation, the population was
divided into two sub-populations at certain generations according to a splitting cri-
terion, and different operators were designed for the two sub-populations to gener-
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ate the promising neighbor individuals. To enhance the exploitation ability, a local
search strategy based on critical path was introduced. The Taguchi method was used
to investigated the influence of parameters.

Mahdi Mobini et al. [54] developed an enhanced scatter search algorithm for
the resource constrained project scheduling problem. The activity list representation
method was used as the encoding scheme. Activity lists in the initial population were
decoded to the solutions using both serial and parallel schedule generation scheme.
The two-point crossover, the path relinking, and the permutation-based operator were
used to generate new solutions from existing solutions in the reference set.Mario [55]
introduced the scatter search algorithm to solve the single-mode resource-constrained
project scheduling problemwith discounted cashflowsbasedon the two assumptions:
renewable resources with a constant availability and no activity preemption, and
all activity cash flows occurred at predefined time points during execution of the
corresponding activity.

The first literature to introduce ant colony optimization algorithm (ACO) to RCPS
is [56]. A single ant corresponds to one application of the serial SGS. The eligible
activity to be scheduled next is selected using a weighted evaluation of the latest
start time priority rule and pheromones which representing the learning effect of
previous ants. The additional features include separate ants for forward and backward
scheduling, the changing rate of pheromone evaporation over the ant generations, and
the restricted influence of the elitist solution by forgetting it at regular intervals. ACO
has been further extended to solve the RCPS with multi-modes in [57] in which both
renewable and nonrenewable resources are considered. To guide the solution search
consisting both activity sequencing and mode selection, two levels of pheromones
are introduced: one is to probabilistically select an activity j at the place i in the
activity-list, and the other is to probabilistically select the execution mode for this
activity. Yin andWang [24] developed an ACO to solve nonlinear resource allocation
problem. Adaptive resource bounds whichwere dynamically calculated to reduce the
search spacewere incorporated to ensure all resource constraintswere simultaneously
satisfied. Its convergence was analyzed using node transition entropy to validate that
the quality solution obtained was due to the consensus knowledge possessed by
the whole ant colony instead of by the wandering of a lucky ant. A modified ACO
was proposed to solve a multi-objective resource allocation problem in [58]. The
modifications included a special heuristic information, pheromone updating rule,
and selection probability equation. Xiong and Kuang [59] proposed an ACO to solve
the time-cost trade-off problems in which the modified adaptive weight approach
developed in [60] was adopted to guide the solution to the Pareto-front. Mokhtari et
al. [61] developed an ACO for stochastic DTCTP which was aimed to improve the
project completion probability by a predefined deadline on program evaluation and
review technique networks. In [61], the activities were subjected to a discrete cost
function and assumed to be normally distributed. Then, the model was formulated as
a nonlinear mathematical 0-1 programming problem, where the mean and variance
of the activity durations were decision variables and the objective function was to
maximize the project completion probability.
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Chen et al. [62] developed an improved particle swam optimization (PSO)
approach to solve RCSP. During the implementation of PSO, delay local search
and bidirectional scheduling were introduced. The delay local search enabled some
activities delayed and altering the decided start processing time, and being capable
of escaping from local minimum. The bidirectional scheduling rule which combined
forward and backward scheduling to expand the searching area in the solution space
for obtaining potential optimal solution. The critical path was applied to speed up
convergence of the algorithm in which the critical path was used to determine the
heuristic value which played a key role in the state transition rule. To enhance the effi-
ciency and effectiveness of PSO, the justification technique in [63] was incorporated
in PSO in [64] which was called as justification particle swarm optimization (JPSO).
In addition to the justification technique in [64], two other designedmechanismswere
integrated. One was the mapping technique for enhancing the exploitation efficiency
of justification, and the other was the adjusting ratio of communication topology of
PSO for trade-off between exploration and exploitation. PSO to solve RCSP was
further improved in [65] by integrating a double justification skill and a move oper-
ator for the particles, in association with rank-priority-based representation, greedy
random search, and serial scheduling scheme, to execute the intelligent updating
process of the swarms to search for better solutions. The computational experiments
validated the significant improvements over the other PSO-based algorithms through
testing the benchmarks with 30, 60 and 120 activities. Zhang and Li [66] applied
PSO to solve TCTP. Numerical simulations for TCTP with 18 activities have been
conducted and compared with some other heuristic methods.

