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Chapter 1

The Era of Big Data: From Data-Driven
Research to Data-Driven Clinical Care

Christian Baumgartner

Abstract When the era of big data arrived in the early nineteen nineties, biomed-

ical research boosted new innovations, procedures and methods aiding in clinical

care and patient management. This chapter provides an introduction to the basic

concepts and strategies of data-driven biomedical research and application, an area

that is explained using terms such as computational biomedicine or clinical/medical
bioinformatics. After a brief motivation it starts with a survey on data sources and

bioanalytic technologies for high-throughput data generation, a selection of exper-

imental study designs and their applications, procedures and recommendations on

how to handle data quality and privacy, followed by a discussion on basic data

warehouse concepts utilized for life science data integration, data mining and

knowledge discovery. Finally, five application examples are briefly delineated,

emphazising the benefit and power of computational methods and tools in this

field. The author trusts that this chapter will encourage the reader to handle and

interpret the huge amount of data usually generated in research projects or clinical

routine to exploit mined bioinformation and medical knowledge for individualized

health care.

Keywords Computational biomedicine • Data integration and management •

Knowledge discovery • Data mining • Clinical applications

1.1 Introduction

In the past two decades, the new era of “big data” in experimental and clinical

biomedicine has arrived and grown as a direct consequence of the availability of

large reservoirs of data. Data collection in digital form was already underway by the

1960s, allowing for retrospective data management and analysis to be undertaken

using computers for the first time. Relational databases arose in the 1980s along

with Structured Query Languages (SQL), enabling dynamic, on-demand structural

analysis and interpretation of data from complex research designs. The 1990s saw
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an explosion in the growth of data associated with the emerging use of new high-

throughput, lab and imaging technologies in fundamental biomedical research and

clinical application. Data warehouses were beginning to be used for storing and

integrating various types of data, where different data sources are transformed into

a common format and converted to a common vocabulary needed to overcome

computational challenges of data-driven research and development. The new era of

“computational biomedicine” or “clinical bioinformatics” was born as a multidis-

ciplinary approach that brought together medical, natural and computer sciences,

aiming at uncovering unknown and unexpected biomedical knowledge stored in

these data sources, which had the potential to transform our current clinical

practices (Chang 2005; Wang and Liotta 2011; Coveney et al. 2014). Research

areas such as data warehousing and information retrieval, machine learning, data

mining, and others thus arose as a response to challenges faced by the computer

science and bioinformatics community in dealing with huge amounts of data,

enabling a better quality of data-driven decision making. As data are any facts,

numbers, images or texts that can be accessed and processed by stand-alone

computers or computational networks, the patterns, associations or relationships

among available data can provide information about historical patterns and future

trends so that undreamt of opportunities emerge for biomedical research and

application. This knowledge may help to create a new way of dealing with clinical

care and patient management never previously possible. Clinical bioinformatics,

which resulted from the big data era, is thus a crucial element of the medical

knowledge discovery process where relevant sources of medical information and

bioinformation are combined and mined to allow for individualized healthcare.

1.2 The Revolution of High-Throughput and Imaging
Technologies and the Flood of Generated Data

In the life sciences, huge amount of data are generated, utilizing the wide spectrum of

high throughput and laboratory technologies, and modern health care imaging sys-

tems such as MRI or CT. In biomolecular research, microarray based expression

profiling and more recently next-generation sequencing (NGS) technologies have

become the methodology of choice e.g. for whole transcriptome expression profiling,

producing a flood of data that need to be computationally processed and analysed

(Worthey 2013; Soon et al. 2013). The most widely used NGS devices, for example,

are able to sequence up to 150 bases from both sides of RNA fragments and create a

maximum output of up to 1000 GB per run. Most advanced protein profiling

technologies are implemented with a broad panel of mass spectrometry-based tech-

niques to separate, characterize and quantify analytes from complex biological

samples (Chen and Pramanik 2009; Brewis and Brennan 2010; Woods et al. 2014).

Labs are typically equipped with diverse mass spectrometer (MS) systems including

TOF-TOF, Quadrupole-TOF, FT-ICR, and LTQ-Orbitrap type analyzers. In this

field, shotgun proteomics is a widely used tool for global analysis of protein
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modifications, where, in a typical LC-MS/MS experiment, hundreds of thousands of

tandem mass spectra are typically generated. Sophisticated computational tools for

MS sprectra processing and database search strategies are used for the identification

of peptide/protein modifications (Baumgartner et al. 2008; Cerqueira et al. 2010;

Sj€ostr€om et al. 2015). In metabolomics, different fundamental approaches can be

distinguished, i.e. untargeted and targeted metabolomics and metabolic fingerprinting

(Baumgartner and Graber 2007; Putri et al. 2013; Naz et al. 2014; Zhang et al. 2015).

Using targeted metabolomics, quantitiation of a preselected set of known metabolites

by determining absolute values of analyte concentrations with the use of internal

chemical standards allows for hypothesis-driven research and interpretation of data

based on a-priori knowledge. To provide a holistic picture of metabolism, untargeted

metabolic profiling aims at measuring as many analytes as possible (up to several

hundreds) to create a snapshot of the biochemical profile within the analysed sample.

The established technologies in metabolomics include – analoguous to proteomics –

mass spectrometry based approaches and nuclear magnetic resonance (NMR) spec-

troscopy, generating thousands to tens of thousands data points per spectrum. Mul-

tiple processing steps are required to analyze this huge amount of spectral

information, ranging from modalities for denoising, binning, aligning spectra to

peak detection and high-level analysis e.g. for biomarker identification and verifica-

tion (Swan et al. 2013; Netzer et al. 2015).

Nowadays bioimaging devices with increasing resolution are widely used in

biological and clinical laboratories, generating imaging data with hundreds of

Megabytes or Gigabytes (Eliceiri et al. 2012; Edelstein et al. 2014). Whole-slide

bioimaging, for instance, combines light microscopy techniques with electronic

scanning of slides and is able to collect quantitative data, currently regarded as one

of the most promising avenues for diagnosis or prediction of cancer and other

diseases. Traditional health care imaging technologies such as CT, MRI, ultrasound

or SPECT and PET make it possible to assess the current status and condition of

organs or tissues and to monitor patients over time for diagnostic evaluation or for

controlling therapeutic interventions (Smith and Webb 2010; Mikla and Mikla

2013). In particular, CPU-intensive image reconstruction and modeling techniques

allow instant processing of 2D signals to create 3D/4D image stacks of enormous

amounts of data, typically stored in DICOM file format. This DICOM standard

facilitates interoperability of medical imaging instrumentations, providing a stan-

dardized medical file format and directory structure, which enables access to the

images and patient-related information for further processing, modeling and

analysis.

1.3 Study Design and Data Privacy

Different epidemiological study designs such as case-control, (longitudinal) cohort

studies or more complex designs such as randomized controlled trials are selected

in biomedical research (Dawson and Trapp 2004; Porta 2014). Case-control studies,
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which are always retrospective, are designed to determine if an exposure is asso-

ciated or correlated with an outcome, i.e., a disease or biological/physiological

condition of interest. This study type is referred to as an observational,

non-experimental study where the investigator simply “observes”, as the outcome

of each subject enrolled in their respective groups is already known by the inves-

tigator. The investigator identifies the study groups of interest, i.e. cases (a group

known to have the outcome such as patients with a coronary artery disease or

patients with prostate cancer classified by the established gleason scoring scheme),

and controls, which is a cohort known to be free of the outcome. Note that the same

data must be collected in the same way from both groups. As the investigator

usually makes use of previously collected data, a major limitation of observational

studies is cofounding. By definition, a confounding variable is one which is

associated with the exposure and is a cause of the outcome. For example, if

researchers investigate whether “smoking” leads to “lung cancer”, “smoking” is

the independent variable and “lung cancer” is the dependent variable. Confounding

variables are any other variables that also have an effect on the dependent variable

like “age”, which has a hidden effect on the selected dependent variables and may

increase the variance in the data by introducing a bias. The big advantage and

practical value of a case-control study is that this study design is very efficient,

produces rapid results and may also be ideal for preliminary investigations of e.g. a

suspected risk factor for a disease. However, results from case-control studies need

to be independently verified and confirmed by larger, more accurate prospective

cohort studies or randomized controlled clinical trials which are the only way to

eliminate all confounding effects in a study. Randomized controlled trials, also

known as double blind studies, are the most effective way of determining whether a

cause-effect relation exists between a clinical intervention or treatment and out-

come. Typically, subjects are allocated at random to receive one of several clinical

interventions where one of them may serve as the standard or control investigation.

This group usually receives a placebo or no clinical intervention. All intervention

groups are treated identically. Although randomized controlled clinical trials are

very powerful tools, they are time consuming and costly, and show some limitations

by ethical and practical concerns such as recruitment and randomization. Besides

the controlled collection of clinical information including biological samples, the

acquisition of patient-related information is highly sensitive and data privacy is

essential to prevent the unauthorized or unwanted disclosure of information about

an individual if this data is not used for individual patient management and care. If

this information is needed e.g. for biomedical research, educational purposes for the

medical staff, etc., the strong data protection requirements can be overcome by

approaches such as anonymization or pseudonymization (Neubauer and Riedl

2008; Elger et al. 2010). Anonymization, a method to disassociate all identifiers

from the data, and pseudonymization, which supports an authorized

re-identification of personalized data, make it possible to remove information

from the data that are not strictly required for the intended purpose of those data

and thus guarantees the privacy protection established by law.
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1.4 Data Quality and Standard Operating Procedures
(SOPs)

A Good Clinical Practice (GCP) is a central principle in biomedical research and

clinical patient management, which allows for quality controlled collection and

tracking of patient-related records, biosamples and additional study material. In the

process of measuring and acquiring bioanalytical information gathered from bio-

logical samples such as blood (plasma, serum, dried spots), urine, other body fluids

like sputum or lavages, cell cultures or tissue samples, the quality of generated data

is crucial for the subsequent steps in data preprocessing and analysis. In general, the

entire analytical and computational workflow, ranging from study design to study

execution including pre-analytical sample handling, bioanalytical analyses, data

aggregation and consolidation, computational tools for data integration, knowledge

mining and interpretation, requires controlled procedures and standardized regula-

tory directives to ensure a high degree of consistency, completeness, and reproduc-

ibility of data and results. A guideline is provided by the “Guidance for Industry –

Bioanalytical Method Validation” (FDA 2013) for the development of analytical

methods and standard operating procedures (SOPs). According to laboratory-

specific SOPs, a research lab has to handle a hazardous chemical safely and bring

an application within the scope of the special execution procedures. These include

the amount and concentration of proposed analytes, technical controls and inspec-

tions, as well as personal protective equipment with safety instructions. A con-

trolled collection of samples, for example, is assured by the implementation of

specific protocols and standards for sample taking using barcoding, a way to

rapidly, accurately, and efficiently gather sample information and transmit it to a

central data server for further analysis.

1.5 Life Science Data Warehouse Concepts for Data
Integration and Knowledge Retrieval to Support
Medical Decision Making

There is a strong need in life science research to integrate and store biomedical

information generated in multiple research fields using proper approaches such as

data warehouses (Parmanto et al. 2005; T€opel et al. 2008; Kienast and Baumgartner

2011; Hu et al. 2011; Lyne et al. 2013; Galhardas and Rahm 2014; Dander

et al. 2014). By definition, data integration is the task of “combining the data residing

at different sources, and providing the user with a unified view of the data” (Calı̀

et al. 2001; 2003). These efforts require efficient and feasible IT concepts taking into

account quality-assured standards and procedures (Shadbolt et al. 2006). The num-

ber, size, and complexity of life science databases continuously grow (Kei-Hoi

et al. 2009) meaning that scientists in experimental and clinical research fields

demand new concepts to handle (i) the variety and amount of available data,
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(ii) data heterogeneity arising from different sources and (iii) a lack of standards for

such integration concepts, which is a prominent problem (Kei-Hoi et al. 2009).

Generally, heterogeneity in computer science can be divided into four classes,

i.e. system heterogeneity (different hardware platforms and operation systems),

semantic heterogeneity (differences in the interpretation of different data sources),

syntactic heterogeneity (difference of data representation formats) and structural

heterogeneity (different data models or structures). As a consequence of these

subclasses of heterogeneity, the following challenges in life science data integration

need to be taken into account (Kienast and Baumgartner 2011):

(1) The origin of data with different data formats. Basically, three groups of data

structures can be defined:

– structured data, which is organized in a form and structure so that it is

identifiable. E.g. databases using Structured Query Language (SQL) for

data management and retrieval.

– semi-structured data which is used to identify certain elements within the

data, but lacks a strict data model structure: E.g. metadata in HTML, XML

formats and in other mark-up languages.

– unstructured data that include other data types that are not part of a database:

E.g. text (electronic patient records, biomedical literature), biomedical

images of diverse formats like DICOM, JPG, TIF.

(2) The identification and interpretation of “synonyms” and “homonyms”: In

biomedicine scientists often name biological entities and relationships synon-

ymously. For data integration it is crucial to strictly distinguish between

synonyms, i.e. words that share meanings with other words, and homonyms

i.e. words that sound similar, but have different meanings, and to select the right

term in relation to the context. As examples, “entities” include anatomical

terms like cells and tissues (cell and tissue types, anatomy, populations, etc.),

biomolecules such as genes, proteins, metabolites (amino acids, enzymes,

antibodies, protein genes, etc.) and “relationships” that include terms like

gene expression, mutation, activation, inhibition, regulation, prognosis, diag-

nosis or therapy.

(3) The recognition of granularity: Biomedical data sources may provide informa-

tion at different levels of granularity. For example one data source contains

information about different metabolic diseases and their clinical phenotypes,

symptoms and therapeutic recommendations while other databases provide

detailed information about the same diseases, but characterized by the under-

lying molecular mechanisms, pathways and networks.

(4) The identification of viable resources: It is crucial to identify relevant and inter-

operable data sources that use widely accepted, comprehensive standards for

the access and exchange of data to avoid unnecessary duplication and incom-

patibility in the collection, processing, and dissemination of such data.

In general, there are various approaches for integrating different data sources by

using warehousing, mediation and Semantic Web technology based approaches
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(T€opel et al. 2008; Pasquier 2008; Grethe et al. 2009; Spanos et al. 2012). Ware-

house integration consists of cataloguing and accessing data from multiple sources

and repositories in a local database, which is called the warehouse and designed

with the objective of retrieving information from the data and supporting decision

making (Fig. 1.1) (T€opel et al. 2008; Kienast and Baumgartner 2011). Usually

relational databases with different database schemata are used such as the Star

schema1 or the Snowflake schema.2 Basically, a data warehouse consists of two

entities, a back room and front room entity, which are mostly separated physically

as well as logically. The ETL process (Extract, Transform and Load), the basic

concept of a data warehouse back room, is conducted to extract and import the data

from the data source (i.e. data from external sources including flat files, XML files

or databases) into the needed reference system (repository) of the data warehouse

(Hernandez and Kambhampati 2004; Kugler et al. 2008). The back room thus

describes the data management component, which permanently stores the data in

a physical database and delivers subsets of data retrieved by queries. The front room

makes it possible to access the data held in the warehouse by providing tools and

methods for intelligent data accessing, mining and information retrieval, which is of

great interest for clinical uses e.g. to support medical decision making. Users have

access to the data of interest via the front room by two different types of database

queries: ad-hoc and intelligent queries. Ad-hoc queries are executed through SQL

statements that need to be formulated by a trained user, while intelligent query

approaches are extended, more user-friendly queries based on result sets of adhoc

queries using a medical knowledge base to process the information requests. Such

requests allow for identification of patterns and relationships within the data relying

on the concept of different information hierarchies in the data (Lyne et al. 2013).

Mediator based integration focuses more on query translation, where data is not

centrally stored, but directly accessed from the distributed sources (Grethe

et al. 2009). The data flow between mediators and data sources is provided by

specific software components termed Wrappers (Hernandez and Kambhampati

2004). A more targeted approach for the integration of heterogeneous data sources,

in particular in biomedical applications, is the use of Semantic Web technologies,

whereby existing documents and data are provided with structured meta-

information (Cheung et al. 2007; Pasquier 2008; Spanos et al. 2012). A key feature

of this approach is the use of semantics by ontologies, which overcomes the

problem of interpreting homonyms and synonyms in different sources. It should

be noted that ontologies are a type of controlled vocabulary that attempt to capture

the knowledge of a specific domain, which is also an important approach for

warehousing and mediation based data integration concepts (Bodenreider 2008).

1 It comprises so-called dimension tables containing data from different data sources and fact

tables connecting various dimension tables.
2 It uses a transformation of the dimension tables to the third normal form with less data space

needed, but more complex data queries.
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To benefit from ontologies, it is important to annotate instances to metadata

ontologies, which should be standardized and machine-readable. The Semantic

Web technology provides tools for exchanging metadata information via Extensible

Markup Language (XML) to allow for semantic data integration.

1.6 Knowledge Discovery and Data Mining
for Clinical Care

According to Fayyad’s 1996 definition (Fayyad et al. 1996a, b), knowledge dis-

covery in general is the “nontrivial process of identifying valid, novel, potentially

useful and ultimately understandable patterns in data”. Data mining (DM) is a step

in this process consisting of “particular data mining algorithms that, under some

acceptable computationally efficiency limitations, produce a particular enumera-

tion of patterns”. The term knowledge discovery thus refers to the process of finding

novel knowledge in the data. It does this by using data mining, machine learning or

Application Layer

Data Integration Layer

Data Management Layer

Patient data,
clinical and

lab data

Documents
(electronic

patient records,
publications,...)

NGS, proteomic,
metabolomic

data
Databases

OMIM, KEGG,
Swiss-Prot,

PubMed

Data warehouse

ETL: Extract / Transform / Load

Web-portal
for web-based
data collection

Internet
Ad-hoc and
intelligent 
queries for 
knowledge

mining

Fig. 1.1 Three-tier architecture of a data warehouse which is composed of a data management

layer, data integration layer and application layer
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biostatistical methods to extract and identify what is deemed knowledge, according

to the specifications of measures and thresholds, using the given database with any

required preprocessing, subsampling, and transformations of that data (Fig. 1.2).

Note that the terms knowledge discovery and data mining are distinct. So this field

is of interest to researchers in machine learning, pattern recognition, databases,

statistics, artificial intelligence, knowledge acquisition for expert systems and data

visualization, and requires an interdisciplinary view of research, in particular in a

biomedical setting (Mitchell 1997; Pardalos et al. 2007; Ting et al. 2009; Dua and

Chowriappa 2012; Holzinger and Jurisica 2014).

For the purpose of targeted analyses, data often need to be preprocessed and

transformed into a standardized and quality assured format. Data preprocessing is

used e.g. to normalize or rescale data (logarithmic scaling), to select data subsets,

samples or single features or to remove outliers in the data in order to avoid

manipulations of subsequently performed statistical analyses (Kotsiantis

et al. 2006; Garcı́a et al. 2015). Assuming a normal distribution of data, a common

model for removing outliers is, for example, the use of the interquartile ranges. This

simple statistical approach defines an outlier as observation outside the interquartile

range.

Basically, data mining can be distinguished by the forms of supervised and

unsupervised learning. In supervised learning or class prediction, knowledge of a

particular class, group or study cohort is used to classify the class instances into the

correct groups or to select significant features from the data in terms of high

discriminatory ability or predictive value using a learning method. In biomarker

discovery, the search for biomarker candidates is typically “supervised” because

study groups in preclinical experimental studies or controlled clinical trials are

typically well-defined and phenotyped. The data are then available in the form of

tuples T¼ {(cj, x) | cj j C, x j X}, where cj is the class label (e.g. normal, diseased,

various stages of a disease, treated, etc.), and X¼ {x | x1, . . ., xn} is the set of given
data (e.g. metric data such as lab measurements, gene expression data or mass

spectral data, or nominal and ordinal data such as medical scores like the Glasgow

Coma Scale). In this specific field, basic data mining and computational concepts

for the search, prioritization and verification of biomarker candidates constitute

filter-based feature selection algorithms or more sophisticated approaches such as

embedded or ensemble methods (Lewis et al. 2008; Osl et al. 2008; Netzer

et al. 2009; Millonig et al. 2010; Fang et al. 2012a, b; Swan et al. 2013, 2015;

Data Target Data Preprocessed and
Transformed Data

Patterns Knowledge

Selection Preprocessing Data Mining
Interpretation/

Evaluation

Fig. 1.2 General knowledge discovery process
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Assawamakin et al. 2013). A survey of widely-used supervised feature selection

techniques considering both independent and dependent samples w.r.t. unpaired

and paired test hypotheses can be found in Baumgartner and co-authors

(Baumgartner et al 2011). Newer approaches for identifying dynamic metabolic

biomarkers using longitudinal or time-series data have been presented in Breit

et al. (2015a, b).

The predictive performance and generalization power of validated clinical or

biological markers is utilized to build classification models for medical decision

making or disease screening. The basic idea of classification is to group or classify

the given data X¼ {x | x1, . . ., xn} into the correct class cj j C. For building

classification models, multiple methods are available: logistic regression analysis,

a widely-used method in biomedical applications, decision or classification trees,

Bayes classifiers, k-nearest neighbor classifiers (k-NN), support vector machines,

artificial neural networks or modalities of network-based approaches (Fielding

2006; Swan et al. 2013; Assawamakin et al. 2013). A high predictive value of

such models is required to keep the false positive and false negative rate low which

is expressed by high values of sensitivity and specificity (typically beyond

95-98 %). Note that such models have to consider the real incidence rate of a

disease to correctly estimate the true false-positive rates. Statistical validation of a

model is now the process of estimating how well a model, e.g. trained on a single

derivation cohort, performs on future as-yet-unseen data by limiting problems like

overfitting. Typical validation concepts include “train-and-test” strategies, splitting

data into a separate train and test set, stratified cross-validation and permutation

modalities, where the given data set is separated into train and test partitions.

Multiple rounds of cross-validation are performed using the different partitions,

and results are averaged over the rounds. This procedure reduces the variability in

the data (Holzinger and Jurisica 2014).

In unsupervised data mining class information is unknown. A data set is typi-

cally given as a set of tuples in the form of T¼ {x jX}, where X¼ {x | x1, . . ., xn} is
the set of given data (e.g. not annotated clinical scores, gene expression data, mass

spectrometry data represented by lists of intensities vs. m/z values, voxels in a

biomedical image, etc.). Using cluster analysis, data are grouped into meaningful

classes based on similarity distance measures. Well-known methods are

partitioning or hierarchical methods (k-means, single or average link) or newer

methods that better consider local density structures in data such as DBSCAN

(Ester et al. 1996) or Optics (Ankerst et al. 1999) as well as graph-based models

(Fielding 2006; Xu and Wunsch 2010; Ye 2011). Association rule mining and

regression analysis are complement methodological approaches in knowledge

mining (Fig. 1.3).

To improve findings of single experiments, meta analysis as an further layer of

integrated data analysis may be used, for example, for the search and verification of

clinical and biological markers. This analysis strategy runs through multiple levels:

(a) integrated analysis of the different clinical and preclinical experimental data

which may arise e.g. from multi center studies and assessment of selected markers

10 C. Baumgartner



with respect to their clinical plausibility and relevance, (b) application of statistical

bioinformatics and data mining methods for searching and verifying marker can-

didates with superiour discriminatory ability with respect to the targeted patient

cohorts or populations, (c) advanced correlation analysis by including all patient-

relevant antropological, clinical and biomolecular data, (d) evaluation of predictive

value of selected marker candidates by decision-outcome analysis and modeling.

Tools such as Receiver operating characteristics (ROC) analysis and further

approaches of health care technology assessment are used to estimate expected

epidemiologic and economic consequences for individuals, the population and the

public health (Mak et al. 2012; Tseng et al. 2012; Kaever et al. 2014).

1.7 Bio-Medical Application Examples

In the following section, selected application examples including studies from our

research are presented, demonstrating the strength and benefit of computational

approaches and concepts for data mining and knowledge discovery used in bio-

medical research and clinical care.
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Fig. 1.3 Overview of the basic data mining areas used in biomedical research
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1.7.1 Example 1

Figure 1.4 shows an example workflow for the discovery of metabolic biomarkers

in myocardical injury following the scheme of the general knowledge discovery

process (Fayyad et al. 1996a, b, Fig. 1.2). In addition to a case/control study design,

a longitudinal design for a biomarker search was selected where each subject serves

as his/her own biological control. This design makes it possible to study the kinetic

characteristics of circulating metabolites and thus to identify and classify biomarker

candidates as early, late or sustained after acute injury (Lewis et al. 2008;

Baumgartner et al. 2010).

1.7.2 Example 2

To support medical decision making in patients with Marfan syndrome (MFS),

which is an autosomal dominant connective tissue disorder caused by mutations

in the gene encoding fibrillin-1(FBN1) with highly variable clinical manifesta-

tions in the musculoskeletal, ocular and cardiovascular systems, a multiple logis-

tic regression model was proposed by Baumgartner et al. (Baumgartner

et al. 2005a, b). The model includes three cardiovascular parameters, i.e. the

normalized diameters of aortic bulb and ascending aorta, and the ascending aortic

distensibility. It demonstrated a sensitivity of almost 100 % and a specificity of

95 %, validated in an independent validation cohort. Interestingly, this model

allows for the classification of patients with MFS only on three aortic parameters,

selected from a pool of more than 30 measured parameters of the musculoskeletal,

ocular and cardiovascular systems including genetic information (mutation data)

(Baumgartner et al. 2005a, b).

Method Box

Classification model: A logistic regression model of the form P¼ 1/(1þ e-z)

was selected, where p is the conditional probability P(z¼1 | x1, ..., xn) that

MFS is present and z is the logit (discriminant function) of the model with

three aortic parameters. A cut-off value (P¼ 0.5 by default) classifies controls

if P< 0.5 and cases of disorder if P� 0.5. The logit of the MFS regression

model is given by the following equation: z¼ 4.379þ 2.293 · normalized

diastolic diameter of aortic bulbus [dimensionless] – 2.449 · normalized dia-

stolic diameter of ascending aorta [dimensionless] – 0.247 · distensibility of

ascending aorta [kPa�1 10�3] (see Baumgartner et al. 2005a, b).

For phenotype-genotype correlation, hierarchical cluster analysis on a collec-

tion of clinical symptoms of the MFS was performed. In this study, four pheno-

type classes (I, II, III, IV) could be identified, where the presence of missense
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General knowledge discovery 
process (Fayyad et al., 1996a,

1996b, modified by CB)

Example workflow of a biomarker
discovery study in myocardial injury

(Baumgartner et al., 2010)

Definition of the knowledge
discovery goals 

Search and verification of
metabolic biomarkers in myocardial
injury using targeted MS/MS data

Selection of targeted data

• Selecting a data set

• Focusing on a subset of variables 

• Data samples, on which discovery
is performed

• Longitudinal biomarker cohort
study: targeted metabolite
profiling of serial blood samples
obtained from patients undergoing
alcohol septal ablation for HOCM
(clinical model of „planned“ MI)

• Samples collected before and
after intervention (10min,60min,
120min, 240min) 

• Data of 210 metabolite
concentrations per sample

Data cleaning and preprocessing

• Removal of noise or outliers 
• Collecting necessary information
to model or account for noise

• Strategies for handling missing
data fields

• Accounting for time sequence
information and known changes

• Examination of MS/MS raw data,
• Determination if all requested

metabolites were accounted for,
and targeted measurement levels
were met.

• Exclusion of metabolites with
more than 20% missing values in
the dataset

• Outlier detection using the
interquartile ranges as statistical
model

Data mining task 1:
Data reduction, projection and
feature selection and choosing

the data mining algorithm(s) 

• Finding useful features to
represent the data depending on
the goal of the task.

• Using dimensionality reduction or
transformation methods to reduce
the effective number of variables
or to find invariant representations
for the data.

• Data mining task: feature
selection for identifying and
prioritizing biomarker candidates
w.r.t. their discriminatory ability 
and predictive value

• Algorithms: “Biomarker identifier”
(Baumgartner et al., 2010) and
statistical tests

Data mining task 2:
Deciding whether the analysis

goal is classification, regression,
clustering, etc. and choosing the

data mining algorithm(s)

• Searching for patterns of interest
in a particular representational
form or a set of such
representations as classification
rules or trees, regression,
clustering, and so forth

• Data mining task: classification is
used (class information is known)
to assess the predictive value of
selected biomarker candidates

• Algorithms: logistic regression
analysis and statistical tests

• Determination of classification
accuracy of single or subsets of
metabolites using ROC analysis

Interpretation of mined patterns
• Verification and interpretation of

results by metabolic pathway
analysis (KEGG database)

Consolidation of discovered
knowledge

• Validation of new biomarker
candidates by experimental
studies and clinical trials before
they can go into clinical
application

Fig. 1.4 Example workflow for the search for new biomarkers in myocardial injury based on the

general scheme of the knowledge discovery process
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mutations (substitutions or point mutations) was highly correlated with phenotype

classes I and III, while phenotype class II, characterized e.g. by severe cardio-

vascular manifestations, was primarily associated with more complex mutations

such as stop mutations or deletions with frame shift. These findings were used to

specify characteristic clinical phenotypes with respect to different classes of

mutations (substitutions vs. stronger forms of mutations such as stop mutations,

insertions or deletions with frame shift) (see Fig. 1.5) (Baumgartner et al. 2005a,

b, 2006).

Fig. 1.5 Genotype-phynotype correlation in patients with MFS. Different classes of clinical

phenotypes based on 14 examined clinical manifestations in the skeletal, ocular and cardiovascular

system were identified using hierarchical cluster analysis. Each cluster was reviewed with respect

to different forms of mutations (Sub/Mis . . . substitution-missense mutation, Sub/Stop . . . substi-
tution with stop codon, Del/Fs . . . deletions with frameshift, Ins/Fs . . . insertions with frameshift)

determined in each patient. Two different phenotype classes (I and II) with weak versus strong

forms of mutations (substitutions (Sub/Mis) versus stronger forms of mutations such as stop

mutations (Sub/Stop) or deletions with frame shift (Del/Fs) are shown in detail). Clinical mani-

festations: EL ectopia lentis, AADIL dilation of ascending aorta, AADIS dissection of ascending

aorta,MVP mitral valve prolapse, PC pectus carinatum, PES pectus excavatum requiring surgery,

ASR arm span ratio (ASR),WTSwrist or thumb sign, SC scoliosis, PEmoderate pectus excavatum,

JE joint hypermobility, HAP highly arched palate with crowding of teeth, SA striae atrophicae, HE
herniae
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Method Box

Cluster analysis: Hierarchical cluster analysis on 14 preselected clinical

manifestations was performed to group patients with a similar clinical phe-

notype (clinical symptom present/absent, nominal measure). The average

linkage method was selected, describing the distance between two clusters

as the mean distance between an observation in one cluster and an observa-

tion in the other cluster. Clustered patient groups were reviewed with regard

to their genetic predispositions (identified mutations). In the two-dimensional

presentation of the clustered color map, each row represents a single mutation

and each column the presence (green)/ absence (black) of examined clinical

manifestations (see Fig. 1.5).

1.7.3 Example 3

In the work of Aronica and co-authors (Aronica et al. 2015) whole-genome

expression profiles of 41 motor cortex samples of control and sporadic amyotrophic

lateral sclerosis (SALS) patients were analyzed. ALS is a rapidly progressive

neurodegenerative disease which is characterized by upper and lower motor neuron

loss, leading to respiratory insufficiency and death after 3–5 years. Tissue samples

were used for RNA extraction. A GenePix microarray scanner was selected to

analyze gene expression changes in biological pathways associated with ALS.

Although SALS patients could be clearly classified on the basis of their motor

cortex gene expression profiles, no significant association between their clinical

characteristics and cluster assignment was found.

Method Box

Cluster analysis: Hierarchical cluster analysis (similarity measure: Pearson

centered; linkage method: average linkage, similarities were measured over

the genes expressed in the motor cortex, 9646 genes in total) was used to

separate and group controls from SALS patients. In the two-dimensional

presentation of the clustered color map, each row represents a single gene

and each column a motor cortex from controls or SALS patients. Colors

indicate up-regulation, down-regulation or no change in gene expression.

1.7.4 Example 4

Wang and co-authors (Wang et al. 2014) introduced a comprehensive knowledge

base, termed MitProNet, for the mitochondrial proteome, interactome and human

disease associated mechanisms with mitochondria. This knowledge base allows for
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a systematic identification of mitochondrial proteomes and a comprehensive char-

acterization of functional linkages among mitochondrial proteins.

Method Box
Design of the knowledge discovery pipeline: A three step computational

pipeline for data integration, modeling, analysis and interpretation was pro-

posed. In step one, an inventory of mammalian mitochondrial proteins is

integrated by collecting relevant proteomic datasets, and the proteins are

classified using data mining and machine learning methods. A network of

functional linkages among mitochondrial proteins is generated in step 2 by

integrating 11 genomic features including protein-protein interaction,

domain-domain interaction, shared domains, genomic context, genetic inter-

action, phenotypic semantic similarity, co-expression, GO semantic similar-

ity, protein expression profiles, disease involvement and operon (operon

contains a series of genes that are involved in the same biological process)

based on the selected Naive bayes model. Step three prioritizes disease

candidate genes by utilizing the network of functional linkages and

network-based methods such as PageRank with Priors (PRP), Kstep Markov

(KSM) or Heat Kernel Diffusion Ranking (HKDR). ROC analysis was

selected for evaluating the performances of the various data sources and

generated networks.

The system architecture and main contents of MitProNet can be found under

doi:10.1371/journal.pone.0111187. The database is freely accessible.

1.7.5 Example 5

A web-based bioinformatics platform for clinical cancer research and routine

applications in medical oncology, termed Personalized Oncology Suite (POS),

integrating clinical data, NGS data and whole-slide bioimages from tissue sections

was introduced by Dander and co-authors (Dander et al. 2014). Interestingly, POS

combines biological data (mutations identified via next-generation sequencing and

whole-slide bioimaging) and clinical data (information about the cancer patients,

TNM staging, and density values of tumor-infiltrating lymphocytes used for

immune score estimation) into one platform. As POS contains confidential and

patient related data, the platform is secured by an authorization and authentication

system (AAS). POS provides a convenient user interface, allowing for data upload,

manipulation and visualization of integrated data. In a next release, POS will be

extended by knowledge discovery and mining tools to aid in personalized cancer

immunotherapy. The platform is open-source and can be downloaded at http://

www.icbi.at/POS.
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Method Box

Data warehouse application: The software architecture of POS as well as all

detailed information on the functionality and provided features of the plat-

form can be found under http://www.biomedcentral.com/content/pdf/1471-

2105-15-306.pdf.

1.8 Is There a Need for Biomedical Scientists to Become
Data Engineers?

Although not every biomedical scientist or clinician is a mathematician, statistician

or computer scientist, it is definitely necessary to have basics skills in these fields.

Modern study programs in medicine or biomedical sciences need to offer obligatory

modules or tracks to strengthen these skills so that scientists are able to process,

review and interpret data gathered in the scientist’s field of expertise. Data-driven

research approaches require all scientists in their field to develop and apply data

analysis capabilities in computational biomedicine and statistics with proper sen-

sitivity and quality assurance.

1.9 Conclusion

This chapter has provided a brief insight into concepts, methods, procedures,

recommendations and applications in the field of computational biomedicine and

was anticipated to appeal to those who undertake basic biomedical research or are

interested in life science applications for clinical care. The presented sections were

developed consecutively and cover the entire knowledge discovery process typi-

cally found in a biomedical setting. It might assist in the selection of computational

methods and strategies for data collection, integration and analysis, which are

urgently needed to transform mined knowledge into clinical applications.
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Baumgartner C, Mátyás G, Steinmann B, Baumgartner D. Marfan syndrome: a diagnostic chal-

lenge caused by phenotypic and genetic heterogeneity. Methods Inf Med. 2005a;44:487–97.
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Chapter 2

Biostatistics, Data Mining
and Computational Modeling

Hao He*, Dongdong Lin*, Jigang Zhang, Yuping Wang,

and Hong-Wen Deng

Abstract With the rapid development of high-throughput experimental technol-

ogies, bioinformatics and computational modeling has been a rapid evolving

science field concerned with the development of various analysis methods and

tools for investigating these large biological data efficiently and rigorously.

There are many methods and tools available for the analysis of single omics

dataset. It is a great challenge that biological systems are being further investi-

gated by integrating multiple heterogeneous and large omics data. Many power-

ful methods and algorithmic techniques have been developed to answer

important biomedical questions through integrative analysis. In this chapter, in

order to help the bench biologist analyze omics data, we introduced various

methods from classical statistical techniques for single marker association and

multivariate analysis to more recent advances from gene network analysis and

integrative analysis of multi-omics data.
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2.1 Introduction

In the past decade, with the development of high throughput technologies, massive

biological data have been generated from multiple levels of biological systems —

including DNA sequence data in genomics, RNA expression levels in

transcriptomics, DNA methylation and other epigenetic markers in epigenomics,

protein expression in proteomics and metabolic profiling in metabolomics. These

omics data are high throughput measurements of the abundance and/or structure

features of molecules involved in biological metabolism and regulation. Table 2.1

summarizes the main features of various omics data.

Generally, omics data are high-dimensional data, which means that the number

of subject n (e.g., tissue or samples) is much smaller than the number of variables

p (e.g., number of SNPs in genome wide association, number of genes in an

expression profile). In this setting, we are confronted with thousands of hypothesis

testing simultaneously. There is a high risk that statistical models may overfit the

omics data. In addition, datasets from diverse genomic levels have unique proper-

ties. A better understanding of the data characteristics will help to improve statis-

tical modeling. An increasing number of advanced statistical methods have been

developed to address these issues in omics data analysis at different levels.

Table 2.1 Main features of omics data

Omics Biomarker data Platforms Features

Genome Single nucleotide poly-

morphism (SNP)

Microarray Categorical data

Copy number variation

(CNV)

DNA sequencing Distance-driven

correlation

Loss of heterozygosity

(LOH)

Extremely stable

over time

Rare variant

Transcriptome Gene expression Microarray Continuous data

Alternative splicing RNA sequencing Affected by time

and exposures

Long non-coding RNA Strong measure-

ment noiseSmall RNA

Proteome Protein expression Microarray Continuous data

Mass spectrometry Affected by time

and exposures

Epigenome DNA methylation Microarray Continuous data

Histone modification Bisulfite sequencing Affected by time

and exposuresmiRNA

Metabolome Metabolite profiling Mass spectrometry Continuous data

Nuclear magnetic resonance

(NMR) spectroscopy

Affected by time

and exposures

Structured

correlation

Strongly affected

by exposures
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Instead of analyzing single omics data, it is interesting to integrate multiple levels

of omics data to gain comprehensive insights into biology and disease etiology. It is

recognized that multi-scale features do not act in isolation but interact in complex

networks (within and across individual omics), e.g., genomics information flow

DNA->RNA-> protein-> traits. Therefore, no single type of omics data can pro-

vide a thorough understanding of the complex function/regulatory networks that

mediate gene expression/function for disease etiology. Integrative analysis ofmultiple

omics data with the same subjects has the following advantages: 1) multiple omics

data can provide diverse information that the identified genetic variants may be

consistent in the effects across different omics levels. Consistent results will compen-

sate for unreliable findings in single omics data, which can improve the detection

power for those variants withmodest effects in individual omics data. Complementary

results will confirm the findings to get amore comprehensive understanding of genetic

mechanisms of diseases; 2) importantly, integrative analysis of multiple omics data

will enable the reconstruction of interplay/regulatory relationship among genetic

factors at different levels. The analysis of complex regulatory networks will aid in

functional annotation of individual genes/regulatory factors, gaining new insights into

the molecular mechanisms underlying disease pathogenesis and generating model

hypothesis for further specific testing. Taken together, the integrative trans-omics

studies can provide a much more comprehensive view of complex disease etiology

than can be achieved by examining individual omics data on their own.

In this chapter, we first briefly review statistical methods for biomarker detection

in different omics data. Then we will review integrative statistical analysis involv-

ing at least two different types of omics data.

2.2 Statistical Methods for Biomarker Detection
in Clinical Bioinformatics

Several types of biological data can be used to identify informative biomarker

panels, including SNP data, microarray based gene expression and microRNA.

Statistical methods especially predictive models based on these biomarkers are

becoming increasingly important in clinical, translational and basic biomedical

research. We will first provide illustrations of various statistical methods in the

analysis of SNP and gene expression data, attempting to offer practical advice on

the appropriate methods to use.

2.2.1 Statistical Analysis for Single Omics Data

2.2.1.1 Single Marker Association

Single SNP Association The objective of genetic association analysis is to estab-

lish an association between a phenotype/quantitative trait and a genetic marker.
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Usually genetic association tests are performed separately for each individual SNP.

A variety of statistical methods could be applied according to the data types of the

phenotype/quantitative trait. The phenotype in a study can be case-control (binary),

quantitative (continuous), or categorical. First we will discuss analysis for case-

control, continuous and categorical disease outcomes and then we will present more

advanced statistical methods for multivariate analysis.

Here is the basic problem formulation. Let {X1, . . .,Xp} be a set of P SNPs for

N individuals. Suppose the data with each SNP having minor allele a and major

allele A. We use 0, 1, 2 to represent the homozygous major allele, heterozygous

allele and homozygous minor allele, respectively. Therefore we have

Xpn2 0; 1; 2f g, 1 � p � P, 1 � n � Nð Þ. Let phenotype be Y ¼ y1; . . . ; ynf g.
Depending on the data type, the values of Y can be binary, continuous or categorical.

For case-control phenotype, it can be represented as a binary variable with

0 representing controls and 1 representing cases. The association between a SNP

and case-control status is to test the null hypothesis of no association between the

marker with disease status in a contingency table, which links disease status by either

three genotypes counts (A/A, A/a and a/a) or allele count (A and a). The test of

association is given by Pearson χ2 test for the independence of the rows and columns

in the contingency table (Balding 2006). The choice of degrees of freedom is based

on recessive, dominant and additive models of inheritance. The contingency table can

allow alternative models by summarizing the counts based on the models of inher-

itance. For instance, to test for a dominant model, the contingency table is summa-

rized as 2� 2 table of genotype counts (A/A vs. A/a and a/a). As to a recessive model,

the contingency table is summarized as 2� 2 table of genotype counts (a/a vs. A/A

and A/a). There are two tests commonly used for testing the additive model of

inheritance: the allele test and the trend test, also known as the Cochran-Armitage

trend test. Both tests have the same null hypothesis: Pcase¼Pcontrol, where Pcase and

Pcontrol denote the frequency of A alleles among diseased and non-diseased in a

population, respectively. As the underlying genetic model is unknown in most

genetic association studies, the test for additive model is most commonly used.

However, there is no generally accepted answer to the question about what kind of

test to be used. The analyses could be designed optimally according to the informa-

tion that what proportion of undiscovered disease-predisposing variants function

additively and what proportions are dominant and recessive. Table 2.2 summarizes

different contingency table methods based on diverse tests of association. Take

genotypic association for instance, Table 2.3 is the contingency table. For a SNP

and the phenotype Y, we use Oij to denote the number of individuals whose Xp equals

i and Y equals j. The Pearson χ2 statistics is calculated as
X
i

X
j

Oij � Eij

� �2
Eij

, where

Eij ¼ Oi:O:j

N , Oi: ¼
X
j

Oij and O:j ¼
X
i

Oij. The degree of freedom is 2.

Logistic regression is a statistical method for predicting binary and categorical

outcome. It can be applied to both single-locus and multi-locus association studies

with covariates in the model. Let Y2 0; 1f g be a binary variable and X2 0; 1; 2f g be
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a SNP. The conditional probability of Y¼ 1 given a SNP is θ Xð Þ ¼ P Y ¼ 1
��X� �

.

The logit function is defined as logit Xð Þ ¼ ln
θ Xð Þ

1�θ Xð Þ. The logit function can be taken
as a linear predictor function: logit Xð Þeβ0 þ β1X. The model can be modified to

incorporate multiple SNP loci and potential covariates. For example, the following

model fits two predictor SNPs (X1 and X2) and two covariates (Z1 and Z2):
logit Xð Þeβ0 þ β1X1 þ β2X2 þ β3Z1 þ β4Z2.

For continuous (quantitative) traits, the basic statistical tools are linear regres-

sion and analysis of variance (ANOVA).

In regression models, there are two types of variables: dependent variable

(response variable or outcome variable) and independent variable (explanatory

variable or predictor variable). In a regression model, the dependent variable is

modeled as a function of one or more independent variables. When this function is a

linear combination of one or more model parameters, called regression coefficients,

the model is called a linear regression model. A least-squares regression line is

often used to find optimal fit between the phenotype and the genotype.

For simplicity, a single SNP genotype is denoted Xi and the phenotype is

Yi, i ¼ 1, . . . , n. For this given data set (Xi, Yi), we are fitting a simple linear

regression model, Y ¼ β0 þ β1X þ ε, such that E εð Þ ¼ 0 and Var εð Þ ¼ σ2, and

Table 2.2 Tests of association using contingency table methods

Test DF Contingency table description

Genotypic association 2 2� 3 table of N case-control by genotype counts

(A/A vs. A/a vs. a/a)

Dominant model 1 2� 2 table of N case-control by dominant genotype pattern of

inheritance counts

(a/a vs. not a/a)

Recessive model 1 2� 2 table of N case-control by recessive genotype pattern of

inheritance counts

(not A/A vs. A/A)

Cochran-Armitage

trend test

1 2� 3 table of N case-control by genotype counts

(A/A vs. A/a vs. a/a)

Allelic association 1 2� 2 table of 2N case-control by allele counts

(A vs. a)

Note: DF degrees of freedom

Table 2.3 Contingency table for genotypic association test of a single SNP Xp and a phenotype Y

Count

Genotype aa

(Xp ¼ 0
� Genotype Aa

(Xp ¼ 1
� Genotype aa

(Xp ¼ 2
�

Total

Y¼ 0

(Control)

O00 O01 O02 O0.

Y¼ 1 (Case) O10 O11 O12 O1.

Total O.0 O.1 O.2 N
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ε’s are uncorrelated. We can find b0 and b1 as least squares estimators for β0 and β1,

respectively. We have the sums of squares as follows: SXX ¼
Xn
i¼1

Xi � X
� �2

,

SYY ¼
Xn
i¼1

Yi � Y
� �2

, and SXY ¼
Xn
i¼1

Xi � X
� �

Yi � Y
� �

, and the following two

normal equations, b0 þ b1
Xn
i¼1

Xi ¼
Xn
i¼1

Yi and b0
Xn
i¼1

Xi þ b1
Xn
i¼1

X2
i ¼

Xn
i¼1

XiYi.

The estimator of b1 is SXY
SXX

. Then we can test the null hypothesis against the

alternative hypothesis H0 : β1 ¼ β10 versus H1 : β1 6¼ β10, where β10 is a specified
value that could be zero. The test statistics is calculated as

t ¼ b1�β10ð Þ
se b1ð Þ ¼

b1�β10ð Þ
X

Xi � X
� �2n o1

2ffiffiffiffi
S2

p , where S2 is the estimate of residual mean

square σ2Y:X. One can compare |t| with t n� 2, 1� α
2

� �
from a t-table with n� 2ð Þ

degrees of freedom. The test is a two-sided test conducted at the 100α% level.

In one-way ANOVA the F-test is used to assess whether the expected values of a

quantitative variable within several pre-defined groups differ from each other. For a

single SNP, we can divide all the subjects into three groups according to their

genotypes. Let Y
0
i i2 0; 1; 2f gð Þ be the subset of phenotypes for the subjects

corresponding to genotype i. The number of subjects with Y
0
i is denoted as ni.

Note that
X2

i¼0
ni ¼ N. The total sum of squares (SST) can be divided into two

parts, the between-group sum of squares (SSB) and the within-group sum of squares

(SSW).

SSB ¼
X2
i¼1

Y
0
i � Y

� �2

, SST ¼
X2
i¼0

XN
n¼1

Y
0
in � Y

� �2

, and SSW ¼ SST � SSB. The

formula of F-test statistic is F ¼ SSB
SSW, and F follows the F-distribution with 2 and

N-3 degrees of freedom under the null hypothesis.

Gene Expression Analysis In transcriptomics studies for biomarker discovery

among thousands of features, we are interested in which genes/features are differ-

entially expressed under two (or more) conditions. The hypothesis test will be

performed individually for each feature. Statistical significance for each hypothesis

test is assessed according to its corresponding p-value from a statistical test.

Suppose there are K conditions and nk samples in the kth condition in a total of

N samples, where K2 1; 2f g. Let Xijk be an expression value, where sample

i ¼ 1, 2, . . . , nk, gene features j¼ 1, 2,. . ., m, and condition K ¼ 1, 2. Assume

that gene expression values have been background corrected, normalized and

transformed by taking the logarithm to base 2. The sample mean and variance of

gene feature j in group k are given as Xjk ¼

Xnk
i¼1

Xijk

nk
and S2jk ¼

Xn
i¼1

Xijk � Xjk

� �2
nk�1

,

respectively.
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Fold change approach is a simple and straightforward way of evaluating the

degree of differential expression under two conditions. For a gene feature j, the

mean difference is given byMj ¼ Xj1 � Xj2. Then the fold change is a statistic 2Mj .

Gene will be declared as significant if
��Mj

�� is greater than a predefined threshold.

Such procedure assumes that the variances are equal across all genes. However, it is

not the case for gene expression profile. Therefore, this approach may easily yield

many false positive and false negative results in differential expression analyses.

The two-sample t-test is a most used parametric statistical test in differential

expression analysis. It compares the means of expression value in two groups taking

the variance into consideration. Statistically, we want to test the null hypothesisH0

: μj1 ¼ μj2 against the alternative hypothesisH1 : μj1 6¼ μj2 for j¼ 1,2,. . .m. The test

statistic for each j is tj ¼

Xn
i¼1

Xj1 � Xj2

� �2
Sj

,where Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n1
þ 1

n2

� �
n1�1ð ÞS2j1þ n2�1ð ÞS2j2

n1þn2�2

r
,

called pooled within-group standard error. Under the null hypothesis, tj follows
Student’s t-distribution with n1þ n2�2 degrees of freedom. A p-value can be found

using a t-distribution table. By using the pooled within-group standard error

estimated from each gene separately, the t-statistic takes into consideration of

variance across different genes.

Significance analysis of microarrays (SAM) is a statistical technique for deter-

mining whether changes in gene expression are statistically significant (Tusher

et al. 2001). In SAM, statistically significant genes will be identified based on gene

specific t-tests. A statistic dj for each gene jmeasures the strength of the relationship

between gene expression and a response variable. Non-parametric statistics is used

as the data may not follow a normal distribution. SAM will perform repeated

permutations for the data to determine the significance of any gene with the

response. The use of permutation-based analysis accounts for correlations in

genes and avoids parametric assumptions about the distribution of individual

genes. It assumes equal variance and/or independence of genes. This is an advan-

tage over other techniques. Here is the generic procedure for SAM. A statistic dj is

computed as dj ¼ rj
sjþs0

, where rj is a score, sj is a standard deviation and s0 is an

exchangeability factor. Compared with the standard t-statistic, the SAM’s proce-
dure adds a s0 term to the denominator. The rationale behind it is that the variance sj
tends to be smaller at lower expression levels, making dj dependent on the expres-

sion levels. However, in order to compare dj across all genes, the distribution of dj
should be independent of the expression levels. Therefore, SAM seeks to find a s0
such that the dependence of dj on sj is as small as possible. An appropriate value of

s0 will be picked such that the coefficient of variation of dj is approximately

constant as a function of sj. For details of the SAM procedure, please refer to the

tutorial document for the software package, SAM, at http://statweb.stanford.edu/

~tibs/SAM/sam.pdf.
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The Wilcoxon rank-sum test, also known as the Mann–Whitney U-test, is a

nonparametric test, which can be applied to data with unknown distributions

contrary to t-test applied only to normal distributions. It is nearly as efficient as

the t-test on normal distributions. The null hypothesis of the test is that two samples

come from the same population and an alternative hypothesis is that a particular

population tends to have larger values than the other. TheWilcoxon rank-sum test is

based on the ranks of the original data values. To perform the Wilcoxon rank-sum

test, one first assigns numeric ranks to all the observations, beginning with 1 for the

smallest value. Where there are groups of tied values, assigning a rank equal to the

midpoint of unadjusted rankings. Second, one adds up the ranks for the observa-

tions which came from group 1. The sum of ranks in group 2 is now determinative,

since the sum of all the ranks equals N(Nþ 1)/2 where N is the total number of

observations. Then calculateU1 ¼ R1 � n1 n1þ1ð Þ
2

andU2 ¼ R2 � n2 n2þ1ð Þ
2

. The smaller

value of U1 and U2 is the one used when consulting significance tables.

2.2.1.2 Multiple Testing

As mentioned earlier, in omics studies we are confront with a great number of

hypotheses to be tested simultaneously. It will result in an inflation of the family

wise error rate (FWER) if there is no adjustment for multiple tests. In statistical

hypothesis testing, a type I error occurs when the null hypothesis (H0) is true, but is

rejected (a “false positive”). A type II error occurs when the null hypothesis is false,

but erroneously fails to be rejected (a “false negative”). A type I error is the

incorrect rejection of a true null hypothesis (a “false positive”), while a type II

error is the failure to reject a false null hypothesis (a “false negative”). Basically, in

hypothesis testing, we want to maximize the power (¼1-the type II error) while

controlling the type I error less than or equal to a predetermined significance level

α. In particular, consider the problem of testing simultaneously m null hypothesis

Hj: no differential expression againstH
a
j : differential expression, where j¼ 1, 2, . . .,

m. A gene will be considered as significantly differentially expressed if its p-value

is less than the defined significant level α. However, for hypothesis testing, the

problem of multiple testing problem results from the increase in type I error that

occurs when many statistical tests are used simultaneously. Suppose there are m

independent comparisons, the experiment-wide significance level α, also termed

FWER, is given by α ¼ 1� 1� αð Þm. α increases as the number of comparison

increases. Multiple testing correction is to re-calculate the probabilities obtained

from a statistical test which was repeated multiple times. In order to retain FWER α
in an analysis, the error rate for each comparison must be more stringent than α.

A number of procedures for controlling error rates have been developed to solve

the multiple-testing problem. One of the most commonly used approaches for

multiple comparisons is the Bonferroni procedure for controlling the FWER at

level α, which rejects any hypothesis Hj with unadjusted p-value less than or equal

to α/m. The Bonferroni procedure is very conservative. A less conservative
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procedure is the Benjamini–Hochberg procedure (BH step-up procedure), which

controls the false discovery rate (at level α). The procedure works as follows:

first for a given α, find the largest k such that P kð Þ � k
m α. Second, reject all Hj for

j¼ 1, 2, . . ., k. The BH procedure is valid when the m tests are independent and also

in various scenarios of dependence.

2.2.1.3 Multivariate Analysis

Although many common genetic variants associated with complex traits have been

identified by GWAS, these traits are typically analyzed separately in a univariate

manner for association with DNA markers. However, multivariate analysis for

correlated traits could be very advantageous in several aspects. First, when there

is genetic correlation between different traits, a multivariate analysis can increase

power by using the extra information provided by the cross-trait covariance, which

is ignored by the univariate analysis. Second, a multivariate analysis of multiple

traits can reduce the number of performed tests and alleviate multiple testing

burden compared to analyzing all traits separately. Lastly, a multivariate analysis

is biologically making more sense as a single genetic marker is associated with

multiple traits, compared to the cross-trait comparison in univariate analysis

(Galesloot et al. 2014).

A number of multivariate analysis methods in population-based GWAS have

been published. Here we briefly introduce six methods including as well as their

softwares.

The multivariate test of association MQFAM is implemented in the genetic

association analysis software PLINK (MV-PLINK) (Ferreira and Purcell 2009;

Purcell et al. 2007). The command used for association testing with MV-PLINK

(https://genepi.qimr.edu.au/staff/manuelF/multivariate/main.html) is: plink.multi-
variate –noweb –file geno –mqfam –mult-pheno pheno.phen –out output. For each
genetic variant, MV-PLINK produces an F-statistic and a p-value in the additive

model. Canonical correlation analysis (CCA), which is a multivariate generaliza-

tion of the Pearson product-moment correlation, to measure the association

between the two sets of variables. Specifically, CCA extracts the linear combination

of traits that explain the largest possible amount of the covariation between the

marker and all traits. The interpretation of a significant multivariate test is aided by

the inspection of the weights attributed by the CCA to each phenotype.

Bayesian multiple phenotype test is implemented in SNPTEST (MV-SNPTEST)

(Marchini et al. 2007). The command used to perform additive association testing

with MV-SNPTEST is provided in the online tutorial (https://mathgen.stats.ox.ac.

uk/genetics_software/snptest/snptest.html#multiple_phenotype_tests). The model

is the Bayesian Multivariate Linear model which is specified by

yi1; . . . ; yiq
� �T ¼ Gi β1; . . . ; βq

� �T þ ei1; . . . ; eiq
� �T

,where ei1; . . . ; eiq
� �TeN 0;

Pð Þ
and (yi1, . . ., yiq) is the vector of the q residual phenotypes measured on the ith
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individual. Gi is the code of the SNP genotype for the ith individual. We use the

conjugate prior for this model. This is an inverse Wishart prior IW(c,Q) on the error

covariance matrix ∑ and a matrix normal (N ) prior on the vector of parameters

β1; . . . ; βq
� ��MeN V;Σð Þ, where M is a mean vector and V is a constant. An

inverse Wishart prior [IW(6,4)] was set on the error covariance matrix ∑ and a

matrix normal prior [N(0.02,∑)] on the vector of parameters, according to recom-

mendations of the authors. Method ‘expected’ will result in the use of expected

genotype counts (~dosages) in the analyses.

MultiPhen is an R package available from CRAN (https://cran.r-project.org/web/

packages/MultiPhen/index.html) (O’Reilly et al. 2012). The regression performed

at a SNP, g, and a phenotype, k, to test for association between the SNP genotypes

and the phenotype is: Yik ¼ αk þ βgkXig þ εigk, where εigk is the residual error

assumed to be normally distributed. The null hypothesis of no association between

SNP and genotype can be tested by performing a t-test on the null hypothesis

βgk ¼ 0. In the MultiPhen approach, the regression is inverted so that the SNP

genotype, X, becomes the dependent variable, and K phenotypes under study

become the predictor variables. The genotype data is an allele count and is

therefore modelled using ordinal regression; we use proportional odds logistic

regression. This model defines the class probabilities as follows.

P Xig � m
� � ¼ 1�

�αgm�
XK
k¼1

βgkYik

�. At each SNP g¼ 1,2,. . .,G, the test for associa-

tion is a likelihood ratio test (LRT) for model fit, testing the null hypothesis

βg1 ¼ . . . ¼ βgk ¼ 0. This results in a p value per trait and a p-value for the LRT.

A Bayesian model comparison and model averaging for multivariate

regression is implemented in BIMBAM software (Stephens 2013). The details

of statistical method are provided in the reference (Stephens 2013). The BIMBAM

software can be run in two different ways. First we test for association between the

multivariate traits, all partitioned in the group of directly affected traits, and

genotype. Second, we consider all possible partitions of traits into the different

categories of traits (directly affected, indirectly affected, and unaffected).

The Principal Component of Heritability Association Test (PCHAT) (Klei

et al. 2008) is implemented in the software available at http://www.wpic.pitt.

edu/wpiccompgen/PCHAT/PCHAT.htm). First, the sample is split into a training

set and a test set. The training set is used to construct the optimal linear combination

of traits from a heritability point of view. A test set is used for association testing

between genotype and the optimal linear combination of traits. In this way, use of

the same data for both estimation of the optimal linear combination of traits and

association testing is avoided. In addition, a ‘bagging’ approach is performed, in

which bootstrap samples are drawn from the training sample and the optimal linear

combination of traits is averaged across bootstrap samples. The null distribution of

the test statistic is obtained in the same way, using permutation of the data.
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A Trait-based Association Test (TATES) is based on Extended Simes procedure

(van der Sluis et al. 2013). TATES (http://ctglab.nl/software) constitutes a powerful

new multivariate strategy that allows researchers to identify novel causal variants.

TATES acquire one trait-based p-value by combing p-values in standard univariate

GWAS, while correcting for correlations between components. It can detect both

genetic variants which are common to multiple phenotypes and those which are

specific to a single phenotype. It requires a correlation matrix of the traits and

univariate association results as input. The corr function in R can be used to

generate the full and symmetrical correlation matrices. TATES was run in R and

the output contains the TATES trait-based p-value corrected for the correlations

between the traits.

2.2.1.4 Gene Set Analysis

In transcriptomics study, massive throughput techniques, such as microarray and

RNA sequencing, allow to identify differentially expressed genes (DEGs) associ-

ated with diseases or phenotypes from genome-wide gene expression profile. The

challenge in expression data analysis in recent years has shifted from single DEG

analysis to gene set analysis (GSA), as biologically many complex diseases may be

modestly regulated by a set of related genes rather than a single gene. The gene sets

are defined based on prior biological knowledge, e.g., biochemical pathways or

coexpression in previous experiments. GSA can alleviate the difficulty in interpre-

tation of multiple testing lists of DEGs and provide insights into biological mech-

anisms for complex diseases. The first and most popular GSA is gene set

enrichment analysis (GSEA) (Subramanian et al. 2005), which is a computational

method that determines whether an a priori defined set of genes shows statistically

significant, concordant differences between two biological states (e.g. phenotypes).

The GSEA method is implemented in a freely available software package at http://

www.broadinstitute.org/gsea/index.jsp. The basic idea for this method is presented

as follow (Subramanian et al. 2005):

Step 1: Calculate an Enrichment Score. Rank genes by their expression difference

in two biological states and then compute cumulative sum over ranked genes.

The magnitude of increment depends on correlation of gene with phenotype.

Record the maximum deviation from zero as the enrichment score.

Step 2: Estimate significance. Permute phenotype labels 1000 times and compute

ES score for each permutation. Then compare ES score for actual data to

distribution of ES scores from permuted data.

Step 3: Multiple Hypothesis Testing. Normalize the ES accounting for size of each

gene set to obtain the normalized enrichment score (NES). Calculate FDR for

each NES to control proportion of false positives by comparing tails of the

observed and null distributions for the NES.

Another interesting GSA method proposed by Efron and Tibshirani attempts to

combine gene and sample randomization in one procedure (Efron and Tibshirani
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2007). It shows that it is more powerful based on the “maxmean” statistic than the

modified Kolmogorov-Smirnov statistic used in GSEA. This method can be

implemented by the R package “GSA”. The basic procedures are summarized here:

1. Compute a summary statistic zi for each gene, for example the two sample

t-statistic for two-class data. Let zs be the vector of zi values for genes in a

gene-set S.

2. For each gene-set S, choose a summary statistic S¼ s(z): the maxmean statisticXm

i¼1
I zi > 0ð Þzi
m

�����
�����

(
,

Xm

i¼1
I zi < 0ð Þzi
m

�����
�����
)

3. Standardize S by its randomization mean and standard deviation as

S
0 ¼ S�mean sð Þð Þ

std sð Þ . For summary statistics such as the mean, mean absolute value

or maxmean, this can be computed from the genewise means and standard

deviations, without having to draw random sets of genes.

4. Compute permutations of the outcome values (e.g., the class labels in the

two-class case) and re-compute S0 on each permuted dataset, yielding permuta-

tion values. Use these permutation values to estimate p-values for each gene-set

score S0 and false discovery rates applied to these p-values for the collection of

gene-set scores.

In 2007, Wang et al. extended the GSEA to GWAS of complex diseases (Wang

et al. 2007), where multiple genes in the same GS/pathway contribute to disease

etiology but where common variations in each of those genes make modest

contributions to disease risk. Gene set analysis tests disease association with genetic

variants in a group of functionally related genes, such as those belonging to the

same biological pathway. It can potentially improve the power to detect causal

GS/pathways and disease mechanisms by considering multiple contribution factors

together, rather than focusing on the top SNPs associated with disease. Individual

SNPs in univariate analysis only account for a small proportion of the heritability of

complex diseases. The method assesses the enrichment of significant associations

for genes in the GS/pathway (as compared with those outside the GS/pathway)

using a weighted Kolmogorov–Smirnov running-sum statistic. The GSEA method

is modified to fit GWAS data. For each SNP Vi (i¼ 1,. . ., L, where L is the total

number of SNPs in a GWA study), its test statistic value is calculated, ri (e.g., a χ2

statistic for a case-control association test). We next associated SNP Viwith geneGj

( j¼ 1,. . ., N, where N is the total number of genes represented by all SNPs) if the

SNP is located within or <500 kb away from the gene. The highest statistic value

among all SNPs mapped to the gene, is assigned as the statistic value of the gene.

For all N genes that are represented by SNPs in the GWA study, their statistic values

are sorted from largest to smallest, denoted by r(1),. . .,r(N). For any given gene set S,
composed of NH genes, a weighted Kolmogorov-Smirnov–like running-sum statis-

tic is calculated which reflects the overrepresentation of genes within the set S at the
top of the entire ranked list of genes in the genome.
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Over recent years, various methods have been published for gene-set or

pathway-based association analysis for GWAS. Basically, these statistical methods

can be classified into two categories based on whether the required input data sets

are a collection of SNP p-values or individual-level SNP genotypes. Additionally,

the null hypothesis can also be categorized as ‘self-contained’ versus ‘competitive’
based on whether comparisons were made between genes in a specific pathway and

non-associated genes or other genes in the genome. Some of these published

algorithms as well as software implementations or web servers are summarized in

the review (Wang et al. 2010).

2.2.1.5 Gene Network Analysis

Recent years many network theories have been applied to gene coexpression

network analysis. As gene expression microarrays measure the transcription levels

of thousands of genes simultaneously, it provides great opportunities to explore

large scale gene regulatory networks. Genes with similar expression patterns may

participate in pathways and in regulatory and signaling circuits and their products

may form complexes. Gene networks provide a systematic understanding of molec-

ular mechanisms underlying biological processes, and the visualization of direct

dependencies facilitates systematic interpretation and comprehension of the rela-

tionships among genes. Most complex human diseases are arising not from a single

gene but from interactions with many other genes, especially in a gene network.

The hub genes, which interact with many other genes, are likely to be drivers of the

disease status. The analysis on the hub genes has become a promising approach for

identifying the key candidate genes for complex diseases.

A great number of statistical methods for gene network reconstruction from gene

expression microarray data have been proposed in recent years. There are four main

categories of statistical methods: (1) Probabilistic networks-based approaches,

mainly Bayesian networks (BN), (2) correlation-based methods, (3) partial-

correlation-based methods, and (4) information-theory-based methods (Allen

et al. 2012). The representative method in each category and the implementation

software are summarized below.

Probabilistic networks, mainly Bayesian networks, are based on a probabilistic

graphical model that represents a set of variables and their probabilistic indepen-

dencies. The Bayesian networks expand the joint probability in terms of simpler

conditional probabilities, which allow them to handle noise inherent in both bio-

logical processes and microarray experiments. Generally, the joint likelihood

function of nodes X1, . . .,Xp in a Bayesian network can be expressed as

P X1; . . . ;Xp

� � ¼ Yp
i¼1

P
�
Xi

��YG

i

�
, where graph G ¼ V;Eð Þ represents the topolog-

ical structure of the Bayesian network, in whichV ¼ X1; . . .f ,Xp

�
denotes the set of

nodes and E ¼ Xj ! Xi,Xj2
YG

i

n o
denotes the set of edges. Werhli’s
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implementation for Bayesian network construction method is most used and out-

performs other implementations (Werhli et al. 2006). A Bayesian network models

the distribution of observations and a causal network models the distributions of

observations and effects of interventions. A causal network can be interpreted as a

Bayesian network, when we are willing to make the Causal Markov Assumptions:

given the values of a variable’s immediate causes, it is independent of its earlier

causes (Friedman et al. 2000).

Correlation-based methods are the most straightforward and popular way to

explore the gene co-expression network. They have been successfully applied in

many studies and have shown their usefulness in identifying important gene

modules and in interpreting biological results. Basically a gene co-expression

similarity matrix is defined as S¼ [Si,j], where Si,j is the pair-wise transcription

correlation coefficients between gene i and j. S is the correlation matrix (Zhang and

Horvath 2005). Particularly, Weighted Correlation Network Analysis (WGCNA) is

a representative method for the correlation-based approach (Langfelder and

Horvath 2008). The implementation of WGCNA is in R package, which is used

for identifying modules/subnetworks using hierarchical clustering approaches. The

WGCNA R package includes interfaces with Cytoscape (Shannon et al. 2003) for

network visualization and The database for annotation, visualization and integrated

discovery (DAVID) (Dennis et al. 2003) for enrichment analysis. The comprehen-

sive set of online tutorials that guide users through the major steps for gene network

analysis by WGCNA are provided in the website http://labs.genetics.ucla.edu/

horvath/htdocs/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/index.html.

In the tutorials, R code in each step is provided so that the user can copy and paste

into an R session. The tutorials cover the following major topics: correlation

network construction, step-by-step and automatic module identification, consensus

module detection, eigengene network analysis and differential network analysis.

Here we briefly review the key concepts of the WGCNA framework. The nodes

in a gene coexpression network correspond to genes, labeled by indices i,
j¼ 1,2,. . .,n. The edge between two nodes is determined by the pairwise correla-

tion. The network can be specified by its adjacency matrix A, a symmetric matrix

with entries aij in [0,1] that encode the strength of the link between genes i and j. An
unsigned network is defined by the adjacency A in terms of coexpression similarity

Sij ¼
��cor xi; xj

� ���, in which positive and negative correlations are treated equally.

Also if we want to preserve the sign of the correlation, we can use a signed

similarity defined as Sij ¼ 1þcor xi;xjð Þð Þ
2

. The main difference between signed and

unsigned similarities is that genes with a high negative correlation (close to �1)

will have a low similarity in a signed network but a high similarity in an unsigned

network. A weighted network can preserve the continuous nature of the

co-expression information by using a soft thresholding parameter, β� 1. By using

a power function, the connection strength can be assessed, aij ¼ Sβ
ij . The default

values β¼ 6 and β¼ 12 are used for unsigned and signed networks.
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In WGCNA, genes are clustered into network modules based on their coexpression.

Highly coexpressed genes have a small dissimilarity. For example, the adjacency-

based dissimilarity measure is dissAdjij ¼ 1� aij . The dissimilarity measure can be

used as input in average linkage hierarchical clustering. Then, modules are defined as

branches of the resulting cluster tree. If larger andmore robust modules are desired, one

can use a dissimilarity measure based on the topological overlap matrix (TOM):

dissTOMij ¼ 1� TOMij ¼ 1�
X

u 6¼i
aiuauj þ aij

min ki;kjð Þþ1�aij
, where ki ¼

X
u 6¼i

aui denotes the

network connectivity. TOM combines the connection strength between a pair of genes

with their connections to other ‘third party’ genes, which has been shown to be a highly
robust measure of network interconnectedness (proximity). In order to summarize the

module genes by a single representative expression profile, module eigengene is

defined as the first principal component of the standardized expression profiles of a

given module, which is considered as the weighted average of the module gene

expressions. We can correlate the module eigengenes with the trait of interest y. The
correlation coefficient or its corresponding p-value is referred to as the eigengene

significance. For each module, the module significance is defined as the average

absolute gene significance for all genes in the module. WGCNA can alleviate the

multiple testing problem in DEG analysis, as it focuses on a few modules with the trait

rather than thousands of genes and these modules may be included into some important

biological pathways.

Partial-correlation-based methods are based on Gaussian graphic model. These

methods infer the conditional dependency by the non-zero entries in the precision

matrix, C ¼ Ci, j

	 
 ¼ S�1, which is the inverse of covariance matrix (Allen

et al. 2012). The zero entries in the precision matrix imply conditional indepen-

dency between the expression levels of gene i and j given the expression of all other
genes, which means two genes do not interact directly with each other. The sparse

partial correlation estimation (SPACE) algorithm is a representative partial-

correlation-based method (Peng et al. 2009). It converts the concentration matrix

estimation problem to a regression problem and optimizes the results with a

symmetric constraint and an L1 penalization.
Information-theory-based methods use mutual information (MI) to determine

how similar the joint distribution P(X, Y) is to the products of factored marginal

distribution P(X)P(Y). It can determine the dependency among the genes and then

remove indirect interactions. Algorithm for the Reconstruction of Accurate Cellular

Networks (ARACNE) is a successful and popular information-theory-based

method, which has been successfully applied to construct gene regulatory networks

in the context of specific cellular types (Margolin et al. 2006). The calculation of MI

does not assume a monotonic relationship; therefore it is able to identify the

non-linear or irregular dependencies, which will be missed by Pearson correlation.

If the gene network contains non-monotonic dependencies the ARACNE could

outperform correlation-based methods.
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2.2.2 Computational Methods for Integrating
Multi-Omics Data

A variety of statistical methods and tools have been proposed for integrating two or

more omics data. These methods aim to help understand molecular mechanism or

biological pathways underlying variation of different types of clinical traits. Also

they explore the relationship or interactions among diverse omics data for complex

network structure reconstruction and thereby identifying risk modules associated

with clinical outcomes. Integrated information is finally used for subtyping clinical

diseases or predicting the outcome for prospective patients. These computational

methods can be broadly categorized into four types in terms of the objective of

analysis and the way of integrating omics data.

2.2.2.1 Multi-Stage Method: Analyzing Multi-Omics Data Sequentially

Multi-stage method is a way to divide multi-omics analysis into multiple stages,

where each stage only incorporates two levels of omics and subsequently relates

biomarkers to the trait or phenotype of interest. For example, a three stage strategy

is commonly applied for identifying genetic variants associated with the phenotype

and relating the other levels of omics, e.g., gene expression (Holzinger and Ritchie

2012).

Step1. Identifying those significant genetic variants (e.g., SNPs) associated with

phenotype by genome-wide association test with multiple testing corrected.

Step2. Testing those identified SNPs for association with the other omics data, such

as gene expression, DNA methylation, protein expression and other functional

profiling. The corresponding associated SNPs are called expression quantitative

loci (eQTLs (Jansen and Nap 2001)), methylation QTL (meQTLs (Kerkel

et al. 2008)), protein QTL(pQTLs (Melzer et al. 2008)) respectively.

Step3. Those omics features having at least one QTL are further tested for the

association with phenotype. Subsequently, biological pathways can be derived;

some SNPs associate with phenotype through other omics data while some SNPs

can affect phenotype independent of the other omics data. One benefit of multi-

stage method is that each single stage analysis is performed independently with a

variety of statistical methods (Cantor et al. 2010). For example, to identify

significant biomarkers at the first and third stage, both univariate test (e.g., linear

regression or logistic regression) and multivariate methods (e.g., region or

pathway based test (Khatri et al. 2012)) can be applied for genome-wide

detection. At the second stage, many approaches proposed for identifying

eQTLs can also be applied for the analysis of meQTLs, or pQTLs, such as

single-trait QTL tests, multi-trait QTL methods, and QTL test with pedigree or

error correction (Kendziorski et al. 2006).
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Some multi-stage methods have been proposed for sequential analysis of multi-

omics data. For instance, Schadt et al. applies multistep method to analyze DNA

methylation, gene expression and other complex traits to determine if the variation

of DNA methylation that leads to the change of gene expression traits statistically

supports an independent, causative or reactive function relative to the complex

traits (Schadt et al. 2005). Hao et al. performed a systematic analysis and identified

two modules underlying BMD by incorporating GWASs, human PPI network, and

gene expression (He et al. 2014). The tool, Multiple Concerted Disruption (MCD) is

proposed to sequentially search for a set of genes which exhibit concerted disrup-

tion through multiple genomic dimension (DNA methylation, copy number and

allelic status) and consequential change in gene expression (Chari et al. 2010). The

procedure involves four sequential steps with increasing number of genomic data

incorporated to filter out those genes lacking concerted disruption. Similar method

for exploring the relationship between copy number alternation and methylation

(CNAmet) is also proposed (Louhimo and Hautaniemi 2011). In addition, prior

knowledge such as KEGG pathway, gene ontology or functional annotation of the

region (e.g., transcription factor binding, methylated or regulatory motifs) could

also be incorporated into the analysis to refine the specific regions of interest for the

subsequent multi-stage analysis.

Although it is easy to model the relationship among multi-omics data by

exploring their pair-wise relationship sequentially, there is a limitation for the

stepwise hypothesis. If different omics interplay to have joint effect, for example,

miRNA and DNA methylation may simultaneously affect the gene expression, the

multi-stage methods may lose their efficiency.

2.2.2.2 Parallel Analysis: Combining Individual Omics Analysis

Results

Parallel analysis combines multi-omics data into the analysis simultaneously. It can

be generally divided into two categories: concatenation-based integration and

model-based integration.

Concatenation-Based Integration This method is to straightforwardly concate-

nate all of omics data from the same subjects, resulting in a large combined matrix.

One advantage of this integration is the applicability of many single omics analysis

methods if combing features appropriately. For example, a variety of univariate and

multivariate association tests could be applied for biomarker detection from differ-

ent levels of features, especially the penalized likelihood methods which can handle

high dimensionality of data. Lasso is a very useful penalized method and has been

widely used for feature selection (Tibshirani 1996). Recently significant test based

on lasso is also proposed to control the type I error (Lockhart et al. 2014). Other

penalized methods such as sparse logistic regression (Shevade and Keerthi 2003),

cox lasso (Wang et al. 2009), and sparse multinomial regression (Krishnapuram

et al. 2005) have also been used for genetic biomarker identification corresponding
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to different types of phenotypes (e.g., categorical or survival traits). These methods

can be extended to the analysis of concatenated matrix consisting multi-omics data.

