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Abstract Some researchers have suggested that the hydro-climatic process is a com-
plex system, with nonlinearity as its basic characteristic. But there is still a lack of 
effective means available to thoroughly discover the dynamics of hydro-climatic 
process at different time scales. Therefore, more studies are required to explore the 
nonlinearity of hydro-climatic process from different perspectives and using different 
methods. Based on the hydrologic and meteorological data in the areas of the Tarim 
headwaters, this chapter investigated the nonlinear hydro-climatic process by a com-
prehensive method including correlation dimension, R/S analysis, wavelet analysis, 
regression and artificial neural network modeling. The main findings are as follows:

(1) The hydro-climatic process in the Tarim headwaters presented periodic, nonlin-
ear, chaotic dynamics, and long-memory characteristics.

(2) The correlation dimensions of the attractor derived from the AR time series for 
the Hotan, Yarkand, Aksu and Kaidu rivers were all greater than 3.0 and non-
integral, implying that all four headwaters are dynamic chaotic systems that are 
sensitive to initial conditions, and that the dynamic modeling of hydro-climatic 
process requires at least four independent variables.

(3) The Hurst exponents indicate that a long-term memory characteristic exists in 
hydro-climatic process. However, there were some differences observed, with 

Y. Chen (ed.), Water Resources Research in Northwest China, 
DOI 10.1007/978-94-017-8017-9_8, © Springer Science+Business Media Dordrecht 2014



290 J. Xu et al.

the Aksu, Yarkand and Kaidu rivers demonstrating a persistent trait, and the 
Hotan River exhibiting an anti-persistent feature.

(4) The variation pattern of runoff, temperature and precipitation was scale-depen-
dent with time. Annual runoff (AR), annual average temperature (AAT) and 
annual precipitation (AP) at five time scales resulted in five variation patterns 
respectively.

(5) The nonlinear variation of runoff is resulted from regional climatic change. The 
variation periodicity of AR is close with that of AAT and AP. The multiple lin-
ear regression (MLR) and back-propagation artificial neural network (BPANN) 
based on wavelet analysis reveal the correlations between annual runoff (AR) 
with annual precipitation (AP), annual average temperature (AAT) at different 
time scales.

Keywords Hydro-climatic process · Nonlinearity · Periodic · Nonlinear and 
chaotic dynamics · Tarim headwaters

8.1 Introduction

Theoretically, hydro-climatic process can be evaluated to determine if they com-
prise an ordered, deterministic system, an unordered, random system, or a chaotic, 
dynamic system, and whether change patterns of periodicity or quasi-periodicity 
exist. However, it is difficult to achieve a thorough understanding of the nonlinear 
hydro-climatic process (Cannon and McKendry 2002; Xu et al. 2010).

In the last 20 years, many studies have been conducted to evaluate climatic 
change and hydrological processes in the arid and semi-arid regions in northwestern 
China (Chen and Xu 2005; Wang et al. 2010; Xu et al. 2011a, b; Zhang et al. 2010). 
A number of studies have indicated that there was a visible transition in the hydro-
climatic processes in the past half-century (Chen and Xu 2005; Chen et al. 2006; 
Shi et al. 2007; Wang et al. 2010). This transition was characterized by a continual 
increase in temperature and precipitation, added river runoff volumes, increased 
lake water surface elevation and area, and elevated groundwater levels. This transi-
tion may inquiries a series questions if these changes represent a localized transition 
to a warm and wet climate type in response to global warming, or merely reflect a 
centennial periodicity in hydrological dynamics. To date, these questions have not 
received satisfactory answers; therefore, more studies are required to explore the 
nonlinear characteristics of hydro-climatic process from different perspectives and 
using different methods (Xu et al. 2012).

Because of the above reasons, this chapter investigated the nonlinear hydro-
climatic process in the Tarim headwaters by an integrated approach including cor-
relation dimension, R/S analysis, wavelet decomposition, regression analysis and 
artificial neural network.
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8.1.1 Materials and Methods

8.1.1.1 Study Area

The Tarim River basin covers an area of 1.02 × 106 km2 and is the largest continen-
tal river basin in China. The basin covers the entire southern part of Xinjiang in 
western China and is characterized by an abundance of rich natural resources and 
a fragile environment. This region has an extreme desert climate with an annual 
average temperature of 10.6 ~ 11.5 °C. In addition, the monthly mean temperature 
ranges from 20 to 30 °C in July and − 10 to − 20 °C in January and the highest and 
lowest temperatures are + 43.6 °C and − 27.5 °C, respectively. The accumulative 
temperature > 10 °C ranges from 4,100 to 4,300 °C. The average annual precipita-
tion is approximately 116.8 mm for the entire area, with an uneven distribution 
of 200–500 mm in the mountainous area, 50 ~ 80 mm on the edges of the basin, 
and only 17.4–25.0 mm in the central portion of the basin. There is great temporal 
unevenness in precipitation within each year as well. More than 80 % of the total 
annual precipitation falls between May and September in the high-flow season, and 
less than 20 % of the total precipitation occurs between November and April.

