
Chapter 16

Heterogeneity of Hepatocellular Carcinoma

Tingting Fang, Li Feng, and Jinglin Xia

Abstract Liver cancer is the third leading cause of cancer-related death world-

wide. And Hepatocellular carcinoma (HCC) is the most common form of liver

cancer. The extreme variability of the clinical outcome caused a major challenge of

HCC, which makes it difficult to properly stage the disease and thereby estimate the

prognosis. That’s because the rapidly growing tumor displays heterogeneity of

genetic and histopathologic characteristics. The risk of HCC may be affected by

several known environmental factors such as hepatitis viruses, alcohol, cigarette

smoking, and others. The aetiological factors associated with HCC have been well

characterized; however, their effects on the accumulation of genomes changes and

the influence of ethnic variation in risk factors still remain unclear. Advances in

sequencing technologies have enabled the examination of liver cancer genomes at

high resolution; somatic mutations, structural alterations, HBV integration, RNA

editing and retrotransposon changes have been comprehensively identified. In

addition, integrated analyses of trans-omics data have identified diverse critical

genes and signaling pathways implicated in hepatocarcinogenesis. These analyses

have revealed potential therapeutic targets, and prepared the way for new molecular

classifications for clinical application. Therefore, the international collaborations of

cancer genome sequencing projects are expected to contribute to an improved

understanding of risk assessment, diagnosis and therapy for HCC. This review

discusses the contribution of heterogeneity such as aetiological factors, tumor

microenvironment, genetic variations, epigenetic changes and signaling pathways

in HCC progression.
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16.1 Introduction

HCC is a leading malignancy worldwide (Torre et al. 2015). Chronic liver damage

which may result from chronic hepatitis, liver cirrhosis and fatty liver disease, is

closely associated with HCC. Hepatitis virus infection, alcohol intake, aflatoxin B

exposure, and some metabolic diseases such as obesity, haemochromatosis and

diabetes mellitus are well-known risk factors for HCC (El-Serag 2012; Forner

et al. 2012; Yu et al. 2013). The incidence of HCC is high in East Asian and

African countries (Torre et al. 2015; El-Serag 2012; Forner et al. 2012; Shaib and

El-Serag 2004). Africa and Asian countries (except Japan) have the highest rate of

HBV infection in the world (El-Serag 2012). However, the number of patients

infected with HCV has been rapidly increasing in Japan and Western countries,

especially in the USA where viral hepatitis infection is partly mediated through

drug abuse (El-Serag 2012; Forner et al. 2012). With the exception of environmen-

tal risk factors, individual genetic predisposition may be linked to the risk of HCC

as suggested by the fact that in a relevant percentage of HCC cases, i.e., about 20 %

of cases diagnosed in the United States, without known predisposing risk factors,

including alcohol use or viral hepatitis, can be identified (El-Serag and Mason

2000). The role of genetic factors in the risk of HCC is supported by strong

evidence from animal models, which have enabled the identification of the number

and chromosomal location of loci affecting genetic susceptibility to chemically

induced hepatocarcinogenesis in both mice and rats (Dragani et al. 1996; Feo

et al. 2006). In this Review, we mainly focus on HCC, as HCC showed distinctive

genomic alterations at present, which includes estimated risk of HCC according to

particular genetic factors.

16.2 Aetiological Factors for HCC

The risk of HCC may be affected by several known environmental factors such as

hepatitis viruses, alcohol, cigarette smoking and so on (IARC 2004; Bosch

et al. 2004; Kuper et al. 2000; Llovet et al. 2003), among which the prevalence of

chronic hepatitis B (HBV) or C (HCV) virus infections plays an identified role in

the incidence of HCC. HCC is more prevalent in Southeast Asia and sub-Saharan

Africa, where HBV infection is endemic, but HBV-related liver cancer cases also

occur in western countries (Bosch et al. 2004; Llovet et al. 2003). Chronic carriers

of HBV have up to a 30-fold increased risk of HCC (IARC 1994; Evans et al. 2002;

Franceschi et al. 2006). In western countries, HCV infection plays a major role in

the pathogenesis of HCC, and it has become more prevalent over the past decades,

accompanied by a higher incidence and mortality from HCC (El-Serag and Mason

2000; IARC 1994). The fact that alcohol consumption causes liver cirrhosis and is

an independent risk factor for primary liver cancer has been disclosed by a large

number of cohort and case–control studies (Kuper et al. 2000; Baan et al. 2007;
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Ogimoto et al. 2004). And epidemiological studies showed that increasing HCC

risks associated with exposure to aflatoxins after adjustment for HBV exposure

(IARC 2002). What’s more, cigarette smoking has been causally associated with

the risk of HCC (IARC 2004; Kuper et al. 2000), and heavy smoking and heavy

drinking was reported to have a multiplicative effect in HCC development (Kuper

et al. 2000).

In addition to environmental risk factors, individual genetic predisposition may

also play a role in the risk of HCC with the current evidence from epidemiological/

genetic studies in human populations, which argues for the important role of

monogenic and polygenic factors in determining the risk of HCC development.