Another advantage of concatenating datasets is that they can account for rela-

tionship among features from different levels of omics data. For example, SNP and

DNAmethylation measure the effect of genetic mutation and environmental factors

on complex traits respectively. They may interact with each other to deregulate

gene expression, leading to the variation of traits. Fridley et al. used Bayesian

modeling to incorporate the relationship between SNPs and mRNA gene expression

into the concatenation-based association model for the prediction of drug cytotox-

icity (Fridley et al. 2012). In penalized likelihood methods, elastic net is used to

simultaneously select features and account for the correlation among features

(Ogutu et al. 2012). Group based penalties (e.g., group lasso, sparse group lasso,

group Bridge, and overlapping group lasso) were proposed to group different levels

of features based on their genomic annotation (e.g., gene or pathway) to increase the

detection power on group level (Huang et al. 2012). In addition, Lando et al. used

the correlation between copy number and phenotype to weight the penalty of gene

expression in a penalized regression model. Genes corresponding to important

CNVs were less penalized in expression regression model (Lando et al. 2009).

In spite of the advantages of concatenating multi-omics data, it is still a chal-

lenge to find an appropriate way to combine these data matrices collected from

different platforms with different scales into one model. In addition, the combina-

tion of these high-dimensional matrices will largely expand the dimension of the

model, which could increase computational burden. Therefore, the concatenation of

multiple datasets is more applicable for omics data integration if there exists an

appropriate way of concatenating matrix and the dimension of data is moderate.

Model-Based Integration To avoid the issues of combing data directly, some

studies try to build a model for each data separately and then transform each model

into an intermediate form, and finally integrate transformed outputs for multi-omics

analysis. Tyekucheva et al. performed gene-level and gene set-level tests on gene

expression and copy number data separately and combined the gene set scores by

meta-analytical approaches (e.g., geometrically averaged P-values and minimum

P-values) to derive the combined gene-set score (Tyekucheva et al. 2011). The

integrative approach identified more reliable glioblastoma multiforme tumor

related gene sets than individual data analysis. Similarly, Poisson et al. proposed

the sum of square statistics to combine gene set score from gene expression and

metabolites to test integrative set enrichment (Soneson et al. 2010). Xiong

et al. developed a tool, Gene Set Association Analysis (GSAA), to test gene-set

enrichment by combing SNP-set and gene expression using different score based

combination methods (e.g., z-score sum, rank sum and fisher’s test) (Xiong

et al. 2012). Analysis Tool for Heritable and Environmental network Association

(ATHENA) is another model-based analysis tool for performing integrative anal-

ysis of different omics data as well as their association with clinical outcomes

(Holzinger et al. 2013).
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Besides the statistical model or score integration, multi-task learning is another

powerful strategy to jointly model different but related tasks simultaneously.

Biomarker identification in each single omics is treated as a task and then multiple

tasks are combined by multitask learning. Bennett et al. used multi-task learning to

consider enrichment analysis scores from both SNP and gene expression to identify

several pathways with both genetic and expression differences related to the

phenotype (Bennett et al. 2012). Lin et al. adopted two bi-level penalties in

multitask regression model to integrate multiple diverse genomics datasets under

different level and/or platform for identifying common biomarkers (e.g., genes or

gene-set) (Lin et al. 2014a). They assumed a regression model for each dataset as a

task, and then considered multiple regression models as multiple tasks. Variables

from all datasets were grouped by specific units (e.g., genes) and penalized by

sparse group penalties. The integration shows higher power of detecting risk genes

than single omics data analysis and meta-analysis under the scenarios of both fixed

effect and random effect.

It is noted that model-based integration methods need to build a model for each

data set and then combine the models or their intermediate outputs. The scale of

model errors or the intermediate outputs needs to be comparable for integration. If

each omics data is extremely heterogeneous, this integration method may yield

little improvement over separated analysis.

2.2.2.3 Latent Variable Models: Transform Variables
into New Feature Space for Integration

The high dimensionality of diverse genomic data is a challenge. One commonly

used strategy is to project high dimensional genomic data into low dimensional

space before an integrative analysis is performed. Principle component analysis

(PCA) is popularly used to explain the variance–covariance structure in a single

data. It is widely used for handling pleiotropy with multiple correlated traits (e.g.,

eQTL) with the assumption that multiple correlated traits are able to reveal stronger

signals than are obtained from univariate analysis of each trait separately. PCA

based method collapses a number of correlated variables into a smaller number of

uncorrelated variables as new phenotypes, which captures most variability and then

test association for each new phenotype separately. Christine et al. used PCA to

detect pleiotropic QTLs for boar taint and paternal fertility traits (Große-Brinkhaus

et al. 2015). Jane et al. applied PCA on 70 skeletal traits to explore pleiotropy

pattern through skeleton as well as genetic mechanism of each pattern (Kenney-

Hunt et al. 2008).

Some latent variable models work in two- or multi-block way such as canonical

correlation analysis (CCA) and partial least squares (PLS) with the aim to estimate

latent variate from each dataset respectively (a linear combination of variables) by

maximizing the correlation (CCA) or covariance (PLS) between them. Soneson

et al. applied CCA to explore two pairs of highly correlated features from the gene

expression and copy number variable sets, which represent different characteristic
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in leukemia. Tang et al. proposed a gene-based association test using CCA to detect

QTLs associated with multiple quantitative traits (Tang and Ferreira 2012).

Boulesteix et al. used PLS to predict transcription factor activities from combined

analysis of gene expression and chromatin immunoprecipitation (ChIP) data

(Boulesteix and Strimmer 2007). To integrate multiple datasets or clinical traits,

some multi-block approaches such as multi-set CCA and multi-block

PLS-correlation have also been proposed by summarizing pairwise correlations

(or covariances) among different data sources (Lin et al. 2014b). In addition,

parallel independent component analysis (pICA) and joint ICA are also two block

methods widely used in genetic, imaging and clinical integration to explore inde-

pendent components from each modality respectively while maximizing the corre-

lation of the components simultaneously (Sui et al. 2012). Shen et al. show the

robustness of joint ICA in integrating multi-omics data for biomarker detection and

combined gene expression and copy number variation to identify significant genes

associated with breast cancer (Sheng et al. 2011).

The above latent variables models mainly focus on the linear relationship among

omics data. It may be interesting to consider non-linear relationship to explore more

complicated genetic regulatory mechanism. ‘Kernel trick’ is a popular strategy which
maps omics data into feature space by kernel matrix (e.g., Gaussian kernel matrix).

Reverter et al. used kernel PCA to reduce dimension of metabolomics and genomics

data and combined them for better representation of samples (Reverter et al. 2014).

Yamannishi et al. proposed two types of kernel CCA to measure the correlation

between several heterogeneous datasets, and to extract sets of genes which share

similarities with respect to multiple biological attributes (Yamanishi et al. 2003).

Due to high dimensionality and small sample size of multi-omics data, there are

usually issues of multi-collinearity (linear dependence) in the data and overfitting of

the model. To address these issues, one way is to introduce the sparse

regularizations into the conventional latent model to perform feature selection

and correlative analysis simultaneously. Several types of regularized latent variable

models have been proposed by enforcing different sparse penalties (e.g., lasso,

elastic net and sparse group lasso penalty) on the loading vectors in the model.

Waaijenborg et al. (2008) introduced the L-1 norm and elastic net penalties to the

CCA model to analyze the correlation between gene expression and DNA-markers.

Parkhomenko et al. (2009) proposed a CCA method with lasso penalty based on

SVD (Singular value decomposition). Le Cao et al. (2009) used the penalized CCA

with the elastic net to identify sets of co-expressed genes from two different

microarray platforms. Witten et al. (2009) developed penalized matrix decomposi-

tion (PMD) method and applied it to solve CCA with lasso and fused lasso

penalties. Lin et al. presented a unified framework of formulating these sparse

CCA models as in (2.1):

minu, v � utΣXYvþ λ1 uk kG þ τ1 uk k1 þ λ2 vk kG þ τ2 vk k1 s:t:utΣXXu
� 1, vtΣYYv � 1 ð2:1Þ

where X,Y are the two data matrices; u and v are the loading vectors constrained by
sparse terms;||u||1 and ||v||1 are l�1 norm lasso penalty for performing the selection
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of individual variable/feature, and uk kG ¼
XL

l¼1
ωl ulk k2, vk kG ¼

XH

h¼1
μh vhk k2

are the group penalties to account for joint effects of features within the same group.

The group penalty uses the non-diffentialbility of ||ul||2 (or ||vh||2) at ul¼ 0 (vh¼ 0)

to set the coefficients of the group to 0 so the entire group of features will be

removed to achieve the group sparsity.

Figure 2.1a shows the results of recovered loading vectors u and v by CCA-l1,

CCA-group and CCA-sparse group methods respectively. It can be seen that the

CCA-sparse group method can better estimate true u and v than CCA-l1, CCA-group

method. Figure 2.1b compares the accuracy of recovering loading vectors from three

methods with respect to different noise levels (standard deviation changes from 0.1 to

1 with interval 0.1), corresponding to different degrees of correlations between the two

data sets. The result shows that the CCA-group model can recover the most correlated

variables but gives the highest total discordance. CCA-sparse group has a comparable

recovering accuracy as CCA-group model but much less total discordance especially

when noise level decreases. These methods were also applied to fMRI data and SNP

data and other omics data to identify significant correlated features.

Several other latent variable models were also proposed. Chun et al. proposed

sparse PLS for simultaneous dimension reduction and feature selection in gene

expression and transcriptional factor data. sPLS discriminant analysis (sPLS-DA),

included in mixomics packages (Lê Cao et al. 2011), incorporated disease pheno-

type to extract those latent variables from gene expression or SNPs which are

discriminative in multiclass disease, e.g., Leukemia. Li et al. introduced a sparse

Multi-Block Partial Least Squares (sMBPLS) regression method to identify

multidimensional regulatory modules from copy number variation, DNA methyla-

tion, gene expression and microRNA expression (Li et al. 2012).

2.2.2.4 Integrative Network Analysis

Networks represent the interactions of features within or across different levels of

omics. The methods for reconstructing genetic network in single omics data have

been well studied, as introduced in Sect. 2.2.1.4. However, they are limited to

understand complex biological networks underlying cell and organ functions by

single level of omic data. Integration of different levels of omics data to reconstruct

comprehensive network is able to enrich our understanding of biological processes

and improve the discovery of disease biomarkers. There are mainly two categories

of integrative network reconstruction algorithms: single-stage reconstruction and

multi-stage reconstruction.

Single-Stage Integrative Network Reconstruction This type of method tends to

incorporate multi-omics data directly into the model for network construction. A

simple way is using correlation based measurement to weight the interactions

among omics features. WGCNA was used to construct network between

metabolomics and transcriptomics data to identify clusters of metabolites and

transcriptional factors associated with body weight change. A correlation derived
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topological matrix was used for clustering correlated features and cutting into

different modules for association analysis (Wahl et al. 2015). Kayano

et al. developed a statistical method based on low-order partial correlations with a

robust correlation coefficient for estimating metabolic networks from metabolome,

proteome, and transcriptome data (Kayano et al. 2013).

Another way is Bayesian network, which is a directed probabilistic graphical

model with each edge representing the dependence between nodes (e.g., genes).

Bayesian network is based on both prior distribution assumptions and observed data

to design a model which can be mostly trusted. Prior distributions could be

informative, such as conjugate prior, or mostly be non-informative. Some prior

knowledge such as protein-protein interaction database could be incorporated to

improve the accuracy and efficiency of network reconstruction. Conditional inde-

pendence facilitates the integration of diverse data in a coherent way. Zhu

et al. combined genotypic, expression, transcription factor binding site (TFBS),

and protein–protein interaction (PPI) data to reconstruct causal gene networks.

Three levels of Bayesian networks (BN_raw, BN_eQTL and BN_full) incorporat-

ing different prior knowledge (e.g., eQTL) were reconstructed and compared in

terms of their power to infer causal regulators for validated signature gene sets (Zhu

et al. 2008). Some Bayesian clustering models were designed to cluster genes from

multiple omics data based on their interactions. Multiple dataset integration (MDI)

was developed to identify groups of genes that are co-regulated and additionally

their protein products appearing in the same complex (Kirk et al. 2012). To

constrain the consistency of identified clusters across multiple omics sources,

Bayesian consensus clustering was built to find consensus genetic clusters shared

in different omics levels (Lock and Dunson 2013). Instead of finding clusters of

genetic markers, Pathway recognition algorithm using data integration on genomic

models (PARADIGM) was used to infer the molecular pathways altered in a patient

sample by integrating genomic and functional genomic datasets (Vaske et al. 2010).

Pathways were constructed based on prior knowledge database following

CNV->gene expression->protein activity assumption and all measurements were

categorized into three discrete states (inhibited, normal and activated). Joint poste-

rior distribution was then computed based on observed data. The difference

between pre- and post-activity levels indicated the quantitative alternation induced

by the disease. Similarly, Multi-level Ontology Analysis (MONA) was a computa-

tionally efficient method to approximate the marginal posteriors of ontology terms

based on three basis model assumptions (base, cooperative, and inhibitory models),

given lists of genes responding to experimental conditions (Sass et al. 2013). iNET

takes a “feature-specific” approach to model eight underlying biological basis

models for constructing Bayesian network (Wang et al. 2013).

Multi-Stage Integrative Network Reconstruction There are generally two major

steps: constructing network in each single level of omics data; and fusing multiple

networks to an integrated network. The first step could be achieved by using various

single omics network reconstruction algorithms. Network alignment and fusion

methods are usually needed for the second step. Network alignment is the algorithm

to map the nodes from two or multiple types of networks in such a way that

2 Biostatistics, Data Mining and Computational Modeling 45



maximizes the topological and biological similarity between pairs of aligned nodes

(Mitra et al. 2013). This technique is helpful in identifying previously undiscovered

conserved modules that have been maintained across different species and reveal-

ing functionally similar subnetworks. Computational methods for network align-

ment consist of pair-wise alignment for aligning two networks only and multiple

alignment to find transitive alignments among multiple networks. Some alignment

algorithms, e.g., local alignment, aim to identify conserved regions between the

input networks, which is particularly useful in finding known functional compo-

nents (e.g., pathways) in a new species. For instance, PathBLAST allows the

comparison of simple pathways (e.g., linear pathways) or subnetworks (e.g., mod-

ules) based on homology and interaction confidence (Kelley et al. 2004).

NetworkBLAST finds highly conserved local regions greedily using inferred phy-

logeny (Kalaev et al. 2008). Some algorithms, e.g., global alignment, align every

node in the smaller network to the larger network to find an overall network which

enables species-level comparisons and discovery of functional orthologs. For

instance, IsoRank and IsoRankN identify a stationary random walk distribution to

perform global network alignment (Singh et al. 2008; Liao et al. 2009).

Network fusion is a technique to fuse multiple distinct but complementary bio-

logical networks to gain comprehensive insights of cellular structure and function.

One of these approaches is integrating biological networks across different types of

molecular interactions to identify composite modules. A cytoscape-based tool,

PanGIA is designed to detect composite modules by identifying overlapping clusters

of physical and genetic networks (Srivas et al. 2011). Physical interactions are mainly

represented by protein–protein and protein–DNA interactions. Genetic interactions

represent functional relationships between genes, in which the phenotypic effect of

one gene is modified by another. Composite modules are extracted based on the

physical interactions while cluster of genetic interactions between two different

composite modules reflect inter-modular dependencies. Integrative analysis of both

physical and genetic networks can reveal physical mechanism of phenotype associ-

ated with genes in the composite module and also predict the genetic dependence

between composite modules mapped in physical binding assays. Another Cytoscape

tool, GeneMANIA builds a composite functional association network by taking a

weighted average of individual functional association networks (Mostafavi

et al. 2008). It first assigns weights to each of interaction networks. The composite

network is then set to be the weighted average of the individual networks. Each

network weights are calculated on demand and are tailored to the query list.

2.2.3 Statistics for Clinical Disease Diagnosis
and Classification

The above has discussed the analysis of single omics or multi-omics data for

biomarker detection, genetic regulatory network inferring as well as the exploration

of genetic pathways underlying complex diseases. The next step is translating this
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knowledge into clinical diagnosis or prediction. Predictive modeling, particularly

classification, is critical in clinic research where risk biomarkers may vary largely

with different diseases and even the subjects from one group may have subject-

specific genetic variations. An effective method for classification of complex disease

is demanded. We generally categorize them into two types: supervised learning

method and unsupervised learning method. The former usually needs labelled train-

ing dataset for searching the optimal values of model parameters, which helps to

build an accurate model and is more applicable for disease classification. The latter is

data-driven method without knowing the class label from training, which is more

likely to be used for subtyping to explore new subclass of diseases.

2.2.3.1 Supervised Learning in Omics Data

We will introduce several commonly used supervised classifiers in genetic data

for classification of complex diseases. Assume there are m types of omics

dataset, denoted by X ¼ X1;X2; . . . ;Xm½ �, where Xi2RN�Pi , i ¼ 1, 2, . . . ,m, Pi is

the dimension of features in the i-th omics data.Y2RN�c, c is the number of classes,

and the subjects belonged to the j-th class are denoted by wj

� �
, j ¼ 1, 2, . . . , c. The

object is to predict the class of a new sample y given the observed omic feature

matrices X.

Discriminant Analysis Linear discrinant analysis (LDA) and quadratic discrimi-

nant analysis (QDA) are popularly used methods in clinical genomic analysis for

risk feature identification and classification. LDA is a latent variable model which

projects original high dimensional variables (e.g., gene expression measurements)

into a new feature space by linear combinations Xα with large ratios of between-

group to within-group sums of squares, that is, maximizing the ratio αTBα/αTWα,
where B denotes the between-classes covariance matrix, andW denotes the within-

class covariance matrix. The calculation of B and W are given by

B ¼
XC
i¼1

N μi � μð Þ μi � μð ÞT ;W ¼
XC
i¼1

X
x2wj

x� μið Þ x� μið ÞT

where μi ¼ 1
N

X
x2wj

x, μ ¼ 1
N

X
8x

x. For a new subject x, it can be projected to new

feature space by the estimated α and classified to the class which has the minimum

distance by the classification rule:

C x; Lð Þ ¼ argmink Dk xð Þ

where L is the training dataset to estimate LDA model and D(.) is the function to

measure the distance between new subject with each class. LDA is a

non-parametric method that is also a special form of a maximum likelihood
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discriminant rule for multivariate normal class densities with the same covariance

matrix. QDA is similar to LDA with the slight difference that QDA needs to estimate

the covariance for each class separately. Zhang compared the two methods in

recognition of two splice sites (acceptor site and donor site) in exons (Zhang 1997).

The features from internal exons and their flanking regions (e.g., in-frame hexamer

frequency bias) were adopted in LDA to distinguish acceptor site from donor site. To

further consider the complex correlation structure among various acceptor sites or

donor sites among exons, the covariance matrix may not be same between two sites.

QDA was applied and shown better identification accuracy than LDA. There are also

some other modifications of LDA to account for the specific characteristics in the

omics data. For example, sparse LDA is combined with sparse regularizations to

perform feature selection in discriminant analysis with high dimensional dataset,

e.g., gene expression data (Clemmensen et al. 2011). Ye et al. also proposed unrelated

LDA to handle the under-sampled data in genetic analysis and used generalized

singular value decomposition method to make the features in transformed space be

uncorrelated (Ye 2005). The method shows effectiveness in classification of tumors

by gene expression data. Huang et al. compared LDA with other four modified

methods on tumor classification by gene expression and showed the advantage of

LDA modification methods over traditional LDA in terms of the average error and

found no significant difference (Huang et al. 2009).

Decision Tree

Decision tree is one of most widely used machine learning methods. A decision tree

model is built by a tree-like structure, where each internal node represents a specific

test of an attribute, each branch represents one of the possible test results, and each

leaf node represents an outcome. There are mainly two types of decision tree:

decision tree classification and decision tree regression. The former aims to output

the classifications labels (e.g., class) while the latter can output any real number of

measurement. Decision tree can be learned by splitting the node into subsets

according to the attribute value test. The splitting process is repeated in a recursive

manner until the subsets of a node have all the same value of target variable or no

more information could be added after splitting. Several algorithms have been

developed to determine if splitting the node at each step, such as Gini impurity,

information gain or variance reduction, leads to several types of decision trees,

e.g., C4.5, C5, IDE, GINI, Codrington’s and CART (classification and regression

tree). Chen et al. used CART tree to select important genes for improving cancer

classification (Chen et al. 2014). CART was also applied to explore the influence of

the interactions among those genes that influence androgen in prostate cancer and if

these interactions are able to improve the cancer prediction (Barnholtz-Sloan

et al. 2011). There are also many other successful biological applications of decision

tree based classification, including coding and noncoding DNA classification

(Langfelder and Horvath 2008), protein secondary structure prediction (Shannon

et al. 2003), and operon structure classification (Dennis et al. 2003).
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Support Vector Machine

Support vector machines (SVM) are a family of classifiers which transform the

input samples into a high dimensional space by a linear or kernel function, named

feature space. Then a linear hyperplane could be drawn to separate two classes

mapped in the feature space. To avoid overfitting, SVMs choose a specific hyper-

plane that maximizes the minimum distance from the hyperplane to the closest

training point which is called support vectors. The optimal hyperplane is defined by

the pair (w, b) by solving the following problem:

min wk k2

s:t: yi w ∙ xi þ bð Þ � 1 � 0, 8i ¼ 1, 2, . . . ,N

where kwk2 measures the inverse of distance between two boundaries to obtain

the maximum margin. w ∙ xi þ b ¼ �1 indicates two boundary hyperplanes sepa-

rating subjects from two different classes (y ¼ 1 or� 1). Boundary hyperplanes are

built on the support vectors. It is efficient for SVM to classify new examples since

the majority of the training examples can be safely ignored. In order to transform

original variables into high dimensional feature space and measure the non-linear

correlation in feature space, a kernel function K(xi, xj) is usually applied such as

polynomial kernel, Gaussian radial basis function and hyperbolic function.

Support vector machines have drawn a lot of research efforts from diverse fields

(Noble 2004). In bioinformatics, it is widely used for cancer diagnosis and classi-

fication, protein structure and function prediction and gene expression pattern

recognition. An early application example of SVM is to identify important genes

and further improve the classification on leukemia and colon cancers (Guyon

et al. 2002). Ferry et al. used SVM to not only classify cancer tissue samples

based on microarray data but also identify those samples wrongly classified by

experts. Hua and Sun used SVMs to perform protein classification with respect to

subcellular localization (Hua and Sun 2001). A 20-feature composition kernel

function is applied and shown to produce more accurate classifications than other

competing methods, including a neural network, a Markov Distinguishing model

and the covariant discriminant algorithm. Yeang et al. extended SVM to multi-class

SVM which can address the multiple classes issue. The method was applied for

multi-class tumor classification on a data set of 190 samples from 14 tumor classes

(Yeang et al. 2001). Nguyue et al. compared several multi-lass SVM algorithms on

protein secondary structure prediction including: one-against-all, one-against-one,

and directed acyclic graph, and two approaches for multi-class problem by solving

one single optimization problem (Nguyen and Rajapakse 2003). The results dem-

onstrated better recovery accuracy of multi-class SVMs proposed by Vapnik and

Weston than the other multi-class SVMs, including binary SVMs.
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Ensemble Learning

Ensemble learning is an effective technique that constructs a set of classifiers and

combines them to improve overall prediction accuracy (Dietterich 2000). There are

a lot of ensemble methods that have been applied to biological data analysis in

addressing small sample size but high dimensional data sets and reducing the

overfitting risk. The classification accuracy is also improved by generating multiple

prediction models and aggregating these multiple models (called basis classifiers)

to make the final prediction in a consensus way. There are several types of ensemble

learning algorithms including bagging (Breiman 1996), boosting (Freund and

Schapire 1996) and random forests (Breiman 2001). Being the principle ensemble

learning methods, they are usually combined with the other classifiers such as

decision trees.

There are several applications of ensemble learning methods such as sample/

tissue classification and gene-gene interaction prediction. Ben-Dor et al. (2000) and

Dudoit et al. (2002) applied bagging and boosting methods to classify tumors using

gene expression profiles. Both studies compared the ensemble methods with other

individual classifiers such as k-nearest neighbors (kNN), clustering based classi-

fiers, SVM, LDA, and classification trees. The conclusion was that ensemble

methods (e.g., bagging and boosting) performed similarly to other single classifi-

cation algorithms. Wu et al. (2003), compared several methods for the classification

of ovarian cancer based on MS spectra including the ensemble methods of bagging,

boosting, and random forests to individual classifiers, e.g., LDA, QDA, kNN, and

SVM. The study found that among all methods random forests outperforms the

others with the lowest error rate. Moon et al. developed a new ensemble-based

classification algorithm, Classification by Ensembles from Random Partitions

(CERP) combined with classification and decision tree (CART) and applied it to

genomic data on leukemia patients and on breast cancer patients (Moon et al. 2006).

The performance was compared with other classifiers such as single decision tree

(e.g., CART), SVM, diagonal LDA and other ensemble learning methods (e.g., RF

and boosting). The results demonstrate that CERP is a consistently better algorithm

and maintains a good balance between sensitivity and specificity even in case of

unbalanced sample size.

2.2.3.2 Unsupervised Learning in Omics Data

Clustering is a popular unsupervised learning method and commonly applied in

omics data analysis such as clustering genes based on their expression, or clustering

samples based on their omics features to identify subgroups or subtypes of diseases.

There are several clustering methods proposed including partition clustering and

hierarchical clustering.
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Partition Clustering

This type of clustering methods mainly partition objects and change the clusters

based on the dissimilarity or distance between objects with clusters. The fixed

number of clusters could be specified before the clustering.

K-means clustering is a popular method for clustering genes or subjects. The

general procedure is as follows:

(1) Randomly generate k clusters and calculate the centroid of each cluster;

(2) Calculate the distance of each point with each cluster centroid and assign each

point to the cluster with shortest distance.

(3) Update the centroid of each new cluster;

(4) Repeat until certain convergence is met, e.g., no changes of assignment of each

point.

There are some applications of k-means in bioinformatics, such as gene clustering

or subtyping. Lehmann et al. used k-means to analyze gene expression profiles of

587 TNBC cases from 21 breast cancer to subtype TNBC. Each TNBC case contained

13,060 genes after normalization for clustering analysis by K-means. The optimal

number of clusters was determined by the change of proportion of area under

empirical cumulative distribution curve and consequently, 6 Triple-negative breast

cancer subtypes were identified with unique gene expression and ontologies (Lehmann

et al. 2011). Further they predicted “driver” signaling pathways of each subtypes to

show that analysis of distinct GE signatures can inform therapy selection.

Fuzzy C-means (FCM) clustering is another clustering method using the ‘soft’
clustering instead of ‘hard’ clustering in k-means. For each subject, FCM assigns a

degree of membership in each cluster, which can account for the uncertainty of

some subjects. It has been widely used in imaging analysis (Li et al. 2013) since it is

more suitable for the scenario that there is overlapping among clusters, which is

also common in clinical analysis such as tumor classification where unlabeled

tumor samples may not necessarily be clear members of one class or another.

Wang et al. applied FCM clustering on gene expression data for tumor classification

and gene prediction (Wang et al. 2003). Given a dataset X ¼ X1;X2; . . . ;XN½ �
2RN�p from N tumor subjects measured on p gene expression levels. We assume

the existence of Nc tumor classes, whose centers are denoted by

C ¼ C1;C2; . . . ;CNc½ � which are unknown and to be estimated.

U ¼ Ui, 1;Ui, 2; . . . ;Ui,Nc½ � is fuzzy membership matrix for the i-th subject on all

of tumor classes, whose value between zero and one. FCM clustering can be

obtained by solving the optimization issue:

minU,C
XNc
k¼1

XN
i¼1

uq
k, i Xi � Ckk k2 , subject to

XNc
k¼1

uq
k, i ¼ 1

where q is a weight on each fuzzy membership and determines the degree of

fuzziness. Each tumor subject will have a membership in every class; membership
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close to one indicates a high degree of similarity between the subject and a tumor

class while membership close to zero implies little similarity. The subject is

assigned to the class with the highest membership values. The second term is

used to constrain that the summation of membership of different classes equals

one to make sure the value of membership is between zero and one. The tests on

four different tumor datasets show the efficiency of FCM clustering in terms of

reduced error rates and the importance of selected features for medical diagnostics

and cancer classification.

Hierarchical Clustering

Hierarchical clustering is a clustering method to represent the objects in a tree-like

structure, where each node has zero or more child nodes below it. There are mainly

two types of strategies to generate the hierarchical tree: agglomerative, a ‘bottom
up’ approach which takes each object as its own cluster and merge clusters as one

moves up the hierarchy; divisive, a ‘top down’ approach which takes all objects as

one cluster and split it recursively as one moves down the hierarchy. Here shows the

procedure of agglomerative as an example:

(1) Start with n clusters with each contains one object;

(2) Merge the most similar pair of clusters from the proximity matrix which can be

built based on different distance measurements, e.g., single linkage, complete

linkage and average linkage, which take the minimum, maximum and average

of pairwise distance between two clusters, respectively.

(3) Update the proximity matrix by replacing the individual clusters with merged

cluster;

(4) Repeat until only one cluster is left.

Hierarchical clustering is also applied for clinical classification and gene clus-

tering. Makretsov et al. used hierarchical clustering to determine the efficiency in

improving prognostication in patients with invasive breast cancer by multiple

immunomarkers (protein expression profiles) (Makretsov et al. 2004). They iden-

tified three cluster groups with significant differences in clinical outcome and

demonstrated that hierarchical clustering by using multiple markers can group

breast cancers into classes with clinical relevance and outperform individual prog-

nostic markers. Furlan et al. applied unsupervised hierarchical clustering analysis to

126 colorectal carcinomas to combine 13 routinely assessed clinicopathologic

features and all five molecular markers to distinguish four molecular subtypes of

sporadic colorectal carcinomas (Furlan et al. 2011). The results demonstrate the

superiority of classification based on the combination of clinicopathologic and

molecular features of colorectal cancers over single features, and also indicate

that hierarchical clustering is a useful tool to define a diagnostic and prognostic

signature for different carcinomas.
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Chapter 3

Gene Expression and Profiling

Yu Zhou, Chao Xu, Jigang Zhang, and Hong-Wen Deng

Abstract Transcriptomics analysis has been widely applied to explore the unknown

genes or factors in various biological processes, traits, diseases, and drug treatment.

By screening entire RNAs, this technique implicates novel genes and pathways related

to a particular condition. Two major types of transcriptomic profiling methods are

microarray and RNA sequencing. The two approaches generates and preprocess their

respective raw data quite differently, but further analysis is nearly identical. In this

chapter, we briefly describe the principles of both methods and compare the differ-

ences between them. Since RNA quality is a key practical factor in transcriptomic

study, we also introduce isolation and quality control methods and popular software

packages for each step in the data analysis process. Finally, we provide an example of

a clinical project which used transcriptomics approach to study a disease etiology.

Keywords Transcriptomics • Microarray • RNA sequencing (RNA-Seq) • Data

analysis
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eQTL Expression quantitative trait loci

FDR False discovery rate

FPKM Fragments per kilobase of transcript per million mapped reads

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

GO Gene ontology

GSEA Gene set enrichment analysis

GWAS Genome-wide association studies

ICGC International cancer genome consortium

LOD Logarithm of the odds
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3.1 Introduction

Transcriptomics is the study of the whole set of RNA transcripts expressed in the

specific tissues or cells via high-throughput techniques. In molecular biology, the

central dogma could be roughly described as “DNA is transcribed into RNA, and

RNA is translated into protein.” Using DNA as a template, the synthesis of RNA is

the first step of biological sequential information transfer and the key stage of gene

expression regulation. If mRNA is identified in a biological sample, it signifies that

the corresponding gene was expressed, and the protein product of this gene may be

translated. Via transcriptomics, researchers are trying to figure out

• Which genes are expressed differentially and what are their functional roles in

studied various conditions?

• What are the interaction networks of these genes and how are these genes

regulated?

• Is there any gene or gene expression pattern that could be used as biomarker for

the studied conditions?

As opposed to genomics research, genome-wide gene expression studies include

the information of tissues/cells at specific condition and specific time point. All the

genes in the genome are screened simultaneously in transcriptomic studies, allowing

researchers to identify the genes involved in the specific biological processes and

discover novel candidate genes which may contribute to the process. With this

comprehensive transcriptome-wide approach, it is not necessary to specify target

genes for study during experimental design. This means that more and novel genes

may be discovered, giving us a better and comprehensive understanding of the gene
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patterns related to biological processes and/or conditions. Diseases in particular are

normally affected and regulated by series of genes rather than individual genes.

Transcriptomics is a powerful tool for identifying these functionally related genes

and improving our fundamental understanding of disease etiology.

Transcriptomics will also identify the expression levels of genes, allowing us to

understand the activity patterns of all the genes under various studied conditions.

Gene expression may be compared in several experimental conditions (such as

normal vs. diseased tissue, or cell lines with or without drug treatment). With the

aid of bioinformatics and biostatistics tools, we can estimate the correlation effects

(interactions) among the genes and genetic effects functioning in particular condi-

tions. Moreover, understanding gene-gene interactions and the regulatory networks

can provide insight into the specifics of various biological processes. The details of

these methods will be introduced later in this chapter.

Currently, microarray and RNA sequencing (RNA-Seq) are the most widely

used technologies for transcriptome studies. DNA microarray is based on DNA

hybridization rules (adenine binds to thymine, cytosine binds to guanine) and is the

first high-throughput method to perform expression profiling of transcriptome.

Millions of “reporter probes”, which are composed of parts of the genes’ sequences,
are fixed on a solid-based platform, like a glass slide. Each probe may contain a few

million copies of the DNA sequences and can hybridize with fluorescent-labeled

cDNA synthesized from the mRNA or total RNA extracted from cells or tissues of

interest. By measuring the label intensities of each probe on the array, the relative

expression level of the corresponding gene is quantitated. Microarray technology

has been steadily improving for the last 20 years.

Currently, it is relatively inexpensive for many laboratories to acquire the tools

and software necessary for microarray data analyses. Many specific microarray

platforms have been designed, including probes for the non-coding, non-translated

and non-transcribed chromosomal regions (Hey and Pepper 2009). Since the

principles of the analysis of microarray data are nearly identical for both

non-coding RNAs and mRNAs, we will take mRNA analysis as an example.

With the development of next-generation sequencing technology, RNA-Seq is

becoming more and more popular for transcriptomic studies. In this method, after

isolation, RNA is converted to a library of cDNA fragments, which are sequenced

by high-throughput technologies. The sequence reads are then mapped to the

reference transcriptome or assembled de novo into a transcriptome. The copies of

sequences mapping to each gene represent the gene expression level in the sample.

Compared to microarray technology, RNA-Seq has several advantages. First, the

microarray is limited to detecting existing genomic sequencing information, while

the pre-designed known species- or transcript-specific probes are not required in

RNA-Seq. So it is possible for RNA-Seq to discover novel transcripts, single

nucleotide variants and/or alternative splicing. Second, with microarray, hybridi-

zation errors can occur, like cross-hybridization or non-ideal hybridization; while,

the reads in RNA-Seq will be mapped to a unique sequence of transcriptome. This

feature offers RNA-Seq higher specificity and sensitivity than microarray approach.

Third, RNA-Seq offers a broader dynamic range. In cells, gene expression level has

a large dynamic range. However, because it is limited to hybridization technology,
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microarray does not perform well in detecting low abundance RNAs (Wang

et al. 2009).

Overall, in most cases, microarray is still a suitable choice for quick and

inexpensive experiments. With accurate probe annotations and well-developed

analysis tools, microarray approach still offers results as reliable as RNA-Seq

(Zhao et al. 2014). However, RNA-Seq offers advantages of better sensitivity and

specificity, novel discovery, and larger range of gene expression. As the cost

continues to decrease, RNA-Seq is expected to become the main stream tool for

transcriptomic studies.

3.2 RNA Sample Preparation

3.2.1 Tissue Selection

The rapid advancement of high-throughput technologies for acquisition of geno-

mic, transcriptomic, epigenomic, and proteomic data has led to an explosion of

transcriptomic and epigenomic studies for a variety of complex human disorders.

Findings from these studies may assist in identification of new biomarkers for

prognosis and/or diagnosis of diseases.

In transcriptomic studies (as opposed to genomics), the ideal RNA materials

should be isolated from homogeneous samples, like a cultured cell line or a specific

type of cells in vivo. However, the majority of past and current studies are

performed on heterogeneous tissue samples related to a given disease, peripheral

blood mononuclear cells (PBMC), or tissue/blood-cell-derived cell lines that may

not have definitive or direct relationship with the disorders in question (Johannes

et al. 2008). On the one hand, it is understandable that studies for many complex

diseases may be hindered by the inaccessibility and/or impracticability of obtaining

an adequate quantity of cells directly related to the disease. On the other hand, such

a study design is potentially problematic because transcriptomic, epigenomic, and

proteomic profiles are generally presented in a cell-, tissue- and organ- specific

manner (Johannes et al. 2008; Reinius et al. 2012; Velculescu et al. 1999; Xu

et al. 2002; Bossi and Lehner 2009) and disease-associated functional genomic and

epigenetic variations can be cell-specific.

Tissue/mixed cell samples (e.g., PBMC) are generally composed of multiple

distinct cell types. The proportion (in general) and even the cell type composition

(in particular) of such multiple distinct cell types may vary in different biosamples.

Failure to account for such cellular heterogeneity can easily yield false positive and

false negative results (Johannes et al. 2008; Michels et al. 2013). In addition, the

disease state itself may alter the proportional distribution of different cell types in

the tissue/mixed cell samples, and thus measured functional genomic/epigenetic

differences between cases and controls may only reflect differences in cell-type

composition rather than true functional/epigenetic differences. Furthermore, if the
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disease-associated functional genomic/epigenomic variations are restricted to a

certain cell type that represents only a small proportion of the tissue sampled, the

disease-related functional variations may not be readily detected in the presence of

cell heterogeneity, particularly when their effects on disease susceptibility are

modest and the sample size is limited.

A few statistical deconvolution methods have been developed to correct for cell

mixture proportions in functional genomic and epigenomic studies (Houseman

et al. 2012; Abbas et al. 2009). However, these methods require the availability

of reference transcriptomes/epigenomes for various cell types in population sub-

groups defined by age, sex and ethnicity, which may be laborious or expensive to

collect. In addition, for some tissues such as placenta, saliva, adipose or tumor

tissue, the relevant component cell types may not be known (Houseman et al. 2014).

To overcome this limitation, Houseman et al. (Houseman et al. 2014) recently

proposed a novel method for conducting epigenome-wide association studies when

a reference dataset is unavailable. Based on the simulation and empirical data

analyses, it was suggested that this reference-free method can perform similar or

better than methods that use reference datasets (Houseman et al. 2014). Another

limitation of these statistical deconvolution methods is that the measured

transcriptomic/epigenomic profile is assumed to be a linear mixture of the distinct

cell-specific profiles, which is biologically motivated but sometimes may not be

valid.

Finally, cells expanded in vitro generally have distorted gene expression and/or

epigenetic profiles (Saferali et al. 2010; Caliskan et al. 2011) and thus are not solid

for use in the study looking for the in vivo functional genomic and epigenomic

mechanisms. Therefore, it is critical to perform functional genomics and

epigenomics studies in a single type of relatively homogeneous cells that have a

direct relationship to the diseases of interest, in order to unravel genuine functional

genomic and epigenomic mechanisms underlying disease etiology.

3.2.2 RNA Sample Preparation

The most important step for transcriptomic experiments is the isolation of high-

quality RNA.

Firstly, it is important to find the most appropriate method for RNA isolation. For

different tissues or cells, a suitable lytic agent and RNA isolation kit should be chosen

from large bio-reagent companies like Qiagen (https://www.qiagen.com/us/) or

ThermoFisher (https://www.thermofisher.com/us/en/home.html).

If RNA isolation is difficult to process immediately after sample collection (for

example, if samples are large or numerous, or need transportation), because RNA

can be easily degraded, RNA stabilization reagents should be added to postpone

RNA isolation for a few days without sacrificing the integrity of the RNA

(Ohmomo et al. 2014).
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After extraction from tissues or cells, RNA quality should be tested before any

transcriptomic experiments. UV spectroscopy is a traditional method for measuring

RNA concentration and purity. The ratio of absorbance value of a diluted RNA

sample at 260 and 280 nm, A260/A280, is used to assess RNA purity. The ratio is

affected by pH and ionic strength; a value of 1.8–2.1 is indicative of good RNA

purity. Another important RNA quality feature is the integrity. The Agilent® 2100

Bioanalyzer™ instrument is commonly used for this measurement. Agilent® RNA

6000 Nano/Pico System is the kit compatible with this instrument. After the test, the

RNA Integrity Number (RIN) is calculated by the instrument software to determine

the integrity of the RNA sample. The normal requirement for RNA-Seq or micro-

array is RIN>7. Before the downstream experiment, RNA should be stored at

�80 �C and suspended in RNase-free solution.

3.3 Profiling Methods

3.3.1 Microarray

3.3.1.1 Platform Choice

Various platforms and technical improvements have been developed for microarray

since its invention in early 1990s. There are two major types of microarray

platforms: cDNA microarray and oligonucleotide microarrays.

In cDNA microarray, cDNA libraries, which are reversely transcribed from

RNA and amplified, are built. The cDNAs are then spotted on a nylon membrane

or a glass slide. This microarray may be prepared in the laboratory, so it is

sometimes called a “home-made” microarray.

Oligonucleotide microarray is the more conventional and popular type of micro-

array. The technology was first developed by Affymetrix (Santa Clara, CA) (http://

www.affymetrix.com/) (Fodor et al. 1993), but some other major microarray

commercial vendors have also developed their own, such as Agilent Technologies

(Palo Alto, CA) (http://www.chem.agilent.com/), Illumina, Inc. (San Diego, CA)

(http://www.illumina.com/) and NimbleGen Systems Inc. (Madison, WI) (http://

www.nimblegen.com/). The probe in oligonucleotide microarray is designed to

represent a gene or a specific RNA fragment, so it is normally short: 25-mer in

the Affymetrix microarray or 60-mer in Agilent’s. Because the oligonucleotide

microarray is manufactured industrially, the quality control is better than cDNA

microarray and suitable for integrated data analysis between different projects.

Here, we will discuss oligonucleotide microarray, using the Affymetrix microarray

as an example.
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3.3.1.2 Data Processing and Introduction of Related Software

The raw microarray data are the image of the whole microarray with a fluorescence

value in each spot representing the relative expression level of a given gene.

Microarray manufacturers usually provide the corresponding software along with

the scanner instruments, and the process of extracting expression data from the

image can be completed by either the instrument or the facility where the micro-

array experiment is performed. Here, we introduce the subsequent steps: back-

ground correction and normalization.

Background correction is necessary because there will be non-specific hybridi-

zation spots in the microarray. Background noise can be estimated by the intensity

of empty spots on the arrays or some more complex design. For example, on

Affymetrix arrays, there are two types of probes, “mismatch probes (MM)” and

“perfect match probes (PM)”. The MM is almost identical to the PM, except for one

base in the middle of probe, so the MM intensity is used as background intensity.

After subtracting for background intensity, the spot intensity will represent relative

gene expression. The data are then log-transformed. Logarithm base 2 value of the

expression ratio is taken to treat upregulation and downregulation at the same

magnitude. For example, fourfold upregulation and fourfold downregulation will

be changed to 2 vs �2 instead of 4 vs 0.25.

In multiple microarray experiments, there are many sources of systematic

variation, like experimental error and biological variation (Lee et al. 2000). Nor-

malization is essential to allow the comparison across two or more microarray data

sets and transform the data for traditional statistical methods. There are several

methods for normalizing microarray data (Quackenbush 2001). The common

normalization methods, such as ratio-based decisions and the quantitative analysis

of cDNA microarray images, simply force the data from arrays to have the same

mean (Irizarry et al. 2003). The basic assumption is that the average expression

level of genes is same among all the tested samples. It means that expression of

most genes do not change in different conditions and amount of upregulated genes

and downregulated genes are equal. Another option is to normalize all expression

values to a set of “housekeeping genes”, which are expressed stably in all cells of an

organism under normal and pathological conditions, including beta-actin, glycer-

aldehyde-3-phosphate dehydrogenase (GAPDH) and so on. This approach is also

adopted by Affymetrix software. The gene expression value is divided by the mean

expression value of these housekeeping genes on the same array. The microarray

manufacturers normally offer the commercial normalization software for their

chips, like MAS 5.0 for Affymetrix microarray. In Bioconductor software, there

are also various free packages and tools for microarray data preprocessing (Gen-

tleman et al. 2004), including the well-known Robust Microarray Average (RMA)

(Irizarry et al. 2003) and GC-RMA (Zhijin Wu et al. 2004).
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3.3.2 RNA-Seq

3.3.2.1 Parameter Choice

RNA-Seq is a transcriptome profiling method that uses developed deep-sequencing

technologies (Wang et al. 2009). Various sequencing platforms can be applied to

RNA-Seq, such as Illumina HiSeq, Roche 454 GS FLXþ, Life Technologies Ion

sequencing, and the Pacific Biosciences RS series sequencer (PacBio) (Liu

et al. 2012; Quail et al. 2012; Glenn 2011). By virtue of the capability of deep-

sequencing, it can not only quantify the RNA expression level but also look into the

structure of the RNA, such as the boundaries of isoform and locations of the

alternative splicing.

On the other hand, the performance of RNA-Seq strongly depends on the

settings of the deep-sequencing. Some critical settings include the single/paired-

end sequencing, sequence read depth (coverage) and read length. Compared with

single-end sequencing, paired-end sequencing reads the nucleotides from both ends

of the insert rather than a single end. The paired-end reads provide more informa-

tion, which increases mapping accuracy and is especially useful for the RNA-Seq in

isoform detection. Sequence read depth is the average number of reads representing

a given nucleotide in the reconstructed sequence. Intuitively, the higher the depth,

the better the performance in all aspects of RNA-Seq. Specifically, there is an

asymptotic log-linear relationship observed between sequence read depth and gene

detection, showing that increasing sequencing depth leads to the discovery of more

genes (Li et al. 2014b). Read length is another important factor for an effective

design of RNA-Seq. Longer read length gives more accurate information on the

relative positions of the bases in a genome. It is critical for the detection of splice

junction, even more important than library preparation or sequencing chemistry

(Li et al. 2014b). As has been noted, appropriate settings of the RNA-Seq, espe-

cially the read depth and read length, are vital for the study design and following

analyses of the transcriptome profiling.

3.3.2.2 Data Processing and Software Introduction

The profiling of RNA-Seq data analysis usually consists of three steps: sequence

alignment, transcriptome reconstruction, and expression level quantification.

Beginning with the raw reads generated by the sequencing facility, the first step

is aligning reads, typically with a reference. The standard reads files produced by

the sequencer are FASTQ files, which contain the nucleotide and quality score for

each position on each read. The alignment here is similar to the alignment of

DNA-Seq. Many aligners for DNA-Seq can also be used for RNA-Seq alignment.

Some commonly used aligners include Bowtie (Langmead et al. 2009), BWA

(Li and Durbin 2009), SOAP (Li et al. 2008), and Samtools (Li et al. 2009).

Meanwhile, a new generation of alignment software has been developed
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specifically for RNA-Seq, and has several advancements over previous DNA-Seq

alignment programs. The new tools first discover exon junctions through initial read

alignments, then the junctions are used to guide final alignment. These two-stage

aligners for RNA-Seq include GEM (Marco-Sola et al. 2012), MapSplice (Wang

et al. 2010a), RUM (Grant et al. 2011) and TopHat (Trapnell et al. 2009; Kim

et al. 2013) among many others.

Through sequencing, RNA-Seq is capable of recovering multiple isoforms and

alternative splicing sites within genes. The packages assembling exons and

reporting all the isoforms can be divided into two classes, genome-guided and

genome-independent (Garber et al. 2011). The former connects the exons under the

framework of existing gene definition such as Cufflinks (Trapnell et al. 2010) or

Scripture (Guttman et al. 2010). Conversely, the latter method makes de-novo
transcripts, such as Velvet (Zerbino and Birney 2008), TransABySS (Robertson

et al. 2010), making the genome-independent approach useful when there is no

reference genome or for de-novo analysis. Both classes take the alignment files as

the input and output the identified transcripts. In practice, combining results from

both strategies may be the best way to fully utilize known information and discover

novel isoforms (Garber et al. 2011).

Given the current RNA-Seq protocols based on mRNA fragmentation, the

relative expression level of a gene is proportional to the number of reads mapped

onto the gene. Thus, the read counts are used to estimate the gene expression level.

However, there are two main biases caused by the RNA-Seq protocols which need

to be normalized to acquire an accurate estimate from the read counts. First, longer

genes tend to generate more reads than shorter genes at the same abundance level

(Oshlack and Wakefield 2009). Second, each sequencing run produces a different

number of reads, which leads to variability in the estimation across different runs.

To address these biases, the reads per kilobase of transcript per million mapped

reads (RPKM) (Mortazavi et al. 2008) and the fragments per kilobase of transcript

per million mapped reads (FPKM) (Trapnell et al. 2010) are used to normalize the

gene read counts by the gene length and the mapped reads in the sample. Unlike

RPKM, FPKM takes into consideration the dependency between the paired-end

reads. Thus, FPKM is mainly used in processing reads from paired-end sequencing.

Once the raw reads are normalized, the gene expression level can be quantified

using union of exons or reads. Alexa-seq (Griffith et al. 2010), Cufflinks (Trapnell

et al. 2010), ERANGE (Johnson et al. 2007) and many other options may be

applied. Another interesting result would be the quantification of specific isoform.

Unlike the direct counting method for gene quantification, isoform expression is

usually estimated by a likelihood-based approach, such as Cufflinks (Trapnell

et al. 2010), MISO (Katz et al. 2010), or RSEM (Wang et al. 2010b). Essentially,

it uses the common, inclusive and exclusive reads among exons to recover the

expression level of isoforms.

Before the final quantification of gene expression, other systematic variations

may also exist under certain conditions which require further normalization. For

example the GC content, gene body coverage evenness, nucleotide composition

biases caused by library preparation, base error rate caused by sequencing, and
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batch effects caused by analyzing data from different batches or platforms

(Li et al. 2014a). Accordingly, several tools have been proposed to correct them,

including PEER (Stegle et al. 2010), sva (Leek et al. 2012; Leek and Storey 2007),

and cqn (Hansen et al. 2012) among others. Those normalizations are usually

included as an important step in the RNA-Seq analysis pipeline.

To summarize, many well-designed tools are available for the profiling of

RNA-Seq. Furthermore, a number of pipelines have been developed to wrap up

the RNA-Seq profiling and extend to further analysis. Here we introduce two

typical pipelines. One is TopHat-Cufflinks pipeline implemented in a Linux envi-

ronment. The other is an end-to-end workflow in R using DESeq2 (Love et al. 2014)

along with other Bioconductor packages.

The TopHat-Cufflinks pipeline consists of several different programs that work

together to perform a number of different analyses for RNA-Seq experiments. The

complete pipeline and all the types of analyses it can conduct is summarized in

Fig. 3.1, which refers to the online manual of Cufflinks (http://cole-trapnell-lab.

github.io/cufflinks/manual/). The TopHat-Cufflinks workflow includes read map-

ping with TopHat, assembly and quantification with Cufflinks. The protocol avail-

able from the Nature Protocols (Trapnell et al. 2012) illustrates the pipeline in more

detail. A newer, more advanced pipeline was introduced with Cufflinks version

2.2.0. In the new version, to deal with the gene expression quantification and

normalization of large numbers of samples, the Cuffquant and Cuffnorm were

developed to enhance the functionality of the TopHat-Cufflinks pipeline.

For those who are unfamiliar with the Linux or Mac OS environment which is

required for the previous pipeline, an end-to-end workflow is also available in R

(downloadable at http://www.bioconductor.org/help/workflows/rnaseqGene/). As

shown in Fig. 3.2, it starts with aligned bam files, then performs reads count,

normalization, differential expression analysis, visualization and other analysis

using a set of available R packages. Some packages for specific functions are listed

in Fig. 3.2. A great advantage of this workflow is that it is fully embedded in the R

environment. Thus the analysts are free to choose their preferred packages to fulfill

the workflow and further data analysis, like meta-analysis or network analysis.

3.4 Further Analysis

After the basic results of transcriptomics analysis are obtained (for example, a

matrix or a table with each gene expression level in each sample), further analysis is

often performed, including the following (network analysis is introduced in

Chap. 14).
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3.4.1 Differential Expression Analysis

Identification of differentially expressed genes (DEGs) is the most common goal of

transcriptomic studies. The methods for differential expression analysis are essen-

tially the same for both RNA-Seq and microarray data.

The classical approach is the hypothesis testing in statistics. The “null hypoth-

esis” is that there is no difference in gene expression levels among the conditions in

study. The “alternative hypothesis” is that the genes are expressed differentially.

The commonly used tests include t-tests, moderated t-tests, Mann–Whitney test and

ANOVAs. The choice of statistic methods depends on the project aims, the

transcriptomics platform used, the experimental design, the sample size, the num-

ber of tested groups and the number of replicates in each condition. For example,

paired t-test is suitable for comparison between two paired groups, while ANOVA

is used to compare three or more groups.

Fig. 3.1 The “classic”

TopHat-Cufflinks workflow
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However, because of the large number of simultaneous tests in transcriptomics

analyses, the balance between false positives and false negatives must be consid-

ered for the significance threshold choice. Even at a significance level of 1 % (raw

p-value <0.01), 200 false positives will be created in a 20,000 genes comparison

study. On the other hand, Bonferroni correction, a typical statistical correction for

multiple testing, is so stringent or conservative that a large number of false

negatives will arise. Therefore, a False Discovery Rate (FDR) correction is widely

used to take place of raw p-value. FDR represents the expected proportion of false

positives among all the gene identified as differentially expressed. It means that less

than 5 genes would be the false positives in 100 DEGs with FDR (p-adjusted or

q-value) <0.05. The empirical Bayes methods such as linear models for microarray

and RNA-seq data (limma) in Bioconductor (Smyth 2004) and permutation

approaches like significance analysis of microarrays (SAM) (http://www-stat.

Fig. 3.2 Software and

packages for RNA-Seq

analysis workflow
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stanford.edu/~tibs/SAM/) (Tusher et al. 2001) will both test for significantly DEGs

and offer FDR values.

The existing extensive statistical methods for differential expression analysis

using microarray are directly applicable for RNA-Seq. Moreover, RNA-Seq tech-

nically provides more helpful information for the identification of DEGs. For

example, EdgeR (Robinson et al. 2010), DESeq (Anders and Huber 2010) and

Cuffdiff (Trapnell et al. 2010) assess the significance of DEGs by accounting for the

variance in read counts across samples. While those methods are able to test

statistical significance, caution should be used when interpreting these findings,

as they do not necessarily draw relevant conclusions.

3.4.2 Class Discovery Analysis

The class discovery analysis is also called unsupervised classification or knowledge

discovery. The goal of this approach is to discover or identify the subgroups sharing

common features in objects, patients, or tested genes. Identifying naturally existing

subgroups will be helpful to understand the pathological mechanism of specific

disease or the interaction network of the genes. Many unsupervised classification

techniques can be used with transcriptomics data to identify novel clusters (classes)

(Peterson 2013). Without hypothesis-driven, the cluster analysis is based on itera-

tive pattern recognition or statistical learning methods to identify the clusters in the

data. The common cluster analysis methods include hierarchical cluster analysis,

k-means cluster analyses (de Souto et al. 2008), self-organizing maps, neural gas

and Genomic Signal Processing based clustering (Istepanian et al. 2011). There are

many software packages available in R, Matlab, and many other analysis software

packages. Two widely used clustering software are Gene Cluster and TreeView

(Eisen et al. 1998), which contain several kinds of algorithms.

3.4.3 Class Prediction Analysis

The class prediction analysis approach is called supervised classification. This

approach tries to find a rule to assign objects, patients or genes into a specific

group based on the prior knowledge. It will be useful for disease diagnosis or

function prediction of individual gene. The commonly applied supervised analysis

algorithms (Peterson 2013) are linear regression, k-nearest neighbor, learning

vector quantization, decision tree analysis, random forests, naive Bayes, logistic

regression, kernel regression, artificial neural networks, support vector machines,

mixture of experts, and supervised neural gas. Due to the features of class predic-

tion analysis, an adequate samples size is necessary for both training and test

dataset.
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3.4.4 Pathway and Gene Enrichment Analysis

An important goal of the biological sciences is to improve the understanding of the

mechanisms of biological processes. After obtaining a list of DEGs, the further step

is to interpret the biological mechanism or processes which they are involved in.

Gene Ontology (GO) categories (molecular function, biological process or

cellular component of the gene products) were proposed to annotate the genes

(Draghici et al. 2003b; Khatri et al. 2002). Using Fisher’s exact test or a Chi-square
test, the GO category could be identified as over-represented in the condition being

studied if the proportion of DEGs in this category is significantly larger than the

same proportion in the whole gene set. The p-value represents hypergeometric

probability if the list of DEGs is associated the GO category (Draghici et al. 2003a;

Khatri et al. 2004). There are dozens of software packages for GO term analysis

(Khatri and Draghici 2005).

An alternative approach for enrichment analysis is the Gene Set Enrichment

Analysis (GSEA) (Tian et al. 2005). In GO term analysis, only the DEGs are

selected into further analysis. Meanwhile, GSEA ranks all genes based on the

correlation between their expression and the given phenotypes and performs a

functional class scoring (Pavlidis et al. 2004; Goeman et al. 2004).

There are also many tools to analyze metabolic or regulatory pathways to

understand biological meaning behind large list of genes, including DAVID

(Huang da et al. 2009), Kegg database (Kanehisa and Goto 2000), MAPPFinder

(Doniger et al. 2003), Pathway-Express (Khatri et al. 2005) and Cytoscape (Shan-

non et al. 2003).

3.4.5 Meta-Analysis

With the rapid development of high-throughput genomic measurement technology,

hundreds of gene expression studies have been conducted generating a tremendous

amount of experimental data. In the past decade, several large public transcriptomic

databases have been established, such as Gene Expression Omnibus from the

National Center for Biotechnology Information (NCBI) and ArrayExpress from

the European Bioinformatics Institute (EBI). With this externally available infor-

mation, researchers are able to increase the study power for findings and validate

them through meta-analysis.

Meta-analysis is a statistical procedure that integrates related results of several

independent studies (Egger et al. 1997). It is widely used in many areas and also

applicable to gene expression analysis. While meta-analysis can be employed to

address several research questions, like pathway detection and co-expression anal-

ysis, the most common application is DEG detection.

Generally, there are four sorts of methods to integrate information for DEG

identification: combine p-values, combine effect size, combine ranks and merge

72 Y. Zhou et al.



data after normalization (Tseng et al. 2012). Combining p-values is most flexible

and is used most frequently, as p-value is all it needs for information integration.

Usually, the p-value from different studies is transformed and summed to fit a

known distribution, through which an integrated p-value can be calculated; for

instance, the Fisher’s method that adds up minus log-transformed p-values, and

Stouffer’s method which adopts the inverse normal transformation. In light of the

fact that the effect sizes across studies are essentially combinable, fixed and random

effects models, as well as the Bayesian model, have been applied to DEG meta-

analysis to combine effect size (Tseng et al. 2012). One concern for effect size

models is that they are vulnerable to outliers. Combining ranks is an alternative

approach. Gene ranks from different data sets are summed, multiplied or processed

by other manipulations to build a test statistic. The integrated p-value can then be

calculated through permutation. Another method often used in analysis is directly

merging the raw data after normalization to remove the cross-study discrepancy.

The combinable studies in the direct merging approach are mostly restricted to

studies from the same or similar platforms. Furthermore, its performance heavily

depends on the selected normalization methods (Tseng et al. 2012) because the

normalizations are not guaranteed to thoroughly eliminate the cross-study

discrepancy.

Currently, a number of online databases are available for transcriptomic meta-

analysis. Two main data sources are GEO from NCBI and ArrayExpress from EBI.

GEO (http://www.ncbi.nlm.nih.gov/geo/) is an international public open repository

for microarray, next-generation sequencing, and other forms of high-throughput

functional genomics data submitted by the scientific community. As of July

31, 2015, GEO contained 41,024 expression profiles by array, 5124 expression

profiles by high throughput sequencing and 1,545,524 samples. ArrayExpress

(http://www.ebi.ac.uk/arrayexpress/) is a similar multi-species functional genomics

data repository containing 1,730,383 assays (as of 7/31/15) from microarray,

RNA-Seq and other technologies. Other databases are also available online, such

as ExPASy (http://www.expasy.org/transcriptomics), The Cancer Genome Atlas

(https://tcga-data.nci.nih.gov/tcga/) and GENEVESTIGATOR (https://

genevestigator.com/gv/index.jsp).

In addition to the many online databases for data support, many tools can be used

to implement transcriptomic meta-analysis. Most are free to use and packed in a

R/Bioconductor environment, including GeneMeta (https://www.bioconductor.org/

packages/release/bioc/html/GeneMeta.html) on fixed and random effects models,

metaMA (Marot et al. 2009) on random effects models and Stouffer’s method,

OrderedList (http://compdiag.molgen.mpg.de/software/index.shtml) on gene rank,

and many others.

While meta-analysis is a powerful tool to increase DEG detection power by

collecting as many samples as possible, there are some key requirements for a

successful meta-analysis. One of the biggest potential obstacles is dataset quality

(Eysenck 1994). The inclusion of a poor quality or outlying study in the information

integration can greatly dilute information, weaken statistical power and even distort

final biological conclusions (Kang et al. 2012). To mitigate such potential pitfalls in
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meta-analysis, researchers are highly encouraged to use some objective criteria or

tools, such as MetaQC, for quality control of the selected data set (Kang

et al. 2012).

In summary, meta-analysis is a great approach for gene expression analysis

which can increase the power to detect DEG when it is used appropriately. Many

tools and online databases are available for transcriptome meta-analysis. At the

same time, the inclusion data quality is another important issue for a successful

meta-analysis. Researchers should pay special attention to the study design and

subsequent interpretation of the meta-analysis.

3.4.6 eQTL Integrated Analysis

The expression quantitative trait loci (eQTL) are genes of which the abundance are

directly modified by polymorphism in regulatory elements or other gene regions

(Cookson et al. 2009). Similar to QTL mapping, the aim of eQTL mapping is to find

the association of genetic markers with gene expression. Further, study designs and

statistical methods that are traditionally used to map QTLs can be successfully

applied to the identification of eQTLs. A typical classification for the identified

regulatory variants in eQTL mapping is either cis or trans-acting, depending on the

physical distance from the gene it regulates. The selection of the threshold to define

the cis and trans-acting varies, like upstream and downstream 100 kb or 250 kb

(Franke and Jansen 2009).

Genome-wide association studies (GWAS) have been widely conducted during

the past decade. Thousands of GWAS identified a great number of disease associ-

ated single nucleotide polymorphisms (SNPs). However, how those SNPs work on

multifactorial disease remains unclear. The regulation of gene expression due to

SNPs may have important effects, and eQTL mapping is a way to characterize the

biological basis underlying the disease associations. It is helpful to identify gene

networks involved in disease pathogenesis by integrating gene expression and

genomic variant information.

With the intention of finding association between gene abundance and SNP,

eQTL analysis started from gene expression profiling and SNP genotyping. SNP

genotyping can be performed by either microarray or RNA-Seq, after which the

effect of a given SNP on the expression of a given gene can be tested.

The logarithm of the odds (LOD) score is a frequently used statistical measure of

association strength. Essentially, the LOD score is equivalent to the F statistic from

ANOVA, which is the ratio of the log10 likelihood under the alternative hypothesis

over the log10 likelihood under the null hypothesis (Broman and Sen 2009). A large

LOD score favors eQTL signal, while the threshold for claiming significance

depends on the multiple testing needs to be adjusted. For testing potential

cis-regulatory variants, only SNPs located in the vicinity of the given gene are

involved, whereas a genome-wide scan is conducted to test potential trans-
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regulatory SNPs. The association power of cis-regulatory effects is usually higher

than the power of trans-regulatory effects.

Although it is straightforward that the QTL mapping method are introduced in

eQTL analysis, eQTL mapping is different from QTL in thousands of phenotypes

(Kendziorski et al. 2006). The repeated application of LOD score requires multiple

testing adjustments which may result in inflated FDR. To circumvent this, advanced

approaches were developed for eQTL mapping, including Q-ALL (Storey

et al. 2004), MOM (Kendziorski et al. 2006) and others. Equally important, several

R packages are available to implement the traditional and latest eQTL mapping

methods, including eqtl developed from qtl (Broman et al. 2003), eqtlM for MOM

(Kendziorski et al. 2006), and MatrixEQTL for fast computation (Shabalin 2012),

among others.

As RNA-Seq is replacing microarrays as the default technique for the profiling

of gene expression, a few pioneer studies of RNA-Seq based eQTL mapping have

emerged (Pickrell et al. 2010). Unlike microarray based eQTL mapping, RNA-Seq

provides rich information of allele-specific gene expression and makes it possible

for isoform-specific eQTL mapping to be performed (Sun and Hu 2013). Recently,

a statistical framework for RNA-Seq based eQTL mapping was proposed by Sun

(Sun 2012). The R package asSeq can be used to implement this approach.

Considering the biological probability that gene expression may vary in an allele-

specific manner or at the isoform level, eQTL analysis using RNA-Seq data is a

promising way to understand the pathogenesis of the complex diseases.

3.5 Example

Chronic lymphocytic leukemia (CLL) is one of the most common leukemias among

adults in the Western world (Zenz et al. 2010). Recently, a comprehensive CLL

transcriptome profile with unprecedented resolution was characterized by

performing RNA-Seq on a large cohort of CLL samples (Ferreira et al. 2014).

Thousands of differentially expressed transcriptional elements between the CLL

and normal B cells were identified, including not only protein-coding genes but also

noncoding RNAs and pseudogenes. CLL-specific splicing patterns were observed

in about 2000 genes, while most of them were not differentially expressed. Path-

way, gene set enrichment, and network analysis were performed in this study which

provides a global view of the CLL transcriptional landscape.

In this study, there were 98 patients with CLL and 9 healthy subjects. Tumor

CLL cells from the patients and normal B-cells from healthy samples were used for

RNA-seq. The RNA-Seq libraries were prepared following the standard Illumina

protocol with the mRNA-Seq TruSeq. Those libraries were sequenced by the

Illumina HiSeq 2000 sequencer with 76-bp paired-end reads. In total, nearly six

billion paired-end reads were generated with a median of 45M reads per sample.

They employed GEM mapper (Marco-Sola et al. 2012) to align the paired-end

reads to the human genome version hg19 and an exon-junction annotation database
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from GENCODE (Harrow et al. 2006). To identify as many novel splice junctions

as possible, the unmapped paired-end reads were split-mapped (split the paired

reads to single reads and mapped independently) again. After alignment, the exon

and gene expression values were computed by all reads mapping to the exon and

gene. The transcript abundance levels were deconvoluted from the gene expression

by the Flux Capacitor program (Montgomery et al. 2010). The RPKM values were

reported as the expression value for the downstream analysis. Interestingly, the

overall coverage of the human genome was significantly different (p-value

1.8� 10�8) between CLL (13.6 %) and normal samples (10.5 %).

Ninety-five study patients together with another 124 CLL patients from the

International Cancer Genome Consortium (ICGC) CLL project were also studied

by microarray expression profile constituting a validation data set. Microarray

profiling was collected by the Affymetrix Human Genome Array U219 array. The

mRNA expression values normalized by RMA were generated by the Expression

Console software from Affymetrix. The gene expression value quantified by micro-

array was highly correlated with the data from RNA-Seq with the range between

0.81 and 0.88.

Based on the RNA-Seq profiling, the non-parametric Wilcoxon rank sum test

with Benjamini-Hochberg (BH) adjustment was used to find the potential DEGs. In

addition, a fold change difference in the median between groups was calculated.

The genes with multiple testing adjusted p-value <0.01 and fold change >3 were

claimed to be significantly differentially expressed. Based on the stringent criteria,

1089 differential expressed gene were identified, including but not limited to 814 -

protein-coding genes, 127 long noncoding RNAs, and 47 lincRNAs. Further, about

2000 genes were found to be significantly different in the relative ratios of alterna-

tive splice isoforms between CLL and normal cells. Among them, several genes

contained well-known alternative isoforms as cancer biomarkers, such as BCL2L1,

CD44, and RAC1 (Pajares et al. 2007).

Moreover, they identified a previously unreported CLL subdivision C1/C2,

which was validated by the microarray expression data of the 95 cases. Through

the hierarchical clustering of the gene expression of protein-coding and long

noncoding genes, not only the normal lymphocytes and tumor samples were clearly

separated, but also two subgroups (C1 and C2) within CLL samples were strongly

defined. Using the microarray data from independent and published datasets, the

gene set enrichment analyses for C1 and C2 subgroups strongly supported the

subdivision of C1 and C2. Between C1 and C2, there were 128 differentially

expressed genes, which were preferentially related to a few pathways, such as the

MAPK/ERK signaling pathway. Differences in splicing patterns between the C1

and C2 subgroups were also observed. For instance, there were a larger number of

splicing alterations in C2 samples than C1 (317 vs. 204). Additionally, C1/C2

classification were related to some clinical impacts, which were also confirmed

by the microarray profiling. For instance, C1 patients had a less frequency (9 %) of

mutations in genes related to adverse outcome compared with 27 % in C2.

In summary, this study represented the CLL transcriptome with unprecedented

resolution through RNA-Seq and validated the findings with microarray analysis.
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The uncovered CLL transcriptome characterization refines the more traditional

etiology of the disease and sheds new insights into the pathogenesis of CLL.
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Chapter 4

The Next Generation Sequencing
and Applications in Clinical Research

Junbo Duan*, Xiaoying Fu*, Jigang Zhang, Yu-Ping Wang,

and Hong-Wen Deng

Abstract This chapter provides a survey about the next-generation sequencing

technologies, aswell as four selective applications in clinical researches. After reading

Sect. 4.2, we hope the readers to have a general view of the current sequencing

technologies in terms of main stream platforms, experimental protocols, data analysis

working flow, international projects and databases, state-of-art techniques; by reading

the last section, we hope that the readers have a specific view of the clinical applica-

tions of next generation sequencing to mutation detection, targeted sequencing, cell

free circulating DNA sequencing, and single cell sequencing.
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4.1 Introduction

The next-generation sequencing (NGS) technology has developed rapidly and

spread widely over the past decade. Featured by its high throughput and high

genomic resolution, NGS enables us to study the whole genome of human, animal,

plant, etc. in a much faster and more informative way. Accompanied with rapid

development of sequencing technology and platform, demands for more powerful

and efficient bioinformatics tools grow in clinical studies.

This chapter provides a survey of NGS technologies and four clinical applica-

tions. The first part starts with classical genomic technologies, then introduces

mainstream NGS platforms, and experimental protocols of NGS. Afterwards, the

analysis working flow of NGS data is presented. Finally, related contents such as

the international researches, public repositories, as well as the latest third genera-

tion sequencing technologies are introduced briefly.

The second part dedicates to the applications of NGS in clinical researches.

Mutation or variation is a very important subject in medical and biological science,

so the first application of NGS focuses on the detection of various forms of mutations,

including the single nucleotide polymorphism (SNP), insertion and deletion (indel),

structural variation (SV) and copy number variation (CNV). To study the function of

specific regions of genomes, targeted sequencing is applied in many clinical studies,

e.g. the exome sequencing, which is subject of the second application. The third

application of NGS is the cell free circulating DNA sequencing. In the last applica-

tion, we show that the NGS can be applied to sequencing the DNA in a single cell.

4.2 The Next Generation Sequencing Technologies

4.2.1 Traditional Genomic Studies

Following Mendel’s discovery of the principles of genetics, pioneer geneticists

dedicated to figure out the substance basis of heredity. Boveri and Sutton discov-

ered that the chromosomes are those vectors, and afterwards chromosomes came

into the view of genetic studies. Early cytogenetic studies employed microscope to

observe chromosomes from morphological point of view, namely the karyotype,

which includes the number of chromosomes, the length of each chromosome,

banding patterns, etc. Later on array was employed to detect SNPs, much smaller

variants that cannot be observed with cytogenetic methods. But variant detection is

not the goal, so genome wide linkage study (GWLS) and genome wide association

study (GWAS) were developed to associate genetic variants with phenotypical

traits. Nowadays, representative technologies such as fluorescence in situ hybridi-

zation (FISH) and comparative genomic hybridization (CGH) are still widely used.

FISH was developed in the 1980s by Langer-Safer et al. to detect and localize the

presence or absence of specific DNA segments on chromosomes (Langer-Safer

et al. 1982). FISH uses fluorescent probe that highly complementary to the target

region of a chromosome, and therefore can bind to the region of interest. Under
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fluorescence microscope, one can find out where the fluorescent probes are bound to

the target region. Furthermore, when multiple color fluorescent probes are used,

more regions can be dyed at the same time. And by analyzing the combination of

color channels, one can study several target regions. This technique is called

multicolor FISH (M-FISH) (Speicher et al. 1996), which is often used to detect

translocation, a form of structural variation caused by rearrangement of segments

between chromosomes. However, since it is limited by the resolution of the

microscope used, the genomic resolution of FISH is usually rather low, which

limits the utility of FISH in state-of-art scientific research.

CGH is another cytogenetic method. In a CGH experiment, the DNA of both test

and control samples are differentially labeled, and simultaneously hybridized to a

reference. If the test sample harbors an unbalanced structural variation, e.g. CNV, the
comparative hybridization will be differential, causing the ratio between the densities

of the two fluorescence deviated from one, which can be detected with statistic tools.

CGH was originally developed to study the variations of tumor verse normal control

tissue, where CNVs almost always involve. Compared to G-binding and FISH, CGH

has an improved resolution of 5–10 mega bases. Combined with microarray tech-

niques, the array CGH (aCGH) was developed to increase the genomic resolution of

variation detection aswell as the throughput ofwhole genome analysis. Itwas reported

that the resolution of aCGH can reach up to 200 bp (Urban et al. 2006). To reach the

ultimate resolution, i.e. base-pair level, sequencing is needed.

4.2.2 The Emergence of Next Generation Sequencing

AfterWatson and Crick first discovered the double helix structure of DNAmolecular,

many biological and medical researchers want to know the precise physical order of

nucleobases in a DNA molecule, whose determination is called DNA sequencing.

In 1970s Frederick Sanger and colleagues developed the well-known Sanger

sequencing, which is characterized by the chain-termination method. By mixing

normal dNTPs with modified ddNTPs, DNA strand elongation terminates randomly

when a ddNTP is incorporated. The ddNTPs are labeled with radiation or fluores-

cence and can be detected by sensors. After combining all random termination loci,

the order of nucleobases of a DNA segment can be induced. Later on automation

and capillary electrophoresis greatly improved the efficiency and reduced the cost,

known as the first generation of DNA sequencing.

The Sanger sequencing is widely used in scientific studies for almost 30 years

because of its reliability. But high price and low throughput (see Table 4.1) hamper

its further application. Promoted by the rapid evolution of modern techniques, NGS

emerged and enabled large scale studies in the last decade. However, nowadays the

Sanger method is still used in small scale studies and in the situation when reliable

sequencing and long contiguous reads are needed.

The NGS is characterized by its low cost and high throughput (see Table 4.1),

which is advanced greatly by outstanding sequencing companies such as Illumina,

Roche, Life Technologies, etc.
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The Illumina and Life Technologies platforms have high throughput, but short

read length degenerates assembly accuracy. The Roche platform has long read

length and fast sequencing, but the sequencing price is relatively high (Liu

et al. 2012). Figure 4.1 displays the cost of a human genome in the last decade,

which shows that the cost decreases dramatically from 100 million dollars per

genome in 2001 to less than ten thousands nowadays.

The main features of mainstream NGS sequencing platforms are summarized in

Table 4.1. Even though these platforms utilize different sequencing method, e.g.
Pyrosequencing by Roche 454, Sequencing by Oligonucleotide Ligation and Detec-

tion (SOLiD) by Life Technologies, they follow similar protocol presented in the

next subsection.

4.2.3 Protocol of Next Generation Sequencing

The quality of sample preparation influents the quality of sequencing significantly.

NGS library preparation is the procedure to generate the library for sequencing

Table 4.1 Comparison of sequencing platforms

Company Illumina Roche Life technologies Life technologies

Platform HiSeq 454 SOLiD Sanger

Read length 50 bp 700 bp 50 bp 400–900 bp

Output per run 600 Gbp 1 Gb 100 Gbp 1–100 Kbp

Time per run 3 days to 1 week 1 day 1 week 1–3 h

Price per Mbp (USD) 0.07 10 0.13 2400
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Fig. 4.1 Total cost of sequencing a human genome estimated by the NHGRI (http://www.

genome.gov/sequencingcosts/)
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from the DNA sample. According to different study designs, sequencing platforms,

and/or preparation tool kits, this procedure may be different, but in general it

follows similar procedure, that is: (1) DNA fragmentation: shearing DNA either

mechanically or by enzymatic digestion. (2) Gel-base selection: filter the target

fragment by size. (3) DNA fragment end-repair: filling in or removing the protrud-

ing 30 and 50 ends. (4) 30 ends a-tailing: adding ‘A’ base to facilitate ligation.

(5) Ligation with platform-specific adapters. Since upstream adapters (called A)

and downstream adapters (called B) are required for each fragment, unwanted

fragments with pattern A-A and B-B are filtered out in the final library.