The main channel of the Tarim River is 1,321 km in length. Naturally and histori-
cally the Tarim River basin consists of 114 rivers from nine drainage systems, which 
include the Aksu, Hotan, Yarkand, Qarqan, Keriya, Dina, Kaxgar, and Kaidu-Konqi 
rivers. The basin contains 20.44 × 106 ha of arable lands and has a human popula-
tion of 8.26 × 106. The mean annual natural surface runoff is 3.98 × 1010 m3, most 
of which originates from glaciers, snowmelt and precipitation in the surrounding 
mountains.

Intensive disturbances caused by human activities, particularly in response to 
excessive water resources exploitation, have brought about marked changes during 
the past 50 years. The drainage systems gradually disintegrated when the Weigan, 
Kaxgar, Dina, Keriya, and Qarqan rivers stopped flowing into the mainstream and 
were eventually disconnected from it. Today, there are only three drainage systems 
connected to the mainstream of the Tarim River, the Aksu River, Yarkand River and 
Hotan River. The Aksu River has two main tributaries (the Tongshigan and Kum-
alak) and originates from the Tianshan Mountains in the northwest portion of the 
basin. The Hotan River also has two main tributaries (the Kalaksh and Yulongkash) 
and originates in the Kunlun Mountains and flows through the southwestern portion 
of the basin. The Yarkand River originates from the Pamir Plateau and lies between 
the Aksu River and the Yarkand River (Fig. 8.1).

As mentioned above, glaciers, snowmelt and precipitation in the surrounding 
mountains are the major sources of runoff in the Tarim River. Specifically, glacier 
melt and snowmelt comprise 48.2 % of the total runoff of the river. Interannual 
runoff variability is small, with a coefficient of variation ranging from 0.15 to 0.25 
and maximum and minimum modular coefficients of 1.36 and 0.79, respectively. 
Additionally, seasonal runoff is unevenly distributed, with runoff during the flood 
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season (June–August) accounting for 60–80 % of the total annual runoff (Chen and 
Xu 2005).

8.1.1.2 Data

To investigate hydro-climatic process of the Tarim headwaters, this study used the 
time series of annual runoff (AR) in the period of 1957 ~ 2008 from Xiehela and 
Shaliguilank hydrologic stations for the Aksu River, from the Kaqun hydrologic sta-
tion for the Yarkand River, from the Tonguzluok and Wuluwat hydrologic stations 
for the Hotan River, and from the Dashankou hydrologic station for the Kaidu Riv-
er. We also used annual average temperature (AAT) and annual precipitation (AP) 
from 28 meteorological stations in the Tarim River Basin for the same study period.

8.1.1.3 Methodology

(1) Correlation dimension
The correlation dimension method is usually applied to analyze a series and de-

termine if the process exhibits a chaotic dynamic characteristic (Sivakumar 2007; 
Xu et al. 2009a). Consider x( t), the time series of annual runoff, and suppose it is 
generated by a nonlinear dynamic system with m degrees of freedom. To restore the 
dynamic characteristic of the original system, it is necessary to construct an appro-
priate series of state vectors, X (m)( t), with delay coordinates in the m-dimensional 

Fig. 8.1  Location of study area
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phase space according to the basic ideas initiated by Grassberger and Procaccia 
(1983):

{ }( ) ( ) ( ), ( ),  ...,  ( ( 1) )mX t x t x t x t mτ τ= + + − (8.1)

where m is the embedding dimension and τ is an appropriate time delay.
The trajectory in the phase space is defined as a sequence of m dimensional vec-

tors. If the dynamics of the system can be reduced to a set of deterministic laws, 
the trajectories of the system converge toward a subset of the phase space, which 
is called an “attractor”. Many natural systems do not conform with time to a cyclic 
trajectory. Some nonlinear dissipative dynamic systems tend to shift toward the 
attractors for which the motion is chaotic, i.e. not periodic and unpredictable over 
long times. The attractors of such systems are called strange attractors. For the set 
of points on the attractor, using the G-P method (Grassberger and Procaccia 1983), 
the correlation-integrals are defined to distinguish between stochastic and chaotic 
behaviors.