Rare monogenic syndromes such as alpha1-antitrypsin deficiency, hemochromato-

sis, acute intermittent, cutanea tarda porphyria, and glycogen storage disease type I

as well as hereditary tyrosinemia type I are associated with a high risk of HCC

(Andant et al. 2000; Elmberg et al. 2003; Elzouki and Eriksson 1996; Fracanzani

et al. 2001; Haddow et al. 2003; Janecke et al. 2001; Ostrowski et al. 1983; Scott

2006; Weinberg et al. 1976). Several common conditions or diseases inherited as

polygenic traits e.g. autoimmune hepatitis, type 2 diabetes, non-alcoholic

steatohepatitis, hypothyroidism, and a family history of HCC also show an

increased risk of HCC compared to the normal population (El-Serag et al. 2006;

Hashimoto et al. 2009; Hassan et al. 2009; Werner et al. 2009; Hemminki and Li

2003). Therefore, the increased risk of HCC may not be directly linked to genetic

disorders, but instead single germ-line mutations or conditions regulated by com-

plex genetics may cause chronic damage such as liver cirrhosis of the target organ,

in turn causing the oncogenic mutations and/or promoting preexisting endogenous

or virus- or chemical-induced mutations which lead to HCC. Indeed, similar to

those occurring in human liver cirrhosis, conditions of hepatic necrosis and regen-

eration may promote carcinogen-induced hepatocarcinogenesis, as suggested by the

experiments with rodent models (Dragani et al. 1986). Thus, cirrhosis from any

cause appears to be the common signaling pathway by which some risk factors

exert their hepatocarcinogenesis (Fig. 16.1). Overall, the genetic susceptibility to

HCC is characterized by a genetic heterogeneity; With the fact that, a high

individual risk of HCC may thus be caused by several unlinked single gene defects,

whose carriers are rare in the general population, or by more common conditions

inherited by complex genetics.

16.3 Heterogeneity of Tumor Microenvironment in HCC

As a highly heterogeneous disease, HCC displays differences in angiogenesis,

extracellular matrix proteins and the immune microenvironment, which contribute

to HCC progression. Therefore, a better understanding of its heterogeneity will

greatly contribute to the development of strategies for the HCC treatment.

16 Heterogeneity of Hepatocellular Carcinoma 373



16.3.1 Angiogenic Heterogeneity

HCC has wide variations in vascularity that are dependent upon tumor size

(T stage) and histological grade, and angiogenic switch depends on the balance

between pro- and antiangiogenic factors at different stages of tumor progression

(Baeriswyl and Christofori 2009). Pro-angiogenic factors include VEGF, fibroblast

growth factor (FGF), platelet-derived growth factor (PDGF), angiopoietin-1 and

angiopoietin-2. And anti-angiogenic factors include thrombospondin-1 (TSP1),

endostatin, interferon-α, interferon-β and angiostatin. VEGF expression is

up-regulated by hypoxia-induced factor-1α (HIF-1α) to switch angiogenic pheno-

type (Fang et al. 2001). Therefore, HCC is a hypervascularized tumor because of

increased angiogenic phenotype (Muto et al. 2015), which is not only required for

tumor growth supplied with oxygen and essential nutrients but also facilitates

metastasis. A higher level of VEGF mRNA in tumor tissue correlates with

increased post-resection recurrences, suggesting that an altered balance between

angiogenic stimulators and inhibitors contributes to cancer progression. Therefore,

angiogenic heterogeneity is associated with angiogenic molecules such as VEGF,

PEDF and HIF-1α (Fig. 16.2a) that could be different among various tumor sizes

and time intervals during hepatocarcinogenesis, which needs to be taken into the

consideration when we decide to carry out an anti-angiogenic therapy to prevent

recurrence in HCC patients (Wu et al. 2007).

Fig. 16.1 Aetiological factors for HCC. The risk of HCC may be mainly affected by several

known environmental factors, including hepatitis viruses, alcohol, cigarette smoking, and others.

In addition to environmental risk factors, individual genetic predisposition may play a role in the

risk of HCC as suggested by the fact that in a relevant percentage of HCC cases, i.e.
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16.3.2 Heterogeneity of Extracellular Matrix

Extracellular matrix (ECM) components mainly consist of collagen, laminin, fibro-

nectin, glycosaminoglycan and proteoglycan. Because of continuous repatterning

of the ECM, HCC tumor cells can invade via direct or indirect interactions among

ECM, stroma cells and HCC (Carloni et al. 2014). The major tumor ECM

Fig. 16.2 Heterogeneity of hepatocellular carcinoma. (a) Angiogenesis (b) immune

microenvironment
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concerned in this process are collagen type IV, lysyl oxidase (LOX) and

matricellular proteins (MCPs), whereas MCPs is prime metastatic niches in HCC

(Chew et al. 2012; Fang et al. 2013; Wong and Rustgi 2013). Overall, a dynamic

ECM contributes to hepatocarcinogenesis. Matrix metalloproteinases (MMPs) were

associated with tumor invasion and migration, particularly MMP2, MMP9 and

MT1-MMP, which play a pivotal role in the degradation of ECM to facilitate

HCC metastasis (Ogasawara et al. 2005). Furthermore, connective tissue growth

factor (CTGF) was overexpressed in HCC patients whereas downregulating the

expression of CTGF could inhibit HCC growth which could be a potential thera-

peutic strategy for HCC treatment (Jia et al. 2011). As we all known, epithelial

mesenchymal transition (EMT) is an very important step in hepatocarcinogenesis,

which involves the interactions between HCC cells and ECM mediated by

transforming growth factor-β1(TGF-β1) and/or PDGFR signaling pathway (Dorn

et al. 2010).