In the case of targeted sequencing, library preparation requires target enrich-

ment. Target enrichment is classified into hybrid capture method and PCR-based

amplicon enrichment. The step of hybridization targeted regions or genes is mostly

followed by step (5) in the previous passage, while PCR amplicon enrichment is

usually performed before DNA is sheared (Linnarsson 2010). The application of

these two approaches will be addressed in more details in Sect. 4.3.2.

PCR library amplification, with the purpose of enhancing detectable sequencing

signal, is the last step before sequencing. This stage has already being integrated

into multiple sequencing platforms. Emulsion PCR (emPCR) and solid-phase PCR

(also called Bridge PCR) are commonly used. In emPCR, DNA fragments with

adaptors are amplified within the water-in-oil emulsion soon after each droplet

encapsulating primer-attached bead along with a single DNA fragment. EmPCR is

widely used in Roche 454, SOLiD 3, Polonator and Ion Torrent platforms. In solid-

phase PCR, fragments are amplified upon 30 and 50 primers that are coated on a flat

surface, forming DNA clusters. This method is adapted in Illumina platforms

(Metzker 2010). After library amplification, the platforms will pool samples for

multiplexing sequencing. Here, multiplexing sequencing refers to sequencing mul-

tiple sample libraries simultaneously during a single run. Unique molecular tags

consisting of three or more base pairs are used as barcodes to distinguish samples.

These barcodes can be attached to the fragments either as part of the adapters in

ligation or as part of primers in PCR amplification.

Due to the fact that PCR is sensitive with GC content in the genome, bias is

usually raised when PCR is largely involved in the above process (Head

et al. 2014). Lots efforts have been made to minimize these bias, such that applying

novel DNA polymerases that can reduce PCR error and developing PCR-free

techniques. What’s more, the fully automated library preparation devices with

reliable performance have been marketed to reduce the burden of labor work to

the greatest extent (e.g. Illumina’s NeoPrep Library Prep System).

When library is ready, sequencer is used to determine the physical order of

nucleobases (‘A’, ‘T’, ‘C’ or ‘G’) in one end or both ends of DNA fragments, which

is called single-end (SE) or paired-end (PE, or mate-pair) sequencing, respectively.

Here determine is also called base-calling, which assigns a score to each

nucleobase type based on the measured signal, and chooses the nucleobase type

with the largest score. For example, Phred is a mature software that performs base-

calling and assigns an error probability to each called base.
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Phred quality score was firstly proposed by the software Phred (Ewing

et al. 1998; Ewing and Green 1998), and now is widely used to characterize the

sequence quality. A Phred quality score Q is defined as

Q ¼ �10log10P

whereP is the probability that base-calling is wrong. So the higher the scoreQ is, the

less likely the base-calling is incorrect.

The string of called nucleobases of one end of a DNA segment is call a read,
whose length is an important indicator for a sequencing platforms. Longer read

length is always favorable, but at the cost of increased price and decreased accu-

racy. As is shown in Table 4.1, Sanger sequencing has longer read length and higher

accuracy, but the cost is much more expensive.

Researchers use coverageC to describe the sequencing amount, which is defined as

C ¼ LN

G
;

where L is the average read length, N is the total number of reads, and G is the

genome length. From the definition, one can see that coverage is actually the

average number of times the sequencing reads can “cover” each base of the

genome. A higher sequencing coverage indicates each base is covered by more

reads, therefore have higher degree of confidence. As a result, sequencing coverage

varies by application, depending on the trade-off between budget and required

degree of confidence.

Compared with traditional sequencing method, one advantage of NGS is the

high throughput. The output data set of tens or hundreds of gigabytes brings huge

challenges to statistics and computer science. In order to store such high volume

data set, FASTA format was proposed and now widely used as the standard file

format in bioinformatics. FASTA is a plain text file in which each nucleotide is

represented with an English letter (‘A’, ‘T’, ‘C’, ‘G’, see (Tao) for the meaning of

each letter). A FASTA file consists of one or more sequences, each includes two

parts. The first part is called the header, which occupies one line and starts with a

greater-than sign (“>”). The word following “>” is the identifier of the sequence,

and the rest of the line is the descriptor which is optional. The second part is the data

body, which usually consists of several lines, and each line should not exceed

80 characters. The data body continues until the next “>” appears, indicating

another sequence. A toy example of a FASTA format file containing three

sequences looks like:

>r45640315

CAGAAAGCTCATGTGACTTCTAACTAGAATTTTCAA

>r45640316

ACCCTTCCAGACATACTTTTAAGAGAACTGACAGTT
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>r45640317

ACTGGTTGAGCTAGATTACAGGTCTGGGTGGTGCCA

4.2.4 Sequencing Data Analysis Working Flow

There are a series of steps to analyze NGS data. The first step of most NGS projects

is the quality control, which is very important before further analysis. The second

step is read alignment or de novo assembly, which is followed by normalization,

variant calling, and finally variant annotation.

Quality control aims to preprocess the data, check the integrity of the data file,

and sequencing quality, and library preparation problems such as potential artifact,

contamination or overrepresentation. Common used software are Trimmomatic

(Bolger et al. 2014) and FastQC (Andrews 2015).

Trimmomatic provides several useful processing for both paired-end and single-

end data. The processing steps of Trimmomatic includes: (1) cut adapter and other

sequences from the read; (2) cut sliding window if the average quality within the

window falls below a threshold; (3) cut the specified number of bases from the start

of the read, or cut bases off the start or end of a read if below a threshold quality;

(4) cut reads to a specified length; (5) convert quality scores to Phred-33 or Phred-64.

FastQC provides a simple way to check the quality of the sequencing data.

Without much expertise, one can have an overview of the quality of the data, and

decide whether go to further analysis, or pay attention to the quality of the data.

With FastQC, one can import data directly from SAM or BAM file, have a quick

and automated analysis showing which region maybe problematic, summarize and

visualize the statistics of the data, and export reports to an HTML file.

De novo assembly reconstructs a new genome from short reads by using the

overlaps between reads. When we study the genome of human or model organisms,

the short reads can be aligned to the reference genome which is already known after

predecessors’ efforts. However, when we investigate a new specie, or a specific

individual, the reference genome is unknown, so de novo assembly is needed. De
novo is the Latin expression meaning “from the beginning”.

Many de novo software have been developed, such as Velvet, ABySS,

SOAPdenovo, etc. Table 4.2 gives a list of de novo tools. Systematical analysis

of their relative performance under various conditions can be found in (Lin

et al. 2011; Earl et al. 2011).

Alignment is also called mapping, which aligns sequencing reads back to a given

reference genome. For short reads aligners, speed and accuracy are two main

concerns for users. As is shown in Table 4.1, NGS platforms output gigabytes

data per day, so the alignment speed of such huge volume data is challenging.

Since alignment impacts the downstream analysis, the accuracy of alignment is

essential to NGS projects. Due to the short read length and repetitive regions in the

reference genome, there are reads that cannot be aligned uniquely, i.e. aligned to

multiple loci. Furthermore, sequencing error, genetic variations such as SNPs,
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indels, SVs and CNVs complicate the alignment, yielding some reads cannot be

aligned to any locus of a reference genome. Compared with single-end reads,

alignment of paired-end reads is more complicated: two ends may be aligned to

two loci but with significantly differential span length than the average of library

length, or one of the pair cannot be aligned, so the alignment accuracy is also

challenging.

Traditional alignment software such as BLAST (Ye et al. 2006) were designed

for long reads, therefore several alignment tools have been proposed recently

(Li and Homer 2010; Magi et al. 2010) for short reads. Since different character-

istics (Magi et al. 2010) are utilized, those tools have their own advantages and

disadvantages. In general, most tools need to build an index dictionary from the

reference genome in advance for fast alignment. According to the property of the

index, these tools can be grouped into three classes: hash table based tools, suffix

tree based tools, and merge sorting based tools (Li and Homer 2010). Table 4.3

summarizes a selection of short reads alignment software. A more complete list can

be found at http://www.ebi.ac.uk/~nf/hts_mappers/ and (Magi et al. 2010).

After short reads having been aligned to a reference genome, signature for

different applications can be extracted. In the following, we briefly introduce the

read depth signature as an example for copy number variation (CNV) detection,

which will be expanded in Sect. 4.3.1.

Read depth is a well-known signature proposed to detect copy number variation

(Chiang et al. 2009). The read depth is the count of aligned reads (normally consider

the first base of 30 end) or bases in a genomic region (usually called a window).

Since the loci of shot-gun sequencing distribute randomly and evenly along the

genome, so ideally the read depth signal is overall a horizontal line but with local

fluctuation. However, if a genomic segment harbors a CNV gain/loss, the count of

aligned reads within the CNV region shall significantly increase/decrease, yielding

a plateau/valley in the corresponding read depth signal. Therefore, read depth signal

can be used as the signature to detect CNV.

Table 4.2 A selection of de novo software

Software Reference and URL

Velvet Zerbino and Birney (2008), http://www.ebi.ac.uk/~zerbino/velvet/

ABySS Simpson et al. (2009), http://www.bcgsc.ca/platform/bioinfo/software/

abyss

SOAPdenovo Li et al. (2009), http://soap.genomics.org.cn/soapdenovo.html

SSAKE Warren et al. (2007), http://www.bcgsc.ca/platform/bioinfo/software/

ssake

Edena Hernandez et al. (2008), http://www.genomic.ch/edena.php

SHARCGS Dohm et al. (2007), http://sharcgs.molgen.mpg.de/

Euler-sr Chaisson and Pevzner (2008), http://euler-assembler.ucsd.edu

Celera WGA

Assembler

Miller et al. (2008), http://wgs-assembler.sourceforge.net/wiki/index.

php?title¼Main_Page
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Normalization is important before variant calling. For read depth signal,

mappability and GC-content are two main biases that affects CNV detection, and

therefore corresponding normalizations are needed.

Mappability is measured as a score that quantify the uniqueness of the reference

genome. This score is defined as the inverse of frequency fk xð Þ, which is the number

of times the k-mer starting at locus x appears in the genome and its reverse

complement (Liu et al. 2012; Derrien et al. 2012). As a result, mappability ranges

between zero and one. e.g. One represents a unique alignment and 0.5 represents

that the k-mer occurs twice, etc. To correct the mappability bias, the read depth is

divided by the score to compensate the nonuniqueness (Miller et al. 2011).

GC-content is the percentage of bases G and C in the underlying sequence.

Bentley et al. (2008) first observed that the read depth is locally correlated with

GC-content. Therefore, this bias should be removed to increase the homogeneity of

the read depth. Yoon et al. (2009) and Abyzov et al. (2011) proposed to utilize

following method

RDi
corrected ¼

RDglobal

RDgc

RDi
raw

where i is the index of windows, RDi
corrected and RDi

raw are corrected and raw read

depth of the ith window respectively, RDglobal is the global average read depth of all

windows, and RDgc is the average read depth of all windows that with the same

GC-content as in the ith window.

Afterwards, segmentation tools can be used to cut the read depth signal into

pieces, and CNV regions can be called as the pieces with significantly high or low

read depth compared with normal one. CNVs that do not have sufficient confidence

are filtered out, and the rest will be annotated. In Sect. 4.3.1, we will give a detailed

survey of CNV detection methods.

After variants being detected, attaching annotation information such as gene

symbol, exonic function and base pair change to the variant would be helpful for

Table 4.3 A selection of short read alignment software

Software Platform

Speed (per

day) Reference and URL

SSAHA2 Illumina,

SOLiD, 454

0.5 Gbp Ning et al. (2001), http://www.sanger.ac.uk/
resources/software/ssaha2/

MAQ Illumina and

SOLiD

0.2 Gbp Li et al. (2008), http://maq.sourceforge.net/

SOAP2 Illumina 7 Gbp Li et al. (2009), http://www.sanger.ac.uk/resources/

software/ssaha2/

Bowtie Illumina 7 Gbp Langmead et al. (2009), http://bowtiebio.

sourceforge.net/index.shtml

BWA Illumina,

SOLiD, 454

7 Gbp Li et al. (2010), http://biobwa.sourceforge.net/bwa.

shtml
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further studies. There are lots of information that could be annotated, such as CpG

islands, MAF, enhancers, transcription factor binding sites, etc. Functional score is
an efficient way in mutation function prediction. e.g. the Combined Annotation

Dependent Depletion (CADD) database uses score to measure the potential dele-

teriousness mutations by comparing variants survived through natural selection.

The software ANNOVAR, together with annotation function integrated in GATK

and SnpEff, are able to carry out an integrated annotation.

If a NGS project is performed with very high fold coverage, a large amount of

single nucleotide variants (SNV) would be detected in initial process. Therefore it is

necessary to reduce candidate variants by filtering. The steps of variant filtering

usually contains: (1) remove variant calls with low quality; (2) remove common

polymorphisms; (3) prioritize variants with high functional impact; (4) compare

with known disease genes; (5) consider mode of inheritance; and (6) consider the

segregation in family (Bao et al. 2014).

4.2.5 International Researches and Public Repositories

There are several international research projects and public repositories that aim to

share the data and discoveries about the next generation sequencing. In the follows

we select a few among them.

The 1000 Genomes Project is a well-known NGS project (http://www.

1000genomes.org/home), as declared by their website, “The 1000 Genomes Project

is an international collaboration to produce an extensive public catalog of human

genetic variation, including SNPs and structural variants, and their haplotype

contexts. This resource will support genome-wide association studies and other

medical research studies.” This project aims to sequence the genomes of about 2500

people from about 25 populations around the world, using multiple mainstream

sequencing platforms from multiple sequencing centers, and make the data of the

project freely and publicly accessible to researchers worldwide.

The project is divided into the initial phase (or the pilot project), phase I, II, and

III. The pilot project consists of three subprojects (The 1000 Genomes Project

Consortium 2010 and 2012): the high-coverage trio subproject, the low-coverage

subproject and the exome subproject. The high-coverage trio subproject

sequenced the whole genome of a Yoruba Ibadan (YRI) trio and a European

ancestry in Utah (CEU) trio with high coverage (42�) and multiple platforms.

Each trio consists father, mother and their daughter. The low-coverage

subproject sequenced the whole genomes of 59 YRI subjects, 60 CEU subjects,

30 Han Chinese subjects in Beijing (CHB) and 30 Japanese subjects in Tokyo

(JPT), with low coverage (2–6�). The exome subproject sequenced the 8140

exonic regions from 906 randomly selected genes of 697 subjects from seven

populations with high coverage (50�). This project was completed in 2009.

Phase I sequenced and analyzed the low-coverage and exome data from the first
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1092 subjects, phase II increased the data set to around 1700 subjects, and phase III

even increased this number to 2500.

Following the 1000 Genomes Project, there are also the 1000 Plant Genomes

Project (http://sites.google.com/a/ualberta.ca/onekp/), which aims to generate the

sequencing data of over 1000 species of plants; the Genome 10 K Project (http://

genome10k.soe.ucsc.edu/), which aims to generate the whole genome sequence of

10,000 vertebrate species; the 1001 Genomes Project (http://1001genomes.org/

index.html), which aims to sequence the whole-genome in 1001 strains of the

model plant Arabidopsis thaliana.

The dbGaP is another remarkable project. As their website (http://www.ncbi.

nlm.nih.gov/gap) declares, “the database of Genotypes and Phenotypes (dbGaP)

was developed to archive and distribute the results of studies that have investigated

the interaction of genotype and phenotype.”

The dbGaP includes four major data types (Mailman et al. 2007). First, the study

documents including study design, experimental protocol, platform specification,

and/or questionnaires; second, the genotype data such as SNP array data, gene

expression data, NGS data, etc.; third, the phenotype data such as tables of

individual trait data, pedigree information; and forth, the analysis results and

conclusions, such as the phenotype genotype association results of GWAS, linkage

analyses, or meta analysis.

In order to protect the confidentiality of study subjects, the dbGaP offers two

ways to access the data: open access and controlled access. Without any required

permission, anyone can access and download summarized phenotype and genotype

data, study documents and results. To access individual-level phenotype and

genotype, researchers are required to apply for approval.

The International HapMap Project (http://hapmap.ncbi.nlm.nih.gov/) aims to

generate a haplotype map (HapMap) of the human genome. By sharing the gener-

ated data freely with researchers worldwide, HapMap hopes to find information of

genetic variations across human population that may associated with diseases,

including the genotypes, haplotypes, SNPs, CNVs, and their frequencies. This

project is an international collaboration among scientists from Canada, China,

Japan, Nigeria, United Kingdom, and the United States. There are 270 human

subjects were involved in phase I and II of this project, including 30 YRI trios,

30 CEU trios, 45 JPY, and 45 CHB. In the phase III, more than 1000 samples from

11 population were analyzed.

Nowadays, cloud-based NGS data storage and computation is becoming popu-

lar. In fact, about 200 TB of data from 1000 genome is currently stored in Amazon

Simple Storage Service (Amazon S3) which is a cloud-based file system and

charged by usage. Synapse from Amazon and Galaxy are two cloud-based

workflow tools that can handle raw NGS data all the way through annotation and

filtering variants, with personal optimization of algorithms available in each step.

Overall, the cloud-based storage and computation can greatly reduce the computa-

tional burden when dealing with the big data.
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4.2.6 Latest Sequencing Techniques

While NGS continuously dominates the sequencing market with its affordable price

and feasible application, the third generation sequencing (TGS) is under rapid

evolution with the promise to sequencing longer reads, shorter time and lower

cost. Single molecular sequencing (SMS) is the technique adapted in TGS. SMS

doesn’t require PCR library amplification, which taking great advantage over NGS

by avoiding PCR-induced bias. Moreover, DNA modification signals such as DNA

methylation, would not be diluted out during PCR and thus could be captured if the

detection technology available. Nevertheless, an inevitable disadvantage of SMS is

high raw read error rate, induced by weak signal generated from single molecular.

Detection these signal from background noise is the biggest challenge in SMS

technology development.

The first commercially available SMS is Helicos Genetic Analysis Platform

developed by Helicos BioSciences, which profiled the first human genome on

2009 (Pushkarev et al. 2009). However, this pioneer SMS platform can only

generate similar read length compared with NGS. Suffering from higher error

rate introduced by SMS and expensive sequencing cost (Schadt et al. 2010), the

company announced 50 % layoff on 2010 and went bankrupt on 2012. Learning

from Helicos’ failure, the nowadays TGS are better tailored for the market. For the

time being, the most representative TGS platforms are PacBio RS II and MinION,

utilizing single-molecule real-time (SMRT) approach and nanopore sequencing

technology respectively. The two platforms both perform the real-time sequencing

and store their time-series raw imaging data. Adding the time axis makes it possible

to predict DNA structure variance from the data, since the speed of sequencing is

impacted by variety DNA structures. On the contrary, data analysis would surely be

more complicated and time consuming when new dimensions are added (Liu

et al. 2012).

SMRT, the sequencing system developed by Pacific Biosciences (PacBio),

become commercially available since 2011. Zero-mode waveguides (ZMWs) is

the special fluorescence-based sequencing technique innovated for this system. As a

tiny well with a 10 nm diameter hole in the bottom, ZMW allows light to illuminate

only the bottom of the well where DNA polymerase and the template complex is

immobilized. At the same time, ZMW only recruits the light emitted from fluores-

cence when sequencing, to the sequencing signal can be observed and recorded.

Tens of thousands of ZMWs are contained in a SMRT cell. Furthermore, instead of

labeling the base with fluorescence, the dye in SMRT system is attached to the

phosphate and thus would be naturally cleaved off, which avoids the problem that

large size of dye can hinder activity of the DNA polymerase. These two key

innovations enable SMRT to generate long read lengths in hours, however, with a

high raw read error rate (around 15 %). Fortunately, compared with NGS whose

error is produced from the system, SMRT generates error stochastically. It means

that the error from SMRT can be remarkably reduced by averaging the reads if the

same DNA is sequenced multiple times (Roberts et al. 2013). PacBio RS II is the
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2nd generation of the PacBio sequencing adapted SMRT technology. Upon

improvement, continuous long reads (CLRs) and circular consensus (CCS) are

supplied as two additional modes in the system. CLR, with its application focusing

on de novo assembly, is able to achieve read lengths averaged 10–15 kb; while in

CCS, focusing on targeted sequencing, is capable to reduce error rate down to 2 %

with short read lengths maximized at six kb (Travers et al. 2010). Besides the merit

of long read lengths, PacBio is capable to predict nucleotide modification with

direct measurement of kinetic, detect minor variants with high sensitivity, finish a

run as little as 30 min and not be biased by GC contents or amplification. However,

as a cost of these benefits, the yielding from PacBio RS II is only 1 Gb per run.

The applications of PacBio focus on genome assembly improvement, annotation

gap filling, difficult regions (e.g. GC rich and high repetitive regions) profiling and

specified SV detection. It was reported that, besides extend 55 % of the interstitial

gaps in human reference genome, specified SV, such as inversions complex inser-

tions and long tracts of tandem repeats, were detected in base-pair resolution

through PacBio sequencing (Chaisson et al. 2015). The first comprehensive anal-

ysis of diploid human genome through PacBio sequencing, combined with the

technology of single-molecule mapping, had gained markedly improve contiguity

and completeness, compared with traditional shotgun methods. This analysis also

identified complex SVs ignored by NGS and generated high quality haplotypes

when integrated PacBio sequencing with NGS (Pendleton et al. 2015). Moreover, in

another biomedical study, known low copy repeats (LCR) that causing Potocki–

Lupski syndrome (PTLS) were confirmed with PacBio, while several novel repet-

itive sequences junctions in related to PTLS were discovered (Wang et al. 2015). As

a matter of fact, Pacific Biosciences is already in cooperation with Roche Diagnos-

tics to develop diagnostic products for clinical based on SMRT technology (Shen

et al. 2015).

Library preparation in PacBio sequencing is similar to NGS. Although PacBio

sequencing is new to the industry, multiple kits and protocols for template prepa-

ration are already available, together with globally located vendors. Meanwhile,

PacBio provides an open source software SMRT Analysis for their sequencing data,

which integrated multiple algorithms and pipelines towards different study appli-

cations. An alternative way, running SMRT analysis on Amazon can be accessed

through SMRT Portal. SMRT View, serving as a whole genome browser to

visualize secondary analysis data, is also available both in standalone version and

Amazon version. The documentation for sample preparation in details can be found

through their page of support, while open source software along with sample data

and tutorials are available from DevNet (http://www.pacb.com/devnet). Although

the price for PacBio sequencing is high, it can be used as the supplemental tool in

NGS sequencing at this moment. PacBio is still working on improving sample

preparation and sequencing chemistry, most importantly, increasing sequencing

throughout. Whereas PacBio sequencing won’t dominate the sequencing market as

Illumina in the few years, its application is expected to have large impact in

biomedical research and clinical diagnosis.
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MinION, a pocket-size sequencing device, was released by Oxford Nanopore

Technologies on November, 2013 based on the nanopore sequencing technology

(Feng et al. 2015). The MinION Access Programme (MAP) was started from

spring, 2014 to allow researchers testing the device in advance. Nanopore is a

nano-scale hole which can be fabricated from protein or synthetic materials.

Immersing nanopore into a conducting fluid, when fluid is applied with voltage,

electric current will be generated along the nanopore. At this point, passing a single

base of DNA through the nanopore would disrupt the current, leaving the signal of

reads. Nanopore sequencing is the technology of recording signals generated from

single strand DNA when passing through a nanopore. MinION attracted attention

quickly with the advantages of small size, low cost, simple library preparation and

acquisition data in real time (Madoui et al. 2015). The average read lengths from

MinION is 5.4 kb on average, which is longer than regular NGS sequencing but not

comparable with PacBio sequencing (Feng et al. 2015). However, MinION suffered

from severe error rate and was difficult to be mapped with reference genome. To

solve this problem, a two-dimension read (2D read) was later introduced into the

device. In the 2D read mode, the two strands of a DNA are linked by a hairpin and

sequenced consecutively. Nevertheless, even with 2D read, the accuracy reported

from a bacterial genome study didn’t exceed 72 % (Ashton et al. 2015). With the

fact that the signal from nanopore sequencing is complicated to be interpreted,

novel read correction and new alignment algorithms are continuously being pro-

posed (Madoui et al. 2015; Jain et al. 2015; Karamitros and 2015). Among them,

similar with the case in PacBio sequencing, integration sequencing data from

MinION and Illumina Mi-Seq was proposed, with a study achieving high accuracy

in bacterial genome (Madoui et al. 2015). On the other hand, some studies proved

that with new algorithms, signals generated from SNV can be efficiently identified

from MinION data (Jain et al. 2015). Together with low throughput, Oxford

nanopore has made great progress by bringing novel technology into sequencing,

but still there’s a long way to go towards clinical application.

Beyond the two representative technologies in the industry, there are several

other technologies in TGS, for example, real-time DNA sequencing using fluores-

cence resonance energy transfer, tunneling and transmission-electron-microscopy-

based approaches for DNA sequencing, direct imaging of DNA sequence using

scanning tunneling microscope tips and transistor-mediated DNA sequencing

(Schadt et al. 2010). These on-going development of sequencing systems provide

a high potential for us to better understand DNA sequence with novel signals.

Nevertheless, one should keep in mind that, sequencing for clinical purpose should

be fast and accurate. Thus, at present, PacBio sequencing is leading TGS market

with achievement of long reads, fast sequencing and correctable error. Concur-

rently, MinION aims gaining market by lower price and minimize size. To sum up,

the latest sequencing techniques, especially the PacBio sequencing, have been

applied in different files of DNA sequencing research and yield significant improve-

ment in de novo assembly, SNV detection and deep sequencing. For now, combing

TGS in NGS analysis maybe the best solution to produce DNA sequencing with

high resolution, high accuracy and reasonable price.
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4.3 The Applications in Clinical Researches

4.3.1 Mutation Detection

A very important application of NGS is to detect genomic mutations or variations.

There are several types of genomic mutation, and we will cover the following ones:

single nucleotide polymorphism (SNP), insertion and deletion (indel), structural

variation (SV) and copy number variation (CNV), which are sorted according to

their size from small to large.

1. Single-nucleotide polymorphism (SNP)

SNP is the smallest genomic mutation, which consists of only one nucleotide.

For example, if a test DNA segment is ATCCGCTA, and the corresponding

reference segment is ATCGGCTA, then there is a SNP. The SNP database

(dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/) of NCBI archives about

150 million, and among which, hundreds have been associated with Mendelian or

complex diseases.

The detection of SNPs from NGS data is not complicated. During the alignment

step of the NGS data analysis working flow, i.e. aligning short reads of a test

genome to a reference, if most reads that align at nearby region share a mismatch at

the same locus (see following demonstration, A with underlines), then it is likely

that there is a SNP at this locus of the test genome. The following shows a SNP with

“A” in the test genome compared with “C” in the reference genome.

REFERENCE ......ATCGAATTCCGGAAATTTCCCGGGAAAATTTTCCCCGGGG......

READ1 ......ATTCCGGAAATTTCCAGGGAAAATTTTCCCCGGGG......

READ2 ......GGAAATTTCCAGGGAAAATTTTCCCCGGGG......

READ3 ......TTTCCAGGGAAAATTTTCCCCGGGG......

2. Insertion and deletion (indel)

The word “indel” is coined by combining both insertion and deletion, so an indel
is the genomic mutation in the forms of insertion, deletion, or combination of them.

The size of indels varies from one base to several hundreds. Indels with size larger

than 1 kbp are often considered as structure variation, which will be introduced

later. Here we only refer to these with small size. Following shows a deletion of

“CCG” in the test genome.

REFERENCE ......ATCGAATTCCGGAAATTTCCCGGGAAAATTTTCCCCGGGG......

READ1 ......ATTCCGGAAATTTCGGAAAATTTTCCCCGGGG......

READ2 ......GGAAATTTCGGAAAATTTTCCCCGGGG......

READ3 ......TTTCGGAAAATTTTCCCCGGGG......
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The detection of indels is more complicated compared with that of SNPs. During

the alignment step of the NGS data analysis working flow, indels can be detected by

those short reads that cover the region with indel. Since those short reads that cover

an indel cannot be aligned to the reference genome, they will be labeled with

unmapped reads. If we split these unmapped read into two or three parts with all

possibility, and align both ends to maximize the similarity measure, then indels

with small size can be captured. Algorithms such as Smith–Waterman algorithm

(Smith and Waterman 1981) can be employed to analyze unmapped reads, and if

two or more unmapped reads confirm an indel uniformly, then it is likely that there

is an indel in the test genome.

3. Structural variation (SV)

SV is the variation in structure of an organism’s genome, which has been

associated with several human diseases (Stankiewicz and Lupski 2010). SV con-

sists of the following kinds of variations:

(i) Deletion: a segment is removed from a chromosome.

(ii) Duplication: a segment is duplicated to a chromosome.

(iii) Insertion: a segment is added into a chromosome.

(iv) Inversion: a segment is broken off from a chromosome, inverted, and

reattached back to the break points.

(v) Translocation: two segments from two chromosomes are exchanged.

Differ from indel, SV usually is referred with more than one kbp insertion or

deletion. SV that does not change the size of a genome is called balanced SV, such

as an inversion, and that does change is called unbalanced SV, such as a deletion,

duplication, or insertion.

Since the size of a SV is larger than the size of sequencing reads, no single read

can cover the whole range of a SV (unless a deletion type), therefore the method-

ology of detecting SV is different from that of detecting indels.

There are several signatures to detect SVs (Zhao et al. 2013; Korbel et al. 2007):

paired-end mapping (PEM), read depth (RD), split read (SR), de novo assembly of a

genome (AS). Table 4.4 gives a list of PEM-based, SR-based, and AS-based SV

detection tools. Since each single signature has its own advantage and disadvan-

tage, combination of multiple signatures yields better detection performance. In the

follows, we focus on AS, PEM and SR. RD is mainly used for detecting CNV,

which is an important subtype of SV, and will be introduced in a separate part.

The idea of AS-based methods is quite simple: first assemble contigs of the test

genome with de novo assembly tools, or with the guidance of the reference genome.

When the test genome is known, it’s straightforward to detect variations by

comparing the test genome with the reference genome. For AS-based methods,

high sequencing coverage is needed to assemble the contigs with high confidence.

Figure 4.2 shows the PEM signature of insertion, deletion and inversion. When a

pair of reads is aligned back to the reference genome, if the span of the pair from the

test genome is larger/shorter than a specified cutoff, a deletion/insertion could be

identified. For inversion, from Fig. 4.2 we can see that the orientation of one end
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inverts, and the other does not. These are the basic signatures to identify SVs. To

detect complicated SVs such as translocations, combination of these basic signa-

tures and more sophisticated signatures are needed.

SR signature provides precise break point information (up to base pair level). If

one read of the pair aligned uniquely to the reference genome, while the other fails

to align, this pair may be informative. By splitting the unmapped read into two

fragments, and either fragment can be aligned to nearby regions, then the precise

break-point of a SV can be detected. The effectiveness of SR heavily relies on the

read length, so is preferable for 454 platform.

4. Copy number variation (CNV)

CNV is commonly referred to as a subtype of SV, and involves a duplication or

deletion of DNA segment of size more than 1 kbp (Freeman et al. 2006). CNV was

Table 4.4 A selection of SV detection software

Software Language Input format Reference and URL

BreakDancer Perl,

Cþþ
Alignment

files

Chen et al. (2009), http://breakdancer.

sourceforge.net/

PEMer Perl,

Python

FASTA Korbel et al. (2009), http://sv.gersteinlab.org/

pemer/

GASV Java BAM Sindi et al. (2009), http://code.google.com/p/

gasv/

Pindel Cþþ BAM /

FASTQ

Ye et al. (2009), http://www.ebi.ac.uk/~kye/

pindel/

SLOPE Cþþ SAM/

FASTQ/MAQ

Abel et al. (2010), http://www-genepi.med.

utah.edu/suppl/SLOPE

VariationHunter C DIVET Hormozdiari et al. (2010), http://compbio.cs.

sfu.ca/strvar.htm

commonLAW Cþþ Alignment

files

Hormozdiari et al. (2011), http://compbio.cs.

sfu.ca/strvar.htm

AGE Cþþ FASTA Abyzov et al. (2011), http://sv.gersteinlab.org/

age

Magnolya Python FASTA Nijkamp et al. (2012), http://sourceforge.net/

projects/magnolya/

Cortex

assembler

C FASTQ/

FASTA

Iqbal et al. (2012), http://cortexassembler.

sourceforge.net/

Fig. 4.2 Signatures for insertion, deletion and inversion
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reported to be discovered frequently in both human and other mammal genomes.

Several diseases have been associated with CNVs, such as autism (Sebat

et al. 2007), schizophrenia (Stefansson et al. 2008), cancer (Campbell

et al. 2008), Alzheimer disease (Rovelet-Lecrux et al. 2006), osteoporosis (Yang

et al. 2008) and etc.
The majority of CNV detection tools are RD-based. The methodology is based

on the assumption that copy number is locally proportional to the read depth signal,

which is the count of aligned reads in a non-overlapping fix-sized window or a

sliding window (also see Sect. 4.2.4). Therefore, a significant increase or decrease

of the read depth signal indicates a duplication or deletion event.

Compared with PEM and SR signatures, which are good at break-point locali-

zation and detection of small size events, RD signature is more appropriate to

estimate the copy numbers, and events with large size.

Since CNVs have been associated with several diseases, the detection of CNVs

from NGS is hot topic, and several methods have been proposed. Table 4.5 shows a

list of CNV detection software.

According to the experimental design, these methods cluster into three catego-

ries: single sample, case-control pair samples, and random samples. For the single

sample, since most loci are diploid (e.g. for human genome), and therefore absolute

number of copies can be estimated by comparing the RD distribution of the local

region with the global one. The case-control pair samples are widely used in

oncology. Similar to CGH, by calculating the point wise ratio between the test

RD and matched control RD, the relative number of copies can be estimated. Since

the matched control helps to reduce experimental perturbations, case-control

methods yield better CNV detection. To detect both common and rare CNVs

from population, random samples is needed for analysis, and loci with differential

RD among samples are reported.

RD-based methods usually include these steps for CNV detection: (1) Map

sequencing reads to the reference genome (e.g.,NCBI37/hg19). (2) Extract the

RD signal with fix-sized bins, or a sliding window. (3) Normalize RD signals.

(4) Divide normalized RD signal, or ratio of RD signals into segments according to

the depths. Classical segmentation algorithms such as circular binary segmentation

(CBS) (Olshen et al. 2004), and hidden Markov model (HMM) can be applied.

(5) Calculate the copy number status of each segment by statistical hypothesis

testing, e.g., Poisson or negative-binomial distribution. (6) Combine consecutive

segments that have the same copy number status. (7) Output and display CNV calls,

including CNV class (gain or loss), break-point loci and size, number of copies, etc.
Some of these steps are optional. e.g., step (3) is necessary for single sample, since

GC-content correction and mappability correction are needed in order to reduce

these biases (see Sect. 4.2.4), while this normalization step is not necessary for

case-control pair of samples.
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4.3.2 Targeted Sequencing

The feature of high-throughput has allowed NGS to identify the pathological

mutations and variants in numerous clinical studies. Whole genome sequencing

(WGS) is considered as a comprehensive way to identify different kinds of varia-

tion in genome, including gene fusion. However, even when few samples are

involved in WGS study, the demand of data storage and computational complexity

Table 4.5 A selection of CNV detection software (Duan et al. 2013)

Method Language

Control

required? Input format Methodology Reference

CNV-seq R, perl Yes Hits Statistical testing Xie and

Tammi

(2009)

cn.MOPS R, Cþþ No BAM or

data matrix

Mixture of Poissons,

MAP, EM, CBS

Klambauer

et al. (2012)

CNAnorm R Yes SAM, BAM Linear regression or

CBS

Gusnanto

et al. (2012)

cnvHiTSeq Java No BAM HMM Bellos

et al. (2012)

CNAseg R Yes BAM Wavelet transform and

HMM

Ivakhno

et al. (2010)

cnD D No SAM, BAM HMM, Viterbi

algorithm

Simpson

et al. (2010)

CNVer C No BAM Maximum-likelihood,

graphic flow

Medvedev

et al. (2010)

CNVnator C No BAM Mean shift algorithm Abyzov

et al. (2011)

CopySeq Java No BAM MAP estimator Waszak

et al. (2010)

EWT

(RDXplorer)

R, python No BAM Statistical testing Yoon

et al. (2009)

FREEC C Optional SAM,

BAM, bed,

etc.

LASSO regression Boeva

et al. (2011)

JointSLM R,

Fortran

No Data matrix HMM, ML estimator,

Viterbi algorithm

Magi

et al. (2011)

readDepth R No Bed CBS, LOESS

regression

Miller

et al. (2011)

rSW-seq NA Yes NA Smith-Waterman

algorithm

Kim

et al. (2010)

SegSeq Matlab Yes Bed Statistical testing, CBS Chiang

et al. (2009)

SeqCBS R Yes Bed Poisson Processes,

CBS

Shen and

Zhang

(2012)

WaveCNV Matlab,

Perl

Yes BAM Wavelet transform Carson

et al. (2013)
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remains high. To identify the causal variants in WGS, several variants filters should

be applied since the incidental findings are fairly high when large sequencing data

exists. Although the price to WGS has dropped dramatically, in the context of

clinical application, targeted sequencing of human genome remains as the most

cost-effective and powerful method in NGS applications. Moreover, when compar-

ing with WGS, targeted sequencing also reduces the incidental findings and

increases coverage over regions of interest. For the studies of microbial sequencing,

please refer to Chap. 8 in this book.

As described previously, selection or isolation regions of interest from DNA

samples is a key step in targeted sequencing. This step is called target enrichment.

PCR-amplicon and hybridization capture are the two major technologies currently

used in enrichment. To achieve high sensitivity and specificity in targeting, several

improvements had been made in both approaches. The RainStorm platform is one

of the most commonly used PCR-based methods, which performs independent PCR

in micro droplets by holding single primer in each droplet. This technology

effectively prevents the interactions of different primers and competition of multi-

plex PCRs for the same reagent pool. Fluidigm solved the problem very much alike

by using multilayer soft lithography. In terms of hybridization, when traditional

technology hybridizes library DNA to the probes immobilized on a microarray,

solution-based capture enables a further completion reaction by making probes

exceeding over template (Mamanova et al. 2010). In general, PCR-amplicon is

capable for flexibility targeting in large samples, while hybridization is perfect for

capture large regions. A comparison of these methods is as Table 4.6. However in

NGS, there still exists some regions that are particular difficult to be sequence,

including: (1) GC rich regions; (2) regions with pseudogenes that making it hard to

target uniquely; (3) regions with repetitive elements. In particular, to avoid allelic

drop out, it is necessary to check for primer binding site SNPs in PCR-based

enrichment (Abbs et al. 2014).

Targeted sequencing is already widely used in clinical research in finding

mutations for Mendelian disorder and common complex disease. Beyond nuclear

genome, furthermore targeted sequencing on mitochondrial DNA is now applicable

to study respiratory chain disorders. The comprehensive profiles genetic architec-

ture would guide us in developing tools for genetic screen, complex disease

diagnosis, as well as personalized therapy. Usually, targeted sequencing is catego-

rized into whole exome sequencing (WES) and targeted deep sequencing, the latter

can be further divided into sequencing with multi-gene panel and designed regions.

WES investigates all of protein-coding DNA, that is, less than 2 % of the human

genome but around 85 % known disease-causing variants. As an alternative strategy

of WGS, WES is able to detect previous unobserved variants (even with

low-frequency) in exons by achieving an average of 100-fold coverage. In partic-

ular, for monogenic rare diseases with unknown causes, WES can identify the

causal variants with very small sample size. For example, Ng et al. discovered

causal gene OHODH for Miller syndrome when performed WES in four patients

(Ng et al. 2010). With larger sample size, WES also shows its strength in identify-

ing causal variants for both rare and common diseases with genetic heterogeneity.
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As an example of investigating causal variants for rare diseases which are defined

by symptoms but induced via different mechanisms, WES on 110 unrelated patients

with progressive myoclonus epilepsy (PME), a rare inherited disorders character-

ized with action myoclonus, tonic-clonic seizures and ataxia, identified a major

causal de novo mutation in KCNC1 gene when pathogenic mutations in known

PME-associated genes existed (Muona et al. 2015). In cancer genetics research,

with similar sample size, WES was performed to investigate melanoma, especially

the mutations induced by ultraviolet light exposure. Mutation in RAC1 was iden-

tified in 9.2 % of sun-exposed melanomas while mutations in PPP6C were found in

12 % patients who also had mutations in BRAF or NRAS (Krauthammer et al. 2012).

Meanwhile, applying WES to a large population would gain a profound under-

standing of the genetic effects on disease. AWES study with 2500 simplex families

of autistic spectrum disorder concluded that 12 % of autism diagnoses can be

explained by 13 % of de novo missense mutations while 9 % of autism by 43 %

of de novo likely gene-disrupting mutations, by comparing affected to unaffected

siblings (2500 pairs). Besides, this study also found that the regions of gene-

disrupting mutations in female significantly overlapped with the known regions in

relate with lower intelligence quotient in male (Iossifov et al. 2014).

Nevertheless, the rationale of this strategy is that pathological variants are more

likely in exons, thus WES can’t be used to explore the regulatory mechanisms

induced by variants located in introns or intergenic regions. Likewise, sequencing

every exon restricts the read depth and discovery power. Targeted deep sequencing,

along with prior knowledge for diseases, can remedy some of these drawbacks.

Multi-gene panel sequencing, namely sequencing bulks of candidate genes via

array hybridization, is an efficient and timely approach in clinical research. More-

over, most of the panels cover introns for investigation. Various gene panels met for

distinct clinical demands are now available through vendors, with the number of

Table 4.6 Comparison of different target enrichment methods

Method

Target

size Throughput Advantage Disadvantage

Multiplex

PCR

Small Low Simple for designed

target

Target size is limited and

cost inefficient

Array PCR Small to

medium

Low Cost efficient PCR

reaction

Pricy in synthesizing primers

and amplification efficiency

varies

Microdroplet

PCR

Medium Low Ten thousands of

amplicons can be

applied, highly cost

efficiency

Pricy in synthesizing primers

and amplification efficiency

varies, special technique

needed to form microdroplet

Array-based

capture

Medium

to large

Low Large target size,

low cost

Special technique needed to

elude captured DNA and low

coverage for GC rich regions

Solution-

based capture

Medium

to large

High Large target size,

low cost and high

throughput

Cost inefficient for small

target region and low cover-

age for GC rich regions
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genes ranging from 70 to 377 in the panel. Gene panel sequencing is more

appropriate to use in disease whose genetic locus heterogeneity are significant

(e.g. muscular dystrophies panel), in disorders with overlapping phenotype (e.g.
cardiomyopathy panel), in disorders share same manifestation but different overall

presentation (e.g. epilepsy panel) and in diseases induced by genes from a common

pathway or structure (e.g. RASopathies panel) (Xue et al. 2015). Similar to the gene

panel, we can further capture desired genes or regions in a custom-designed

manner, either through PCR amplicons or hybridization, to explore the causality

with deeper reads. A classic example is sequence 21 genes known to be in

association with breast and ovarian cancer. Walsh et al. captured coding and

intronic regions as well as 10 kb upstream of each genic region by in solution

hybridization. Greater than 1200-fold average coverage was achieved in this study.

Every known pathogenic changes including single-nucleotide substitutions, small

insertion and deletion mutations, and large genomic duplications and deletions was

identified with this read depth. This study suggests an efficient and accurate NGS

design for personalized risk assessment (Walsh et al. 2010). In some studies,

targeted deep sequencing was used as a validation step following WES.

As mentioned in previous examples, NGS sampling could vary from numbers of

particular cases to large population, depending on study design, type of disease and

budget. While small sample size is enough for investigation on common variants, it

is still difficult to gain adequate power to discover rare variants in complex diseases.

A comparison of study designs with optional sample size for rare variants is listed in

Table 4.7. Besides, group-based analysis and meta-analysis are two powerful

statistical approaches for rare variants analysis.

4.3.3 Cell Free Circulating DNA Sequencing

Cell-free circulating DNA (cfDNA) is the DNA segments in the circulation released

from cell apoptosis and necrosis. Studies of cfDNA mainly focus on prenatal

diagnosis and cancer monitoring because that fetal-derived and tumor-derived

cfDNA are largely different from the main background of cfDNA. Profiling

cfDNA takes the advantage of being a noninvasive tool while cfDNA can be

isolated from blood plasma using commercially available kits. Both cell-free fetal

DNA (cffDNA) and circulating tumor DNA (ctDNA) exhibit rapid clearance within

hours. This means that after delivery or tumor removal operation, these circulating

DNA would soon become undetectable.

To date, three types of analyses on NGS sequencing data had been applied in

cfDNA studies, including: (1) allelic count-based methods, that is, counting the

tagged fragments after mapping them to chromosomes, to estimate cfDNA concen-

tration and detect aneuploidy; (2) regional genomic representation-based methods

(same as targeted sequencing) to detect aneuploidy, copy number changes and

genomic rearrangement; and (3) size-based analysis for estimation of fetal DNA

concentration and detection of aneuploidy. If an estimation algorism is not
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available, parental genotyping is needed in the allelic count-based approaches

(Chan and Jiang 2015).

The concentration of cffDNA increases with gestational age, while the fragment

size of cffDNA is shorter than maternal-derived cfDNA. Currently, the clinical

application of NGS on cffDNA is prenatal screening for aneuploidy, especially

trisomy on chromosome 13, 18 and 21. Compared with conventional screening

tools, cffDNA presented a higher sensitivity and specificity upon performance

(Cuckle et al. 2015). The detection of aneuploidy can be achieved by all of the

above methods (Yu et al. 2014; Sparks et al. 2012; Chen et al. 2011), moreover,

assessment of twin zygosity and aneuploidy in dizygotic twins can also be esti-

mated through similar approaches (Leung et al. 2013). It is possible to construct the

entire fetal genome from cffDNA when parental sequencing available, thus detect

the mutation in the fetal genome (Fan et al. 2012). However, it is still too expensive

and elaborate to carry out this detection in clinical screening.

Similar to cffDNA, concentration of ctDNA is positively correlates with tumor

size and stage, but the size of ctDNA could be either shorter or longer than

background cfDNA. SNV, CNV and rearrangements in ctDNA have been identified

by WGS, WES and targeted deep sequencing in studies of cancer patients in

different stages. Some specific techniques were already developed to improve

detection sensitivity for targeted deep sequencing in ctDNA, including tagged

amplicon deep sequencing (TAm-Seq) (Dawson et al. 2013; Forshew et al. 2012),

safe-sequencing system (Safe-Seq) (Bettegowda et al. 2014), cancer personalized

profiling by deep sequencing (CAPP-Seq) (Newman et al. 2014). Since ctDNA can

widely representative the underlying tumor genome, NGS ctDNA can identify

tumor type through mutation and guide the targeted therapy. Besides, while

ctDNA is a very sensitive biomarker, monitoring ctDNA can lead an early detection

Table 4.7 Study design for rare variant discovery in predisposition genes

Study

design Sample size in previous studies Advantages Disadvantages

Family-

based

WGS/WES

Less or equal to 200 pedigrees

(Thompson et al. 2012; Park

et al. 2012; Neale et al. 2012;

Roberts et al. 2012; Palles

et al. 2013)

High detection power,

efficiency for Mende-

lian diseases

Less efficiency for

complex disease

and sporadic

disease

Case–con-

trol deep

sequencing

125–500 pairs of case vs. control

(Beaudoin et al. 2012; Hoehe

et al. 2000; Chien et al. 2013; Li

et al. 2013; Lin et al. 2014)

Power can be attained

with feasible sample

size, fairly affordable

Limited ability in

novel gene

discovery

Case–con-

trol

WGS/WES

500–1000 pairs of case vs. control

(Tang et al. 2014; Ellinghaus

et al. 2013; Liu et al. 2013;

Siemiatkowska et al. 2013)

Capable in novel gene

discovery

Pricy and poor

power when sam-

ple size is limited

Case-only

exome

sequencing

100–1000 subjects Cost efficiency Difficulty in new

susceptibility loci

identification
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of cancer, as well as assessment of therapeutic response and treatment resistance.

The noninvasive and timely manner of ctDNA sequencing, makes it one of the most

promising tools in future cancer research (Ignatiadis and Dawson 2014).

4.3.4 Single Cell Sequencing

Somatic variation, known as genomic heterogeneity, exists after sufficient acquire-

ment of genetic mutations during every cell division. It is considered as the cause of

many disorders, such as cancer. Single cell sequencing (SCS) is the technology that

can provide a view from single cell to observe the genomic change during cell

developmental processes (Macaulay and Voet 2014). Current SCS research focus

on tissue mosaicism, germline transmission and cancer. The first stage of SCS is the

isolation of single cells. The traditional single cell isolation approaches require

abundant cells in suspension, for example, flow-assisted cell sorting (FACS), mouth

pipetting, serial dilution, robotic micromanipulation, and microfluidic platforms. In

cancer SCS studies, aside from isolation single cells from tissues, circulating tumor

cell (CTC) also serves as a type of target single cell. Similar to ctDNA, CTC is

highly sensitive with the presence of tumor. Nevertheless, in blood, the frequency

of CTC is only one in one million, which leads to development of commercial

platforms for these rare cells (<1 %) isolation. A comparison of rare cell isolation is

listed in Table 4.8. Followed single cell isolation and DNA extraction, an amplifi-

cation stage is necessary since the average concentration of DNA in a single cell is

around six pg. The old fashion PCR, which is mentioned in the earlier section, will

surely introduce artificial biases in this process. To better handle DNA amplifica-

tion from single cell, several new methods had been developed to acquire low bias

and high coverage. For example, multiple displacement amplification (MDA) has

been widely used currently by using ϕ29 DNA polymerase to achieve relatively low

amplification bias and high genome coverage.

An alternative method, multiple annealing, looping-based amplification cycle

(MALBAC) which combines features of linear amplification with PCR is later

promoted. MALBAC has advantages of low amplification error rate, extremely low

amplification bias and high genome coverage, thus better performance in SNV and

CNV detection in SCS studies. Except for the cell isolation and DNA amplification,

the workflow for SCS is similar to NGS studies. Algorithms for SNP calling and

SNV detection can be adapted in SCS analysis (Ning et al. 2014).

In previous tissue mosaic studies, SCS on human frontal cortex neurons detected

13–41 % de novo CNVs in neurons, as well as that deletions are twice as common as

duplications, suggesting CNV mosaic events are abundant in cortical neurons

(McConnell et al. 2013). In germline transmission research, average of 22.8 and

26 recombination events per cell were observed in two studies of single sperm cells,

using MDA and MALBAC for amplification respectively (Lu et al. 2012; Wang

et al. 2012), while 43 recombination events per single cell were revealed in research

of single oocytes (Hou et al. 2013). Meanwhile in cancer research, most SCS
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studies utilized single-cell exome sequencing to examine intratumor heterogeneity

and clonal evolution. A study identified a monoclonal population of cells which

shared a common genetic lineage in related to JAK2-positive myeloproliferative

neoplasm (Hou et al. 2012), while another study concluded that clear cell renal cell

carcinoma was more genetic complex than expected since no significant clonal

subpopulation was found (Xu et al. 2012). More details of clonal evolution was

observed in a breast cancer study. It showed that in breast cancer, aneuploidy

rearrangements occurred early in tumor evolution but remained stable during

clonally expanded while point mutations evolved gradually over time generating

extensive clonal diversity (Wang et al. 2014). Beyond the research of single cells

from solid tissue, profiling single CTCs through exome sequencing in lung cancer

suggested CNV patterns were consistent through cells in the same subtype of cancer

while mutation appeared heterogeneous among cancer cells (Ni et al. 2013). Over-

all, SCS technology provides a chance to explore single cell genomic architecture

and addresses important implications for clinical diagnosis as well as therapeutic

treatment in personalized care.

4.4 Conclusion

In this chapter we addressed the fundamental concepts in NGS, from principle of

both wet and dry laboratory technologies to rational behind detection of different

types of variants that are related to diseases. In addition, in order to keep the pace

Table 4.8 Methods for isolating single cells from rare populations

Methods Principle Company Advantages Disadvantages

Laser-capture

microdissection

Capture cells via laser

under microscope

– Present spa-

tial context

Potential UV

damage

Nano-fabri-

cated filters

Selection based on size Creatv

MicroTech

Cost effi-

ciency and

straight

forward

Cells may adhere

to filters

MagSweeper Selection based on

EpCAM antibodies with

magnet

Illumina High enrich-

ment and cost

efficiency

Bias may

induced by

markers

CellSearch Selection based on

EpCAM and CD45 anti-

bodies with magnet

Johnson &

Johnson

High through-

put, approved

by FDA

Bias may

induced by

markers

CellCelector Robotic capillary

micromanipulator

Automated

Lab

Solutions

High

throughput

Expensive

DEP-Array Capture charged cells

with dielectrophoretic

cages in microchip

Silicon

Biosciences

High

sensitivity

Time consum-

ing, low

throughput,

expensive
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with the fast-moving sequencing technologies, we also cover the contents of most

novel NGS applications, public repositories and the third generation sequencing.

However, there are still a lot challenges exist in NGS which will be solved by

methodologies and technologies in the future. The assumptions and hypothesis of

NGS study designs may also be modified with the new findings from human

genome. Even so, we hope that the comprehensive knowledge we elucidated in

this chapter can hereafter provide a guideline for readers to investigate their own

clinical research problems.
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Chapter 5

Clinical Epigenetics and Epigenomics

Nian Dong, Lin Shi, Chengshui Chen, Wenhuan Ma, and Xiangdong Wang

Abstract Epigenetics is a molecular phenomenon that pertains to heritable

changes in gene expression that do not involve changes in the DNA sequence.

Epigenome, epigenetic modifications in a whole genome, play an essential role in

the regulation of gene expression in both normal development and disease. DNA

methylation, histone modification, and RNA-mediated targeting regulate many

biological processes that are fundamental to the genesis of a spectrum of diseases.

Here, we give a historical overview of the epigenomics field and focus on the recent

progress that has been made in understanding the pathogenic role of cancerous

disease, autoimmute disease, and metabolic disorder. We also discuss available

traditional epigenetic therapies, epigenetic therapies currently in development, and

the potential future use of epigenetic therapeutics in a clinical setting.

Keywords Clinical epigenetics • Epigenetic modification • Epigenomics •

Epigenetic therapies

5.1 Introduction

Epigenetics is typically defined as the study of heritable changes in gene expression that

are not due to changs in DNA sequence (Feinberg and Tycko 2004; Pogribny and

Beland 2009; Wolffe and Matzke 1999; Riddihough and Zahn 2010). Through its
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ability to mediate gene silencing or gene activation, epigenetic mechanism have a

profound effect on diverse biological properties from the morphology of flowers and

eye colour in fruitflies. Compared to epigenetic modifications which occur at distinct

regions throughout the genome, epigenomics is the study of epigenetic modifications

throughout the entire genome with the advent of whole – genome approaches. Epige-

netics and epigenomics are the study of chromatin: the complex of DNA, proteins

(histone proteins and non-histone proteins), and non-codingRNAs (ncRNAs) that form

the structural matrix of a chromosome (Hamm and Costa 2015). As chromatin is

essential for nuclear packing and gene regulation, the way how the chromatin structure

is maintained and organized is key to a better understanding of the origins of epigenetic

alterations in embryonic development, cell differentiation and disease.

The cytosines in DNA methylation and post-translational modifications of histone

proteins are the most well documented mechanistic layers in the field of epigenetics,

other epigenetic mechanisms include the emerging ncRNA (Costa 2008) (Fig. 5.1).

The first type of modification, DNAmethylation, involves the covalent attachment of

a methyl group onto the C5 position of a cytosine residue on CpG (cytosine-phos-

phate-guanine) islands, considered one of the epigenetic processes that lead mainly to

gene silencing and subsequently to inhibition of the gene transcription (Chiang

et al. 1996; Holliday 1990). In general, DNA methylation occurs on the different

CpGs clustered as islands on the majority of the genes. Millions of potentially

methylated CpG islands cluster through the gene body and play a critical role within

the promoter regions. Once methylated, gene transcription might not occur. By

Fig. 5.1 Three common types of epigenetic modifiers: DNA methylation, histone modifications

and ncRNAs
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contrast, an active promoter may allow interaction with the various transcription

factors controlling gene activation (Fujita et al. 2003; Perera et al. 2009).

In comparsion with DNAmethylation directly affecting the genomic DNA, post-

translational histoine modification act differently. The ability of the nucleosome to

condense and organize the genome is related to both the molecular characteristics

of the DNA, as well as, the molecular characteristics of the proteins that form the

nucleosome. The core of the nucleosome is made up of eight proteins, consisting of

two of each of the following histone proteins: H2A, H2B, H3, and H4. Histone

proteins are subject to a myriad of post-translational modifications, including

acetylation, ADP ribosylation, citrullination, clipping, methylation, phosphoryla-

tion, sumoylation, ubiquitination and others (Lister et al. 2009; Ray-Gallet and

Almouzni 2010; Hassan et al. 2002; Sanchez and Zhou 2009). Of the mentioned

modifications, acetylation is the most extensively studied. It is a reversible process

catalyzed by two enzymes, the histone acetylase (HAT) and HDAC. The presence

of an acetyl group decreases interaction between negatively charged DNA and the

positively charged histone tail which results in a less compact nucleosome, enables

easier access for transcription factor complexes (Feng and Fan 2009; Mau and

Yung 2014). Therefore, removal of the acetyl group by HDAC leads to gene

transcription repression. The effects of such modifications is alteration in the

electrostatic interaction between the histones and nearby DNA and accessibility

to the transcriptional machinery.

The third modification involves different classes of ncRNAs, which can physi-

cally bind to the DNA, alter its conformation and, in the case of microRNAs,

silence genes by post-translational control. The high-throughput genomic platforms

have established that virtually the entire genome is transcribed; however, only 2 %

is subsequently translated and the remaining “noncoding” RNAs (ncRNAs) would

be roughly categorized into small (under 200 nucleotides) and large ncRNAs

(Amaral et al. 2008). The small ncRNA, including small nucleolar RNAs

(snoRNAs), PIWIinteracting RNAs (piRNAs), small interfering RNAs (siRNAs),

and microRNAs (miRNAs), show high degree of sequence conservation across

species and are involved in transcriptional and posttranscriptional gene silencing

through specific base pairing with their targets. In contrast, the long ncRNAs

(lncRNAs) demonstrate poor cross-species sequence conservation, and the mech-

anism of action in transcriptional regulation is more diverse. Notably, the lncRNAs

appear to have a critical function at chromatin, acting as molecular chaperones or

scaffolds for various chromatin regulators (Wang and Chang 2011).

Taking together, different types of epigenetic modification would solely or

multiply have an effect on the epigenetic status of a particular locus in the genome.

Given the role of epigenetic modifications in organismal development where stable

and distinct cellular functions must be established froman identical genotype, it is

no surprising that epigenetic deregulation is involved in the pathogenesis of a

growing amount of diseases. From the first description of abberant epigenetic

alteration in colon cancer (Feinberg and Vogelstein 1983), epigenetic pathway

have been recognized as a hallmark of human cancer. Similarly, epigenetic abnor-

malities have been detected in several non-cancerous diseases. As opposed to

genetic alterations, epigenetic alterations are reversible. The involvement of
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epigenetic abnormities in various human pathologies indicates that specific diseases

might benefit from epigenetic targeted therapies. Inspiringly, durg therapy aimed at

targeting epigenetic defects such as Dacogen (Decitabine; Eisai Inc) and Zolinza

(Vorinostat; Merck) is coming into reality in clinical settings (Giacinti et al. 2008;

Ptak and Petronis 2008). Furthermore, the development of GenomeWide Association

Study (GWAS) to characterize and functionally analyze the variety of epigenetic

modifications through the entire genome (epigenomics) will provide insight into the

function of epigenetic modifications not only in normal development and but also in

the subsequent transition to disease states, ultimately leading to the future develop-

ment of more effective epigenetic-based therapies (Hamm and Costa 2011).

5.2 Epigenetics and the Emergence of Epigenomics—A
Burgeoning Field

The term epigenetics was first introduced by Conrad H. Waddington as early as the

mid-twentieth century to describe the variety of developmental phenomena above

the level of genomes that connected genotype to phenotype. The originally defini-

tion of epigenetics was completely based on observations at the level of organism

development depending on the interactions with the environment, which is cur-

rently known as the epigenotype (Jamniczky et al. 2010). Subjected to the limited

knowledge and research technique, the definition of epigenetics remanins both

contentious and ambiguous (Berger et al. 2009). Oster and Albert once proposed

that physical interactions of tissues and extracellular matrices are crucial for the

developmental process and epigenetic components might play an important role,

while Newman and Muller refined epigenetics as the interactions fo cells with each

other and with the surrounding microenvironment (Newman and Muller 2000).

Currently, it is clear that Waddington’s observation at the level of the organism

was a consequence of a series of molecular changes that occur in the DNA of the

cells after interactions with the microenvironment and epigenetics act as a bridge

between genetic and environmental factors. Decades after the word epigenetics

coined by Waddington to link the fields of developmental biology and genetics,

5-methyl cytosine was justified to have a role in silencing gene expression at the

molecular level and that the patterns of DNA methylation are somehow heritable

(Holliday 2006). Griffith and Mahler made the first suggestion that the gain or loss

of DNA methylation has an important biological role when studying brain memory

and Holiday and Pugh proposed a molecular model for turning genes on and off

based on changes in DNA methylation (Griffith and Mahler 1969; Holliday and

Pugh 1975). At last, through summarization of the previous research, Holliday

revisited Waddington’s ideas and published a crucial article connecting the molec-

ular and phenotypic aspects of epigenetics (Holliday 1987). In view of the devel-

opment of DNA methylation, the epigenetics have experienced substantial growth

over the past decades.
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Epigenetic modifications in a whole genome, known as the epigenome, has

emerged with the advances in technologies of molecular biology and next-

generation DNA sequencing. Epigenome was defined as a new discipline that

studies epigenetic modifications at the molecular level in an entire genome instead

of single gene or a smaller number of genes (Callinan and Feinberg 2006). Com-

pared to epigenetics, epigenomics aim at interrogating entire genomes for methyl-

ation changes or histone modifications by combining traditional epigenetic analyses

with next-generation DNA sequencing. Genome-wide association studies (GWAS)

are moving toward including epigenetic analysis (epigenomics) alongside the

analysis of single nucleotide polymorphisms (SNPs) in individuals to build a

more complete hereditary profile for complex diseases. Examples include

epigenomic DNA methylation analyses in complex diseases, such as cancer and

psychiatric disorders (Xie et al. 2010; Kato 2009). Epigenetics has seen substantial

growth over the past 20 years, and the number of epigenetic research articles

published in a given year reflects the growth of the Field. A summary of the

research articles, theories, hypothesis and main discoveries in the epigenetics and

epigenomics are shown in Fig. 5.2. Despite significant advances in the field,

epigenetics and epigenomics are still in infancy. Along with the advances in

molecular biology and next-generation DNA sequencing in defining and unraveling

the myriad of epigenetic alterations in particular disease states, it will provide

opportunity for the development of epigenetic therapeutics across a spectrum of

human diseases.
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Fig. 5.2 Historical perspective of epigenetics and epigenomics, and the growing number of

publications in this field
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5.3 Clinical Epigenetics and Epigenomics
in Complex Diseases

Epigenetics is rising to prominence in biology as a mechanism by which environ-

mental factors have intermediate-term effects on gene expression without changing

the underlying genetic sequence. Epigenetics is not just participating in organism

development where stable and distinct cellular functions must be established from

an identical genotype (Handel et al. 2010). Taking mammalian embryogenesis for

example, mammalian genome is demethylated by the time the morula stage embryo

has developed; however, de novo DNA methylation is detected in the blastocyst

stage embryo (Santos et al. 2002; Mayer et al. 2000). Given the precise regulatory

mechanism of epigenetics in regulating appropriate differentiation of embryonic stem

cells, it is no doubt that the dyregulated epigenetics participate in the pathogenesis of

a variety of diseases. The ability to dissect the epigenomic landscape is not only

essential for a more complete understanding of normal development, but is also

necessary to gain insight into the etiology of complex diseases. It is gradually

recognised that multiple genetic and epigenetic factors contribute to complex dis-

eases and might change throughout the course of the disease. As listed by the World

Health Organization, the leading causes of death such as coronary artery disease

(referred to as cardiovascular disease), diabetes mellitus (type I and type II) and

cancer are diseases that might have an epigenetic and epigenomic component (Kargul

et al. 2015). Besides, Epigenetic abnormalities might have a role in infertility, as the

impairment of embryo implantation in endometriosis resulting from abnormal DNA

hypermethylation and the subsequent silencing of HOX genes (Cakmak and Taylor

2011; Endoh et al. 2012). While epigenetic deregulation occours in a wide range of

dieseases, it is important to emphasize that epigenetic changes are reversible. The

reversible nature of epigenetics provides plausible treatment or prevention prospects

for diseases previously thought hard-coded into the genome.

5.3.1 Epigenetics and Epigenomics in Cancerous Disease

Cancer represents a group of over 300 specific diseases that share a number of

genetic, epigenetic, and pathological features and tumorigenesis is a multistep

process, including initiation, promotion and progression (Sandoval and Esteller

2012; Kinzler and Vogelstein 1996). In contrast to genetic defects, epigenetic

deregulation has been increasingly recognized as a hallmark of cancer for the last

decade with the advent of whole-genome approaches known as epigenomics.

Epigenetic modifications precede genetic changes, and usually occur at an early

stage in development of a neoplasm, but may be involved in its invasion and spread

as well (Fig. 5.3). DNAmethylation, histone modification, nucleosome remodeling,

and RNA-mediated targeting regulate many biological processes that are funda-

mental to the genesis of cancer (Valdespino and Valdespino 2015).
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The best-studied epigenetic alterations in cancer are the methylation changes

that occur within CpG islands, which are present in 80 % of all mammalian

promoters. It is confirmed that in various cancer genomes up to 5–10 % of normally

unmethylated CpG promoter islands are abnormally methylated. Meanwhile, CpG

hypermethylation of promoters not only influence the expression of protein coding

genes but also the expression of various noncoding RNAs, which have a role in

malignant transformation (Baylin and Jones 2011). In the process of DNA methyl-

ation, three active DNA methyltransferases (DNMTs) have been identified.

DNMT1 is a maintenance methyltransferase that recognizes hemimethylated

DNA generated during DNA replication and then methylates newly synthesized

CpG dinucleotides, conversely DNMT3a and DNMT3b function primarily as de

novo methyltransferases to establish DNA methylation during embryogenesis

(Klose and Bird 2006). Various studies designed at sequencing of cancer genomes

have identified recurrent mutations in DNMT cancer, such as DNMT3A in acute

myeloid leukemia (AML) (Ley et al. 2010). Understanding the cellular conse-

quences of normal and aberrant DNA methylation remains a key area of interest,

especially because hypomethylating agents are one of the few epigenetic therapies

that have gained FDA approval for routine clinical use.

Fig. 5.3 The multifaceted role of epigenetic modifications in each stages of tumorigenesis. The

mutations, genomic instability, and epigenetic modifications can lead to tumor initiation. Then,

Inflammation activates tissue repair responses, induces proliferation of premalignant cells. Further

to stimulate angiogenesis, cause localized immunosuppression, and form a inflammatory micro-

environment in which pre-malignant cells can survive, expand, and in turn accumulate additional

mutations and epigenetic changes to promote tumor cells spread to different organs, such as lung,

bone, brain and liver
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Besides DNA methylation, abberant patterns of histone modifications are a

characteristic of cancer. Genome-wide studies of histone modifications have been

done to better characterize the chromatin of malignant cells by establishing the

overall profile of histone modifications in cancer. The global analysis of histone

modifications levels reveals a pattern of altered dimethyl-K4 and acetyl-K18 of

histone H3 in prostate cancer, which are proposed as being markers of high risk of

recurrence (Seligson et al. 2005; Dawson Mark and Kouzarides 2012). The prog-

nostic relevance of global histone modification levels was reported for non small

cell lung cancer (NSCLC) and high dimethyl-H3K4 or low acetyl-H3K9 levels

were corrletated with a better survival as well (Barlesi et al. 2007). Moreover,

global acetyl-H3K9 levels were used to screen out these patients with low-grade

bladder cancer who experienced disease recurrence after transurethral resection of

the bladder (Barbisan et al. 2008). As genetic lesions in histone-modifying com-

plexes are associated with an aberrant histone modifications in cancer and HDACs

are frequently overexpressed in various types of cancer, tumor types would be

distinguished on the basis of the expression patterns of their histone-modifying

enzymes (Ozdag et al. 2006).

DNA methylation and histone modifications are the most well studied epigenetic

modifications in cancer, and the role of miRNAs in the etiology, progression and

prognosis of cancer is emerging. Several studies have proposed the profiles of

miRNA expression differ between normal and tumor tissues and between tumor

types (He and Hannon 2004). Alongside the genome-wide approaches, it is capable

of production of miRNA fingerprints in a range of and the identification of new

potential biomarkers to distinguish tumor tissue from its normal counterpart (Budhu

et al. 2008; Nam et al. 2008).

In summary, the advent of microarray-based technologies and the more recently

developed next-generation sequencing technology has enormously increased the

data available for assessing epigenetic features of the various human cancer

genomes. The combination and integration of epigenomics, genomics and all the

other ‘omics’, including transcriptomic, proteomic, will be definitely accelerating

the progress towards a full understanding of the underlying molecular mechanisms

that govern the initiation and development of cancer processes. Altogether, these

cancer signatures will help identify new potential prognostic and detection tools

and, eventually, to develop effective clinical epigenetic therapies.

5.3.2 Epigenetics and Epigenomics in Autoimmune Disease

Autoimmune diseases are complex multifactorial diseases characterized by

impaired immunological response against healthy cells and tissues due to the lack

of recognition and the loss of immunological tolerance versus self (Hewagama and

Richardson 2009; Zhernakova et al. 2013). Although autoimmune diseases possess

diverse epidemiology or symptoms, it is clear that genetic predisposition is

involved in the etiopathology of autoimmune disorders. However, the incomplete
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concordance rate of the autoimmune disease in monozygotic twins ranging between

12 and 67 % and the presence of a strong genetic association only in a proportion

patients strongly supports the involvement of non-genetic mechanisms in these

pathologies (Dang et al. 2013; Renz et al. 2011). Accumulating evidence indicates a

role for environmental factors, one of the challenging questions is how such

environmental components mechanistically influence autoimmune diseases. In the

regard the concept of epigenetic modifications have gained great interest. The

development and differentiation of immune cells, as well as innate and adaptive

responses, are precisely regulated by dynamic epigenetic modifications (Harb and

Renz 2015; Zhao et al. 2015). It has been disclosed that identified epigenetic

alterations give rise to several typical human autoimmune diseases such as systemic

lupus erythematosus (SLE), rheumatoid arthritis (RA) and multiple sclerosis (MS).

SLE is a chronic multiorgan disease characterized by acute and chronic inflam-

mation with different clinical manifestations due to autoantibodies against nuclear

and cytoplasmic antigens. Over the past decade, various studies have shown that

gene-specific hypomethylation, particularly of several autoreactivity-related genes,

plays an essential role in the pathogenesis of SLE. Clearly, CD11a (ITGAL),

perforin (PRF1), CD70 (TNFSF7), and CD40LG (TNFSF5) have all been shown

to be overexpressed in lupus CD4þ T cells and contribute to the over-production of

auto-antibodies by B cells upon activation by autoreactive T cells (Deng and Tsao

2014; Lu et al. 2002, 2003, 2005). Moreover, aberrant DNA hypomethylation was

reported in over-expressed subtype-specific genes in T cell as well, such as inter-

feron related genes including ifng, IFI44 and OSA1, Th2 cytokines IL-4 and IL-6

and the Th17 cytokine IL-17a, leading to dysregulated immune homeostasis in SLE

(Absher et al. 2013; Talaat et al. 2015). As for the mechanism leading to aberrant

epigenetic modifications in lupus T cells, it was proposed that decreased DNMT1

expression contributes to passive demethyla-tion and increased Gadd45α causes

active demethylation in CD4þT cells of SLE patients (Zhang et al. 2013). On the

other side, researchers have indentified that defective ERK signaling and

up-regulation of microRNA-126 and microRNA-29b leads to the inhibition of

DNMT1 expression and contributes to DNA hypomethylation and lupus T cell

autoreactivity (Qin et al. 2013). In addition to DNA methylation, global histone H3

and H4 hypoacetylation of CD4 T cells of SLE was observed and the degree of

histone H3 acetylation (Hu et al. 2008). Dai et al. showed a significant alteration of

H3K4me3 in many key relevant candidate genes in PBMCs of SLE, the alterations

of which were associated with the pathogenesis of SLE and could represent a

potential biomarker for epigenetic-based lupus therapies (Dai et al. 2010).

The role of epigenetic in the RA onset has been investigated showing a wide

DNA methylation status in RA synovial fibroblasts or peripheral blood mononu-

clear cells (PBMCs). A genome wide evaluation of RA synovial fibroblasts has

shown a differential methylation status of several genes, which appear to be

involved in immune response, inflammation and leukocyte recruitment (Nakano

et al. 2013). In RA synovial cells, Death receptor 3, a factor of apoptosis-inducing

Fas gene family was hypermethylated, leading to downregulation of proteins

involved in the resistance to apoptosis. The methylation of a single CpG in the
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IL-6 promoter region which affects the regulation of IL-6 gene in PBMCs of RA

was indentified, suggesting a role in the pathogenesis of RA with a local

hyperactivation of inflammatory pathways (Nile et al. 2008). Different from

involvement of DNA methylation, histone modifications are so far limited in

RA. Reduced HDAC activity plays an important role in the transcriptional regula-

tion of proinflammatory genes in RA resulting in histones hyperacetylation. As a

result, the balance of histone acetylase/HDAC activityis strongly shifted to histone

hyperacetylation in RA patients and HDAC inhibitors represent a promising treat-

ment approach.

Taking SLE and RA for example, ranging from candidate-gene to genome-wide

association studies, a large number of susceptibility genes have been identified in

the pathogenesis of autoimmune diseases. Autoimmune diseases recognize multiple

genetic and environmental determinants and epigenetic changes are emerging as

related factors. The endeavor to completely understand molecular mechanisms

governing epigenetic alterations will provide more research orientations and it is

noteworthy that epigenetic alterations vary among different tissue and cell types

(Glossop et al. 2013; Zhang and Zhang 2015; Picascia et al. 2015). The discovery of

shared aspects of disease pathogenesis could offer the opportunity to use known

drugs or therapeutic strategies across multiple diseases.

5.3.3 Epigenetics and Epigenomics in Metabolic Disease

The most prevalent metabolic disorders are diabetes mellitus, obesity, dyslipidemia,

osteoporosis and metabolic syndrome, the pathophysiologies of which are oxidative

stress, Nrf2 pathways, epigenetic modifications (Tabatabaei-Malazy et al. 2015).

Clinical and experimental studies indicate that life experiences, perhaps spanning

multiple generations, influence lifelong risk of metabolic dysfunction through epige-

netic mechanisms (Gluckman 2012). Epigenetic inheritance does not involve alter-

ations in gene sequencing, gene addition, or gene deletion. Rather, epigenetic

dysregulation involved in metabolic disease through modifications of: (1) cell differ-

entiation, (2) dosage compensation, (3) genome structure maintenance, (4) genomic/

parental imprinting, and (5) repetitive element repression (Bays and Scinta 2015).

Obesity is closely associated with the development of both type diabetes (T2D) and

metabolic syndrome and increasing evidence implies that other than individual life-

style choices, developing obesity is in part due to genetic disposition, especially

epigenetic processes as well. A GWAS on 459 individuals of European origin was

performed to explore the relationship between DNA methylation and BMI, and the

analysis highlighted that increased BMI in these individuals is linked to an increase in

methylation at the HIF3A locus in blood cells and in adipose tissue (Pokrywka

et al. 2014; Heijmans et al. 2008). Genes that regulate adipogenesis, glucose homeo-

stasis, inflammation and insulin signaling are regulated by epigenetic mechanisms,

including genes encoding hormones (for example, leptin), nuclear receptors

(adipogenic and lipogenic transcription factors PPARγ and PPARα, respectively),
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gluconeogenic enzymes (phosphoenolpyruvate carboxykinase (PEPCK)) and trans-

membrane proteins (such as uncoupling protein 1) (Stepanow et al. 2011; Noer

et al. 2007; Yang et al. 2011; Milagro et al. 2009). It was shown that consumption

of a high-fat diet resulted in elevated level of methylation of leptin gene promoter in

retroperitoneal adipocytes, which was associated with lower circulating leptin levels,

suggesting leptin methylation affects leptin gene expression. Similarly, adipogenesis

is driven by adipocyte differentiation and induction of adipogenic transcription factors

(PPARγ, C/EBPα) via epigenetic mechanisms (Desai et al. 2015).

Other than Type I diabetes mellitus (T1DM) categorized as autoimmune disease,

Type II diabetes mellitus (T2DM) is a widespread metabolic disease characterized by

insulin resistance pancreatic beta-cell failure. As pancreatic beta-cell failure is core at

the pathogenesis of T2DM, various mechanisms have been reported, including

decreased insulin signaling, endoplasmic reticulum stress, oxidative stress, and inflam-

mation. One of the underlying mechanisms is epigenetic modification, such as the

reduction of histone acetylation and increase of methylation in the promoter region of

the Pdx1 gene, which encodes an important transcription factor for pancreatic beta-cell

function, leading to the reduction of Pdx1 expression levels (Kido 2013). Meanwhile,

numerous susceptibility genes for type 2 diabetes, including KCNQ1, have been

gradually identified in humans using genome-wide analyses and other related studies.