Fang and Wang [67] developed an effective shuffled frog-leaping algorithm
(SFLA) for the multi-mode resource-constrained project scheduling problem. In
the SFLA, the virtual frogs were encoded as the extended multi-mode activity list
and decoded by the multi-mode serial schedule generation scheme. Initially, the
mode assignment lists of the population were generated randomly, and the activity
lists of the population were generated by the regret-based sampling method and the
latest finish time priority rule. Then, virtual frogswere partitioned into severalmeme-
plexes that evolved simultaneously by performing the simplified two-point crossover.
The combined local search including permutation-based local search and forward-
Cbackward improvement was further performed in each memeplex to enhance the
exploitation ability. Virtual frogs were periodically shuffled and reorganized into
new memeplexes to maintain the diversity of each memeplex. This method has been
further adapted to solve RCPS with the multi-modes in [12]. Ashuri and Tavakolan
[68] proposed a Shuffled-Frog Leapingmodel to solve complex Time-Cost-Resource
optimization problems in construction project planning which was formulated as a
multi-objective optimization problem in which total project duration, total project
cost, and total variation of resource allocation were minimized simultaneously.

Bee algorithms for resource constrained project scheduling problem was investi-
gated in [34]. Three variants of bee algorithms methods were developed: bee algo-
rithm (BA), artificial bee colony (ABC), and bee swarm optimization (BSO). The
parallel-SGS and serial-SGS were introduced to construct active schedules. The dif-
ferent variants made use of different types of bees to provide appropriate level of
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exploration over search space while maintaining exploitation of good solutions. A
constraint handling method was introduced to resolve the infeasible solutions in
which the activity which violated the constraints was replaced by the next activity
with smaller priority. Huang and Lin [69] proposed a bee colony optimization algo-
rithm to solve open shop scheduling problems. To shorten the time-cost for obtaining
a possible bad solution, an idle-time-based filtering scheme was introduced based on
the processes of the Forward Pass of bee’s foraging behaviors. During the course of
bee colony foraging, the idle-time of partial scheduling was regarded as the recip-
rocal of profitability. When the profitability of a partial foraging route of a bee was
smaller than the average profitability accepted by the colony, this scheduler would
automatically stop searching the foraging trip of this particular bee.

4 Conclusion

This paper has surveyed the optimization modelling and solution techniques for
the project scheduling problems. We first presented five mathematical models to
formulate a project scheduling problems as optimization problems. Then, the solution
algorithms, including exact algorithms and meta-heuristic algorithms are surveyed
in which we mainly focus on the latest three years publications in archival journals
since the survey of previous results are available in other survey papers.

It is well-known that the project scheduling problems are NP hard. Most of results
on the exactmethods published in the recent years are to extend the branch-and-bound
methods to solve new variants of project scheduling problems rather than algorithms
development. Furthermore, the efficiency of the exact methods is heavily dependent
on the bounding strategy which is problem-specific. Different project scheduling
problems should adopt different bounding strategies. Despite all efforts applied to
solve the instances of the library, up to now only the group with 30 activities has
been reported completely solved to optimality. How to develop new exact efficient
algorithms to solve large-scaled project scheduling problems are still waiting for
study.

Comparing with the exact methods, the meta-heuristic methods seem more
promising. In fact, if the problems that cannot be easily solved by conventional
exact methods, meta-heuristic methods are good choices in the optimization field.
Each meta-heuristic method has its own tunable parameters. The performances of
the meta-heuristic methods are heavily dependent on the choice of these parameters.
However, there is still lack of a unified framework to tune them. Thus, almost all the
meta-heuristic methods are problem-specific which reduce their applicability.
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