The heterogeneity of ECM makes it a challenging topic to inhibit ECM proteins

due to the various ECM proteins and complex mechanisms. However, it still needs

to be considered for the target therapy in which the proteins required to maintain or

degrade ECM-related proteins could be used.

16.3.3 Heterogeneity of the Immune Microenvironment

The immune microenvironment in HCC is also found to be heterogeneous. Cell types

within or around tumors include cytotoxic T cells (CD8þ), regulatory T cells (Treg),

natural killer (NK), natural killer T cells (NKT), myeloid-derived suppressor cells

(MDSCs) and so on (Fig. 16.2b). These cells can play an important role in promoting

or inhibiting HCC progression (Junttila and de Sauvage 2013) (Fig. 16.3).

CD8þ T cells are found infiltrating among HCC tumor cells, whereas CD4þ T

cells are found mainly around the tumor or liver interface (Kasper et al. 2009). Treg

cells promote immune suppression by secreting IL-10 and TGF-β and direct contact
with tumor cells (Wang et al. 2012). On the other hand, Tregs could inhibit CD8þ T

cells responses and would enhance immune responses when the Treg number is low

(Huang et al. 2012a). Cytotoxic T cells (CTLs) have the cytotoxicity to kill tumor

cells which lead to less immune response against HCC (Gao et al. 2007). Therefore,

low number of Tregs and increased number of activated CTLs are associated with a

favorable prognosis. A higher frequency of Th17 cells which secret IL-22 are found

in advanced HCC patients with poor survival (Zhang et al. 2009; Liao et al. 2013).

And a higher expression of IL-22 can activate Stat-3 signaling and promote tumor

growth (Jiang et al. 2011).

Some studies have reported that the frequency and cytotoxic function of NK

cells to be reduced both in the liver and peripheral blood of HCC patients (Cai

et al. 2008; Gao et al. 2009; Hoechst et al. 2009). The reduced NK cell function was

associated with lower expression of NK cell receptor, NKG2D (Sha et al. 2014).

Invariant natural killer T (iNKT) cells was also shown to be increased in patients
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Fig. 16.3 Somatic alterations in the HCC genome. (a) Some representative somatic mutations in

the whole exon domain (exome), which is determined by massively parallel sequencing (b) Some

representative somatic mutations in the whole-genome domain, which is performed by whole-

genome sequencing (c) representative somatic change of retrotransposons in HCC
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produced Interferon-gamma (IFN) to inhibit tumor growth (Crowe et al. 2005). In

addition, CD4þ NKT cells produced Th2-cytokine which could also inhibit CD8 T

cell expansion and function (Bricard et al. 2009).

Myeloid-derived suppressor cells (MDSCs) are heterogeneous in HCC patients

that includes macrophages, dendritic cells, immature granulocytes and early mye-

loid progenitors. MDSCs could inhibit T cell responses as well as natural killer cell

function via the NKp30 receptor (Hoechst et al. 2009). Overall, the development of

immunotherapy requires an understanding of the heterogeneous microenvironment,

regulation of cytokines at different stages of HCC, and the functional activity of T

cells, CTLs, NK cells and MDSCs etc.

16.4 Heterogeneity of HCC Genomes

Progress in sequencing technologies have made it possible to examine liver cancer

genomes at high resolution. Somatic mutations, structural alterations, HBV inte-

gration, RNA editing, retrotransposon changes and so on have been comprehen-

sively identified. In addition, integrated analyses of genome, transcriptome and

methylome data have identified various critical genes and pathways involved in

hepatocarcinogenesis, and paved the way for new molecular classifications for

clinical application. Furthermore, the international collaborations of cancer genome

sequencing projects are expected to contribute to an improved understanding of risk

evaluation, diagnosis and therapy strategy for this cancer.

16.4.1 Somatic Alterations in the HCC Genome

Whole-genome and whole-exome sequencing have provided a comprehensive and

high-resolution view of somatic genomic alterations in HCC. The liver cancer

genome contains multiple types of somatic alterations, including mutations such

as single nucleotide substitutions, small insertions and deletions, changes of gene

copy numbers, intra-chromosomal rearrangements and inter-chromosomal

rearrangements. For the past few years, an increasing appreciation and identifica-

tion of somatic mutations that drive human tumors have enable us within reach of

personalized cancer medicine.

16.4.1.1 Genome-Wide Copy Number Analysis

Somatic DNA copy number changes in human cancers genomes have been detected

mainly by array-based comparative genome hybridization methods (CGH). That’s
because array-based CGH can enable high-throughput and high-resolution screen-

ing of genome-wide DNA copy number changes (Pollack et al. 1999). In addition to
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well-known oncogenes e.g. MYC and CCND1, and tumour suppressor genes, such

as TP53 and RB, liver cancers harbour multiple chromosomal amplifications and

deletions, and Shibata et al. have summarized these recurrent copy number alter-

ations on the Table 16.1 (Shibata and Aburatani 2014).