Insulin resistance is a the other common feature of T2DM and impaired response to

insulin results in reduced capacity to clear the glucose from blood stream. Skeletal

muscle and adipose tissue play a central role in glucose homeostasis. Genome-wide

DNA methylation in human skeletal muscle and adipose tissue from individuals with

or without a family history of T2DM indentified the differential methylation baseline

of T2DM candidate genes PPARGC1A, TFAM, PPARD, PDK4, MEF2A, THADA,

NDUFC2, and IL-7 (Barres et al. 2009, 2012). Compared to the DNA

hypermethylation, the diabetes mellitus drugs glucagon-like peptide 1 (GLP-1) and

glucose-dependent insulinotropic-peptide 1 (GIP), the mechanisms of which are

mediated through the ability of these compounds to increase histone H3

acetyltransferase activity and decrease HDAC activity have come into clinic (Kim

et al. 2009). Acumulating evidence highlight a key role for epigenetics in the growing

incidence of metabolic disease. Epigenetics holds promises for therapeutic advances,

with numerous studies of, for instance, HDAC inhibitors clearly demonstrating

beneficial effects on diabetic phenotypes (Ronn and Ling 2015).

5.4 Traditional Epigenetic Therapies

Given the prevalence of epigenetic abnormalities in various types of disease,

epigenetic therapy holds great promise for clinical treatment. Two main classes

of epigenetic therapies are DNA methyltransferase inhibitors and histone

deacetylase (HDAC) inhibitors, which act globally by promoting a more-open

chromatin structure and subsequently they promote gene expression. Inhibition of

DNA methylation and histone deacetylation has shown promise in clinical trials in
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myelodysplastic syndrome, acute myeloid leukaemia and T cell lymphoma with

still more promising treatment candidates on the horizon (Ptak and Petronis 2008;

Wijermans et al. 2000; Garcia-Manero et al. 2006; Duvic et al. 2007).

However, there are unavoidable limitations of the traditional epigenetic treat-

ments. The most serious is a lack of specificity: though epigenetic silencing of

tumour suppressor genes inevitably leads to carcinogenesis, while simply inducing

global DNA demethylation would result in chromosomal instability. Indeed, DNA

hypomethylation promotes tumor formation for activation of genes that are nor-

mally epigenetically silenced (Gaudet et al. 2003). Taken together, current DNA

methyltransferase inhibitors and histone deacetylase (HDAC) inhibitors are proved

to have clinical benefits in diseases that arise from repressive chromatin-mediated

gene silencing, while these non-specific drugs should be carefully examined to

determine whether the therapeutic benefits outweigh the potential adverse effects.

5.5 New Avenues for Epigenomic Therapy

Epigenetic therapy is emerging as a potentially effective therapy for a variety of

diseases. The combination of additional epigenomic (DNAmethylation and chro-

matin immunoprecipitation or (ChiP)) analysis with next-generation DNA sequenc-

ing will obtain a complete molecular profile of the epigenomic landscape in both

normal and disease states. Only when the epigenomic profiling truly be global, and

focus on regions containing protein-coding sequences as well as other regions of the

genome (such as regulatory sequences, ncRNAs, and repetitive elements) will new

disease-associated epigenomic changes and new therapeutic targets be identified.

For example, PAD4 which catalyzes post-translational modification of arginine to

citrulline in histone proteins (H2A, H3 and H4), and is associated with transcrip-

tional repression is a newly identified epigenetic target. Moreover, F-amidine and

Cl-amidine, the selective PAD4 inhibitors, show promise for rheumatoid arthritis

and multiple sclerosis with abnormal PAD4 activity (Denis et al. 2009).

The discovery of PAD4 selective inhibitor signifies that the future epigenetic

therapy would aim at abberant epigenetic molecules rather than blindly introduc-

tion of global DNA methyltransferase inhibitors and histone deacetylase (HDAC)

inhibitors. Except for selective DNA methyltransferase inhibitors and histone

deacetylase (HDAC) inhibitors, RNA molecules that would specifically interfere

with abberant epigenetic changes. Given that miRNA-221 is up-regulated in highly

aggressive tumors, systemic administration of anti-miRNA-221 (2-O-methylpho-

sphorothioate- modified- anti-miRNA-221) was shown to exert an anti-tumor effect

(Park et al. 2011). Moreover, systemic administration of miRNA-26a, which is

frequently down-regulated in HCC, showed anti-tumor efficacy in vivo by

inhibiting cancer progression via apoptosis (Kota et al. 2009).

Considering the adverse events of the traditional epigenetic therapy, great

progress has been made in developing drugs capable of targeting abberant epige-

netic alterations. That is to say, epigenomic profiling is fostering in the era of

pharmacoepigenetics and phamacoepigenomics, fields that involve the study of the
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relationship between the epigenome and optimal drug dosage and/or response, with

a goal of optimizing individualized treatment and discovering new drug targets

(Anestopoulos et al. 2015).

5.6 Conclusions and Future Prospects

The importance of epigenetics as well as epigenomics is highlighted by, but not

limited to, its function in normal development and physiology. Although still in its

infancy, epigenomics holds substantial promise in helping to explain many previ-

ously intractable conundrums in human genetics. Epigenetic modifications, includ-

ing DNA methylation, histone modification, and ncRNAs, regulate gene expression

and in turn determine the dynamic molecular and cellular events during disease

initiation and progression. For example, hyper-methylation (silencing of tumor-

suppressor genes) and hypo-methylation (i.e. activation of proto-oncogenes) events

have been considered as critical ones for various diseases. Moreover, aberrant

expression of histone modifying enzymes and non-coding RNAs (micro-RNAs

and lnc-RNAs) completes the epigenetic landscape. However, the mentioned each

epigenetic type should be considered not as an isolated event but rather as a network

of crosstalk and cooperation that contributes to the disease pathophysiology. For-

tunately, the continued development of new molecular technologies will aid in high

resolution mapping of the epigenomic landscape. In the meantime, it will provide

opportunities to identify novel target and signaling pathways that might act as

modifiers of the epigenome. Thus, a greater understanding of epigenomics and

the factors that mediate changes to the epigenome will lead to a better knowledge of

gene regulation and will also translate into more effective disease treatments. Three

HDAC inhibitors (HDACi) are currently approved by the FDA and several HDACi

are in clinical trial. Other include non-coding RNAs such as microRNAs and long

RNA molecules that are emerging as important epigenomic modifiers. In the future,

epigenetic modifying agents may provide a means to improve the effectiveness of

existing drugs and be a promising field for clinical interventions not just for the

mentioned cancerous disease, autoimmune disease and metabolic disease, but for

other complex diseases. That is just the beginning of the epigenomics era.
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Chapter 6

Proteomic Profiling: Data Mining
and Analyses

Lan Zhang, Wei Zhu, Yong Zeng, Jigang Zhang, and Hong-Wen Deng

Abstract Proteomics, the large scale study of proteins, provides a complementary

approach to genomics in exploring biological phenomena. With modern develop-

ment of Mass Spectrometry-based technologies, proteomics has evolved into a

powerful analytical platform for life science researchers, and has advanced our

understanding of the complex and dynamic nature of proteins. In the clinical field,

proteomics studies have been widely applied in identifying biomarkers, monitoring

disease status, and assessing treatment effect. In this chapter, an overview of current

proteomics profiling is introduced from four perspectives: collecting protein sam-

ples with appropriate experimental approaches, characterizing protein features with

advanced mass spectrometry-based technologies, annotating protein information

with publicly available databases, and interpreting protein functions with bioinfor-

matics analyses. We also give an example of how proteomics research workflow is

applied in breast cancer studies.
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Abbreviations

2-DE Two-dimensional gel electrophoresis

AP-MS Affinity purification coupled with mass spectrometry

BLAST Basic local alignment search tool

CDS Coding sequences

DE Differentially expressed

ES Enrichment score

ESI Electrospray ionization

FTICR Fourier-transform ion cyclotron resonance

GC-MS Gas chromatography-mass spectrometry

GO Gene ontology

GPMDB Global proteome machine database

GSEA Gene set enrichment analysis

HGNC Hugo gene nomenclature committee

HUPO-PSI Hupo proteomics standards initiative

KNN K-nearest neighbors

LC-MS Liquid chromatography-mass spectrometry

LOWESS Locally weighted scatterplot smoothing

LSA Least-squares adaptive

MALDI Matrix-assisted laser desorption/ionization

MALDI-TOF Matrix assisted laser desorption ionization time-of-flight

MIAPE Minimum information about a proteomics experiment

MOPED Model organism protein expression database

MOWSE Molecular weight search

MS Mass spectrometry

MSE Mass spectrometry with elevated energy

MudPIT Multidimensional protein identification technology

PLGEM Power law global error model

PLGS Proteinlynx global server

PPIN Protein-protein interaction network

PPIs Protein–protein interactions

PSEA Protein set enrichment analysis

PTMs Post translational modifications

RPLC Reversed-phase liquid chromatography

SAM Significance analysis of microarray

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SILAC Stable isotope labeling by amino acids in cell culture

Spl Spectral index

TOF Time-of-flight

XML Extensible markup language
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6.1 Introduction

In the past, the genome has been the principal focus for explaining the molecular

basis of cell functions. Since the survival of cells usually depends on a multitude of

metabolic and regulatory pathways, studying biological process at the genome level

is far from enough. Due to complex biological modifications such as transcriptional

splicing, post-transcriptional splicing, translational modifications and translational

regulation, the expression or function of proteins cannot be precisely predicted from

analysis of nucleic acids. Compared with mRNA and DNA level data analysis,

proteomic analysis is more efficient in identifying phenotype-related genomic

features, since largely proteins determine traits.

Over the past two decades, technologies in proteome research have improved

dramatically. Two classic methods, two-dimensional gel electrophoresis (2-DE)

and antibody microarray have played significant roles in proteomics studies. How-

ever, these two approaches cannot meet the requirements of large-scale protein

identification and accurate quantification. Remarkably, the invention and rapid

development of mass spectrometry (MS) technologies has provided a powerful

platform for proteomics profiling and made it possible to identify and quantify

whole proteins in biological systems. Taking advantage of the incredible advances

in instrument performance, methods efficiency and computational power,

MS-based technologies play an irreplaceable role in proteomics researches. MS is

composed of an ion source (converts analyte molecules into gas-phase ions), a mass

analyzer (separates ionized analytes according to mass-to-charge (m/z) ratio), and a

detector (records the quantity of ions at each m/z value) (Han et al. 2008). After the

characteristic m/z ratio of a molecular species is determined, the compounds of a

given sample can be identified by matching obtained information with standard

databases (Feist and Hummon 2015).

Two fundamental strategies are currently employed for identification and

characterization of proteins by MS approaches. In the Top-Down strategy, intact

protein ions or large protein fragments are subjected to gas-phase fragmentation

ready for MS analysis, so that more complete protein backbone and credible

post-translational modifications (PTMs) could be preserved (Pesavento

et al. 2006; Du et al. 2006). This strategy simplifies the sample preparation

process and provides higher sequence coverage over peptide-level studies. In

Bottom-Up strategies, proteins are proteolytically digested into peptides prior to

mass analysis, and thus peptide-level information could offer a basis for com-

prehensive protein identification. With its exhaustive analysis of samples, the

Bottom-Up approach is more suitable for high-complexity samples for large-

scale analysis, due to its superior front-end separations and higher sensitivity.

Since the Bottom-Up method is more widely used in the proteomics field, we will

focus mainly on describing the workflow and subsequent data analysis of

Bottom-Up strategies in this chapter.

With the rapid growth of proteomics, there has been a notable increase in

publications of clinical proteomics field. Clinical proteomics represents the

6 Proteomic Profiling: Data Mining and Analyses 135



comprehensive study of proteins present in medical specimens, such as body fluids

and tissues, in both qualitative and quantitative manners. By exploring the differ-

ences between specimens from healthy and diseased individuals, important disease

biomarkers may be discovered, and such biomarkers could be used to monitor

treatment effect as well. Generally, proteomics studies contain several experimental

procedures including specimen preparation, peptide/protein profiling, and data

analysis. The general workflow of most proteome research is shown in Fig. 6.1.

Although the field of proteomics has advanced tremendously, there are still some

technical limitations such as low coverage rate. Despite these challenges, proteo-

mics studies have generated invaluable information for understanding cellular

functions and facilitated the identification of biomarkers critical for the detection,

prognosis, diagnosis, and treatment of diseases.

Sample preparation (tissue specimen, cells, body fluid)

Proteomic Profiling

Database

Proteomic
Analysis

PTM
analysis

PPI
analysis

Pathway
analysis

Enrichment
Analysis

separation Ionization Mass
Analyzer

Identification Annotation
Data storage

and
exchange

Fig. 6.1 General workflow of proteomics study
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6.2 Sample Preparation

Regardless of the diversity of MS-based analysis approaches, high quality sample

preparation is critical for a successful proteomics experiment. Generally, samples

for proteomics studies are gained from the organism in vivo, cultured tissue or cell

line in vitro, after which whole proteins can be isolated from tissue/cell lysis.

Necessary purification and enrichment will be applied to collect proteins before

proteolytic digestion and subsequent profiling by liquid chromatography coupled

with mass spectrometry (LC-MS). Highly efficient lysis and digestions of samples,

as well as the removal of contaminants while keeping sample loss minimal, are

always the final goals of strategic optimization. The general workflow of sample

preparation procedure is shown in Fig. 6.2.

Mass Analyzer 

Sample Ionization (ESI, MALDI)

Protein purification 

Protein dissolution and digestion

Sample collection (tissue specimen, cells, body fluid...)

Sample lysis and protein extraction

(Proteins)

(Peptides)

(Peptides Ions)

(Mass Spectra)

Fig. 6.2 General workflow of sample preparation prior to mass spectrometry analysis
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6.2.1 Sample Collection

Important factors such as appropriate selection of material types and optimal

establishment of experimental conditions must be considered prior to preparing

samples. Since the quality of the samples will influence the overall pattern of

biomarker discovery, well-defined clinical specimens are very important for suc-

cessful clinical proteomics profiling.

Generally, there are three major types of clinical specimens: body fluid (e.g.,

serum/plasma, cerebrospinal fluid, urine, saliva, tears, lymph, etc.), tissues (e.g.,

liver, muscle, brain, etc.), and cells (e.g., blood cells) (Silberring and Ciborowski

2010). Each of these sources has its own advantages and disadvantages for bio-

marker discovery in clinical proteomics analysis. For instance, body fluids are

convenient and easy to use, and proteins secreted in body fluids may reflect a

wide range of pathophysiological conditions during disease development. Never-

theless, complex pretreatment processes are needed to remove the primary existing

highly abundant proteins, since they may mask the proteins of interest. Tissues are

widely used for clinical proteomics as well, and lesion samples are commonly used

as initial screening materials to find the direct causes of a disease. However, the

heterogeneous cell types and cell stages in tissue biopsies may lead to difficulty in

identifying biomarkers, especially for cancer studies. Generally, tumor tissues are

heterogeneous, which contain various cell types such as stromal cells, immune cells

and extracellular matrix proteins (Lu et al. 2012) and it may blind the true protein

alterations in cancer cells. Thus, methods effectively coupling laser-capture micro-

dissection (LCM) with MS have been developed. Since LCM could isolates specific

subpopulations of tissue cells under direct microscopic visualization and increases

the homogeneity of histologically enriched cell populations, the linkage of LCM

and MS provides a robust profiling of target sample from solid tumors (Wisniewski

et al. 2011).

6.2.2 Samples Lysis and Protein Extraction

Chemical lysis, chemical extraction and mechanical disruption are the most com-

mon strategies performed to acquire proteins from clinical specimens (Raynie

2010; Canas et al. 2007). Choosing a lysis buffer depends greatly on detergent

attributes, as detergents with higher critical micelle concentration and lower micelle

molecular weight could effectively solubilize proteins and be readily removed

(Feist and Hummon 2015). Mechanical disruption such as gentle rocking, cell

scraping and sonication could be arranged in the order of violence degree from

easy to hard. Due to the diversity in organismal samples, the appropriate choice of

lysis buffer and mechanical disruption varies in accordance with different physical

and chemical features of target proteins.
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6.2.3 Protein Purification

High yield of contaminants is prevalent in a variety of clinical samples and can lead to

research deviation. The release of abundant cellular compositions from lysate, such as

lipids and nucleotides, might disturb chromatographic separation and spectral signals

for protein identification (Feist and Hummon 2015). For the in-gel digestion method,

proteins are solubilized with detergents prior to separation by sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) (Wisniewski et al. 2009). Detergents

are commonly incompatible with reverse-phase separations, and may even harm mass

spectrometry instruments and columns irreversibly. In addition, some detergents also

interfere with enzymatic digestion (Zhou et al. 2012). Thus, removing contaminants

and detergents is a necessary step of protein purification following protein extraction.

Classic protein precipitation techniques including acetone precipitation (Buxton

et al. 1979), trichloroacetic acid precipitation (Arnold and Ulbrich-Hofmann 1999),

chloroform-methanol mixture (Wessel and Flugge 1984) and ethyl acetate (Yeung and

Stanley 2010), have been proven effective in protein purification. Specifically, the

chloroform-methanol method is more efficient for membrane proteins, while acetone

precipitation sequesters mostly water-soluble proteins (Ferro et al. 2000).

6.2.4 Protein Dissolution and Digestion

After pollution elimination, purified protein precipitate is collected in pellet form

by centrifuging and then dried to some extent. The compact structure of the pellet

impairs sufficient exposure of proteins to the dissolution buffer, so fulfilling

suspension of a pellet in dissolution buffer becomes essential to obtain a sufficient

amount of protein. The most widespread strategies include shaking, vortexing and

sonication (Burgess 2009; Isaacson et al. 2006).

Protein digestion with trypsin is the most crucial step in sample-preparation,

followed by LC-MS to identify amino acid sequences and investigate PTMs

(Hustoft et al. 2011). Well-defined specificity of trypsin protease guarantees precise

digestion of peptides, and thus yields reliable detection of molecular weights of

peptides in the following LC-MS strategies (Matthiesen and Mutenda 2007). There

are two mature approaches to prepare peptide cleavage for MS-based proteome

analysis: in-gel digestion and in-solution digestion. In-gel solution fractionates

proteins by employing SDS-PAGE then digesting them in gel (Shevchenko

et al. 1996). In-gel digestion economizes analytical time in MS analysis while

achieving exhaustive and specific protein information (Granvogl et al. 2007), and

excluding contaminants from the sample prior to MS analysis (Weiner et al. 1972).

In-solution digestion extracts proteins with strong chaotropic reagents, and the

precipitation and digestion of proteins are performed under denaturing conditions

in the liquid phase (Wisniewski et al. 2009). In this process, protein samples receive

highly-automated handling but may suffer from incomplete dissolution.
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6.2.5 Sample Separation

MS-based proteomics studies depend on optimized separation technologies to

separate complex biological samples into several simple components. Sufficient

separation is necessary both for high-efficiency identification of peptide fragments

and sensitive detection of low-abundance proteins. Two of the most widely used

separation approaches in proteomics areas are 2-DE and liquid chromatography

(LC).

6.2.5.1 Gel-Based

2-DE has been employed in proteomics as a mature separation technology for

decades, and it is still used to study low-complexity proteomes and intact proteins

with PTMs (Zhang et al. 2013). Based on the isoelectric point and molecular

weight, 2-DE is able to separate thousands of proteins from a complex mixture

sample on a single gel (Zhang et al. 2013). 2-DE is a relatively simple separation

procedure, and the gel provides a good carrier matrix for the safe storage of proteins

(Shevchenko et al. 2006). After the 2-DE separation, several different protein

visualization methods such as Colloidal Coomassie blue, silver staining and fluo-

rescence are available for protein detection (Rabilloud and Lelong 2011). The

density of stained spots reflects the amount of proteins, and the comparison of

staining intensity between spots provides a measure of relative quantification.

6.2.5.2 Liquid Chromatography-Based

LC isolates different components of samples on the basis of their individual

affinity features with the stationary and mobile phases. With appropriate exper-

imental design, different peptides can be sufficiently separated according to

particular features of retention time in a specific column. In proteomics studies,

the most common filling materials of LC columns include ion exchange, reverse

phase, affinity and hybrid materials (Yates et al. 2009). Specifically, reverse phase

liquid chromatography (RPLC) plays an essential role in LC-MS based proteo-

mics. RPLC chromatographic column is packed with nonpolar material as sta-

tionary phase, thus the hydrophobic molecules in the mobile phase tend to bind

with the column, resulting in preferred elution and outflow of hydrophilic mole-

cules (Shen and Smith 2002). Since its mobile phase tandem with electrospray

ionization (ESI) possesses high resolution, efficiency, reproducibility, and com-

patibility, analytical RPLC is widely used as the single phase or as the last

dimension of multidimensional separation such as multidimensional protein

identification technology (MudPIT) (Yates et al. 2009) before mass analysis

(Opiteck and Jorgenson 1997).
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6.2.5.3 Gas Chromatography-Based

In addition to LC-MS, gas chromatography-mass spectrometry (GC-MS) has been

used in proteomics research as well. Subjected to a carrier gas (e.g. helium); the

molecules are separated based on their volatility and bond characteristics in the gas

chromatography stage. After the sample is converted into gas phase ions that are

sorted based on their mass to charge ratios, the representative electrical signals can

be translated into a meaningful mass spectrum. Generally, analytes for GC-MS

include gases and naturally volatile substances, as well as compounds which require

derivatization (Schauer et al. 2005). Since GC-MS is effective for the analysis of

steroids, diglycerides, mono-, di- and trisaccharides, it is more popularly applied in

metabolic studies rather than proteomics research (Rohloff 2015).

6.2.5.4 Protein Microarray Technologies

As one complementary technique to MS-based proteomics analysis, protein micro-

array has been broadly involved in protein profiling (Puig-Costa et al. 2011). Based

on different immobilized molecules (antigens or antibodies), protein microarrays

are classified into two categories: forward-phase microarrays and reverse-phase

microarrays (Chandra et al. 2011). In forward-phase microarrays, a library of

antibodies is immobilized onto the chip surface and then probed with a mixture

of proteins. Antibody microarrays, which are effective at detecting variations of

protein expression with a relatively large dynamic range, are the most common

forward-phase microarrays (Berrade et al. 2011). Forward-phase microarrays arrays

have been widely implemented in the detection of antibody-antigen interactions,

biomarker detection (Shafer et al. 2007), immunological studies (Robinson

et al. 2002) and PTMs studies (Chen et al. 2007). Conversely, in reverse-phase

microarrays arrays the protein lysates are extracted from target cells, tissues or

serum samples onto a slide, and the arrays are then incubated to antibodies against

the interest proteins. In clinical researches, reverse phase microarrays have been

successfully used for analyses of PTMs (LaBaer and Ramachandran 2005), signal

transduction in living cells (Chan et al. 2004), and for studying cell signaling

pathways in cancer (Sheehan et al. 2005; Grubb et al. 2003).

6.3 Mass Spectrometry Technologies

6.3.1 Ionizing Technologies

Proteins and peptides are polar, nonvolatile, and thermally unstable molecules, so

MS-based analytical strategies demand an ionization technique to gasify analyte

without extensive degradation. Herein, we will briefly introduce MALDI (Matrix-
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Assisted Laser Desorption/Ionization) (Karas and Hillenkamp 1988) and

Electrospray Ionization (ESI) (Fenn et al. 1989) which are two widely used

ionization methods in proteomics studies.

In the MALDI method, analyte molecules are dispersed with a large amount of

matrix forming co-crystals, which will be rapidly sublimated by the release of heat

and energy provided by laser source. MALDI-generated ions are predominantly

singly charged, which makes MALDI applicable to top-down analysis of high-

molecular-weight proteins. Due to its simplicity, excellent mass accuracy, high

resolution and sensitivity, Matrix Assisted Laser Desorption Ionization Time-of-

Flight (MALDI-TOF) is broadly used to identify proteins by what is referred to as

peptide-mass mapping (Medzihradszky and Chalkley 2015) or peptide-mass fin-

gerprinting (Thiede et al. 2005). MALDI-MS technology is commonly used in

conjunction with 2-DE for prior protein purification and fractionation, but is less

appropriate for peptide chromatography due to difficult sample handling.

ESI is a technique which produces charged gas-phase ions from peptide solution

by imposing high voltage and electrospray (Yates et al. 2009). Coupled with

capillary electrophoresis or liquid chromatography for molecular fractionation

prior to mass spectrometric analysis, ESI-MS can be an effective technique capable

of analyzing a wide range of molecules in a complex biological sample (Matthiesen

and Mutenda 2007). The analysis can either be processed online (directly convey

the liquid eluting from the LC system to an electrospray) or offline (collect fractions

for later analysis). With very little fragmentation, the solution-phase information

can be better reflected in gas-phase. These advantages make ESI an ideal choice of

ion source in LC-MS proteome profiling.

6.3.2 Mass Analyzer

The mass analyzer is an integral part of MS technology because it can store and

separate ions based on the mass-to-charge (m/z) ratios from mixture samples. For

proteomics research, four broad types of mass analyzers are commonly recognized

as alternatives: Quadrupole, Ion Trap, Time-of-Flight (TOF) and Fourier-

Transform Ion Cyclotron Resonance (FTICR) mass analyzers. Each mass analyzer

features a unique design and performance, including differences in mass range,

resolution, sensitivity, ion transmission and dynamic range. TOF mass spectrome-

ters determine m/z ratio by measuring the mass-dependent time of ions with

different masses from the ion source to the detector (Chernushevich et al. 2001).

Ion trap mass spectrometers can store an ion of interest and eject all other ions

simultaneously, then fragment the precursor ion to produce sequence information

(Matthiesen and Mutenda 2007). So far, TOF and Ion-Trap instruments have

dominated proteomics studies and aided in a number of meaningful discoveries.

These analyzers can also work together in tandem to achieve reinforced perfor-

mance and satisfy specific needs by making use of the advantages of each approach

(Table 6.1).
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6.4 Quantitative Mass Spectrometry in Proteomics

The goal of quantitative proteomics is to measure dynamic changes of protein and

PTMs abundances under altered conditions. There are two mainstream quantitative

methods in MS-based proteomics: relative and absolute quantitative proteomics.

Relative quantitation estimates the expression ratios of detecting proteins against an

internal reference protein, while absolute quantitation describes the expression

amount or concentration of each protein in a given sample (Elliott et al. 2009).

Generated from LC-MS experiments, differential analysis can be carried out using

both labeling and label-free techniques.

6.4.1 Labeling-Based Technique

Stable isotope-labeling is a straightforward and powerful quantitative method for

MS-based proteomics studies. Different protein samples are labeled distinctively

then combined into a mixture. Subsequently, the pooled mixture is taken through

the sample preparation step and analyzed by following LC-MS methods (Zhu

et al. 2010).

Stable-isotope tags have been introduced to proteins either via metabolic mark-

ing using heavy amino acids (Conrads et al. 2002), via chemical reactions using

isotope-coded affinity tags or similar reagents (Yao et al. 2001), or enzymatically

via transfer of 18O from water to peptides (Yao et al. 2001). The metabolic labeling

of stable isotopes imports isotopic-marked material into cell media during protein

synthesis to overcome processing errors. The SILAC (stable isotope labeling of

amino acids in cell culture) has emerged as a popular alternative in which only

specific amino acids like arginine and lysine are labeled (Ong et al. 2002). Com-

paratively, these post-biosynthetic labeling strategies, including chemical labeling

and enzymatic labeling, work for any sample at either the protein or the peptide

level. The relative quantification of peptides is measured by comparing peptide

pairs marked as heavy or light, then protein levels are estimated from statistical

evaluation of the peptide ratios (Yates et al. 2009). When a known concentration

labeled synthetic peptide is added to the sample, the stable isotope-labeling tech-

nology can identify the absolute measurement of protein or peptide abundance

(Gerber et al. 2003).

6.4.2 Label-Free Technique

The label-free technique is an alternative methodology for quantitative proteomics

study in complex biological samples. In general, label-free quantitative approaches

possess two different quantification methods: chromatographic peak areas and
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spectral counting. There is a linear correlation between chromatographic peak area

and abundance of measured peptides, so peptides can be relatively quantified by

comparing chromatographic peak areas at specific retention times between LC-MS

runs (Chelius and Bondarenko 2002; Tang et al. 2004). On the contrary, since the

number of fragment-ion spectra for peptides mirrors the amount of the

corresponding protein proportionally, the spectral counting method can estimate a

relative quantification of protein through counting and comparing them between

different samples (Liu et al. 2004). Compared with isotope labeling methods, label-

free quantitative proteomics techniques provide rapid and economic measurement

of protein expression levels. The label-free approach has a better dynamic range

and proteome coverage for peptide identification; however, quantification accuracy

and reproducibility are inferior to those produced by labeling-based strategies

(Li et al. 2012).

6.5 Protein Identification from Mass Spectrometry Data

During the past few decades, profit from the application of mass spectrometry

analysis to protein samples, the field of proteomics is developing rapidly. Large

volumes of experimental data was generated base on MS proteomic platform (Riffle

and Eng 2009). To systematically identify whole proteins from the raw data,

multiple search engines in conjunction with several well-established protein

sequence databases are applied. In the following sections, we will briefly introduce

some common databases and frequently used search engines for protein

identification.

6.5.1 Common Protein Sequence Databases

6.5.1.1 UniProt

UniProt (http://www.uniprot.org/) is a comprehensive, high-quality and freely

accessible database of protein sequence and functional information which com-

bines the Swiss-Prot, TrEMBL and PIR-PSD databases into a single resource

(Apweiler et al. 2004). It contains four core sub-databases such as: Protein

knowledgebase (UniProtKB), Sequence clusters (UniRef), Sequence archive

(UniParc) and Proteomes. It has excellent tools for dataset retrieval such as

BLAST (Basic Local Alignment Search Tool), Align and Retrieve/ID mapping.

Many entries with large amounts of biological and sequencing information are

derived from research literature or genome sequencing projects. This database

serves as a basic and curated sequence resource for protein prediction and for

planning new experiments (Hinz and UniProt 2010). Small datasets can be directly
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downloaded from the UniProt web site. However, for downloading complete

datasets, UniProt FTP site (ftp://ftp.uniprot.org/) is recommended.

6.5.1.2 Swiss-Prot

Swiss-Prot is a leading and comprehensive universal protein sequence database

which was integrated into UniProt and can be accessed via the official website of

UniProt (http://www.uniprot.org/). Currently, it contains more than 540,000 man-

ually reviewed and annotated entries from numerous species. It is a non-redundant

database, which means that all reports for a given protein are merged into a single

entry. It is also highly integrated with other databases (Apweiler et al. 2004;

Gasteiger et al. 2001).

6.5.1.3 TrEMBL

As an essential part of UniProt database, TrEMBL (http://www.uniprot.org/) cur-

rently contains more than 50 million automatically annotated and not reviewed

entries. It is a computer-annotated protein sequence database complementing the

Swiss-Prot Protein Knowledgebase. TrEMBL consists of computer annotated trans-

lation of the coding sequences (CDs) incorporated in public databases such as

EMBL/GenBank/DDBJ Nucleotide Sequence Databases and also protein

sequences extracted from the literature or submitted to UniProtKB/Swiss-Prot

(Schneider et al. 2004). TrEMBL strictly follows the Swiss-Prot format and con-

ventions (Apweiler et al. 2004).

6.5.1.4 RefSeq

NCBI’s Reference Sequence database (http://www.ncbi.nlm.nih.gov/refseq/) con-

tains large amounts of sequencing information for DNA, RNA and protein from

plasmids, organelles, viruses, archaea, bacteria, and eukaryotes. The aim of the

project is to provide a non-redundant collection of references for nucleotide and

protein sequences. Each reference sequence is constructed wholly from sequence

data submitted to the International Nucleotide Sequence Database Collaboration.

As a fundamental database with genetic and functional information, RefSeq pro-

vides reference standards for multiple purposes, such as genome annotation or

reporting locations of sequence variation in medical records. The RefSeq database

can be easily retrieved in several different ways including Nucleotide, Protein, and

Map Viewer. Sequence information included in RefSeq database can be searched

via BLAST and downloaded from the RefSeq FTP site.
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6.5.2 Software for Protein Identification

6.5.2.1 Mascot

Mascot is a database search engine, which can identify proteins by matching mass

spectrometry raw data to known peptide sequence databases (Perkins et al. 1999;

Koenig et al. 2008). Mascot is widely used in proteomics research. Customers can

easily get access to a series of Mascot software and temporarily use them on the

Matrix Science website (http://www.matrixscience.com/). However, for large scale

data analysis and routine work, researchers must purchase the software and obtain a

license to run in-house. Mascot is based on the Molecular Weight Search

(MOWSE) algorithm (Pappin et al. 1993) as well as probability-based scoring

(Fenyo 2000).

6.5.2.2 SEQUEST

SEQUEST is a tandem MS data analysis program for protein identification.

SEQUEST identifies proteins by matching experimental tandem mass spectra to

known protein/peptide sequences database. A cross-correlation function is calcu-

lated between the measured fragment mass spectrum and the protein sequences in

the database, and it is used to score the proteins in the database (Eng et al. 1994).

SEQUEST supports the use of information from several fragment mass spectra in

the database search and shows good sensitivity and flexibility in handling data

generated by different types of mass spectrometers (Griffin et al. 1995; Sadygov

et al. 2004). Modern proteome research based on tandem mass spectrometer will

produce a large scale of tandem mass spectra data. Identifying such a data collec-

tion requires automation and stability, and SEQUEST is the first software to fill

that need.

6.5.2.3 PLGS

PLGS (ProteinLynx Global SERVER) is developed by Waters Corporation. As a

fully integrated Mass-Informatics platform for quantitative and qualitative proteo-

mics research, it plays a central role in data analysis in the Waters proteomics

system. PLGS always comes together with instruments from Waters, and it has the

selectivity and specificity required for MSE data analysis. Based on open system

architecture, PLGS has automatic workflow for high throughput data processing. It

can minimize the false positive rate by setting strict statistical filters. The friendly

operation interface of PLGS allows users to set individual parameters including

database importing, protein modification selecting, and threshold setting. The

project and database management tools included in PLGS provide functions for

results visualization and reporting.
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6.5.2.4 PEAKS

PEAKS is commonly used for peptide identification through de novo peptide

sequencing, thus extracting amino acid sequence information without the use of

databases. Based on a progressive model and algorithm, PEAKS computes the best

peptide sequences whose fragment ions can best match the peaks in the MS/MS

spectrum. PEAKS provides a complete sequence for each peptide, confidence

scores on individual amino acid assignments, and simple reporting for high-

throughput analysis. As a well-known de novo sequencing software, PEAKS has

the ability to compare results of multiple search engines (Ma et al. 2003).

6.6 Proteomics Data Analysis

MS-based proteomics is widely used and has become an invaluable tool for

profiling system-wide protein identification, Protein-protein interactions (PPIs)

and Post-translational modifications (PTMs). Proteomics studies have been

applied for various purposes in clinical field, for example, biomarker discovery

in diseases and study of drug responses. With the rising amount of published

proteomics research, the need for in-depth analysis of large-scale proteomics

datasets is becoming more and more urgent. Therefore, many computational

techniques, databases and tools have been developed to interpret

proteomics data.

6.6.1 Singular Interpretation of Protein List

Irrespective of the employed method, the main result of the large amount of

published proteomics studies is a list of identified proteins, all of which need to

be interpreted in different ways for diverse research topics. Usually, the first step of

functional analysis is to map the protein name to a unique identifier. Unlike gene

names which have been widely standardized by HGNC (HUGO Gene Nomencla-

ture Committee) (Povey et al. 2001), protein names can differ between databases

and may even change in different versions of the same database (Malik et al. 2010).

Given that many analysis tools only accept specific protein identifiers as input, it is

of utmost importance to standardize protein names before subsequent analysis.

Platforms such as Uniprot (Bairoch et al. 2009) and Ensembl (Hubbard

et al. 2009) are useful in normalizing protein names. In addition, PICR (Cote

et al. 2007) and CRONOS (Waegele et al. 2009) are instrumental in connecting

protein names to corresponding gene identifiers. Furthermore, it is also essential to

check the non-redundancy of protein lists, as repetitive entries may lead to biased

result in some analysis tools.
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Reviewing extensive amounts of literature to interpret a given protein list is still

common, and several comprehensive databases like Uniprot (Bairoch et al. 2009)

can be easily accessed to explore the associated function for each protein entry.

Moreover, several available repositories can be used to search for previously

carried-out proteomics experiments to compare the proteomics results to other

relevant experiments. Databases like PRIDE (Jones et al. 2006), PepSeeker

(McLaughlin et al. 2006), PeptideAtlas (Deutsch et al. 2008), GPM (Craig

et al. 2004) have been proven useful in this regard. Although such an interpretation

provides us with an easy and intuitive way to learn more about protein function, it

has its own limitations. Due to the intricate hypotheses for different experiment

design and proteomics datasets, merely comparing experimental findings to man-

ually collected information could introduce bias. In addition, some potentially

essential hidden relationships between the members of a protein list may be

overlooked.

6.6.2 Comparative Proteomics Analysis

By identifying proteins that differ in their abundance between two or more exper-

imental states, comparative proteomics has become a powerful tool to explore

protein expression profiling response to diverse biological systems, such as differ-

ent cell developmental stages or disease conditions. However, the reliability and

utility of comparative proteomics analysis is highly dependent on accurate and

rigorous measurement of quantitative changes. Since proteomics data is usually

subject to a number of challenging analytical issues like experimental noise and low

coverage rate, cares should be taken when dealing with such data (Listgarten and

Emili 2005).

6.6.2.1 Data Normalization

Typically, in order to get a more accurate estimate of the underlying biological

effects being measured, normalization is performed to remove systematic biases

from the data before subsequent statistical inference. The normalization process

may help to adjust the variability due to sample preparation or equipment condi-

tions. Several normalization methods have been used in proteomics studies. The

simplest one is the global normalization method, in which the raw protein

expression level is normalized against that of a well-conserved protein

(Karpievitch et al. 2012). In addition, owing to the similarity of data features

between gene expression and protein data, numerous normalization approaches

such as locally weighted scatterplot smoothing (LOWESS) regression and

quantile normalization, have been widely borrowed from gene expression studies

(Karpievitch et al. 2012).
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6.6.2.2 Missing Values

Missing issues are common in MS expression data, and considerable proportions of

missing observations have been observed in proteomics studies (Karpievitch

et al. 2012). There are several causes for missing events, such as low concentrations

(hard to be detected) of the peptide, or absence of the peptide in the sample.

Typically one cannot clearly determine the missing mechanism, which further

complicates the problem. There are two major categories: missing at random

(MAR) and missing not at random (MNAR). For the MAR situation, a simple

imputation process is commonly used that replace missing values by a constant or a

randomly selected value (e.g., impute with mean, median, etc.). For more complex

situations, several other methods are applied, like KNN (K-nearest neighbors)

(Troyanskaya et al. 2001), LSA (Least-squares adaptive) (Bo et al. 2004), which

estimate missing values based on the expression profiles of other proteins with

similar intensity within the dataset. Because of the complicated missing mecha-

nisms in proteomics, no individual method is guaranteed to be the best solution.

6.6.2.3 Differential Expression Analysis

Conventional proteomics studies often include comparison of protein expression

profiles under two or more different conditions (e.g., normal versus disease).

Statistical approaches such as ANOVA (analysis of variance) or regression are

commonly applied in comparative proteomics (Wang et al. 2012) to determine

which subsets of proteins are differentially expressed (DE) with a pre-defined

statistical threshold. Typically, a test statistic, which reflects how much a feature

discriminates between classes, will be generated by a specific test, and the P values

for DE protein adjusted for multiple testing be calculated based on the null

distribution (theoretical or permutation-based) (Pendarvis et al. 2009). A variety

of methods originally designed to compare microarray datasets have been used in

proteomics data as well. For instance, the SAM (Significance Analysis of

Microarray) method and the PLGEM (Power Law Global Error Model) are now

widely applied in comparative proteomics analysis (Bin Goh and Wong 2014;

Roxas and Li 2008).

6.6.3 Enrichment Analysis

Various functional databases contain experimentally proven or otherwise inferred

connections between the genes or proteins and their specific functions. Generally,

these functions belong to a certain controlled vocabulary, which means they have a

clearly described meaning defined and recognized by domain specialists. The GO

(Ashburner et al. 2000) is a project for consistent descriptions of gene and gene
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product attributes across species. Each GO contains an identifier and a term belongs

to one of the three GO categories: “biological process,” “molecular function” or

“cellular component.” It is worth mentioning that GO is organized in a hierarchical

way, which can be represented as a tree structure. Normally, an initial step for

functional interpretation of the acquired protein list is to link the protein identifier

with its associated GO. For instance, one can use the AmiGO (Carbon et al. 2009),

which is a user-friendly platform, to search the GO associated with a particular

gene/protein.

6.6.3.1 Annotation Term Enrichment Analysis

Generally, the subsequent step after GO annotation is GO enrichment analysis,

which determines whether a specific GO term is enriched in a particular group of

biological processes, functions or cellular compartments. It involves comparing the

frequency of individual functional annotations within a reference list, and the

enrichment score can be statistically tested (e.g., hyper-geometric, binomial or

Chi-square tests, etc.). The result will be a p value, which can be used as the cutoff

to measure significance of over- or under-representation of a GO term. Since the

number of functional terms for enrichment test is usually large, an adjusted multiple

p-value (e.g. Benjamini-Hochberg correction (Benjamini and Hochberg 1995)) is

often provided.

A wide range of software is available for GO enrichment analysis, and an

extensive list can be found at (http://geneontology.org/). DAVID is a popular

meta-tool (Dennis et al. 2003) that aids with GO enrichment analysis. It applies a

modified Fisher exact p-value to determine whether a GO term is enriched in a

given proteomics dataset with reference dataset as background (Malik et al. 2010).

It enables the researcher to gather information about over- or under-representation,

and to understand the biological meaning behind large lists of proteins. In proteo-

mics studies, the GO-term enrichment analysis has been applied in numerous

contexts. The advantage of annotation term enrichment compared to the singular

analysis of individual protein lists is that it can summarize the functional properties

on a global scale instead of individual protein entries.

Careful attention should be paid to certain issues while performing GO enrich-

ment analysis. The first concern is the choice of reference dataset, which is either

predefined by the tool (e.g., the human proteome), or can be selected manually (e.g.,

all identified proteins). The second concern is the choice of cutoff to determine

which proteins can be retained in the list. In addition, the overrepresentation

analysis is usually inclined to suffer from limited discriminative power.

6.6.3.2 Set Enrichment Analysis

The classical overrepresentation analyses strictly rely on a pre-defined quantitative

threshold selecting proteins to be included, and ignore the expression level
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alterations when calculating the functional enrichment score. Thus, set-based

enrichment analyses were developed to evaluate the significance of predefined

protein lists. As a powerful method to determine functional significance of gene

groups, gene set enrichment analysis (GSEA) was originally developed in the gene

expression data (Subramanian et al. 2005). Without modification, this method has

been applied in the proteomics field (Clutterbuck et al. 2011), and a modified

approach called PSEA (Protein set enrichment analysis) was developed to study

differential protein expression based on Spl (Spectral index) from label-free quan-

titative proteomics in breast cancer research (Cha et al. 2010).

The basis of set-based enrichment analysis is to determine whether the

pre-defined gene subsets (e.g., based on a common functional annotation) are

distributed in a ranked list (e.g., generated by quantitative feature of expression

data) randomly. The pre-defined annotation terms are commonly gained from

libraries such as GO (Ashburner et al. 2000) or MSigDB (Liberzon et al. 2011).

Then, the ranked protein list is generated based on the quantitative differences

between case and control group and the enrichment score (ES) is calculated based

on specified algorithms. Usually, empirical distribution of ES is determined by

permutations, and it is used to test the statistical significance of observed ES.

The set-based enrichment analysis has many advantages compared with tradi-

tional overrepresentation analysis. There is no requirement of an arbitrary threshold

to distinguish significantly differential proteins, and it provides more statistical

power. In addition, set enrichment analysis could detect coordinated changes of

gene products, which may reveal some noteworthy proteins and protein groups

important for disease status.

6.6.3.3 Pathway Analysis

Biological pathways usually describe a series of chemical reactions in the cell that

lead to a specific biological outcome. Proteins involved in these chemical interac-

tions and those that have a regulatory effect play important roles in pathway

analysis. Rather than merely taking the gene-centric view of GO-based analyses,

pathway analyses provide us with more insight into biological mechanisms

(Schmidt et al. 2014).

Several comprehensive databases such as KEGG (Kanehisa et al. 2014),

Reactome (Croft et al. 2011) and Ingenuity Pathways Knowledge Base (Ficenec

et al. 2003) contain a large amount of pathway information. These instrumental

tools are typically derived from intracellular reactions like metabolic signaling

pathways. In addition to the above comprehensive resources, numerous highly

specific databases have been developed as well. For instance, the PANTHER

(Thomas et al. 2003), GenMAPP (Salomonis et al. 2007) and PID (Schaefer

et al. 2009) mainly focus on signal transduction processes. Lately, several

databases were created which include pathways active in disease. Netpath
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(Kandasamy et al. 2010), for example, can help researchers to extract cancer

relevant pathways from a complex dataset.

A comprehensive overview of hundreds biological pathway-related resources

and molecular interaction-related resources can be found on the Pathguide website

(http://pathguide.org) (Bader et al. 2006). This powerful resource could help

researchers to select the optimal database for their studied biological systems, and

it can be recommended as a starting point for proteomics pathway analysis. Similar

to the GO term annotation, the identification of pathways under diverse biological

conditions is highly dependent on the algorithm used, such as topology-driven

approaches and multivariate approach. For instance, the “PathNet” (Dutta

et al. 2012) algorithm incorporates both differential expression information of

genes and connectivity information from canonical pathways to investigate rela-

tions among diverse pathways. As various biological components simultaneously

participate in multiple biological processes, it is difficult to make a clear distinction

between individual pathways, and even popular curated pathway databases show

limited overlap. With more advanced experimental techniques and bioinformatics

tools, this could be improved over time.

6.6.4 Protein-Protein Interaction Analysis

Protein-protein interactions (PPIs) represent non-random physical contact between

two or more proteins, and thus form smaller or larger complexes in a space- and

time-dependent manner. Since physical contact between proteins could trigger

conformational changes or PTMs that modulate the activity of those proteins,

PPIs can help us gain further insight into biological processes. PPIs are not static

or permanent, but experience continuous reassembly and turnover. PPIs are usually

regulated based on many factors, such as specific cell-type, developmental stage of

the cell, cell-cycle phase, external stimulus or signal and the presence of other

proteins. Therefore, the network of PPIs can provide powerful information to reveal

and explain important functional modules within proteins. For instance, if proteins

are neighbors in the PPI network and found to be co-regulated in the differential

expression list, it may suggest that they work together to play important roles in the

affected biological processes.

PPIs are essential to development and homeostasis of biological mechanisms,

and many human diseases can be traced to aberrant PPIs. Thus, the inhibition of

these aberrant associations is of great clinical significance. Because of the diverse

nature of PPIs, the successful design of therapeutics requires detailed knowledge of

each system at a molecular level. Several recent studies have identified and

characterized specific interactions from various disease systems, and many of

the key PPIs are known to participate in disease-associated signaling pathways

(Ryan and Matthews 2005).
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6.6.4.1 Techniques to Perform PPIs

Plentiful experimental techniques have been developed to measure PPIs, among

which the Y2H (yeast two-hybrid) screening (Fields and Song 1989) and AP-MS

(affinity purification coupled with mass spectrometry) (Rigaut et al. 1999) are most

popular approaches. To measure whether two proteins physically interact with each

other, modified yeast strains are used in Y2H system to express a “bait-protein”

(fused to a DNA-binding domain) and a “prey-protein” (fused to a transcription

activation domain), which, if they interact, trigger the expression of a reporter gene.

In an AP-MS experiment, the protein of interest is attached to a larger protein

fragment (the “tag”). As the tagged protein can be purified easily from the cell

extract, proteins binding to the tagged protein are co-purified and could be subse-

quently identified by MS. Large-scale AP-MS experiments have been applied to

study yeast and human PPIs. Although the high-throughput experimental methods

present many advantages over traditional approaches, they still have some

limitations.

6.6.4.2 Commonly Used Databases for PPIs Analyses

Large databases documenting protein interactions are publicly available for several

organisms, and HPRD (Prasad et al. 2009), IntAct (Kerrien et al. 2007), MINT

(Persico et al. 2005), MIPS (Mewes et al. 2004), DIP (Xenarios et al. 2002) and

BioGRID (Breitkreutz et al. 2008) are some of the most commonly used resources

(shown in Table 6.2). Among these, HPRD (http://www.hprd.org/) can depict and

incorporate interaction networks, domain structure, post-translational modifica-

tions, and associated disease for human proteins. IntAct (http://www.ebi.ac.uk/

intact/) is an analysis tool for molecular interaction data, which gathers useful

information from previously published results or user-submitted data. MINT

(http://mint.bio.uniroma2.it/mint/Welcome.do) is an interactive database based on

experimentally verified PPIs, usually extracting data from technical literature.

MIPS (http://mips.helmholtz-muenchen.de/proj/ppi/) contains manually curated

high-quality PPI data collected from the scientific literature by expert curators.

DIP (http://dip.doe-mbi.ucla.edu/dip/Main.cgi) interprets signaling or regulatory

pathways, and can also detect protein interactions at the cellular level. BioGRID

(http://thebiogrid.org/) is a curated biological database of protein-protein inter-

actions, genetic interactions, chemical interactions, and post-translational mod-

ifications. In addition, several meta-bases such as APID (Prieto and Rivas 2006),

I2D (Brown and Jurisica 2007) and STRING (Jensen et al. 2009) are widely used

in PPI analyses (shown in Table 6.3). For instance, STRING (http://string-db.

org/), a powerful meta-database including data from many curated databases,

serves as a very popular tool for interaction network analysis of proteomic data,

incorporating both interactions and pathway information to form an easy-to-use
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web interface. Moreover, tools like Cytoscape (Shannon et al. 2003), Osprey

(Breitkreutz et al. 2003) and VisANT (Hu et al. 2004) are popular open-source

programs for visualizing protein-protein interaction networks (PPINs) (shown in

Table 6.3).

Since the covered experimental data sets and criteria for PPIs vary widely, cares

should be taken in selecting the most suitable database for proteomic analysis. In

addition, one must be very careful to select appropriate parameters and types of

interaction data, especially when incorporating the predicted interactions. Checking

GO term coherence is a good way to assess the reliability of an edge in a PPIN, that

is, whether the two proteins on both ends of the edge could be annotated to an

informative GO term in common (Chua andWong 2008). Another way to assess the

reliability of an edge in a PPIN is based on the hypothesis that proteins are more

likely to share common neighbors in the PPIN if they interact.

Table 6.2 List of commonly used PPI database

Database Url PPIs Major source

HPRD http://www.hprd.org/ 41,327 Manually extracted from the literature

IntAct http://www.ebi.ac.uk/intact/ 531,946 Literature curation or direct user

submissions

MINT http://mint.bio.uniroma2.it/

mint/Welcome.do

241,458 Mainly focus on experimentally

verified PPIs

MIPS http://mips.helmholtz-

muenchen.de/proj/ppi/

– High-quality data collected from the

scientific literature

DIP http://dip.doe-mbi.ucla.edu/

dip/Main.cgi

79,646 Experimentally determined

interactions

BioGrid http://www.thebiogrid.org/ – Comprehensive literature curation

“–” indicates no accurate updated statistics for protein-protein interactions in the resource

Table 6.3 List of commonly used meta-PPIs database and PPI visualizing tools

Source Url Major source

Meta-PPIs database

STRING http://string-db.org/ Experimental and predicted PPIs

I2D http://ophid.utoronto.ca/

ophidv2.204/

Integration of known, experimental and

predicted PPIs

APID http://bioinfow.dep.usal.es/

apid/index.htm

Computational and known experimentally

validated PPIs

PPI visualizing source

Cytoscape http://www.cytoscape.org/ Visualizing complex networks, integrating

networks with attribute data

Osprey http://biodata.mshri.on.ca/

osprey/servlet/Index

Visualization of complex interaction networks

Visant http://visant.bu.edu/ Visual analyses of metabolic networks
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6.6.4.3 PPIs Analysis Methods

Most PPIs analysis methods include identifying protein complexes by mining

modular or dense sub-networks from PPI networks. In disease-related research,

four sequential steps are usually conducted to generate a biological hypothesis on

target cells (e.g. cancer cells) through PPIN construction and analysis (Srihari

et al. 2015). The starting point is to define the seed proteins, which should be the

molecules of major interest and will be the skeleton of the PPIN. Typical choices

are differentially expressed proteins observed in a given experiment, or proteins

known to be involved in the disease process. The second step is to determine

interactions between proteins. The interacting partners of proteins are commonly

identified from curated databases as described above, and the reliability of these

interactions needs to be assessed. The third step is the PPIN construction and

visualization process. The PPIN will be constructed based on high-confidence

evidence, and several algorithms allow the creation of a visual representation of

the built network. The final step is to use bioinformatics tools to extract meaningful

biological information from the network. Although the strategy seems straightfor-

ward, these methods are restricted by limitations in existing PPI datasets, particu-

larly the lack of sufficient interactions between proteins and the presence of a large

number of false-positive interactions. Therefore, increasing interaction coverage by

integrating PPI datasets from multiple studies and reducing noise by assessing the

reliabilities of interactions are crucial for accurate PPIN analysis.

6.6.5 Post-translational Modifications Analysis

Generally, PTMs represent covalent events that change the properties of a protein

with proteolytic cleavage or adding a modifying group to amino acids. Variations at

PTMs level exponentially escalate the complexity of the proteome relative to both

the transcriptome and genome. The most common PTMs include phosphorylation,

glycosylation, ubiquitination, nitrosylation, methylation, acetylation, and lipidation

(Mann and Jensen 2003).

Far from being mere “decorations,” PTMs play a key role in functional prote-

omics. Not only in isolation but also in coordination, PTMs can influence numerous

properties of proteins including enzymatic activity, protein interactions and sub-

cellular location. Therefore, PTMs enable signaling and regulatory mechanisms

that modulate a given protein’s cellular function. For instance, kinase cascades are
turned on and off by the reversible addition and removal of phosphate groups in the

cell signaling process, and the ubiquitination process marks cyclins for destruction

at defined time points which are important for the cell cycle (Mann and Jensen

2003). Table 6.4 summarizes the major features of some important PTMs.

PTMs are vital cellular control mechanisms, and they play significant roles in

various disease conditions, especially cancer. There are cases in which mutations of
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the post-translational target sites were found to be involved in disease directly. One

example is a loss of N-linked glycosylation in the prion protein, a variant which

causes numerous clinical symptoms such as early-onset dementia, cerebral atrophy,

and hypometabolism (Grasbon-Frodl et al. 2004). In addition to these examples,

systematic studies implicating PTMs in disease are now facilitated by the rapid

growth of databases knowledge.

6.6.5.1 Techniques to Perform PTMs

Thousands PTMs sites have been discovered and the functional importance of

several types of modifications have been revealed with novel enrichment strategies

(Minguez et al. 2012), ranging from small chemical modifications to the addition of

complete proteins. Generally, the modification analysis is achieved by sequence

comparison between obtained experimental data to a known amino acid. Isolation

of the precisely processed proteins is usually the first step for direct analysis of

PTMs studies. Once a protein has been isolated, a variety of techniques can be used

to determine the modified amino acids. From Edman degradation to the MS

method, the sensitivity for detection of PTMs has increased with the advances in

techniques (Mann and Jensen 2003). Since MS measures fragmentation pattern of

peptides and molecular weight, it is a good general method for identifying modi-

fications that changing molecular weight. In MS-based PTMs analysis, it is impor-

tant to generate sufficient peptide fragmentation information for peptide

identification and site localization. In some cases, MS can measure the precise

molecular weight of the intact protein, especially if the protein is not too heteroge-

neous and its mass is not too large. Once the masses of the non-modified and

modified amino acid residues add up to the measured intact molecular weight, the

protein is completely characterized.

Table 6.4 Major features of important PTMs

PTM type Major features

Phosphorylation Reversible, activation/inactivation of enzyme activity, modulation of

molecular interactions, signaling, etc.

Glycosylation Structural and functional roles in membrane and secreted proteins, cell-cell

recognition/signaling, etc.

Ubiquitination Destruction signal, cell localization, promote/prevent protein interactions,

etc.

Nitrosylation Regulating signal transduction, regulate enzyme activities, etc.

Acetylation Protein stability, protection of N terminus, regulation of protein–DNA

interactions, etc.

Methylation Regulation of gene expression, etc.

Lipidation Protein function, protein subcellular localization, etc.
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6.6.5.2 PTMs Analysis Methods

The network of proteins that regulate each other through PTMs has become a

valuable factor in the interpretation of experimental protein lists, as PTMs are

unique to the protein level and constitute a major regulation process. For instance,

PTMs could provide information on the correlation between a modifying enzyme

and its substrate, which may be impossible to identify through other analysis levels

(Zhao and Jensen 2009). In addition, the crosstalk between PTMs regulators makes

such biological processes more complex.

Although our current knowledge of PTMs and their various roles is still incom-

plete, methods to systematically identify modifications have resulted in several

PTMs modification databases. Historically, the most studied PTMs is phosphory-

lation, which can be used as an example of approaches to the general prediction of

PTMs. When dealing with large lists of experimentally detected phosphorylation

sites, it is generally of interest to determine which of the sites are novel. Databases

like Uniprot (Bairoch et al. 2009), dbPTM (Lee et al. 2006), Phospho.ELM (Dinkel

et al. 2011), PHOSIDA (Gnad et al. 2011), and PhosphoSitePlus (Hornbeck

et al. 2004) have been developed as useful resources to study phosphorylation

across organisms. Tools for the study of phosphorylation sites have largely fallen

into two general approaches: enzyme-specific and enzyme-independent (Schwartz

et al. 2009). In the enzyme-specific method, analysis tools are commonly based on

the principle that each kinase has its own unique sequence specificity. Incorporating

kinase-substrate data available from variable resources such as literature, databases,

and combinatorial peptide library screens, these tools have identified enzyme-

specific signatures that can be used to predict other substrates of a particular kinase

(Blom et al. 2004). In the enzyme-independent method, analysis tools are com-

monly based on MS data, which contains only phosphorylation sites without regard

to the responsible enzyme. With specific algorithms like neural networks (Ingrell

et al. 2007) or support vector machines (Gnad et al. 2007), the enzyme-independent

tools do not need to model the properties of substrate recognition.

Typical PTMs analyses incorporate various analyses such as GO enrichment,

pathway analysis and PPI analysis as mentioned above. For instance, the

NetWorKIN software (Linding et al. 2007) integrates PPI information from

STRING software on linear kinase motifs to provide kinase–substrate relationships

in large-scale data (Olsen and Mann 2013). In addition, promising efforts have been

made to develop resources to study PTMs, such as PTMcode (http://ptmcode.embl.

de) (Minguez et al. 2013), which aims to collect known and predicted PTMs

associations to provide a framework for experimental or computational analysis

on various scales. Although robust MS-based proteomic workflows for large-scale

PTMs identification and quantification have been developed, a complete inventory

of sites has not been constructed for PTMs. In addition, PTMs coverage still needs

to be improved, especially in clinical proteomics. The major challenge of the field

lies in the systematic pipelines for follow-up analysis and functional interpretation

of PTMs data. However, with the growing availability of the technology,
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increasingly in-depth interpretation of PTMs can be achieved, and PTMs informa-

tion could give more precise therapies targeted at the molecular nature of a given

disease.

6.7 Public Proteome Repositories and Standards

As proteins are the direct executors of biological function in organisms, proteomics

study plays a significant role in the post-genome era. From 2D-gel to LC-MS, the

rapid development of new technologies has made it possible to investigate whole

proteins in proteomics study, and modern proteomics research is based on LC-MS

generated large scale data. To facilitate the dissemination of these data, centralized

data repositories have been developed that make the data and results accessible to

proteomics researchers and biologists alike (Riffle and Eng 2009). In order to

facilitate data comparison, exchange and verification in or between public reposi-

tories, the common standards for data representation in proteomics must be

established. In the fields of mass spectrometry and protein-protein interaction

study, much progress has been made in developing common standards for data

storage, sharing and exchange (Orchard et al. 2003). The most well-known inter-

national consortium of proteomics research associations, the Human Proteome

Organization (HUPO), was launched in 2001. The organization promotes the

development and awareness of proteomics research and facilitates scientific col-

laborations between members and initiative. Its goal is to gain a comprehensive

understanding of the human proteome (Huber 2003).

6.7.1 Public Proteomics Repositories

6.7.1.1 PRIDE

The PRIDE (http://www.ebi.ac.uk/pride/) is a centralized, standards compliant,

public data repository, which includes information on protein and peptide identifi-

cations, post-translational modifications, and supporting spectral evidence. Protein

and peptide identifications in this database have been described in previous scien-

tific literature. Data generated from different species, tissues and subcellular loca-

tions (perhaps under specific disease conditions) can be uploaded, downloaded or

viewed via a single, centralized web interface (Jones et al. 2006). PRIDE supports

the submission of data from different platforms. However, data prepared to be

uploaded to PRIDE database should obey strict proteomics data standards (Riffle

and Eng 2009). Many tools allow researchers to achieve standards compliance for

data generated by many different platforms. By the end of 2014, PRIDE had

accumulated data for 41,835 proteins, 269,806 unique peptides, and about 101 mil-

lion spectra (Perez-Riverol et al. 2015). Currently, datasets from a total of 51,922
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assays and 3233 projects were centralized in PRIDE. It is one of the most popular

proteomic data repositories and has played an important role in Human Proteome

Project (HPP) (Chen et al. 2015).

6.7.1.2 Global Proteome Machine Database

The Global Proteome Machine Database (GPMDB) is a resource for collecting

diverse tandem proteomics data and open source software, and it also includes

peptide and protein identifications that are important for further MS computational

research (Craig et al. 2004). The database allows worldwide research scientists to

use its proteomics data and tools for the purpose of proteome research. Raw data

submitted by researchers or downloaded from other databases will be reprocessed.

XML (Extensible Markup Language) files including protein or peptide identifica-

tion information will be uploaded and stored in GPMDB. By the end of 2014,

GPMDB database spanned a total of 136,373 proteins, 1,786,698 peptides, and

1020 million spectra (Perez-Riverol et al. 2015; Chen et al. 2015). The GPMDB

plays an important role in proteome research and can be accessed at (http://gpmdb.

thegpm.org/index.html).

6.7.1.3 PeptideAtlas

The PeptideAtlas (http://www.peptideatlas.org/) is one of the largest and most well-

curated protein expression data resources. It serves as a compendium of peptides

observed with tandem mass spectrometry methods from multiple species. It also

contains a growing set of software tools and underlying platforms for proteomics

data analysis and visualization. It stores various formats of output files and meta-

data from MS-based experiments (Deutsch 2010). PeptideAtlas supports raw data

submissions from users, which will be reprocessed through a uniform analysis and

validation pipeline. The results are loaded into a database, and the information

derived from the raw data is returned to the community for identification and

statistical analysis purposes. Users can search the PeptideAtlas web interface by

protein accession, peptide sequence, gene name, keyword, or phrase (Perez-Riverol

et al. 2015). Search results are displayed on a page with associated summary

statistics. PeptideAtlas can help plan targeted proteomics experiments, improve

genome annotation, and support data mining projects (Chen et al. 2015; Deutsch

2010).

6.7.1.4 MOPED

MOPED (Model Organism Protein Expression Database) is a proteomics repository

that integrates protein expression information from human specimens and several
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other model organisms (Kolker et al. 2012). It provides protein-level expression

data, meta-analysis capabilities, and quantitative data from standard analyses based

on mass spectrometry. It also provides new estimates of protein abundance and

concentration, and statistical summaries from experiments. The web interface

contains six main panels: “protein absolute expression”, “protein relative expres-

sion”, “gene relative expression”, “pathways”, “experiments”, and “visualization”

for different data handling purposes. Additionally, a suite of tools for data searching

and visualization are available. With rapid development in recent years, MOPED

has grown into a repository containing more than 17,000 proteins, 250,000 unique

peptides, and approximately 15 million spectra (Kolker et al. 2012; Perez-Riverol

et al. 2015; Chen et al. 2015). As a significant public proteomics database, MOPED

provides abundant information on complex biological processes and thus benefits

fundamental biological or medical investigation. The MOPED database can be

accessed at (http://moped.proteinspire.org).

6.7.1.5 Human Proteinpedia

Human Proteinpedia (http://www.humanproteinpedia.org/) is a public resource for

proteomics data storing, integrating and exchanging (Kandasamy et al. 2009). The

distributed annotation system of Human Proteinpedia allows the researchers to

contribute and maintain protein annotations (Kandasamy et al. 2009). Human

Proteinpedia integrates diverse features of the human proteome including post-

translational modifications, subcellular localization, protein-protein interactions,

and expression of proteins in multiple human tissues and cell lines (Perez-Riverol

et al. 2015; Kandasamy et al. 2009).

6.7.1.6 Tranche

Tranche (http://www.proteomexchange.org/databases/tranche) is a data repository

for storing, sharing information for proteomics researchers. As a widely-used

database, Tranche hosts several kinds of data. Indeed, it plays a crucial role in

proteomics field. It allows researchers to use and disseminate both data and

software. A client tool is required to upload and download datasets. Tranche pro-

vides interfaces for PRIDE, Human Proteinpedia, and PeptideAtlas to store and

disseminate large MS-based data files (Smith et al. 2011).

In addition to the resources mentioned above, there are some other important

databases. Table 6.5 lists the most popular public proteomics databases and their

corresponding websites.
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6.7.2 Public Proteomics Standards

6.7.2.1 MS Raw Data Unification

Different models of instruments were applied for MS data acquisition. An impor-

tant consideration is how to get the data provided by multiple MS software into

mzML format. The mzXML is a XML-based common file format for proteomics

data, and it provides a standard container for MS and MS/MS data. There are many

free and commercial software packages that support mzML format. However, in

order to export the acquired MS data as mzML format, some applications must be

used in conjunction with additional translators and transformation utilities.

ProteoWizard and OpenMS are two popular programs for MS raw data handling.

6.7.2.2 Qualitative and Quantitative Proteomics

The purpose of qualitative proteomics studies is to identify peptides or proteins,

which can normally be identified by analyzing raw MS data. As mentioned in the

previous section, there are many tools used for peptide and protein identification.

Mascot, SEQUEST or PEAKS are frequently-used programs for peptide and

protein identification. Furthermore, based on rapidly developing experimental

technology and software packages, quantitative proteomics study can be achieved

based on variety of quantitative techniques including multiple labeling or label-free

approaches. For instance, MaxQuant and PLGS are well equipped for handling

quantitative proteomics data based on label or label-free methods, respectively.

Table 6.5 List of frequently used proteomics database

Database Website

Proteomics IDEntifications database

(PRIDE)

http://www.ebi.ac.uk/pride/archive/

Human Protein Reference Database

(HPRD)

http://www.hprd.org/

PeptideAtlas http://www.peptideatlas.org/

Human Proteinpedia http://www.humanproteinpedia.org/

Tranche http://www.proteomexchange.org/databases/tranche

Global Proteome Machine Database

(GPMDB)

http://gpmdb.thegpm.org/

Model Organism Protein Expression

Database (MOPED)

https://www.proteinspire.org/MOPED/mopedviews/

proteinExpressionDatabase.jsf

Protein Abundance Across Organisms

(PaxDb)

http://pax-db.org/#!home

Integrated Proteome Resources

(iProX)

http://www.iprox.org/index
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6.7.2.3 Integration of Public Standards and Local or Third Party Tools

Many researchers have their own bioinformatics capabilities and homemade tools

for specific data analysis in proteomics study. We will briefly introduce how public

standards can be integrated into the tools produced by proteome bioinformatics

individuals or groups. Many popular commercial or free software packages have

their own native file formats for data storage or reporting. Since 2002, when the

HUPO-PSI (HUPO Proteomics Standards Initiative) was founded, the uniform

public standards have become more carefully established for data reporting and

exchange. More and more existing software tools for proteomics are following

HUPO-PSI standards. In order to improve the efficiency of proteomics data use and

exchange, in-house software development in many proteomics labs should adhere

to the HUPO-PSI standards as well (Medina-Aunon et al. 2013).

6.7.2.4 Reporting, Uploading and Exchanging Data

MIAPE (Minimum Information about a Proteomics Experiment) guidelines

were published by HUPO-PSI in 2007. According to MIAPE, formalized infor-

mation should be reported when publishing a dataset. Two websites provide

assistance to guide users to create a MIAPE compliant report: MIAPEGelDB

(Robin et al. 2008) and Proteo-Red MIAPE web repository (Martinez-

Bartolome et al. 2010). Proteo-Red MIAPE web toolkit (Medina-Aunon

et al. 2011) is a website capable of linking the latest versions of the HUPO-

PSI XML schemas to the Proteo-Red MIAPE web repository in an automated,

accessible, and comprehensive way. It covers multiple data formats such as

mzML, mzIdentML, and PRIDE XML (Medina-Aunon et al. 2013). When

uploading data to either a public repository or local database, the most important

thing is that the experiment has been reported using data standards so it can be

shared and verified. General information on MIAPE modules and the

corresponding data exchange formats can be found in Table 6.6.

Table 6.6 MIAPE modules and data exchange formats

Techniques Guidelines Format

MS MS (MIAPE-MS) mzData, mzML, traML

Identifications (MIAPE-MSI) mzIdentML

Quantitation (MIAPE-Quant) mzQuantML

Molecular interactions Interactions (MIMIx) PSI-MI XML,

Protein separation Gel electrophoresis (MIAPE-GE) PSI-MI XML

Gel informatics (MIAPE-GI) None

Sample processing Column chromatography (MIAPE-CC) spML

CE (MIAPE-CE)
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6.8 Proteomics Applied in Breast Cancer Study

The application of high-throughput gene expression technology contributes greatly

to the identification of breast cancer-related genes and subtypes. Over the past

decade, numerous global proteomic analyses have been conducted to promote the

molecular understanding of breast tumor progression and provide important prog-

nostic information for breast cancer. For instance, Barry L. Karger’s group

performed a comprehensive proteomic study on human breast cancer epithelial

cells across 18 samples (Cha et al. 2010). The clinical material for this study

included 9 breast tissue samples from healthy women (without breast cancer

history), and 9 breast cancer tissues obtained from either mastectomy or surgical

excision. All tissues were of high quality and were prepared strictly according to

robust experimental protocols. Highly enriched populations of epithelial cells were

produced by laser capture micro-dissection and used in subsequent proteomic

analysis. Through common sample preparation process (cell lysis, protein separa-

tion and in-gel digestion), the protein digests were analyzed by LC-MS/MS strat-

egy. Generated from MS/MS scans, the raw files were searched against Swiss-Prot

annotation database. Of the 18 samples, 12,970 unique peptides and 2588 proteins

were identified. The highly differentially expressed proteins were considered as

potential candidate biomarkers. Both annotation term enrichment analysis and

set-based enrichment analysis were performed. With the GOMiner tool, the over-

represented functional categories for differentially expressed proteins were deter-

mined. With protein set enrichment analysis (PSEA), 35 MSigDB derived protein

sets were found to be significant. The combination of the above two approaches

allowed researchers to find many confirmatory biological findings important to

malignant breast epithelial cells, and also revealed extensive insight into the

molecular participants involved in tumorigenesis signaling cascades.

Studies incorporating PPI information were widely applied in breast cancer

research as well. For instance, Ideker’s et al. applied a protein network-based

approach to analyze the expression profile of two cohorts of breast cancer patients,

and proved that protein subnetwork markers could improve prediction of cancer

outcome (Chuang et al. 2007). Intensive PPIN information was first gathered from

the database, yeast two-hybrid experiments as well as the literature. Then, in order

to integrate the gene expression and network data sets, they overlaid the expression

value of each gene on its corresponding proteins in the network. Based on a mature

scoring and searching algorithm, the subnetworks with discriminative activities

were identified. With the PPIN based strategy, they successfully found that markers

identified through the subnetwork are more reproducible, and more accurate in

classifying metastatic versus non-metastatic breast tumors.
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Chapter 7

Targeted Metabolomics: The Next
Generation of Clinical Chemistry!

Klaus M. Weinberger and Marc Breit

Abstract Targeted metabolomics, i.e. the quantitation of predefined sets of endog-

enous metabolites selected for their relevance in metabolism, has emerged as a new

and particularly informative discipline in functional genomics although its roots in

diagnosing inborn disorders of metabolism in neonates go back much further than

those of genomics or proteomics. Because of its unique capabilities in depicting

actual physiological and pathophysiological conditions instead of just predisposi-

tions or risk factors, it seems ideally suited for complementing the currently

established diagnostic platform technologies (enzyme assays, ion-selective elec-

trodes, immunoassays, and molecular diagnostics) in a synergistic fashion. Of

course, both technical and content-related prerequisites have to be met before a

new technology can make any inroads in clinical practice and, so, this chapter

discusses the development of metabolomics since the early twentieth century, the

renaissance of clinical biochemistry in areas like neonatal screening and oncology,

the most promising new indications, in which diagnostically relevant metabolic

biomarker signatures have been identified and – partly – also validated and,

eventually, selected risks and opportunities that have to be kept in mind when

trying to promote this area of research and development. Bottom line: there is

substantial reason to believe that targeted metabolomics can be the new platform

technology in clinical chemistry if the community succeeds in taking advantage of

the obvious strengths of this discipline and in avoiding some of the pitfalls that have

hindered clinical acceptance for other varieties of functional genomics.
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Abbreviations

AAA aromatic amino acids

AD Alzheimer’s disease
AMD age-related macular degeneration

AUC area under the curve

BCAA branched-chain amino acids

CKD chronic kidney disease

CNS central nervous system

COPD chronic obstructive pulmonary disease

CV coefficient of variation

DBS dried blood spots

DN diabetic nephropathy

DNA deoxyribonucleic acid

DoE design of experiments

EBV Epstein-Barr virus

ELISA enzyme-linked immunosorbent assays

EMA European Medicines Agency

FDA Food and Drug Administration

FRET fluorescence resonance energy transfer

GO Gene Ontology

GWAS genome-wide association studies

HCV hepatitis C virus

HDL high-density lipoprotein

HTA health technology assessment

IP intellectual property

IVD in vitro diagnostics

KEGG Kyoto Encyclopedia of Genes and Genomes

LDL low-density lipoprotein

LIMS laboratory information management system

MSEA metabolite set enrichment analyses

M2-PK M2 isoform of pyruvate kinase

NBS newborn screening

NGS next-generation sequencing

NMR nuclear magnetic resonance

PCA principle components analysis

PCR polymerase chain reaction

PDE phosphodiesterase

PLS-DA partial least squares discriminant analysis

PPV positive predictive value

P4 predictive, preventive, personalized, and participatory
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RIA radio-immunoassay

RNA ribonucleic acid

ROC receiver operating characteristics

RSD relative standard deviation

R4S Region 4 Stork

SAM standard addition method

SID stable isotope dilution

SMRT single molecule real-time

SVM support vector machine

TCM traditional chinese medicine

TDM therapeutic drug monitoring

T2D type II diabetes

ZDF Zucker diabetic fatty

7.1 Origins of Clinical Chemistry

The roots of human efforts to detect and understand disease can be traced back

almost as far as there is a preserved written record of ancient civilizations. The

famous Egyptian Edwin Smith Papyrus (Cunha 1949; Jex 1951) dating from

c. 1600 BC, a copy of an older text often attributed to the politician-priest, architect

and later god (!) Imhotep (c. 2600 BC) although this source seems highly question-

able (Blomstedt 2014), is probably the oldest treatise that tries to disentangle

medical science from paranormal beliefs or ‘magic’. While mainly describing

surgical procedures for traumatic injuries (a ‘military surgeon’s manual’), the text
delineates a clear process of examination (including inspection, palpation, and

olfaction) leading to diagnosis, and prognosis (Stiefel et al. 2006).

A similarly structured, albeit far more superstitious, approach to observe signs and

symptoms of a disease and derive diagnoses and prognoses is presented by the

Babylonian scholar Esagil-kin-apli of Borsippa (c. 1000 BC) in his ‘Diagnostic
Handbook’, Sakikk�u (Fales 2010). In Greece, philosophers like Hippocrates

(c. 460–370 BC), Pythagoras (c. 570–495 BC), and others recognized inherited traits

as important factors for certain illnesses and introduced terms like acute vs. chronic

diseases or endemic vs. epidemic appearance, which are still used in the same sense

(Begbie 1872; Kempf 1904; Roberts 1990). Eventually, antiquity’s medical progress

seems to have culminated in the works of Galen of Pergamon (129 – c. 216 AD), both

a philosopher and physician whose most important contributions lay in the field of

anatomy and in the extension of Hippocrates’ theory of humors, which he linked to

human temperaments. Today, he is best remembered for his detailed diagnostic

accounts on the so-called Antonine Plague, most likely a smallpox pandemic that

struck the Roman Empire in 165–168 AD (Littman and Littman 1973;Mattern 2011).

While most of the Greek and Roman achievements – including the field ofmedicine

– did not outlast the turmoil of the V€olkerwanderung and the religiously dominated,

‘dark’Middle Ages in Europe, Persian scientists preserved and significantly extended

the body of Greco-Romanmedical knowledge. Most notably, the physician, polymath,
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and extremely prolific author Ibn Sı̄nā (latinized: Avicenna, c. 980–1037 AD), one of

the masterminds of the so-called Golden Islamic Age, developed the concept of a

syndrome in his influential encyclopedia Al-Qanun fi al-Tibb (‘Canon of Medicine’)
and made important methodological contributions like the quantitative assessment of

experiments and studies (Qayumi 1998). He also recognized the infectious etiology of

many diseases (including sexual transmission) and laid the foundations for pharmacol-

ogy as a medical discipline by defining a catalogue of criteria for testing new drugs.

