
Chapter 10

Clinical Epigenetics and Epigenomics

Chuan Qiu, Fangtang Yu, Hong-Wen Deng, and Hui Shen

Abstract Epigenetics is the study of somatically heritable changes in gene expres-

sion that occur without alterations in DNA sequence, mainly including DNA

methylation and histone modification. Epigenomics refers to the complete study

of these somatically heritable changes across the whole genome. Epigenetic mech-

anisms are critical components in the growth of cells and normal development.

Aberrant epigenetic changes have been found to be causative factors in cancer,

autoimmune diseases as well as others. Significant progress has been made towards

epigenomic profiling by using molecular techniques. In this chapter, we introduce

the basics of epigenetics and epigenomics; describe the remarkable advances in

current epigenomic mapping and analysis technologies, especially microarray-

based and next-generation sequencing-based applications. Then we focus on the

recent studies of epigenetic changes in normal and diseased cells with the aim to

translate basic epigenetic and epigenomics research into clinical applications. We

also discuss some critical challenges ahead and provide a perspective on the

progress of epigenomics field.
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5-hmC 5-hydroxymethyl-cytosine

5-fC 5-formyl-cytosine

5-mC 5-methylcytosine

5-caC 5-carboxylcytosine
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CGI CpG island

DMH differential methylation hybridization

DMRs differentially methylated regions

DNMTs DNA methyltransferases

EWAS epigenome-wide association studies

FDR false discovery rate

HATs histone acetyltransferases

HDACs histone deacetylases

HMTs histone methyltransferases

IMA Illumina Methylation Analyzer

LOESS locally weighted scatterplot smoothing

MBD methyl-CpG binding domain

MeCPs Methyl-CpG Binding Proteins

MeDIP methylated DNA immunoprecipitation

PRC polycomb repressive complexes

RRBS reduced representation bisulfite sequencing

SNPs Single Nucleotide Polymorphisms

TET ten-eleven translocation

UHRF ubiquitin plant homeodomain RING finger

WGBS whole genome bisulfite sequencing

In 1959, Waddington first coined the concept “epigenetics” (Waddington 1959),

which now refers to the mechanism for stable maintenance of gene expression

changes that involves physically “marking” DNA or its associated proteins other

than alterations in DNA sequence.

A variety of epigenetic factors have been identified, such as DNA methylation,

histone modification, and non-coding RNAs (e.g., microRNAs and long non-coding

RNAs) etc. These epigenetic factors coordinatively regulate gene expression and

provide heritable epigenetic information that is not encoded in DNA sequence

(Cedar and Bergman 2009; Esteller 2011). Epigenome refers to the entire consti-

tution of epigenetic marks in a cell type at a given time point, it is cell-specific and

tissue-specific (Varley et al. 2013). In each type of cells, epigenetic factors regulate

gene expression in different ways, for example, facilitate or restrict transcription

factor access to DNA sequence (Rivera and Ren 2013). Epigenome may change

over the lifetime (Fraga et al. 2005a) and are prone to environmental influences,

such as stress, social interactions, physical activity, exposure to toxins and diet

(Alegria-Torres et al. 2011). Aberrant epigenomic alternations have been impli-

cated in a wide variety of human disorders, such as cancer and autoimmune diseases

etc. (Portela and Esteller 2010), and epigenetic drugs may revolutionize the treat-

ment of many human diseases (Heerboth et al. 2014). In this chapter, we briefly

reviewed the molecular basis for two major epigenetic factors, DNA methylation

and histone modification, and discussed some commonly used epigenome-wide

analytic approaches for these two factors, as well as their involvement in some

human complex disorders.
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10.1 Molecular Basis of DNA Methylation and Histone
Modification

10.1.1 DNA Methylation

DNA methylation, commonly called the ‘fifth base’ in the genome, is one of the

most extensively studied epigenetic mechanisms. It is a direct chemical modifica-

tion of the fifth carbon of a cytosine that adds a methyl (-CH3) group through a

covalent bond resulting in 5-methylcytosine (5-mC).

In adult somatic tissues, DNA methylation typically occurs in a “CpG”

(C-phosphate-G) dinucleotide context (Bird and Southern 1978; Cedar

et al. 1979). An exception to this is seen in embryonic stem cells (Haines

et al. 2001), where a substantial amount of 5-mC is also observed in non-CpG

sites (mCHG, mCHH). In human genome, there are 28 million CpG sites, which

are not evenly distributed throughout the genome (Lister et al. 2009) but tend to

cluster in regions, known as “CpG islands” (CGIs). CGIs usually occur near gene

transcription start sites (TSS) and ~60 % of human gene promoters are associated

with CGIs (Bird 1986; Gardiner-Garden and Frommer 1987). DNA methylation is

catalyzed by a family of enzymes termed DNA methyltransferases (DNMTs)

(Okano et al. 1998), including DNMT1, DNMT3A, DNMT3B, DNMT2 and

DNMT3L, which cooperate in establishing and maintaining DNA methylation

patterns (Kulis and Esteller 2010; Okano et al. 1999). Equally important and

opposite with DNA methylation is DNA demethylation. DNA demethylation can

be either passive or active, or a combination of both. Passive DNA demethylation

usually takes place when DNMT1 cannot effectively restore the DNA methyla-

tion patterns on newly synthesized DNA strands during replication rounds

(Wu and Zhang 2010), whereas active demethylation is usually mediated by the

ten-eleven translocation (TET) family enzymes (TET1, TET2 and TET3) and

subsequent restoration of unmodified cytosine by the thymine DNA glycosylase

(TDG)-mediated base excision repair (Kohli and Zhang 2013).