In recent years, several studies reported chromosomal alterations in HCC using

array CGH (Chochi et al. 2009; Kakar et al. 2009; Patil et al. 2005; Schlaeger

et al. 2008). Guo X et al. discovered significant gains in 5p15.33 and 9q34.2–34.3

and losses in 6q, 9p and 14q in addition to the regions that were previously

identified by conventional CGH analyses by a meta-analysis of 159 HCC array

Table 16.1 Amplified and deleted genes in HCC (Wang et al. 2012)

Gene name Locus Function

Recurrently amplified genes in HCC

MDM4 1q32.1 P53 pathway

BCL9 1q21.1 WNT pathway

ARNT 1q21.2 Xenobiotics metabolism

ABL2 1q25.2 Proliferation

MET 7q31.2 Proliferation

COPS5 8q13.1 Proteolysis

MTDH 8q22.1 Metastasis

COX6C 8q22.2 Mitochondria

MYC 8q24.21 Proliferation

CCND1 11q13.2 Proliferation

FGF19 11q13.2 WNT pathway

RPS6KB1 11q23.1 Proliferation

EEF1A2 20q13.33 Translation

Recurrently amplified genes in HCC

TNFRSF14 1p36.33 Immune response

CDKN2C 1p36.11 Cell cycle

ARID1A 1p36.11 Chromatin remodelling

TNFAIP3 6q26 NF-κB pathway

CSMD1 8p23.2 Immune response

DLC1 8P22 Small GTpase

SORBS3 8p21.3 Migration

WRN 8p21.3 DNA repair

SH2D4A 8p21.2 Proliferation

PROSC 8p11.2 Unknown

CDKN2A 9p21.3 Cell cycle

CDKN2B 9p21.3 Cell cycle

PTEN 10q23.31 Proliferation

SPRY2 13q31.1 Proliferation

BRCA2 13q13.1 DNA repair

RB1 13q14.3 Cell cycle

XPO4 13q11 Nuclear export

SMAD4 18q21.3 TGF-β signalling
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CGHs (Chochi et al. 2009; Kakar et al. 2009; Patil et al. 2005; Schlaeger

et al. 2008). In a study by Patil et al. (2005), the correlation between DNA copy

numbers and gene expression pattern at the 8q region was demonstrated, which was

frequently amplified in 49 HCC samples. A study of Roessler et al. (2012) identified

ten driver genes that were associated with poor survival by integrating high-

resolution array CGH data and gene expression profiles of 256 HCC cases to gain

the genes which have the significant correlation between somatic copy number

alterations and the whole genome expression patterns. In order to identify potential

cancer driver genes, Woo et al. (2009) integrated whole genome copy number

profiles of 15 HCC cases with gene expression profiles of 139 HCC cases. They

analyzed genes that have a correlation between expression levels and copy number

changes, finally discovered 50 potential driver genes that are linked to HCC

prognosis.

16.4.1.2 Whole-Exome Sequencing

Advance in sequencing technologies have enabled researchers to explore the liver

cancer genome more deeply. Whole exome sequencing (WES) can efficiently

identify mutations in protein-coding exons, which are much more easily identifiable

than the mutations or variants in non-coding regions. This approach concerns

target-enrichment of whole protein-coding exons across the human genome

(30–40 Mb, approximately 1 % of the whole human genome) adopting

in-solution RNA or oligonucleotide DNA probe hybridization technologies (Gnirke

et al. 2009; Hodges et al. 2007) which enable the comprehensive detection of

somatic alterations in the protein-coding exons, and have discovered many novel

genes involved in liver cancer. In the research of Li M et al., the recurrent

inactivating mutations of the ARID2 gene in 18.2 % of HCV-associated HCCs

were identified by exomic sequencing of 10 HCV-positive HCCs and analysis of an

additional tumour cohort of various aetiological backgrounds (Li et al. 2011).

Huang et al. (2012b) sequenced nine pairs of HCCs and their intrahepatic metas-

tases across whole exome to come out with the result that although about 94.2 %

substitutions were common in both primary and metastatic tumours, a fraction of

mutations were detected in 1.1 % primary or 4.7 % metastatic tumours. Among

these mutations, KDM6A, CUL9, RNF139, AKAP4 and FGD6 were only identified

in the metastatic tumors of three individuals. Using whole-exome sequencing of

87 HCC cases, Cleary et al. (2013) found recurrent alterations in the NFE2L2–

KEAP1 and MLL pathways, while C16orf62 and RAC2 with lower mutation

frequencies. According to copy number analysis of 125 HCC cases and whole

exome sequencing of 24 of these cases, Guichard et al. (2012) detected novel

recurrent mutations in the ARID1A, RPS6KA3, NFE2L2 and IRF2 genes. Inter-

estingly, inactivation of the IRF2 gene was exclusively observed in HBV-related

HCC, which led to disruption of TP53 function. In addition, alterations in chroma-

tin remodelers were found in association with alcohol-related HCC.
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16.4.1.3 Whole-Genome Sequencing

Many research groups have sequenced the whole liver cancer genome in further

attempts to detect all somatic driver events involved in hepatocarcinogenesis.