The correlation-integrals can be defined as follows:
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where r is the surveyor’s rod for distance, NR is the number of reference points taken 
from N, and N is the number of points, X ( m)( t). The relationship between N and NR 
is NR = N−( m−1)τ. Θ( x) is the Heaviside function, which is defined as:
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0 0
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The expression counts the number of points in the dataset that are closer than the 
radius, r, within a hypersphere of the radius, r, and then divides this value by the 
square of the total number of points (because of normalization). As r→0, the cor-
relation exponent, d, is defined as:

C r rd( ) ∝ (8.4)

It is apparent that the correlation exponent, d, is given by the slope coefficient of ln 
C( r) versus ln r. According to (ln r, ln C( r)), d can be obtained by the least squares 
method (LSM) using a log-log grid.

To detect the chaotic behavior of the system, the correlation exponent has to be 
plotted as a function of the embedding dimension (as shown as Fig. 3.2 in Sect. 3.1). 
If the system is purely random (e.g. white noise) the correlation exponent increases 
as the embedding dimension increases, without reaching the saturation value.

If there are deterministic dynamics in the system, the correlation exponent reach-
es the saturation value, which means that it remains approximately constant as the 
embedding dimension increases. The saturated correlation exponent is called the 
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correlation dimension of the attractor. The correlation dimension belongs to the 
invariants of the motion on the attractor. It is generally assumed that the correlation 
dimension equals the number of degrees of freedom of the system, and higher em-
bedding dimensions are therefore redundant. For example, to describe the position 
of the point on the plane (two-dimensional system), the third dimension is not nec-
essary because it is redundant. In addition, the correlation dimension is often fractal 
and represented as a non-integral dimension, which is typical for chaotic dynamical 
systems that are very sensitive to initial conditions.

(2) R/S analysis
R/S analysis, which is also called rescaled range analysis, is usually applied to 

analyze long-term correlation characteristics of a time series (Xu et al. 2008a; Li et al. 
2008). The principle of R/S analysis is briefly introduced as follows (Mandelbrot and 
Wallis 1969; Turcotte 1997):

Considering a time series x( t), such as the annual runoff sequence of a certain 
river, for any positive integer τ ≥ 1, the mean value series is defined as:

1
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x x t
τ

τ τ
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= =∑ (8.5)

The accumulative deviation is:
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The extreme deviation is:
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The standard deviation is:
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When analyzing the statistic rule of ( ) / ( )  /R S R Sτ τ ∆ , H E Hurst discovered a 
relational expression,

/
2

H

R S τ ∝    (8.9)

which can be used to identify the Hurst phenomenon in the time series, where H is 
known as the Hurst exponent. It is evident that H is given by the slope coefficient of 
R/S versus τ/2. According to (ln τ/2, ln ( R/S)), H can be obtained by the least squares 
method (LSM) in a log-log grid.

J. Xu et al.
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Hurst et al. (1965) once demonstrated that if x( t) is an independently random 
series with limited variance, the exponent, H = 0.5, and H (0 < H < 1) is dependent 
on a correlation function C( t):

C t H( ) = −−2 12 1 (8.10)

When H > 0.5 and C( t) > 0, the process has a long, enduring characteristic, and the 
future trend of the time series will be consistent with the past. In other words, if 
the past showed an increasing trend, the future will also show an increasing trend. 
When H < 0.5 and C( t) < 0, the process has an anti-persistence characteristic, and the 
future trend of the time series will be opposite from the past. In other words, if the 
past showed an increasing trend, the future will assume the reducing trend. When 
H = 0.5 and C( t) = 0, the process is stochastic; in other words, there is no correlation 
or only a short-range correlation in the process (Ai and Li 1993).

(3) Wavelet analysis
Wavelet transformation has been shown to be a powerful technique for charac-

terization of the frequency, intensity, time position, and duration of variations in 
climate and hydrological time series (Torrence and Compo 1998; Smith et al. 1998; 
Chou 2007; Xu et al. 2009b). Wavelet analysis can also reveal the localized time 
and frequency information without requiring the time series to be stationary, as 
required by the Fourier transform and other spectral methods.

