
Chapter 1

The Era of Big Data: From Data-Driven
Research to Data-Driven Clinical Care

Christian Baumgartner

Abstract When the era of big data arrived in the early nineteen nineties, biomed-

ical research boosted new innovations, procedures and methods aiding in clinical

care and patient management. This chapter provides an introduction to the basic

concepts and strategies of data-driven biomedical research and application, an area

that is explained using terms such as computational biomedicine or clinical/medical
bioinformatics. After a brief motivation it starts with a survey on data sources and

bioanalytic technologies for high-throughput data generation, a selection of exper-

imental study designs and their applications, procedures and recommendations on

how to handle data quality and privacy, followed by a discussion on basic data

warehouse concepts utilized for life science data integration, data mining and

knowledge discovery. Finally, five application examples are briefly delineated,

emphazising the benefit and power of computational methods and tools in this

field. The author trusts that this chapter will encourage the reader to handle and

interpret the huge amount of data usually generated in research projects or clinical

routine to exploit mined bioinformation and medical knowledge for individualized

health care.

Keywords Computational biomedicine • Data integration and management •

Knowledge discovery • Data mining • Clinical applications

1.1 Introduction

In the past two decades, the new era of “big data” in experimental and clinical

biomedicine has arrived and grown as a direct consequence of the availability of

large reservoirs of data. Data collection in digital form was already underway by the

1960s, allowing for retrospective data management and analysis to be undertaken

using computers for the first time. Relational databases arose in the 1980s along

with Structured Query Languages (SQL), enabling dynamic, on-demand structural

analysis and interpretation of data from complex research designs. The 1990s saw
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an explosion in the growth of data associated with the emerging use of new high-

throughput, lab and imaging technologies in fundamental biomedical research and

clinical application. Data warehouses were beginning to be used for storing and

integrating various types of data, where different data sources are transformed into

a common format and converted to a common vocabulary needed to overcome

computational challenges of data-driven research and development. The new era of

“computational biomedicine” or “clinical bioinformatics” was born as a multidis-

ciplinary approach that brought together medical, natural and computer sciences,

aiming at uncovering unknown and unexpected biomedical knowledge stored in

these data sources, which had the potential to transform our current clinical

practices (Chang 2005; Wang and Liotta 2011; Coveney et al. 2014). Research

areas such as data warehousing and information retrieval, machine learning, data

mining, and others thus arose as a response to challenges faced by the computer

science and bioinformatics community in dealing with huge amounts of data,

enabling a better quality of data-driven decision making. As data are any facts,

numbers, images or texts that can be accessed and processed by stand-alone

computers or computational networks, the patterns, associations or relationships

among available data can provide information about historical patterns and future

trends so that undreamt of opportunities emerge for biomedical research and

application. This knowledge may help to create a new way of dealing with clinical

care and patient management never previously possible. Clinical bioinformatics,

which resulted from the big data era, is thus a crucial element of the medical

knowledge discovery process where relevant sources of medical information and

bioinformation are combined and mined to allow for individualized healthcare.

1.2 The Revolution of High-Throughput and Imaging
Technologies and the Flood of Generated Data

In the life sciences, huge amount of data are generated, utilizing the wide spectrum of

high throughput and laboratory technologies, and modern health care imaging sys-

tems such as MRI or CT. In biomolecular research, microarray based expression

profiling and more recently next-generation sequencing (NGS) technologies have

become the methodology of choice e.g. for whole transcriptome expression profiling,

producing a flood of data that need to be computationally processed and analysed

(Worthey 2013; Soon et al. 2013). The most widely used NGS devices, for example,

are able to sequence up to 150 bases from both sides of RNA fragments and create a

maximum output of up to 1000 GB per run. Most advanced protein profiling

technologies are implemented with a broad panel of mass spectrometry-based tech-

niques to separate, characterize and quantify analytes from complex biological

samples (Chen and Pramanik 2009; Brewis and Brennan 2010; Woods et al. 2014).

Labs are typically equipped with diverse mass spectrometer (MS) systems including

TOF-TOF, Quadrupole-TOF, FT-ICR, and LTQ-Orbitrap type analyzers. In this

field, shotgun proteomics is a widely used tool for global analysis of protein
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modifications, where, in a typical LC-MS/MS experiment, hundreds of thousands of

tandem mass spectra are typically generated. Sophisticated computational tools for

MS sprectra processing and database search strategies are used for the identification

of peptide/protein modifications (Baumgartner et al. 2008; Cerqueira et al. 2010;

Sj€ostr€om et al. 2015). In metabolomics, different fundamental approaches can be

distinguished, i.e. untargeted and targeted metabolomics and metabolic fingerprinting

(Baumgartner and Graber 2007; Putri et al. 2013; Naz et al. 2014; Zhang et al. 2015).