Whole genome sequencing (WGS) can cover almost all the genome sequences in

human and detect variants in non-coding regions, copy number alterations, genomic

rearrangements, and virus genome integrations except single nucleotide changes

(Nakagawa and Shibata 2013). By sequencing HCV-related HCC cases, >16,000

somatic mutations and 26 intra-chromosomal and interchromosomal

rearrangements inducing four fusion transcripts were identified, including the

TP53, AXIN1, ADAM22, JAK2, KHDRBS2, NEK8, TRRAP and BCORL1

genes, as well as a large number of somatic mutations in genes encoding phospho-

proteins and those with bipartite nuclear signals. Through high-resolution analysis,

the authors also identified intratumor heterogeneity of the mutations, including

inactivation of the TSC complex in a subpopulation of HCV-related HCCs (Totoki

et al. 2011). By performed whole-genome sequencing of 27 HCCs and matched

normal genomes, Fujimoto et al. showed that 25 of which were associated with

HBV or HCV infection. The average number of somatic point mutations at the

whole-genome level was 4.2 per Mb. Moreover, several chromatin regulators

mutations, including ARID1A, ARID1B, ARID2, MLL, MLL3, BAZ2B, BRD8,

BPTF, BRE and HIST1H4B, were identified in 50 % tumors. These mutations were

marginally linked to the stage of liver fibrosis and hepatic invasion (Fujimoto

et al. 2012). By a whole-genome sequencing study of 88 matched HCC tumor/

normal pairs, 81 of which are Hepatitis B virus (HBV) positive, Kan et al. (2013)

seeked to identify genetically altered genes and pathways implicated in

HBV-associated HCC cases. They found the most frequently mutated oncogene

(15.9 %) and the most frequently mutated tumor suppressor (35.2 %) are beta-

catenin and TP53, respectively. The Wnt/beta-catenin and JAK/STAT pathways,

mutated in 62.5 % and 45.5 % of cases, respectively, are possible to be two major

oncogenic drivers in HCC. This research also identified several prevalent and

potentially actionable mutations, such as activating mutations of Janus kinase

1 (JAK1) in 9.1 % of patients, suggesting that these genes or pathways could be

new therapeutic targets in HCC (Kan et al. 2013).

16.4.2 Somatic Change of Retrotransposons in HCC

The human genome contains a variety of repetitive genome sequences, including

tandem repeats and retrotransposons e.g. short interspersed nuclear elements

(SINEs) and long interspersed nuclear elements (LINEs). In the human genome,

Alu and LINE-1 are major forms of SINEs and LINEs, respectively (Treangen and

Salzberg 2012). LINE-1 retrotransposons are a major source of endogenous muta-

genesis in humans (Burns and Boeke 2012; Levin and Moran 2011).
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Retrotransposon insertions can deeply alter gene structure and expression (Levin

and Moran 2011; Cordaux and Batzer 2009; Han et al. 2004; Faulkner et al. 2009)

and have been identified in nearly 100 cases of diseases (Faulkner 2011; Hancks

and Kazazian 2012). LINE-1 activity is consequently suppressed in most somatic

cells by methylation of a CpG island in the internal LINE-1 promoter (Coufal

et al. 2009; Swergold 1990). By contrast, LINE-1 is often hypomethylated in tumor

cells, removing a key obstacle to retrotransposition (Levin and Moran 2011).

Shukla et al. (2013) used enhanced retrotransposon capture sequencing (RC-seq)

to detect 19 HCC tumors and matched adjacent liver tissue that were confirmed

positive for HBV or HCV infection and elucidated endogenous LINE-1-mediated

retrotransposition in the germline and somatic cells of HCC patients. The authors

reported two archetypal mechanisms revealing MCC and ST18 as HCC candidate

genes. MCC is a highly plausible liver tumor suppressor. However distinct germline

LINE-1 or Alu insertions contribute to MCC suppression in tumor and nontumor

liver tissue and then activate the WNT/CTNNB1 pathway. The other event is a

tumor-specific LINE-1 insertion which activates a potential oncogene, Suppression

of tumorigenicity 18 (ST18), in liver tumors (Shukla et al. 2013).

16.4.3 HBV Genome Integrations in the Host Genome

Chronic HBV infection is a major risk factor for HCC, and more than half of HCC

cases in the world are attributed to HBV infection. HBV is a DNA virus whose

genome can be integrated into the host genome. The integration of the viral DNA

sequences affect host gene expression near the integration site and its effect on the

integrity of the host genome is associated with virus-mediated hapatocarci-

nogenesis (Neuveut et al. 2010). By Southern blot analysis or inverse PCR,

previous studies identified the integration of HBV DNA sequences into host

genomes both in HCC samples and non-tumorous tissues from patients with chronic

HBV hepatitis (Brechot et al. 1980). Advanced current genome sequencing tech-

nology have enabled researchers to detect virus integration events more compre-

hensively and at higher resolution than previously.

HBV integration was reportedly observed within or upstream of the TERT gene

in tumor tissues in HCC cases with HBV infection (Fujimoto et al. 2012). Further-

more, Sung et al. (2012) reported integration events at the MLL4, CCNE1, SENP5,

FN1 and ROCK1 genes. They conducted whole-genome sequencing of 81 -

HBV-positive and seven HBV-negative HCC samples and found that most HBV

breakpoints in HCC were close to active coding genes, which potentially enabled

HBV to integrate into the open chromatin region more effectively (Sung

et al. 2012). Jiang et al. (2012a) also made comprehensive analyses of

HBV-related HCC and their corresponding normal tissues. They found clonal and

high-abundance viral integrations in tumor tissue, while many viral integration sites

randomly scattered throughout the genome in nontumor liver tissues (Jiang

et al. 2012b). These research indicated that a heterogeneous and widespread viral
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integration landscape in HCC as well as nontumor liver tissue and integration

events may cause aberrant expression of genes near the integration sites, alterations

of DNA copy number and emergence of fusion genes (Sung et al. 2012; Jiang

et al. 2012b). Moreover, recurrent integration of HBV was also detected in the

FAR2, ITPR1, MAPK1, IRAK2 and MLL genes (Sung et al. 2012; Gozuacik

et al. 2001; Paterlini-Brechot et al. 2003; Murakami et al. 2005; Saigo et al. 2008).