A continuous wavelet function ( )ηΨ  that depends on a nondimensional time 
parameter η  can be written as (Labat 2005):

1 2( ) ( , ) | | t ba b a
a

η − − Ψ = Ψ = Ψ   (8.11)

where, t denotes time, a is the scale parameter and b is the translation parameter. 
( )ηΨ  must have a zero mean and be localized in both time and Fourier space (Farge 

1992). The continuous wavelet transform (CWT) of a discrete signal, x( t), such as 
the time series of runoff, temperature, or precipitation, is expressed by the convolu-
tion of x( t) with a scaled and translated ( )ηΨ ,

W a b a x t t b
a

dtx ( , ) | | ( )/ *=
−





−

−∞

+∞

∫1 2 Ψ (8.12)

where, * indicates the complex conjugate, and Wx( a, b) denotes the wavelet coef-
ficient. Thus, the concept of frequency is replaced by that of scale, which can char-
acterize the variation in the signal, x( t), at a given time scale.

Selecting a proper wavelet function is a prerequisite for time series analysis. 
The actual criteria for wavelet selection include self-similarity, compactness, and 
smoothness (Ramsey 1999). For the present study, symlet 8 was chosen as the 
wavelet function according to these criteria.

8 The Nonlinear Hydro-climatic Process
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The nonlinear trend of a time series, x( t), can be analyzed at multiple scales 
through wavelet decomposition on the basis of the discrete wavelet transform 
(DWT). The DWT is defined taking discrete values of a and b (Banakar and Azeem 
2008). The full DWT for signal, x( t), can be represented as (Mallat 1989):

0

0 0, , , ,
1

( ) ( ) ( )
j

j k j k j k j k
k j k

x t t tµ φ ω ψ
=

= +∑ ∑∑ (8.13)

where 
0 , ( )j k tφ  and , ( )j k tψ  are the flexing and parallel shift of the basic scaling func-

tion, ( )tφ , and the mother wavelet function, ( ),tψ  and ( )
0 , 0j k j jµ <  and ,j kω  are the 

scaling coefficients and the wavelet coefficients, respectively. Generally, scales and 
positions are based on powers of 2, which is the dyadic DWT (Sun et al. 2006).

Once a mother wavelet is selected, the wavelet transform can be used to de-
compose a signal according to scale, allowing separation of the fine-scale behavior 
(detail) from the large-scale behavior (approximation) of the signal (Bruce et al. 
2002). The relationship between scale and signal behavior is designated as follows: 
low scale corresponds to compressed wavelet as well as rapidly changing details, 
namely high frequency; whereas high scale corresponds to stretched wavelet and 
slowly changing coarse features, namely low frequency. Signal decomposition is 
typically conducted in an iterative fashion using a series of scales such as a = 2, 4, 
8, ……, 2L, with successive approximations being split in turn so that one signal is 
broken down into many lower resolution components.

(4) Regression analysis based on wavelet decomposition
For understanding the relationship between annual runoff with its related climat-

ic factors at different time scales, we employed Multiple linear regression (MLR) 
based on wavelet decomposition. This method fits multiple linear regression equa-
tion (MLRE) between AR with AAT and AP by using multiple linear regression 
(MLR) based on the results of wavelet approximation (Xu et al. 2008b).

The multiple linear regression model is

y a a x a x a xk k= + + +…+0 1 1 2 2 (8.14)

where, y is dependent variable, xi the independent variables; ai is the regression 
coefficient, which is generally calculated by method of least squares (Xu 2002). 
In this study, the dependent variable is the annual runoff (AR) and the independent 
variables are related climatic factors, such as the annual average temperature (AAT) 
and annual precipitation (AP), etc.

(5) BPANN based on wavelet decomposition
In order to disclose the relationship between the annual runoff with its related 

climatic factors at different time scales, this study employed the back propagation 
artificial neural network (BPANN) based on the results of wavelet decomposition. We 
first approximated the variation patterns of runoff and its related climate factors, such 
as AR, ATT and AP using wavelet decomposition on the basis of the discrete wavelet 
transform (DWT) at different time scales. Then the relationship between AR with 
AAT and AP were revealed by using BPANN based on the wavelet approximation.

J. Xu et al.
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In back-propagation networks, a number of smaller processing elements (PEs) 
are arranged in layers: an input layer, one or more hidden layers, and an output layer 
(Hsu et al. 1995). The input from each PE in the previous layer ( xi) is multiplied 
by a connection weight ( wji). These connection weights are adjustable and may 
be likened to the coefficients in statistical models. At each PE, the weighted input 
signals are summed and a threshold value (θj) is added. This combined input ( Ij) is 
then passed through a non-linear transfer function (f(·)) to produce the output of the 
PE ( yj). The output of one PE provides the input to the PEs in the next layer. This 
process can be summarized in equations as follows (Maier and Dandy 1998):

j ji i jI w x θ= +∑ (8.15)

y f Ii j= ( ) (8.16)

Our ANN model is a three-tier structure: an input X with two variables (i.e. AAT 
and AP) is linearly mapped to intermediate variables (called hidden neurons) H, 
which are then nonlinearly mapped to the output y (i.e. AR).