Using targeted metabolomics, quantitiation of a preselected set of known metabolites

by determining absolute values of analyte concentrations with the use of internal

chemical standards allows for hypothesis-driven research and interpretation of data

based on a-priori knowledge. To provide a holistic picture of metabolism, untargeted

metabolic profiling aims at measuring as many analytes as possible (up to several

hundreds) to create a snapshot of the biochemical profile within the analysed sample.

The established technologies in metabolomics include – analoguous to proteomics –

mass spectrometry based approaches and nuclear magnetic resonance (NMR) spec-

troscopy, generating thousands to tens of thousands data points per spectrum. Mul-

tiple processing steps are required to analyze this huge amount of spectral

information, ranging from modalities for denoising, binning, aligning spectra to

peak detection and high-level analysis e.g. for biomarker identification and verifica-

tion (Swan et al. 2013; Netzer et al. 2015).

Nowadays bioimaging devices with increasing resolution are widely used in

biological and clinical laboratories, generating imaging data with hundreds of

Megabytes or Gigabytes (Eliceiri et al. 2012; Edelstein et al. 2014). Whole-slide

bioimaging, for instance, combines light microscopy techniques with electronic

scanning of slides and is able to collect quantitative data, currently regarded as one

of the most promising avenues for diagnosis or prediction of cancer and other

diseases. Traditional health care imaging technologies such as CT, MRI, ultrasound

or SPECT and PET make it possible to assess the current status and condition of

organs or tissues and to monitor patients over time for diagnostic evaluation or for

controlling therapeutic interventions (Smith and Webb 2010; Mikla and Mikla

2013). In particular, CPU-intensive image reconstruction and modeling techniques

allow instant processing of 2D signals to create 3D/4D image stacks of enormous

amounts of data, typically stored in DICOM file format. This DICOM standard

facilitates interoperability of medical imaging instrumentations, providing a stan-

dardized medical file format and directory structure, which enables access to the

images and patient-related information for further processing, modeling and

analysis.

1.3 Study Design and Data Privacy

Different epidemiological study designs such as case-control, (longitudinal) cohort

studies or more complex designs such as randomized controlled trials are selected

in biomedical research (Dawson and Trapp 2004; Porta 2014). Case-control studies,
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which are always retrospective, are designed to determine if an exposure is asso-

ciated or correlated with an outcome, i.e., a disease or biological/physiological

condition of interest. This study type is referred to as an observational,

non-experimental study where the investigator simply “observes”, as the outcome

of each subject enrolled in their respective groups is already known by the inves-

tigator. The investigator identifies the study groups of interest, i.e. cases (a group

known to have the outcome such as patients with a coronary artery disease or

patients with prostate cancer classified by the established gleason scoring scheme),

and controls, which is a cohort known to be free of the outcome. Note that the same

data must be collected in the same way from both groups. As the investigator

usually makes use of previously collected data, a major limitation of observational

studies is cofounding. By definition, a confounding variable is one which is

associated with the exposure and is a cause of the outcome. For example, if

researchers investigate whether “smoking” leads to “lung cancer”, “smoking” is

the independent variable and “lung cancer” is the dependent variable. Confounding

variables are any other variables that also have an effect on the dependent variable

like “age”, which has a hidden effect on the selected dependent variables and may

increase the variance in the data by introducing a bias. The big advantage and

practical value of a case-control study is that this study design is very efficient,

produces rapid results and may also be ideal for preliminary investigations of e.g. a

suspected risk factor for a disease. However, results from case-control studies need

to be independently verified and confirmed by larger, more accurate prospective

cohort studies or randomized controlled clinical trials which are the only way to

eliminate all confounding effects in a study. Randomized controlled trials, also

known as double blind studies, are the most effective way of determining whether a

cause-effect relation exists between a clinical intervention or treatment and out-

come. Typically, subjects are allocated at random to receive one of several clinical

interventions where one of them may serve as the standard or control investigation.