16.4.4 DNA Methylation in HCC

(update) DNA methylation and demethylation is an important mechanism of

regulating gene expression and chromatin structure in normal cells. DNA methyl-

ase contribute to the methylation of cytosine at CpG islands at the gene promoter

region. Aberrant DNA methylation at the gene promoter region is an important

mechanism in inactivation of tumor suppressor gene (Nagae et al. 2011; Hendrich

and Bird 1998).

Altered DNA methylation is an early event in HCC development. Global

hypomethylation has a critical role in increasing chromosomal instability and

mainly affected intergenic regions of the genome (Eden et al. 2003). DNA

hypermethylation is the state where the methylation of “normally” undermethylated

DNA domains, which predominantly consist of CpG islands (Rollins et al. 2006),

increases. Abnormal gains of DNA methylation (hypermethylation) of typically

unmethylated CpG island-containing promoters can lead to transcriptional repres-

sion and loss of gene function. In addition, non-CpG island-containing promoter

coding region hypermethylation contribute to genes inactivation (Pogribny and

James 2002; Tomasi et al. 2012).

The study of Udali et al. (2015) used array-based DNA methylation and gene

expression data of all annotated genes from eight HCC patients undergoing curative

surgery to analyze by comparing HCC tissue and homologous cancer-free liver

tissue. They identified 159 hypermethylated-repressed, 56 hypomethylated-

repressed, 49 hypermethylated-induced, and 30 hypomethylated-induced genes.

Notably, promoter DNA methylation proved to be a novel regulatory mechanism

for the transcriptional repression of genes e.g. involving the retinol metabolism

(ADH1A, ADH1B, ADH6, CYP3A43, CYP4A22, RDH16), one-carbon metabo-

lism (SHMT1), iron homeostasis (HAMP), and potential tumor suppressors

(FAM107A, IGFALS, MT1G, MT1H, RNF180).

Nishida et al. (2014) applied Infinium Human Methylation 450 Bead Chip array

which can analyze >485,000 CpG sites distributed throughout the genome to

analyze comprehensive methylation from 117 liver tissues consisting of 59 HCC

and 58 noncancerous livers. They identified 38,330 CpG sites with significant

differences in methylation levels between HCCs and nontumors livers (DMCpGs).

Among the DMCpGs, 92 % were hypomethylated and only 3051 CpGs (8 %) were

hypermethylated in HCC. The DMCpGs were more common within intergenic
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regions with isolated CpGs. However, DMCpGs that were hypermethylated in HCC

were predominantly located within promoter regions and CpG islands.

Shen et al. (2012) analyzed tumor and adjacent nontumor tissues from 62 Tai-

wanese HCC cases using Illumina methylation arrays which can screen 26,486

autosomal CpG sites. They found that a total of 2324 CpG sites significantly

differed in methylation level. Among these CpG sites, 684 CpG sites significantly

hypermethylated and 1640 hypomethylated in tumor compared to nontumor tissues.

The 684 hypermethylation markers could be utilized for plasma DNA diagnostics.

In addition, They identified the top 500 significant CpG sites using a 450 K array

from 66 HCC cases. These differential methylations were able to distinguish HCC

from adjacent nontumor tissues (Shen et al. 2013).

Previous study (Nishida et al. 2007) reported that extensive methylation is

involved in CTNNB1 mutations, while TP53 mutation in HCC is often character-

ized by chromosomal instability. CpG islands promoter of the tumour suppressor

genes CDKN2A and CDKN2B are frequently hypermethylated, leading to inacti-

vation of the RB pathway (Zang et al. 2011). Methylation of the CDKN2A gene

promoter occurs in 73 % of HCC tissues (Wong et al. 1999), 56 % of HBV-related

HCC, and 84 % of HCV-related HCC (Narimatsu et al. 2004). Moreover,

RASSF1A is methylated in up to 85 % of HCCs (Zhang et al. 2002), GSTP1 in

50–90 % (Yang et al. 2003; Zhong et al. 2002), and MGMT in 40 % (Zhang

et al. 2003).