Even the importance of physical exercise for maintaining health is discussed in

surprisingly concise and ‘modern’ terms (Choopani and Emtiazy 2015). It is primarily

due to his works that medical knowledge made it back to Europe as the ‘Canon’ was
used as the main textbook at many European universities from the fourteenth to the

sixteenth century, sometimes even until the early eighteenth century, e.g. in Padova,

and served as the basis for further research and progress during the Renaissance and the

Age of Enlightenment (Abdel-Halim 2014).

Fairly independent from this stream of developments, the traditional Chinese

Medicine (TCM) also formed a highly structured and systematic approach to

diagnostics, which is based on the pillars of interrogation (wèn), inspection

(w�ang), palpation (qiè), auscultation and olfaction (wén). Of course, this set –

maybe except for olfaction – is the core of the standard anamnesis and examination

practiced in Western medicine as well (Maciocia 1989).

In contrast to this protracted evolution, the role of analytical chemistry in

medicine is fairly young. Of course, the molecular basis of an illness is also

analyzed when a physician smells volatile fermentation products of bacteria

infesting a wound, the presence of acetone in the breath of a ketotic person, or

tastes the sweetness of glucose secreted in the urine of a diabetic, which has been

done since antiquity. However, the basic concept of clinical chemistry, which is

considered self-evident today, i.e. that the concentration of a certain biochemical in

a body fluid can be indicative of a particular disease or pathophysiological state, has

only been phrased in a concise and scientifically credible manner (and also reduced

to practice) in the early twentieth century.

This paradigm shift was pioneered by Sir Archibald Garrod (1857–1936), a British

physician who already contributed significantly to the one-gene-one-enzyme-hypoth-

esis (Beadle and Tatum 1941; Yanofsky 2005; Nobel Prize for George Beadle and

Edward Tatum in 1958) when working on the chemical pathology of inborn errors of

metabolism, e.g. of alkaptonuria (Garrod 1899, 1902) and cystinuria (Garrod and

Hurtley 1906). His findings, which were based on optimized and standardized

analytical procedures (Garrod and Hurtley 1905), paved the way to a fruitful link

of genetics, analytical chemistry and pathophysiology (Garrod 1911) and made him

the true ‘godfather of clinical chemistry’. Garrod’s work also directly led to today’s
population-based screening programs for inherited metabolic disorders (see

Sect. 7.3.2). Although it took the best part of the twentieth century to develop and

implement the mass spectrometric platforms that are now used for newborn screening

(Chace et al. 2002, 2003; Liebl et al. 2003; R€oschinger et al. 2003), Garrod’s series of
four Croonian Lectures delivered to the Royal College of Physicians of London in

June of 1908 (Garrod 1908) are still considered the starting shot for this prototypic

kind of multiparametric metabolic diagnostics.
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7.2 Technological Revolutions in the Twentieth Century

The next logical step was to extend the analytical portfolio to also cover bio-

polymers but substantial progress towards a diagnostic utilization was only made

for two of the three main classes of polymeric biomolecules, namely proteins and

nucleic acids. Despite their undoubted biological importance, oligo- and polysac-

charides – with a few exceptions, e.g. in microbiology or certain lysosomal storage

disorders – still haven’t found their way into routine diagnostics.

7.2.1 Proteins

Proteins with catalytic activity – first termed ‘ferments’, later ‘enzymes’ as

suggested by Wilhelm Kühne (1877) – had been known since Anselme Payen’s
discovery of amylase (then called diastase) in malt (Payen and Persoz 1833). Their

use in enzyme assays to specifically detect and quantify metabolites based on

various physico-chemical readouts (spectrophotometric, fluorometric, chemilumi-

nescent, etc.) is straightforward, and the quantitation of glucose using hexokinase or

glucose oxidase is still the single most frequently applied diagnostic test. Of course,

the same setting (in reverse) can also be used to determine an enzymatic activity in

a biological sample, and once enzyme levels in peripheral blood were recognized as

indicators for organ-specific tissue damage, e.g. the transaminases for liver damage

in viral hepatitis (De Ritis et al. 1955, 1956, 1957), these assays became a core

element of the diagnostic repertoire.

Of course, proteins with other functions (structural, regulatory, transport,

immune, etc.) are not amenable to this detection strategy. However, with the advent

of sequencing techniques for peptides, either chemical (Sanger 1945, 1949; Edman

1950; Ryle et al. 1955; Edman and Begg 1967; first Nobel Prize for Frederick

Sanger in 1958), or using mass spectrometry (Biemann et al. 1966; Falick

et al. 1993; Biemann 2014), and the determination of the three-dimensional struc-

ture of proteins, first for myoglobin (Kendrew and Perutz 1957; Kendrew

et al. 1960; Nobel Prize for John Kendrew and Max Perutz in 1962), the interest

in protein function and their potential role in disease became overwhelming and, so,

additional techniques for their characterization and quantitation were direly needed.

The first step towards this end was polyacrylamide gel electrophoresis (Raymond

andWeintraub 1959), which – in its refined form (Laemmli 1970) – became one of the

standard procedures in biomedical research, particularly when combined with a

blotting technique for the antibody-based identification of individual bands, the

so-called Western Blot (Towbin et al. 1979). Still, the routine diagnostic detection

of proteins is rarely based on gel electrophoresis but rather applies immunoassays

without a previous separation step, e.g. radio-immunoassays (RIA; Yalow and Berson

1960) or enzyme-linked immunosorbent assays (ELISA; Engvall and Perlmann 1971;

Van Weemen and Schuurs 1971). The performance of these immunoassays directly
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depends on the availability and characteristics (specificity, affinity/avidity, stability,

and other properties) of suitable antibodies, and it was only with the invention of cell

culture strategies to generate monoclonal antibodies (K€ohler and Milstein 1975;

Nobel Prize for Georges K€ohler and César Milstein in 1984) that standardized

immunoassays against virtually any protein could be developed and – equally impor-

tant for the routine application – automated for high throughput on robotic laboratory

systems. These immunoassays, typically designed as a so-called sandwich ELISA

with two different antibodies for capturing and detecting the target antigen, and the

enzyme assays described above still constitute the core of the analytical portfolio in

today’s clinical chemistry and medical microbiology/virology.

7.2.2 Nucleic Acids

Deoxyribonucleic acid (DNA) was already identified in 1869 by Friedrich Miescher

(Miescher 1869; Miescher-Rüsch 1871; reviewed by Dahm 2005), and its chemical

building blocks, the nucleotides adenine, thymine, guanine, and cytosine, were also

known early on (Levene and Jacobs 1912; Levene 1919) but the molecule was

generally considered too simple to be the carrier of genetic information. However,

in the mid twentieth century, a period of rapid progress in microbiology, biochemistry

and molecular biology led to the identification of DNA as the ‘transforming principle’
and, thus, the hereditary material (Griffith 1928; Avery et al. 1944; Hershey and

Chase 1952; Nobel Prize for Alfred Hershey in 1969). Briefly afterwards, based on

X-ray crystallography data on the one hand (Franklin and Gosling 1953; Wilkins

et al. 1953) and the analysis of the relative amounts of the four nucleotides in the

DNA of various species on the other (the so-called ‘Chargaff rules’; Vischer and
Chargaff 1947; Vischer et al. 1949; Chargaff et al. 1950), Jim Watson and Francis

Crick succeeded in elucidating the famous double-helix structure (Watson and Crick

1953a, b; Nobel Prize for James Watson, Francis Crick, and Maurice Wilkins in

1962), which directly led to the mechanism of semi-conservative replication and the

central dogma of molecular biology (Crick 1956, 1970). Still in the same decade, the

triplett nature of the genetic code was suggested based on theoretical considerations

(Gamow and Ycas 1955; Gamow et al. 1956) and, eventually, the code itself was

experimentally solved (Crick et al. 1961; Nirenberg and Matthaei 1961; Lengyel

et al. 1961; Matthaei et al. 1962; Leder and Nirenberg 1964; Khorana 1965; Nobel

Prize for Marshall Nirenberg, Har Gobind Khorana, and Robert Holley in 1968).

To harness the information content, analytical techniques for determining DNA

sequences were required, and the two major approaches to this end were chemical

sequencing (Maxam and Gilbert 1977) and the now ‘classic’ Sanger sequencing
using dideoxynucleotides as chain terminators (Sanger and Coulson 1975; Nobel

Prize for Frederick Sanger (his second), Paul Berg, and Walter Gilbert in 1980).

Sequence-specific detection of DNA fragments separated by gel electrophoresis,

the so-called Southern Blot (Southern 1975), and its simplified variant without

chromatographic separation, the dot blot, were then the first assay types to usher in
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the era of molecular diagnostics, i.e. the detection and characterization of nucleic

acids for diagnostic purposes, soon after followed by the analogous method for

ribonucleic acid (RNA) fragments, the Northern Blot (Alwine et al. 1977). How-

ever, while allowing for the highly specific identification of nucleic acids (primarily

used for detecting viral infections), both blotting techniques have relevant limits in

terms of sensitivity and their quantitative properties; nevertheless, semi-

quantitative estimates of DNA and RNA amounts have been successfully used in

clinical routine, e.g. in viral load testing.

Still, these shortcomings may explain why the next technical innovations in this

area had such a tremendous (and rapid) impact. The invention of the polymerase

chain reaction (PCR) by Kary Mullis (Saiki et al. 1985; Mullis et al. 1986; Mullis and

Faloona 1987; Nobel Prize for Kary Mullis in 1993), the first and still only method

that achieves target amplification instead of signal amplification, immediately over-

came the sensitivity issues (being able to detect a single molecule) with dramatic

clinical consequences, e.g. for improved safety of blood and organ donations

(Fishman and Rubin 1998; Bihl et al. 2007), to name just one of the most important

applications. Based on this principle and the introduction of fluorescent dyes coupled

to the terminators, Sanger sequencing became much more efficient (‘cycle sequenc-
ing’) and already set the stage for what would eventually become the Human Genome

Project (Strauss et al. 1986; Hood et al. 1987; Kaiser et al. 1989).

Equally important was the improvement of DNA quantitation by introducing a

kinetic analysis of the PCR (‘real time PCR’ or ‘qPCR’), first with conventional

intercalating dyes (Higuchi et al. 1993) and then with specialized bi-labeled probes

each carrying a ‘reporter’ and a ‘quencher’ dye suitable for fluorescence resonance
energy transfer (FRET), the so-called ‘TaqMan’ probes (Heid et al. 1996). As with

PCR itself, it only took a few years until the first diagnostic assays were

implemented, in this case for viral load testing, e.g. for Epstein-Barr virus (EBV;

Kimura et al. 1999) or hepatitis B virus (HBV; Weinberger et al. 2000), and the

method was soon also combined with a reverse transcriptase step to quantify RNA

viruses like hepatitis C virus (HCV; Martell et al. 1999) or relevant viral transcripts,

e.g. of Epstein-Barr virus (Weinberger et al. 2004).

By now, qualitative and quantitate assays of molecular diagnostics represent the

second major pillar of state-of-the-art laboratory medicine, and – given the incredible

rate, at which new genetic information is generated by next-generation sequencing

(NGS) platforms such as 454 pyrosequencing (Margulies et al. 2005; Wheeler

et al. 2008; Green et al. 2010; Zheng et al. 2010), Solexa/Illumina reversible termi-

nation sequencing (Furey et al. 1998; Osborne et al. 2000; Bentley et al. 2008), SOLiD

sequencing by ligation (Valouev et al. 2008;McKernan et al. 2009), Pacific Bio single

molecule real-time (SMRT) sequencing (Eid et al. 2009; Chin et al. 2011; Rasko

et al. 2011), or ion torrent semiconductor sequencing (Rothberg et al. 2011;Mellmann

et al. 2011; Vogel et al. 2012) andmined by bioinformatics tools (Crowgey et al. 2015;

De Brevern et al. 2015) – its importance and market volume will certainly continue to

grow in the foreseeable future.
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7.3 Renaissance of Clinical Biochemistry

Some of the most commonly determined – and publicly recognized – parameters in

clinical chemistry are metabolites (or, in the jargon: ‘substrates’ – the use of

enzyme assays to measure metabolites clearly left its marks here); as mentioned

above, glucose is the most frequently detected analyte at all (Newman and Turner

2005), creatinine is still the basis of the assessment of renal function despite severe

analytical and diagnostic shortcomings (Breit and Weinberger 2016), and many

patients actually know and discuss their cholesterol level – even high-density

lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol – as a cardiovas-

cular risk factor (Gotto 1997). In contrast, for the last few decades, the focus of

research and development for new diagnostic markers has been on proteins and –

probably even more so – on nucleic acids. This bias created a situation in the

pharmaceutical industry and also at regulatory authorities, in which the term

‘biomarker’, either in safety assessment or in patient stratification, was considered

almost synonymous with genomic and proteomic biomarkers, but was hardly

associated with metabolites (Robinson et al. 2008). However, there are two fields

of biomedical research that have recently demonstrated the potential of ‘classical’
biochemistry for drug development and also for diagnostic innovation:

7.3.1 Warburg Hypothesis

The first one is the rediscovery, experimental confirmation and, finally, reinterpre-

tation of the Warburg hypothesis. Otto Warburg (1883–1970) had recognized that,

even in the presence of sufficient levels of oxygen, tumor cells have a peculiar kind

of energy metabolism characterized by high glucose consumption, low to absent

levels of respiration, and a substantial lactate production, the so-called anaerobic

glycolysis (Warburg et al. 1927). These findings led him to postulate that a

mitochondrial defect was a causative factor in tumorigenesis (Warburg 1956a, b).

Despite his preeminent scientific reputation – he had received the Nobel Prize in

1931 for identifying the ‘respiration ferment’ (Warburg 1925, 1928) and is gener-

ally considered one of the greatest biochemists of the twentieth century – this

groundbreaking contribution to oncology almost completely sank into oblivion

for a couple of decades until Erich Eigenbrodt’s and Sybille Mazurek’s systematic

work on the M2 isoform of pyruvate kinase (M2-PK) renewed the interest in this

topic and elucidated basic regulatory mechanisms of energy metabolism in tumors

(Eigenbrodt et al. 1977, 1983, 1997, 1998; Mazurek et al. 1998, 2000; Mazurek and

Eigenbrodt 2003). Based on their findings, a specialized database for tumor metab-

olism was created (www.metabolic-database.com) and a diagnostic test for M2-PK

was developed by ScheBo Biotech (Gießen, Germany), which is commercially

available, e.g. as a screening test for colorectal cancer (Hardt et al. 2004).

182 K.M. Weinberger and M. Breit

http://www.metabolic-database.com/


Still, recognition of this remarkable body of work was somewhat reluctant, and it

took another wave of high-ranking publications from Lew Cantley’s team at

Harvard, Matt Vanderheiden’s at MIT, Ralph Deberardinis’ at UTSW, and Craig

Thompson’s at Sloan Kettering to really reposition the Warburg hypothesis in the

focus of attention (Christofk et al. 2008a, b; Dang et al. 2009; Dang 2010; Mullen

et al. 2011; Jiang and Deberardinis 2012; Son et al. 2013). Today, many major

pharmaceutical companies have research groups specializing in oncometabolomics

(again) or, at least, entered alliances to boost progress in this area (Sborov

et al. 2015). As a result, new drug targets in energy metabolism have been validated

(Sotgia et al. 2013) and, based on the insight that these metabolic alterations may be

common to many different types of cancer, drug candidates with potentially very

broad anti-tumor efficacy have been suggested (Flaveny et al. 2015). Even clinical

development programs specifically targeting cancer metabolism, particularly gly-

colysis and glutaminolysis, are already underway, e.g. by Agios Pharmaceuticals

(Cambridge, MA).

7.3.2 Newborn Screening

The second remarkable success story of clinical biochemistry in the last two

decades – and this time with a clear diagnostic focus – was the extension and

global dissemination of neonatal screening programs for inborn errors of metabo-

lism. While this topic brings us full circle with regard to the remarks on Archibald

Garrod’s work in Sect. 7.1, it also illustrates how a combination of technical

innovations (both preanalytical and analytical), biochemical insights, and new

approaches to data management and mining were required to render this ambitious

project successful.

The most influential preanalytical improvement was definitely the introduction

of dried blood spots (DBS) as an alternative sample type in the Scottish phenylke-

tonuria screening program by Bob Guthrie (Guthrie and Susi 1963) who demon-

strated that capillary blood blotted and dried on filter paper was an extremely stable

source of biomolecules, could be sent to central laboratories by regular mail as it did

not require any special handling (e.g. cooling), and was compatible with various

analytical methods for proteins (Orfanos et al. 1977), enzymatic activities (Orfanos

et al. 1978; Orfanos et al. 1980a), small peptides (Orfanos et al. 1980b), and amino

acids (Guthrie 1969; Vollmer et al. 1990). Because of its striking benefits, partic-

ularly the simple sample logistics for large-scale studies, e.g. in epidemiology

(Parker and Cubitt 1999), the use of DBS was soon extended to a variety of

molecular diagnostics assays (Schwartz et al. 1990; Raskin et al. 1992; Cassol

et al. 1992).

The actual breakthroughs, however, that overcame the analytical bottleneck of

monoparametric assays for single diseases and allowed for an extension of neonatal

screening platforms to cover a wide range of genetic disorders at a single blow

were: (a) the availability of robust and sufficiently selective and sensitive tandem
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(more specifically: triple quadrupole) mass spectrometers, and (b) the use of stable

isotope dilution (SID) to achieve quantitative results for amino acids and

acylcarnitines on these instruments (Millington et al. 1992; Chace et al. 1993,

2002, 2003; Van Hove et al. 1993; R€oschinger et al. 2000, 2003 Rolinski

et al. 2000; Chace 2001; Fingerhut et al. 2001). Yet, based on multiparametric

assays for these two classes of metabolites and simple, hypothesis-driven but – at

that time – highly innovative chemometrics to derive diagnostic signatures for each

condition, the portfolio was not only expanded to 30 or more congenital disorders

but the diagnostic performance was significantly improved (Chace et al. 1998). Of

course, given the low to very low prevalence of the individual diseases – ranging

from roughly one in 5000 live births for medium-chain acyl-CoA dehydrogenase

deficiency in Northern Germany (Sander et al. 2001) down to one in several

hundred thousand live births for many others, the greatest challenge is to design

tests with outstanding specificity to warrant at least acceptable positive predictive

values (PPV) since the PPV strongly depends on the prevalence of the condition:

PPV ¼ sensitivity� prevalence

sensitivity� prevalenceþ 1� specificityð Þ � 1� prevalenceð Þ ð7:1Þ

This is illustrated by plotting the PPV versus the prevalence at a given (high)

sensitivity (Fig. 7.1) and may explain why various attempts have been made to

improve the diagnostic criteria, e.g. by machine learning techniques (Baumgartner

et al. 2004) or the Region 4 Stork (R4S) interpretive tools, which are part of a global

initiative to collect newborn screening (NBS) data (McHugh et al. 2011; Marquardt

et al. 2012; Hall et al. 2014). To just elaborate on one example, in the latter study

conducted on more than 170,000 subjects, the R4S tools plus second-tier tests were

able to reduce the rate of false-positives from 0.26 to 0.02 %, which corresponded

to the overall PPV rising from 10 % to more than 50 % (Hall et al. 2014), a

potentially decisive difference in health technology assessment (HTA) studies.

By now, population-based screening programs are implemented in most indus-

trialized and many developing countries, albeit with different diagnostic portfolios,

and are prototypic examples for the way, in which metabolomics could further

evolve – if not revolutionize – clinical chemistry.

7.4 Promising New Indications

7.4.1 Motivations for Clinical Mass Spectrometry

Besides neonatal screening, which is typically conducted in a highly centralized

fashion with few centers servicing large geographic areas, mass spectrometry has

been (and could further be) introduced in clinical laboratories essentially for two

reasons:
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First and quite obvious, to replace analytically flawed assays, often immunoas-

says for small molecules, which have inherent issues (limited specificity, steric

hindrance preventing the set-up of a sandwich ELISA, etc.) if antibodies are

available at all; most endogenous metabolites such as amino acids, organic acids,

simple carbohydrates, and many classes of lipids are ubiquitous in animals and,

thus, no natural antibodies can be raised against them. The most relevant and well-

established examples for this category are therapeutic drug monitoring (TDM) for

immunosuppressants (Koal et al. 2004; Ceglarek et al. 2004, 2006; Seger

et al. 2009), antiretroviral drugs (Koal et al. 2005, 2006), antibiotics (Koal

et al. 2006; K€onig et al. 2013; Zander et al. 2015), or antidepressants (Berm

et al. 2015), and assays for vitamin D and its metabolites (Vogeser 2010; Van

den Ouweland et al. 2013). In addition, the last few years have seen the launch of

multiparametric tandem mass spectrometric assays for other clinically relevant

metabolites such as steroid hormones (SteroIDQ™ from Biocrates, Innsbruck,

Austria; MassChrom® Steroids from Chromsystems, Gräfelfing, Germany), bile

acids (Bile Acids Kit from Biocrates), or Catecholamines (from ChromSystems),

and the SteroIDQ™ kit has already demonstrated that such an assay can be

developed not just as a set of reagents but as a fully integrated solution and can

meet the quality and regulatory requirements for a European registration as a

Fig. 7.1 Positive predictive values for rare diseases. The relationship between the positive

predictive value (PPV) and the prevalence of a diagnosed disease (see Eq. 7.1) is demonstrated

by plotting selected graphs for specificities ranging from 90 to 99.99 % at a given (reasonably

high) sensitivity of 99 %. Note that even at the highest specificity level, the PPV for a disease with

a prevalence of 1 in 100,000 is below 10 %
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medical device for in vitro diagnostics (IVD; the CE/IVD mark according to the

directive 98/79/EC).

Second, and this is certainly more promising and more challenging at the same

time, mass spectrometry could facilitate the introduction of novel diagnostic con-

tent, e.g. of biomarker signatures that have already been identified on this platform

and would not have to go through a technology transfer process with its inherent

risks of poor analytical performance or of a failure to combine the necessary

parameters in one assay with potentially grave consequences for the intellectual

property (IP) situation. Any addition to the diagnostic repertoire, however, requires

outstanding scientific evidence, preferably substantiated by translational research

and validated by replication in independent clinical cohorts (Breit and Weinberger

2016). This is even more important since confidence in and acceptance for omics-

derived biomarkers has suffered dramatically from the early (and extremely well-

published) attempts to identify proteomic signatures for various conditions, partic-

ularly in oncology (Liotta and Petricoin 2000; Petricoin et al. 2002a, b, c), none of

which could ever be validated, let alone be translated into a diagnostic assay.

Unfortunately, the field of metabolomics has seen similar examples, again in

oncology, with the protracted controversy over sarcosine as a prostate cancer

marker (Sreekumar et al. 2009; Jentzmik et al. 2010; Struys et al. 2010; and

many more). Thus, the critical question is whether there are metabolic biomarkers

mature enough for clinical applications and, if yes, for which indications.

7.4.2 Diabetes

The simple, actually trivial, answer to this question is that metabolomics should be

a particularly helpful tool for characterizing metabolic disorders; it goes without

saying that a condition like type II diabetes (T2D), in which large, metabolically

active organs (liver, skeletal muscle, etc.) are ‘misbehaving’, has a more profound

and much more easily detectable impact on the metabolome than, say, a minuscule

early-stage tumor whose – doubtlessly altered – metabolism (see Sect. 7.3.1) would

have to be spotted against the background of an overwhelming majority of meta-

bolically normal healthy tissue.

As a matter of fact, this theoretical assumption has been confirmed by a long

series of metabolomics studies on diabetic animal models and clinical cohorts. It

would lead much too far to discuss all the individual findings but studies in various

rodent models, e.g. db/db mice (Hummel et al. 1966) or Zucker diabetic fatty (ZDF)

rats, have shown repeatedly that – among many other metabolic alterations – the

aromatic and the branched-chain amino acids (AAA and BCAA, respectively) are

early and sensitive markers for diabetes (Altmaier et al. 2008; Weinberger 2008;

Giesbertz et al. 2015). These parameters proved to be significantly more sensitive

than conventional (monoparametric) markers used at that time, and helped in

prioritizing a phosphodiesterase (PDE) 4 inhibitor as a new anti-diabetic drug
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candidate, which is now in clinical development with very promising results

(Altmaier et al. 2008; Vollert et al. 2012; Wouters et al. 2012).

The same findings were obtained in several human cohorts (Weinberger 2008;

Gieger et al. 2008; Suhre et al. 2010; Lu et al. 2013a, b; Duranton et al. 2014), and it

turned out that these alterations were not just indicative of incident diabetes but also

very early events in prediabetes (Kulkarni 2012; Dzien &Weinberger, unpublished

data), which is, of course, the much more pressing diagnostic need. Eventually, a

large-scale study on the Framingham Offspring cohort demonstrated beyond any

reasonable doubt that elevated levels of AAA and BCAA were even predictive of

future diabetes as much as 12 years before onset of the disease (Wang et al. 2011).

Thus, T2D risk assessment and monitoring the progress of the metabolic syndrome

towards incident diabetes is clearly one of the most advanced and promising

indications for a diagnostic metabolomics assay as it fulfills all the relevant criteria

(huge unmet diagnostic need, repeatedly validated biomarkers, mechanistic under-

standing from translational research, and excellent ‘kitability’ as demonstrated by

products that are already on the market, e.g. the AbsoluteIDQ® P180 or the

MetaDisIDQ® kits from Biocrates).

7.4.3 Chronic Kidney Disease

The second indication, for which there is a similarly compelling set of data, is

closely associated with the diabetes pandemic, namely chronic kidney disease

(CKD). Again, it would go beyond the scope of this chapter to discuss any details

here but a characteristic set of metabolic changes, e.g. in dimethylarginine metab-

olism, the urea cycle, tryptophan catabolism, and oxidative stress have been

identified in relevant animal models and repeatedly confirmed in different human

cohorts, either in large population-based or in dedicated clinical studies (Boudonck

et al. 2009a, b; Lundin and Weinberger 2010; Lundin et al. 2011; Duranton

et al. 2014; Pena et al. 2015; Breit and Weinberger 2016). Beyond these individual

findings, machine learning techniques were used to create classifiers based on

metabolite panels measured in plasma or urine, and both classifiers were not just

diagnostic, i.e. associated with the renal function at the time of sampling, but also

predictive of the renal function at a follow-up examination 2 years later (Nkuipou-

Kenfack et al. 2014).

7.4.4 Neurology

The greatest interest of the clinical community (but also of patients’ organizations
and the public) can certainly be observed in the fields of neurology and oncology

but both have their specific challenges. In neurology, the most actively pursued

indication is Alzheimer’s disease (AD), for which the currently available diagnostic
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armamentarium is still particularly poor (Lewczuk et al. 2015; Laske et al. 2015).

Since 2008, various studies attempted to find metabolic markers for AD (Barba

et al. 2008) but the last few years really saw an explosion of publications on

precisely this topic (69 hits in PubMed from 2011 to August 2015), some of them

by the very pioneers of metabolomics (Kaddurah-Daouk et al. 2011, 2013 Orešic

et al. 2011; Han et al. 2011). However, important questions regarding the use of

serum or plasma metabolomics for conditions affecting the central nervous system

(CNS) remain unanswered or, at least, undiscussed in most of these papers, e.g. how

permeable is the blood-brain barrier for all the metabolites analyzed, i.e. how much

of the changes found in peripheral blood is actually due to CNS metabolism, and

what is the extent of disease-related changes of this permeability? Of course, it

would mean a truly Sisyphean labor to address these issues in a systematic fashion,

and a diagnostic signature can also be perfectly valid and clinically valuable if it is

only based on statistical evidence and the underlying mechanisms remain unclear.

Yet, the questions raised above (and many others) may have significant repercus-

sions for the kind of controls one would have to use in biomarker studies to ensure

appropriate diagnostic specificity (assuming that the AD community is not just

hunting for a systemic inflammation marker).

7.4.5 Oncology

As mentioned above, in oncology, the general expectation from new omics tech-

nologies was somewhat soured by the tough lessons learned from proteomics but

then reinvigorated by the renaissance of the Warburg hypothesis (see above). In any

case, the (perceived) diagnostic need in this area is greater than in any other medical

discipline and, so, a plethora of studies have been conducted to find markers or

signatures for various types of cancer (far too many to be discussed in any detail in

this chapter; selected recent reviews by Bezabeh et al. 2014; Halama 2014; Lloyd

et al. 2015; Patel and Ahmed 2015).

Still, one has to keep in mind that there is no such thing as the ‘generic biomarker

for a certain type of cancer’ identified by simplistic study designs like ‘cancer
vs. healthy control’; both clinical oncologists and the pharmaceutical industry rather

focus on predictive companion diagnostic markers, which could identify patients who

are likely to benefit from a particular drug or treatment regimen (Aichler et al. 2014;

Michels et al. 2014), whereas the supreme goal of early diagnosis (allowing for

curative surgery or even radiotherapy) seems extremely ambitious given the sensi-

tivity considerations discussed above (very small tumor, lots of healthy surrounding

tissue). This situation would only change if the tumor did indeed synthesize specific

compounds that are not found in healthy tissues instead of just more or less of a

ubiquitous metabolite, and the first highly promising example for this scenario is the

identification of 2-hydroxyglutarate as an alternative product of the mutated isocitrate

dehydrogenase often found in tumors, which makes it a prototypic oncometabolite

(Dang et al. 2009; Gross et al. 2010; Ward et al. 2010).
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7.4.6 Others

Of course, the literature is also full of other reports on biomarker discovery by

metabolomics; to list just a few very recent examples, their targeted indications

range from different types of lung cancer (Wikoff et al. 2015; Fahrmann

et al. 2015) to primary biliary cirrhosis and autoimmune hepatitis (Lian

et al. 2015), and from fetal chromosomal aberrations (Pinto et al. 2015) to Sj€ogren’s
syndrome (Kageyama et al. 2015), not to mention mycobacterial infections

(Mirsaeidi et al. 2015), venous thrombosis (Deguchi et al. 2015), breast cancer

(Mishra and Ambs 2015), Snyder-Robinson syndrome (Abela et al. 2016), inflam-

matory bowel disease (Sands 2015), Takayasu arteritis (Guleria et al. 2015), or

preeclampsia (Koster et al. 2015).

In summary, many areas of clinical research try to mimic the success stories of

metabolic biomarker discovery and validation in diabetology and nephrology, and

these efforts get facilitated by the broader dissemination of standardized assays, kit

products, or – at least – validated protocols including preanalytical recommenda-

tions. Yet, none of these areas have reached a similar level of maturity and

credibility as the two applications discussed above in greater detail, so it seems

likely that prediabetes and chronic kidney disease/diabetic nephropathy (DN) may

be the first two (of presumably many) instances of new metabolomics-derived

content to appear on the requisition slips of clinical core labs.

7.5 Technological and Bioinformatics Challenges

It is quite evident that all of the trends and innovations described and predicted

above cannot work without the appropriate design of experiments (DoE), a solid

framework for data management and workflow control, e.g. in a laboratory infor-

mation management system (LIMS), data analysis incorporating quality control

steps and sophisticated statistics and, eventually, biochemical interpretation of the

results, either in the discovery and validation of new markers or in the clinical

assessment of routine measurements. The bioinformatics tools addressing these

needs specifically for targeted metabolomics are described in detail (and from a

more technical angle) in Chap. 8 of this book while the following section will try

and highlight a couple of challenges and pitfalls.

7.5.1 Clinical Translation

The first of these remarks may sound trivial but the authors feel that it is of the

utmost importance to stress it once again: innovations in bioanalytics and bioinfor-

matics cannot overcome the need for diligent scientific work, or – in other words –

omics platforms and data mining tools will not replace careful study design and
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detail-oriented experimental work but rather make them more efficient and more

informative.

This is particularly true for large-scale, population-based studies aiming at the

identification of new diagnostic biomarker signatures. Certainly, the statistical

significance levels of many of the published results are impressive but so is the

complexity of the study populations, the bioanalytical procedures, and – thus – the

generated data sets. In the end, even p-values of 10�100 or 10�200 are only measures

of a likelihood, could be caused by unrecognized flaws in the study design or

patients’ documentation, systematic biases of the lab methods, or other intrinsic

structures of the data, and will not substitute an independent replication of the

results. In genomics studies, particularly in genome-wide association studies

(GWAS), this has long been recognized, and no reasonable journal would accept

GWAS data for publication unless the results were confirmed in a second, inde-

pendent cohort.

In metabolomics, the same standard has been set by the first examples of GWAS

on metabolic traits (Gieger et al. 2008; Illig et al. 2010), a combination that has been

outstandingly fruitful over the last few years and identified both significant and

meaningful links of genetics and metabolism (Suhre et al. 2011; Nicholson

et al. 2011; Ried et al. 2013, 2014; Draisma et al. 2015). More recently, this approach

was also extended to epigenetics (Petersen et al. 2014; Pfeiffer et al. 2015). In the

wake of these studies, metabolic biomarker discovery and validation was conducted

in similar cohorts (and often by the same investigators) yielding highly credible and

convincing results, on which diagnostic product development could well be founded

(Wang-Sattler et al. 2012; Floegel et al. 2013; Goek et al. 2013; Würtz et al. 2015).

Yet, and this critical remark is unfortunately necessary: the vast majority of

metabolomics studies does not yet meet these criteria regarding the study design,

and – one a more basic level – regarding the wording of the publications; it goes

without saying that not every single study can be conducted in cohorts of thousands of

well-documented subjects (quite often, this is even a contradictio in eo ipso) but then
it would at least be important to call the results ‘biomarker candidates’ instead of

‘biomarkers’ and refrain from far-reaching claims about the clinical utility of such

markers but rather recommend independent validation, even if the statistical results

are highly significant.

7.5.2 Standardization of Quantitative Analytics

The assessment of an assay in clinical chemistry typically happens at two different but

closely interrelated levels (neglecting the commercial aspects for now): one addressing

the analytical characteristics and the other scrutinizing the actual diagnostic perfor-

mance. The latter aspect has already been briefly discussed in Sect. 7.3 with regards to

rare diseases, and the accepted parameter for doing so is the area under the curve (AUC)

in a receiver operating characteristics (ROC) analysis, which still allows to choose the

individual cut-off value in a way that either sensitivity or specificity are optimized

depending on the clinical priorities (or a balanced compromise is found). Of course, the
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typically digital diagnostic result directly depends on the quality of the underlying

analytics. In the case of quantitative assays measuring continuous variables, the key

performance parameters are precision, describing the reproducibility, and accuracy,

describing the correct determination of the true value. While precision can easily be

determined for each laboratory, instrument, or operator by standard procedures, essen-

tially repeated analyses of the same sample and calculation of the coefficient of

variation (CV) or relative standard deviation (RSD), e.g. following the ‘Guidance for
Industry Bioanalytical method validation’ issued by the American Food and Drug

Administration (FDA) or the ‘Guideline on bioanalytical method validation’ issued by
the European Medicines Agency (EMA), the assessment of accuracy in metabolomics

is a far greater challenge. If no orthogonal gold standard method is available, the most

straightforward approach would be to spike known concentrations in an authentic

matrix and compare the results with the expected values. However, since the analytes

of interest are all ubiquitous, endogenous metabolites, one would have to create such a

matrix artificially, either bottom-up by composing a synthetic matrix from chemically

defined ingredients, or top-down by depletion of blood fluids on activated carbon, but

the resulting liquids are usually no fully appropriate substitute in terms of mimicking

the preanalytical and analytical complexity of actual serum or plasma samples. As an

alternative, one has to resort to the standard addition method (SAM) to determine the

true value but that also has its limitations, e.g. it would require that any matrix effects

must not vary with the analyte-to-matrix ratio, which is actually difficult to claim.

Yet, assuming these technicalities have been satisfactorily solved, both parameters

still have a different meaning in the development and life cycle of a diagnostic test. In

the daily routine of general practitioners, the vast majority of patients repeatedly see the

same physician who always sends his samples to the same lab. In this setting, analytical

precision is of paramount importance in order to follow the course of a patient’s
condition, e.g. to determine disease progression or monitor therapeutic efficacy. How-

ever, in clinical research and the actual product development and registration of a

diagnostic test, multicenter studies and comparison/integration of data across multiple

sources is indispensable. Here, accuracy is a conditio sine qua non, which can only be
efficiently controlled by interlaboratory comparison of proficiency in round robin tests

or, at the very least, by broadly available standardmaterials (e.g. as part of kit products),

against which each lab can check their own calibrations.

Unfortunately, these considerations mean that the community is facing a kind of

chicken-and-egg problem: standards, kits, and – even more so – round robin tests

typically only become available once a test is fully developed and established in a

reasonable number of labs while accuracy and standardization would have been most

direly needed for the clinical research identifying and validating the new marker.

7.5.3 Biochemical Annotation and Interpretation

A third aspect to be discussed here is the role of biochemical background knowl-

edge. As already briefly mentioned in Sect. 7.4, diagnostic markers and tests can be

perfectly valid if they are only based on statistical significance and lack a
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mechanistic explanation, theoretically even if they were unidentified peaks in a

non-targeted profiling approach (with the discussed impact on study design, selec-

tion of appropriate controls, diagnostic specificity, etc.). Yet, and this is particularly

true for metabolomics, the utilization of the detailed understanding of many

biochemical pathways opens up additional possibilities for hypothesis-driven

(or -supported) data mining strategies that can improve the statistical power of

studies and/or reduce the number of false-positive findings.

These options have recently been reviewed in detail (Enot et al. 2011; Breit

et al. 2015) and are also covered in greater depth in Chap. 8 of this book. However,

two brief comments should be made at this point: Over the last century, biochem-

istry has elucidated the majority of relevant enzymatic and non-enzymatic steps in

human metabolism (the map is certainly not 100 % complete but offers a very good

coverage), both in terms of reaction mechanisms (substrates and products, enzymes

and cofactors involved, localization, often even X-ray crystallographic structures)

and of quantitative characteristics (kinetics and energetics of the reactions, homeo-

static equilibria, etc.). Based on this understanding, one can use the rate-limiting

step of a pathway as a surrogate read-out if the analytical coverage is limited or

combine metabolites belonging to the same pathway in metabolite set enrichment

analyses (MSEA) – a far more informed and more highly resolved kind of ontology

than the Gene Ontology (GO) typically used in genomics or proteomics studies.

From a strictly statistical angle, the latter approach still has its shortcomings

because it relies on rather ‘traditional’ definitions of biochemical pathways,

e.g. in the Kyoto Encyclopedia of Genes and Genomes (KEGG). Here, metabolic

pathways are defined as entities of greatly different magnitude and complexity

(often based on the history of their discovery) and, thus, there is a bias towards

overestimating the importance of complex pathways while even pathways

consisting of just of few reactions can have major implications for the overall

metabolic situation (compare, for instance, glycerophospholipid metabolism to the

urea cycle). Moreover, using this classification for statistics does not take into

account that different pathways have varying degrees of redundancy; the more

alternative routes metabolism can take, the less dramatic are the repercussions of a

single event (up- or downregulation of enzyme expression, gain or loss of function

mutations, etc.) for the entire network. Thus, enrichment analyses do have a huge

potential in this context but cannot replace expert assessment of the findings.

To this end, mapping quantitative metabolomics data onto pathways offers one

more avenue of scrutinizing biostatistical results, which – as discussed earlier in this

section – are only probabilistic in nature and, thus, prone to a residual risk of false

positives. As soon as a certain enzymemetabolizes several substrates (things are a little

more complex in the reverse situation), it is always a sensible plausibility check to see

whether the trends for these substrates are the same. To name just the simplest example:

of course, there could be various reasons why the three BCAA valine, leucine, and

isoleucine show a different behavior in a certain study but, as they are essential, i.e. not

synthesized in the body, and the first step in their catabolism is catalyzed by the same

enzyme, in most cases they will show very similar trends. So, deviations from this rule

should trigger a thorough investigation of potential analytical issues (and the same

holds true for many aspects of lipid metabolism and other pathways).
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Also, this thought loops directly back to the enrichment analyses: groups of

metabolites that aren’t necessarily part of a classical pathway but share biochemical

properties or reactions make for extremely informative sets in MSEA,

e.g. saturated, monounsaturated, or polyunsaturated fatty acids; short-, middle-, or

long-chain acylcarnitines; branched-chain, aromatic, glucogenic, or ketogenic

amino acids, and various ratios thereof. For kit-based targeted metabolomics,

such an approach – albeit on a limited scale – has already been implemented in

commercially available software (the MetIDQ™ suite accompanying the

MetaDisIDQ® kit from Biocrates; Gruber et al. 2012; Then et al. 2013).

7.5.4 Important Caveats in Supervised Statistics

Another important pitfall in data analysis has become markedly more relevant in

recent years. In the early phase of metabolomics – or ‘metabonomics’ in the

terminology of many nuclear magnetic resonance (NMR) enthusiasts (Nicholson

et al. 1999), the biomedical aspects of many studies may not have been perfectly

designed but, at least, the bioanalytics and the chemometrics were usually

conducted by real experts; after all, this was a new technology, and methodological

progress was considered as important as biological content. Since metabolomics

has found a wider distribution (either through kits or the services offered by core

facilities), it starts to be viewed as just another experimental tool that can be used by

investigators who are more interested in the content than the methods. While, in

principle, this is a thoroughly positive development, it leaves many researchers

alone with the problem of how to manage and analyze their metabolomics data and,

in this situation, they may be tempted to use multivariate statistics and other

bioinformatics tools, which are now freely available online (see Chap. 8) but

which they do not fully understand. In this context, some of the most critical

steps are outlier detection and handling, scaling and normalization, imputation of

missing values, and the far too liberal use of supervised data mining that let the user

generate impressive scores plots of discriminant analyses or ROC curves with

outstanding AUC from rather poor and noisy data sets.

To illustrate this point more concisely, the authors analyzed an extremely noisy

urinary metabolomics data set (poor sample quality, many missing values, many

analytes around or below their limit of detection) from ten db/db mice and ten

heterozygous healthy controls (db/-) (Altmaier et al. 2008) on the MetaboAnalyst

platform (Xia et al. 2009, 2012, 2015) using standard settings (log normalization,

Pareto scaling) and could easily generate a very nice principle components analysis

(PCA) scores plot and equally convincing class probability prediction plots based

on partial least squares discriminant analysis (PLS-DA), a Random Forests

approach, or a linear support vector machine (SVM), each suggesting excellent

separation of the two cohorts. In addition, the ROC analyses also yielded close-to-

optimal curves with AUC values greater than 0.99 for combinations of three to

80 metabolites in the actual classifiers (Fig. 7.2). Now, although this data set had
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Fig. 7.2 Supervised multivariate statistics, part 1. Three different classification algorithms, partial

least squares discriminant analysis (PLS-DA, panels a and b), random forests (panels c and d), and
linear support vector machine (SVM, panels e and f), all available on the MetaboAnalyst website

(Xia et al. 2015) were applied to an extremely noisy metabolomics data set with many missing

values and many concentrations at or below the limit of detection (for details, see Sect. 7.5.4).
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been studied extensively by experts in statistics, biochemistry, and diabetology who

did not find much meaningful content (in contrast to the extremely informative

serum and plasma data from the same mice), there was still the possibility of some

hidden gems that everybody had missed so far. Therefore, the same analyses were

conducted for a set of random numbers (again >200 parameters, 10 samples per

cohort): the ROC curves still had an AUC between 0.796 with five variables and

0.992 with 100 variables in the classifiers (Fig. 7.3), and the platform calculated an

average accuracy of 0.981 after 100 cross-validations!

Thus, it should be acknowledged as crucial to give users of such online services

sound introductions to the available methods including their strengths and weak-

nesses, and warn them about the risks of overestimating the ‘diagnostic perfor-

mance’ of a metabolic signature, actually of any high-dimensional data set; plus, as

a general rule, supervised multivariate statistics should only be applied in combi-

nation with a thorough biochemical plausibility check of the results, e.g. by path-

way mapping or enrichment analyses (see above). However, it is probably too

optimistic to expect such a simple recommendation to have any noticeable effect.

Therefore, these aspects must be checked in the peer-review process for

⁄�

Fig. 7.2 (continued) Each of the tools generated highly discriminating class probability pre-

dictions (panels a, c, and e) and extremely optimistic receiver operating characteristics (ROC)

curves (panels b, d, and f) with areas under the curves (AUC) of very close to 1. Note that, in

several cases, the numbers given for the AUC do obviously not match the graphs, particularly

when the AUC equals exactly 1

Fig. 7.3 Supervised multivariate statistics, part 2. The linear SVM approach used for panels e and
f in Fig. 7.2 was applied to a data set of the same dimensions (>200 parameters, 10 samples per

group, see Sect. 7.5.4) but consisting of random numbers. Again, the class probability prediction

plot (panel a) suggests a perfect separation of both cohorts, and the ROC analysis yields excellent

AUC values ranging from 0.796 to 0.992 for classifiers consisting of 5–100 parameters (panel b)
(See Sect. 7.5.4)
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publications to enforce a more responsible manner of presenting data from

metabolomics studies.

7.5.5 Biological Specificity

The final remark in this section goes back to the issue of diagnostic specificity and

the selection of appropriate controls. Everybody who analyzes metabolomics data

sets on a regular basis and in various indications will sooner or later realize that

there is an intermediary level of complexity between the individual metabolite

concentrations and the – typically multifactorial – clinical condition (of course, for

the monogenic disorders detected in neonatal screening, this relationship is much

more direct). In most cases, several metabolites show alterations that belong to one

pathway or basic pathomechanism, and several of these findings form the biochem-

ical signature of a complex disease. This concept of ‘intermediary phenotypes’ was
first described by Karsten Suhre in the context of GWAS on metabolic traits (Illig

et al. 2010) and holds true for many clinically relevant indications, e.g. diabetes

(Altmaier et al. 2008; Weinberger 2008; Gieger et al. 2008) or chronic kidney

disease (Lundin and Weinberger 2010; Lundin et al. 2011; Duranton et al. 2014;

reviewed by Breit and Weinberger 2016).

To stick to the latter example, CKD presents itself (amongst others) with

significant alterations in dimethylarginine metabolism, the urea cycle, tryptophan

catabolism, or oxidative stress levels (see also Sect. 7.4), each of which has in turn a

typical signature of concentration changes of individual metabolites. To elaborate

on only two of these: tryptophan metabolism in CKD is characterized by extremely

low levels of tryptophan and increased turn-over to kynurenine and serotonin,

i.e. elevated ratios of these two products to tryptophan (Lundin et al. 2011; Goek

et al. 2012, 2013; Breit and Weinberger 2016); oxidative stress on the other hand is

reflected by an elevated ratio of methionine-sulfoxide to methionine and, subse-

quently, by an impaired enzymatic activity of phenylalanine hydroxylase due to

low levels of its oxidation-sensitive cofactor tetrahydrobiopterin, i.e. a decreased

ratio of tyrosine to phenylalanine (Weinberger 2008; Sonntag et al. 2008; Breit and

Weinberger 2016) (Fig. 7.4).

Yet, some of these fundamental mechanisms of pathobiochemistry such as

membrane damage, mitochondrial leakage, dysregulated autophagy, oxidative

stress, endothelial dysfunction, inflammation, and others play a central role in

many different diseases. By far most prominently, oxidative stress has been

observed in neurodegenerative conditions ranging from Alzheimer’s (Coppedè

and Migliore 2015; Rosales-Corral et al. 2015) to Parkinson’s disease (Blesa

et al. 2015) and from age-related macular degeneration (AMD; Blasiak

et al. 2014) to multiple sclerosis (Haider 2015) but it is, at the same time, a hallmark

of chronic obstructive pulmonary disease (COPD; Domej et al. 2014),

non-alcoholic steatohepatitis (Lim et al. 2015) and atherosclerosis (Husain

et al. 2015), diabetes (Keane et al. 2015) and CKD (see above), not to mention its
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Janus-faced role in many types of cancer (Ramesh et al. 2014; Manda et al. 2015).

Only slightly exaggerated, one gets the impression that, today, it would warrant a

high-ranking publication if somebody found a disease, in which oxidative stress

was actually not involved.

In return, this clearly implicates that many metabolic changes are not likely to be

specific for a particular disease but that a diagnostic marker panel would have to

consist of several such signatures to yield the desired specificity. More concisely,

this also means that the appropriate controls for studies on any of the diseases listed

in the last paragraph are not just healthy individuals but patients with other

conditions, in which (a subset of) the same molecular mechanisms may play a

role. Such a reductionist view on pathobiochemistry aiming at some kind of

‘systems diagnostics’ would, thus, have far-reaching consequences for the study

design in clinical research, but also for regulatory strategies, the daily diagnostic

practice and, eventually, the reimbursement of diagnostic assays.

Fig. 7.4 Systems diagnostics. Simplified overview of the main metabolic alterations found in

chronic kidney disease (CKD; reviewed by Breit and Weinberger 2016); for many of the changes,

which have been validated so far, there is an intermediary level of complexity linking the

metabolic phenotype to the clinical diagnosis: several individual metabolites represent a particular

pathway or basic biochemical pathomechanism, e.g. oxidative stress, and several of these entities

characterize the actual disease (See Sect. 7.5.5)
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7.6 Conclusions

All of the above-mentioned aspects warrant a couple of technical and content-

related conclusions.

First of all, there is plenty of evidence that metabolomics has ushered in a new

era of clinical biochemistry; metabolic analyses had actually preceded immunoas-

says and molecular diagnostics by decades but may now make a comeback with

highly informative, multiparametric biomarker panels for some of the most press-

ing diagnostic needs. These panels may actually even trigger a rather radical

paradigm shift towards diagnosing sets of basic pathomechanisms (‘systems diag-

nostics’) instead of the traditional diagnostic entities.

From a technical perspective, the basic requirements for this development seem

to be met (sufficiently sensitive and selective tandem mass spectrometers are

available, stable isotope dilution allows for highly accurate quantitation, etc.) but

there is still a long way to go to reach the same level of robustness, ease-of-use, and

automation as the established platforms, and this holds both for the hardware

(instruments) and the software (consumables, bioinformatics, etc.). However, man-

ufacturers of mass spectrometers and of metabolomics kits have recognized the gap

and are making significant progress towards standardized integrated solutions that

could serve as prototypes of new diagnostic tools.

In this context, robustness does not only refer to technical stability but also to the

role of various confounders. Metabolomics’ greatest advantage, namely being so

close to the functional end-point of biochemical processes instead of just depicting

predispositions like most genetic analyses, can also represent a major challenge:

metabolic markers may be rather sensitive to circadian rhythm, diet, medication,

physical activity or, for that matter, preanalytical sample handling. While such

influences cannot be entirely avoided, the last few years saw some highly system-

atic work towards understanding these factors in a quantitive fashion

(Yu et al. 2012; Floegel et al. 2013, 2014; Jaremek et al. 2013; Mathew

et al. 2014; Breier et al. 2014; Anton et al. 2015) paving the way for chemometric

tools to compensate for the additional variability.

Thus, there is definitely reason to be optimistic: the content identified by

metabolomics studies is often extremely compelling, the first few biomarker panels

for important indications have been successfully validated, and the development of

more robust instruments, suitable laboratory automation platforms, standardized

consumables, and appropriate software certainly moves in a promising direction

although a seamless integration of these elements may still take some time. Even

regulatory hurdles have already been overcome, as demonstrated by the CE/IVD-

labeled SteroIDQ™ kit, and – commercially just as important – the first patents for

concise, diagnostically relevant metabolite signatures have been granted (e.g.,

Lundin and Weinberger 2010) after many futile attempts – even by global compa-

nies – to patent all possible subsets of absurdly long Markush lists.

Still, this summary would not be complete without a word of warning. The

failure of early attempts to identify cancer biomarkers in proteomics, which were

198 K.M. Weinberger and M. Breit



prematurely heralded as clinical breakthroughs, has afflicted lasting damage to the

entire field, and this lesson must be taken seriously if metabolomics is to succeed as

the new platform in clinical chemistry. Of course, enthusiasm and a certain

pioneering spirit are necessary to promote a new technology but nothing under-

mines scientific credibility more than making far-reaching medical claims based on

questionable study designs and inappropriate data analytics that cannot be substan-

tiated in validation studies. So, it is up to the metabolomics community to act

responsibly and realize the huge potential that this technology holds – if they do, the

next generation of patients will benefit from a radically new way of laboratory

diagnostics, which should be a cornerstone of Leroy Hood’s vision of predictive,

preventive, personalized, and participatory (P4) medicine.
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Coppedè F, Migliore L. DNA damage in neurodegenerative diseases. Mutat Res. 2015;776:84–97.

doi:10.1016/j.mrfmmm.2014.11.010. Epub 2014 Dec 9. Review.

Crick F. Central dogma of molecular biology. Nature. 1970;227(5258):561–3.

Crick F. Ideas on protein synthesis. Francis Harry Compton Crick Papers. Wellcome Library for

the History and Understanding of Medicine. 1956 [cited 2015 Sep 1]. Available from: http://

profiles.nlm.nih.gov/ps/access/SCBBFT.pdf

Crick FH, Barnett L, Brenner S, Watts-Tobin RJ. General nature of the genetic code for proteins.

Nature. 1961;192:1227–32.

Crowgey EL, Kolb A, Wu CH. Development of bioinformatics pipeline for analyzing clinical

pediatric NGS data. AMIA Jt Summits Transl Sci Proc. 2015;2015:207–11. eCollection 2015.

Cunha F. The Edwin Smith surgical papyrus. Am J Surg. 1949;78(2):277.

Dahm R. Friedrich Miescher and the discovery of DNA. Dev Biol. 2005;278(2):274–88. Review.

Dang CV. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle.

2010;9(19):3884–6. Epub 2010 Oct 9.

Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated

IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44. doi:10.1038/

nature08617.
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Kühne W. [Über das Sekret des Pankreas (1876), Heidelberg Nat]. Med. Verhandl.

1877;1:233–35.

Kulkarni RN. Identifying biomarkers of subclinical diabetes. Diabetes. 2012;61(8):1925–6.

doi:10.2337/db12-0599.

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.

Nature. 1970;227(5259):680–5.

Laske C, Sohrabi HR, Frost SM, L�opez-de-Ipi~na K, Garrard P, Buscema M, et al. Innovative

diagnostic tools for early detection of Alzheimer’s disease. Alzheimers Dement. 2015;11

(5):561–78. doi:10.1016/j.jalz.2014.06.004. Epub 2014 Nov 15. Review.

Leder P, Nirenberg MW. RNA codewords and protein synthesis, 3. On the nucleotide sequence of

a cysteine and a leucine codeword. Proc Natl Acad Sci U S A. 1964;52:1521–9.

Lengyel P, Speyer JF, Ochoa S. Synthetic polynucleotides and the amino acid code. Proc Natl

Acad Sci U S A. 1961;47:1936–42.

Levene PA. The structure of yeast nucleic acid. Stud Rockefeller Inst Med Res. 1919;30:221.

Levene PA, Jacobs WA. On the structure of thymus nucleic acid. J Biol Chem. 1912;12

(3):411–20.

Lewczuk P, Mroczko B, Fagan A, Kornhuber J. Biomarkers of Alzheimer’s disease and mild

cognitive impairment: a current perspective. Adv Med Sci. 2015;60(1):76–82. doi:10.1016/j.

advms.2014.11.002. Epub 2014 Dec 9. Review.

Lian JS, Liu W, Hao SR, Chen DY, Wang YY, Yang JL, Jia HY, Huang JR. A serum metabolomic

analysis for diagnosis and biomarker discovery of primary biliary cirrhosis and autoimmune

hepatitis. Hepatobiliary Pancreat Dis Int. 2015;14(4):413–21.

Liebl DJ, Morris CJ, Henkemeyer M, Parada LF. mRNA expression of ephrins and Eph receptor

tyrosine kinases in the neonatal and adult mouse central nervous system. J Neurosci Res.

2003;71(1):7–22.

7 Targeted Metabolomics in Clinical Chemistry 205

http://dx.doi.org/10.1515/cclm-2013-0142
http://dx.doi.org/10.1155/2015/857108
http://dx.doi.org/10.2337/db12-0599
http://dx.doi.org/10.1016/j.jalz.2014.06.004
http://dx.doi.org/10.1016/j.advms.2014.11.002
http://dx.doi.org/10.1016/j.advms.2014.11.002


Lim S, Oh TJ, Koh KK. Mechanistic link between nonalcoholic fatty liver disease and

cardiometabolic disorders. Int J Cardiol. 2015;201:408–14. doi:10.1016/j.ijcard.2015.08.107.

[Epub ahead of print] Review.

Liotta L, Petricoin E. Molecular profiling of human cancer. Nat Rev Genet. 2000;1(1):48–56.

Review.

Littman RJ, Littman ML. Galen and the Antonine plague. Am J Philol. 1973;94:243–55.

Lloyd SM, Arnold J, Sreekumar A. Metabolomic profiling of hormone-dependent cancers: a bird’s
eye view. Trends Endocrinol Metab. 2015;26(9):477–85. doi:10.1016/j.tem.2015.07.001.

Epub 2015 Aug 1. Review.

Lu J, Xie G, Jia W, Jia W. Metabolomics in human type 2 diabetes research. Front Med. 2013a;7

(1):4–13. doi:10.1007/s11684-013-0248-4. Epub 2013 Feb 2. Review.

Lu J, Xie G, Jia W, Jia W. Insulin resistance and the metabolism of branched-chain amino acids.

Front Med. 2013b;7(1):53–9. doi:10.1007/s11684-013-0255-5. Epub 2013 Feb 6. Review.

Lundin U, Weinberger K (Inventors). Biocrates life sciences AG (Assignee). New biomarkers for

assessing kidney diseases. International patent WO/2010/139341. Published 2010 Dec 09.

Lundin U, Modre-Osprian R, Weinberger KM. Targeted metabolomics for clinical biomarker

discovery in multifactorial diseases. In: Ikehara K, editor. Advances in the study of genetic

disorders. Croatia: InTech; 2011. p. 81–98.

Maciocia G. The foundations of Chinese medicine. London: Churchill Livingstone; 1989. p. 221.

Manda G, Isvoranu G, Comanescu MV, Manea A, Debelec Butuner B, Korkmaz KS. The redox

biology network in cancer pathophysiology and therapeutics. Redox Biol. 2015;5:347–57.

doi:10.1016/j.redox.2015.06.014 [Epub ahead of print].

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing

in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.

Marquardt G, Currier R, McHugh DM, Gavrilov D, Magera MJ, Matern D, et al. Enhanced

interpretation of newborn screening results without analyte cutoff values. Genet Med.

2012;14(7):648–55. doi:10.1038/gim.2012.2. Epub 2012 Feb 16.

Martell M, G�omez J, Esteban JI, Sauleda S, Quer J, Cabot B, Esteban R, Guardia J. High-

throughput real-time reverse transcription-PCR quantitation of hepatitis C virus RNA. J Clin

Microbiol. 1999;37(2):327–32.

Mathew S, Krug S, Skurk T, Halama A, Stank A, Artati A, et al. Metabolomics of Ramadan

fasting: an opportunity for the controlled study of physiological responses to food intake. J

Transl Med. 2014;12:161. doi:10.1186/1479-5876-12-161.

Mattern S. Galen and his patients. Lancet. 2011;378(9790):478–9.

Matthaei JH, Jones OW, Martin RG, Nirenberg MW. Characteristics and composition of RNA

coding units. Proc Natl Acad Sci U S A. 1962;48:666–77.

Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci. 1977;74

(2):560–4.

Mazurek S, Eigenbrodt E. The tumor metabolome. Anticancer Res. 2003;23(2A):1149–54.

Mazurek S, Grimm H, Wilker S, Leib S, Eigenbrodt E. Metabolic characteristics of different

malignant cancer cell lines. Anticancer Res. 1998;18(5A):3275–82.

Mazurek S, Grimm H, Oehmke M, Weisse G, Teigelkamp S, Eigenbrodt E. Tumor M2-PK and

glutaminolytic enzymes in the metabolic shift of tumor cells. Anticancer Res. 2000;20

(6D):5151–4.

McHugh D, Cameron CA, Abdenur JE, Abdulrahman M, Adair O, Al Nuaimi SA, et al. Clinical

validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass

spectrometry: a worldwide collaborative project. Genet Med. 2011;13(3):230–54. doi:10.1097/

GIM.0b013e31820d5e67.

McKernan KJ, Peckham HE, Costa GL, McLaughlin SF, Fu Y, Tsung EF, et al. Sequence and

structural variation in a human genome uncovered by short-read, massively parallel ligation

sequencing using two-base encoding. Genome Res. 2009;19(9):1527–41. doi:10.1101/gr.

091868.109. Epub 2009 June 22.

206 K.M. Weinberger and M. Breit

http://dx.doi.org/10.1016/j.ijcard.2015.08.107
http://dx.doi.org/10.1016/j.tem.2015.07.001
http://dx.doi.org/10.1007/s11684-013-0248-4
http://dx.doi.org/10.1007/s11684-013-0255-5
http://dx.doi.org/10.1016/j.redox.2015.06.014
http://dx.doi.org/10.1038/gim.2012.2
http://dx.doi.org/10.1186/1479-5876-12-161
http://dx.doi.org/10.1097/GIM.0b013e31820d5e67
http://dx.doi.org/10.1097/GIM.0b013e31820d5e67
http://dx.doi.org/10.1101/gr.091868.109
http://dx.doi.org/10.1101/gr.091868.109


Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, et al. Prospective

genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 out-

break by rapid next generation sequencing technology. PLoS One. 2011;6(7):e22751. doi:10.

1371/journal.pone.0022751. Epub 2011 July 20.

Michels J, Obrist F, Castedo M, Vitale I, Kroemer G. PARP and other prospective targets for

poisoning cancer cell metabolism. Biochem Pharmacol. 2014;92(1):164–71. doi:10.1016/j.

bcp.2014.08.026. Epub 2014 Sep 6. Review.

Miescher F. [Aus dem wissenschaftlichen Briefwechsel von F. Miescher]. Letter I. To Wilhelm
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Chapter 8

Clinical Bioinformatics for Biomarker
Discovery in Targeted Metabolomics

Marc Breit, Christian Baumgartner, Michael Netzer,

and Klaus M. Weinberger

Abstract In this chapter, methods of clinical bioinformatics in targeted

metabolomics are discussed, with an emphasis on the discovery of metabolic bio-

markers. The reader is introduced to general aspects such as initiatives in

metabolomics standardization, regulatory guidelines and software validation, and is

presented an overview of the bioinformatics workflow in metabolomics.

Engineering-based concepts of clinical bioinformatics in supporting the storage

and automated analysis of samples, the integration of data in public repositories,

and in the management of data using metabolomics application software are

discussed. Chemometrics algorithms for data processing are summarized, modali-

ties of biostatistics and data analysis presented, as well as data mining and machine

learning approaches, aiming at the discovery of biomarkers in targeted

metabolomics. Methods of data interpretation in the context of annotated
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biochemical pathways are suggested, theoretical concepts of metabolic modeling

and engineering are introduced, and the in-silico modeling and simulation of

molecular processes is briefly touched. Finally, a short outlook on future perspec-

tives in the application of clinical bioinformatics in targeted metabolomics is given,

e.g. on the development of integrated mass spectrometry solutions, ready for

routine clinical usage in laboratory medicine, or on the application of concepts of

artificial intelligence in laboratory automation – liquid handling robots, autono-

mously performing experiments and generating hypotheses.

Keywords Clinical bioinformatics • Metabolic biomarker discovery • Metabolic

modeling • Metabolomics application software • Targeted metabolomics

Abbreviations

ACToR Aggregated Computational Toxicology Resource

ANN artificial neural network

ANOVA analysis-of-variance

ArMet Architecture for a Metabolomics Experiment

ATP adenosine triphosphate

BBMRI Biobanking and Biomolecular Resources Research Infrastructure

BGI Beijing Genomics Institute

ChEBI Chemical Entities of Biological Interest

COSMOS COordination Of Standards In MetabOlomicS

CO2 carbon dioxide

CV coefficient of variation

C2 acetylcarnitine

C5 valerylcarnitine

DBSCAN density-based spatial clustering of applications with noise

DRCC Data Repository and Coordination Centre

ELIXIR European life-sciences Infrastructure for biological Information

EMA European Medicines Agency

EPA Environmental Protection Agency

FDA Food and Drug Administration

GAMP Good Automated Manufacturing Practice

GWAS genome-wide association studies

HMDB Human Metabolome Database

H2O water

ICH International Conference on Harmonization

ISA Investigation Study Assay

ISO International Organization of Standardization

ISPE International Society for Pharmaceutical Engineering

JDAMP Joint Committee on Atomic and Molecular Physical Data

KDD knowledge discovery in databases

KEGG Kyoto Encyclopedia of Genes and Genomes
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LIMS laboratory information management systems

LLOQ lower limit of quantitation

MBRole Metabolite Biological Role

MeMo Metabolic Modeling

MFC maximum fold change

MIBBI Minimum Information for Biological and Biomedical investigations

MIAMET Minimum Information About METabolomics experiments

MS mass spectrometry

MSEA Metabolite Set Enrichment Analysis

MSI Metabolomics Standards Initiative

NADH nicotinamide adenine dinucleotide

netCDF Network Common Data Format

NH3 ammonia

ODE ordinary differential equation

OMIM Online Mendelian Inheritance in Man

ORA overrepresentation analysis

PCA principal component analysis

PLS partial least squares

PRIMe Platform for RIKEN Metabolomics

QC quality control

RCMRC Regional Comprehensive Metabolomics Research Cores

RF random forest

SFR stacked feature ranking

SMPDB Small Molecule Pathway Database

SOP Standard Operating Procedure

SSP single sample profiling

SVM support vector machines

T3DB Toxin Target/Target Database

XML eXtensible Markup Language.

8.1 Introduction

Despite the fact that this book as a whole is dedicated to the topic of clinical

bioinformatics, and the term is already suggested and widely discussed in the

existing literature (Chang 2005; Trent 2008; Wang and Liotta 2011; Bellazzi

et al. 2012), the authors of this chapter briefly deal with a definition and a

delimitation of related fields, to provide the reader with a picture that is as complete

as possible. According to the existing literature, clinical bioinformatics can be

defined as ‘clinical application of bioinformatics-associated sciences and technol-

ogies to understand molecular mechanisms and potential therapies for human

diseases’ (Wang and Liotta 2011; Bellazzi et al. 2012). Furthermore, clinical

bioinformatics is closely interrelated with other fields of computational life sci-

ences, such as bioinformatics (Hogeweg 2011), biomedical informatics (Bernstam

et al. 2010), computational biology (Bourne et al. 2015; Fogg and Kovats 2015;
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Nussinov 2015; Nussinov et al. 2015), health informatics (Mettler and Raptis

2012), systems biology (Kitano 2002), and translational bioinformatics (Butte

2008) – often leading to overlaps in definitions.

In this chapter, focus is put on the computational, algorithmic, and technological

aspects of clinical bioinformatics in targeted metabolomics research as well as on

commercial applications, with a slight emphasis on the search for novel biomarker

candidates in metabolism. To obtain a holistic picture of current developments in

the field of targeted metabolomics – together with a discussion on the history and

perspectives of clinical chemistry, the motivation for clinical mass spectrometry

(MS), and a summary on promising new indications (i.e., diabetes, chronic kidney

disease, neurology, and oncology) – it should be read together with the previous

chapter of this book, ‘Targeted metabolomics: the next generation of clinical
chemistry!?’ (see Chap. 7).

In the context of (targeted) metabolomics research, the application of clinical

bioinformatics can be understood as the development and interplay of a multitude

of software applications, computational methods, algorithms, or modalities, easing

research and product development, such as bioinformatics software applications,

chemometrics algorithms, biostatistical modalities, methods of artificial intelli-

gence or mathematical modeling. Subsequently, the reader will be gradually intro-

duced to (a) general aspects, as metabolomics standardization initiatives and

regulatory requirements for software validation, (b) the handling and automated

preparation of samples, metabolomics databases and software applications for data

management, (c) algorithms and modalities for data processing, analysis and

mining, and (d) computational methods for the interpretation, modeling and simu-

lation of data.

8.2 Standardization, Guidelines, and Workflows

8.2.1 Metabolomics Standardization and Initiatives

Acknowledging the ever increasing amount of data and the multitude of research

projects in metabolomics during the past decade, a variety of initiatives for the

standardization in metabolomics has been suggested. These initiatives may be

categorized into the three different levels of (a) data and file formats,

(b) technically, bioinformatics-oriented projects and architectures, and (c) high-

level, strategic and coordinative initiatives, yet, the borders are sometimes blurred,

not always allowing for a unique assignment.

On a low, primarily data-oriented level, the usage of different data and file

formats in metabolomics is suggested, partly already being suggested and

established in other fields of research. Those data formats are for example the

Joint Committee on Atomic and Molecular Physical Data (JCAMP)-DX (http://

www.jcamp-dx.org/) and the Network Common Data Format (netCDF) (http://
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www.unidata.ucar.edu/software/netcdf/), both historically used in MS data storage,

or the mzXML (Pedrioli et al. 2004; Lin et al. 2005) and mzData formats (http://

www.proteomecommons.org), taken over from proteomics research.

Primarily technically and bioinformatics-oriented architectures and projects are

e.g. the Architecture for a Metabolomics Experiment (ArMet) (Jenkins et al. 2004),

Metabolic Modeling (MeMo) (Spasić et al. 2006, the Investigation, Study, Assay

(ISA)-TAB tab delimited format (Sansone et al. 2008, 2012), Galaxy (Goecks

et al. 2010), MetaboLights (Steinbeck et al. 2012; Haug et al. 2014) or the METLIN

metabolite database (Tautenhahn et al. 2012).

Suggestions for higher level, strategic initiatives, are e.g. the Minimum Infor-

mation About METabolomics experiments (MIAMET) approach (Bino et al. 2004),

the Metabolomics Standards Initiative (MSI) (MSI Board Members 2007), the

Minimum Information for Biological and Biomedical investigations (MIBBI) con-

sortium (Taylor et al. 2008), or the COordination Of Standards In MetabOlomicS

(COSMOS) initiative (Salek et al. 2013, 2015).

In addition to the consideration of independent proposals, the currently evolving

collaboration between international initiatives (also of related fields) is an obser-

vation worth mentioning (Salek et al. 2015). Metabolomics standardization initia-

tives are developing around the globe and, at least to date, have substantially arrived

on a political and governmental scale. In Europe, collaboration is impelled,

e.g. between the European life-sciences Infrastructure for biological Information

(ELIXIR) initiative (http://www.elixir-europe.org/), the Biobanking and Biomolec-

ular Resources Research Infrastructure (BBMRI) (http://www.bbmri.eu/), and the

BioMedbridges consortium (http://www.biomedbridges.eu/). Collaboration is fur-

ther intensified with North American initiatives, e.g. the North American hub for

metabolomics related research, including six Regional Comprehensive

Metabolomics Research Cores (RCMRC), and the Data Repository and Coordina-

tion Centre (DRCC) (http://www.nih.gov/news/health/sep2012/od-19.htm), or the

Canadian Human Metabolome Database (HMDB) (Wishart et al. 2013). Important

examples in the Asian region include the Platform for RIKEN Metabolomics

(PRIMe) in Japan (Sakurai et al. 2013) and the Chinese Beijing Genomics Institute

(BGI) (http://www.genomics.cn/).

The list of projects and initiatives presented here certainly mirrors only a part of

the complete range, but the reader will hopefully obtain a feeling for the dynamics

in this field, regionally as well as on a global, interlinking scale. When trying to

abstract the common goal behind the different initiatives, this leads to the objective

of establishing a gold standard, which finds broad acceptance and even more

importantly – usage – in the community.

8.2.2 Regulatory Guidelines and Software Validation

When developing new methods or products in metabolomics research, different

regulatory guidances need to be taken into account, usually issued either by

8 Clinical Bioinformatics in Targeted Metabolomics 217

http://www.unidata.ucar.edu/software/netcdf/
http://www.proteomecommons.org/
http://www.proteomecommons.org/
http://www.elixir-europe.org/
http://www.bbmri.eu/
http://www.biomedbridges.eu/
http://www.nih.gov/news/health/sep2012/od-19.htm
http://www.genomics.cn/


standardization institutions, e.g. the International Organization of Standardization

(ISO), or regulatory authorities such as the Food and Drug Administration (FDA) or

the European Medicines Agency (EMA).

As a groundwork for establishing a company quality management system, the

guidance of the International Organization of Standardization (ISO), the ‘ISO
9001:2008 Quality management systems – Requirements’ (ISO, 2008) should be

considered (the new version, ISO 9001:2015 is only available as a final draft so far).

For the definition of standard operating procedures (SOPs) – which are an essential

tool for quality assurance (QA) in chemical analytics – the ‘Guidance for Preparing
Standard Operating Procedures (SOPs)’ (Environmental Protection Agency; EPA

2007) is recommended as guidance of choice. The validation of bioanalytical

methods needs to be performed in accordance with the ‘Guidance for Industry –

Bioanalytical Method Validation’ (FDA 2001). As an international ethical and

scientific quality standard for performing research on human subjects, the ‘Guid-
ance for Industry – E6 Good Clinical Practice: Consolidated Guidance’ (Interna-
tional Conference on Harmonization; ICH 1996) should be considered.

With special regard to the engineering of bioinformatics software applications

and the implementation of computational methodologies in metabolomics research,

two different guidelines are recommended by regulatory authorities as a minimum

requirement. This is required as groundwork for the software development process

and the validation of software (in the case of software being intended as part of a

higher class medical product, additional efforts for validation would be required).

As a general guidance for all bioinformatics- and software-based developments, the

‘General Principles of Software Validation; Final Guidance for Industry and FDA

Staff’ (FDA 2002) must be followed. With a stronger focus on the engineering of

applications in laboratory automation, ‘The Good Automated Manufacturing Prac-

tice (GAMP) – Guide for Validation of Automated Systems in Pharmaceutical

Manufacture’ (International Society for Pharmaceutical Engineering; ISPE 2008)

should be considered as a recommended guidance of choice.

Albeit an unwritten law, it is strongly recommended that regulatory bodies be

involved in any development process as early as possible, increasing the probability

of a later successful validation or qualification of new product developments

(Baumgartner, personal communication).

8.2.3 Bioinformatics Workflow in Targeted Metabolomics

Metabolomics process and workflow concepts are suggested in different manners in

the existing literature, e.g. for metabolomics experiments in cancer studies (Beger

2013), for the discovery of metabolic biomarkers (Baumgartner and Graber 2008;

Baumgartner et al. 2011) or with regard to the complete pipeline for the develop-

ment of new diagnostics or biomarkers (Phillips et al. 2006). When trying to put the

different proposed workflow concepts together – with a focus on clinical studies
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and the discovery of metabolic biomarkers – and by trying to assemble the essential

steps mentioned, the following could be defined:

(a) Experimental study design, including the definition of the research hypothesis

and the obtainment of ethical approval

(b) Clinical study execution, including sample collection and quality-controlled

storage

(c) The execution of bioanalytical methods, including sample preparation and

sample analysis

(d) The integration and management of data by means of bioinformatics

applications

(e) The processing and analysis of data, primarily by means of chemometrics

algorithms

(f) The interpretation of findings with regard to biochemical plausibility and the

generation of new hypotheses

(g) The validation of findings through independent clinical studies

(h) The qualification of new diagnostics or biomarkers for routine usage in

laboratory medicine

Clinical bioinformatics and software-based support are considered as being

important throughout the complete workflow and all different phases, yet, the

focus in this chapter is put on three different central areas, namely (a) data integra-

tion and management, (b) data processing and analysis, and (c) data interpretation

and metabolic modeling, which will now be presented and discussed in greated

detail in the subsequent sections.

With regard to the application in metabolomics research, clinical bioinformatics

plays an essential role in both major conceptual schools of thought, untargeted and

targeted metabolomics (Patti et al. 2012). Even if, according to the objective of this

chapter, focus is put on the bioinformatics workflow supporting targeted

metabolomics (Weinberger and Graber 2005; Weinberger et al. 2005; Weinberger

2008), for methods of clinical bioinformatics, it is not always possible to define

borders clearly, and some of the presented methods serve in both areas.

8.3 Data Acquisition, Integration, and Management

8.3.1 Sample Handling and Laboratory Automation

In the acquisition of data in metabolomics experiments, clinical bioinformatics

is used to store and link clinical patient information (of course, with an

appropriate level of anonymization) with information on single biological samples.

Essentially, in the traceability of samples throughout the workflow, the ability to

identify samples and measurement results at any point in time, and to link it

back to clinical patient information, is indispensable – which can be solved by
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clinical bioinformatics through the usage of unique barcode identifiers. In the past

years, more and more comprehensive biobanking initiatives have popped up,

aiming to provide comprehensive solutions for the handling of samples and inte-

gration with clinical information and molecular measurement data (Yuille

et al. 2008; Harris et al. 2012; Navis et al. 2014; van Ommen et al. 2015).

Regarding the preparation of samples, the engineering of software-based

methods has become a key factor in the automation of sample preparation, usually

being realized in the context of dedicated metabolomics solutions of liquid handling

robotics. As prominent manufacturers of liquid handling robotics systems, Tecan

(Männedorf, Switzerland) and Hamilton Robotics (Bonaduz, Switzerland) may be

mentioned. A comprehensive review on the developments in the automation of

LC-MS based methods, used in proteomics as well as metabolomics, is given in the

literature (Vogeser and Kirchhoff 2011). With a special focus on the automated

preparation of a ready-to-use targeted metabolomics kit (AbsoluteIDQ® p180 kit,

Biocrates Life Sciences AG, Innsbruck, Austria), an application method utilizing a

comprehensive liquid robotics system (Hamilton Robotics, Bonaduz, Switzerland)

was engineered (Breit et al. 2011). The developed software method handles the

different steps of automation, including (a) loading and transport steps of sample

vials, plates, and reagents, (b) the handling of liquids, i.e., samples and reagents,

based on optimized liquid classes, and (c) the logging and tracking of errors and

status information during automated pipetting and preparation of samples.