The importance of DNA methylation as a major epigenetic modification in

gene expression has been widely recognized. Hypermethylation of CpGs in TSS

proximal regions, particularly in promoter CGIs, is largely associated with

repressed gene transcription (Wagner et al. 2014), whereas methylation of CpGs

located within gene bodies is usually associated with an increase in transcriptional

activity (Ramsahoye et al. 2000; Hellman and Chess 2007). However, several

recent studies have revealed that there is no simple relationship between inter-

individual DNA methylation and gene expression with respect to the location of

the methylated CpGs and both negative and positive inter-individual methylation-

expression correlations were detected for CpGs located in gene body and tran-

scription start site proximal regions, as well as in intergenic regions (Wagner

et al. 2014; Bell et al. 2011).
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10.1.2 Histone Modification

The basic unit of chromatin is the nucleosome, which is composed of an octomer of

histone proteins (containing two copies each of histones H2A, H2B, H3, and H4)

around which is wrapped a length of 147 bp DNA. The degree to which chromatin

are condensed or packed is a critical determinant of the transcriptional activity

of the associated DNA and this is mediated in part by diverse post-translational

covalent modifications of the N-terminal tails of histone proteins (Fig. 10.1).

Fig. 10.1 Post-translational modifications of histones. The first 20 amino acids in the N-terminus

of the human histone H4 are illustrated. Many sites in the N-terminus can be targets for epigenetic

tagging such as acetylation (A), phosphorylation (P) and methylation (M). Acetylation is catalyzed

by histone acetyltransferase (HAT) and removed by histone deacetylase (HDAC); Phosphoryla-

tion is catalyzed by protein kinases (PK) and removed by protein phosphatase (PP); Methylation is

catalyzed by histone methyltransferases (HMT) and removed by histone demethylase (HDM).

Some histone modification marks are associated with gene activation while others are associated

with gene repression, and the integration of multiple marks leads to a finely tuned transcriptional

response
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At least eight different types of histone modification have been identified: acetyla-

tion, methylation, phosphorylation, ubiquitination, sumoylation, ADP ribosylation,

deimination, and proline isomerization. All the modifications are reversible and

dynamic, mediated by enzymes that add/remove modification.

Histone acetylation occurs via an enzymatic transferring of an acetyl group from

acetyl-CoA to the ε-NH+ group of the lysine residues within a histone. This

enzymatic activity is catalyzed by enzymes called histone acetyltransferases

(HATs) and reversed by histone deacetylases (HDACs) (Hodawadekar and

Marmorstein 2007). Histone acetylation is a hallmark of transcriptional activation

(Sterner and Berger 2000) and the histone acetylation patterns are tightly associated

with many cellular processes including chromatin dynamics and transcription, gene

silencing, cell cycle progression, apoptosis, differentiation, DNA replication, DNA

repair, nuclear import, and neuronal repression (Cohen et al. 2011).

Histone methylation is another extensively studies histone modification marks. It

is defined as the transfer of one, two, or three methyl groups from S-adenosyl-L-

methionine to lysine or arginine residues of histone proteins by histone

methyltransferases (HMTs). In the cell nucleus, when histone methylation occurs,

specific genes within the DNA complexed with the histone may be activated or

silenced (Greer and Shi 2012). For instance, the tri-methylation of histone H3 at

lysine 4 (H3K4me3) is positively correlated with gene transcription and commonly

detected in a tight, localized area at 50-ends/promoter regions of active genes

(Barski et al. 2007). H3K36me3 is strongly enriched across the gene body and at

the 30-end of active genes and may link to transcriptional elongation (Barski

et al. 2007). In contrast, H3K27me3 is the classic repressive histone modification

mark, which shows a broad peak at promoters and throughout the gene body of the

silent genes (Barski et al. 2007).

10.2 Epigenome-Wide Analyses of DNA Methylation
and Histone Modification

10.2.1 Epigenome-Wide DNA Methylation Analysis

10.2.1.1 DNA Methylation Profiling Assays

DNAmethylation analysis normally relies on three strategies (Fig. 10.2): (1) Diges-

tion of genomic DNA with methylation-sensitive restriction enzymes; (2) Affinity-

based enrichment of methylated DNA fragments; and (3) Bisulfite conversion. Each

of the three strategies can be combined with either microarray or next-generation

sequencing technique to interrogate epigenome-wide DNA methylation patterns,

and each with unique advantages and drawbacks (Table 10.1).

• Digestion of genomic DNA with methylation-sensitive restriction enzymes:
Some restriction enzymes (e.g., HpaII and SmaI) are methylation sensitive –

10 Clinical Epigenetics and Epigenomics 273



their activity is affected by the presence of a methyl CpG within restriction sites.