16.5 Heterogeneity of Signaling Pathways Affects
the Progression of HCC

16.5.1 p53 Gene Pathway

As a tumor suppressor, p53 can initiate cell-cycle arrest, apoptosis, and senescence

in response to cellular stress to maintain the integrity of the genome. About 50 %

human tumors carry mutant p53, and many p53 mutants facilitate oncogenic

functions such as increased proliferation, viability, and invasion or dominant-

negative regulate the remaining wild-type p53 (Muller and Vousden 2013).

p53 plays important and unique roles in HCC. A study indicated that ablation of

the p53-mediated senescence program in hepatic stellate cells under chronic liver

damage promotes liver fibrosis and cirrhosis, which are associated with reduced

survival; in addition, loss of p53 enhances the transformation of adjacent epithelial

cells into HCC (Lujambio et al. 2013). p53 is mainly regulated by the E3 ubiquitin

ligase MDM2. MDM2 binds p53 blocking p53-mediated transcriptional regulation,

while simultaneously promoting its degradation (Brown et al. 2011). In addition,

the MDM2–p53 binding can be disrupted by a small inhibitor Nutlin-3, which

thereby activates p53 dependent apoptosis in different HCC cell lines (Zheng

et al. 2010a). Therefore, Inhibition of MDM2–p53 binding could reactivate p53
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in cancer cells with wild-type p53 and may offer an effective therapeutic approach

for millions of cancer patients (Brown et al. 2011).

16.5.2 Hedgehog Pathway

Hedgehog signaling contributes to many aspects of cell differentiation, organ

formation, cancergenesis and cancer metastasis. It is widely accepted that Hedge-

hog activity plays an important role in the progression of HCC. Many studies report

that aberrant activation of Hedgehog signaling promote proliferation, viability,

migration and invasion of HCC cells with complex underlying mechanisms

(Zheng et al. 2010b, 2012; Lu et al. 2012).

Gli, Smo and PTCH were found to be overexpressed in HCC patients (Che

et al. 2012; Jeng et al. 2013; Zhang et al. 2013). Lu et al. (2012) reported that Shh

treatment can stimulate Hedgehog signaling to promote HCC cell invasion and

migration by increasing GLI1 expression. Sicklick et al. (2006) found

overexpression of Smo and an increase in the stoichiometric ratio of Smo to

PTCH mRNA levels in HCC, this effect is associated with tumor size and Smo

and PTCH may be prognostic marker of HCC. Downstream transcription factors,

Gli, affect the proliferation, migration, invasion, angiogenesis, aberrant autophagy

and stem cell regeneration in HCC (Zheng et al. 2013). Previous studies have found

that GLI1 contributes to the EMT phenotype and intrahepatic metastasis and portal

venous invasion of human HCCs (Zheng et al. 2010b). Other studies reported that

GLI1 expression in HCC tissues is associated with disease-free survival, overall

survival and rapid recurrence (Zheng et al. 2012). In vitro experiments indicated

that GLI1 promotes proliferation, viability, colony formation, migration and inva-

sion of Huh7 cells. In addition, inhibition of Hedgeho signaling by GANT61, which

is a small-molecule inhibitor of GLI1, led to autophagy. The result demonstrate that

Hedgehog signaling is involved in aberrant autophagy of HCC cells (Wang

et al. 2013). Furthermore, Several Gli target genes have been identified such as

cMyc, Cyclin D1 and FOXM1 (cell proliferation) and Bcl-2 (survival) (Lin

et al. 2010). For example, the down-regulation Hedgehog signaling pathways

could induce cell arrest at G1 and cause apoptosis by downregulation of Bcl-2

(Chen et al. 2008; Cheng et al. 2009; Kim et al. 2007; Zhang et al. 2011).

16.5.3 Wnt/β-Catenin Signaling

The Wnt/β-catenin signaling pathway is mainly composed of the Wnt protein, Wnt

protein ligand frizzled protein, and related regulator proteins such as GSK-3β and

β-catenin. Previous study indicated that aberrant activation of WNT signalling is a

driving molecular event in many types of tumors, including liver cancers (Polakis

2012). The aberrant Wnt/β-catenin signaling pathway plays an important role in
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liver physiology and pathology. Various molecular and genetic factors such as

CTNNB1, AXIN1 and AXIN2 participate to the aberrant activation of the Wnt/-

catenin pathway. Gain-of-function mutations of CTNNB1 which encode for

β-catenin are occurred in about 90 % HCCs (Bruix and Sherman 2011). In contrast,

loss-of-function mutations of negative regulators such as AXIN1, AXIN2 and APC

genes are also observed in such aberrant pathway (Laurent-Puig and Zucman-Rossi

2006). When upstream stimulation activate the pathway, the Wnt protein binds to

its ligand and β-catenin accumulates in cells, where β-catenin is activated and

transferred into nucleus. In the nucleus, β-catenin dimerizes with the downstream

specific transcription factor LEF/TCF, which regulates the transcription of key

genes such as cyclin D (Thompson and Monga 2007; Langeswaran et al. 2013).

16.5.4 PI3K/AKT/mTOR Signaling Pathway

The PI3K/AKT/mTOR signaling pathway is a central regulator of various onco-

genic processes including cell growth, proliferation, metabolism, survival regula-

tion, antiapoptosis and angiogenesis. It also plays significant function in HCC and is

activated in 30–50 % of HCC. There is growing evidence to suggest that activation

of the PI3K/AKT/mTOR pathway is associated with less differentiated tumors,

earlier tumor recurrence, and worse survival outcomes (Zhou et al. 2010). In normal

tissue, this pathway is negatively regulated by the tumor suppressor phosphatase

and tensin homolog (PTEN) on chromosome 10. Abnormal PTEN function and

expression may lead to excessively activation of the PI3K/AKT/mTOR pathway in

HCC (Zhou et al. 2011). Previous study has found that the loss of PTEN and

overexpression of pAkt and p-mTOR were linked to the tumor differentiation,

TNM stage, intrahepatic metastasis, vascular invasion Ki-67 labeling index, and

MMP-2 and MMP-9 upregulation of human HCCs (Chen et al. 2009; Grabinski

et al. 2012). Furthermore, Mcl-1, an anti-apoptotic molecule transcribed via a PI3K/

Akt dependent pathway, was associated with HCC poor survival (Personeni

et al. 2013).