This group usually receives a placebo or no clinical intervention. All intervention

groups are treated identically. Although randomized controlled clinical trials are

very powerful tools, they are time consuming and costly, and show some limitations

by ethical and practical concerns such as recruitment and randomization. Besides

the controlled collection of clinical information including biological samples, the

acquisition of patient-related information is highly sensitive and data privacy is

essential to prevent the unauthorized or unwanted disclosure of information about

an individual if this data is not used for individual patient management and care. If

this information is needed e.g. for biomedical research, educational purposes for the

medical staff, etc., the strong data protection requirements can be overcome by

approaches such as anonymization or pseudonymization (Neubauer and Riedl

2008; Elger et al. 2010). Anonymization, a method to disassociate all identifiers

from the data, and pseudonymization, which supports an authorized

re-identification of personalized data, make it possible to remove information

from the data that are not strictly required for the intended purpose of those data

and thus guarantees the privacy protection established by law.
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1.4 Data Quality and Standard Operating Procedures
(SOPs)

A Good Clinical Practice (GCP) is a central principle in biomedical research and

clinical patient management, which allows for quality controlled collection and

tracking of patient-related records, biosamples and additional study material. In the

process of measuring and acquiring bioanalytical information gathered from bio-

logical samples such as blood (plasma, serum, dried spots), urine, other body fluids

like sputum or lavages, cell cultures or tissue samples, the quality of generated data

is crucial for the subsequent steps in data preprocessing and analysis. In general, the

entire analytical and computational workflow, ranging from study design to study

execution including pre-analytical sample handling, bioanalytical analyses, data

aggregation and consolidation, computational tools for data integration, knowledge

mining and interpretation, requires controlled procedures and standardized regula-

tory directives to ensure a high degree of consistency, completeness, and reproduc-

ibility of data and results. A guideline is provided by the “Guidance for Industry –

Bioanalytical Method Validation” (FDA 2013) for the development of analytical

methods and standard operating procedures (SOPs). According to laboratory-

specific SOPs, a research lab has to handle a hazardous chemical safely and bring

an application within the scope of the special execution procedures. These include

the amount and concentration of proposed analytes, technical controls and inspec-

tions, as well as personal protective equipment with safety instructions. A con-

trolled collection of samples, for example, is assured by the implementation of

specific protocols and standards for sample taking using barcoding, a way to

rapidly, accurately, and efficiently gather sample information and transmit it to a

central data server for further analysis.

1.5 Life Science Data Warehouse Concepts for Data
Integration and Knowledge Retrieval to Support
Medical Decision Making

There is a strong need in life science research to integrate and store biomedical

information generated in multiple research fields using proper approaches such as

data warehouses (Parmanto et al. 2005; T€opel et al. 2008; Kienast and Baumgartner

2011; Hu et al. 2011; Lyne et al. 2013; Galhardas and Rahm 2014; Dander

et al. 2014). By definition, data integration is the task of “combining the data residing

at different sources, and providing the user with a unified view of the data” (Calı̀

et al. 2001; 2003). These efforts require efficient and feasible IT concepts taking into

account quality-assured standards and procedures (Shadbolt et al. 2006). The num-

ber, size, and complexity of life science databases continuously grow (Kei-Hoi

et al. 2009) meaning that scientists in experimental and clinical research fields

demand new concepts to handle (i) the variety and amount of available data,
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(ii) data heterogeneity arising from different sources and (iii) a lack of standards for

such integration concepts, which is a prominent problem (Kei-Hoi et al. 2009).

Generally, heterogeneity in computer science can be divided into four classes,

i.e. system heterogeneity (different hardware platforms and operation systems),

semantic heterogeneity (differences in the interpretation of different data sources),

syntactic heterogeneity (difference of data representation formats) and structural

heterogeneity (different data models or structures). As a consequence of these

subclasses of heterogeneity, the following challenges in life science data integration

need to be taken into account (Kienast and Baumgartner 2011):

(1) The origin of data with different data formats. Basically, three groups of data

structures can be defined:

– structured data, which is organized in a form and structure so that it is

identifiable. E.g. databases using Structured Query Language (SQL) for

data management and retrieval.

– semi-structured data which is used to identify certain elements within the

data, but lacks a strict data model structure: E.g. metadata in HTML, XML

formats and in other mark-up languages.

– unstructured data that include other data types that are not part of a database:

E.g. text (electronic patient records, biomedical literature), biomedical

images of diverse formats like DICOM, JPG, TIF.

(2) The identification and interpretation of “synonyms” and “homonyms”: In

biomedicine scientists often name biological entities and relationships synon-

ymously. For data integration it is crucial to strictly distinguish between

synonyms, i.e. words that share meanings with other words, and homonyms

i.e. words that sound similar, but have different meanings, and to select the right

term in relation to the context. As examples, “entities” include anatomical

terms like cells and tissues (cell and tissue types, anatomy, populations, etc.),

biomolecules such as genes, proteins, metabolites (amino acids, enzymes,

antibodies, protein genes, etc.) and “relationships” that include terms like

gene expression, mutation, activation, inhibition, regulation, prognosis, diag-

nosis or therapy.