By comparing the advantages and disadvantages of artificial neural network 
transfer functions (Dorofki et al. 2012), we selected the activation function as hy-
perbolic tangent sigmoid transfer function as follows:

f e
e

I

I( ) ( )
( )

I =
−
+

−

−

1
1 (8.17)

where f(I) represents transfer function, and I represents input.
The purpose of the model is to capture the relationship between a historical set 

of model inputs and corresponding outputs. As mentioned above, this is achieved 
by repeatedly presenting examples of the input/output relationship to the model and 
adjusting the model coefficients (i.e. the connection weights) in an attempt to mini-
mize an error function between the historical outputs and the outputs predicted by 
the model. This calibration process is generally referred to as ‘training’. The aim of 
the training procedure is to adjust the connection weights until the global minimum 
in the error surface has been reached.

The back-propagation process is commenced by presenting the first example of 
the desired relationship to the network. The input signal flows through the network, 
producing an output signal, which is a function of the values of the connection 
weights, the transfer function and the network geometry. The output signal pro-
duced is then compared with the desired (historical) output signal with the aid of an 
error (cost) function.

The model parameters are optimized by minimizing the mean square error given 
by the cost function:

E y yobs=< − >|| ||2 (8.18)

8 The Nonlinear Hydro-climatic Process
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Where yobs is the observed data, < ⋅ > denotes a sample or time mean.
Because it can train any network as long as its weight, net input, and transfer func-

tions have derivative functions (Kermani et al. 2005), we selected Levenberg–Mar-
quardt (trainlm) as the training function in the computing environment of MATLAB.

(6) Coefficient of determination and Akaike information criterion
In order to identify the uncertainty of the estimated model for a given timescale, 

the coefficient of determination was calculated as follows:
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where CD is the coefficient of determination; ˆiy  and yi are the simulate value 
and actual data of runoff respectively; y  is the mean of ( 1,  2,  ,  );iy i n= …  
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1

ˆ
n

i i
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RSS y y
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= −∑ is the residual sum of squares; TSS y yi
i

n

= −
=
∑ ( )2
1

 is the total sum 

of squares. The coefficient of determination is a measure of how well the simulate 
results represent the actual data. A bigger coefficient of determination indicates a 
higher certainty and lower uncertainty of the estimates (Xu 2002).

To compare the relative goodness between the ANN and multiple linear regres-
sion (MLR) fit for a given timescale, we also used the measure of Akaike informa-
tion criterion (AIC) (Anderson et al. 2000). The formula of AIC is as follows:

AIC k n RSS n= +2 ln( / ) (8.20)

where k is the number of parameters estimated in the model; n is the number of sam-
ples; RSS is the same as in formula (15). A smaller AIC indicates a better model.

For small sample sizes (i.e., n/K ≤ 40), the second-order Akaike Information Cri-
terion (AICc) should be used instead

AIC AIC k k
n kc = +

+
− −

2 1
1

( ) (8.21)

where n is the sample size. As the sample size increases, the last term of the AICc ap-
proaches zero, and the AICc tends to yield the same conclusions as the AIC (Burnham 
and Anderson 2002).

8.2 The Chaotic Dynamics of Runoff Process

This study employed the correlation dimension to demonstrate the dynamic char-
acteristics of the runoff time series of four headwaters. The AR time series of Aksu 
River was first used to reconstruct the phase space, while the correlation dimension 

J. Xu et al.
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of the attractor was calculated. Different values for the radius, r, were first selected 
to compute the values of the correlation-integrals, C( r), which were used to plot the 
curves within a dual logarithmic coordinate system (Fig. 8.2). This diagram shows 
the relationship between ln C( r) and ln C( r) for the annual runoff with a number of 
different embedding dimensions, m. The slope coefficient of ln C( r) versus ln r, i.e. 
the correlation exponent, d, which was used to embed dimension m = 1, 2, …, was 
calculated using the least square method (LSM).

The diagram in Fig. 8.3 shows the gradual saturation process of the correla-
tion exponent. It is evident that the correlation exponent increases with embedding 
dimension, m, and a saturated correlation exponent, the correlation dimension of 
attractor ( D), was obtained when m ≥ 7.