16.5.5 Ras/Raf/MAPK Signaling Pathway

The MAPK intracellular signaling network is often activated in cancer cells. Recent

researches show that HCC cells activation and proliferation is known to involve

various different signaling pathways as previously mentioned (Laurent-Puig and

Zucman-Rossi 2006). Among them, the Ras/Raf/MAPK signaling pathways is one

of the most critical pathways in pathogenesis, development and proliferation of

HCC and have been extensively investigated (Llovet and Bruix 2008).

The intracellular part of Ras/Raf/MAPK pathway is downstream of several

receptor tyrosine kinases such as the EGFR, PDGFR and VEGFR which transmit
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growth factor signals from the cell membrane to the nucleus regulating multiple

cellular functions including cell growth and survival, and differentiation. However,

multiple upstream receptors including other receptor tyrosine kinases, integrins,

serpentine receptors, heterotrimeric G-proteins, and cytokine receptors are able to

activate Ras (Cantrell 2003).

Mechanisms for the increased activity of the Ras/Raf/MAPK signaling pathway

in HCC include aberrant upstream signals, inactivation of Raf kinase inhibitor

protein and induction by hepatitis viral proteins (Galuppo et al. 2014).

Several components of this pathway are mutated in HCC. Bos (1989) found that

about 30 % of HCC bear Ras mutations. The Raf family consists of three isoforms,

A-Raf, B-Raf and C-Raf. Overexpression of wild-type C-Raf-1 proto-oncogene has
been reported in liver cirrhosis and HCC (Jenke et al. 1994; Huang and Sinicrope

2010). Sorafenib has activity inhibiting B-Raf (Tannapfel et al. 2003). Huynh

et al. (2003) found overexpression of MEK1/2 and ERK1/2, and phosphorylation

of ERK1/2 in 100 % (46/46), 91 % (42/46) and 69 % (32/46) HCC, respectively.

16.5.6 Notch Signaling

Notch signalling is an evolutionarily conserved pathway that involves in a variety

of fundamental cellular processes such as cell fate and differentiation (Artavanis-

Tsakonas et al. 1999; Lai 2004). The effects of Notch signaling seem heterogeneous

in HCC progression (Strazzabosco and Fabris 2012). Activation of Notch signaling

could lead to reduced cell proliferation and tumor growth in HCC (Viatour

et al. 2011). And in addition, it also participates in invasion and migration of

HCC cells (Zhou et al. 2013). Several researches indicated that NOTCH is activated

in mice and human HCC samples (Tschaharganeh et al. 2013; Villanueva

et al. 2012). However, other reports found the activation of NOTCH signalling as

a suppressor feedback mechanism during HCC progression (Viatour et al. 2011; Qi

et al. 2003). These contradictions suggest that biological activities of NOTCH

signaling during hepatocarcinogenesis mainly depend on the cellular environment,

which is also reported in other tumor types (Radtke and Raj 2003).

16.5.7 KEAP1-NFE2L2 Pathway

A sequence-specific transcriptional factor, encoded by the NFE2L2 gene,

upregulates genes associated with oxidative stress and other metabolic pathways

(Taguchi et al. 2011). And the level of the NFE2L2 protein is regulated by the

ubiquitin proteasome pathway, and KEAP1 functions as an E3 ubiquitin ligase. A

study found that NFE2L2 coding for NRF2 a transcription factor crucial for cellular

redox homeostasis, was mutated in 6.4 % of HCC (Shibata et al. 2008). The
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mutation disrupts direct NFE2L2–KEAP1 interaction, or inactivating mutations of

the KEAP1 gene are recurrently reported in HCC (Guichard et al. 2012).

16.6 Conclusion

Heterogeneities in aetiological factors, tumor microenvironment, genetic variations

and signaling pathways contribute to HCC progression, which makes it difficult to

properly stage the disease and thereby estimate the prognosis. Besides the

established main role of hepatitis virus infections and of alcohol use in the risk of

HCC, multiple genetic factors also play an significant role. Advances in sequencing

technologies have guided the examination of HCC genomes into a new view. In

addition to copy number changes and mutations, analyses have identified additional

genome alterations, including DNA methylation, HBV integration, retrotransposon

changes an so on. The integration of data from different levels of global analyses

have identified various critical genes and pathways involved in hepatocarci-

nogenesis. The heterogeneity of HCC makes it difficult to clarify the mechanism

of cancer development and to develop effective therapeutics. For future clinical

research design, it is essential to take into account how to eliminate the confounding

effects from interpatients and intratumor heterogeneity of genome, aetiological

factors and tumor microenvironment. Precision medicine based on global genetic

analysis will become more and more important to overcome the heterogeneity of

HCC. While some genetic profiles or signaling pathways may prove to be potential

targets for clinical application. Therefore, targeting these heterogeneity in HCC

patients will definitely create a new field for developing personal treatment options.
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