Therefore, when genomic DNA is digested with a methylation-sensitive restric-

tion enzyme, difference in methylation status is converted into difference in

sequence fragment size. For example, differential methylation hybridization

(DMH) uses combinations of methylation-sensitive and methylation-insensitive

restriction enzyme digestion, followed by ligation-mediated PCR to enrich for

methylated or unmethylated fragments. PCR products are labeled and hybrid-

ized to arrays, or tested by next-generation sequencing (Fig. 10.2a). Methods

based on this strategy were used in early epigenome-wide DNA methylation

studies (Rakyan et al. 2011), but the genome-wide CpG coverage and resolution

are limited by the cutting frequency and the fragment size of the chosen

restriction enzymes.

• Affinity-based enrichment of methylated DNA fragments: Affinity-based

enrichment assays capture methylated DNA fragments with a methyl-CpG

Fig. 10.2 Strategies for pretreatment of DNA sample. (a) Digestion of genomic DNA with

methylation-sensitive restriction enzymes. (b) Affinity-based enrichment of methylated DNA

fragments. (c) Chemical treatment of DNA with sodium bisulfite results in the conversion of

unmethylated cytosines to uracils. In contrast, methylated cytosines are protected. Subsequently,

microarray or next-generation sequencing of these libraries reveals the methylation status
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binding protein (e.g., MBD2) or 5-mC specific antibody (Fig. 10.2b). For

example, when performing methylated DNA immunoprecipitation (MeDIP)-

chip/-seq, genomic DNAs are first fragmented by sonication and then incubated

with anti-5mC antibody. The anti-5mC bound DNA fragments are isolated,

deproteinized, and then hybridized onto microarrays (MeDIP-chip) or analyzed

by next-generation sequencing (MeDIP-seq). The frequency of DNA fragments

bound to specific probes or mapped to specific genomic regions provides the raw

data from which DNA methylation levels can be inferred. The affinity-based

DNA methylation assays allow for rapid and efficient genome-wide assessment

of DNA methylation, however, as the affinity-captured DNA fragments are

generally hundreds of nucleotides in size, the major limitation of these methods

is its inability to pinpoint methylation changes at a single CpG resolution

(Robinson et al. 2010).

Table 10.1 Comparison of DNA methylation detection procedure

Advantages Disadvantages

Suitable

application Methods

Affinity-

based

enrichment

Rapid and efficient

genome-wide assess-

ment of DNA

methylation

Possibility of anti-

body cross-reactivity

Rapid, large

scale, low resolu-

tion study of

DNA methylation

MeDIP-

seq

Powerful tool for com-

prehensive profiling of

DNA methylation in

complex genomes

Resolution depends

on the fragment size

of the enriched

methylated DNA

MBD-

seq

Does not provide

single base pair

resolution

Bisulfite

conversion

Resolution at the nucle-

otide level

Often leads to dam-

aged DNA

High resolution

study of DNA

methylation at

small or large

scale

WGBS

Effectively converts an

epigenetic difference

into a genetic difference,

easily detectable by

sequencing

Potentially incom-

plete conversion of

DNA

RRBS

Cannot distinguish

5-mc and 5-hmc

Infinium

Whole genome

sequencing requires

intensive down-

stream analysis

Restriction

enzyme-

based

digestion

Easy to use Determination of

methylation status is

limited by the

enzyme recognition

site

Targeted, site

specific study of

DNA methylation

DMH

High enzyme turnover MSDK

Note: The table is modified from Ku et al. (2011)
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• Bisulfite Conversion: Bisulfite conversion of DNA is the most commonly used

method for DNA methylation studies. It uses bisulfite salt to deaminate cytosine

residues on single-stranded DNA, converting them to uracil while leaving

5-methylcytosine intact. Once a difference of methylation status is converted

into a difference of DNA sequence, it can be detected by various techniques

(Fig. 10.2c). Bisulfite sequencing applies routine DNA sequencing methods on

bisulfite-converted genomic DNA. It can provide quantitative methylation mea-

surement at single nucleotide resolution and is widely accepted as a gold

standard for DNA methylation analysis. Recent development of next-generation

sequencing technology makes it feasible to perform whole genome bisulfite

sequencing (WGBS) (Suzuki and Bird 2008). Though WGBS can provide a

comprehensive coverage of almost all CpGs in the human genome, its usage is

currently limited by its high cost. Thus, several more cost-effective bisulfite

conversion-based approaches, such as reduced representation bisulfite sequenc-

ing (RRBS) and Illumina 450 k array, are widely employed in the current

epigenomics research field. In RRBS, genomic DNA is digested by the

methylation-insensitive restriction enzyme MspI (50-C0CGG-30) and separated

by gel electrophoresis, and then size-selected DNA fragments are bisulfite

converted and analyzed by next-generation sequencing platforms (Meissner

et al. 2005). After the MspI digestion and size selection, CpG sites were enriched

in sequencing library that reduce the amount of nucleotides needed to be

sequenced.

10.2.1.2 Data Processing and Analysis

In this section, we will review the data processing approaches for three most

popular epigenome-wide DNA methylation profiling methods, namely, Illumina

450k array, RRBS and MeDIP-seq. We also discussed the approaches for data

visualization and identification of differential methylation in the following section.