(3) The recognition of granularity: Biomedical data sources may provide informa-

tion at different levels of granularity. For example one data source contains

information about different metabolic diseases and their clinical phenotypes,

symptoms and therapeutic recommendations while other databases provide

detailed information about the same diseases, but characterized by the under-

lying molecular mechanisms, pathways and networks.

(4) The identification of viable resources: It is crucial to identify relevant and inter-

operable data sources that use widely accepted, comprehensive standards for

the access and exchange of data to avoid unnecessary duplication and incom-

patibility in the collection, processing, and dissemination of such data.

In general, there are various approaches for integrating different data sources by

using warehousing, mediation and Semantic Web technology based approaches
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(T€opel et al. 2008; Pasquier 2008; Grethe et al. 2009; Spanos et al. 2012). Ware-

house integration consists of cataloguing and accessing data from multiple sources

and repositories in a local database, which is called the warehouse and designed

with the objective of retrieving information from the data and supporting decision

making (Fig. 1.1) (T€opel et al. 2008; Kienast and Baumgartner 2011). Usually

relational databases with different database schemata are used such as the Star

schema1 or the Snowflake schema.2 Basically, a data warehouse consists of two

entities, a back room and front room entity, which are mostly separated physically

as well as logically. The ETL process (Extract, Transform and Load), the basic

concept of a data warehouse back room, is conducted to extract and import the data

from the data source (i.e. data from external sources including flat files, XML files

or databases) into the needed reference system (repository) of the data warehouse

(Hernandez and Kambhampati 2004; Kugler et al. 2008). The back room thus

describes the data management component, which permanently stores the data in

a physical database and delivers subsets of data retrieved by queries. The front room

makes it possible to access the data held in the warehouse by providing tools and

methods for intelligent data accessing, mining and information retrieval, which is of

great interest for clinical uses e.g. to support medical decision making. Users have

access to the data of interest via the front room by two different types of database

queries: ad-hoc and intelligent queries. Ad-hoc queries are executed through SQL

statements that need to be formulated by a trained user, while intelligent query

approaches are extended, more user-friendly queries based on result sets of adhoc

queries using a medical knowledge base to process the information requests. Such

requests allow for identification of patterns and relationships within the data relying

on the concept of different information hierarchies in the data (Lyne et al. 2013).

Mediator based integration focuses more on query translation, where data is not

centrally stored, but directly accessed from the distributed sources (Grethe

et al. 2009). The data flow between mediators and data sources is provided by

specific software components termed Wrappers (Hernandez and Kambhampati

2004). A more targeted approach for the integration of heterogeneous data sources,

in particular in biomedical applications, is the use of Semantic Web technologies,

whereby existing documents and data are provided with structured meta-

information (Cheung et al. 2007; Pasquier 2008; Spanos et al. 2012). A key feature

of this approach is the use of semantics by ontologies, which overcomes the

problem of interpreting homonyms and synonyms in different sources. It should

be noted that ontologies are a type of controlled vocabulary that attempt to capture

the knowledge of a specific domain, which is also an important approach for

warehousing and mediation based data integration concepts (Bodenreider 2008).

1 It comprises so-called dimension tables containing data from different data sources and fact

tables connecting various dimension tables.
2 It uses a transformation of the dimension tables to the third normal form with less data space

needed, but more complex data queries.
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To benefit from ontologies, it is important to annotate instances to metadata

ontologies, which should be standardized and machine-readable. The Semantic

Web technology provides tools for exchanging metadata information via Extensible

Markup Language (XML) to allow for semantic data integration.

1.6 Knowledge Discovery and Data Mining
for Clinical Care

According to Fayyad’s 1996 definition (Fayyad et al. 1996a, b), knowledge dis-

covery in general is the “nontrivial process of identifying valid, novel, potentially

useful and ultimately understandable patterns in data”. Data mining (DM) is a step

in this process consisting of “particular data mining algorithms that, under some

acceptable computationally efficiency limitations, produce a particular enumera-

tion of patterns”. The term knowledge discovery thus refers to the process of finding

novel knowledge in the data. It does this by using data mining, machine learning or

Application Layer

Data Integration Layer

Data Management Layer

Patient data,
clinical and

lab data

Documents
(electronic

patient records,
publications,...)

NGS, proteomic,
metabolomic

data
Databases

OMIM, KEGG,
Swiss-Prot,

PubMed

Data warehouse

ETL: Extract / Transform / Load

Web-portal
for web-based
data collection

Internet
Ad-hoc and
intelligent 
queries for 
knowledge

mining

Fig. 1.1 Three-tier architecture of a data warehouse which is composed of a data management

layer, data integration layer and application layer
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biostatistical methods to extract and identify what is deemed knowledge, according

to the specifications of measures and thresholds, using the given database with any

required preprocessing, subsampling, and transformations of that data (Fig. 1.2).