8.3.2 Metabolomics Databases and Public Repositories

As in other fields of applied computer science, in metabolomics research, databases

(as well as data warehouses) play an essential role in the storage and integration of

data – of course, with different kinds of structures, complexities and performance

requirements, depending on the intended usage. In addition to the multitude of

proprietary solutions, a definitely notable and quite impressive selection of public

repositories exists, in which knowledge related to metabolomics is nowadays

collected and annotated. Subsequently, a short list of the different categories of

public repositories is provided, partly as it has been suggested in the literature

(Wishart 2012), together with selected examples.

As a comprehensive source of knowledge, general purpose metabolomics data-

bases are suggested such as the Human Metabolome Database (Wishart et al. 2009).

For the annotation of information on the interconnection of metabolites, metabolic

pathway databases were presented, such as the Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Kanehisa and Goto 2000), the BioCyc Collection of databases

(Karp et al. 2005), or Reactome (Joshi-Tope et al. 2005). Focusing on the collection

of metabolic molecules, compound databases are provided, e.g. Chemical Entities

of Biological Interest (ChEBI) (Degtyarenko et al. 2008) or ChemSpider (Pence

and Williams 2010). Spectral databases such as the Golm Metabolome Database

(Kopka et al. 2005) or Metlin (Smith et al. 2005) support the user in the
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identification of compounds by comparison to reference spectra. Aiming at the

storage of information on pharmaceutical products and their molecular targets, drug

databases have been established, e.g. DrugBank (Wishart et al. 2006) or the Small

Molecule Pathway Database (SMPDB) (Frolkis et al. 2010). Collecting data on

toxic compounds, dedicated databases were presented in the literature, for example

the Aggregated Computational Toxicology Resource (ACToR) (Judson et al. 2008)

or the Toxin Target/Target Database (T3DB) (Lim et al. 2010). With a special focus

on monogenic diseases and their pathophysiology, databases such as Online Men-

delian Inheritance in Man (OMIM) (Hamosh et al. 2000) are integrating genetic and

medical knowledge accordingly.

8.3.3 Metabolomics Application Software

As a next central area in the application of clinical bioinformatics in metabolomics,

the development of software solutions for the management of data in metabolomics

projects is considered. The spectrum of research-based, publicly available

metabolomics application software is even broader than that of metabolomics

databases, and it would be virtually impossible to provide an exhaustive picture

of this area; thus, the reader may be referred to the appropriate literature reviewing

these solutions (e.g. Sugimoto et al. 2012), to get a more comprehensive overview.

At this point, commercially available software supporting MS-based metabolomics

experiments and the topic of metabolomics laboratory information management

systems (LIMS) are shortly discussed.

The development of metabolomics LIMS was introduced in the literature as a

special challenge (Wishart 2007) – integrating information from different sources

and ideally enabling the management of data throughout the complete workflow in

metabolomics. Software managing the metabolomics workflow was introduced,

both developed through research projects and commercial solutions. Software

applications originating from the research community, in this case metabolomics

LIMS systems, are for example SetupX (Scholz and Fiehn 2007) or Sesame

(Markley et al. 2007).

As commercial solutions, software provided by manufacturers of MS systems

may be noted, being partly comprehensive solutions and partly a collection of

different software applications. Examples of this kind of software are:

(a) Analyst® and Multiquant™ by AB Sciex (Framingham, MA),

(b) MassHunter, Mass Profiler Professional (MPP) and Pathway Architect by

Agilent (Santa Clara, CA, USA), (c) AMIX and ProfileAnalysis by Bruker (Biller-

ica, MA, USA), (d) TurboMass by PerkinElmer (Waltham, MA), (e) Profiling

solution by Shimadzu (Kyoto, Japan), (f) Xcalibur™ by Thermo Fisher Scientific

(Waltham, MA), or (g) MassLynx™ by Waters (Milford, MA).

In addition to these applications, commercial providers of metabolomics solu-

tions who build their business models around products, contract research or bio-

marker discovery services, are offering software applications, aiming at supporting
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the tasks of the complete workflow. Metabolon (Durham, NC, USA), which offers

services focusing on untargeted metabolomics for example, provides the following

set of software applications: (a) mLIMS™, for proprietary sample and data man-

agement, (b) Metabolyzer™, for metabolite identification and peak integration,

(c) IonTracker™, quality control (QC) and identification of novel metabolites,

(d) Cross-set integrator™, QC of peak integration (quantitation), and (e) VPhil™,

QC tool for chemical spectral analyst data curation.

Biocrates (Innsbruck, Austria), pioneer in the commercialization of targeted

metabolomics solutions offering ready-to-use reagents kits and providing contract

research services, has also developed its own set of bioinformatics software, namely

(a) MetIDQ™, a targeted metabolomics application software, (b) StatPack, for full

statistical analysis of results, (c) and RatioExplorer, for comprehensive

metabolomics data interpretation. As an example of a dedicated targeted

metabolomics software, it is worth noting that MetIDQ™ supports a major part

of the bioinformatics enabled workflow in targeted metabolomics, ranging from the

integration of clinical patient data and sample information to the storage of mea-

surement data and the biochemical interpretation of results in the context of

biochemical pathways. The development of MetIDQ™ was started roughly a

decade ago (Breit et al. 2006), at this time primarily consisting of the LIMS part

– supporting project and sample management, the administration of standardized

operating procedures and general settings, as MS configuration parameters, ana-

lyzed sample types or metabolite classes.

8.4 Data Processing, Analysis, and Mining

8.4.1 Data Processing and Chemometrics Methods

The data processing methods and algorithms presented in this section should

probably be more correctly defined as chemometrics or cheminformatics than as

bioinformatics methods (Enot et al. 2011; Breit et al. 2015a); still, in the software-

based implementation of those modalities, they emerge as an essential building

block of the clinical bioinformatics mosaic.

Metabolomics data, obtained through MS experiments, need to undergo a

processing, due to their bandwidth in biological and physical data characteristics,

i.e. the variety in their abundances, ionization behavior, polarity, and solubility.

Furthermore, MS data show a broad variety in their mass domain (mass-to-charge

ratio, m/z), time domain (retention time), and ion intensities. Also, the diversity of

analytical MS platforms with different chromatographic performances, ionization

efficiencies, mass analyzer resolutions, or ion detector sensitivities leads to the

necessity of data processing.

The crude MS signals are subject to noise, resulting from chemical noise, sample

preparation errors or electronic noise. Different approaches were introduced to

222 M. Breit et al.



process those signals. Methods for baseline correction were suggested, using

e.g. polynomial models (Bylund 2001). Additionally, noise reduction methods

such as smoothing filters (Zhu et al. 2003; Jonsson et al. 2005) or wavelet trans-

formations (Zhao et al. 2006; Karpievitch et al. 2007) are presented. Yet, those

methods should be used carefully, since they are known to introduce a potential bias

(Listgarten and Emili 2005; Fredriksson et al. 2009).

For the detection and extraction of features from the given raw signal or peaks

expected to represent chemical compounds, methods of data compression are

suggested (Katajamaa and Oresic 2007). Fundamental approaches in this area are

mass binning (Wang et al. 2003; Beckmann et al. 2008) or peak picking. In peak

picking, different techniques were introduced, such as pattern classification

(Tibshirani et al. 2004), extraction of derivatives (Viv�o-Truyols et al. 2005;

Fredriksson et al. 2009), refinement of heuristics (Morris et al. 2005), peak shape

model approximations (Tan et al. 2006), or wavelet applications (Zhao et al. 2006;

Karpievitch et al. 2007). Especially in large scale experiments, data may be subject

to systemic drifts, which can be corrected: on the mass domain, through calibration

of mass binning, and on the time domain, using non-parametric alignment methods.

A correction of occurring isotopes can be achieved through isotope convolution

(Eibl et al. 2008).

Due to existing inter-sample variance – i.e. differences in sample concentrations

or homogeneity, degradation over time, or analytical drifts – a normalization of data

prior to further statistical treatment should be considered (Goodacre et al. 2004;

Enot et al. 2008). Inter-sample normalization can be achieved through the estima-

tion of a scaling factor, e.g. by sub-selection of peaks/signals (Wang et al. 2003;

Warrack et al. 2009), mapping of intensity distributions (Dieterle et al. 2006;

Torgrip et al. 2008), introduction of class information (Enot et al. 2008), or a

summation of measurements (Torgrip et al. 2008). In addition, the normalization

according to biological properties is suggested, e.g. in cell culture or tissue samples

(e.g. by cell count or dry weight) or urinary substances (by creatinine or urine

volume) (Warrack et al. 2009). Yet, this approach is questioned in the literature

(Enot et al. 2011; Breit et al. 2015a), and its usage should be decided according to

the underlying clinical question.

8.4.2 Biostatistics and Data Analysis

In the preparation of metabolic data for biostatistical analysis, two basic issues need

to be considered: data transformations and the handling of missing values. Data

transformation becomes necessary, due to non-normal distributions of concentra-

tions, small intra-parameter dynamic ranges, and large inter-parameter dynamic

ranges. As a solution, e.g. log transformations are introduced in the literature

(Purohit et al. 2004; Listgarten and Emili 2005; Lu and King 2009). With respect

to the handling of missing values, different basic approaches are suggested:

(a) to discard features (Bijlsma et al. 2006; Enot et al. 2008), (b) to impute missing
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values using pre-specified values – which is known to have serious limitations (Jain

et al. 2008), or (c) to use advanced multivariate methods – which is recommended if

data point estimation is expected to provide additional gain (Stacklies et al. 2007).

The variance of data in MS based metabolomics experiments is basically

influenced by a biological variance of metabolites and an analytical variance.

Biological variance can yield a broad bandwidth, with low coefficients of variation

(CVs), e.g. in case of strict homeostatic control, but eventually reaching high CVs,

e.g. in urine (Crews et al. 2009; Parsons et al. 2009). Analytical variance ranges up

to 15 % for quantitative parameters, but can be optimized to minimum levels of

2–5 % for selected analytes. For the validation of bioanalytical methods, limits are

demanded, in the dynamic range, of CVs of less than 15 %, and for the lower limit

of quantitation (LLOQ), of CVs of less than 20 % (FDA 2001).

Features in metabolomics data yield correlations resulting from the

interdependence of abundances, specific chemical characteristics or analytical

platforms (Draper et al. 2009). Aiming at an examination of correlation due to

biological mechanisms, different network-based approaches have been suggested in

the literature, linking metabolite correlations to reaction networks (Camacho

et al. 2005; Mendes et al. 2005; Steuer 2006), or specifying structural properties

of biochemical networks using topological network descriptors (Müller et al. 2011).

General biostatistical methods used for the analysis of metabolic data, such as

principal component analysis (PCA), cluster analysis, partial least squares (PLS)

analysis, random forest (RF) models, or conventional statistical tests (e.g. Student’s
t-test), are widely discussed in the literature, to which the reader may be referred for

a more detailed introduction (e.g. Sugimoto et al. 2012).

With regard to the dynamic analysis of longitudinal time-course metabolic

concentration data, a variety of approaches is suggested in the literature. The

essential methods suggested for dynamic data analysis can be classified into

methods based on fundamental models, on predefined basic functions, on dimen-

sion reduction, on multivariate time series, on analysis-of-variance (ANOVA), or

on imposing smoothness (Smilde et al. 2010). For the analysis of periodic and

oscillating data, Fourier analysis, wavelet transformations, or principal component

analysis (PCA) with wavelets have been introduced (Bakshi 1998; Smilde

et al. 2010). For more details on further specialized methods, the reader may

again be referred to the according literature (Mishina et al. 1993; Jansen

et al. 2004; Smilde et al. 2005; Berk et al. 2011; Jansen et al. 2012; Stanberry

et al. 2013; Breit et al. 2015b).

8.4.3 Data Mining and Machine Learning

In addition to the more traditional biostatistical concepts, methods of the closely

interrelated fields of artificial intelligence, machine learning and data mining

respectively knowledge discovery in databases (KDD) are increasingly used in

the analysis of metabolic data.
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The subject of artificial intelligence was first suggested and discussed on a broad

basis in the literature around half a century ago (Turing 1950; McCarthy et al. 1955;

Solomonoff 1957, 1964; Samuel 1959). Closely related to it, the field of machine

learning has developed continuously, and is categorized into three different basic

approaches: supervised, unsupervised and reinforcement learning (Alpaydin 2009;

Domingos 2012; Sebag 2014; Ren et al. 2015). Popular supervised machine learn-

ing methods include, for instance, support vector machines (SVMs; Byvatov and

Schneider 2003) and artificial neural networks (ANNs; Bicciato 2004). Partition-

based algorithms such as K-Means (Dudik et al. 2015), density-based methods such

as density-based spatial clustering of applications with noise (DBSCAN; Dudik

et al. 2015), and hierarchical clustering methods (Gambin and Slonimski 2005) are

important representatives of unsupervised methods. Also, the process of knowledge

discovery in databases, and within it the step of data mining, is widely discussed in

the literature (Fayyad et al. 1996). For all of those areas, please refer to the

appropriate literature for more detailed information.

With respect to the practical application of those methods in metabolomics

experiments, currently the discovery of metabolic biomarkers is probably the

most dynamic and promising topic for which methods are developed (Lehmann

and Romano 2005; Enot et al. 2006; Baumgartner et al. 2010; Breit et al. 2015b). In

the metabolic biomarker discovery process, an important data mining step is the

task of feature selection, aiming to obtain a set of highly discriminating features:

wrappers (the combination of a search strategy and a learning algorithm), embed-

ded methods (the selection of features is built into the learning algorithm), and

filters (the calculation of scores to select a set of discriminating features) are three

important categories of feature selection methods (Saeys et al. 2007). For instance,

a rule-based filter approach (associative voting) to find biomarker candidates in

prostate cancer data was proposed in the literature (Osl et al. 2008). In addition to

these categories, ensemble-based feature selection strategies rely on the combina-

tion of different feature selection methods (Saeys et al. 2007). A feature selection

modality termed stacked feature ranking (SFR) that relies on the combination of

different feature rankings using a two-level architecture with a suggestion and a

decision layer, was introduced (Netzer et al. 2009). Using this approach, the authors

were able to identify highly discriminating volatile organic marker candidates in

exhaled breath of patients with liver disease. Recently, new network-based methods

have also been described. A new network type called ‘ratio network’ to study

kinetic changes of putative biomarkers from time series cohort studies using

targeted MS/MS profiling, was introduced (see Fig. 8.1; Netzer et al. 2011). Fur-

thermore, a ranking of features was proposed in the literature, based on different

topological descriptors using correlation and ratio networks, and by evaluating the

discriminatory ability using classification methods (Netzer et al. 2012). Here, the

authors were able to identify biomarker candidates for obesity using quantitative

targeted MS/MS. For further methods – in the application of methods of bioinfor-

matics, data mining and machine learning in metabolic biomarker discovery –

please refer to a comprehensive overview, provided in a recent review

(Baumgartner et al. 2011).
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8.5 Data Interpretation, Modeling, and Simulation

8.5.1 Pathway Visualization and Network-Based
Interpretation

From the perspective of the clinical bioinformatics workflow in targeted

metabolomics, subsequent to the analysis of data by the means of univariate or

multivariate statistical approaches, as well as other advanced computational

methods, findings – usually a set of selected metabolites – need to undergo further

checks for plausibility, analytically, but especially biochemically. Concepts of

biochemical data interpretation, usually in the context of annotated metabolic

pathways, are widely discussed in the literature (e.g. Weckwerth and Morgenthal

2005; Xia et al. 2009; Enot et al. 2011; Breit et al. 2015a), and for the completeness

Fig. 8.1 Ratio network. Ratio network, inferred to analyze metabolic processes in the organism

during physical activity (Redrawn after Netzer et al. 2011). Note that the figure was generated

using the R (R Development Core Team 2008) packages ‘igraph’ (http://igraph.org/) and ‘Bio-
markeR’ (Netzer et al. 2011)
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of the workflow perspective in the chapter, just a short repeated summary of some

selected basic approaches is provided.

Based on annotated biochemical knowledge, nowadays provided through met-

abolic databases and public repositories (see Sect. 8.3.2), an intuitive, often used

approach is the shell-wise exploration of metabolites and their molecular, enzy-

matic reactions. The biochemical verification of findings in metabolomics experi-

ments, in the context of analyzing single enzymatic reactions, was first successfully

presented in monogenic disorders in neonates (R€oschinger et al. 2003), but later
also in multifactorial diseases (Suhre et al. 2011; Suhre and Gieger 2012). The

introduction of ratios (of product and substrate concentrations), using hypothesis-

driven knowledge, suggested in genome-wide association studies (GWAS) (Gieger

et al. 2008; Illig et al. 2010), could provide proof of an improvement of statistical

significance of findings by many orders of magnitude.

Originating from transcriptomics experiments (Mootha et al. 2003; Subramanian

et al. 2005; Chagoyen and Pazos 2013), the concept of enrichment analysis was

adapted in metabolomics research; in mapping statistically significant metabolites

on metabolic pathways, with a subsequent statistics-based pathway ranking. Basic

approaches introduced in the literature include overrepresentation analysis (ORA)

and set enrichment analysis (Huang da et al. 2009; Enot et al. 2011; Chagoyen and

Pazos 2013), as well as the approach of single sample profiling (SSP) (Xia

et al. 2012). Software tools enabling this type of interpretation are Metabolite Set

Enrichment Analysis (MSEA) (Xia and Wishart 2010), Metabolite Biological Role

(MBRole) (Chagoyen and Pazos 2011) or MetaboAnalyst (Xia et al. 2012). Crucial

in this type of biochemical interpretation are a selection of species-specific path-

ways (to exclude potential false positives), as well as a consideration of the

biological importance of the underlying pathway in a functional assessment

(Breit et al. 2015a).

Considering the annotated knowledge on biochemical pathways as one inte-

grated source of knowledge – across the somehow artificial borders of closed

metabolic pathways – the concept of route finding is applied. Route finding offers

the possibility to identify different kinds of routes between two selected metabo-

lites: the shortest route, routes up to a maximum length, node-disjoint paths (routes

not sharing a certain metabolite), or edge-disjoint paths (routes not sharing a certain

enzyme). Noteable examples of software providing metabolic route finding are

MetaRoute (Blum and Kohlbacher 2008), the MetPath module of the MetIDQ™
suite (Enot et al. 2011) or Metabolic Route Search and Design (MRSD) (Xia

et al. 2011). For a reduction of complexity and false positive results, common

cofactors and small inorganic molecules need to be excluded, e.g. adenosine tri-

phosphate (ATP), nicotinamide adenine dinucleotide (NADH), carbon dioxide

(CO2), water (H2O) or ammonia (NH3).

Furthermore, in recent years, more innovative network inference and visualiza-

tion tools have been suggested (Emmert-Streib 2013; Emmert-Streib et al. 2014;

Tripathi et al. 2014). Common objective behind all the different approaches of
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biochemical interpretation, generally described in the literature, is their utilization

for the generation of new hypotheses; and furthermore, to check findings for

biological and medical plausibility, since findings potentially could be skewed

through redundancies in metabolism, through drug compounds disturbing signals,

or through analytical or statistical artifacts.

8.5.2 Metabolic Modeling and Engineering

Theoretical biochemical foundations, for the bioinformatics-based modeling of

metabolic interactions – in this case probably better categorized under the term

computational metabolomics, than under clinical bioinformatics – were laid

approximately 150 years ago, by introducing the ‘law of mass action’ (Guldberg
and Waage 1864, 1867, 1879). This concept, together with its popular adaptation –

the Michaelis-Menten model of enzyme-catalyzed single-substrate reactions

(Michaelis and Menten 1913) – and the equilibrium constant (Devlin 2006; Nelson

and Cox 2008) – describing the homeostatic behavior of the metabolic system – are

substantial building blocks for the modeling of metabolic interactions (Voit

et al. 2015).

Fundamental types of metabolic modeling approaches discussed and reviewed in

the literature include, for example, qualitative models, models of flux balance

analysis, or kinetic models using ordinary differential equations (ODEs) (Rios-

Estepa and Lange 2007; Steuer and Junker 2009). Furthermore, intermediate

approaches are suggested, e.g. by approximating local mechanisms through para-

metric linear representations (Steuer and Junker 2009). The practical application of

metabolic modeling is established as a crucial part in metabolic engineering (the

optimization of cellular processes), e.g. in the production of pharmaceuticals or

nourishments (Stephanopoulos 1999; Nielsen 2001).

An alternative approach to modeling of kinetic regulatory mechanisms in

metabolism was recently introduced in the literature; in this case, based on an

empiric deduction of de facto kinetic response patterns – which were obtained

through the analysis of quantitated time-course concentration data, measured under

in-vivo conditions (Breit et al. 2015b). In a setting of a cycle ergometry perfor-

mance test in which workload was incrementally increased (every 3 min by

25 Watts, up to the maximum individual performance), data of 47 test persons

were analyzed, both male and female, either being professional alpine skiers or

amateur endurance athletes. Utilizing a mass spectrometry-based targeted

metabolomics approach, quantitative concentration data of 110 metabolites were

measured (from the classes, acylcarnitines, amino acids, and sugars), of which the

30 most analyzed reliable and robust metabolites were considered for data analysis.

Dynamic metabolic biomarker candidates could be selected, based on maximum

fold changes (MFCs) in preprocessed, longitudinal concentrations, combined with an

examination of p-values of statistical hypothesis testing. For each of the 30 analyzed
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metabolites, a specific kinetic signature could be characterized – based on a

mathematical modeling approach using polynomial fitting, with a degree of nine

chosen (Fig. 8.2). Based on a hierarchical cluster analysis, common basic kinetic

response patterns could be specified, i.e. sustained, early, late and delayed response

patterns. Sustained response patterns, with primarily indifferent, constant concen-

tration over time, were yielded by a majority of metabolites. An early response

pattern, with a major change in concentration at the beginning of exercise, was

Fig. 8.2 Metabolite kinetic signatures. Metabolite kinetic patterns, in response to external

perturbations, caused by a cycle ergometry performance test (Redrawn after Breit et al. 2015b)
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shown in the time-course data of valerylcarnitine (C5), showing a moderate effect

size (MFC¼ 1.38, p< 0.001). A late response pattern, was, amongst others, shown

by acetylcarnitine (C2), with the highest value in dynamic change in concentration

(MFC¼ 1.97, p< 0.001). A delayed response, similar to a L-curve/hockey-stick

function, with a steep increase in concentration after the end of exercise, was

yielded by glucose, showing a moderate effect size (MFC¼ 1.32, p< 0.001; see

Fig. 8.2).

8.5.3 In-Silico Biology

Closely attached to the modeling of metabolic mechanisms are concepts termed as

in-silico biology (Palsson 2000), systems biology (Wolkenhauer 2001), or compu-

tational systems biology (Kitano 2002), depending on the definition chosen. These

concepts aim to integrate modeling and simulation of interactions on all molecular

levels, e.g. genomics, transcriptomics, proteomics, and metabolomics, and range

from single cell models up to the modeling of a complete organism.

The basic idea lies in the utilization of fundamental concepts of systems theory

(Wiener 1948; Bertalanffy 1968) and an adaptation of those to the application in

biology (Mesarovic 1968). This idea found a revival at the beginning of the

twentieth century (Voit 2000; Kitano 2001), aiming at the computationally

supported understanding of biological systems as a whole, i.e. regarding their

structure, dynamics, control methods, and design methods (Kitano 2002).

The in-silico modeling and simulation of mechanisms on different molecular

levels is widely discussed in the literature, e.g. by performing a sensitivity analysis

on a theoretical model of the TNFα-mediated NF-κB signaling cascade (Breit

2004), by simulating the mitochondrial fatty acid β-oxidation (Modre et al. 2009),

or in the context of the e-cell project (Takahashi et al. 2003; Smolen et al. 2004;

Nishino et al. 2013).

From the perspective of clinical bioinformatics, here, challenges lie in the intel-

ligent integration of the different ‘omics’ data together with clinical information, as

well as the development and implementation of computational methods, enabling and

supporting this systems-based approach to modeling and simulation of molecular

processes – and in consequence to deduct implications on metabolism.

8.6 Discussion

8.6.1 Conclusions

As discussed in the previous chapter of this book (see Chap. 7), clinical biochem-

istry is currently experiencing a renaissance, with dedicated driving forces behind

it, i.e. a revival in the examination of the Warburg hypothesis, the establishment of
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newborn screening programs on a broad basis, and technological improvements in

mass spectrometry – making it ready for the application in routine clinical analysis.

In parallel, methods of clinical bioinformatics – resulting from the disruptive

innovations in computer sciences in the past decade(s) – are enabling levels of

workflow automation, data integration, and technological usability, which, 20 years

ago, molecular researchers would have dreamed of.

In this chapter, emphasis has been put on the impact of clinical bioinformatics in

targeted metabolomics, supporting the search for new metabolic markers and the

development of new diagnostics, hopefully soon finding application in the very

promising fields of diabetes and chronic kidney disease, as well as potentially in

neurology or cancer (see Chap. 7). Apart from the primarily clinical focus of this

chapter, most of the discussed bioinformatics and computational concepts and

methodologies are also valid for other major application areas of targeted (and

untargeted) metabolomics research, e.g. pharmaceutical R&D and drug discovery,

animal health and veterinary research, bioprocessing and cell cultures, nutrition and

consumer goods, or plant metabolism.

In summary – even if this assessment will potentially not be shared by all

(clinical) bioinformaticians – bioinformatics software and methods in targeted

metabolomics (as well as in other areas of molecular research) might primarily be

considered as a service, easing the work of other involved persons such as physi-

cians, chemical analysts or biochemists. In addition to the ‘playground’ of techno-
logical innovation, one should always bear in mind the clinical benefit of patients,

i.e. improvements in the diagnosis, prognosis and theranosis of diseases (DeNardo

and DeNardo 2012).

8.6.2 Future Perspectives

Finally, some thoughts on future perspectives of clinical bioinformatics in targeted

metabolomics, and what potential further innovations in this field might be.

As also suggested in the previous chapter of this book (see Chap. 7), a major

challenge – in the transition of basic findings in targeted metabolomics research

into clinical applications – lies in the standardization and automation of analytical

assays, together with integrated software solutions, validated for usage in clinical

applications. To overcome this hurdle, different companies are working on inte-

grated solutions, combining hardware, software, and reagents into one integrated

system, so called ‘black-box’ clinical analyzers, ready for the routine usage in

clinical laboratories. These developments are to a certain extent driven by large

companies, namely the suppliers of mass spectrometer systems (see Sect. 8.3.3),

often in collaboration with reagent suppliers; and with bioinformatics solutions as

an essential building block, enabling the processing of samples and tracking of

clinical information throughout the complete targeted metabolomics workflow,
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from clinical questions to the analysis of samples and a quantified concentration

value of a single metabolite.

With regard to, say, slightly more ‘futuristic’ perspectives, the miniaturization of

sample analysis is still an intense topic of research, with a major focus on the

development of microfluidics devices (Kraly et al. 2009) or lab-on-a-chip solutions

(Trietsch et al. 2011). With reference to the integration of data (from different

omics sources, together with clinical information), the step-wise breakthrough of

cloud computing – now also arriving at the end-user (or patient) – will probably

ease the access and strengthen the usage of public data repositories. Advancements

in the developments of new algorithms and methodologies will further accelerate

the in-silico modeling and simulation of metabolic processes. Probably the most

exciting field in clinical bioinformatics, at least from the computational perspective,

is the application and development of methods of machine learning and artificial

intelligence in molecular research. Five years ago, in genomics analysis, a robotics

system has been presented, able to autonomously perform experiments and deduce

new hypotheses from generated findings: ‘An integrated Laboratory Robotic Sys-
tem for Autonomous Discovery of Gene Function’ (Sparkes et al. 2010). To

conclude with a visionary application in targeted metabolomics – which would be

a robotics system, autonomously performing metabolomics experiments and

deducting new hypotheses in the examination of fundamental metabolic processes,

as well as for the clinically oriented discovery of novel metabolic biomarkers.
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Chapter 9

Metagenomic Profiling, Interaction
of Genomics with Meta-genomics

Ruifeng Wang, Yu Zhou, Shaolong Cao, Yuping Wang, Jigang Zhang,

and Hong-Wen Deng

Abstract Metagenomics is about the sequencing and characterization of genomic

DNA of uncultured microbes sampled directly from their habitats. Next-generation

sequencing (NGS) technologies and the ability of sequencing uncultured microbes

have dramatically expanded and transformed our knowledge of the microbial

world. In this chapter, we provide an introduction and flavor to metagenomic

studies from sampling to data analysis. Also, workflow and several common

methodologies are summarized for the sequence-driven metagenomic analysis to

identify the composition of microbes, compare different microbial communities,

characterize the functional potential of microbial communities and infer the

microbes, which are involved in the metabolic pathways. Additionally, we describe

some well-established platforms and software, and briefly review their utilities.

Finally, an explication of interactions between genomics and meta-genomics gives

a new view for host phenotype-genotype analysis.
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Abbreviation

Egg NOG Evolutionary genealogy of genes: non-supervised ortholog

groups

EVA Entity attribute value

FDR False discovery rate

FP Fecal protease

GWAS Genome-wide association study

HMP Human Microbiome Project

IBD Inflammatory bowel disease

IBS Irritable bowel syndrome

KEGG Kyoto encyclopedia of genes and genomes

KR Kantorovich-Rubinstein

MDA Multiple displacement amplification

MGWAS Metagenome-wide association study

MiRKAT Microbiome regression based on kernel association test

MSA Multiple sequence alignment

NGS Next-generation sequencing

OTU Operational taxonomic unit

PCR Polymerase chain reaction

PCoA Principal Coordinate Analysis

PERMANOVA Permutational multivariate analysis of variance

QIIME Quantitative insights into microbial ecology

RDP Ribosomal Database Project

T2D Type 2 diabetes

9.1 Introduction of Metagenomics

The human microbiome includes all microbes that inhabit in or on the human

bodies. The human microorganisms exist by interacting with each other and the

traditional pure-culture approaches (Widdel 1983) are not sufficient to fully under-

stand the microbial communities. A new technology, metagenomics, is developed

and applied to such kind of metagenomes and produces more accurate analysis of

taxonomic diversity and functional diversity in a given microbial community.

9.1.1 The Human Microbiome

The human bodies are home to many microorganisms. Microbes are ubiquitous

everywhere on the human bodies. A healthy human body carries more microbial

cells than human cells (Savage 1977; Berg 1996). These microorganisms are vital to

our health. For example, some vaccines derived from microorganisms provide active

acquired immunity to a number of devastating diseases (Valdez et al. 2014). Better
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understanding of the microbiome can help human beings better understand their own

body and health conditions (Collins and McKusick 2001; Kaput et al. 2009).

9.1.2 A Pure Culture Is not Enough for Microbiology Studies

Traditional culturing has provided us with a useful platform for building on a

profundity and characteristic of modern microbiological knowledge. However, in

nature, microorganisms exist by interacting with each other and cultured microor-

ganisms do not represent much of the microbial world (Gupta and Vakhlu 2011).

Several microbial interactions among microorganisms have been well recognized,

including parasitic (i.e., one organism benefits at the cost of another), mutualistic

(i.e., both organisms benefit from each other), and commensal (i.e., one organism

benefits to the other one with no cost) (Phelan et al. 2012). The confluence of them

shows that a pure laboratory culture only containing a single species of microor-

ganism is not enough to realize a microbial world (Handelsman 2004).

9.1.3 Metagenomics

As a means of overcoming the limitations corresponding to studies using cultivation

approach, a new biotechnology metagenomics is developed and growing rapidly.

Metagenomics is a discipline that involves sequencing and analyzing genetic mate-

rial across all microorganisms sampled directly from their inhabitants (Hugenholtz

et al. 1998). Although, metagenomics is a relatively new discipline, it has produced a

wealth of knowledge and revolutionized our understanding of microbial life and

community, particularly the diversity, function, and evolution of the uncultivable

majority of microbes (Rondon et al. 2000; Fuhrman 2012). Metagenomics can be

used to characterize the composition of microbes both in identification and abun-

dance, identify functions of a microbial community, which give us more valuable

information than the analysis of singly isolated microbes (Lal 2011). The typical

workflow for metagenomics includes filtering particles, lysis, DNA extraction,

cloning and library construction (NGS could skip this step) (Fig. 9.1) (Thomas

et al. 2012; Wooley et al. 2010). After that, two main approaches, sequence-driven

analysis and function-driven analysis may be applied. (Thomas et al. 2012).

9.2 Study Design and Sampling

The goal of the clinical study design is to assess the efficacy or the mechanism of

study actions. Designing a successful metagenomic project would help scientists to

find out reliable results. In this chapter, we will introduce some aspects that

researchers may consider when creating a study design and conducting sampling.
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9.2.1 Study Design

The first thing for metagenomic studies is to identify a specific primary objective. It

is necessary to think about some questions, for example, what is the main scientific

aim (e.g., identify taxonomic diversity in the community)? How to find the best

microbial community sample that is related to a target disease?

Prior to the experiment, a specific pipeline should be developed. Several aspects

should be taken into consideration: (1) the main characteristics of the study;

(2) specific hypotheses to test; (3) sample size; (4) the potential statistical methods

to be used; and (5) software can be used for processing data sets.

Filtering particles

Cloning

mRNA

Protein

Translation

Transcription

Hecerologous gene expression

Genomic sequence analysis

Sequence-driven analysis Function-driven analysis

Metagenomic libraryN
ex

t 
ge
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g Lysis and DNA extraction

Fig. 9.1 Construction and screening of metagenomic libraries
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Normally, more than one hypothesis could be tested in a metagenomic project,

which depend on the extent of the experiment and the generated data collected, that

could be used for subsequent analysis. Most of the metagenomic datasets have high-

dimensionality, meaning that the number of variables such as genetic features is

much larger than the samples analyzed. The type of data collection will directly

determine the type of analysis methodologies one may use.

9.2.2 Sampling

Sampling is a crucial step in metagenomic projects. An accurate representation of

microbial sample will reduce the bias that can prejudice the evaluation results.

Sample processing needs to consider sources of materials, sample physical size,

scale, number of species, timing of sampling, storage and handling, and method

choice for DNA extraction (Venter et al. 2004; Burke et al. 2009; Delmont

et al. 2011). Samples should be representative of the microbiomes in their habitats.

Efforts should be made to minimize DNA degradation before sequencing analysis.

For example, in the metagenome-wide association study of gut microbiota in type

2 diabetes, the patients who were diagnosed with type 2 diabetes constituted the case

group and those non-diabetic people were treated as the control group. For these two

groups, their fresh fecal samples were obtained at home and immediately frozen in a

home freezer for less than one day. Those frozen samples were transferred to

BGI-Shenzhen and then stored at �80 �C until analysis (Qin et al. 2012).

9.2.2.1 Sample Collection for Metagenomes

Metagenome includes all genetic material present in a given sample and it consists

of many individual organisms. High-quality genomic DNA extraction and the

purification are critical and several robust DNA extraction methodologies are

available (Venter et al. 2004; Burke et al. 2009; Delmont et al. 2011). As an

example, processing of fecal samples is included in the Appendix.

The sufficient amount of extracted DNA from samples is important for the

following experiment. Low biomass samples may not be sufficient for creating a

complete metagenomic library (Thomas et al. 2012). If the target sample is asso-

ciated with a host, both physical fractionation (like specific filtration or centrifuga-

tion process) and selective lysis might be two feasible ways to ensure obtaining

minimal host DNA (Ballantyne et al. 2007; Arriola et al. 2007; Burke et al. 2009;

Thomas et al. 2010). If the starting amount of the target material is small, the

corresponding representation of DNAs may be weakened. The PCR can amplify

and increase the amount of limited DNA samples. As an option different from the

PCR method, a non-PCR based DNA amplification technique named multiple

displacement amplification (MDA) uses random hexamers and phagephi29 poly-

merase to rapidly amplify minute amounts of DNA yields (Lizardi 2001). This

method has been actively used for single-cell genome sequencing and a certain
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extent in metagenomics because it can amplify femtograms of DNA to produce

micrograms of product (Zhang et al. 2015; Ishoey et al. 2008). In contrast to the

PCR, MDA generates a larger amount of products with a lower mutation rate,

minimal locus bias and ease of use (Shoaib et al. 2008).

However, depending on the amount of starting materials and requirement of

DNA, no matter which of the amplification method is used, there exist potential

problems (e.g., sequence errors, chimera formation, reagent contamination) asso-

ciated with sequence bias (Lasken and Stockwell 2007). These issues may have a

significant effect on metagenomic analysis. In addition, collecting extra sample

material for complementary analyses is useful in metagenomic analysis.

9.2.2.2 Sample Metadata Collection

Metadata is broadly defined as the descriptive data that is used for describing

sample information. It summarizes additional information to the microbial habitats

and sample conditions which can make finding and working with a specific instance

of data easier than no descriptive data and enhances the ability to interpret the

sequence data, especially for a comparative analysis (DeLong et al. 2006). The

metadata in clinical repositories, for instance, entity-attribute-value (EVA) data

include study subject name, date of birth, sex, health status, race and other demo-

graphic variables in conventional tables. A good metadata makes it clear and easy

for others to keep track of the resources. Different sample types may have different

metadata. It is very important to identify some useful metadata when collecting the

genomic sample. Recently, there exist several metagenomic databases with various

degrees of metadata are available (Markowitz et al. 2006; Seshadri et al. 2007).

9.3 Approaches for Metagenomic Analysis

There are two approaches in metagenomic analysis. One is sequence-driven anal-

ysis and the other one is function-driven analysis. In this section, we will mainly

introduce the sequence-driven analysis. Based on different types of sequencing,

sequence-driven analysis can be categorized into two broad categories, including

16S rRNA sequencing analysis and whole-genome shotgun sequencing analysis.

Both of these two analyses play an important role in the study of microorganisms

and will be introduced here.

9.3.1 Sequence-Driven Analysis

Sequence-driven analysis aims to uncover the diversity of microorganisms, identify

novel genes, compare different microbial communities and clarify the relationship
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between the microbial communities and host. There are two broad categories: 16S

rRNA sequencing analysis and whole-genome shotgun sequencing analysis. 16S

rRNA sequencing typically only sequence the informative marker (e.g., 16S rRNA

gene) and can be used to identify and characterize microorganisms in a given

sample. Whole-genome shotgun sequencing screens the entire metagenome that

is used to characterize the diversity of microbes and their functions in a given

sample (Kunin et al. 2008; Thomas et al. 2012). These two approaches provide

some common and different information and offer unique advantages and trade-offs

(Manichanh et al. 2008).

Here we give an overview of the sequence-driven analysis of metagenomics that

involves significant steps in a typical sequence-based metagenomic project

(Fig. 9.2), including sampling, genomic DNA extraction, DNA sequencing

MetadataStudy design and sampling

Genomic DNA extration

DNA sequencing

Assembly Binning

Annotation

Statistical Analysis

Fig. 9.2 Flow diagram of a typical metagenome projects (Dashed arrows indicate steps that can
be omitted for 16S rRNA sequencing analysis)
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technologies, assembly, binning, functional annotation, statistical analysis (Kunin

et al. 2008). Some steps will be illustrated in the following. Information related to

bioinformatic tools in metagenomic analysis will be expounded later.

First, we introduce some basic concepts used in sequence-driven metagenomic

analysis.

9.3.1.1 Operational Taxonomic Unit (OTU)

In phylogeny, OTU is an operational definition of a species that can be used when

DNA sequence data sets have been generated (Blaxter et al. 2005). In

metagenomics, OTU is usually defined as a cluster of similar biomarker sequences

(e.g., 16S rRNA genes), especially for those species that genic sequences’ similarity

over 97 % or more (Ellison et al. 2014). Generally, there are two mathematical steps

to define OTU. The first step is to calculate a distance between each pair of

sequences. Some programs use multiple sequence alignment (MSA) to align the

sequence first, then calculate the distance (Blaxter et al. 2005; Schloss et al. 2009).

The second step is to cluster the sequences based on the pairwise distance. Several

programs use the maximum distance between two groups of sequences in hierar-

chical clustering while others use the average distance instead of maximum dis-

tance. The latter method may give more biologically meaningful OTUs (Blaxter

et al. 2005; Schloss et al. 2009; Hao et al. 2011).

9.3.1.2 Distance-Based Analysis

After DNA sequencing, organism phylogenies can be derived from the sequenced data

which can be used for creating a phylogenetic tree or taxonomic tree. Phylogenetic

distance is used to identify the correlation and the difference between biological

communities (Purvis and Hector 2000). Normally, there are three common distances,

including UniFrac distance (Lozupone and Knight 2005), generalized UniFrac distance

(Chen et al. 2012), and Kantorovich-Rubinstein distance (Evans and Matsen 2012).

Distance-based analysis is a widely used strategy for testing and evaluating the

overall association between microbial diversity and the outcome of interest (Zhao

et al. 2015). Distance-based analysis of DNA sequence data may incorporate the

phylogenetic tree (or taxonomic tree). This phylogenetic tree or related information

can be automatically created by available software after you cluster the OTUs.

Second, we will introduce 16S rRNA sequencing analysis and whole genome

sequencing analysis respectively.

9.3.1.3 16S rRNA Sequencing Analysis

16S ribosomal gene is regarded as a taxonomically and phylogenetically informa-

tive biomarker for three main reasons: (1) almost all bacteria contain this gene;
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(2) the function of the 16S rRNA gene will not change over time; (3) this gene

(1,500 bp) is large enough for information purposes (Sharpton 2014; Chakravorty

et al. 2007). Through analyzing different 16S ribosomal genes, we can identify the

composition of the microbial community and discover some novel bacteria.

Normally, a complete 16S rRNA sequencing analysis of metagenomic project

contains four steps, including genomic DNA extraction, PCR amplification, nucle-

otide sequencing and database homology search (Barry et al. 1991; Chen

et al. 2004). We discussed sampling and genomic DNA extraction earlier. 16S

rRNA genes of bacteria are amplified by using PCR-based primers and are subse-

quently cloned. These PCR amplicons can be sequenced directly after removal of

some ‘noise’ sequences (e.g., sequencing errors) (Gilles et al. 2011), which will

dramatically decrease the number of OTUs (Huse et al. 2010). During PCR

amplification, an amount of chimeric sequences (artificial recombinants between

two or more parental sequences) that can be generated. These artificial molecules

make OTU clustering harder and we need an additional quality control process to

remove these chimeras as well (Bradley and Hillis 1997). Several programs can

process denoising and chimeras detection that we will review their utilities later.

The next step is OTU clustering, which clusters the similar sequences into a taxon

(Schloss et al. 2011). The OTU clusters may show us basic information of their

microbial characteristics, such as epidemiology and physiology, and indirectly

show the inference of their ecological roles (Kim et al. 2013). The OTUs

constructed can be used for comparing homology with a public database, such as

Ribosomal Database Project (RDP), in order to detect nearly identical sequences

(same taxon) and characterize the diversity of microbial communities (Paulson

et al. 2013).

There are some limitations and pitfalls when using 16S sequencing method such

as

1. Some species within a taxon or even different taxon may have identical or more

than 99 % similar 16S rRNA sequences, which will make sequencing-based

analysis inaccurate. For example, in family Enterobacteriaceae, E. coli and
Shigella have almost identical 16S rRNA and some E. coli strains can cause

diarrhea similar to that caused by Shigella (Fukushima et al. 2002).

2. Some type of strains of sequence data do not have reference sequences in

available database. Sometimes that is only a new isolate which does not have

good matches in gene database and a false impression of a new taxa may ensue

(Han et al. 2003).

Despite these limitations, 16S rRNA sequencing has been determined for an

extremely large number of bacterial species and there is no other gene characterized

as many and extensively as it (Clarridge 2004). More precise and logical bioinfor-

matic tools are being developed for analyzing the 16S rRNA sequence data that will

also help us get more robust results (Woo et al. 2008).
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9.3.1.4 Whole-Genome Shotgun Sequencing

Whole-genome shotgun sequencing is increasingly widely used to detect the

abundance of microbes, provide insight into community diversity and identify

important metabolic pathways. In whole genome shotgun sequencing, all genomic

DNA is broken up randomly into numerous small fragments, which are indepen-

dently sequenced to obtain reads (Sharpton 2014). After these small DNA frag-

ments are sequenced, software are available to assemble different reads into their

original order based on overlaps, merge pairs of reads into longer contiguous

sequences (i.e., contig), link contigs to form supercontigs and ultimately derive

consensus sequence (Adams 2008). Several high-throughput sequencing technolo-

gies have been applied to process the metagenomic samples such as the 454/Roche

and Illumina/Solex systems and they can sequence thousands of organisms in

parallel (Liu et al. 2011b; Mardis 2008).

Here is the common metagenomic analytical strategies based on shotgun

sequencing data (Fig. 9.3).

Two primary questions can be characterized by analyzing microbial community

are ‘who is there’ and ‘what are they doing’. These questions involve determining

which microbes are present in a community and their abundance (e.g., taxonomic

diversity), and what are their functions (e.g., protein family diversity) (Sharpton

2014).

9.3.1.5 Taxonomic Diversity Analysis

We will give an overview of taxonomic diversity analysis in metagenomics.

Taxonomic diversity analysis, as a way of characterizing microbial community,

involves analyzing what microbiomes present and their abundance in a given

sample. Through this analysis, we can ascertain the similarity of two or more

microbial communities and give an inference to distinguish their biological func-

tions when containing members of functionally described taxa (Kim et al. 2013). In

metagenomics, taxonomic diversity can be divided into three categories which

include marker gene analysis, binning and assembly (assembling sequences into

distinct genomes – genome diversity). These different approaches are not exclusive

of each other, rather they may complement each other (Sharpton 2014).

1. Marker gene analysis

A marker gene, as the specific DNA sequence with known location on the chro-

mosome, which can be used to characterize the taxonomic composition and phylo-

genetic diversity of a given sample. In metagenomics, ribosomal RNA genes (e.g.,

16S rRNA) and single-copy protein coding genes are two major kinds of marker

genes that have been used (Sharpton 2014). Marker gene analysis includes two

steps: the first step is to compare sequencing reads with a database of taxonomical

informative gene families database and the second step is to identify those reads
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that are marker gene homologs and taxonomically annotate each homolog

(Sharpton 2014; Warnecke et al. 2007; Segata et al. 2012). Marker gene analysis

is fast and relatively more accurate to estimate the taxonomic abundance when

focusing on single-copy gene families. Additionally, this method can be applied to

both assembled or unassembled reads that are more applicable than other methods

(e.g., binning analysis) (Liu et al. 2011a).

2. Binning

Binning is a taxonomic classification method which aims to sort DNA sequences

into groups that might represent genomes from closely related organisms (Thomas

et al. 2012). Generally, there are two rules to classify each sequence into a

taxonomic group. The first one, similarity-based algorithm, is to compare the

unknown metagenome shotgun reads with a known referential data (e.g., small

subunits rRNA for prokaryotes) and judge where the sequence should be classified

(e.g., OTU genus). The second one, compositional-based algorithm, is to cluster

those sequences that represent taxonomic groups based on conserved nucleotide

composition of genomes (e.g., GC content) (Sharpton 2014; Thomas et al. 2012).

The compositional-based algorithm generally does not require the alignment of

reads to a reference sequence database. However, the similarity-based algorithm

needs a search phase, such as BLAST (Wilkening et al. 2009), to identify an cluster

those local similarity of a query sequence.

Binning provides a view of the presence of novel genomes; a way of reducing

the complexity of sequencing data and a survey of taxa diversity in the community

(Alneberg et al. 2014; Strous et al. 2012; Droge and McHardy 2012). These benefits

will bring convenience to post-binning analysis.

3. Assembly

Assembly aims to obtain full length protein coding sequences or recover the

genome of microorganisms. It merges overlapped metagenomic reads from the

Metagenome sequencing

Taxonomic analysis Functional analysis

Marker gene analysis - Taxonomic diversity

Binning - Taxonomic diversity

Assembly - Genome Diversity

Gene prediction - Gene diversity

Functional annotation - Protein family diversity

Fig. 9.3 Common shotgun sequencing metagenomic analytical strategies
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same genome into longer contigs. These contigs can dramatically simplify bioin-

formatic analysis (e.g., genome diversity and find novel genomes) comparing with

unassembled sequencing reads, and especially make it easier to obtain accurate

information for functional annotations (Wommack et al. 2008). Analysis of these

longer sequences may provide insight into the genomic composition of uncultured

organisms found in the given sample. Binning and classification of DNA fragments

for taxonomic assignment can also receive benefits from them (Iverson et al. 2012;

Ruby et al. 2013; Wrighton 2012). The main factors associated with the complexity

of sequence assembly are the number of fragments and their lengths. Algorithms

that can be applied to massive and long fragments are sophisticated (Boisvert

et al. 2010). Chimeras, which may be generated by PCR, will affect the assembly

results. Those chimeras, from two distinct genomes, could be assembled into a

contig because of sharing similar sequence. The more complexity of the commu-

nities, the more chimeras could be generated (Luo et al. 2012).

9.3.1.6 Functional Diversity Analysis

To assess the functional diversity in a microbiome community, shotgun

metagenomic reads or contigs are mapped to a known database of orthologous

gene groups, i.e., KEGG (Kanehisa et al. 2012) to identify matches. By clarifying

the common functions that encoded in the microorganism genomes, metagenomes

provide insight into a community’s physiology. This can be quantified through

annotating metagenomic sequences (Lewis et al. 2012; Rup 2012). The functional

diversity analysis usually contains two parts, including gene prediction and func-

tional annotation (Looft et al. 2012; Morgan et al. 2012).

1. Gene prediction

Gene prediction is used to label sequences as genes or genomic elements. It is the

fundamental step for annotation. Once coding sequences are identified, they can be

functionally annotated. There are three major ways by which genes are predicted in

metagenomics including gene fragment recruitment, protein family classification,

and de novo gene prediction (Wu et al. 2009; Sharpton 2014). The gene fragment

recruitment approach aligns metagenomic contigs or reads to the known gene

sequence from database. If the contigs or reads are identical or almost identical to

parts or full-length of a gene sequence, they could be considered to represent this

gene (Qin et al. 2010). The principle of protein family classification method is very

similar with gene fragment recruitment approach. The difference is that protein

family classification method translates the metagenomic contigs or reads into

possible peptide sequences and compares them with the known protein sequences

from databases. The de novo gene prediction is used to identify novel genes without
reference gene sequences. In this method, we can assess if the metagenomic contigs

or reads belong to or contain a gene by analyzing them based on the characteristics

of microbial genes, i.e., length, codon usage (Noguchi et al. 2006; Kelley

et al. 2012).
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2. Functional annotation

The most common method for sequence functional annotation is to classify the

predicted metagenomic proteins into protein families. They are usually character-

ized by comparing full-length protein sequences with a genome sequencing pro-

gram, such as the NHGRI genome sequencing program (http://www.genome.gov/

10001691). If a metagenomic sequence is determined to be a homolog of one

protein family, then it is inferred that the sequence encodes the family’s function
(Finn et al. 2014). There are many databases that can be used to functionally

annotate metagenomic proteins and we will introduce them later.

As the NGS technique becomes less expensive, more researchers or bio-medical

companies will adopt whole-genome shotgun sequencing instead of 16S rRNA

sequencing. Characterizing microbial community diversity and functions through

whole-genome shotgun sequencing is more precise than 16S rRNA sequencing.

9.3.2 Function-Driven Analysis

Function-driven analysis is invented to screen the metagenomic library followed by

biochemical characterization and experimental methods. This could identify the

genes expression of a desired or novel trait (Schloss and Handelsman 2003; Singh

et al. 2008). This approach is mainly based on bench work with little bioinformatics

involvement. Hence, we do not elaborate it here.

9.4 Analytical Tools and Databases for Metagenomics

Due to substantial cost reduction and massive data production by NGS,

metagenomics studies increase rapidly in sheer amount and complexity. Mean-

while, metagenome databases and bioinformatic tools, which are used for handling

and processing those datasets, become more and more crucial. Several recent

associated bioinformatic analytical tools and databases that are widely used in

metagenomics will be briefly reviewed here.

9.4.1 Analytical Tools for 16S rRNA Sequencing Data

16S rRNA genes are always treated as a taxonomic marker. This marker gene will

be clustered and applied to OTU-based approaches, such as taxonomic analysis and

phylogenetic analysis. These OTU-based approaches are common in many micro-

bial community studies (Smith et al. 2015; Bik et al. 2010). Roche 454 Titanium,

Ion Torrent PGM and Illumina MiSeq are three major NGS platforms to generate
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metagenomic sequencing data. In this section, we will introduce several bioinfor-

matic tools and their utilities in the analysis workflow (Tamaki et al. 2011; Seo

et al. 2015; King et al. 2014) (Table 9.1).

The platforms that generate sequencing data may produce characteristic

sequencing errors, especially imprecise signals for longer homopolymers runs.

The overlapping pairwise alignments will be combined into a multiple sequence

alignment and these alignments are often inaccurate near homopolymers

(Hoberman et al. 2009). In addition, 16S rRNA gene sequencing requires the

enrichment by PCR, which also can lead to artifacts and biases in coverage and

allele representation (Acinas et al. 2005). If sequencing data contain enough errors,

the data could be classified as additional rare OTU (Huse et al. 2010). Hence, a data

pre-processing is necessary.

1. Denoising

Denoising removes ‘noise’ sequences from actual sequences. PyroNoise involves

removal of noise from sequencing itself and PCR error points that produced by

Roche 454 Titanium platform (Quince et al. 2009). DADA and Denoiser are two

well-developed denoising resources, which use sequence abundance information in

the denoising process (Erten et al. 2011; Reeder and Knight 2010).

2. Chimera detection

After denoising and additional quality control processes, e.g. remove low-quality

reads and contaminating reads, artificial sequences should be removed from the

dataset. It is very important to clean up those chimeric sequences because it is hard

to differentiate the original sequence from combinants that will result in

overestimating the microbial diversity if without removing artificial molecules.

Several methods for chimera detection have already developed such as

ChimeraSlayer (Haas et al. 2011), Decipher (Wright et al. 2012) and UCHIME

(Edgar et al. 2011).

Table 9.1 Bio-informatics resources for studying targeted metagenomics

Resources Function Website

PyroNoise Denoising http://code.google.com/p/ampliconnosie

DADA Denoising http://sites.google.com.site/dadadenoiser

Denoiser Denoising http://qiime.org

ChimeraSlayer Cimera detection http://microbiomeutil.sourceforge.net

DECIPHER Chimera detection http://decipher.cee.wisr.edu

UCHIME Chimera detection http://www.drive5.com/uchime

UCLUST OUT clustering http://www.drive5.com/usearch

TBC OUT clustering http://sw.ezbiocloud.net

CD-HIT-OTU OUT clustering http://weizhing-lab.ucsd.edu/cd-hit/otu

Mothur All in one http://mother.org

QIIME All in one http://qiime.org
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3. OTU clustering

The next step is OTU clustering. This method will cluster sequences with the

closest matches into the same OTU as a taxa. Clustering algorithms, sequencing

errors and artificial sequences have great influence on the quality of OTUs. Gener-

ally, there are two major clustering algorithms, one is alignment-based clustering

and the other one is alignment-free clustering. Here we only list software platforms

based on alignment-free clustering algorithms, including UCLUST (Edgar 2010),

CD-HIT-OTU (Fu et al. 2012; Huang et al. 2010), TBC (Lee et al. 2012).

Several single software platforms that implement all the above three steps’
algorithms. Two advanced all-in-one computational tools, Mothur (Yang

et al. 2014) and QIIME (Kuczynski et al. 2012b; Navas-Molina et al. 2013), are

more flexible and easily maintaining and also are able to address sophisticated

targeted metagenomics studies.

9.4.1.1 Mothur

Mothur was initially developed by Dr. Patrick Schloss (http://www.mothur.org). It

builds upon several previous tools including SONS (Schloss and Handelsman

2006), DOTUR (Schloss and Handelsman 2005), ARB (Ludwig et al. 2004) and

UniFrac (Lozupone et al. 2006; Lozupone and Knight 2005) to provide a flexible

software package, which is widely used for analyzing 16S rRNA gene sequences

(Schloss et al. 2009). Mothur can be used to process data generated by the

IonTorrent, the 454/Roche, and the Illumine (MiSeq/HiSeq). This software is free

and available download from the project website (http://www.mothur.org).

9.4.1.2 QIIME

QIIME is an open-source software package, which is used to perform microbial

community analysis of raw DNA sequencing data from sequencing technologies such

as Illumina, 454/RocheSanger (Kuczynski et al. 2012a). There are several excellent

functions that QIIME equipped (1) perform library de-multiplexing and quality

filtering; (2) QIIME Denoiser; (3) OTU picking; (4) taxonomic assignment; (5) phy-

logenetic reconstruction (6) diversity analyses and visualizations (http://qiime.org/1.

4.0/). It is available for download on its official website (http://qiime.org/).

9.4.2 Analytical Tools for Shotgun Sequencing Data

Assembly: There are several metagenome specialized assemblers such as Genovo

(Laserson et al. 2011), Meta-IDBA (Peng et al. 2011), MetaVelvet (Namiki

et al. 2012; Afiahayati and Sakakibara 2015), MAP (Lai et al. 2012) and Ray
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Meta (Boisvert et al. 2012). These assemblers are designed to assemble single and

clonal genomes. MetaVelet, Meta-IDBA and Ray Meta were developed to perform

well on short reads (e.g., average 75~150 bp of Illumina sequencing) while Genovo

and MAP were better for longer reads (e.g., average reads length between

600~800 bp of 454 sequencing).

Binning: Several popular tools have been developed based on binning algo-

rithms as we mentioned before. The compositional-based binning algorithms

include MEGAN (Huson et al. 2007; Huson and Weber 2013), MG-RAST (Glass

et al. 2010a), and CARMA (Krause et al. 2008). The similarity-based binning

algorithms include PCAHIER (Zheng and Wu 2010), PhyloPythiaS (Patil

et al. 2012) and Phymm (Brady and Salzberg 2009). RITA (MacDonald

et al. 2012). Some software combine both compositional-based algorithm and

similarity-based algorithm such as MetaCluster (Leung et al. 2011).

Functional annotation: These are several online metagenome annotation ser-

vices, such as MetaGene (Noguchi et al. 2006), MetaGeneAnnotator (Noguchi

et al. 2008), METAREP (Goll et al. 2010), CAMERA (Seshadri et al. 2007), and

MG-RAST (Meyer et al. 2008; Glass et al. 2010b), providing platforms for gene

prediction, assignment of functional categories, protein families and gene ontol-

ogies, and inference of both protein interactions and metabolic pathways.

9.4.3 Databases

Taxonomic diversity analysis databases:

In order to identify the taxonomic groups in the microbial communities, we need to

compare all the reads against a curated ribosomal RNA sequence database, such as

RDP (Cole et al. 2009), SILVA (Quast et al. 2013), Greengenes (DeSantis

et al. 2006), Ribosomal Differentiation of Medical Microorganisms (RIDOM).

The database matches can be used to analyze the relative abundance of organisms

in the community.

Functional annotation analysis databases:

Metagenomic annotation relies on classifying sequences to some known functions,

which is based on comparing homology searches with available reference data-

bases, such reference databases as COGs (Tatusov et al. 2003), eggNOGs (Powell

et al. 2012), Pfam (Finn et al. 2014) and TIGRfam (Haft et al. 2013).

9.5 Clinical Example

Type 2 diabetes (T2D) is a prevalent endocrine disease that the body cannot use

insulin properly. Several studies have shown that gut microbiota has a significant

impact on this disease risk. In order to analyze gut microbial content in T2D
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patients, Qin et al. (2012) conducted a two-stage analysis of metagenome-wide

association study (MGWAS) to identify metagenomic markers associated with

T2D. In that study, stool samples from a total of 345 Chinese T2D patients and

non-diabetic individuals were collected. DNA sequence data were generated

through deep shotgun sequencing by Illumina GAIIx and HiSeq 2000.

To the study, first, developed a comprehensive metagenome reference gene set.

The authors carried out whole-genome sequencing for 145 Chinese individuals

(71 cases and 74 controls), and then performed de novo (Cao et al. 2015) assembly

and metagenomic gene prediction for these samples. By integrating these data with

the MetaHIT gene catalogue, a total of 1,090,889 genes were uniquely assembled

from the Chinese samples that contributed ten more percent additional coverage of

sequencing reads compared with MetaHIT gene catalogue. After that, taxonomic

assignment and functional annotation were applied to the gene catalogue as a

complete gene reference.

To identify T2D-associated metagenomic markers, the authors proposed a

two-stage MGWAS strategy. In stage I, a sequence-based profiling method was

used to quantify the gut microbiota in the 145 samples. On average, with the 90 %

identity threshold, 77.40 % unique paired-end reads were mapped to the updated

gene catalogue. However, sequence-based profiling method could reliably detect

very low abundance genes. Hence, the author defined and prepared three types of

profiles using the quantified gene results and applied PCA on these profiles. The

results showed that several abundant genera including Bacteroides, Prevotella,
Bifidobacterium and Ruminococcus composed three enterotypes but no significant

relationship between enterotpes and T2D disease status. After examining several

principal components, the study found that the first, the second and the fifth

components were significantly correlated with T2D (p-value< 0.001). This result

indicates that T2D was a determining factor in explaining gut microbial differences.

To correct for population stratifications of metagenome-wide data, they employed a

modified version of the EIGENSTRAT method (Price et al. 2006), which allow the

use of covariance matrices instead of genotypes. The only difference between

MGWAS and regular GWAS subpopulation correction is that they use microbial

abundance rather than genotype. In addition, they modified the method further by

replacing each PC axis with the residuals of this PC axis from a regression to T2D

state. The number of PC axes of EIGENSTAT was determined by Tracy-Widom

test at significance threshold of P< 0.05. With adjustment, the effects that corre-

lated with non-T2D related factors disappeared. A Wilcoxon rank-sum test was

performed on the adjusted gene profile to identify differential metagenomic gene

between the T2D patients and controls. Substantial enrichment of a set of microbial

genes had very small P values, indicating that these genes were highly likely to be

T2D-associated gut microbial genes. To validate the significant associations iden-

tified in stage I, the author conducted the stage II analysis using additional 200 Chi-

nese samples. By using whole genome sequencing and controlled false discovery

rate (FDR) methods, it defined a total of 52,484 T2D associated genetic markers

with 2.5 % FDR (stage II p-value< 0.01). In summary, the genes selected by both

stage I and stage II tests are considered as T2D-associated gut microbial genes. The
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author also implemented the same two-stage analysis using the KEGG orthologous

and eggNOG orthologous group profiles and identified a total of 1,345 KEGG

orthologous markers (stage II p-value< 0.05 and 4.5 %FDR) and 5,612 eggNOG

orthologous group markers (stage II p-value< 0.05 and 6.6 % FDR) that were

associated with T2D.

In addition, the authors implemented PERMANOVA method to show that T2D

was a significant factor for explaining the variation in the examined microbial

samples.

9.6 Interaction of Genomics and Metagenomics

Several studies show that the composition of microbial communities change widely

across different human individuals and different body sites because of life style,

diet, antibiotic usage and other factors. In addition, the difference of structure and

abundance of the microbiome are associated with multiple diseases. For example, a

study of lean and obese germ-free mice trail showed that shifts in gut microbiome

can influence host traits and cause obesity (Turnbaugh et al. 2008). Other studies

show the similar results that gut microbiome has been proposed to contribute to a

number of diseases, such as obesity and diabetes (Harley and Karp 2012; Burcelin

et al. 2011). Recently, studies have indicated that specific gene variants of host can

affect their composition of microbial communities and progress to increase the risk

of developing many of the diseases. For example, MEFV gene, IBD-risk loci, has a

strong association with gut microbiome composition (Khachatryan et al. 2008; Li

et al. 2012). Understanding the impact of genomics difference is crucial to

explaining the role of the microbial communities in disease.

Ran Blekhman et al. conducted a comprehensively study to profile the interactions

between human genetic variation and the microbial communities’ composition

(Blekhman et al. 2015). The authors collected and analyzed 93 individuals’ DNA
reads from Human Microbiome Project (HMP) and their bacterial abundance data.

They identified that there are significant associations between host genetic variation

and microbiome composition in 10 of the 15 body sites. For example, they calculated

the correlation between the host genetic variation principal component and alpha

diversity in anterior nares was significant (R2¼ 0.218 with p-value< 0.01). In

addition, they applied a mixed model to analyze this data which controlled population

structure and other non-genetic factors that may cause correlations. Several genes of

host were found that are correlated with microbiome composition. After that, they

examined the correlations between genetic loci and microbiome composition that had

been found to be associated with complex disease (e.g. IBD and other obesity-related

disorders). These results highlighted the interaction between host genetic variation

and their microbiome composition.

Another study, Daniel N. Frank et al. conducted a comprehensively study to

determine whether human genetic variations underlie shifts in microbial

populations (Frank et al. 2011). They focused on NOD2 and ATG16L1 risk alleles
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which are associated with abnormal Paneth cell function that can affect host ileum

bacteria. A multivariate analyses was applied to analyze the effect of NOD2 and

ATG16L1 risk alleles on the intestinal microbiota and confirmed that two taxa,

Clostridial XIVa and Proteobacteriamicrobiota, have been affected differently, the

frequencies of former taxa increased and later taxa decreased. After multiple

comparisons, it showed that shifts in the relative frequencies of taxa have associated

with NOD2 and ATG16LI genotype (p< 0.024 and p< 0.011 respectively). This

study suggested that specific genetic loci which cause human disease can affect the

microbiota composition.

This evidence shows that human genes can influence the microbiome’s compo-

sition which contributes in many ways to shape the individual’s phenotype. With

increasing awareness of the impact of the microbes on different body sites, it might

be a more accurate way to take into consideration of microbial affections when

conducting host phenotype-genotype analysis.

Appendix

DNA isolation of fecal sample

• Collection and preparation of fecal samples

Fecal samples should be collected and processed timely, ideally within 4 h. After

adding equal volume of sterile milli-q water (1:1 feces/water), fecal samples need to

be homogenized thoroughly. Then about 1–10 ml slurries will be transferred to

cryogenic tubes and frozen at �80 �C until DNA extraction.

• DNA extraction and purification

There are two common methods for fecal DNA purification. One is from the

Metagenomics of the Human Intestinal Tract (MetaHIT) project in Europe and the

other one is from the National Institutes of Health’s Human Microbiome Project

(HMP). The MetaHIT protocol mainly uses laboratory-made buffers and solutions,

while HMP protocol is based on Mobio PowerLyzer™ PowerSoil® DNA isolation

Kit (MO BIO Laboratories) (Wesolowska-Andersen et al. 2014). The MetaHIT

method yields significantly higher DNA amount than HMP approach; however,

yield and purity of DNA extracted with both protocols were sufficient for Illumina-

based deep metagenome sequencing (Wesolowska-Andersen et al. 2014).
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Chapter 10

Clinical Epigenetics and Epigenomics

Chuan Qiu, Fangtang Yu, Hong-Wen Deng, and Hui Shen

Abstract Epigenetics is the study of somatically heritable changes in gene expres-

sion that occur without alterations in DNA sequence, mainly including DNA

methylation and histone modification. Epigenomics refers to the complete study

of these somatically heritable changes across the whole genome. Epigenetic mech-

anisms are critical components in the growth of cells and normal development.

Aberrant epigenetic changes have been found to be causative factors in cancer,

autoimmune diseases as well as others. Significant progress has been made towards

epigenomic profiling by using molecular techniques. In this chapter, we introduce

the basics of epigenetics and epigenomics; describe the remarkable advances in

current epigenomic mapping and analysis technologies, especially microarray-

based and next-generation sequencing-based applications. Then we focus on the

recent studies of epigenetic changes in normal and diseased cells with the aim to

translate basic epigenetic and epigenomics research into clinical applications. We

also discuss some critical challenges ahead and provide a perspective on the

progress of epigenomics field.

Keywords Epigenetics • Epigenomics • DNAmethylation • Histone modification •

Mapping and analyzing technologies • Human disease
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CGI CpG island

DMH differential methylation hybridization

DMRs differentially methylated regions

DNMTs DNA methyltransferases

EWAS epigenome-wide association studies

FDR false discovery rate

HATs histone acetyltransferases

HDACs histone deacetylases

HMTs histone methyltransferases

IMA Illumina Methylation Analyzer

LOESS locally weighted scatterplot smoothing

MBD methyl-CpG binding domain

MeCPs Methyl-CpG Binding Proteins

MeDIP methylated DNA immunoprecipitation

PRC polycomb repressive complexes

RRBS reduced representation bisulfite sequencing

SNPs Single Nucleotide Polymorphisms

TET ten-eleven translocation

UHRF ubiquitin plant homeodomain RING finger

WGBS whole genome bisulfite sequencing

In 1959, Waddington first coined the concept “epigenetics” (Waddington 1959),

which now refers to the mechanism for stable maintenance of gene expression

changes that involves physically “marking” DNA or its associated proteins other

than alterations in DNA sequence.

A variety of epigenetic factors have been identified, such as DNA methylation,

histone modification, and non-coding RNAs (e.g., microRNAs and long non-coding

RNAs) etc. These epigenetic factors coordinatively regulate gene expression and

provide heritable epigenetic information that is not encoded in DNA sequence

(Cedar and Bergman 2009; Esteller 2011). Epigenome refers to the entire consti-

tution of epigenetic marks in a cell type at a given time point, it is cell-specific and

tissue-specific (Varley et al. 2013). In each type of cells, epigenetic factors regulate

gene expression in different ways, for example, facilitate or restrict transcription

factor access to DNA sequence (Rivera and Ren 2013). Epigenome may change

over the lifetime (Fraga et al. 2005a) and are prone to environmental influences,

such as stress, social interactions, physical activity, exposure to toxins and diet

(Alegria-Torres et al. 2011). Aberrant epigenomic alternations have been impli-

cated in a wide variety of human disorders, such as cancer and autoimmune diseases

etc. (Portela and Esteller 2010), and epigenetic drugs may revolutionize the treat-

ment of many human diseases (Heerboth et al. 2014). In this chapter, we briefly

reviewed the molecular basis for two major epigenetic factors, DNA methylation

and histone modification, and discussed some commonly used epigenome-wide

analytic approaches for these two factors, as well as their involvement in some

human complex disorders.
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10.1 Molecular Basis of DNA Methylation and Histone
Modification

10.1.1 DNA Methylation

DNA methylation, commonly called the ‘fifth base’ in the genome, is one of the

most extensively studied epigenetic mechanisms. It is a direct chemical modifica-

tion of the fifth carbon of a cytosine that adds a methyl (-CH3) group through a

covalent bond resulting in 5-methylcytosine (5-mC).

In adult somatic tissues, DNA methylation typically occurs in a “CpG”

(C-phosphate-G) dinucleotide context (Bird and Southern 1978; Cedar

et al. 1979). An exception to this is seen in embryonic stem cells (Haines

et al. 2001), where a substantial amount of 5-mC is also observed in non-CpG

sites (mCHG, mCHH). In human genome, there are 28 million CpG sites, which

are not evenly distributed throughout the genome (Lister et al. 2009) but tend to

cluster in regions, known as “CpG islands” (CGIs). CGIs usually occur near gene

transcription start sites (TSS) and ~60 % of human gene promoters are associated

with CGIs (Bird 1986; Gardiner-Garden and Frommer 1987). DNA methylation is

catalyzed by a family of enzymes termed DNA methyltransferases (DNMTs)

(Okano et al. 1998), including DNMT1, DNMT3A, DNMT3B, DNMT2 and

DNMT3L, which cooperate in establishing and maintaining DNA methylation

patterns (Kulis and Esteller 2010; Okano et al. 1999). Equally important and

opposite with DNA methylation is DNA demethylation. DNA demethylation can

be either passive or active, or a combination of both. Passive DNA demethylation

usually takes place when DNMT1 cannot effectively restore the DNA methyla-

tion patterns on newly synthesized DNA strands during replication rounds

(Wu and Zhang 2010), whereas active demethylation is usually mediated by the

ten-eleven translocation (TET) family enzymes (TET1, TET2 and TET3) and

subsequent restoration of unmodified cytosine by the thymine DNA glycosylase

(TDG)-mediated base excision repair (Kohli and Zhang 2013).

The importance of DNA methylation as a major epigenetic modification in

gene expression has been widely recognized. Hypermethylation of CpGs in TSS

proximal regions, particularly in promoter CGIs, is largely associated with

repressed gene transcription (Wagner et al. 2014), whereas methylation of CpGs

located within gene bodies is usually associated with an increase in transcriptional

activity (Ramsahoye et al. 2000; Hellman and Chess 2007). However, several

recent studies have revealed that there is no simple relationship between inter-

individual DNA methylation and gene expression with respect to the location of

the methylated CpGs and both negative and positive inter-individual methylation-

expression correlations were detected for CpGs located in gene body and tran-

scription start site proximal regions, as well as in intergenic regions (Wagner

et al. 2014; Bell et al. 2011).
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10.1.2 Histone Modification

The basic unit of chromatin is the nucleosome, which is composed of an octomer of

histone proteins (containing two copies each of histones H2A, H2B, H3, and H4)

around which is wrapped a length of 147 bp DNA. The degree to which chromatin

are condensed or packed is a critical determinant of the transcriptional activity

of the associated DNA and this is mediated in part by diverse post-translational

covalent modifications of the N-terminal tails of histone proteins (Fig. 10.1).

Fig. 10.1 Post-translational modifications of histones. The first 20 amino acids in the N-terminus

of the human histone H4 are illustrated. Many sites in the N-terminus can be targets for epigenetic

tagging such as acetylation (A), phosphorylation (P) and methylation (M). Acetylation is catalyzed

by histone acetyltransferase (HAT) and removed by histone deacetylase (HDAC); Phosphoryla-

tion is catalyzed by protein kinases (PK) and removed by protein phosphatase (PP); Methylation is

catalyzed by histone methyltransferases (HMT) and removed by histone demethylase (HDM).

Some histone modification marks are associated with gene activation while others are associated

with gene repression, and the integration of multiple marks leads to a finely tuned transcriptional

response
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At least eight different types of histone modification have been identified: acetyla-

tion, methylation, phosphorylation, ubiquitination, sumoylation, ADP ribosylation,

deimination, and proline isomerization. All the modifications are reversible and

dynamic, mediated by enzymes that add/remove modification.

Histone acetylation occurs via an enzymatic transferring of an acetyl group from

acetyl-CoA to the ε-NH+ group of the lysine residues within a histone. This

enzymatic activity is catalyzed by enzymes called histone acetyltransferases

(HATs) and reversed by histone deacetylases (HDACs) (Hodawadekar and

Marmorstein 2007). Histone acetylation is a hallmark of transcriptional activation

(Sterner and Berger 2000) and the histone acetylation patterns are tightly associated

with many cellular processes including chromatin dynamics and transcription, gene

silencing, cell cycle progression, apoptosis, differentiation, DNA replication, DNA

repair, nuclear import, and neuronal repression (Cohen et al. 2011).

Histone methylation is another extensively studies histone modification marks. It

is defined as the transfer of one, two, or three methyl groups from S-adenosyl-L-

methionine to lysine or arginine residues of histone proteins by histone

methyltransferases (HMTs). In the cell nucleus, when histone methylation occurs,

specific genes within the DNA complexed with the histone may be activated or

silenced (Greer and Shi 2012). For instance, the tri-methylation of histone H3 at

lysine 4 (H3K4me3) is positively correlated with gene transcription and commonly

detected in a tight, localized area at 50-ends/promoter regions of active genes

(Barski et al. 2007). H3K36me3 is strongly enriched across the gene body and at

the 30-end of active genes and may link to transcriptional elongation (Barski

et al. 2007). In contrast, H3K27me3 is the classic repressive histone modification

mark, which shows a broad peak at promoters and throughout the gene body of the

silent genes (Barski et al. 2007).

10.2 Epigenome-Wide Analyses of DNA Methylation
and Histone Modification

10.2.1 Epigenome-Wide DNA Methylation Analysis

10.2.1.1 DNA Methylation Profiling Assays

DNAmethylation analysis normally relies on three strategies (Fig. 10.2): (1) Diges-

tion of genomic DNA with methylation-sensitive restriction enzymes; (2) Affinity-

based enrichment of methylated DNA fragments; and (3) Bisulfite conversion. Each

of the three strategies can be combined with either microarray or next-generation

sequencing technique to interrogate epigenome-wide DNA methylation patterns,

and each with unique advantages and drawbacks (Table 10.1).

• Digestion of genomic DNA with methylation-sensitive restriction enzymes:
Some restriction enzymes (e.g., HpaII and SmaI) are methylation sensitive –
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their activity is affected by the presence of a methyl CpG within restriction sites.

Therefore, when genomic DNA is digested with a methylation-sensitive restric-

tion enzyme, difference in methylation status is converted into difference in

sequence fragment size. For example, differential methylation hybridization

(DMH) uses combinations of methylation-sensitive and methylation-insensitive

restriction enzyme digestion, followed by ligation-mediated PCR to enrich for

methylated or unmethylated fragments. PCR products are labeled and hybrid-

ized to arrays, or tested by next-generation sequencing (Fig. 10.2a). Methods

based on this strategy were used in early epigenome-wide DNA methylation

studies (Rakyan et al. 2011), but the genome-wide CpG coverage and resolution

are limited by the cutting frequency and the fragment size of the chosen

restriction enzymes.