Data Processing for Illumina 450k Array

The Illumina 450k array adapted BeadArray technology to recognize the bisulfite-

converted DNA for interrogation of DNA methylation. It offers a unique combina-

tion of comprehensive, expert-selected coverage, high sample throughput and an

affordable price, making it the most widely used method for current epigenome-

wide association studies (EWAS). The Illumina 450k array tests more than 485,000

CpGs at single-nucleotide resolution, which covers 99 % of RefSeq genes and 96 %

of CGIs (Bibikova et al. 2011). The data processing procedures for Illumina 450k

array contain several main steps, including quality control (QC), normalization,

adjustment of batch effect, and calculation of DNA methylation levels.
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– QC: The aim of this step is to detect and filter out samples and probes that do not

meet the experimental standard. The Illumina 450k arrays contain several

control probes for determining the data quality. Diagnostic plots of control

probes in Illumina Genome-Studio program can be used to detect poorly

performed samples (Bibikova et al. 2011). Assessing for poor quality samples

can also be carried out by functions embedded in several R-packages specifically

for analyzing Illumina 450k arrays, such as HumMethQCReport (Mancuso

et al. 2011), IMA (Wang et al. 2012), Minfi (Aryee et al. 2014) and MethyLumi

(Davis et al. 2012).

For QC of probes, some packages such as IMA (Wang et al. 2012) filter out

probes for which a large proportion of samples (i.e., >25 %) have a detection

P-value >0.05. LumiWCluster avoids to discard probes (Kuan et al. 2010),

instead it incorporates all the data while accounting for the quality of individual

observations. A particular issue for QC of 450k array is that certain probes

contain single nucleotide polymorphisms (SNPs) within the targeted sequences

and thus the methylation levels assessed by these probes may be influenced by

the DNA genotype (Dedeurwaerder et al. 2011). Hence, several programs (e.g.,

IMA) have incorporated functions to filter out these SNP-associated CpG probes

(Wang et al. 2012; Touleimat and Tost 2012).

– Normalization: Normalization step is used to remove technical and systematic

variation which could mask true biological differences. There are two types of

normalization approach: (1) between-array normalization: address the compa-

rability of intensity distribution between multiple arrays; (2) within-array nor-

malization: correction for dye, intensity and spatial dependent bias within

individual arrays (Siegmund 2011). The Illumina GenomeStudio uses a basic

normalization approach by treating the first sample in the array as the reference

but allows the user to reselect the reference sample if the first sample shows poor

quality. This approach is also implemented in R-package MethyLumi (Davis

et al. 2012) and Minfi (Aryee et al. 2014). Locally weighted scatterplot smooth-

ing (LOESS) and quantile normalization assume similar total methylation sig-

nals across samples and may potentially discard the true biological signals (Laird

2010). There also exist several other approaches for normalizing the probe

intensities (Marabita et al. 2013), but currently a lack of consensus exists

regarding to the optimal normalization algorithm.

• Adjustment of Batch Effect: Batch effects represent measurements that have

different behavior across conditions but are not related to the biological or

scientific questions in a study (i.e. experiment time, chip or instrument used

and laboratory conditions.). Some of the factors can be corrected by careful

study design, for example, equally splitting the cases and controls into different

batches by random sampling (Johnson et al. 2007) Other potential confounders

may be corrected by several computational methods. For example, R-packages

ComBat is a widely used adjustment method. It is based on empirical Bayes

procedure (Johnson et al. 2007) and is robust to outliers in small sample sizes

(Sun et al. 2011).
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– Calculation of DNA Methylation Levels: DNA methylation levels are deter-

mined based on the intensities of the fluorescence signals from probes. The main

output is the β-value and M-value which are ready for downstream statistical

analysis. The β-value is calculated with the intensity of signal from methylated

alleles (Max(M,0)) and the intensity of signal from unmethylated alleles (Max

(U,0)) by the following formula:

β ¼ Max M; 0ð Þ
Max M; 0ð Þ þMax U; 0ð Þ þ 100

The obtained β-value denotes the average methylation level for each CpG site.

It ranges from 0 (unmethylated) to 1 (fully methylated) on a continuous scale.

Alternative, some researchers use M-value to indicate the methylation level,

which is calculated as

M ¼ log2
Max M; 0ð Þ þ 1

Max U; 0ð Þ þ 1

The range of M-values is negative infinity to positive infinity, which is

consistent with data from normal distribution. However, the interpretation is of

M-values is not as intuitive as β-value. The relationship of M-values and β-value
is:

M ¼ log2
β

1 � β

Thus, positive M-values correspond to a methylation rate greater than 50 %,

while negative M-values indicate a methylation rate less than 50 %.

Data Processing for RRBS

Processing of RRBS data mainly involves two steps, QC and alignment of sequenc-

ing reads.

– QC: The raw sequencing reads are normally generated in the fastq format, which

records the sequence of nucleotides and their base call confidence levels. In

order to obtain high quality RRBS data, several technical details require careful

attention. For example, the incomplete bisulfite conversion will lead to spuri-

ously elevated DNA methylation levels. One should use spike-in control DNAs

with known DNA methylation levels to monitor the sensitivity and specificity of

bisulfite conversion. Alternatively, elevated levels of observed CpC methylation

can also provide an indication of incomplete bisulfite conversion because CpC

dinucleotides are rarely methylated in mammalian cells (Bock 2012). Some of

the QC steps for the RRBS data can be performed by QC tools (e.g., NGS QC
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toolkit) (Patel and Jain 2012) that are generally applicable to the next-generation

sequencing produced reads, while other QC criteria such as efficiency of bisulfite

conversion require QC tools that are dedicated to bisulfite sequencing, such as

BSeQC (Lin et al. 2013).