Note that the terms knowledge discovery and data mining are distinct. So this field

is of interest to researchers in machine learning, pattern recognition, databases,

statistics, artificial intelligence, knowledge acquisition for expert systems and data

visualization, and requires an interdisciplinary view of research, in particular in a

biomedical setting (Mitchell 1997; Pardalos et al. 2007; Ting et al. 2009; Dua and

Chowriappa 2012; Holzinger and Jurisica 2014).

For the purpose of targeted analyses, data often need to be preprocessed and

transformed into a standardized and quality assured format. Data preprocessing is

used e.g. to normalize or rescale data (logarithmic scaling), to select data subsets,

samples or single features or to remove outliers in the data in order to avoid

manipulations of subsequently performed statistical analyses (Kotsiantis

et al. 2006; Garcı́a et al. 2015). Assuming a normal distribution of data, a common

model for removing outliers is, for example, the use of the interquartile ranges. This

simple statistical approach defines an outlier as observation outside the interquartile

range.

Basically, data mining can be distinguished by the forms of supervised and

unsupervised learning. In supervised learning or class prediction, knowledge of a

particular class, group or study cohort is used to classify the class instances into the

correct groups or to select significant features from the data in terms of high

discriminatory ability or predictive value using a learning method. In biomarker

discovery, the search for biomarker candidates is typically “supervised” because

study groups in preclinical experimental studies or controlled clinical trials are

typically well-defined and phenotyped. The data are then available in the form of

tuples T¼ {(cj, x) | cj j C, x j X}, where cj is the class label (e.g. normal, diseased,

various stages of a disease, treated, etc.), and X¼ {x | x1, . . ., xn} is the set of given
data (e.g. metric data such as lab measurements, gene expression data or mass

spectral data, or nominal and ordinal data such as medical scores like the Glasgow

Coma Scale). In this specific field, basic data mining and computational concepts

for the search, prioritization and verification of biomarker candidates constitute

filter-based feature selection algorithms or more sophisticated approaches such as

embedded or ensemble methods (Lewis et al. 2008; Osl et al. 2008; Netzer

et al. 2009; Millonig et al. 2010; Fang et al. 2012a, b; Swan et al. 2013, 2015;

Data Target Data Preprocessed and
Transformed Data

Patterns Knowledge

Selection Preprocessing Data Mining
Interpretation/

Evaluation

Fig. 1.2 General knowledge discovery process
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Assawamakin et al. 2013). A survey of widely-used supervised feature selection

techniques considering both independent and dependent samples w.r.t. unpaired

and paired test hypotheses can be found in Baumgartner and co-authors

(Baumgartner et al 2011). Newer approaches for identifying dynamic metabolic

biomarkers using longitudinal or time-series data have been presented in Breit

et al. (2015a, b).

The predictive performance and generalization power of validated clinical or

biological markers is utilized to build classification models for medical decision

making or disease screening. The basic idea of classification is to group or classify

the given data X¼ {x | x1, . . ., xn} into the correct class cj j C. For building

classification models, multiple methods are available: logistic regression analysis,

a widely-used method in biomedical applications, decision or classification trees,

Bayes classifiers, k-nearest neighbor classifiers (k-NN), support vector machines,

artificial neural networks or modalities of network-based approaches (Fielding

2006; Swan et al. 2013; Assawamakin et al. 2013). A high predictive value of

such models is required to keep the false positive and false negative rate low which

is expressed by high values of sensitivity and specificity (typically beyond

95-98 %). Note that such models have to consider the real incidence rate of a

disease to correctly estimate the true false-positive rates. Statistical validation of a

model is now the process of estimating how well a model, e.g. trained on a single

derivation cohort, performs on future as-yet-unseen data by limiting problems like

overfitting. Typical validation concepts include “train-and-test” strategies, splitting

data into a separate train and test set, stratified cross-validation and permutation

modalities, where the given data set is separated into train and test partitions.

Multiple rounds of cross-validation are performed using the different partitions,

and results are averaged over the rounds. This procedure reduces the variability in

the data (Holzinger and Jurisica 2014).

In unsupervised data mining class information is unknown. A data set is typi-

cally given as a set of tuples in the form of T¼ {x jX}, where X¼ {x | x1, . . ., xn} is
the set of given data (e.g. not annotated clinical scores, gene expression data, mass

spectrometry data represented by lists of intensities vs. m/z values, voxels in a

biomedical image, etc.). Using cluster analysis, data are grouped into meaningful

classes based on similarity distance measures. Well-known methods are

partitioning or hierarchical methods (k-means, single or average link) or newer

methods that better consider local density structures in data such as DBSCAN

(Ester et al. 1996) or Optics (Ankerst et al. 1999) as well as graph-based models

(Fielding 2006; Xu and Wunsch 2010; Ye 2011). Association rule mining and

regression analysis are complement methodological approaches in knowledge

mining (Fig. 1.3).