The same procedure was used to derive the correlation dimensions of the attrac-
tors for other headwaters, i.e. the Kaidu, Yarkand and the Hotan River. The index 
values of all four headwaters are shown in Table 8.1.

Fig. 8.3  The correlation 
exponent (d) versus embed-
ding dimension (m)

 

Fig. 8.2  A plot of ln C(r) 
versus ln (r)
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The fact that none of the correlation dimensions is an integer indicates that the 
annual runoff time series of all four headwaters are chaotic dynamic systems that 
are very sensitive to the initial conditions. Because the value of the index is above 
3 for all headwaters, at least four independent variables are needed to describe the 
dynamics of the annual runoff process in each river.

8.3 The Long-memory Characteristic of Runoff Process

All statistical methods used for time series analysis are based on the assumption 
that all data from a given time series are independent (i.e. conforming to the Gauss 
distribution); hence, the series is stochastic. When Hurst (1951) and Hurst et al. 
(1965) analyzed the water level of the Nile River, he found that time-series vari-
ables such as the river water level did not exhibit the stochastic characteristic, but 
instead showed the characteristic of durability. Based on the empirical findings of 
Hurst et al., Mandelbrot and Wallis (1968) led to a breakthrough regarding funda-
mental theories of traditional statistical methods. Specifically, they found that many 
time series no longer presented a random Brownian movement unrelated to the past, 
but instead showed a characteristic of long-term correlation (Comte and Renault 
1996), which he called “fractal”.

This study employed the rescaled range (R/S) analysis method to characterize 
the fractal of annual runoff processes in the four headwaters of the Tarim River. 
Using the R/S analysis method, the Hurst exponent (H) and the correlation function 
( C( t)) were computed for the annual runoff time series of each headwater during the 
period of 1957 ~ 2008 (Table 8.2).

The results shown in Table 8.2 suggest that the annual runoff time series for 
each of the Tarim’s headwaters possess the characteristic of long memory. The 
only difference among the headwaters is that the Kaidu, Aksu and Yarkand rivers 
demonstrate the persistent trait, whereas Hotan shows the anti-persistent feature. 
The H values for the Kaidu, Aksu and Yarkand River are greater than 0.5 and 
the C(t) values are greater than 0, which indicates that the future tendency of the 
annual runoff associated with these systems is consistent with the past runoff. 

Table 8.1  The correlation dimensions for AR in the Tarim headwaters
Rivers Kaidu River Aksu River Yarkand River Hotan River
Embedding dimension (m) 7 7 7 7
Attractor dimension (D) 3.1104 3.2092 3.2118 3.2227

Table 8.2  Hurst exponents for AR in the Tarim headwaters
River Name Kaidu River Aksu River Yarkand River Hotan River
H 0.7897 0.6991 0.5113    0.4367
C(t) 0.4942 0.3178 0.0158 − 0.0840

J. Xu et al.
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However, the H value is less than 0.5 and the C(t) value is less than 0 for the 
Hotan River, which implies that the future tendency of annual runoff is opposite 
to that of the past.

8.4  Variation Patterns of AR and its Related 
Regional Climate Factors

Our previous study indicated that (Xu et al. 2008b), the annual average tempera-
ture (AAT) and annual precipitation (AP) are the most important factors that re-
lated with the annual runoff (AR). The result was also supported by the other 
studies for the headwaters of the Tarim River Basin (Hao et al. 2008; Chen et al. 
2009; Ling et al. 2012).

The raw data of AR, AAT and AP showed in fluctuating. It is difficult to identify 
any patterns simply based on the raw data. In order to show the scale-dependent 
with time for the hydro-climatic process, the wavelet analysis was used.

The nonlinear variation for AR in the Yarkand River and its related climate fac-
tors were analyzed at multiple-year scales through wavelet decomposition on the 
basis of the discrete wavelet transform (DWT).

The wavelet decomposition for the time series of AR in Yarkand River at five 
time scales resulted in five variants of nonlinear variations (Fig. 8.4). The S1 curve 
retains a large amount of residual noise from the raw data, and drastic fluctuations 
along the entire time span. These characteristics indicate that, although AR var-
ied greatly throughout the study period, there was a hidden increasing trend. The 
S2 curve still retains a considerable amount of residual noise, as indicated by the 

Fig. 8.4  The nonlinear variation patterns for AR in the Yarkand River at the different time scales
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presence of 4 peaks and 4 valleys. However, the S2 curve is much smoother than 
the S1 curve, which allows the hidden increasing trend to be more apparent. The 
S3 curve retained much less residual noise, as indicated by the presence of 2 peaks 
and 2 valleys. Compared to S2, the increase in runoff over time was more apparent 
in S3. Finally, the S5 curve presents an ascending tendency, whereas the increasing 
trend is obvious in the S4 curve.