– Alignment: Because of the reduced sequence complexity of the bisulfite

converted sequence reads, alignment of bisulfite converted sequence reads to

the reference genome require specific alignment tools. Generally, the alignment

tools can be categorized into two groups: three-letter aligners and wild-card

aligners. Bismark (Krueger and Andrews 2011) and BS-Seeker (Chen

et al. 2010) are examples of three-letter aligners, which convert C to T in both

sequenced reads and reference sequences prior to alignment. In contrast, wild-

card aligners like BSMAP/RRBSMAP (Xi and Li 2009; Xi et al. 2012) replace

Cs in the sequenced reads with wild-card Y but do not need the reference

genome conversion step. Compare with whole-genome bisulfite alignment

tool, such as an extensively validated MAQ-based pipeline, these specific

aligners (e.g. RRBSMAP) could maintain high mapping accuracy and consis-

tency between replicates, and also significantly improve runtime performance

and memory efficiency (Xi et al. 2012).

– Calculation of DNA Methylation Signals: As unmethylated cytosines will be

converted to Ts by the bisulfite treatment and methylated cytosines will stay Cs,

absolute DNA methylation level could be calculate by counting the number of

Cs and Ts at each C and simply divide the number of Cs by the total number of

Cs and Ts.

Data Processing for MeDIP-Seq

In MeDIP-seq, the information of enrichment or depletion of extended sequencing

reads will be used to estimate the methylation level of specific regions in the

genome, the reads sequence itself does not provide methylation information. As a

result, specific data processing approaches are needed to estimate the DNA meth-

ylation levels from MeDIP-seq method.

– QC and alignment: similar to other sequencing-based methods, the first step in

the analysis of MeDIP-/MBD-seq is QC and alignment of sequencing reads to

the reference genome, which can be conducted by using a standard quality

control program and aligner, such as Bowtie2 (http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml) and BWA (Li and Durbin 2009).

– Estimation of DNA methylation levels: after alignment, the unique mapped

reads are then extended to MeDIP-enriched DNA fragment size, the DNA

sequence of each chromosome is divided into a series of certain base pair intervals

(e.g. 50bp), and the extended reads in each interval are counted as the methylation

signal in this region. These estimated DNA methylation signal can be confounded

by varying density of methylated CpG sites. That is, regions with high CpG

densities can give rise to high enrichment scores even with low absolute DNA
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methylation levels and low CpG density regions can produce low enrichment

scores even with high levels of DNA methylation. Down et al. developed the tool

BATMAN which applies a Bayesian method to estimate absolute methylation

values from MeDIP-chip or MeDIP-seq data (Down et al. 2008). It provides

accurate estimations of methylation value, however it is not especially user-

friendly and is quite a computationally technical process. Another tool is R

package MEDIPS, it is a comprehensive approach for normalizing and analyzing

MeDIP-seq data (Chavez et al. 2010). This method is based on the valuable

concept of coupling factors presented by BATMAN (Down et al. 2008). MEDIPS

incorporates a statistical frame work developed for count data which models the

read number by an overdispersed Poisson model. This method could significantly

reduce run time for processing MeDIP-seq data and easy to use.

10.2.1.3 Identifying Differentially Methylated Regions (DMRs)

In clinical study (e.g. case and control study), it is crucial important to identify the

DMRs between different experimental condition. There are several different types

of DMR, such as tissue-specific DMR and aging-specific DMR (Rakyan

et al. 2011). According to DNA methylation profiling methods we use, these

DMR can be a single CpG site or a region of interest (e.g. promoters, CGIs). The

Student’s t-test and Wilcoxon rank sum test can be used to identify DMRs by using

the normalized methylation signal between two groups. Bock, C (Bock 2012) well

summarized several other advanced methods which aim to improve DMR detection

(e.g. mixture models (Wang 2011), stratification of t-test (Chen et al. 2012) and

point out it is difficult to predict which methods will work best for real-world DNA

methylation data sets. There are several different tools used for identification of

DMRs. For Illumina 450k array, most commonly used tools including R package

IMA (Wang et al. 2012) and Minfi (Aryee et al. 2014) etc. The IMA (Wang

et al. 2012) apply Student’s t-test and empirical Bayes statistics, it allows identifi-

cation of DMRs in both single CpG sites and regions of interest. For regions of

interest differential methylation analysis, IMA will compute the mean, median or

Tukey’s biweight robust average for the loci within that region and create an index.
limma uses an empirical Bayes moderated t-test to improve power in small sample

sizes. M-values should be used in these cases as they will rely much more heavily

on the assumption of normality. Minfi (Aryee et al. 2014) uses an F-test or linear

regression to test each genomic position for association between methylation and

categorical or continuous phenotype, respectively. R package methylKit (Akalin

et al. 2012) is most commonly used tools for RRBS data analysis. It applies a t-test

or logistic regression to calculate p-values which are adjusted to q-values for

multiple test correction. For MeDIP-seq data, R package MEDIPS is sufficiently

fast and could be practical for routine processing of MeDIP–seq (Bock 2012).