To improve findings of single experiments, meta analysis as an further layer of

integrated data analysis may be used, for example, for the search and verification of

clinical and biological markers. This analysis strategy runs through multiple levels:

(a) integrated analysis of the different clinical and preclinical experimental data

which may arise e.g. from multi center studies and assessment of selected markers
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with respect to their clinical plausibility and relevance, (b) application of statistical

bioinformatics and data mining methods for searching and verifying marker can-

didates with superiour discriminatory ability with respect to the targeted patient

cohorts or populations, (c) advanced correlation analysis by including all patient-

relevant antropological, clinical and biomolecular data, (d) evaluation of predictive

value of selected marker candidates by decision-outcome analysis and modeling.

Tools such as Receiver operating characteristics (ROC) analysis and further

approaches of health care technology assessment are used to estimate expected

epidemiologic and economic consequences for individuals, the population and the

public health (Mak et al. 2012; Tseng et al. 2012; Kaever et al. 2014).

1.7 Bio-Medical Application Examples

In the following section, selected application examples including studies from our

research are presented, demonstrating the strength and benefit of computational

approaches and concepts for data mining and knowledge discovery used in bio-

medical research and clinical care.
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Fig. 1.3 Overview of the basic data mining areas used in biomedical research
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1.7.1 Example 1

Figure 1.4 shows an example workflow for the discovery of metabolic biomarkers

in myocardical injury following the scheme of the general knowledge discovery

process (Fayyad et al. 1996a, b, Fig. 1.2). In addition to a case/control study design,

a longitudinal design for a biomarker search was selected where each subject serves

as his/her own biological control. This design makes it possible to study the kinetic

characteristics of circulating metabolites and thus to identify and classify biomarker

candidates as early, late or sustained after acute injury (Lewis et al. 2008;

Baumgartner et al. 2010).

1.7.2 Example 2

To support medical decision making in patients with Marfan syndrome (MFS),

which is an autosomal dominant connective tissue disorder caused by mutations

in the gene encoding fibrillin-1(FBN1) with highly variable clinical manifesta-

tions in the musculoskeletal, ocular and cardiovascular systems, a multiple logis-

tic regression model was proposed by Baumgartner et al. (Baumgartner

et al. 2005a, b). The model includes three cardiovascular parameters, i.e. the

normalized diameters of aortic bulb and ascending aorta, and the ascending aortic

distensibility. It demonstrated a sensitivity of almost 100 % and a specificity of

95 %, validated in an independent validation cohort. Interestingly, this model

allows for the classification of patients with MFS only on three aortic parameters,

selected from a pool of more than 30 measured parameters of the musculoskeletal,

ocular and cardiovascular systems including genetic information (mutation data)

(Baumgartner et al. 2005a, b).

Method Box

Classification model: A logistic regression model of the form P¼ 1/(1þ e-z)

was selected, where p is the conditional probability P(z¼1 | x1, ..., xn) that

MFS is present and z is the logit (discriminant function) of the model with

three aortic parameters. A cut-off value (P¼ 0.5 by default) classifies controls

if P< 0.5 and cases of disorder if P� 0.5. The logit of the MFS regression

model is given by the following equation: z¼ 4.379þ 2.293 · normalized

diastolic diameter of aortic bulbus [dimensionless] – 2.449 · normalized dia-

stolic diameter of ascending aorta [dimensionless] – 0.247 · distensibility of

ascending aorta [kPa�1 10�3] (see Baumgartner et al. 2005a, b).

For phenotype-genotype correlation, hierarchical cluster analysis on a collec-

tion of clinical symptoms of the MFS was performed. In this study, four pheno-

type classes (I, II, III, IV) could be identified, where the presence of missense
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General knowledge discovery 
process (Fayyad et al., 1996a,

1996b, modified by CB)

Example workflow of a biomarker
discovery study in myocardial injury

(Baumgartner et al., 2010)

Definition of the knowledge
discovery goals 

Search and verification of
metabolic biomarkers in myocardial
injury using targeted MS/MS data

Selection of targeted data

• Selecting a data set

• Focusing on a subset of variables 

• Data samples, on which discovery
is performed

• Longitudinal biomarker cohort
study: targeted metabolite
profiling of serial blood samples
obtained from patients undergoing
alcohol septal ablation for HOCM
(clinical model of „planned“ MI)

• Samples collected before and
after intervention (10min,60min,
120min, 240min) 

• Data of 210 metabolite
concentrations per sample

Data cleaning and preprocessing

• Removal of noise or outliers 
• Collecting necessary information
to model or account for noise

• Strategies for handling missing
data fields

• Accounting for time sequence
information and known changes

• Examination of MS/MS raw data,
• Determination if all requested

metabolites were accounted for,
and targeted measurement levels
were met.