Accordingly, Figs. 8.5 and 8.6 provide us a comparison for the nonlinear varia-
tions of AAT and AP at different time scales. The wavelet decomposition for the 
time series of AAT and AP in the Yarkand River Basin at five time scales resulted 

Fig. 8.6  The nonlinear variation patterns for AP in the Yarkand River Basin at the different time 
scales

 

Fig. 8.5  The nonlinear variation patterns for AAT in the Yarkand River Basin at the different time 
scales
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in five nonlinear variations respectively. These five time scales are also designated 
as S1 to S5. The curves present an ascending tendency although drastic fluctuations 
in S1 and S2. Then, the curves are getting much smoother and the increasing trend 
becomes even more obvious as the scale level increases.

The upper analysis showed that the hydro-climatic process in Yarkand River was 
dependent on time scales.

Figure 8.7 showed the nonlinear variation patterns of AAT, AP and AR in the 
Kaidu River at different time scales, which also indicated that the hydro-climatic 
process was scale-dependent in time.

By using the same approach, we also came to the similar results for the Aksu and 
Hotan River.

8.5  Simulation for Streamflow with Regional Climate 
Change

8.5.1  Simulation by BPANN Based on Wavelet 
Decomposition

For the purpose of understanding hydro-climatic process, based on the results of 
wavelet decomposition at different time scales, the back-propagation artificial neu-
ral network (BPANN) was employed to simulate the relationship between AR with 
AAT and AP.

Our study considered a three-layer BPANN, i.e. input layer, output layer and 
hidden layer, to simulate the nonlinear relationship between AR with AAT, and AP 
at each time scales. The input layer contains two variables, i.e. AAT and AP, the 
output layer contains one variable i.e. AR, and the neuron number of hidden layer is 
4. Table 8.3 shows the optimized parameters for BPANN in the Kaidu River.

The numerical work was carried out using MATLAB. We selected tansig as the 
transfer function, and trainlm as the training function to train network.

Based on wavelet decomposition results of AR, AAT and AP from 1957 to 2008, 
we randomly extracted 80, 10 and 10 % of the data as training, validation and test-
ing samples, respectively. The results show that, at the time scales of S1, S2, S3, S4 
and S5 (i.e. 2-year, 4-year, 8-year, 16-year, and 32-year), all network models have 
reached the expected error target (0.001) with learning rate of 0.01. The optimized 
parameters of the BPANN for the hydro-climatic process at different time scales are 
showed in Table 8.3.

Table 8.3 reveals that, as the time scale increased from S1 to S5, the estimated 
error decreases. The average absolute error and relative error for the simulation of 
AR at time scale of S1 are 2.3163 × 108 m3 and 6.65 % respectively, but those at time 
scale of S5 only are 0.0617 × 108 m3 and 0.18 % respectively.
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Fig. 8.7  The nonlinear variation patterns of AAT, AP and AR in the Kaidu River at different time scales
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8.5.2 Simulation by MLR Based on Wavelet Decomposition

To compare the simulated results from BPANN with those from the regression mod-
el, a group of multiple linear regression equations (MLREs) were fitted based on the 
results of wavelet decomposition at different time scales (Table 8.4).

Table 8.4 shows that on the five time scales, AR has positive correlations with 
both AAT and AP at a high significant level of 0.01. In another words, although 
the runoff, temperature and precipitation displayed nonlinear variations, the runoff 
presented a linear correlation with the temperature and precipitation. In addition, 
both of the statistic F and coefficient of determination R2 for each regression equa-
tion showed an increasing trend with the time scale. This pattern indicated that the 
impact of AAT and AP on AR is more significant at a larger time scale than at a 
smaller time scale.

Table 8.4 also shows that, the simulated error of MLR is large at the time scale 
of S1 and S2 (i.e. 2-year and 4-year scale), moderate at the time scale of S3 (i.e. 
8-year scale), and small at the time scale of S4 and S5 (i.e. 4-year and 5-year scale).