Importantly, we need to concern the issue of correction multiple hypothesis testing

since the tests for differential DNA methylation are performed simultaneously at a

large number of genomic loci.
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10.2.2 Epigenome-Wide Histone Modification Analysis

10.2.2.1 Histone Modification Profiling Assays

Methods for epigenome-wide analysis of histone modification marks rely heavily

on a procedure called chromatin immunoprecipitation (ChIP). The basic steps of

ChIP includes: (1) Crosslink DNA and associated proteins on chromatin in cells;

(2) Sonicate the DNA-protein complexes into ~500 bp fragments; (3) Immuno-

precipitate DNA fragments using specific antibody against the particular histone

mark; (4) Purify the immunoprecipitated DNA fragments and subsequently

analyze by microarrays (ChIP-chip) or sequencing (ChIP-seq) (Fig. 10.3).

To control for the effects of non-specific bindings, nonspecific immunoglobulin

G (IgG) antibodies and input chromatin have been commonly used as controls

(Kidder et al. 2011). Regions showing enrichment of ChIP products over controls

represent DNA sequences where the specific histone modification marks are

associated with in vivo. In addition to histone modification marks, the ChIP-

chip/-seq methods can also be used to map global binding sites for specific

transcription factors, RNA polymerases, or in principle any DNA-associated

proteins.

10.2.2.2 Data Processing and Analysis

Using standard QC and alignment programs, the high quality sequencing reads

from ChIP-seq data can be selected and mapped to the reference genome. The

aligned reads are then used to identify regions of increased read tag density relative

to the background estimated from the IgG/input controls. One straightforward

approach is simply to use a minimum fold enrichment threshold of ChIP tags

over normalized control tags in candidate regions/tiling windows. However, any

threshold is arbitrary and prone to error, this approach does little to assist the user in

assessing the significance of peaks (Wilbanks and Facciotti 2010). More sophisti-

cated statistical approaches have been incorporated to identify and assess the

significance of putative peaks (Pepke et al. 2009). So far, over 40 different ‘peak
calling’ programs have been developed under a variety of statistical models, such as

Poisson, local Poisson, t-distribution, conditional binomial, and hidden Markov

models. Though a few studies attempted to compare the performance of some of

these peak calling programs (Wilbanks and Facciotti 2010; Micsinai et al. 2012),

there does not appear to be a clear winner and many program have multiple

parameters that can be adjusted by the user. As using different programs or different

parameter settings can significantly affect the final peak lists, care must be taken

that data sets that are to be compared must be analyzed using the same methods and

settings.
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10.2.3 Epigenomic Data Visualization and Interpretation

Visualization of DNA methylation data (e.g. MeDIP-seq, RRBS) and histone

modification (ChIP-seq) data is incredibly important. It enables you to investigate

the data and may help you come up with new ideas about how to analyze the data.

The ability to visualize these kinds of data is enabled through the use of some

popular genome browsers, such as UCSC Genome Browser (Kent et al. 2002) and

Integrative Genome Viewer (IGV) (Robinson et al. 2011). UCSC Genome Browser

Fig. 10.3 Workflow for ChIP-chip and ChIP-seq. DNA and associated proteins are crosslinked

and sheared into ~500 bp DNA fragments by sonication or nuclease digestion, DNA fragments

associated with the histone mark of interest are selectively immunoprecipitated using an antibody

specifically against the particular histone mark. Purified DNA can be analyzed by microarrays

(ChIP-chip) or sequencing (ChIP-seq)
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includes lots of published studies and ENCODE data, it is useful for data integration

and visualization. However, the data files need to be uploaded to this web-based

genome browser which makes a little more difficult to upload large custom data

sets. IGV is Java based genome browser. It runs locally on your own computer. It

does not have the same degree of public available data as UCSC genome browser,

but tend to be somewhat faster for browsing across the genome. Also, it is better for

looking at individual reads. There are several types of file format, such as BED,

Wiggle and bedGraph format. BED files are very basic as they simply describe a

region in the genome. They are usually used to describe MeDIP-seq and ChIP-Seq

peaks. Nearly every genome browser supports visualization of BED files. Wiggle

files are used to display quantitative information across genomic regions. Wiggle

format is compact and displays data at regular intervals. Similar to Wiggle format,

bedGraph use variable length intervals instead of constant intervals found in wiggle

files, and are usually a little bigger in size. There are a bunch of specialized

programs for creating genome browser files, such as bedToBigBed (https://www.

encodeproject.org/software/bedToBigBed/) and igvtools (https://www.

broadinstitute.org/igv/igvtools).

Several bioinformatics tools were used to interpret biological meaning from

epigenomic data results. For example, EpiExplorer (Halachev et al. 2012)

empowers biologists to explore large epigenome datasets in real time and over

the Internet. It facilitates interactive hypothesis generation and identification of

candidates for experimental follow-up. Cytoscape (Shannon et al. 2003) is an open

source software platform for visualizing molecular interaction networks and bio-

logical pathways and integrating these networks with annotations, gene expression

profiles and other state data. DAVID (da Huang et al. 2009) provides a compre-

hensive set of functional annotation tools for investigators to understand biological

meaning behind large list of genes.