• Affinity-based enrichment of methylated DNA fragments: Affinity-based

enrichment assays capture methylated DNA fragments with a methyl-CpG

Fig. 10.2 Strategies for pretreatment of DNA sample. (a) Digestion of genomic DNA with

methylation-sensitive restriction enzymes. (b) Affinity-based enrichment of methylated DNA

fragments. (c) Chemical treatment of DNA with sodium bisulfite results in the conversion of

unmethylated cytosines to uracils. In contrast, methylated cytosines are protected. Subsequently,

microarray or next-generation sequencing of these libraries reveals the methylation status
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binding protein (e.g., MBD2) or 5-mC specific antibody (Fig. 10.2b). For

example, when performing methylated DNA immunoprecipitation (MeDIP)-

chip/-seq, genomic DNAs are first fragmented by sonication and then incubated

with anti-5mC antibody. The anti-5mC bound DNA fragments are isolated,

deproteinized, and then hybridized onto microarrays (MeDIP-chip) or analyzed

by next-generation sequencing (MeDIP-seq). The frequency of DNA fragments

bound to specific probes or mapped to specific genomic regions provides the raw

data from which DNA methylation levels can be inferred. The affinity-based

DNA methylation assays allow for rapid and efficient genome-wide assessment

of DNA methylation, however, as the affinity-captured DNA fragments are

generally hundreds of nucleotides in size, the major limitation of these methods

is its inability to pinpoint methylation changes at a single CpG resolution

(Robinson et al. 2010).

Table 10.1 Comparison of DNA methylation detection procedure

Advantages Disadvantages

Suitable

application Methods

Affinity-

based

enrichment

Rapid and efficient

genome-wide assess-

ment of DNA

methylation

Possibility of anti-

body cross-reactivity

Rapid, large

scale, low resolu-

tion study of

DNA methylation

MeDIP-

seq

Powerful tool for com-

prehensive profiling of

DNA methylation in

complex genomes

Resolution depends

on the fragment size

of the enriched

methylated DNA

MBD-

seq

Does not provide

single base pair

resolution

Bisulfite

conversion

Resolution at the nucle-

otide level

Often leads to dam-

aged DNA

High resolution

study of DNA

methylation at

small or large

scale

WGBS

Effectively converts an

epigenetic difference

into a genetic difference,

easily detectable by

sequencing

Potentially incom-

plete conversion of

DNA

RRBS

Cannot distinguish

5-mc and 5-hmc

Infinium

Whole genome

sequencing requires

intensive down-

stream analysis

Restriction

enzyme-

based

digestion

Easy to use Determination of

methylation status is

limited by the

enzyme recognition

site

Targeted, site

specific study of

DNA methylation

DMH

High enzyme turnover MSDK

Note: The table is modified from Ku et al. (2011)
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• Bisulfite Conversion: Bisulfite conversion of DNA is the most commonly used

method for DNA methylation studies. It uses bisulfite salt to deaminate cytosine

residues on single-stranded DNA, converting them to uracil while leaving

5-methylcytosine intact. Once a difference of methylation status is converted

into a difference of DNA sequence, it can be detected by various techniques

(Fig. 10.2c). Bisulfite sequencing applies routine DNA sequencing methods on

bisulfite-converted genomic DNA. It can provide quantitative methylation mea-

surement at single nucleotide resolution and is widely accepted as a gold

standard for DNA methylation analysis. Recent development of next-generation

sequencing technology makes it feasible to perform whole genome bisulfite

sequencing (WGBS) (Suzuki and Bird 2008). Though WGBS can provide a

comprehensive coverage of almost all CpGs in the human genome, its usage is

currently limited by its high cost. Thus, several more cost-effective bisulfite

conversion-based approaches, such as reduced representation bisulfite sequenc-

ing (RRBS) and Illumina 450 k array, are widely employed in the current

epigenomics research field. In RRBS, genomic DNA is digested by the

methylation-insensitive restriction enzyme MspI (50-C0CGG-30) and separated

by gel electrophoresis, and then size-selected DNA fragments are bisulfite

converted and analyzed by next-generation sequencing platforms (Meissner

et al. 2005). After the MspI digestion and size selection, CpG sites were enriched

in sequencing library that reduce the amount of nucleotides needed to be

sequenced.

10.2.1.2 Data Processing and Analysis

In this section, we will review the data processing approaches for three most

popular epigenome-wide DNA methylation profiling methods, namely, Illumina

450k array, RRBS and MeDIP-seq. We also discussed the approaches for data

visualization and identification of differential methylation in the following section.

Data Processing for Illumina 450k Array

The Illumina 450k array adapted BeadArray technology to recognize the bisulfite-

converted DNA for interrogation of DNA methylation. It offers a unique combina-

tion of comprehensive, expert-selected coverage, high sample throughput and an

affordable price, making it the most widely used method for current epigenome-

wide association studies (EWAS). The Illumina 450k array tests more than 485,000

CpGs at single-nucleotide resolution, which covers 99 % of RefSeq genes and 96 %

of CGIs (Bibikova et al. 2011). The data processing procedures for Illumina 450k

array contain several main steps, including quality control (QC), normalization,

adjustment of batch effect, and calculation of DNA methylation levels.
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– QC: The aim of this step is to detect and filter out samples and probes that do not

meet the experimental standard. The Illumina 450k arrays contain several

control probes for determining the data quality. Diagnostic plots of control

probes in Illumina Genome-Studio program can be used to detect poorly

performed samples (Bibikova et al. 2011). Assessing for poor quality samples

can also be carried out by functions embedded in several R-packages specifically

for analyzing Illumina 450k arrays, such as HumMethQCReport (Mancuso

et al. 2011), IMA (Wang et al. 2012), Minfi (Aryee et al. 2014) and MethyLumi

(Davis et al. 2012).

For QC of probes, some packages such as IMA (Wang et al. 2012) filter out

probes for which a large proportion of samples (i.e., >25 %) have a detection

P-value >0.05. LumiWCluster avoids to discard probes (Kuan et al. 2010),

instead it incorporates all the data while accounting for the quality of individual

observations. A particular issue for QC of 450k array is that certain probes

contain single nucleotide polymorphisms (SNPs) within the targeted sequences

and thus the methylation levels assessed by these probes may be influenced by

the DNA genotype (Dedeurwaerder et al. 2011). Hence, several programs (e.g.,

IMA) have incorporated functions to filter out these SNP-associated CpG probes

(Wang et al. 2012; Touleimat and Tost 2012).

– Normalization: Normalization step is used to remove technical and systematic

variation which could mask true biological differences. There are two types of

normalization approach: (1) between-array normalization: address the compa-

rability of intensity distribution between multiple arrays; (2) within-array nor-

malization: correction for dye, intensity and spatial dependent bias within

individual arrays (Siegmund 2011). The Illumina GenomeStudio uses a basic

normalization approach by treating the first sample in the array as the reference

but allows the user to reselect the reference sample if the first sample shows poor

quality. This approach is also implemented in R-package MethyLumi (Davis

et al. 2012) and Minfi (Aryee et al. 2014). Locally weighted scatterplot smooth-

ing (LOESS) and quantile normalization assume similar total methylation sig-

nals across samples and may potentially discard the true biological signals (Laird

2010). There also exist several other approaches for normalizing the probe

intensities (Marabita et al. 2013), but currently a lack of consensus exists

regarding to the optimal normalization algorithm.

• Adjustment of Batch Effect: Batch effects represent measurements that have

different behavior across conditions but are not related to the biological or

scientific questions in a study (i.e. experiment time, chip or instrument used

and laboratory conditions.). Some of the factors can be corrected by careful

study design, for example, equally splitting the cases and controls into different

batches by random sampling (Johnson et al. 2007) Other potential confounders

may be corrected by several computational methods. For example, R-packages

ComBat is a widely used adjustment method. It is based on empirical Bayes

procedure (Johnson et al. 2007) and is robust to outliers in small sample sizes

(Sun et al. 2011).
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– Calculation of DNA Methylation Levels: DNA methylation levels are deter-

mined based on the intensities of the fluorescence signals from probes. The main

output is the β-value and M-value which are ready for downstream statistical

analysis. The β-value is calculated with the intensity of signal from methylated

alleles (Max(M,0)) and the intensity of signal from unmethylated alleles (Max

(U,0)) by the following formula:

β ¼ Max M; 0ð Þ
Max M; 0ð Þ þMax U; 0ð Þ þ 100

The obtained β-value denotes the average methylation level for each CpG site.

It ranges from 0 (unmethylated) to 1 (fully methylated) on a continuous scale.

Alternative, some researchers use M-value to indicate the methylation level,

which is calculated as

M ¼ log2
Max M; 0ð Þ þ 1

Max U; 0ð Þ þ 1

The range of M-values is negative infinity to positive infinity, which is

consistent with data from normal distribution. However, the interpretation is of

M-values is not as intuitive as β-value. The relationship of M-values and β-value
is:

M ¼ log2
β

1 � β

Thus, positive M-values correspond to a methylation rate greater than 50 %,

while negative M-values indicate a methylation rate less than 50 %.

Data Processing for RRBS

Processing of RRBS data mainly involves two steps, QC and alignment of sequenc-

ing reads.

– QC: The raw sequencing reads are normally generated in the fastq format, which

records the sequence of nucleotides and their base call confidence levels. In

order to obtain high quality RRBS data, several technical details require careful

attention. For example, the incomplete bisulfite conversion will lead to spuri-

ously elevated DNA methylation levels. One should use spike-in control DNAs

with known DNA methylation levels to monitor the sensitivity and specificity of

bisulfite conversion. Alternatively, elevated levels of observed CpC methylation

can also provide an indication of incomplete bisulfite conversion because CpC

dinucleotides are rarely methylated in mammalian cells (Bock 2012). Some of

the QC steps for the RRBS data can be performed by QC tools (e.g., NGS QC
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toolkit) (Patel and Jain 2012) that are generally applicable to the next-generation

sequencing produced reads, while other QC criteria such as efficiency of bisulfite

conversion require QC tools that are dedicated to bisulfite sequencing, such as

BSeQC (Lin et al. 2013).

– Alignment: Because of the reduced sequence complexity of the bisulfite

converted sequence reads, alignment of bisulfite converted sequence reads to

the reference genome require specific alignment tools. Generally, the alignment

tools can be categorized into two groups: three-letter aligners and wild-card

aligners. Bismark (Krueger and Andrews 2011) and BS-Seeker (Chen

et al. 2010) are examples of three-letter aligners, which convert C to T in both

sequenced reads and reference sequences prior to alignment. In contrast, wild-

card aligners like BSMAP/RRBSMAP (Xi and Li 2009; Xi et al. 2012) replace

Cs in the sequenced reads with wild-card Y but do not need the reference

genome conversion step. Compare with whole-genome bisulfite alignment

tool, such as an extensively validated MAQ-based pipeline, these specific

aligners (e.g. RRBSMAP) could maintain high mapping accuracy and consis-

tency between replicates, and also significantly improve runtime performance

and memory efficiency (Xi et al. 2012).

– Calculation of DNA Methylation Signals: As unmethylated cytosines will be

converted to Ts by the bisulfite treatment and methylated cytosines will stay Cs,

absolute DNA methylation level could be calculate by counting the number of

Cs and Ts at each C and simply divide the number of Cs by the total number of

Cs and Ts.

Data Processing for MeDIP-Seq

In MeDIP-seq, the information of enrichment or depletion of extended sequencing

reads will be used to estimate the methylation level of specific regions in the

genome, the reads sequence itself does not provide methylation information. As a

result, specific data processing approaches are needed to estimate the DNA meth-

ylation levels from MeDIP-seq method.

– QC and alignment: similar to other sequencing-based methods, the first step in

the analysis of MeDIP-/MBD-seq is QC and alignment of sequencing reads to

the reference genome, which can be conducted by using a standard quality

control program and aligner, such as Bowtie2 (http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml) and BWA (Li and Durbin 2009).

– Estimation of DNA methylation levels: after alignment, the unique mapped

reads are then extended to MeDIP-enriched DNA fragment size, the DNA

sequence of each chromosome is divided into a series of certain base pair intervals

(e.g. 50bp), and the extended reads in each interval are counted as the methylation

signal in this region. These estimated DNA methylation signal can be confounded

by varying density of methylated CpG sites. That is, regions with high CpG

densities can give rise to high enrichment scores even with low absolute DNA
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methylation levels and low CpG density regions can produce low enrichment

scores even with high levels of DNA methylation. Down et al. developed the tool

BATMAN which applies a Bayesian method to estimate absolute methylation

values from MeDIP-chip or MeDIP-seq data (Down et al. 2008). It provides

accurate estimations of methylation value, however it is not especially user-

friendly and is quite a computationally technical process. Another tool is R

package MEDIPS, it is a comprehensive approach for normalizing and analyzing

MeDIP-seq data (Chavez et al. 2010). This method is based on the valuable

concept of coupling factors presented by BATMAN (Down et al. 2008). MEDIPS

incorporates a statistical frame work developed for count data which models the

read number by an overdispersed Poisson model. This method could significantly

reduce run time for processing MeDIP-seq data and easy to use.

10.2.1.3 Identifying Differentially Methylated Regions (DMRs)

In clinical study (e.g. case and control study), it is crucial important to identify the

DMRs between different experimental condition. There are several different types

of DMR, such as tissue-specific DMR and aging-specific DMR (Rakyan

et al. 2011). According to DNA methylation profiling methods we use, these

DMR can be a single CpG site or a region of interest (e.g. promoters, CGIs). The

Student’s t-test and Wilcoxon rank sum test can be used to identify DMRs by using

the normalized methylation signal between two groups. Bock, C (Bock 2012) well

summarized several other advanced methods which aim to improve DMR detection

(e.g. mixture models (Wang 2011), stratification of t-test (Chen et al. 2012) and

point out it is difficult to predict which methods will work best for real-world DNA

methylation data sets. There are several different tools used for identification of

DMRs. For Illumina 450k array, most commonly used tools including R package

IMA (Wang et al. 2012) and Minfi (Aryee et al. 2014) etc. The IMA (Wang

et al. 2012) apply Student’s t-test and empirical Bayes statistics, it allows identifi-

cation of DMRs in both single CpG sites and regions of interest. For regions of

interest differential methylation analysis, IMA will compute the mean, median or

Tukey’s biweight robust average for the loci within that region and create an index.
limma uses an empirical Bayes moderated t-test to improve power in small sample

sizes. M-values should be used in these cases as they will rely much more heavily

on the assumption of normality. Minfi (Aryee et al. 2014) uses an F-test or linear

regression to test each genomic position for association between methylation and

categorical or continuous phenotype, respectively. R package methylKit (Akalin

et al. 2012) is most commonly used tools for RRBS data analysis. It applies a t-test

or logistic regression to calculate p-values which are adjusted to q-values for

multiple test correction. For MeDIP-seq data, R package MEDIPS is sufficiently

fast and could be practical for routine processing of MeDIP–seq (Bock 2012).

Importantly, we need to concern the issue of correction multiple hypothesis testing

since the tests for differential DNA methylation are performed simultaneously at a

large number of genomic loci.
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10.2.2 Epigenome-Wide Histone Modification Analysis

10.2.2.1 Histone Modification Profiling Assays

Methods for epigenome-wide analysis of histone modification marks rely heavily

on a procedure called chromatin immunoprecipitation (ChIP). The basic steps of

ChIP includes: (1) Crosslink DNA and associated proteins on chromatin in cells;

(2) Sonicate the DNA-protein complexes into ~500 bp fragments; (3) Immuno-

precipitate DNA fragments using specific antibody against the particular histone

mark; (4) Purify the immunoprecipitated DNA fragments and subsequently

analyze by microarrays (ChIP-chip) or sequencing (ChIP-seq) (Fig. 10.3).

To control for the effects of non-specific bindings, nonspecific immunoglobulin

G (IgG) antibodies and input chromatin have been commonly used as controls

(Kidder et al. 2011). Regions showing enrichment of ChIP products over controls

represent DNA sequences where the specific histone modification marks are

associated with in vivo. In addition to histone modification marks, the ChIP-

chip/-seq methods can also be used to map global binding sites for specific

transcription factors, RNA polymerases, or in principle any DNA-associated

proteins.

10.2.2.2 Data Processing and Analysis

Using standard QC and alignment programs, the high quality sequencing reads

from ChIP-seq data can be selected and mapped to the reference genome. The

aligned reads are then used to identify regions of increased read tag density relative

to the background estimated from the IgG/input controls. One straightforward

approach is simply to use a minimum fold enrichment threshold of ChIP tags

over normalized control tags in candidate regions/tiling windows. However, any

threshold is arbitrary and prone to error, this approach does little to assist the user in

assessing the significance of peaks (Wilbanks and Facciotti 2010). More sophisti-

cated statistical approaches have been incorporated to identify and assess the

significance of putative peaks (Pepke et al. 2009). So far, over 40 different ‘peak
calling’ programs have been developed under a variety of statistical models, such as

Poisson, local Poisson, t-distribution, conditional binomial, and hidden Markov

models. Though a few studies attempted to compare the performance of some of

these peak calling programs (Wilbanks and Facciotti 2010; Micsinai et al. 2012),

there does not appear to be a clear winner and many program have multiple

parameters that can be adjusted by the user. As using different programs or different

parameter settings can significantly affect the final peak lists, care must be taken

that data sets that are to be compared must be analyzed using the same methods and

settings.
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10.2.3 Epigenomic Data Visualization and Interpretation

Visualization of DNA methylation data (e.g. MeDIP-seq, RRBS) and histone

modification (ChIP-seq) data is incredibly important. It enables you to investigate

the data and may help you come up with new ideas about how to analyze the data.

The ability to visualize these kinds of data is enabled through the use of some

popular genome browsers, such as UCSC Genome Browser (Kent et al. 2002) and

Integrative Genome Viewer (IGV) (Robinson et al. 2011). UCSC Genome Browser

Fig. 10.3 Workflow for ChIP-chip and ChIP-seq. DNA and associated proteins are crosslinked

and sheared into ~500 bp DNA fragments by sonication or nuclease digestion, DNA fragments

associated with the histone mark of interest are selectively immunoprecipitated using an antibody

specifically against the particular histone mark. Purified DNA can be analyzed by microarrays

(ChIP-chip) or sequencing (ChIP-seq)
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includes lots of published studies and ENCODE data, it is useful for data integration

and visualization. However, the data files need to be uploaded to this web-based

genome browser which makes a little more difficult to upload large custom data

sets. IGV is Java based genome browser. It runs locally on your own computer. It

does not have the same degree of public available data as UCSC genome browser,

but tend to be somewhat faster for browsing across the genome. Also, it is better for

looking at individual reads. There are several types of file format, such as BED,

Wiggle and bedGraph format. BED files are very basic as they simply describe a

region in the genome. They are usually used to describe MeDIP-seq and ChIP-Seq

peaks. Nearly every genome browser supports visualization of BED files. Wiggle

files are used to display quantitative information across genomic regions. Wiggle

format is compact and displays data at regular intervals. Similar to Wiggle format,

bedGraph use variable length intervals instead of constant intervals found in wiggle

files, and are usually a little bigger in size. There are a bunch of specialized

programs for creating genome browser files, such as bedToBigBed (https://www.

encodeproject.org/software/bedToBigBed/) and igvtools (https://www.

broadinstitute.org/igv/igvtools).

Several bioinformatics tools were used to interpret biological meaning from

epigenomic data results. For example, EpiExplorer (Halachev et al. 2012)

empowers biologists to explore large epigenome datasets in real time and over

the Internet. It facilitates interactive hypothesis generation and identification of

candidates for experimental follow-up. Cytoscape (Shannon et al. 2003) is an open

source software platform for visualizing molecular interaction networks and bio-

logical pathways and integrating these networks with annotations, gene expression

profiles and other state data. DAVID (da Huang et al. 2009) provides a compre-

hensive set of functional annotation tools for investigators to understand biological

meaning behind large list of genes.

10.3 Epigenomics of Human Diseases

With the advent of new technologies we are starting to unravel the epigenomic

mechanisms underlying a diverse range of human disorders, such as cancer and

autoimmune diseases. A comprehensive understanding of epigenetic mechanisms,

their interactions and alterations in human disease, has become a priority in clinical

research (Portela and Esteller 2010).

10.3.1 Epigenomics of Cancer

Diverse altered DNAmethylation patterns have been implicated in the pathogenesis

and metastasis of various cancers. Genome-wide hypomethylation has been

revealed in several common cancer types, such as stomach, liver and lung cancers
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(Kulis and Esteller 2010) DNA hypomethylation occurs mostly at DNA-repetitive

regions resulting in activation of genes with growth and tumor promoting functions

and loss of genome stability and imprinting (Esteller 2008). A clear case is the long

interspersed nuclear element (LINE) family member LINE1. Many studies have

support correlations between LINE1 hypomethylation and increased risk of cancer

(Barchitta et al. 2014). For example, hypomethylation of a specific LINE-1 pro-

moter was found to induce an alternate transcript of the MET oncogene in bladder

tumors and across the entire urothelium of tumor-bearing bladders (Wolff

et al. 2010). A high degree of LINE-1 hypomethylation is a unique feature of

early-onset colorectal cancer (Antelo et al. 2012; Ogino et al. 2013), and

hypomethylation of LINE-1 in primary tumor has been associated with poor

prognosis and survival in young breast cancer patients (van Hoesel et al. 2012)

and prominent hypomethylation of Alu and LINE-1 in HER2 enriched subtype may

be related to chromosomal instability (Park et al. 2014). In addition to the effects on

repetitive elements, promoter hypomethylation can activate the aberrant expression

of oncogenes and result in loss of imprinting in some loci (Portela and Esteller

2010). For instance, loss of imprinting of IGF2 gene has been associated with an

increased risk of different types of cancer (Lim and Maher 2010). Recent study also

shows that hypomethylation in TP73 and TERT gene body alter the transcriptional

landscape of growth rate of glioblastoma through the activation of a limited number

of normally silenced promoters within gene bodies, result in activating the aberrant

expression of an oncogenic protein (Nagarajan et al. 2014). Hypermethylation at

the CGIs of certain promoters causing transcriptional silencing of tumor suppressor

gene were also observed. The transcriptional silencing caused by promoter

hypermethylation affects genes involved in the multiple cellular pathways (Portela

and Esteller 2010), such as DNA repair (e.g., MGMT, MLH1, MSH2, GSTP1), Ras

signaling (e.g., DAPK, NOREIA, RASSFIA, RECK) etc. (Esteller 2007). For

example, hypermethylation at CGI of MLH1 gene is reported in the majority of

sporadic primary colorectal cancers with microsatellite instability, and that this

methylation was often associated with loss of MLH1 protein expression (Herman

et al. 1998).

Another epigenomic hallmark of cancer is the aberrant patterns of histone

modifications. Epigenome-wide studies have characterized the overall profiles of

various histone modification marks in cancer cells. For example, there is a global

loss in H4K16ac in nearly all human cancer cell lines (Fraga et al. 2005b). Loss of

acetylation is mediated by HDACs, which have been found to be overexpressed

(Zhu et al. 2004) or mutated (Ropero et al. 2006) in different tumor types. Two

different studies reported that global levels of H4K12ac and H3K18ac increased in

adenocarcinomas in respect to normal tissue or adenoma (Ashktorab et al. 2009;

Nakazawa et al. 2012). Cancer cells also bear global alterations of several histone

methylation marks, such as a global loss of the active mark H3K4me3 (Hamamoto

et al. 2004), and the repressive mark H4K20me3 (Fraga et al. 2005b), as well as a

gain in the repressive marks H3K9me (Kondo et al. 2007) and H3K27me3 (Vire

et al. 2006; Muller-Tidow et al. 2010).
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Alterations of histone methylation marks in cancer cells are mainly due to the

aberrant expression of both HMTs and histone demethylases (Chi et al. 2010). Gillian

et al. reported the inactivating mutations in two genes encoding enzymes involved in

histone modification: SETD2 gene (H3K36 methyltransferase) and JARID1C genes

(H3K4 demethylase) in renal carcinomas (Dalgliesh et al. 2010). EZH2 gene (H3K27

methyltransferase) was reported overexpressed in several cancer types and enhances

proliferation and neoplastic transformation (Kleer et al. 2003; Raman et al. 2005;

Rhodes et al. 2004). NSD1, another HMT (H3K36 and H4K20), has been reported to

undergo promoter DNA methylation-dependent silencing in neuroblastomas

(Berdasco et al. 2009). H3K79 methyltransferase DOT1L is essential for develop-

ment and maintenance the mixed lineage leukaemia. The presence of DOT1L results

in H3K79 hypermethylation, which induces aberrant gene expression and contributes

to leukemic transformation (Okada et al. 2006).

10.3.2 Epigenomics of Autoimmune Diseases

DNA methylation alteration has been increasingly associated with several autoim-

mune diseases in recent years; for which most studies focus on systemic autoim-

mune rheumatic diseases like systemic lupus erythematosus (SLE) and rheumatoid

arthritis (RA). SLE is characterized by autoantibody response to nuclear and/or

cytoplasmic antigens. Several studies have shown that there is a global

hypomethylation of promoter regions, which drive the genes that are overexpressed

in the disease such as PRF1, CD70, CD154, IFGNR2, MMP14, LCN2, CSF3R and

AIM2 genes, and also in the ribosomal RNA gene promoter (18S and 28S) (Portela

and Esteller 2010; Ballestar 2011). This global loss of methylation has been

attributed to induce the activation of endogenous retroviruses such that they erase

imprinting signals and deregulate gene expression and consequently break immune

tolerance for active flaring of the disease (Okada et al. 2002). The hypomethylation

in SLE may be partially mediated by miR-21 and miR-148a that directly and

indirectly target DNMT1 (Pan et al. 2010; Zhu et al. 2011). RA is a chronic

inflammatory disease that largely affects peripheral joints by invasive synovial

fibroblasts. Global changes in DNA methylation measured in fibroblast like

synoviocytes showed distinct methylation profiles of RA patients, particularly in

genes with key roles in inflammation, immune responses and matrix deconvolution.

Hypomethylated loci were identified in key genes relevant to RA, such as CHI3L1,

CASP1, STAT3, MAP3K5, MEFV and WISP3. Hypermethylation was also

observed at some RA related genes, including TGFBR2 and FOXO1. Differentially

methylated genes could alter fibroblast like synoviocytes gene expression and

contribute to the pathogenesis of RA. Histone modification studies in human

autoimmune diseases have found that during apoptosis, histones can be modified

to make them immunogenic. Hypoacetylated histones H3 and H4 and H3K9

hypomethylation in CD4+ T cells were found to be a characteristic feature of SLE

patients (Hu et al. 2008). In RA, the reduced activity of HDACs plays a key role in

regulating NF-κB–mediated gene expression (Huber et al. 2007).
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10.4 Discussion and Perspectives

Advances in technological development have enabled epigenomic analysis on a

large scale. Remarkably, several international projects and consortia (Table 10.2)

have been formed to comprehensively characterize epigenome-wide DNA methyl-

ation, histone modification, and other epigenetic profiles in healthy and disease

tissues, such as the Encyclopedia of DNA Elements (ENCODE) Project (Consor-

tium 2012), the Cancer Genome Atlas (TCGA) (TCGA. The Cancer Genome Atlas.

http://cancergenome.nih.gov/) and the NIH Roadmap Epigenomics Project (The

NIH Roadmap Epigenomics Project, http://www.epigenomebrowser.org/).

Although the number of epigenomic studies has grown exponentially in recent

years, several issues need to be carefully considered when planning and interpre-

tation of such studies. First, disease-associated epigenetic variation is likely to be

cell-/tissue-specific. For studies using heterogeneous cell/tissue samples

(e. g. blood, tumor), detection of differential DNA methylation or histone modifi-

cation profiles is a problem of validity: molecular profile variation and changes in

cell type proportions between tissue samples are confounded (Jacobsen et al. 2006;

Jaffe and Irizarry 2014). If the disease-associated variation is restricted to a certain

cell type that represents only a small proportion of the tissue sampled, then the

Table 10.2 Large-scale national and international epigenomic consortia

Project name

Start

date Affiliations Data contributions Access data

The Encyclopedia

of DNA Elements

(ENCODE)

Project

2003 NIH ChIP-seq, RNA-seq, DNase-

seq, shRNA knockdown

followed by RNA-seq, RRBS,

shotgun bisulfite-seq assay,

DNA methylation profiling by

array assay etc.in more than

200 of primary human tissues

and cell lines

http://

encodeproject.org/

The Cancer

Genome Atlas

(TCGA)

2006 NIH Matched tumor and normal

tissues from 11,000 patients,

allowing for the comprehen-

sive characterization of

33 cancer types and subtypes,

including 10 rare cancers

http://

cancergenome.nih.

gov/

Roadmap

Epigenomics

Project

2008 NIH Bisulfite-seq, MeDIP-seq,

MRE-seq, RRBS, DNasel,

smRNA-seq, ChIP-seq etc. in

more than 160s of normal pri-

mary cells, hESC, and hESC

derived cells

http://www.

epigenomebrowser.

org/

International

Cancer Genome

Consortium

(ICGC)

2008 17 coun-

tries,

includes

TCGA

DNA methylation profiles in

thousands of patient samples

from 31 tumor types

https://icgc.org/
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variation may not be detected in the whole tissue (Jaffe and Irizarry 2014). Purified

samples consisting only of a single cell type are preferable to mixed cell samples.

Second, the complex system of the human body has many research areas, including

genomics, epigenomics, transcriptomics, proteomics and metabolomics. Each

research area provides insight into the system, but the entire complex of “omics”

research offers more comprehensive insights. As costs of analysis of a human

genome have dramatically plummeted, data integration is now a very commonly

used notion. Integration between different epigenetic mechanisms and with other

omics disciplines becomes easier and necessary for clinical research. For clinicians

with access to omics data, being able to understand and appropriate interpret the

data will become a key requirement for patient care. Along with the recent

advancement in epigenetic drugs, there is a great potential for personalized epige-

netic treatment of many human diseases in the near future.
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Chapter 11

Integrative Biological Databases

Jinzeng Wang and Haiyun Wang

Abstract High throughput biotechnology brought an increasing number of the

omics data across the species, making it possible to understand the genomic and

genetic information in a systematic way. In this chapter, we introduce some

valuable biological knowledgebase, covering the integrative aspects of the pathway

structures, the molecular functions, macromolecular structures, molecular interac-

tions, and so on. Moreover, a list of these databases is summarized in a table at the

end of this chapter for a quick review.

Keywords Integrative databases • KEGG pathways • The gene ontology •

Functional annotation • Molecular interactions

11.1 Introduction

The Human Genome Project (HGP) and the novel high throughput technology

brought an increasing number of the omics data across the species, making it

possible to understand the genomic and genetic information in a systematic way.

As a new subject, Bioinformatics develops quickly in a few of decades along with

the development of omics technologies. Bioinformatics develops algorithms, com-

putational and statistical models, as well as some biological databases, to support

the integrative research on biology and medicine. This chapter is aimed to introduce

some integrative biological databases, which provides the detailed information of

the pathway structures, the molecular functions, three-dimensional structures of

macro-molecules, molecular interactions, and so on. These databases are listed in

the following and take a comprehensive summary finally:

(1) Kyoto Encyclopedia of Genes and Genomes (KEGG)

(2) Gene ontology (GO)

(3) Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)

(4) RCSB Protein Data Bank

(5) Other related databases for pathway and network
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11.2 Kyoto Encyclopedia of Genes and Genomes (KEGG)

KEGG is an integrative knowledgebase for systematic analysis of genomes, bio-

logical pathways, diseases, drugs and chemical substances. As part of Japanese

Human Genome Program, it was developed in 1995 by Prof. Minoru Kanehisa at

the Institute for Chemical Research, Kyoto University (Kanehisa and Coto 2000).

KEGG (http://www.kegg.jp) currently consists of 17 main databases that cover four

kinds of information including systems information, genomic information, chem-

ical information and health information (Kanehisa et al. 2014) for understanding

high-level functions and the biological system (Table 11.1).

KEGG PATHWAY is the most popular database in KEGG. The most unique

feature in this database is the molecular networks—molecular interaction, reaction

and relation networks interpreting systemic functions of the cell and the organism.

Knowledge about the systemic mechanisms is manually collected and presented in

the form called Pathway Map. Pathway Map is organized into a hierarchical

structure from seven different aspects that cover the knowledge of metabolism,

genetic information processing, environmental information processing, cellular

processes, organismal systems, human diseases and drug development. Take a

specific cancer type, non-small cell lung cancer (NSCLC) for example (Fig. 11.1).

Table 11.1 The overview of KEGG resource as of 2015/9/1

Category Database Content Statistics

Systems

information

KEGG PATHWAY Pathway maps, reference (total) 477 (413,441)

KEGG BRITE Functional hierarchies, reference

(total)

210 (141,124)

KEGG MODULE KEGG modules, reference (total) 710 (334,424)

Genomic

information

KEGG

ORTHOLOGY

KEGG Orthology (KO) groups 18,963

KEGG GENOME KEGG organisms with complete

genomes

4029

KEGG GENES Genes catalogs of complete genomes 17,735,547

KEGG SSDB Sequence similarity database for

GENES

104,942,041,227

Chemical

information

KEGG

COMPOUND

Metabolites and other small molecules 17,458

KEGG GLYCAN Glycans 10,989

KEGG REACTION Biochemical reactions 9925

KEGG RPAIR Reactant pair chemical

transformations

15,074

KEGG RCLASS Reaction class 2980

KEGG ENZYME Enzyme nomenclature 6510

Health

information

KEGG DISEASE Human diseases 1430

KEGG DRUG Drugs 10,304

KEGG DGROUP Drug groups 1818

KEGG ENVIRON Crude drugs and health-related

substances

850

http://www.kegg.jp/kegg/docs/statistics.html
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NSCLC accounts for about 85 % of lung cancer, which is a leading cancer death

among both men and women. Molecular mechanisms of alteration in NSCLC

include activation of oncogenes K-RAS and EML4-ALK, and inactivation of

tumor suppressor genes p53, RAR-beta, and RASSF1. A pathway basically consists

of nodes (genes, proteins and other small molecules) and edges (relations, interac-

tions and reactions). The notation of various kinds of nodes and edges is shown in

Fig. 11.2.

In contrast to KEGG PATHWAY, which is limited to molecular interactions and

reactions, KEGG BRITE provides many different types of relationships. It is a

collection of hierarchical classifications representing knowledge on various aspects

of biological systems. Thus, the genomic and molecular data of KEGG BRITE

supplements the KEGG PATHWAY for inferring high-order functions.

The databases in the chemical information category, named KEGG LIGAND,

are organized by capturing knowledge of the chemical network. Currently, KEGG

LIGAND consists of six databases: KEGG COMPOUND for metabolites and other
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small molecules, KEGG GLYCAN for glycans, KEGG REACTION for chemical

reactions, KEGG RPAIR for reactant pair alignments, RCLASS for reaction classes

defined by RPAIR and KEGG ENZYME for reactions in the enzyme nomenclature

(Goto et al. 1999; Hashimoto et al. 2006; Muto et al. 2013).

In the health category of KEGG, there are two main kinds of information:

disease and drug. Diseases are viewed as perturbed states of the biological system

caused by perturbations of genetic or environmental factors while drugs are viewed

as different types of perturbants. The KEGG DISEASE database incorporates

known genetic and environmental factors of diseases and the KEGG DRUG

database covers active ingredients of approved drugs in Japan, USA, and Europe

based on the chemical structures and chemical components, and associated targets,

metabolic enzymes, and other molecular interaction network information

(Kanehisa et al. 2010).

11.3 Gene Ontology (GO)

The GO (The Gene Ontology Consortium 2008, 2015; Ashburner et al. 2000)

project is aimed at providing detailed descriptions of gene and gene products in

cells across different organisms using dynamic, controlled vocabularies. To achieve

this goal, it has developed three basic ontologies that represent gene or protein

attributes. They are categorized into cellular component, molecular function and

biological process, respectively. To date, the GO (http://geneontology.org) project

has developed formal ontologies that represent over 40,000 biological concepts,

and are continually being revised to reflect new discoveries.

Cellular component is defined as the location in which proteins or other gene

products perform their function in cell, such as mitochondria or nucleus. It also

incorporates places like plasma membrane. Molecular function refers to the bio-

logical and chemical activities of gene products. It does not specify where, when or

in what context the action occurs but describes accurately what is done. Generally,

the molecular function term is defined as the activities that can be carried out by

individual gene products, while they can also performed by assembled complex of

gene products. The activities, like “binding activity” or “transporter activity”, are

broad functional terms and examples of more specifically molecular function terms

are “Toll receptor binding” or “adenylate cyclase activity”. Biological process is

termed as a series of affairs or molecular functions executed by one or more

organized gene products. Similarly, it contains broad biological terms like “cell

growth” and narrower biological terms such as “alpha-glucoside transpot” or

“cAMP biosynthesis”.

The structure of GO can be described in a diagram, where each GO term is

represented as a node while the relations between the terms are shown using edges

between the nodes. It must be noted that GO is loosely hierarchical, since a child

term may have more than one parent term. Terms are mainly linked by three

relationships: “is-a”, “part-of”, and “regulates”.

11 Integrative Biological Databases 299

http://geneontology.org/


Typically, an ontology term has the essential elements (Fig. 11.3) with the “cell

growth” as an example. Each term in the ontology has a term name and a unique

seven digital identifier, which is called term accession number. The namespace

indicates which of the three ontologies (cellular component, molecular function or

biological) it belongs to. The definition describes what the term represents while the

subset denotes the term belongs to an assigned subset of terms. Terms may also

have synonyms, which are related to the term name in meaning. The scopes for GO

synonyms are exact (an exact equivalent with the term name), broad (the synonym

is broader than the term name), narrow (the synonym is narrower or more specific

than the term name) and related (relevant to the term name in some cases). Each

term in the ontology has defined relationships with one or more other terms, like

is_a or part_of.

Along with the GO project, the GO Consortium developed two major tools:

AmiGO and OBO-Edit. AmiGO (Carbon et al. 2008) is a web application that

allows users to query, browse and visualize ontologies and gene or gene product

annotation data. In addition, there are 4 other functionalities within AmiGO:

BLAST, Term Enrichment, GO Slimmer and GO Online SQL Environment

(GOOSE). AmiGO can be now freely used online at the Gene Ontology

(GO) website to access the data provided by the GO Consortium; it can also be

downloaded and installed to browse local ontologies and annotations. OBO-Edit

(Day-Richter et al. 2007) is an open source, platform-independent ontology editor

developed and maintained by the Gene Ontology Consortium. Based on Java,

OBO-Edit uses a graph-oriented approach to display and edit ontologies. It incor-

porates a comprehensive search and filter interface for viewing and editing bio-

chemical ontologies.

Fig. 11.3 A GO term named cell growth from Gene Ontology (http://amigo.geneontology.org/

amigo/term/GO:0016049)
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11.4 Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING)

STRING (Snel et al. 2000; Jensen et al. 2009) is a web-based database that provides

known and predicted protein interactions. The interactions include direct (physical)

and indirect (functional) relationships and they are derived from four sources,

including genomic context, high-throughput experiments, co-expression and public

text mining. Currently, SRTING version 10 contains 9,643,763 proteins from 2031

organisms (Szklarczyk et al. 2015).

Protein-protein interaction network is of quite importance for better understand-

ing the systemic cellular processes. STRING can be used for searching and viewing

structural, functional and evolutionary properties of genes/proteins with intuitive

platforms. Users can freely access the database with its online website (http://string-

db.org) by inputting a protein name or ID. Alternatively, clicking on the other tabs,

users can query by amino acid sequence, multiple names or multiple sequences. The

organism can be specified by entering the name inside the relative input area. Take

trpA in Escherichia coli K12MG1655 for example (Fig. 11.4). It firstly provides the

network view of the protein in which you are interested. The nodes in network

denote proteins and the edges represent the predicted functional associations.

Different colors indicate the evidence used to predict the interactions. The predicted

associations for the input protein are also displayed in a summary view located

below the view of the network. The input is shown at the top of the summary in red

while the predicted interactions are shown just below, sorted by score. Users can

view the data from different aspects by clicking the navigation buttons following

the summary view. More detailed information about the protein or the prediction

method scores can be attained via clicking on hyperlinks on the output web page.

The Info & Parameters panel at the bottom of the web page (Fig. 11.5) can be

reset for preference, such as the prediction methods or confidence score.

11.5 RCSB Protein Data Bank

The Worldwide Protein Data Bank (wwPDB, http://www.wwpdb.org) is an orga-

nization that maintains the archive of macromolecular structure (Berman

et al. 2003). As a member of wwPDB, RCSB Protein Data Bank (Berman

et al. 2000; Rose et al. 2015) is a key database of structural biology that maintains

the information for three-dimensional structural data of proteins, nucleic acids, and

complex assemblies, which is for researchers to better understand structural,

molecular and other aspects of biology. The data, mainly acquired by Nuclear

magnetic resonance (NMR) Spectroscopy, X-ray crystallography or electron

microscopy and submitted by biologists and biochemists from all over the world,

are freely accessed via its online website (http://www.rcsb.org).
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At present, RCSB PDB covers 110,988 released entries across different species,

such as Home sapiens, Escherichia coil, Mus musculus and so on. More detailed

summary of RCSB PDB can be viewed through PDB Statistics Page (http://www.

rcsb.org/pdb/static.do?p¼general_information/pdb_statistics/index.html). Cur-

rently, users can access the RCSB PDB conveniently and search protein related

information by various options (Fig. 11.6). Search categories can be PDB ID or

name, sequence, structure annotation or features, chemical components, experi-

mental methods, drug & drug targets and so on. Such queries can be also combined

with AND or OR to perform complex searches.

Another important function of RCSB PDB is that users can visualize the

structure, sequence and ligand binding of proteins or genes by different queries

listed above. Meanwhile, RCSB PDB can do certain analysis for proteins, like

structure quality, protein symmetry and sequence & structure alignment. Finally,

researchers can download protein related data, which they are interested in.

In conclusion, RCSB PDB is a comprehensive protein resource, which holds

detailed and various kinds of protein information.

Fig. 11.4 The output web page of STRING (http://string-db.org/newstring_cgi/show_network_

section.pl) by querying trpA in Escherichia coli K12 MG1655
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11.6 Other Related Databases for Pathway and Networks

Other important tools or databases concerning pathways or networks are further

summarized (Table 11.2).

The Database for Annotation, Visualization and Integrated Discovery (DAVID)

(Huang et al. 2009a, b) now can provide a comprehensive set of functional annotation

tools for understanding the biological function of a set of genes. For a given list,

investigators can use DAVID (https://david.ncifcrf.gov) to identify enriched

Fig. 11.5 The dialog box for parameters setting in STRING

Fig. 11.6 The online search page of RCSB PDB (http://www.rcsb.org/pdb/home/home.

do#Category-search)
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biological terms, discover enriched functional-related gene groups, cluster redundant

annotation terms and more can be done with DAVID. National Cancer Institute/

Pathway Interaction Database (NCI/PID, http://pid.nci.nih.gov) (Schaefer et al. 2009)

is aimed at offering a highly structured, curated collection of information about

known bio-molecular associations and key cellular processes. REACTOME (Joshi-

Tope et al. 2004; Croft et al. 2010, 2014) provides an intuitive website (http://www.

reactome.org) to navigate pathway knowledge and a series of data analysis tools to

support the pathway-based analysis of complex experimental and computational data

sets. The Pharmacogenomics Knowledgebase (PharmGKB) (Whirl-Carreillo

et al. 2012) is a comprehensive database (https://www.pharmgkb.org) that covers

knowledge about the impact of genetic variation on drug response and resistance for

researchers and clinical therapists. It is a pharmacogenomics resource that includes

clinical information, like drug labels, gene-drug involved pathways and genotype-

phenotype associations. Pathway Commons (Cerami et al. 2011) is a network

knowledge base (http://www.pathwaycommons.org) for biological pathway informa-

tion collected from public pathway databases, which can be used to query, visualize

and download. The Signaling Gateway (Dinasarapu et al. 2011) developed by UCSD

(http://www.signalling-gateway.org) provides the essential information for more than

thousands of proteins involved in cellular signaling, which depicts the biological

activity, regulation and localization of proteins. Most importantly, all these data and

software mentioned above are freely available for researchers.

11.7 Conclusion

Elucidating the complexities of biological pathways and protein-protein interaction

is of immense importance to gain understanding the mechanism and what is the

optimal treatment strategy of various diseases for investigators and clinicians.

Undoubtedly, each existing database has its merits for particular objectives and

the developed resources may overlap with each other in certain conditions for

Table 11.2 Other databases for pathway and networks

Name Description Url

DAVID Database for annotation, visualization and

integrated discovery

http://david.abcc.ncifcrf.

gov

NCI/PID National cancer institute/pathway interaction

databases

http://pid.nci.nih.gov

REACTOME An open, curated and peer-reviewed pathway

database

http://www.reactome.

org

PharmGKB Pharmacogenomics knowledgebase http://www.pharmgkb.

org

Pathway Common A network resource for biological pathway

information

http://www.

pathwaycommons.org

SIGNALING

GATEWAY

Biological activity, regulation and localization

for proteins

http://www.signalling-

gateway.org
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querying and analyzing biological data. Nevertheless, it is quite crucial for us to

know when we should utilize one or more of these databases, and which is the best

choice for biochemical research and clinical guidance.

To direct the database users, a good summary with detailed descriptions and

spectrums of the existing pathway and interaction databases is definitely required.

For systematically understanding the pathways involved in cellular processes or

organismal systems, KEGG and REACTOME are strongly recommended. KEGG

can be also used to view the pathways related to human diseases, like infectious

illnesses, various cancer types. If you are only interested in signal pathway, the

Signaling Gateway and NCI/PID are feasible too. To acquire a comprehensive

knowledge about genes or gene products, Gene Ontology is absolutely preferred.

Moreover, GO and DAVID databases can be also applied to analyze gene set

enrichment. Whereas, for understanding the sequence and structure of proteins,

like 3D shapes and protein symmetry, RCSB PDB is better than GO. STRING and

Pathway Commons are of great importance to help us investigate the protein

interactions and involved pathways related to our favorite proteins. To study the

associations of drug and disease, PharmGKB and KEGG Drug database are pri-

marily suggested.

It must be acknowledged that these resources listed above may have other

distinct features and functions that are not described in detail. In addition, due to

the space constrain in this chapter, we are not able to cover other different but also

important types of databases. However, the contents of this chapter will surely give

you a comprehensive and comparative review of existing biological databases,

especially for systematic pathways and molecule interactions or associations.
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Chapter 12

Standards and Regulations for (Bio)Medical
Software

J€org Schr€ottner, Robert Neubauer, and Christian Baumgartner

Abstract This chapter provides an introduction to the basic legal regulations and

harmonized standards for the development and release of biomedical software,

which is treated by law as a medical product. The authors will primarily focus on

the regulations and recommendations within the European Union, and also delin-

eate and discuss the legal situation exemplarily in selected countries such as the

United States, Canada and Australia. In summary, this survey will provide a

guideline for researchers and practitioners dealing with software development as

a medical product according to the Medical Devices Act.

Keywords Medical software • Development • Risk management • Harmonized

standards • Classification

12.1 Introduction

In the year 1993, when the Medical Device Directive (MDD 93/42 EWG) was

published in the European Union, software played a minor role in (bio)medical

devices and applications, and was most commonly used for driving display units or

simple device functions. At that time it was the objective of the medical device

directive to take care of medical device safety generally, based on hardware

construction. How to deal with medical software, in particular stand-alone soft-

ware, was not sufficiently considered in the directive. This situation has changed

essentially. Today (bio)medical software is a central tool in biomedical engineering

and computer science, and plays a major role in any aspects of healthcare and

patient management. In 2007 the European Commission revised the medical device

directive and stated that “It is necessary to clarify that software in its own right,
when specifically intended by the manufacturer to be used for one or more of the
medical purposes set out in the definition of a medical device, is a medical device.”
(Directive 2007/47/EC; 2007). Its importance is almost overtaking the status of

hardware, even in special cases, when bio(medical) software is used for diagnosis,
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monitoring or safety-relevant purposes. As a consequence software is an important

source of errors and adverse events in medical devices that should not be

underestimated in the clinical application. Therefore an accurate procedure for

the design and development of (bio)-medical software is crucial.

12.2 Legal Regulations and Harmonized Standards

The EC has published three directives that build the basis upon which medical

devices provide patients, users and third parties with a high level of protection and

attain the performance levels attributed to them by the manufacturer.

– Medical Device Directive (MDD 93/42/EEC; 1993)

– Directive on active implantable medical devices (AIMD 90/385/EEC; 1990)

– Directive on in vitro diagnostic medical devices (IVD 98/79/EC; 1998)

According to the definition of a medical device, as described in Sect. 12.3, (bio)

medical software used for specified intentions is a medical device and is covered by

one of these three directives. The implementation of these directives takes place

under national laws of the European countries, like the Austrian Medical Devices

Act (MPG BGBl. Nr. 657; 1996) and further regulations, such as the regulation for

operators of medical devices (MPBV BGBl. II Nr. 70; 2007).

One key aspect for manufacturers of medical devices is the obligation to meet

the essential requirements, which are specified in Annex I of each directive. One

way to show compliance with these requirements is to develop and manufacture the

medical device according to the relevant harmonized standards of the directive,

which are published in the Official Journal of the European Union. In that case

compliance with the essential requirements can be presumed, but has to be assessed

by a notified body depending on the conformity class (see Sect. 12.3) of the product.

An overview of legal regulations and harmonized standards for (bio)medical

software within the European Union is shown in Fig. 12.1.

In the context of (bio) medical software the following harmonized standards may

be applicable:

– Medical device software – software life cycle processes (IEC/EN 62304:2006)

– Medical devices-application of risk management to medical devices (EN ISO

14971:2012)

– Medical devices – Quality management systems (EN ISO 13485:2012)

– Application of usability engineering to medical devices (EN 62366:2008)

– Medical electrical equipment – Part 1: General requirements for basic safety and

essential performance (IEC/EN 60601–1:2006)

This list comprises an overview of essential standards, but cannot be seen as a

complete collection of all applicable standards for (bio)medical software, which of

course mainly depends on the intended use defined by the manufacturer. Generally,

310 J. Schr€ottner et al.



a distinction is made between standards for products and standards for processes.

Standards for products include specific recommendations for the design of a

product, whereas process-orientated standards provide recommendations for the

implementation of activities and procedures, such as software development pro-

cesses or quality assurance activities. In terms of software development, the

standard IEC/EN 62304 plays a major role. However it needs to be considered

that relations to other appropriate standards exist and are combined when develop-

ing a medical device.

IEC/EN 62304

This international standard provides requirements for the development and main-

tenance of medical software and covers software embedded in medical devices as

well as stand-alone software. In Europe, the EN 62304 version is a harmonized

standard incorporated in all three medical device directives (see Fig. 12.1), that is

technically equivalent to the IEC 62304. The purpose of this standard is to provide a

development environment by means of implementing activities and tasks that

permanently produce high quality and safe (bio)medical software. The require-

ments of the development life-cycle are explained in more detail in Sect. 12.4. In

addition, the following fundamentals for developing medical software are assumed:

– an established risk management process according to EN ISO 14971

– development and maintenance within a quality management system

Fig. 12.1 Overview of legal regulations and harmonized standards for (bio)medical software

within the European Union
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EN ISO 14971

This standard deals with the application of risk management to medical devices. It

is a general standard for medical devices and does not solely focus on medical

software. In any case, risk management is a very important issue for (bio)medical

software. Several standards refer to the EN ISO 14971, for example the

abovementioned EN 62304. The essential requirement of EN ISO 14971 is

implementing and maintaining a process to discover and control risks arising

from the medical device over its whole life cycle. This includes the elements of

risk analysis, risk assessment, control of risk as well as information and feedback

from the manufacturing process and market phase.

The risk management process has to be planned and documented in the risk
management plan which, for example, includes allocation of responsibilities, criteria

for the acceptance of risks or verification activities. All determinations and results

from the process need to be documented in a risk management dossier. To obtain

safety and effectiveness of medical software, it has to be proven that the software

fulfills the specifications without causing unacceptable risks (EN ISO 14971:2012).

The technical Report of the International Electrotechnical Commission “Guidance on

the application of ISO 14971 to medical device software” (IEC/TR 80002–1; 2009)

gives assistance for the application of the EN ISO 14971 for medical device software

in respect of the requirements of the IEC/EN 62304. In Chap. 7 of the EN 62304

guidelines for a software risk management process are specified.

EN ISO 13485

This standard (EN ISO 13485:2012) contains requirements to implement and main-

tain a quality management system addressed to medical device developers and

manufacturers. As mentioned above the IEC/EN 62304 demands a quality manage-

ment system, however not a specific one. But as a benefit for the manufacturer,

requirements of the IEC/EN 62304 are directly related to some of the requirements of

the EN ISO 13485. Generally the manufacturer of medical software shall demonstrate

the ability to develop software that consistently meets customer needs and applicable

regulatory requirements. Therefore the EN ISO 13485 provides also a framework

which enables a developer of medical products to meet some of the requirements of

the medical device directives. Nevertheless it is important to note that compliance

with EN ISO 13485 does not show conformity with all aspects of the quality systems

of the medical device directives legally valid at this date.

IEC/EN 62366

The reduction of risks caused by usability problems is the main goal of this

international standard, aspects like user satisfaction or efficiency of the product

are not considered. It defines requirements for the analysis, specification, develop-

ment, verification and validation processes, which should be implemented by the

manufacturer. These processes are covered in a superior process termed Usability
Engineering Process. The standard (EN 62366:2008) is heavily related to the risk

management process according to EN ISO 14971. A usability engineering file has
to be kept in evidence, which includes all activities set by the manufacturer

(e.g. usability testing with a significant number of users) as well as the definition
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of the fundamental operating functions. The consideration of the EN 62366 is one

of the essential requirements for proofing conformity of a medical device with the

basic standard for safety aspects (EN 60601-1:2006þA1:2013).

IEC/EN 60601-1

This standard is fundamental for basic safety of medical electrical devices and

includes also a special part for medical software, called PEMS. PEMS are Pro-

grammable Electrical Medical Systems, which consists of software and hardware

parts.

The second edition of this standard relates to a special additional standard for

programmable electrical systems (EN 60601-1-4:1996þA1/1999). The requirements

are focused on prevention of hazardous situations and risk minimization. Compliance

means that the inspected software is safe for the patient and user, not that it was

properly developed. In the third edition of the EN 60601-1 the EN 60601-1-4 is

already included under clause 14 (Programmable Electrical Medical Systems –

PEMS). These requirements apply to all PEMS unless it does not provide function-

ality necessary for basic safety or essential performance or the risk management can

demonstrate that the failure of the software does not lead to an unacceptable risk.

International/Global Approach

In theUnited States of America the Federal Food Drug & Cosmetic Act is the legal

framework for medical products, hence for (bio)medical software. A specification

of this law is given in a federal regulation (CFR-Code of Federal Regulations Title

21- Food and Drugs; 2006), which is composed and enforced by the Food and Drug

Administration (FDA). Further the FDA provides the manufacturer with several

guidelines that can be downloaded from the FDA homepage free of charge. These

documents are not legally binding, but have a high relevance in practice. Software

as a medical product is covered by a main guidance document (General Principles

of Software Validation, U.S. Department of Health and Human Services (HHS)

et al. 2002). This document recommends an implementation of software life cycle

management and risk management. It further describes how requirements of the

medical device quality system regulations (21 CFR 820) apply to medical software

particularly with regard to software validation.

In addition to the FDA guidelines, the FDA considers so-called “Recognized

Consensus Standards”. In comparison to the European situation, for instance, the

standards for risk management (ISO 14971), software life-cycle (IEC 62304),

usability (IEC 62366) and the standard for basic safety of medical electrical devices

(IEC 60601-1) are recognized as a whole or in parts. The American National

Standard for software life cycle processes (ANSI/AMI/IEC 62304:2006) is equal

to IEC/EN 62304 and it also addresses the minimum requirements for software of

major levels of concern and requires a rating of each software component, assigning

to one of three safety classes A, B or C (see Sect. 12.3).

A new guidance document from FDA aims at mobile apps. (Mobile Medical

Applications, U.S. Department of Health and Human Services (HHS) et al. 2015).

Its purpose is to apply regulations to only those mobile apps that are defined as a

medical device and whose functionality could cause a risk for the patient. This
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guideline also refers to ANSI/AMI/IEC 62304:2006 and clause 14 of ANSI/AAMI

ES 60601-1:2005 which is equal to clause 14 of IEC 60601-1:2005. Mobile apps

with medical purposes are currently a widely discussed topic since the amount of

medical apps will rise considerably within the next decade. Therefore this issue is

also discussed in expert groups with regard to the upcoming standard IEC 82304.

This standard focuses on “Health Software Products”, which are intended to be used

specifically for managing, maintaining or improving health of individual persons or

the delivery of medical care.

In summary, the medical software standard situation in the United States is today

similar to the European situation. However, one major exception is the implemen-

tation of a quality management system for medical devices, which does not refer to

the international standard ISO 13485 in the US.

In Canada the definition of a medical device and therefore of medical software

is regulated in the Food and Drugs Act (Food and Drugs Act, R.S.C.; 1985) and

complies with the definition in the Medical Device Directive of the European

Union. The recognized Standards are similar to harmonized standards in Europe

and the United States, e.g.: IEC 60601-1, IEC 60601-1-4, CSA_ISO 14971, IEC

62304:2006, or ISO 14971. In contrast to the United States the standard of ISO

13485 for quality management systems of medical devices is recognized and

approved in Canada.

In Australia a medical software is considered as a medical device if it fits in the

definition of the Therapeutic Goods Act (TGA; 1990). The standards that may

provide further guidance, but are not mandatory mentioned in the “Australian

regulatory guidelines for medical devices” (TGA; 2011) are the IEC 60601- Family

(including IEC 60601-1), the ISO 14971 as guidance for development of the risk

management records and the IEC 62304 which is considered by the TGA,

representing the state of the art for medical device software. Regarding quality

management requirements, the manufacturer is responsible for implementing a

quality management system according to ISO 13485 and has to meet the

Australian regulatory requirements in addition, which is similar to the conformity

assessment in the European Union.

This brief overview demonstrates that the IEC/EN 62304 is widely recognized

for the development and maintenance of medical software. Apart from the exam-

ples above, it has also been translated into an identical Chinese standard (YY/T

0664; 2008).

12.3 Definition, Classification and Qualification

In principal, a medical device, including software as a medical device (devices

incorporating software or stand-alone software) is defined by the directives (see

Sect. 12.2) as follows:
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Medical device means any instrument, apparatus, appliance, software, material or
other article, whether used alone or in combination, including the software
intended by its manufacturer to be used specifically for diagnostic and/or
therapeutic purposes and necessary for its proper application, intended by the
manufacturer to be used for human beings for the purpose of:

– diagnosis, prevention, monitoring, treatment or alleviation of disease,
– diagnosis, monitoring, treatment, alleviation of or compensation for an injury

or handicap,
– investigation, replacement or modification of the anatomy or of a physiolog-

ical process,
– control of conception.

According to this definition, which is very close to the definition of the document

published by the International Medical Device Regulation Forum (IMDRF; 2013),

software used for the intentions mentioned above is a medical device covered by

one of these three directives.

Each medical device shall be classified into one of the four conformity classes

(I, IIa, IIb or III) according to the classification rules of Annex IX in the EU medical

device directive (MDD 93/42/EEC; 1993). These defined rules consider invasive-

ness, the duration of contact, part of body or body orifice in contact, rules for active

and non-active products and others to determine the class of the medical device

with respect to its potential risk. Appropriate to these rules and definitions medical

software as stand-alone software is defined as an active medical device (see MDD

93/42/EEC; 1993), Annex IX, Chap. 1.4). This is an important decision for

selecting the applicable classification rules. Stand-alone software is categorized

according to its own risk level, whereas software, which drives a device or influ-

ences the use of a device, is automatically graded into the same class as the device

itself.

Software – Medical Device or Not?

Although the definition above seems to be unambiguous, the question as to whether

developed software, especially stand-alone software used in a medical surrounding,

is a medical device or not is increasingly arising. In a lot of cases the definitions of

the directives are not specific enough to gain a satisfying answer.

Therefore the European Commission provides manufacturers and notified bodies

with guidance documents. One of these guidelines deals with the qualification and

classification of stand-alone Software used in healthcare (MEDDEV 2.1/6; 2012)

with the main purpose of solving the question whether the stand-alone software is a

medical device or not. The decision can be based on the following steps, which are

specified in the document. Figure 12.2 shows a simplified decision diagram based

on the MEDDEV 2.1/6.

The decision making process (see Fig. 12.2) starts with the assumption that the

product is a stand-alone software and not incorporated into a medical device, and

the software is a computer program. If the software does not perform an action on

data or performs an action limited to storage, archival, communication, simple

search or lossless compression it is not a medical device (step 1). For example,
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image viewing programs that enable simple viewing features such as sharpening,

zooming, contrast stretching etc. are not medical devices. Software that modifies

medical raw data, creates new medical information or facilitates interpretation of

data for the medical diagnosis might be classified as a medical device.

In the second step of decision the benefit of individual patients is in focus. This

question should separate software intended to evaluate data of a single patient from

software dealing with general data. Software for individual purposes, e.g. for

diagnosis, prevention, monitoring and so on, is a medical device, while software

intended to review common data, models for treatment pathways or software for

epidemiological studies is not classified as a medical device.

Fig. 12.2 Software as a medical device – simplified decision diagram based on the guideline on

the classification of stand-alone software (MEDDEV 2.1/6; 2012)
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Finally (step 3) the intended use of the software specified by the manufacturer

has to be in accordance with one of the purposes listed in article 1.2a of the

directives. For example, software is qualified as a medical device if the intended

use is diagnosis, prevention, monitoring, treatment or alleviation of diseases.

Once the (bio)medical software meets the definition of a medical device,

IEC/EN 62304 (see Sect. 12.2) is applicable and the software has to be categorized

into one of the three software safety classes. The assignment to one safety class has

to relate to the possible effects on the patient, operator or other people resulting

from harm to which the software can contribute. Depending on the risk level and on

the degree of hazard the following safety classes are defined:

Class A: No injury or health damage is possible

Class B: No serious injury is possible

Class C: Death or serious injury is possible

If it is possible to split the software into modules or sub systems, each module

must be classified on its own. Finally the whole software is classified into the

highest class, identified during the classification process for all sub systems.

Depending on the software safety class, a different amount of requirements need

to be fulfilled to proof the conformity with the standard IEC/EN 62304.

12.4 Software Development

In principle different models and strategies can be used for developing (bio)medical

software. For example, the waterfall model, incremental models or the V-model,

the latter being well known and very popular. Figure 12.3 shows the V-model

including the development process steps of EN 62304. The illustration shows that

the requirements are dependent on the software safety class of the product.

Software Development Process (IEC/EN 62304)

The main idea of this standard is to develop software according to a well-defined

procedure. For this reason the standard requires to establish a software development

plan, which should include all processes that are used, i.e. the deliverables, trace-

ability between system requirements, software requirements, software system tests

and risk control measures, as well as software configuration and modification

management and software problem solving.

The next steps consist of the analysis of the software requirements, the software

architectural design and the detailed design. At this point the design phase ends and

the integration and testing-phase begins. These steps can be separated into software

unit testing, software integration testing and software system testing (see Fig. 12.3).

When these verification activities are completed and the results evaluated the

software can be released.

It is important to mention that the EN 62304 does not cover software validation.

Validation not only means the total amount of verification activities, but also that
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the verified software satisfies its user needs and intended use. For embedded

software, PEMS validation is a system level activity and is thus covered by EN

60601-1. For stand-alone software the link to validation can be made via the EN

ISO 13485, which sets requirements for design and development validation. The

future standard on health software (IEC 82304; 2015) will in any case cover

validation of software-only products.

Furthermore a software maintenance plan has to be established, which specifies

how to deal with feedbacks and in which case a feedback must be addressed as a

problem. This procedure is connected to the software risk management process, the

problem solving process as well as the software configuration management process,

which is involved in the case of modifying the existing system.

As mentioned in Sect. 12.2 the risk management process of EN 62304 is based

on the ISO 14971, but also covers special requirements for medical software. The

first step is the detection of software or modules that could lead to hazardous

situations. This analysis is based on the identification and documentation of possi-

ble reasons and events for these hazardous situations. The manufacturer has to

develop risk control measures to keep the effects of identified reasons as low as

possible. The documented verification of the implemented risk control measures is

the final step in this risk management process, which also sets its focus on the

prevention of risks that arise from the modification of software or software-updates.

Another important process that needs to be considered is the problem-solving

process. It is designed to analyse and solve problems that occur during the devel-

opment, maintenance and application of the medical software. The aim is to provide

the manufacturer with a tool that ensures documentation, analysis and solving of

discovered problems in an efficient way.

Fig. 12.3 Development of

software according to the

V-Model
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Finally, another important process is the software configuration management

process, which should provide a scheme for the unique identification of software

items and software versioning with respect to the whole software life cycle. The

software configuration management process is necessary for change control and the

documentation of the modifications.

12.5 Conclusions

It is obvious that software as medical devices will play an important role on the

healthcare market in the upcoming years. The overview of legal regulations and

harmonized standards shows that the procedures of development and maintenance

of medical software are widely harmonized and only a few differences exist

according to the legal framework of individual countries. Concerning the safety

aspect of software, the definition in the essential requirements of the European

directive that devices which incorporate software or which are medical software

themselves (stand-alone software) must be validated according to state of the art

procedures, taking into account the principles of development lifecycle, risk man-

agement, validation and verification (see MDD 93/42/EEC, Annex I, 12.1a; 1993).

Requirements regarding these aspects are defined in various standards (see

Sect. 12.3), which should be considered to presume compliance with the essential

requirements of legal regulations. However, development processes should not be

focused on the admission requirements only, but should be based on well

established procedures which are useful according to manufacturer environment

with the aim to design and manufacture (bio)medical software in such a way that

they will not compromise the clinical condition or the safety of patients, users or

other persons. It is also pointed out in the proposal of the revision of the European

legislation for medical products (COM(2012) 542; 2012) that the developers and

manufacturers must take more responsibility regarding transparency and traceabil-

ity of the medical devices they place on the European market.

Nowadays, great efforts are being made to minimise risks for patients and

operators caused by software failures. However, efforts regarding software

standardisation will become necessary in the near future, which has not been

considered so far. Discussions on security of medical software are increasingly

arising with respect to the problem of protecting individuals and health care

providers against software attacks. The IEEE (Institute of Electrical and Elec-

tronics Engineers) has recently published a paper called “Building Code for

Medical devices software security” (IEEE; 2015) which tries to demonstrate the

direction for standardization concerning this issue. Thus, the area of standardiza-

tion and regulations for (bio)medical software is an open, widely-discussed field

that will not be exhausted in a short period of time.
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Chapter 13

Clinical Applications and Systems
Biomedicine

Duojiao Wu, David E. Sanin, and Xiangdong Wang

Abstract A single disease can be caused by multiple mechanisms. System medicine

is an emerging discipline that aims to address the problem that a disease is rarely

caused by malfunction of one individual gene product, but instead depends on

multiple gene products that interact in a complex network. Systems medicine inte-

grates medicine, physics, and mathematical approaches with biologic and medical

insights in an iterative process to visualize the interconnected events within a disease

phenotype. Systemmedicine comprises a series of concepts and approaches that have

been used successfully both to delineate novel biological mechanisms and to drive

translational advances in individualized healthcare. Here, we explain how and why

systems medicine, and specifically network approaches, can be used to assist clinical

decision making and to identify underlying disease mechanisms. We focus on

describing how to use clinical bioinformatics to uncover pathogenic mechanisms in

certain diseases. We finish by discussing the current problems and limitations of

network and systems approaches and suggest possible solutions.
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13.1 Introduction

Systems biomedicine is an interdisciplinary field of study that looks at the systems of

the human body as part of an integrated whole, incorporating biochemical, physio-

logical, and environment interactions. Systems biomedicine draws on systems science

and systems biology, and considers complex interactions within the human body in

light of a patient’s genomics, behavior and environment (Federoff and Gostin 2009).

An important topic in systems biomedicine and systems medicine is the devel-

opment of computational models that describe disease progression and the effect of

therapeutic interventions. Recently, the National Institutes of Health (NIH)

launched The Cancer Genome Atlas (TCGA) pilot project to integrate clinical

data and high-throughput data for tumors (Weinstein et al. 2013; Akbani

et al. 2014) (Piskorz et al. 2011). More and more evidence support that the

incorporated evaluation of clinical and basic research could improve medical

care, care provision data, and data exploitation methods in disease therapy and

algorithms for the analysis of such heterogeneous data sets (Schwarz et al. 2009).

13.2 Clinical Application of Systems Biomedicine
in Cancer Metastasis

Metastasis is a serious challenge for cancers. Genomic screening of cancers will

continue to facilitate identification of molecular mechanisms of acquired resistance to

targeted therapies. Ongoing translational and clinical research will facilitate a greater

understanding of genomic alterations within cancer, with the aim of increasing benefit

to wider population of cancer patients. At present, there are more urgent needs to

develop systematic theory and methodology of systems biomedicine. It is a futuristic

view of systems biomedicine shown in Fig. 13.1-the heterogeneous data sources from

large-scale screening have to be integrated with clinical data and basic research.

Imaging-based biomarkers are used for staging, re-staging and monitoring the

treatment of cancer patients. Several imagingmodalities such as computed tomography

(CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and

PET/CT play central roles in the detection and staging of the disease for cancer staging.

Anatomical imaging that uses CT anduni-dimensionalmeasurements of tumor size has

been indispensable in establishing the Response Evaluation Criteria In Solid Tumors

(RECIST) criteria as a standard for assessing response to therapy (Nishino et al. 2010;

Lee et al. 2011). But for many reasons there has been great interest in carrying out

translational research to improve these criteria. Such reasons include the complexity of

the biology and heterogeneity of tumor masses, the precision of measurement that is

needed, the possibility of misclassification (especially near the cut-off points) and the

considerable interest in targeted cytostatic therapy, which requires improved measure-

ments of stable disease (Imai et al. 2014). Therefore, there has been an increasing focus

on developing novel techniques ‘bioimage informatics’ (Peng 2008) for the image data

mining, database and visualization techniques to extract, compare, search and manage

the biological knowledge in these data-intensive problems.
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The essential techniques to the success of these applications are very compli-

cated such as bioimage feature identification, segmentation and tracking, registra-

tion, annotation, mining, image data management and visualization. Image features

are the fundamental description of pixels/voxels and all higher level objects. One

way to extract features is based on domain knowledge; Another way for effective

features extraction is to consider as many image transformations as possible, and

thus generate a rich set of image features (Bauer et al. 2013). Image segmentation is

one of the most basic processing steps in many bioimage informatics applications.

While the goal is simply to segment out the meaningful objects of interest in the

respective image, this task is non-trivial in many cases. Very complicated cases also

exist due to problems such as a low signal–noise ratio and a big variability of image

objects (Eklund et al. 2013; Caon et al. 2014). Image registration is essential in

many applications that need to compare multiple image subjects of different

conditions. Quantitative measurements and visualization of comparing patterns in

the registered images can be done directly in a ‘standard’ space (Bauer et al. 2013;
Kipli et al. 2013). Many applications such as phenotyping cells and determination

of subcellular locations of proteins require the pattern clustering and classification

techniques (Shi et al. 2014). Annotation of bioimage objects converts the image
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Fig. 13.1 Application of systems biomedicine in cancer metastasis research. The data flow

shows heterogeneous data sources from large-scale screening have to be integrated with clinical

data. Applying analytical methods on the integrated data can provide list(s) of target therapeutic

genes and biomarkers, which can be used in personalized medicine

13 Clinical Applications and Systems Biomedicine 325



content information to concrete semantically meaningful information that is usually

texts and can be conveniently organized and searched (Meyer et al. 2013; Yeh

et al. 2014).

About 10 % of human genes have a known disease association (Amberger

et al. 2009). The occurrence of cancer is a result of the genetic changes in tumor

cells, the changes in the tumor microenvironment and the influences of the tumor

microenvironment on the tumor (Junttila and de Sauvage 2013). Most cellular

components exert their functions through interactions with other cellular compo-

nents, which can be located either in the same cell or across cells, and even across

organs. In cancer, the inter- and intracellular interconnectivity implies that the

impact of a tumor-associated genetic abnormality is not restricted to the activity

of the gene product that carries it, but can spread along the links of the network and

alter the activity of gene products that otherwise carry no defects (Kipli et al. 2013;

Schadt 2009).

In a random gene-gene or protein-protein interaction network, most nodes have

approximately the same number of links, and highly connected nodes (hubs) are

rare (Barabasi and Albert 1999). Essential genes show a strong tendency to be

associated with hubs and are expressed in multiple tissues. They are located at the

functional center of the disease interactome. Most tumor-associated genes tend to

be located at the functional periphery of the interactome. Because if the mutation in

essential genes will lead to spontaneous abortions, most tumor-associated genes in

human are not essential genes (Barabasi et al. 2011) (Fig. 13.2).

Clinical cancer—the end result of this chaotic process—is characterized by

unregulated cellular proliferation as well as cellular and clonal heterogeneity.
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tumor-associated
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b

Fig. 13.2 Cancer and essential genes in the interactome. (a) shows the overlap between

essential genes and tumor-associated genes. Most tumor-associated genes in human are not

essential genes. (b) demonstrates the differences between essential proteins (shown as orange
nodes) tend to be at the functional center; However, tumor-associated proteins(shown as black
nodes) tend to be at the functional peripheral of the interactome
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Consequently, an abnormality in a single gene or proteins could reflect lung

cancer, but the perturbations of the complex intracellular and intercellular net-

work that links tissue and organ systems will contribute to cancer biomarkers.

With more dynamic information available, researchers’ attention has recently

shifted from static properties to dynamic properties of protein–protein interaction

networks (Wang et al. 2014). Unlike traditional diagnosis of an existing disease

state, detecting the pre-disease state just before the serious deterioration of a

disease is a challenging task, because the state of the system may show little

apparent change or symptoms before this critical transition during disease pro-

gression. Dynamic networks biomarker (DNB) can be constructed by involving

proteomic, genomic, and transcriptome analyses (Wang et al. 2014; Wu

et al. 2014); (Puig et al. 2012). By exploring the rich interaction information

provided by high-throughput data, the dynamical network biomarker (DNB) can

identify the pre-disease state have developed a novel computational approach

based on the DNB theory and successful identified pre-disease samples from

subjects or individuals before the emergence of disease symptoms for acute

lung injury, influenza and breast cancer.

13.3 Understanding the Skin Microenvironment Using
Bioinformatics

The skin is an interface between the human body and the environment. This tissue

constitutes the first point of contact between the host’s immune system and a

plethora of infectious pathogens, including bacteria (Rudikoff and Lebwohl

1998), protozoa (Kedzierski and Evans 2014; Couper et al. 2008), filarial nema-

todes (Hoerauf et al. 2011), soil transmitted hookworms (Loukas and Prociv 2001),

or the helminth Schistosoma sp (Paveley et al. 2009; Sanin et al. 2015). Likewise,

the skin plays host to several populations of commensal microorganisms that it

must learn to tolerate to avoid exacerbated inflammation (Heath and Carbone 2013;

Pasparakis et al. 2014; Nestle et al. 2009). Previously, the diversity and role of

commensal microorganism in the skin was greatly underrated. This notion was

partly due to the limitations of conventional biochemical-based identification of

microorganisms, especially in complex sites such as the skin.

With the advent of next generation sequencing, our understating of the diversity

of commensal microorganisms in the skin has been greatly enhanced, due in

particular to metagenomic studies that employ state of the art bioinformatics and

16S ribosomal RNA sequencing (Grice and Segre 2011). The four phyla of bacteria

found on the skin (Actinobacteria, Firmicutes, Bacteroides and proteobacteria) was

consistent with those found in gastrointestinal tract (Dewhirst et al. 2010; Eckburg

et al. 2005), however the proportions varied vastly (Grice et al. 2009) with

Actinobacteria being the most abundant phylum. Furthermore, commensal
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microorganism vary depending on the anatomical site with incredibly restrictive

areas with one dominant population, such as Corynebacteriaceae in the umbilicus,

or extremely diverse ecosystems, such as the at least nine different families present

in the palm of the hand (Grice and Segre 2011).

The clinical implications of this newly found knowledge is beginning to unravel.

Commensal microorganism play an important role in modulating T cell responses

to Leishmania major cutaneous infection reducing lesion sizes (Naik et al. 2012), as
well as limiting inflammation during Schistosoma mansoni percutaneous infection
by inducing IL-10 (Sanin et al. 2015). Moreover, the number of commensal

microorganisms with confirmed links to diseases, such as Mealassezia sp. in

Seborrhoeic dermatitis (Gupta et al. 2004) or Propionibacterium acnes in acne

(Dessinioti and Katsambas 2010), is likely to increase as metagenomic studies are

applied systematically to different cases. For example a recent acne study in which

bacteria isolated from hair follicles and adjacent skin were identified using 16S

ribosomal RNA sequencing, found that hair follicles in healthy controls were

colonised exclusively by P. acnes, whereas affected patients also had clones of

Staphylococcus epidermidis (Bek-Thomsen et al. 2008).

These alterations in the composition of the skin microbiota are a result of many

environmental factors, but the immune system plays a very important role in the

process (Nestle et al. 2009; Grice et al. 2009). A clear example of this phenomenon

was presented in a recent study which found that skin lacking T cells had different

microbial composition compared to normal skin (Fig. 13.3) (Shen et al. 2014).