• Exclusion of metabolites with
more than 20% missing values in
the dataset

• Outlier detection using the
interquartile ranges as statistical
model

Data mining task 1:
Data reduction, projection and
feature selection and choosing

the data mining algorithm(s) 

• Finding useful features to
represent the data depending on
the goal of the task.

• Using dimensionality reduction or
transformation methods to reduce
the effective number of variables
or to find invariant representations
for the data.

• Data mining task: feature
selection for identifying and
prioritizing biomarker candidates
w.r.t. their discriminatory ability 
and predictive value

• Algorithms: “Biomarker identifier”
(Baumgartner et al., 2010) and
statistical tests

Data mining task 2:
Deciding whether the analysis

goal is classification, regression,
clustering, etc. and choosing the

data mining algorithm(s)

• Searching for patterns of interest
in a particular representational
form or a set of such
representations as classification
rules or trees, regression,
clustering, and so forth

• Data mining task: classification is
used (class information is known)
to assess the predictive value of
selected biomarker candidates

• Algorithms: logistic regression
analysis and statistical tests

• Determination of classification
accuracy of single or subsets of
metabolites using ROC analysis

Interpretation of mined patterns
• Verification and interpretation of

results by metabolic pathway
analysis (KEGG database)

Consolidation of discovered
knowledge

• Validation of new biomarker
candidates by experimental
studies and clinical trials before
they can go into clinical
application

Fig. 1.4 Example workflow for the search for new biomarkers in myocardial injury based on the

general scheme of the knowledge discovery process
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mutations (substitutions or point mutations) was highly correlated with phenotype

classes I and III, while phenotype class II, characterized e.g. by severe cardio-

vascular manifestations, was primarily associated with more complex mutations

such as stop mutations or deletions with frame shift. These findings were used to

specify characteristic clinical phenotypes with respect to different classes of

mutations (substitutions vs. stronger forms of mutations such as stop mutations,

insertions or deletions with frame shift) (see Fig. 1.5) (Baumgartner et al. 2005a,

b, 2006).

Fig. 1.5 Genotype-phynotype correlation in patients with MFS. Different classes of clinical

phenotypes based on 14 examined clinical manifestations in the skeletal, ocular and cardiovascular

system were identified using hierarchical cluster analysis. Each cluster was reviewed with respect

to different forms of mutations (Sub/Mis . . . substitution-missense mutation, Sub/Stop . . . substi-
tution with stop codon, Del/Fs . . . deletions with frameshift, Ins/Fs . . . insertions with frameshift)

determined in each patient. Two different phenotype classes (I and II) with weak versus strong

forms of mutations (substitutions (Sub/Mis) versus stronger forms of mutations such as stop

mutations (Sub/Stop) or deletions with frame shift (Del/Fs) are shown in detail). Clinical mani-

festations: EL ectopia lentis, AADIL dilation of ascending aorta, AADIS dissection of ascending

aorta,MVP mitral valve prolapse, PC pectus carinatum, PES pectus excavatum requiring surgery,

ASR arm span ratio (ASR),WTSwrist or thumb sign, SC scoliosis, PEmoderate pectus excavatum,

JE joint hypermobility, HAP highly arched palate with crowding of teeth, SA striae atrophicae, HE
herniae
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Method Box

Cluster analysis: Hierarchical cluster analysis on 14 preselected clinical

manifestations was performed to group patients with a similar clinical phe-

notype (clinical symptom present/absent, nominal measure). The average

linkage method was selected, describing the distance between two clusters

as the mean distance between an observation in one cluster and an observa-

tion in the other cluster. Clustered patient groups were reviewed with regard

to their genetic predispositions (identified mutations). In the two-dimensional

presentation of the clustered color map, each row represents a single mutation

and each column the presence (green)/ absence (black) of examined clinical

manifestations (see Fig. 1.5).

1.7.3 Example 3

In the work of Aronica and co-authors (Aronica et al. 2015) whole-genome

expression profiles of 41 motor cortex samples of control and sporadic amyotrophic

lateral sclerosis (SALS) patients were analyzed. ALS is a rapidly progressive

neurodegenerative disease which is characterized by upper and lower motor neuron

loss, leading to respiratory insufficiency and death after 3–5 years. Tissue samples

were used for RNA extraction. A GenePix microarray scanner was selected to

analyze gene expression changes in biological pathways associated with ALS.