10.3 Epigenomics of Human Diseases

With the advent of new technologies we are starting to unravel the epigenomic

mechanisms underlying a diverse range of human disorders, such as cancer and

autoimmune diseases. A comprehensive understanding of epigenetic mechanisms,

their interactions and alterations in human disease, has become a priority in clinical

research (Portela and Esteller 2010).

10.3.1 Epigenomics of Cancer

Diverse altered DNAmethylation patterns have been implicated in the pathogenesis

and metastasis of various cancers. Genome-wide hypomethylation has been

revealed in several common cancer types, such as stomach, liver and lung cancers
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(Kulis and Esteller 2010) DNA hypomethylation occurs mostly at DNA-repetitive

regions resulting in activation of genes with growth and tumor promoting functions

and loss of genome stability and imprinting (Esteller 2008). A clear case is the long

interspersed nuclear element (LINE) family member LINE1. Many studies have

support correlations between LINE1 hypomethylation and increased risk of cancer

(Barchitta et al. 2014). For example, hypomethylation of a specific LINE-1 pro-

moter was found to induce an alternate transcript of the MET oncogene in bladder

tumors and across the entire urothelium of tumor-bearing bladders (Wolff

et al. 2010). A high degree of LINE-1 hypomethylation is a unique feature of

early-onset colorectal cancer (Antelo et al. 2012; Ogino et al. 2013), and

hypomethylation of LINE-1 in primary tumor has been associated with poor

prognosis and survival in young breast cancer patients (van Hoesel et al. 2012)

and prominent hypomethylation of Alu and LINE-1 in HER2 enriched subtype may

be related to chromosomal instability (Park et al. 2014). In addition to the effects on

repetitive elements, promoter hypomethylation can activate the aberrant expression

of oncogenes and result in loss of imprinting in some loci (Portela and Esteller

2010). For instance, loss of imprinting of IGF2 gene has been associated with an

increased risk of different types of cancer (Lim and Maher 2010). Recent study also

shows that hypomethylation in TP73 and TERT gene body alter the transcriptional

landscape of growth rate of glioblastoma through the activation of a limited number

of normally silenced promoters within gene bodies, result in activating the aberrant

expression of an oncogenic protein (Nagarajan et al. 2014). Hypermethylation at

the CGIs of certain promoters causing transcriptional silencing of tumor suppressor

gene were also observed. The transcriptional silencing caused by promoter

hypermethylation affects genes involved in the multiple cellular pathways (Portela

and Esteller 2010), such as DNA repair (e.g., MGMT, MLH1, MSH2, GSTP1), Ras

signaling (e.g., DAPK, NOREIA, RASSFIA, RECK) etc. (Esteller 2007). For

example, hypermethylation at CGI of MLH1 gene is reported in the majority of

sporadic primary colorectal cancers with microsatellite instability, and that this

methylation was often associated with loss of MLH1 protein expression (Herman

et al. 1998).

Another epigenomic hallmark of cancer is the aberrant patterns of histone

modifications. Epigenome-wide studies have characterized the overall profiles of

various histone modification marks in cancer cells. For example, there is a global

loss in H4K16ac in nearly all human cancer cell lines (Fraga et al. 2005b). Loss of

acetylation is mediated by HDACs, which have been found to be overexpressed

(Zhu et al. 2004) or mutated (Ropero et al. 2006) in different tumor types. Two

different studies reported that global levels of H4K12ac and H3K18ac increased in

adenocarcinomas in respect to normal tissue or adenoma (Ashktorab et al. 2009;

Nakazawa et al. 2012). Cancer cells also bear global alterations of several histone

methylation marks, such as a global loss of the active mark H3K4me3 (Hamamoto

et al. 2004), and the repressive mark H4K20me3 (Fraga et al. 2005b), as well as a

gain in the repressive marks H3K9me (Kondo et al. 2007) and H3K27me3 (Vire

et al. 2006; Muller-Tidow et al. 2010).
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Alterations of histone methylation marks in cancer cells are mainly due to the

aberrant expression of both HMTs and histone demethylases (Chi et al. 2010). Gillian

et al. reported the inactivating mutations in two genes encoding enzymes involved in

histone modification: SETD2 gene (H3K36 methyltransferase) and JARID1C genes

(H3K4 demethylase) in renal carcinomas (Dalgliesh et al. 2010). EZH2 gene (H3K27

methyltransferase) was reported overexpressed in several cancer types and enhances

proliferation and neoplastic transformation (Kleer et al. 2003; Raman et al. 2005;

Rhodes et al. 2004). NSD1, another HMT (H3K36 and H4K20), has been reported to

undergo promoter DNA methylation-dependent silencing in neuroblastomas

(Berdasco et al. 2009). H3K79 methyltransferase DOT1L is essential for develop-

ment and maintenance the mixed lineage leukaemia. The presence of DOT1L results

in H3K79 hypermethylation, which induces aberrant gene expression and contributes

to leukemic transformation (Okada et al. 2006).