Table 8.3  Basic parameters of the BPANN for hydro-climatic process in the Kaidu River at dif-
ferent time scales
Time scale Neuron 

number of 
the hidden 
layer

Input 
variable

Output 
variable

Transfer 
function

Train 
function

Best 
epoch

Average 
absolute 
error

Average 
relative 
error (%)

S1 4 AAT, AP AR tansig trainlm  4 2.3163 6.65
S2 4 AAT, AP AR tansig trainlm  5 1.4335 4.25
S3 4 AAT, AP AR tansig trainlm  6 0.9905 2.85
S4 4 AAT, AP AR tansig trainlm  6 0.1938 0.57
S5 4 AAT, AP AR tansig trainlm 10 0.0617 0.18
S1, S2, S3, S4 and S5 represent 2-year, 4-year, 8-year, 16-year and 32-year time scales, respec-
tively. “tansig” is hyperbolic tangent sigmoid transfer function, and “trainlm” is a network training 
function that updates weight and bias values according to Levenberg–Marquardt optimization
AR annual runoff, AAT annual average temperature, AP annual precipitation

Table 8.4  MLREs for hydro-climatic process in the Kaidu River at different time scales
Time scale Regression equation R2 F Average 

absolute 
error

Average 
relative error 
(%)

S1 AR = 2.251AAT + 0.036AP + 34.420 0.541 28.932 2.9997 8.41
S2 AR = 4.098AAT − 0.002AP + 52.921 0.745 71.584 1.9987 5.85
S3 AR = 2.922AAT + 0.048AP + 34.263 0.917 269.877 0.9714 2.69
S4 AR = 5.644AAT + 0.010AP + 56.036 0.978 1,066.793 0.4501 1.26
S5 AR = 5.216AAT − 0.009AP +59.490 0.999 30,814.085 0.0779 0.22
Significance level α = 0.01. S1, S2, S3, S4 and S5 represent 2-year, 4-year, 8-year, 16-year and 
32-year time scales, respectively
AR annual runoff, AAT annual average temperature, and AP annual precipitation
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8.5.3  Comparison Between BPANN and MLR  
on Wavelet Decomposition

Figure 8.8 reveals the original data of AR in the Kaidu River and the simulated 
values by MLR and BPANN on wavelet decomposition at different time scales 
respectively.

Table 8.5 showed the coefficient of determination (i.e. CD) as well as the AIC 
value for BPANN and MLRE at each time scale.

A higher coefficient of determination and a lower AIC value indicate a better 
model. Overall, comparing the two modeling methods above, i.e. the multiple lin-
ear regression (MLR) and back-propagation artificial neural network (BPANN) 
based on wavelet analysis, we conclude that the BPANN is better than the MLR at 
each time scale. In other words, both MLR and BPANN successfully simulated the 
hydro-climatic process based on wavelet analysis, but the effect from BPANN is 
better than that from MLR.

By using the same approach, we also came to the similar results for other head-
waters of the Tarim River, i.e. the Aksu, Yarkand and Hotan River.

Summary Based on the hydrologic and meteorological data in the areas of the 
Tarim headwaters, this chapter investigated the nonlinear hydro-climatic process 
by an integrated method including correlation dimension, R/S analysis, wavelet 
decomposition, regression analysis and artificial neural network modeling. The 
main findings are as follows:

[1] The results of this study showed that the hydro-climatic process in the Tarim 
headwaters presented periodic, nonlinear, chaotic dynamics, and long-memory 
characteristics.

[2] The correlation dimensions of the attractor for the time series of annual runoff 
in the four Tarim headwaters were all greater than 3.0 and non-integral, imply-
ing that all four headwaters are dynamic chaotic systems that are sensitive to 
initial conditions, and that the dynamic modeling requires at least four indepen-
dent variables.

[3] The Hurst exponents indicate that a long-term memory characteristic exists in 
hydrological process in the Tarim headwaters. However, there were some dif-
ferences among the headwaters. The Kaidu, Aksu, and Yarkand River presented 
a persistent trait, But the Hotan River exhibited an anti-persistent feature.

[4] The hydro-climatic process at a large time scale (e.g. 32-year scale) is basically 
a linear process, but at a small time scale (e.g. 2-year or 4-year scale) it is essen-
tially a nonlinear process with complicated causations. Therefore, the estimated 
precision is high at a large time scale (e.g. 32-year scale) because the time series 
of runoff are monotonically related to long-term climatic changes. However, it 
is difficult to accurately predict a nonlinear hydro-climatic process at a small 
time scale (e.g. 2-year or 4-year scale).

[5] Our integrated approach conducted by this study can be used to explore the 
hydro-climatic process of other inland rivers in northwest China.
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Fig. 8.8  Simulated results for AR by BPANN and MLR at the different time scales
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