Although SALS patients could be clearly classified on the basis of their motor

cortex gene expression profiles, no significant association between their clinical

characteristics and cluster assignment was found.

Method Box

Cluster analysis: Hierarchical cluster analysis (similarity measure: Pearson

centered; linkage method: average linkage, similarities were measured over

the genes expressed in the motor cortex, 9646 genes in total) was used to

separate and group controls from SALS patients. In the two-dimensional

presentation of the clustered color map, each row represents a single gene

and each column a motor cortex from controls or SALS patients. Colors

indicate up-regulation, down-regulation or no change in gene expression.

1.7.4 Example 4

Wang and co-authors (Wang et al. 2014) introduced a comprehensive knowledge

base, termed MitProNet, for the mitochondrial proteome, interactome and human

disease associated mechanisms with mitochondria. This knowledge base allows for
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a systematic identification of mitochondrial proteomes and a comprehensive char-

acterization of functional linkages among mitochondrial proteins.

Method Box
Design of the knowledge discovery pipeline: A three step computational

pipeline for data integration, modeling, analysis and interpretation was pro-

posed. In step one, an inventory of mammalian mitochondrial proteins is

integrated by collecting relevant proteomic datasets, and the proteins are

classified using data mining and machine learning methods. A network of

functional linkages among mitochondrial proteins is generated in step 2 by

integrating 11 genomic features including protein-protein interaction,

domain-domain interaction, shared domains, genomic context, genetic inter-

action, phenotypic semantic similarity, co-expression, GO semantic similar-

ity, protein expression profiles, disease involvement and operon (operon

contains a series of genes that are involved in the same biological process)

based on the selected Naive bayes model. Step three prioritizes disease

candidate genes by utilizing the network of functional linkages and

network-based methods such as PageRank with Priors (PRP), Kstep Markov

(KSM) or Heat Kernel Diffusion Ranking (HKDR). ROC analysis was

selected for evaluating the performances of the various data sources and

generated networks.

The system architecture and main contents of MitProNet can be found under

doi:10.1371/journal.pone.0111187. The database is freely accessible.

1.7.5 Example 5

A web-based bioinformatics platform for clinical cancer research and routine

applications in medical oncology, termed Personalized Oncology Suite (POS),

integrating clinical data, NGS data and whole-slide bioimages from tissue sections

was introduced by Dander and co-authors (Dander et al. 2014). Interestingly, POS

combines biological data (mutations identified via next-generation sequencing and

whole-slide bioimaging) and clinical data (information about the cancer patients,

TNM staging, and density values of tumor-infiltrating lymphocytes used for

immune score estimation) into one platform. As POS contains confidential and

patient related data, the platform is secured by an authorization and authentication

system (AAS). POS provides a convenient user interface, allowing for data upload,

manipulation and visualization of integrated data. In a next release, POS will be

extended by knowledge discovery and mining tools to aid in personalized cancer

immunotherapy. The platform is open-source and can be downloaded at http://

www.icbi.at/POS.

16 C. Baumgartner

http://dx.doi.org/10.1371/journal.pone.0111187
http://www.icbi.at/POS
http://www.icbi.at/POS


Method Box

Data warehouse application: The software architecture of POS as well as all

detailed information on the functionality and provided features of the plat-

form can be found under http://www.biomedcentral.com/content/pdf/1471-

2105-15-306.pdf.

1.8 Is There a Need for Biomedical Scientists to Become
Data Engineers?

Although not every biomedical scientist or clinician is a mathematician, statistician

or computer scientist, it is definitely necessary to have basics skills in these fields.

Modern study programs in medicine or biomedical sciences need to offer obligatory

modules or tracks to strengthen these skills so that scientists are able to process,

review and interpret data gathered in the scientist’s field of expertise. Data-driven

research approaches require all scientists in their field to develop and apply data

analysis capabilities in computational biomedicine and statistics with proper sen-

sitivity and quality assurance.

1.9 Conclusion

This chapter has provided a brief insight into concepts, methods, procedures,

recommendations and applications in the field of computational biomedicine and

was anticipated to appeal to those who undertake basic biomedical research or are

interested in life science applications for clinical care. The presented sections were

developed consecutively and cover the entire knowledge discovery process typi-

cally found in a biomedical setting. It might assist in the selection of computational

methods and strategies for data collection, integration and analysis, which are

urgently needed to transform mined knowledge into clinical applications.
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