10.3.2 Epigenomics of Autoimmune Diseases

DNA methylation alteration has been increasingly associated with several autoim-

mune diseases in recent years; for which most studies focus on systemic autoim-

mune rheumatic diseases like systemic lupus erythematosus (SLE) and rheumatoid

arthritis (RA). SLE is characterized by autoantibody response to nuclear and/or

cytoplasmic antigens. Several studies have shown that there is a global

hypomethylation of promoter regions, which drive the genes that are overexpressed

in the disease such as PRF1, CD70, CD154, IFGNR2, MMP14, LCN2, CSF3R and

AIM2 genes, and also in the ribosomal RNA gene promoter (18S and 28S) (Portela

and Esteller 2010; Ballestar 2011). This global loss of methylation has been

attributed to induce the activation of endogenous retroviruses such that they erase

imprinting signals and deregulate gene expression and consequently break immune

tolerance for active flaring of the disease (Okada et al. 2002). The hypomethylation

in SLE may be partially mediated by miR-21 and miR-148a that directly and

indirectly target DNMT1 (Pan et al. 2010; Zhu et al. 2011). RA is a chronic

inflammatory disease that largely affects peripheral joints by invasive synovial

fibroblasts. Global changes in DNA methylation measured in fibroblast like

synoviocytes showed distinct methylation profiles of RA patients, particularly in

genes with key roles in inflammation, immune responses and matrix deconvolution.

Hypomethylated loci were identified in key genes relevant to RA, such as CHI3L1,

CASP1, STAT3, MAP3K5, MEFV and WISP3. Hypermethylation was also

observed at some RA related genes, including TGFBR2 and FOXO1. Differentially

methylated genes could alter fibroblast like synoviocytes gene expression and

contribute to the pathogenesis of RA. Histone modification studies in human

autoimmune diseases have found that during apoptosis, histones can be modified

to make them immunogenic. Hypoacetylated histones H3 and H4 and H3K9

hypomethylation in CD4+ T cells were found to be a characteristic feature of SLE

patients (Hu et al. 2008). In RA, the reduced activity of HDACs plays a key role in

regulating NF-κB–mediated gene expression (Huber et al. 2007).
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10.4 Discussion and Perspectives

Advances in technological development have enabled epigenomic analysis on a

large scale. Remarkably, several international projects and consortia (Table 10.2)

have been formed to comprehensively characterize epigenome-wide DNA methyl-

ation, histone modification, and other epigenetic profiles in healthy and disease

tissues, such as the Encyclopedia of DNA Elements (ENCODE) Project (Consor-

tium 2012), the Cancer Genome Atlas (TCGA) (TCGA. The Cancer Genome Atlas.

http://cancergenome.nih.gov/) and the NIH Roadmap Epigenomics Project (The

NIH Roadmap Epigenomics Project, http://www.epigenomebrowser.org/).

Although the number of epigenomic studies has grown exponentially in recent

years, several issues need to be carefully considered when planning and interpre-

tation of such studies. First, disease-associated epigenetic variation is likely to be

cell-/tissue-specific. For studies using heterogeneous cell/tissue samples

(e. g. blood, tumor), detection of differential DNA methylation or histone modifi-

cation profiles is a problem of validity: molecular profile variation and changes in

cell type proportions between tissue samples are confounded (Jacobsen et al. 2006;

Jaffe and Irizarry 2014). If the disease-associated variation is restricted to a certain

cell type that represents only a small proportion of the tissue sampled, then the

Table 10.2 Large-scale national and international epigenomic consortia

Project name

Start

date Affiliations Data contributions Access data

The Encyclopedia

of DNA Elements

(ENCODE)

Project

2003 NIH ChIP-seq, RNA-seq, DNase-

seq, shRNA knockdown

followed by RNA-seq, RRBS,

shotgun bisulfite-seq assay,

DNA methylation profiling by

array assay etc.in more than

200 of primary human tissues

and cell lines

http://

encodeproject.org/

The Cancer

Genome Atlas

(TCGA)

2006 NIH Matched tumor and normal

tissues from 11,000 patients,

allowing for the comprehen-

sive characterization of

33 cancer types and subtypes,

including 10 rare cancers

http://

cancergenome.nih.

gov/

Roadmap

Epigenomics

Project

2008 NIH Bisulfite-seq, MeDIP-seq,

MRE-seq, RRBS, DNasel,

smRNA-seq, ChIP-seq etc. in

more than 160s of normal pri-

mary cells, hESC, and hESC

derived cells

http://www.

epigenomebrowser.

org/

International

Cancer Genome

Consortium

(ICGC)

2008 17 coun-

tries,

includes

TCGA

DNA methylation profiles in

thousands of patient samples

from 31 tumor types

https://icgc.org/
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variation may not be detected in the whole tissue (Jaffe and Irizarry 2014). Purified

samples consisting only of a single cell type are preferable to mixed cell samples.

Second, the complex system of the human body has many research areas, including

genomics, epigenomics, transcriptomics, proteomics and metabolomics. Each

research area provides insight into the system, but the entire complex of “omics”

research offers more comprehensive insights. As costs of analysis of a human

genome have dramatically plummeted, data integration is now a very commonly

used notion. Integration between different epigenetic mechanisms and with other

omics disciplines becomes easier and necessary for clinical research. For clinicians

with access to omics data, being able to understand and appropriate interpret the

data will become a key requirement for patient care. Along with the recent

advancement in epigenetic drugs, there is a great potential for personalized epige-

netic treatment of many human diseases in the near future.
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