Indeed, the researchers in that study were able to determine that T cells from normal

mice (CD8þ T cells) located in the skin draining lymph nodes were able to respond

to Staphylococcus (the most abundant commensal bacteria in murine skin). By

contrast, T cells from animals bred under “germ-free” conditions, and thus having

Staphylococcus

Bacillus cereus

Streptococcus

Mycobacterium

Corynebacterium Rhodopseudomonas

Carboxyfluorescein succinimidyl ester

C
D

8

T cells from
germ free mice

T cells from
normal mice

Stimulation with Staphylococcus

Normal

T cell deficient

Skin commensal flora

Fig. 13.3 Skin commensal microbiota.Microbial composition of murine skin in normal (top) or
T cell deficient (bottom) animals. CD8þ T cells from germ free or normal mice proliferated

differently to Staphylococcus antigens (Adapted from Shen et al. 2014)
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no commensal bacteria, were unable to respond to Staphylococcus (Fig. 13.3).

Together these results highlight the role of the immune system in modulating the

composition of the commensal flora in the skin.

The clinical application of bioinformatics to the study of skin disorders extends

beyond the study of microbiota in the surface of the skin. Differential gene

expression coupled with pathway enrichment analysis provide invaluable tools

for the study of human skin disorders without a robust animal model. Such is the

case of psoriasis and atopic dermatitis, which were revealed as having opposing

effects on pro-inflammatory and antimicrobial genes, with atopic dermatitis

inducing a Th2 signature compared to psoriasis (Nomura et al. 2003). Addition-

ally, skin from individuals suffering from psoriasis was shown to contain altered

expression of genes involved with lipid metabolism, antimicrobial defenses,

epidermal differentiation, and control of cutaneous vasculature when compared

to skin from healthy individuals (Gudjonsson et al. 2009), highlighting the

potential role of pathways that were not considered important before these

bioinformatic tools were available.

13.4 Clinical Applications of Bioinformatics
in Liver Disease

The liver plays a central role in homeostasis of glucose, fatty acids, amino acids and

the synthesis of proteins. It is also involved in the detoxification of the body by

removing noxious compounds from the blood. As such the liver is exposed to a

variety of toxicants that invariably cause damage that this tissue must overcome.

Consequently it is not surprising that the liver is involved in a vast number of

diseases ranging from fatty liver disease, diabetes, hepatitis and liver cancer (Auger

et al. 2015). In recent years a dramatic increase in the number of obese individuals,

which affects 15–22 % of people in Western countries, has highlighted the threat

posed by non-alcoholic fatty liver disease (NAFLD), which is by definition the

deposition of fat in the liver in the absence of excessive alcohol intake, and is often

accompanied by insulin resistance. As viral hepatitis is overcome by prevention and

therapy, NAFLD could become the main cause for end stage liver disease, liver

transplantation and hepatocellular carcinoma. These facts have triggered a wide

search for biomarkers of clinical relevance to prevent and intervene in time before

the liver is compromised (Dongiovanni et al. 2015).

Genome-wide association studies (GWAS), which can uncover links between

single nucleotide polymorphisms (SNP) and particular phenotypes, have exposed a

number of potential gene variants that could play a role both as biomarkers and in

the progression of NAFLD, such as the patatin-like phospholipase domain-
containing 3 (PNPLA3) gene (Romeo et al. 2008) or the transmembrane 6 super-
family member 2 (TM6SF2) gene (Zelber-Sagi et al. 2014). In particular PNPLA3,
which is involved in the hepatocellular remodeling of lipid droplets as well as the
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secretion of very low density lipoprotein, has emerged as a dominant feature of

NAFLD progression, although mechanistically the connection is yet unclear

(Dongiovanni et al. 2015).

Obesity, cardiovascular disease and coronary artery disease are often linked in

epidemiological studies, thus it is possible that these disorders share underlying

genetic determinants. A recent study sought to address this question, and also using

GWAS identified 56 pleiotropic genes in 87 autosomal regions with 181 SNPs,

where most genes associated with plasma lipids and cardiovascular diseases and

some with obesity and coronary artery disease (Rankinen et al. 2015). Forty-three

of these genes could be associated in a network, connected by some 24 additional

genes. Finally, within the 181 SNPs, regulatory elements such as enhancers and

DNAase hypersensitive regions were enriched (Fig. 13.4). Thus the use of bioin-

formatics has permitted the identification of relevant biomarkers for NAFLD and

obesity.

Another important set of tools to explore liver biology is modeling biological

systems. As mentioned before, the liver is involved in the regulation of fatty acid

homeostasis. In particular, cholesterol secretion and excretion is tightly controlled

by this organ, yet the underpinning mechanism is unclear both at the cellular and

organismal level. By employing mathematical models using differential equations

it is possible to simulate the dynamics of cholesterol production and importantly the

response to statins (Wattis et al. 2008), which are commonly used to treat high

cholesterol. However, as of yet few models on cholesterol metabolism are able to

pass functional tests (Paalvast et al. 1851), but they represent important initial

attempts at tackling scientific questions that remain unresolved.

13.5 Conclusions

Systems biomedicine comprises a series of concepts and approaches that have been

used successfully both to delineate novel biological mechanisms and to drive

translational advances in individualized healthcare. In this article, we gave several

examples of emerging systems biomedicine-based strategies as they apply to

cancer, skin and liver diseases.

However, there is some challenges of systems biomedicine in clinical applica-

tions. For example, medical data entry, database management, and other processes

vary among care providers, health insurers, and other members of the health sector.

These differences impede the applications of systems biomedicine. The lack of

strong interfaces and unified systems significantly complicates research and clinical

decision support. Standards ensure consistency, integration, and accuracy. Greater

application of standardized electronic record keeping appears to be a logical means

to increase efficiency. It is therefore imperative to develop national or even

universal standards (Gottlieb et al. 2014).
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Fig. 13.4 Uncovering pleiotropic genes in obesity, cardiovascular and coronary artery
disease. Based on GWAS results, 181 SNPs in 87 autosomal regions proximal to 56 genes were

seen to correlate with plasma lipids and cardiovascular diseases or with obesity and coronary

artery disease. Network analysis revealed further connections between these genes, whilst enrich-

ment analysis suggested that the SNPs occurred predominantly within enhancer or DNAase

hypersensitivity regions (Adapted from Rankinen et al. 2015)
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Chapter 14

Key Law and Policy Considerations
for Clinical Bioinformaticians

Mark Phillips

Abstract This chapter describes five key areas in which clinical bioinformatics

activities are regulated by law and policy. These are, namely, open-data require-

ments, consent practices, anonymization strategies, restrictions on cross-border

data transfer, and prohibitions on genetic discrimination. The discussion draws on

examples of norms that are currently in effect in North America, Europe, Asia, and

Oceania in order to illustrate the ways in which positions on various specific

questions can either mutually converge or deviate from one another around the

globe. The tension that animates virtually all of the debates throughout this area,

whether explicitly or through proxy issues, this chapter argues, is between the

promotion of the interests of research participants—particularly in ensuring data

privacy—on the one hand, and in establishing a landscape optimized to best

promote medical research discoveries, on the other.

Keywords ELSI • Privacy • Data protection • Open data • Funding agency policy

14.1 Introduction

Clinical bioinformaticians are governed by many of the same legal and policy

norms as are researchers in genomics and the broader -omics fields. Physicians

and health care practitioners who provide personalized medicine to their patients

additionally remain bound by their professional ethics duties and laws applicable to

the provision of health care.

Two new trends add complexity. First, a flurry of new rules have been adopted in

recent years by law and policymakers who are scrambling to address ethical and

privacy concerns that have emerged—and that often remain poorly understood—as

a direct result of the rapid development of genomic technologies. Second, the

increasing prevalence of data sharing, often across borders, as well as outsourcing

to cloud service providers can mean that health projects must simultaneously

contend with rule sets in multiple jurisdictions. Disparities between the rule sets
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can give rise to incompatibilities that may even needlessly make some medical

projects impractical.

Despite this fragmentation, researchers have initiated significant efforts aimed at

harmonizing these obligations at national, regional, and international levels.

Although these efforts remain in the preliminary stages, their emphasis provides a

helpful window through which to frame a general discussion of the law and policy

as it currently affects clinical bioinformatics. Each of this chapter’s following five

sections describe one key area around which these discussions have centred,

specifically (Sect. 14.2) open-data requirements; (Sect. 14.3) consent practices;

(Sect. 14.4) anonymization strategies; (Sect. 14.5) restrictions on cross-border

data transfer; and (Sect. 14.6) prohibitions on genetic discrimination. Each section

draws on examples from existing laws and policies.

Before turning to these topics, the following subsections briefly distinguish and

explain the two main sources of the duties that will be discussed: data-privacy law

and funding agency policy.

14.1.1 Data-Privacy Law

Some countries use the term privacy law to describe law aimed at protection of

personal data, while others speak of data protection law. This chapter follows the
emerging trend of using the term data-privacy law to encompass both sets of laws.

Laws can guarantee the right to data privacy at the highest level of legal norms:

in constitutions. The European Union (EU) has long been at the forefront of data-

privacy law development, and its Charter of Fundamental Rights of the European
Union—although not itself a formal constitution—conceives of personal data

protection as a freestanding, fundamental right held by everyone (Fig. 14.1).

Across the Atlantic, the words ‘data protection’ or ‘privacy’ appear neither in the
United States Constitution nor the Canadian Charter of Rights and Freedoms. But
Supreme Court decisions have established that a degree of constitutional privacy

protection is a necessary accessory to other explicit constitutional rights. The most

prominent example is that the constitutional right to be secure against unreasonable

searches and seizures has been found to necessarily flow from an underlying

assumption that people enjoy a reasonable right to privacy (Hunter v. Southam
1984; Katz v. United States 1967).

The vast majority of data privacy law norms that are relevant in everyday

practice are described in regular statutes. Data-privacy law varies significantly

between countries: both in terms of the degree of protection provided, as well as

the overall framework in which they are set out.

For decades, the European Union (EU) has encouraged its member countries to

achieve a measure of harmonization. The preeminent EU data-privacy vehicle is

currently the Data Protection Directive 95/46/EC (EU Directive), now 20 years

old, which requires that each state subject to the Directive enact data-privacy legal

protections that meet the minimum standards it describes. The EU Directive
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maintains flexibility, however, by allowing each country a degree of leeway in their

preferred implementation of the rules, to account for the legal traditions and social

context in each country.

The EU Directive is now set to be superseded by a new General Data Protection
Regulation (EU Regulation) in 2016. The new EU Regulation will further harmo-

nize existing rules, as unlike the EU Directive, its rules will be directly enforceable

throughout all of the European Economic Area and EU member states. At the time

that this chapter was written, despite numerous draft iterations that had appeared,

the text of the EU Regulation had not yet been finalized.

In contrast with this unified approach in the EU, theUnited States has relied on both

a patchwork of highly specific laws and policies that address privacy, which exist

alongside industry self-regulation mechanisms. Several federal laws include provi-

sions that bear on privacy and that may be of particular interest to clinical bioinfor-

maticians. These include the Health Insurance Portability and Accountability Act of
1996 (HIPAA); the Federal Policy for the Protection of Human Subjects (Common

Rule); and the Genetic Information Nondiscrimination Act of 2008 (GINA).1

The siloed US approach has the advantage that each narrow topic was given

lawmakers’ undivided attention as the rules were drawn up, but it also comes with

significant shortcomings. The first problem likely to be faced in practice is the

difficulty in identifying which of the numerous federal and state laws do or do not

regulate any given entity. HIPAA applies only to a list of covered entities including

healthcare providers, health plans, and healthcare clearinghouses, as well as the

covered entities’ business associates and their subcontractors. The Common Rule

applies to most organizations receiving federal funding for research. GINA applies

to insurance companies and employers, and prohibits certain forms of discrimina-

tion based on genetic information.

But these laws can also apply to clinical bionformaticians in ways that may not

be initially obvious. When a researcher receives genetic data from a HIPAA-

covered entity for use in health research, for example, that researcher is bound to

conform to the HIPAA Privacy Rule. As for the Common Rule, in one case in 2010,

despite that it was unclear whether the Common Rule was legally enforceable

against direct-to-consumer genetic testing company 23andMe, the company’s
non-compliance with the law’s provisions was nonetheless argued to be a valid

consideration in determining whether research based on the company’s data was fit

1. Everyone has the right to the protection of personal data concerning him or her.

2. Such data must be processed fairly for specified purposes and on the basis of the consent of the
person concerned or some other legitimate basis laid down by law. Everyone has the right of 
access to data which has been collected concerning him or her, and the right to have it rectified.

3. Compliance with these rules shall be subject to control by an independent authority.

Fig. 14.1 Article 8 of the Charter of Fundamental Rights of the European Union

1 Each of these laws have been significantly amended since they were initially enacted.
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for academic publication (Tobin et al. 2010). This last anecdote is one illustration of

clinical bioinformaticians’ interest in complying with generally accepted research

and data-stewardship best practices even when the relevant law or policy sets a

lower standard. This is especially true when the projects will persist over time.

A second shortcoming associated with the piecemeal US approach to data-

privacy law is the risk of unintended gaps in protection. For example, although

GINA provides legal protection against discrimination on the basis of asymptom-

atic genetic features, and the Americans with Disabilities Act of 1990 protects

against discrimination on the basis of disease that has manifested itself and imposes

a substantial limitation, experts have cautioned that it remains unclear whether US

law provides any protection against discrimination in situations between those two

extremes, such as discrimination on the basis of mild symptoms (Rothstein 2008) or

discrimination based on predictions made by machine learning techniques on

genetic data (Horvitz and Mulligan 2015).

14.1.2 Funding Agency Policies

In addition to being subject to data-privacy law, clinical bioinformaticians must

also often subject themselves to institutional policies, often as a condition of

receiving funding. While data-privacy laws are enforceable either by national

courts or by administrative entities to which the law delegates this task, the direct

penalty for failing to adhere to funding policies is aimed at the professional medical

activity itself. Funding may be withdrawn from a given project, and it may also be

jeopardized for future projects. Policy breaches that become widely known may

erode the confidence of both funders and participants so that continued research or

practice is impossible.

But the duties described in policies adopted by funders can also become legally

enforceable, either when they are explicitly made part of a contract (e.g. between

researcher and funding agency), or when courts draw on the standards they establish

to determine whether a defendant has met the standard that should be expected of a

reasonable researcher or practitioner to determine liability in tort law or delict.2

Although certain laws, notably the US Common Rule, may require that medical

research projects submit a detailed research proposal to a research ethics body and

obtain prior approval, the requirement is commonplace in the realm of policy.

Because the objectives of funding policies are not limited to protecting partici-

pants—the sole aim of medical and data-privacy law—and because they also seek

to foster a context in which medical research will thrive, they contain some unique

requirements not found in law. The following section discusses one such topic,

open-data requirements.

2 In the common law and civil law traditions, respectively.
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14.2 Open Data

Data-sharing duties have rapidly proliferated in the policies adopted by funding

agencies that they impose on grant recipients, although these duties have not found

their way into data-privacy laws. This section explains the rationale behind open

data policies, describes some of the obligations that apply to research data, notes the

presence of sharing repositories, and finally discusses the extension of this current

into open publishing.

14.2.1 Rationale

A recent report by the Expert Advisory Group on Data Access (EAGDA), a joint

initiative of four of the largest UK research institutions, lists four factors that favour

making research data openly available (see Fig. 14.2).

These factors weigh particularly heavily in bioinformatics and the -omics fields.

The data in question is rich and multidimensional to the point that it is difficult to

imagine ever exhausting its research potential. Research methodologies like

genome-wide association studies (GWAS) rely on increasingly large sample

sizes: the larger the better (McCarthy et al. 2008). The cost of collecting—

let alone sequencing—this data directly from large numbers of people anew for

each and every research initiative would be prohibitive.

Despite the strong trend toward data sharing, open-data requirements cannot be

absolute. The exception that proves the rule is the Personal Genome Project (PGP),

which makes the genetic data of 3500 volunteers freely available for download on

its website (personalgenomes.org). But genetic research projects generally cannot

meet their objectives without guaranteeing privacy protection to participants. This

may also be true for the PGP, whose aim is to sequence and publicize the complete

genomes and medical records of 100,000 volunteers.

1. The scale of datasets being collected has grown dramatically, and these datasets are assembled
at significant cost.

2. It will usually not be possible for one group to analyse these data exhaustively, and there will
often be significant potential for the data to be used to answer questions distinct from the
original research questions of the data producers.

3. Developments in information technologies are transforming the ease with which large datasets
can be shared, linked and analysed.

4. Both those who volunteer their data and samples for research, and those who pay for that
research, hope for progress towards useful and eventually applicable results for human health
and other societal benefits to be as rapid as possible. Indeed, there is a clear ethical requirement
for efficient use of data from human research participants.

Fig. 14.2 ‘Drivers for data sharing’ listed by the UK Expert Advisory Group on Data Access

(Expert Advisory Group on Data Access 2015)
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Genetic researchers have their own concerns regarding open data, primarily the

fear that before they have the chance to publish their findings, their collected data

will be used by rival researchers who will publish their results first. The most

common mechanism to address this concern has been to mandate embargo periods,

during which researchers temporarily holds exclusive publication rights over ‘their’
data. The embargo mechanism, however, has proven difficult to enforce in practice,

and thus appears less often in recent data-sharing policies.

Enforcement difficulties were explicitly cited by the US National Institutes of

Health (NIH), for example, as the reason abandoning embargo periods were aban-

doned in the 2014 Genomic Data Sharing Policy (GDS), which now applies to all

large-scale, NIH-funded genomics research (National Institutes of Health 2014a).

14.2.2 Extent of the Duty

Open data obligations are about more than simply making research data available.

Funding agencies commonly require that applicants include a data-sharing plan with

their research funding proposal. Policies may also require that the data meet standards

for quality and interoperability, and almost always encourage or even require that

researchers release their data as rapidly as possible. The accepted delay for release of

research data can be as little as 24 hours after they are generated, following the

recommendation of the ‘Bermuda Principles’ put forward in 1996 by leaders in the

Human Genome Project (Marshall 2001). A minor trend in the reverse direction has

emerged, for example in the 2014 GDS policy, in which the NIH sought to account

for its elimination of the embargo period by pushing some of its data-release

deadlines back to the time of initial publication (National Institutes of Health 2014a).

The GDS policy provides detailed guidance regarding the NIH’s expected

deadlines. A slightly simplified version of the table it provides appears in

Fig. 14.3, which is divided both between data submission and data publication

deadlines, as well as into five distinct levels the NIH distinguishes based on the

amount of processing and analysis that have been carried out on the data.

14.2.3 Repositories for Data-Sharing

To make compliance with their mandatory data-sharing requirements easier,

funding agencies sometimes provide researchers with technological resources to

assist in the process, and in particular have established repositories to which the

data can be submitted for future access for secondary research. The NIH database of

Genotypes and Phenotypes (dbGaP), a repository for individual-level data, is likely

the most well-known of these. Data-sharing policies sometimes require that the data

be submitted to a repository that has been specifically approved by the funding

agency. The GDS policy is one such example, although it additionally allows

342 M. Phillips



researchers to submit their data to external repositories, so long as these include

privacy and security features that meet the policy’s requirements (National Insti-

tutes of Health 2014c).

14.2.4 Open Publishing

Funding agency policies also frequently apply the ‘open’ ethos more broadly, and

require not only that researchers’ data be made available, but also the academic

analysis they ultimately publish. This trend has been made possible the proliferation

of open-access academic journals. In Canada, for example, the Tri-Agency Open
Access Policy on Publications not only requires the submission of bioinformatics

data to a public database in certain circumstances, it also mandates that any funding
from the country’s three principal scientific research agencies3 comes with the

obligation that the funding recipient will ‘ensure that any peer-reviewed journal

General Description Example Data Types Data Submission Expected Data Release Timeline

Level 0 Raw generated data Instrument image data Not expected

Level 1 Initial sequence reads DNA sequencing 
reads, ChIP-Seq reads

By publication time for non-human, de novo data

Not expected for human data

Level 2 After initial analysis or 
computation to clean 
data and assess quality

DNA sequence 
alignments to a 
reference sequence

Within 3 months of data
generation, for human data

By publication time, for
non-human data

Within 6 months of
acceptance for publication or
data submission, whichever
occurs first, for human data

By publication time, for non-
human data

Level 3 Analysis to identify
genetic variants, gene
expression patterns, or
other features

SNP or structural
variant calls,
expression peaks,
epigenomic features

Within 3 months of data 
generation, for human data

By publication time, for 
non-human data

Within 6 months of
acceptance for publication or
data submission, whichever
occurs first, for human data

By publication time, for non-
human data

Level 4 Final analysis relating
genomic data to
phenotype or other
biological states

Genotype-phenotype
relationships,
relationships of
epigenomic patterns to
biological state

As analyses are completed,
for human data

By publication time, for
non-human data

Data released with
publication, for human data

No later than the time of
initial publication, for non-
human data

Fig. 14.3 Data submission and release deadlines (Adapted and abridged from a supplement to the

NIH Genomic Data Sharing Policy for the five general levels of data it specifies (National

Institutes of Health 2014b))

3 Namely, the Canadian Institutes of Health Research (CIHR); the Natural Sciences and Engineer-

ing Research Council of Canada (NSERC), and the Social Sciences and Humanities Research

Council of Canada (SSHRC).
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publications arising from Agency-supported research are freely accessible within

12 months of publication’ (Government of Canada 2015).

14.3 Consent

Informed consent has been a fundamental principle of healthcare and research for

decades. Indeed, the topic dominated discussion in medical literature during the last

half of the twentieth century (Manson and O’Neill 2007), and is seen as the essential
mechanism for protecting patients and participants. Health care practitioners who

provide personalized medicine to patients will be held to informed consent require-

ments, just as are other providers of health care.

But informed consent duties are usually less strict for secondary use of data or

materials, for example, when research teams carry out studies on materials in

biobanks or information in genomic data sharing repositories. This section focuses

on consent to secondary research, and then also discusses dynamic consent, which

has been proposed and has recently begun to be adopted in attempt to breathe new

life into consent practices.

14.3.1 Secondary Use

Secondary research is difficult to reconcile with the normal approach to informed

consent, which would require the initial participants to re-consent, which ‘is costly and
time-consuming, and difficulty in locating people can result in high drop-out rates’
(Kaye et al. 2015). A variety of policy and legislative responses have emerged to

decrease the intensity of specific consent requirements in the context of secondary use.

One approach is to simply abandon the consent requirement where it proves too

onerous. Singapore’s Personal Data Protection Act 2012 (PDPA), for example,

allows the use of personal data without consent for research when re-consent would

be ‘impracticable’. (To drop informed consent, the PDPA additionally requires that

the research could not be accomplished without the data, it imposes limits on

linkage with other data, and requires that the data subjects not be contacted.) In a

guidance document, Singapore’s Personal Data Protection Commission explained

that the impracticability condition should be considered to be satisfied, for example,

where the data was ‘collected many years ago’, because in that case the data

subjects may have died or moved to another country in the intervening time

(Personal Data Protection Commission (Singapore) 2014).

A second strategy is to eliminate the need for re-consent by seeking consent from

participants at the moment when they initially consent to participate that is broad

enough to also allow it to satisfy the consent needed for their participation in

potential future research. Volunteers in the PGP, for example, whose data is

available to any researcher or hobbyist who cares to make any conceivable use of
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them, must consent to all potential future uses of their data before they are included

in the open, online PGP repository. Somewhat similarly, the NIH’s GDS policy

‘expects investigators generating genomic data to seek consent from participants

for future research uses and the broadest possible sharing’ (National Institutes of
Health 2014a).

But consent can easily become too broad. Blanket consent to any possible future

research is inconsistent with many law and policy protections. Even when these

protections allow departures from full informed consent, the tradeoff is usually an

increase of other obligations, such as external monitoring and governance

requirements.

One of the fundamental principles of the 1980 OECD Privacy Guidelines—
which have influenced nearly every other data-privacy law that currently exists—

requires that whenever personal data is collected, the purposes of collection are

specified, and that any subsequent use of the data must be limited to those purposes.

If the purpose of collection is stated too broadly, for example if the purpose is

simply to allow participation in future research, this may prove to be insufficient to

satisfy the specification requirement. Under the HIPAA Privacy Rule, for example,

unless a research team member ‘anticipated and adequately described the purposes

of the secondary research in the initial authorization received from a patient, that

initial authorization may not constitute authorization for the use of identifiable

registry data for secondary research purposes’ (United States Agency for

Healthcare Research and Quality 2007).

Similarly, Article 6 of the current draft of the forthcoming EU Regulation

prescribes a general prohibition on secondary use ‘[w]here the purpose of further

processing is incompatible with the one for which the personal data have been

collected’, with only few exceptions, although this provision has been among those

in the EU Regulation that have been most actively contested.

A third approach is to allow secondary use without fresh consent when privacy

guarantees in place are likely to prevent harm to the participant that might flow

from data use. Canada’s Tri-Council Policy Statement (TCPS) adopts an approach

similar to that of Singapore’s PDPA, but additionally requires that appropriate

privacy safeguards are in place. Rather than stating what, precisely, those privacy

safeguards must be, the TCPS leaves the competent research ethics body the

discretion to consider the question according to each particular set of circum-

stances. The US Common Rule implements the privacy guarantee approach in a

more rigid manner. It simply exempts data that have been anonymized from having

to conform to its requirements, by deeming research on anonymized data not to

involve human subjects. In a somewhat similar way, the HIPAA Privacy Rule also

allows secondary use of anonymized data.

14.3.2 Dynamic Consent

One additional strategy that might be leveraged to address the difficulties with

secondary consent is the adoption of dynamic consent mechanisms, although no
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prominent laws or policies currently explicitly require that they be used. The

strategy is, however, being discussed with enthusiasm as a means to begin to

address shortcomings associated with the traditional approach to informed consent

more broadly (Erlich et al. 2014). The existing, standard notice-and-consent prac-

tice is characterized by lengthy consent forms that are presented to participants at

the outset of their involvement research. The forms tend to leave the participant

little meaningful choice, beyond the initial decision between whether to accept the

conditions it describes, or to opt out of the research altogether. Critics liken this

process to the lengthy terms and conditions often found in online contractual

agreements, which invariably end with a single button marked ‘I agree’, which a

person can choose to either click, or not.

If we are indeed entering into an era of personalized medicine, advocates of

dynamic consent ask, why not also one of personalized consent? ‘If biobank research
is open-ended and ongoing then information technologies offer the possibility for

participant involvement similarly to extend through time’ (Kaye et al. 2015). The

approach is most compelling where the participants’ and patients’ internet access is
not overly hindered, either by technological, cultural, or educational barriers.

Research participants each have unique desires and expectations related to their

research. Some may be comfortable with their data being shared for research into a

specific disease, but feel that participation in unrelated research is not worth the

privacy risks. Others may want their data to be available for a wide variety of

medical research, but be opposed to their data being acquired or used by pharma-

ceutical corporations. Still others may want to prevent their personal health infor-

mation from being used in studies that open it to a greater risk of government or law

enforcement surveillance programs.

Dynamic consent strategies can allow not only for these decisions to be made by

the participant and respected by researchers, especially in the clinical setting, but

also allow for evolution over time of both the available options and preferences

themselves. They can also allow participants’ preferences to travel with their data

samples. The approach seems to more fully embody and give meaning to the

longstanding expectation that ‘researchers will comply with any known preferences

previously expressed by individuals about any use of their information’ (TCPS).
Whether or not dynamic consent ultimately continues to expand in practice,

consent will continue to retain its central role in medical practice despite undergo-

ing significant changes in evolving contexts (Expert Advisory Group on Data

Access 2015).

14.4 Anonymization

Until relatively recently, privacy experts invested a significant portion of their

efforts into techniques to achieve data anonymization (or de-identification, which
is sometimes used as a synonym, and other times, as a broader concept also

encompassing pseudonymization). But a series of published re-identification
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attacks has led to vigorous debate and reappraisal of the merits of anonymization,

and health professionals and privacy experts have now increasingly been driven

toward alternative strategies.

The basic practice of anonymization can be illustrated by considering aggregate

statistics. Even if thousands of people’s personal data must be mobilized to deter-

mine that Berlin has a population of 3½million, that statistic itself reveals effec-

tively nothing about any of the city’s specific residents. Even if the statistic relies on
a great amount of personal information, it is itself an anonymized datum.

Anonymization, however, is commonly carried out without aggregation. The

paradigmatic example is an operation on set of records, each of which relates to a

single person, which excizes or obfuscates enough information in each record to

make it becomes impossible to use the resulting data set to identify any of the

people initially connected to the data.

Data-privacy legislation usually addresses anonymization only implicitly: The

laws usually restrict their scope so that they have no application to information in

general, but only to personal information,4 defined as information about an iden-

tifiable individual. Information that cannot identify an individual—such as the

statistics mentioned above, or data that has otherwise been anonymized—falls

outside of this scope and is therefore not subject in any way to data-privacy legal

or policy protections. Some specific data-privacy protections also explicitly state

that they do not apply to data that has been anonymized.

This section first describes different legal standards that data has to meet in order

to be considered properly anonymized. It then explains why anonymization as a

technique has fallen into disfavour among privacy exports and health professionals

alike. The section finally discusses the legal implications of some of the new

approaches that are beginning to occupy the place formerly held by traditional

anonymization techniques.

14.4.1 Thresholds

Perfect anonymization is impossible: ‘Data Cannot be Fully Anonymized and

Remain Useful’ (Dwork and Roth 2014). Perhaps unsurprisingly then, the legal

and policy requirements for data to be considered properly anonymized vary.

Different thresholds are sometimes deliberately specified depending on the use

that will be made of the data, on its sensitivity, or on a combination of both factors.

This follows the principle that the degree of anonymization should be proportionate

to the intensity of potential harms that might result from misuse of the data, and the

likelihood that those harms will, in fact, materialize.

Coding or pseudonymization is a strategy related to, but distinct from,

anonymization. The practice allows data sets to retain an identifier whose purpose

is to allow the re-identification of data which have otherwise been anonymized, but

4Or any of various synonyms used, such as ‘identifying data’.
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to allow this only by people with access to a separate, private data set that links the

identifiers back to individually identifying information.

While the HIPAA Privacy Rule’s conception of ‘de-identified’ data, as discussed
below, encompasses coded data, the EU Data Protection Directive excludes it by

defining personal data as data relating to a person ‘who can be identified, directly or
indirectly, in particular by reference to an identification number’.

The various legal and policy definitions of personal data almost invariably

remain at a highly abstracted level. In the broadest terms, personal data can be

cast either narrowly, as occurs in definitions that include only data in which a

person’s identity is ‘readily ascertainable’, or broadly, as occurs in definitions that

include any data for which it is reasonably foreseeable that the data (either alone or

in combination with other data sets) will allow an individual to be identified.

One notable exception to the trend of defining anonymization in general terms is

the HIPAA Privacy Rule, whose definition delves into an unusual level of technical

detail. The Privacy Rule provides two alternative procedures, either of which

allows data to be considered de-identified for HIPAA’s purposes. The first option

is to obtain a detailed written opinion from a statistician assuring that the

re-identification risk that can reasonably be anticipated is ‘very small’. The second
option, sometimes referred to as the HIPAA ‘Safe Harbor’, requires that each of

seventeen specified fields be removed from every record in the data set (see

Fig. 14.4).

(A) Names;

(B) All geographic subdivisions smaller than a State ... except for the initial three digits of a zip code 
if ...

(1) The geographic unit formed ... contains more than 20,000 people; and

(2) The initial three digits of a zip code for all such geographic units containing 20,000 or fewer
people is changed to 000.

(C) All elements of dates (except year) ... directly related to an individual ... ; and all ages over 89 and
all elements of dates (including year) indicative of such age, except that such ages and elements may be
aggregated into a single category of age 90 or older;

(D) Telephone numbers;

(E) Fax numbers;

(F) Electronic mail addresses;

(G) Social security numbers;

(H) Medical record numbers;

(I) Health plan beneficiary numbers;

(J) Account numbers;

(K) Certificate/license numbers;

(L) Vehicle identifiers and serial numbers, including license plate numbers;

(M) Device identifiers and serial numbers;

(N) Web Universal Resource Locators (URLs);

(O) Internet Protocol (IP) address numbers;

(P) Biometric identifiers, including finger and voice prints;

(Q) Full face photographic images and any comparable images;

Fig. 14.4 The seventeen HIPAA privacy rule de-identification fields
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HIPAA Safe Harbor anonymization additionally requires the removal of any

other unique identifying number, with the exception of an optional re-identification

number (which would thus result in a coded, rather than an anonymized, data set).

The Safe Harbor’s final requirement is that the person carrying out the

anonymization must not have ‘actual knowledge that the information could be

used alone or in combination with other information to identify an individual’.
A less strict variation on Safe Harbor anonymization, called a limited data set, is

also described by HIPAA. The use of limited data sets, as a tradeoff, requires that

researchers sign a data-use agreement subjecting them to additional restrictions on

how the data may be used and to whom it may be disclosed. The limited data set

anonymization fields appear in Fig. 14.5. Limited data sets are most commonly

used by researchers who want to analyze the additional data fields that can legiti-

mately be retained, such as dates and five-digit zip codes.

14.4.2 Anonymization’s Fall into Disfavour

The Safe Harbor’s straightforward anonymization instructions may seem appealing

when compared with a duty to anonymize data according to the vague standard

requiring that it is no longer reasonably foreseeable that they will one day allow

(i) Names;

(ii) Postal address information, other than town or city, State, and zip code;

(iii) Telephone numbers;

(iv) Fax numbers;

(v) Electronic mail addresses;

(vi) Social security numbers;

(vii) Medical record numbers;

(viii) Health plan beneficiary numbers;

(ix) Account numbers;

(x) Certificate/license numbers;

(xi) Vehicle identifiers and serial numbers, including license plate numbers;

(xii) Device identifiers and serial numbers;

(xiii) Web Universal Resource Locators (URLs);

(xiv) Internet Protocol (IP) address numbers;

(xv) Biometric identifiers, including finger and voice prints; and

(xvi) Full face photographic images and any comparable images.

Fig. 14.5 Protected health information that excludes these direct identifiers of the person to whom

the data relates and of their relatives, employers, or household members qualifies as a Limited

Dataset under the HIPAA Privacy Rule
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re-identification. But the apparent simplicity of the Safe Harbor is a false promise,

especially where genetic data is concerned, which is notably absent from the

anonymization fields listed in Figs. 14.4 and 14.5.

Because all but the shortest genetic sequences are high dimensional, these data

are generally thought to be impractical to anonymize (El Emam and Arbuckle

2013). Some have argued that to comply with the Safe Harbor rules genetic

information must be removed because it itself constitutes a unique identifying

number under the eighteenth HIPAA Safe Harbor identifier. Guidance issued in

the intervening years has, however, failed to address the issue (Office for Civil

Rights 2012). The Safe Harbor’s ‘actual knowledge’ requirement should also

generally prevent genetic data from being included in a data set, though that test

is drafted to depend on the mindset of the person doing the anonymization rather

than on reasonable expectations of re-identifiability. The requirement is thus often

ignored in practice (El Emam and Arbuckle 2013).

Beyond the challenges posed by genetic data, the HIPAA Safe Harbor is an

illustration of the broader problems with attempts to set out a detailed

anonymization procedures in law that do not take into account specific contexts.

A 2009 report by the US Institute of Medicine found a number of failings with the

HIPAA Privacy Rule, and emphasized that HIPAA’s rigid procedure is simulta-

neously too strict and not strict enough. It is indeed trivial to construct an example

data set for which the Safe Harbor both allows re-identification and also requires

that data be unnecessarily removed.

Not only is HIPAA’s approach to anonymization less than optimal, but the

broader practice of anonymization itself has now increasingly fallen out of favour

as an effective means of privacy protection, particularly when it comes to high

dimensional data such as genomic sequences. Existing techniques are able to

re-identify an individual given as few as thirty independent single nucleotide

polymorphisms (SNPs) (El Emam and Arbuckle 2013), and so to anonymize any

genetic sequence with confidence would often require obliterating most of the data,

along with its research value. In the same vein, anonymization is coming to be seen

as unhelpful to translational medicine, which relies on linkage between different

data sets, and is impossible once anonymization effectively sterilizes them.

If debate about the continued relevance of anonymization has not been

completely settled, perhaps it is because its remaining defenders have already

conceded so much. It is increasingly rare for anonymization to be used as a privacy

safeguard in practice on its own, without being supported by other mechanisms.

After researchers showed that data in dbGaP could be re-identified despite having

been anonymized according to HIPAA, the NIH converted dbGaP into a controlled-

rather than open-access repository (Homer et al. 2008; National Institutes of Health

2008). In the UK, EAGDA now similarly recommends alternative protections such

as access controls (Expert Advisory Group on Data Access 2013), although new

re-identification attacks continue to be described in the literature (Cai et al. 2015).

In 2014, the New Zealand Privacy Commissioner suggested addressing

anonymization’s weaknesses by going so far as to make it illegal to attempt to

re-identify data (Edwards 2014).
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14.4.3 Successors

Data-privacy experts are now turning away from anonymization and have begun to

explore emerging alternative approaches to privacy protection, which sometimes

include the potential to achieve provable security. The goal is no longer to

anonymize datasets as much as possible so that they can be shared as widely as

possible. Instead, many of the new strategies are based on cryptographic methods

which aim to allow genomic research studies to be carried out without the need for

any of the raw research data itself to ever need to be disclosed. At the forefront of

these techniques are homomorphic encryption, secure multiparty computation, and

differential privacy.

Homomorphic encryption is an attractive approach in cases where a third party is

made responsible for storage and computation whose access to the data would itself

be a privacy risk, such as in the context of the increasingly prevalent practice of

genomic research using cloud computing services (Lauter et al. 2014). Genomic

data is uploaded to the cloud in an encrypted form, and homomorphic encryption

then allows researchers to submit calculations to have the cloud perform on the

encrypted data and to ultimately receive the encrypted result, all the while

maintaining the data in its encrypted form so that it remains unreadable to other

parties, including the cloud service provider itself.

Secure multiparty computation is a related strategy. In this case the data set is

split between multiple parties so that each one holds only a fraction of the overall

data to be analyzed. Cryptographic methods then allow researchers the parties to

collectively carry out calculations on the full data set without any individual party

having to reveal any of their own raw data (Kamm et al. 2013). Similarly, tech-

niques such as DataSHIELD allow researchers to perform aggregate calculations

and studies on data sets held by third parties without the need to reveal any raw data

to the researcher (Wolfson et al. 2010).

Differential privacy offers perhaps the most promise of all of these new methods,

and is used in contexts of statistical aggregation. This method aims to mathemat-

ically determine whether an individual’s decision to participate in a given study will
have any effect on their privacy. Dwork and Roth describe differential privacy as a

‘promise’ that those holding data make to a data subject: ‘You will not be affected,

adversely or otherwise, by allowing your data to be used in any study or analysis, no

matter what other studies, data sets, or information sources, are available’ (Dwork
and Roth 2014).

These techniques have not yet made their way into laws and policies, and even

though they are largely departures from anonymization, the legal analysis of their

use must consider the rubric of personal information. This is so because despite the

mathematical proofs that have been published demonstrating some of the methods’
abilities to securely protect privacy, none has yet resulted in a generalizable method

to ensure privacy protection in practice. Current practical methods of homomorphic

encryption, for example, still require an ‘assum[ption] that all [collaborating]

entities behave semi-honestly’ (Lu et al. 2015). Because calculations in secure
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multiparty computation are always based on the raw data, the results they produce

must reveal a degree of private information. For reasons such as these, it will remain

necessary to ask whether it is reasonably foreseeable that the information revealed

by these techniques allows individuals to be identified are likely to remain relevant.

If the answer is yes, the associated data-privacy law restrictions will continue to

apply.

14.5 Cross-Border Transfer

Concerns about cross-border transfer of data have grown considerably following

Edward Snowden’s revelations about the existence of widespread electronic sur-

veillance programs. Both legal and policy restrictions now exist on cross-border

transfer of personal information have increased in intensity and expanded in

number. The rapidly expanding use of cloud computing in bioinformatics fields

has also added to these concerns, given what is seen as the inherent borderlessness

of cloud technologies.

The overarching concern with cross-border transfers and outsourcing of personal

data is that these can place the data in contexts where they may be exposed to more

serious privacy risks, and in particular, risks that the data holder is required not to

expose them to. Because Canada’s Tri-Council Policy Statement, for example,

requires that researchers ‘avoid being put in a position of becoming informants

for authorities’ (Canadian Institutes of Health Research, Natural Sciences and

Engineering Research Council of Canada, Social Sciences and Humanities

Research Council of Canada 2014), this requires that researchers seek to avoid

cross-border transfer to a jurisdiction known to engage in such surveillance

programs.

In the broadest terms, most laws and policies aim to allow cross-border transfer

and outsourcing when this will not significantly undermine data privacy. Two

general approaches have emerged in data-privacy law with the objective of achiev-

ing this aim in the context of cross-border personal data transfer.

The accountability approach requires the entity transferring data to ensure that it
will enjoy a similar or greater degree of protection in the hands of the specific entity

to which the data is transferred in another jurisdiction. Canada has adopted this

approach in its Personal Information Protection and Electronic Documents Act
(Canada 2000).

The adequacy approach, in contrast, allows cross-border transfer only if the

target jurisdiction has previously been deemed adequate by the data-privacy author-

ity tasked with making such determinations. Adequacy determinations are required

for cross-border transfer by the EU Directive, and the same approach will be

retained in the new EU Regulation, and existing adequacy determinations will

remain in force. Data-privacy laws in thirteen different jurisdictions have currently

been approved by the European Commission as providing adequate protection.
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Other laws, particularly since the Snowden revelations, have imposed blanket

prohibitions on transfer or storage outside the jurisdiction, which may be subject to

exceptions. The law of the Canadian province of British Columbia, for example,

has long included such a blanket provision, which prohibits public bodies from

storing personal information outside of Canada (British Columbia 1996). In 2014,

however, the Information & Privacy Commissioner of that province published

updated guidance stating that it is possible for public bodies to store personal

data outside of the country without violating the law if the data are protected by a

data security technique called tokenization (Office of the Information & Privacy

Commissioner for British Columbia 2014). Tokenization is somewhat similar to

coding. In this case, it would allow data sets to be stored outside of Canada so long

as any personal information has been replaced by a ‘token’. The token allows the

personal information it represents to then be retrieved using a separate data set

known as a ‘crosswalk table’, which must be stored in Canada.

14.6 Genetic Nondiscrimination

Laws and guidelines have recently proliferated that prohibit certain forms of

discrimination on the basis of genetic information. The US Genetic Information
Nondiscrimination Act of 2008, for example, was discussed in the Introduction to

this chapter, especially with respect to gaps in the protection it provides against

certain ‘milder’ forms of genetic discrimination.

But like many other genetic nondiscrimination laws, GINA is also limited in

terms of who it prevents from engaging in discrimination. GINA applies only to

insurance and employment sectors. But this does not mean that researchers in

clinical bioinformatics are free to disregard these laws, which often contribute to

determining the risks of discrimination to which research participants are exposed.

The Philippine National Ethics Guidelines for Health Research 2011, for example,

explicitly require that research projects involving genetic data contend with the

issue (Philippine National Health Research System 2011):

There is potential harm to research participants arising from the use of genetic information,

including stigmatization or discrimination. Researchers should take special care to protect

the privacy and confidentiality of this information.

Beyond providing these privacy and confidentiality protections, clinical

bioinformaticians must be aware of any participant or patient interaction that

could reasonably increase the risk of becoming subject to genetic discrimination.

For example, although Australia’s Insurance Contracts Act 1984 prohibits insur-

ance companies from requiring that a customer undergo genetic testing, if the

customer has already had a genetic test, and even if they simply know the results

a family member’s test, the results must be declared before entering into a new

insurance contract (Liddell 2002).
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In some jurisdictions, clinical bioinformaticians themselves are additionally

directly subject to prohibitions on genetic discrimination. One of the earliest

genetic nondiscrimination laws, for example, the Council of Europe’s Oviedo
Convention, does not limit its scope to any particular categories of potential

discriminators (Fig. 14.6).

14.7 Conclusion

Although legal and policy duties regulate clinical bioinformaticians in areas beyond

those discussed in here—including transaction logging, data-privacy breach notifi-

cation, risk assessment, and reporting of incidental findings, among others—this

chapter provided an introduction to five areas of key importance. Some were chosen

because they hold a fundamentally important place in the legal and policy frame-

works, while others have been the subject of extensive expert debate and discus-

sion. In either case, familiarity with these concepts is helpful in contending with the

broader issues. The discussion focused on law and policy from several world

regions, to illustrate the ways in which positions on each question can either

converge or deviate around the globe.

The fundamental tension in the field, which presents itself at every turn, remains

finding the optimal balance between privacy protection and the facilitation of

medical research and care. What often appear to be new areas of debate—such as

the question of open data, or even of the continued relevance of anonymization

techniques—each soon reveal themselves to be manifestations of that same initial

underlying tension. If the issue of open data in genomics were entirely independent

of this tension, the most vocal advocates of open bioinformatics research data might

Article 11 – Non-discrimination

Any form of discrimination against a person on grounds of his or her genetic heritage is prohibited.

Article 12 – Predictive genetic tests

Tests which are predictive of genetic diseases or which serve either to identify the subject as a carrier
of a gene responsible for a disease or to detect a genetic predisposition or susceptibility to a disease
may be performed only for health purposes or for scientific research linked to health purposes, and 
subject to appropriate genetic counselling.

Article 13 – Interventions on the human genome

An intervention seeking to modify the human genome may only be undertaken for preventive,
diagnostic or therapeutic purposes and only if its aim is not to introduce any modification in the
genome of any descendants.

Article 14 – Non-selection of sex

The use of techniques of medically assisted procreation shall not be allowed for the purpose of
choosing a future child’s sex, except where serious hereditary sex-related disease is to be avoided.

Fig. 14.6 Chapter IV of the Council of Europe’s 1997 Oviedo Convention, which sets out basic

protections with respect to the human genome (Council of Europe 1997)
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be expected to be seen applying the idea of a genomic commons to the issue of

genetic patents, arguing to limit these or eliminate them altogether, but efforts in

this direction are, if anything, currently declining (Contreras 2015). Thankfully,

robust promotion of both health research and of privacy protections do not always

have to be played off against one another in a zero-sum game. Many of the

techniques described in this chapter that have only recently begun to be explored

and that have yet to be internalized by law and policy at all, such as homomorphic

encryption and dynamic consent, appear to have the potential to promote both.

Disclosure Statement Funding for this work was provided by the Canada Research Chair in Law

and Medicine.
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Chapter 15

Challenges and Opportunities in Clinical
Bioinformatics

Denis C. Shields

Abstract Clinically applied bioinformatics faces many specific challenges. Many

of these are related to challenges faced by discovery bioinformatics, which is

confronted by similar issues of data complexity, data scale, and the lack of

statistical power to address key problems. These include issues of the scale and

variety of data being handled and annotated, and the associated proliferation of

errors of data annotation, and errors of statistical inference. Modelling issues

include the choice of methods, and the flaws associated with overly simplistic

and overly complex approaches.

Data aggregation among researchers and clinicians and patients is likely to

represent a key step forward, but the main clinical gains are likely to emerge

from the aggregation of relatively homogeneous data types, associated with clear

prior hypotheses. It may be less useful to integrate analytical and predictive

approaches across many different complex data types in smaller groups of subjects.

Clinical bioinformatics needs to be integrated into new regulatory paradigms for

incorporation of knowledge into healthcare. We need to explore possibilities of

one-person trials integrated with genotypic data but the theoretical and practical

frameworks for such approaches are not worked out.

Keywords Clinical bioinformatics • Big data • Statistical power • Data

integration • Data aggregation

Clinical bioinformatics presents considerable opportunities for advancing human

health. In line with genomics advances (Stephens et al. 2015; Schatz and Langmead

2013), it faces considerable challenges. One clear example is the case of stratified

analysis of patient data, where the disadvantages of smaller sample sizes that result

from dealing with a subset are in a few cases outweighed by the very clearly defined

improvement in risk definition.

An example of the opportunities from discovery bioinformatics is the identifi-

cation of the BRCA1 gene for breast cancer, by focusing on early-onset patients
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(Hall et al. 1990). An example of an opportunity from clinical bioinformatics is the

treatment with antibodies versus the HER2 receptor to treat those breast cancer

patients whose tumours test positive for this receptor (Vogel et al. 2002).

One of the challenges is the assumption that more knowledge, and further

stratification based on this knowledge will inevitably improve health outcomes.

To counter this, the medical literature is littered with examples of subset analyses or

stratified analyses have been pursued doggedly in spite of a clear lack of evidence

that the particular stratum focused on did indeed have an identifiable and different

risk, whose treatment as a separate clinical entity clearly justified the distinctive

treatment of those patients in a separate manner. Another related challenge is the

spectre of “incidental” findings from high throughput molecular analysis (Berg

et al. 2011) confusing and stifling our health systems with spurious and inappro-

priate follow up studies.

Bioinformatics in general, and translational and clinical bioinformatics are not

truly a single field (Stein 2008), but are a collection of activities joined by a set of

overlapping skillsets. Accordingly, there is no “single” challenge or opportunity.

While there are features that separate discovery and applied clinical bioinformatics,

there are also features that unite them (See Chap. 2). Tables 15.1 and 15.2 list

challenges facing bioinformatics in general, and highlighted where they may be of

particular relevance to clinical bioinformatics. One general problem is that we lack

statistical power to address all the hypotheses we would love to investigate. This is

at the heart of many challenges, as it may indeed reflect a central challenge in

medicine. Many of these challenges represent traps that I have stumbled headlong

into in the course of my own research, and have taken quite some time to emerge

from: in particular the trap of wanting findings to be more significant than they are

(Ioannidis 2005). It is very difficult for any human scientist to avoid this, and as

long as we have humans doing science we have to read each-others’ work in a spirit
of extensive and healthy scepticism, which I hope you will apply in reading this

review.

15.1 So Much Data. . .

While computational systems can handle ever increasing volumes and complexity

of data in terms of storage and retrieval, the ability of humans to make sense of them

require complex systems that create a layer of mystery over the data, such that the

person interpreting the data may have little understanding of the underlying data,

and is at the mercies of the assumptions of the models used to generate interpreta-

tions. This is a serious issue, but one that continuing serious scholarship can tackle

over time, by addressing the fundamental flaws in modelling processes and provid-

ing clearer guidance to users on the limitations or limited assumptions of the models

that are built into the associated systems.

The most serious consequence of data overload is simply the reduction in

statistical power to formally test hypotheses. While some guidance through the
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Table 15.2 Data challenges facing bioinformatics

Ten data challenges

Research

bioinformatics

Clinical

bioinformatics

Possible

opportunities or

solutions

Poor traceability of

evidence behind

annotations

Gene/protein annota-

tion (Mons

et al. 2008)

Variant function

annotation

Improved representa-

tion of evidence

chain in databases

Error propagation annotating genes

based on homology

(Gilks et al. 2002,

2005)

Linking rare diseases

to chromosomal

changes or single

base variants

(Quintans et al. 2014)

Imperfect data stan-

dard formulation and

compliance

Many standards have slow uptake in commu-

nity, and are in parallel made obsolete by tech-

nology change

Enforcement of stan-

dards by journal edi-

tors; simplify

standards

Ill-defined data

entities

Overlapping, poly-

morphic duplicate, or

chimeric genes cannot

be defined as single

object

Patient status and data

changing over time.

Too much data to

physically handle or

present

Challenge of finding

resources to keep

centralized databases

going

Routine clinical

imaging data: volume

of data issues, and

limited computer

tools for their auto-

mated analysis.

Good informatics

strategies led by

those with close

knowledge of the

data and its useful

meanings, and track

record dealing with

its existing issues

Increasing diversity

of data

e.g. human tissue

imaging, proteomic,

antibody, RNA, dis-

ease state, integrated

in protein atlas

See Chaps. 3, 4, 5, 6,

7, 8.

Commercial inter-

ests, scientific own-

ership interests and

concerns about

human data privacy

restrict data access

and limit research

Slowing of disease

SNP discovery by the

restrictions freely and

rapidly sharing

anonymised datasets,

even with relatively

limited

phenotypic data.

Limited sharing of

patient genomic and

phenotypic data; clin-

ically important allele

risk information hid-

den in commercial

silos (Angrist and

Cook-Deegan 2014)

Need to develop

encrypted analysis

approaches that max-

imise research bene-

fits but minimise

privacy breaches

(Erlich and

Narayanan 2014);

need regulatory

frameworks to avoid

incentivising com-

mercial and aca-

demic data hoarding

(Quackenbush 2014),

and systems that

enable data sharing

(Field et al. 2009).

(continued)
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data can help reduce somewhat the search space of hypotheses, and some condi-

tioning on prior information can again assist in reducing the search space and the

number of competing hypotheses, the consequences for the translation of research

observations to clinical practice are serious. This problem is not new, but the

volume and variety of data that may be collected in a clinical setting is likely to

mushroom over the next few years, making this the single most challenging issue of

modern clinical bioinformatics: how to prioritise what matters, and whether the

existing system of moving from research observations to clinical practice needs to

be overhauled, or at least supplemented, with alternative approaches that are

mindful of this problem.

A very simple example is as follows. Clinical trials are deliberately powered to

have enough patients to be likely to address the central issue: is the new drug

effective versus an alternative? If half of a study size of 1,300 patients are on drug

and half on placebo, the study has 95 % power to detect a drop of blood pressure

from 84 to 82, assuming a standard deviation of 10. This is to say that, if you were to

carry out this same study 100 times, 90 of the repeated studies would show a

significant association (at a p-value in each of �0.05), while ten would fail to

observe such an association. Suppose you want to ask a more complex question:

Table 15.2 (continued)

Ten data challenges

Research

bioinformatics

Clinical

bioinformatics

Possible

opportunities or

solutions

Cost and feasibility

of distributing data

Shift of sequence

databases from

release to users to

availability via web

and via remote analy-

sis tools (API, REST

interfaces)

Evolution of com-

mon data and ethics

practices and stan-

dards for access to a

limited number of

shared repositories of

human genetic and

phenotypic data

Computational cost

of processing data

Variant calling in

human genome

(Langmead

et al. 2009)

Hardware develop-

ment focusing on

string manipulation

rather than floating

point speed (Ste-

phens et al. 2015);

algorithms for more

efficient genome

comparisons

(Stephens et al. 2015)

Struggle to maintain

and develop con-

trolled vocabularies/

ontologies/

definitions

Gene ontology only

covers a minority of

genes with some

functional annotation

Proliferation of new

definitions of clinical

entities or pathogens,

based on molecular

analysis and

sub-analysis
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does the drug have a differential effect on those patients who carry a particular

common polymorphism within the target protein of the drug? The study size is

effectively halved, and there is only 72 % power to detect such an effect in this

subgroup. If the polymorphism is only found in 10 % of patients, the power drops to

21 %, so the chances are greater of not observing the true effect, with such a small

sample. If you extend this to a genome wide study of half a million polymorphisms

(even assuming all are carried at a frequency of 0.5) there is no longer sufficient

power to detect the association of genotype with drug (only 4 %), because a much

stricter p-value must be employed. If you want to look and see what pairwise

combinations of polymorphisms distinguish between drugs you have a total of over

100,000,000,000 tests, and the power drops towards zero. Yet, responses in indi-

vidual patients may be actually influenced by combinations of genetic factors, so

we are in principal interested in such studies, yet the trial would require a study size

of at least 12,000 subjects in order to address this. This is at least ten times the

original trial size, and in practise much greater, when rarer allele frequencies are

taken into account.

15.2 When We Have ‘all’ the Data, Will We Understand
Everything?

Most likely not. There is substantial complexity in the relationships between data

and outcomes. There is also problem of low predictive power for many datasets

across a variety of applications from discovery to clinical application. So much so,

that when investigators fail to find neat emerging patterns from a given strand of

evidence, they are tempted to combine it with another strand of evidence, in the

hope that data integration within a unifying model will have greater predictive

power than just taking one strand of evidence alone. This aspiration is based on the

observation that multiple factors influence outcomes, which leads to the spurious

conclusion, namely that the more factors that are modelled, the better will be our

understanding of the outcomes. This fails to recognize that when we combine two

very poorly powered data sources, each which has a low predictive power, it may

only in exceptional cases overcome the noise in both datasets to pinpoint a causal

factor or really quantify its effect. More typically, it will simply inflate the noise of

the source datasets, so that any source signal in a single data source may be

effectively drowned. Since there have been no formal examinations of this general

effect in the combination of noisy datasets, the scale of the problem is difficult to

judge in different circumstances. Typically, authors who present complex data

integration solutions lavish considerable effort on building an impressive model,

but little time on checking the sensitivity of the model to removing components. So

often an outcome that appears to be the result of a complex integration of multiple

datasets is merely dependent primarily on a single data source, with some
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over-fitting effects of the other contributors adding a little apparent, but spurious,

signal. The higher profile journals require that such predictions are followed up

with experimental validations, but it is quite difficult to distinguish among three

kinds of papers: (i) those which genuinely advance biological understanding

(ii) those which have been deliberately retro-fitted to make an experimental vali-

dation match a supposed complex informatics procedure that identified the gene of

interest, and (iii) those which were simply lucky by mistake. All three kinds of

papers read remarkably similarly, with extensive analytical detail buried in many

relatively arbitrary analysis decisions described in extensive supplementary mate-

rial. In many cases, it is likely that the authors themselves are often fairly unclear

which category their paper belongs in.

Bioinformatics has been around for a while now, and when we look at where it

has really transformed and accelerated understanding, leading towards useful

therapeutics and diagnostics, it has usually been in making simple links and finding

simple associations, rather than in providing convoluted models that try to integrate

everything. There is a place for integrative analysis, which may perform useful

roles equivalent to the kinds of data visualisations that a statistician performs prior

to carrying out a formal analysis. These analyses can guide the researcher’s
thinking about how complex processes may operate, and highlight potential biases

and artefacts, but they should not be typically placed centre stage as the primary

result. It should not be assumed that such integrative analyses are a panacea for all

the things about biology and medicine that we do not understand. In contrast with

the general field of bioinformatics, the field of clinical bioinformatics is better

protected against the tendency to place too much faith in complex integrative

analyses, since natural clinical caution avoids complexity in medical processes:

each extra step or dependency in a medical procedure is another thing that can go

wrong in the measurement or the application, reducing benefits to patients. Thus,

the apparent initial success of MALDI proteomics in predicting ovarian cancer was

relatively quickly made the focus of intensive investigation that revealed that the

models were poorly fitted (Ransohoff 2005).

While increasing complexity of data is likely to present substantial problems,

increasing the sample sizes of given classes of data (Risch and Merikangas 1996) is

a key factor in improving discovery of associations that can have clinical applica-

tion or be useful in defining new targets for therapeutics. Data accumulation of

clinical instances of rare variants, and their likely functional effects, is likely to

greatly improve the prognostic ability of clinicians to provide useful information to

patients regarding their genetic risks. But the aggregation needs to impose some

kinds of standards of consistency of functional annotation, or the aggregation is

much less worthwhile (Rehm et al. 2015). More organised data sharing is needed,

including domain-specific expert panels, so that clinical bioinformatics can benefit

from the data sharing across large research consortia that has benefited research

bioinformatics (Rehm et al. 2015). Thus, more organised data accumulation to

create larger relatively homogeneous datasets will help partially overcome some of

the issues surrounding weak predictive power.
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15.3 Data Presentation and Error Propagation

While integrative complex analyses of biological data should be treated with more

caution than is currently the case, integrative databases that allow researchers to

navigate among data types are as important as ever, but growing harder to manage,

in the face of the ever increasing complexity. Alternative integration schemes are

available, such as data warehousing and federated database solutions (Zhang).

However, the more intractable challenges lie within the data itself and the behav-

iour of scientists generating data. One key problem that will survive beyond the

teething problems seen with every new data type, is the problem of automated

curation that derives from analyses of other entries, using features such as homol-

ogy to infer annotations. This has long been recognized as a major issue in

degrading data quality (Table 15.2) and the evidence chain is difficult to work

back through. This leads to so-called propagation or percolation of error through

databases. We need better ways of representing more dynamically the annotation

basis of data so that a user can more readily evaluate either computationally or

manually the nature of the annotation quality and confidence.

15.4 Personalized or Precision Medicine

In the context of the above caveats, what is the prospect then for personalized

medicine and big data on everyone, how can we make sense of things? Drug

therapy is a good example of where personalized medicine is argued to be the

area where there are the greatest gains to be made. This is on the basis that adverse

drug events, many of which arise from measurable prior risk factors such as genetic

variants, are one of the leading causes of death. If we can incorporate data on those

adverse events, then we should be able to dose existing drugs more successfully

(Meyer 2000). Given that the older drugs were developed to work on a population,

often very ineffectively in individual cases, should newer drugs be developed from

the start assuming that different drugs will be suitable for different people? The

main issue is that the cost of developing personalized drugs for sub-populations is

bound to be more expensive than population drugs, and is only justified for society

if the clinical benefits outweigh that additional cost very substantially, in a signif-

icant fraction of patients. There are two very different perspectives from the

modelling community that throw light on this topic from very different directions.

Douglas Kell (2013) pointed out that one of the features of many large block-

buster drugs that treat the general population is that they frequently have pleiotropic

effects. If a drug lowers blood pressure by targeting not just one, but three different,

pathways, then it may well be much more resistant, in terms of its clinical effect on

blood pressure, to genetic variations. After all, people are unlikely to have drug-

sensitivity factor in all three targets. The overall result is a smoother effect on blood

pressure, and thus greater efficacy and fewer side-effects. In the competition among
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drugs, those drugs with such effects have been selected because their very pleio-

tropic nature confers advantages to the population by reducing interpersonal vari-

ability in responses, compared to a single-target drug. A related argument has been

made, that drug combinations in lower doses may be beneficial (Lehár et al. 2009).

From this perspective, knowledge about personalised differences should be used in

order to develop medicines that are more robust against inter-personal differences,

and personalised medicine research supports the design of better population-wide

therapeutics.

A proposed alternative to population-targeted therapeutics is the proposal of

‘one-person’ trials in individual patients, which can then be aggregated in new ways

to give new insights into treatment. This is not entirely novel for drugs that have a

rapidly and easily quantified response, such as blood pressure lowering medica-

tions: patients are tried on a drug, and moved to the next if there is no response, or

moved to drug combinations, and taken off drugs if there is an adverse event. But

these are not trials. The value anticipated is that aggregation of many one-person

trials across different groupings (any treatment versus a particular disease in

individuals with a certain genetic background; or all treatments against a particular

disease for example) may allow insights over time as the data accumulates.

However, as he has pointed out, there are very substantial barriers to making this

happen, and it is most likely to be driven first by patients demanding that their data

may be useful to future patients, and pushing doctors to enrol them in such trials.

While in principle one-person trial aggregation could be massively powerful, in

practice the diversity of data collection and the complexity of integration, represent

substantial hurdles in the management of these trials that may only be overcome in

a minority of settings, where the initial data collection is likely to be partly

motivated by some direct benefit of the individual trial to the patient. Costs of

performing these trials and aggregating their data would need to be kept low to

ensure substantial adoption.

One person trial design presupposes a very strong heterogeneity in responses, to

justify the considerable complexity of implementing and analysing such aggregated

trials. In many cases, even though there are clearly personalised responses, they

may not be strong enough to justify the complex investment of resources and the

increased uncertainties surrounding study control. It is possible that some prelim-

inary trials with an alternative approach may be a good precursor to n-of-1 type

trials, by estimating heterogeneity of response (Loop et al. 2012), but there has been

little work in this area.

15.5 Conclusions

We are standing at the crossroads in a data swamp. The areas where clinical

bioinformatics has the greatest opportunities to transform medical practise are

those where the following conditions are met:
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1. Certain types of relatively homogeneous risk factor and outcome data may be

collected inexpensively from many patients and aggregated efficiently.

2. Patients can be randomised in a cost efficient manner within blinded one-person

crossover trials.

3. Regulatory authorities may be willing to re-draw the boundaries of pre-approval

and post-approval clinical trials.

The area where this may be first met most easily is in the area of nutritional

supplements, since the safety concerns are relatively limited. Even in this area

there are substantial challenges, where it is difficult to effectively blind many

randomised intakes of interest. However, the greatest clinical benefit may come

in the area of rare disease treatment, where the safety issues of drug interventions

and small sample sizes both limit prospects for advancement. Clinical bioinformat-

ics needs to be integrated into new regulatory paradigms for incorporation of

knowledge into healthcare. We need to explore possibilities of one-person trials

integrated with genotypic data but the theoretical and practical frameworks for such

approaches are not worked out.
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Chapter 16

Heterogeneity of Hepatocellular Carcinoma

Tingting Fang, Li Feng, and Jinglin Xia

Abstract Liver cancer is the third leading cause of cancer-related death world-

wide. And Hepatocellular carcinoma (HCC) is the most common form of liver

cancer. The extreme variability of the clinical outcome caused a major challenge of

HCC, which makes it difficult to properly stage the disease and thereby estimate the

prognosis. That’s because the rapidly growing tumor displays heterogeneity of

genetic and histopathologic characteristics. The risk of HCC may be affected by

several known environmental factors such as hepatitis viruses, alcohol, cigarette

smoking, and others. The aetiological factors associated with HCC have been well

characterized; however, their effects on the accumulation of genomes changes and

the influence of ethnic variation in risk factors still remain unclear. Advances in

sequencing technologies have enabled the examination of liver cancer genomes at

high resolution; somatic mutations, structural alterations, HBV integration, RNA

editing and retrotransposon changes have been comprehensively identified. In

addition, integrated analyses of trans-omics data have identified diverse critical

genes and signaling pathways implicated in hepatocarcinogenesis. These analyses

have revealed potential therapeutic targets, and prepared the way for new molecular

classifications for clinical application. Therefore, the international collaborations of

cancer genome sequencing projects are expected to contribute to an improved

understanding of risk assessment, diagnosis and therapy for HCC. This review

discusses the contribution of heterogeneity such as aetiological factors, tumor

microenvironment, genetic variations, epigenetic changes and signaling pathways

in HCC progression.
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16.1 Introduction

HCC is a leading malignancy worldwide (Torre et al. 2015). Chronic liver damage

which may result from chronic hepatitis, liver cirrhosis and fatty liver disease, is

closely associated with HCC. Hepatitis virus infection, alcohol intake, aflatoxin B

exposure, and some metabolic diseases such as obesity, haemochromatosis and

diabetes mellitus are well-known risk factors for HCC (El-Serag 2012; Forner

et al. 2012; Yu et al. 2013). The incidence of HCC is high in East Asian and

African countries (Torre et al. 2015; El-Serag 2012; Forner et al. 2012; Shaib and

El-Serag 2004). Africa and Asian countries (except Japan) have the highest rate of

HBV infection in the world (El-Serag 2012). However, the number of patients

infected with HCV has been rapidly increasing in Japan and Western countries,

especially in the USA where viral hepatitis infection is partly mediated through

drug abuse (El-Serag 2012; Forner et al. 2012). With the exception of environmen-

tal risk factors, individual genetic predisposition may be linked to the risk of HCC

as suggested by the fact that in a relevant percentage of HCC cases, i.e., about 20 %

of cases diagnosed in the United States, without known predisposing risk factors,

including alcohol use or viral hepatitis, can be identified (El-Serag and Mason

2000). The role of genetic factors in the risk of HCC is supported by strong

evidence from animal models, which have enabled the identification of the number

and chromosomal location of loci affecting genetic susceptibility to chemically

induced hepatocarcinogenesis in both mice and rats (Dragani et al. 1996; Feo

et al. 2006). In this Review, we mainly focus on HCC, as HCC showed distinctive

genomic alterations at present, which includes estimated risk of HCC according to

particular genetic factors.

16.2 Aetiological Factors for HCC

The risk of HCC may be affected by several known environmental factors such as

hepatitis viruses, alcohol, cigarette smoking and so on (IARC 2004; Bosch

et al. 2004; Kuper et al. 2000; Llovet et al. 2003), among which the prevalence of

chronic hepatitis B (HBV) or C (HCV) virus infections plays an identified role in

the incidence of HCC. HCC is more prevalent in Southeast Asia and sub-Saharan

Africa, where HBV infection is endemic, but HBV-related liver cancer cases also

occur in western countries (Bosch et al. 2004; Llovet et al. 2003). Chronic carriers

of HBV have up to a 30-fold increased risk of HCC (IARC 1994; Evans et al. 2002;

Franceschi et al. 2006). In western countries, HCV infection plays a major role in

the pathogenesis of HCC, and it has become more prevalent over the past decades,

accompanied by a higher incidence and mortality from HCC (El-Serag and Mason

2000; IARC 1994). The fact that alcohol consumption causes liver cirrhosis and is

an independent risk factor for primary liver cancer has been disclosed by a large

number of cohort and case–control studies (Kuper et al. 2000; Baan et al. 2007;
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Ogimoto et al. 2004). And epidemiological studies showed that increasing HCC

risks associated with exposure to aflatoxins after adjustment for HBV exposure

(IARC 2002). What’s more, cigarette smoking has been causally associated with

the risk of HCC (IARC 2004; Kuper et al. 2000), and heavy smoking and heavy

drinking was reported to have a multiplicative effect in HCC development (Kuper

et al. 2000).

In addition to environmental risk factors, individual genetic predisposition may

also play a role in the risk of HCC with the current evidence from epidemiological/

genetic studies in human populations, which argues for the important role of

monogenic and polygenic factors in determining the risk of HCC development.

Rare monogenic syndromes such as alpha1-antitrypsin deficiency, hemochromato-

sis, acute intermittent, cutanea tarda porphyria, and glycogen storage disease type I

as well as hereditary tyrosinemia type I are associated with a high risk of HCC

(Andant et al. 2000; Elmberg et al. 2003; Elzouki and Eriksson 1996; Fracanzani

et al. 2001; Haddow et al. 2003; Janecke et al. 2001; Ostrowski et al. 1983; Scott

2006; Weinberg et al. 1976). Several common conditions or diseases inherited as

polygenic traits e.g. autoimmune hepatitis, type 2 diabetes, non-alcoholic

steatohepatitis, hypothyroidism, and a family history of HCC also show an

increased risk of HCC compared to the normal population (El-Serag et al. 2006;

Hashimoto et al. 2009; Hassan et al. 2009; Werner et al. 2009; Hemminki and Li

2003). Therefore, the increased risk of HCC may not be directly linked to genetic

disorders, but instead single germ-line mutations or conditions regulated by com-

plex genetics may cause chronic damage such as liver cirrhosis of the target organ,

in turn causing the oncogenic mutations and/or promoting preexisting endogenous

or virus- or chemical-induced mutations which lead to HCC. Indeed, similar to

those occurring in human liver cirrhosis, conditions of hepatic necrosis and regen-

eration may promote carcinogen-induced hepatocarcinogenesis, as suggested by the

experiments with rodent models (Dragani et al. 1986). Thus, cirrhosis from any

cause appears to be the common signaling pathway by which some risk factors

exert their hepatocarcinogenesis (Fig. 16.1). Overall, the genetic susceptibility to

HCC is characterized by a genetic heterogeneity; With the fact that, a high

individual risk of HCC may thus be caused by several unlinked single gene defects,

whose carriers are rare in the general population, or by more common conditions

inherited by complex genetics.

16.3 Heterogeneity of Tumor Microenvironment in HCC

As a highly heterogeneous disease, HCC displays differences in angiogenesis,

extracellular matrix proteins and the immune microenvironment, which contribute

to HCC progression. Therefore, a better understanding of its heterogeneity will

greatly contribute to the development of strategies for the HCC treatment.

16 Heterogeneity of Hepatocellular Carcinoma 373



16.3.1 Angiogenic Heterogeneity

HCC has wide variations in vascularity that are dependent upon tumor size

(T stage) and histological grade, and angiogenic switch depends on the balance

between pro- and antiangiogenic factors at different stages of tumor progression

(Baeriswyl and Christofori 2009). Pro-angiogenic factors include VEGF, fibroblast

growth factor (FGF), platelet-derived growth factor (PDGF), angiopoietin-1 and

angiopoietin-2. And anti-angiogenic factors include thrombospondin-1 (TSP1),

endostatin, interferon-α, interferon-β and angiostatin. VEGF expression is

up-regulated by hypoxia-induced factor-1α (HIF-1α) to switch angiogenic pheno-

type (Fang et al. 2001). Therefore, HCC is a hypervascularized tumor because of

increased angiogenic phenotype (Muto et al. 2015), which is not only required for

tumor growth supplied with oxygen and essential nutrients but also facilitates

metastasis. A higher level of VEGF mRNA in tumor tissue correlates with

increased post-resection recurrences, suggesting that an altered balance between

angiogenic stimulators and inhibitors contributes to cancer progression. Therefore,

angiogenic heterogeneity is associated with angiogenic molecules such as VEGF,

PEDF and HIF-1α (Fig. 16.2a) that could be different among various tumor sizes

and time intervals during hepatocarcinogenesis, which needs to be taken into the

consideration when we decide to carry out an anti-angiogenic therapy to prevent

recurrence in HCC patients (Wu et al. 2007).

Fig. 16.1 Aetiological factors for HCC. The risk of HCC may be mainly affected by several

known environmental factors, including hepatitis viruses, alcohol, cigarette smoking, and others.

In addition to environmental risk factors, individual genetic predisposition may play a role in the

risk of HCC as suggested by the fact that in a relevant percentage of HCC cases, i.e.
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16.3.2 Heterogeneity of Extracellular Matrix

Extracellular matrix (ECM) components mainly consist of collagen, laminin, fibro-

nectin, glycosaminoglycan and proteoglycan. Because of continuous repatterning

of the ECM, HCC tumor cells can invade via direct or indirect interactions among

ECM, stroma cells and HCC (Carloni et al. 2014). The major tumor ECM

Fig. 16.2 Heterogeneity of hepatocellular carcinoma. (a) Angiogenesis (b) immune

microenvironment
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concerned in this process are collagen type IV, lysyl oxidase (LOX) and

matricellular proteins (MCPs), whereas MCPs is prime metastatic niches in HCC

(Chew et al. 2012; Fang et al. 2013; Wong and Rustgi 2013). Overall, a dynamic

ECM contributes to hepatocarcinogenesis. Matrix metalloproteinases (MMPs) were

associated with tumor invasion and migration, particularly MMP2, MMP9 and

MT1-MMP, which play a pivotal role in the degradation of ECM to facilitate

HCC metastasis (Ogasawara et al. 2005). Furthermore, connective tissue growth

factor (CTGF) was overexpressed in HCC patients whereas downregulating the

expression of CTGF could inhibit HCC growth which could be a potential thera-

peutic strategy for HCC treatment (Jia et al. 2011). As we all known, epithelial

mesenchymal transition (EMT) is an very important step in hepatocarcinogenesis,

which involves the interactions between HCC cells and ECM mediated by

transforming growth factor-β1(TGF-β1) and/or PDGFR signaling pathway (Dorn

et al. 2010).

The heterogeneity of ECM makes it a challenging topic to inhibit ECM proteins

due to the various ECM proteins and complex mechanisms. However, it still needs

to be considered for the target therapy in which the proteins required to maintain or

degrade ECM-related proteins could be used.

16.3.3 Heterogeneity of the Immune Microenvironment

The immune microenvironment in HCC is also found to be heterogeneous. Cell types

within or around tumors include cytotoxic T cells (CD8þ), regulatory T cells (Treg),

natural killer (NK), natural killer T cells (NKT), myeloid-derived suppressor cells

(MDSCs) and so on (Fig. 16.2b). These cells can play an important role in promoting

or inhibiting HCC progression (Junttila and de Sauvage 2013) (Fig. 16.3).

CD8þ T cells are found infiltrating among HCC tumor cells, whereas CD4þ T

cells are found mainly around the tumor or liver interface (Kasper et al. 2009). Treg

cells promote immune suppression by secreting IL-10 and TGF-β and direct contact
with tumor cells (Wang et al. 2012). On the other hand, Tregs could inhibit CD8þ T

cells responses and would enhance immune responses when the Treg number is low

(Huang et al. 2012a). Cytotoxic T cells (CTLs) have the cytotoxicity to kill tumor

cells which lead to less immune response against HCC (Gao et al. 2007). Therefore,

low number of Tregs and increased number of activated CTLs are associated with a

favorable prognosis. A higher frequency of Th17 cells which secret IL-22 are found

in advanced HCC patients with poor survival (Zhang et al. 2009; Liao et al. 2013).

And a higher expression of IL-22 can activate Stat-3 signaling and promote tumor

growth (Jiang et al. 2011).

Some studies have reported that the frequency and cytotoxic function of NK

cells to be reduced both in the liver and peripheral blood of HCC patients (Cai

et al. 2008; Gao et al. 2009; Hoechst et al. 2009). The reduced NK cell function was

associated with lower expression of NK cell receptor, NKG2D (Sha et al. 2014).

Invariant natural killer T (iNKT) cells was also shown to be increased in patients
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Fig. 16.3 Somatic alterations in the HCC genome. (a) Some representative somatic mutations in

the whole exon domain (exome), which is determined by massively parallel sequencing (b) Some

representative somatic mutations in the whole-genome domain, which is performed by whole-

genome sequencing (c) representative somatic change of retrotransposons in HCC
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produced Interferon-gamma (IFN) to inhibit tumor growth (Crowe et al. 2005). In

addition, CD4þ NKT cells produced Th2-cytokine which could also inhibit CD8 T

cell expansion and function (Bricard et al. 2009).

Myeloid-derived suppressor cells (MDSCs) are heterogeneous in HCC patients

that includes macrophages, dendritic cells, immature granulocytes and early mye-

loid progenitors. MDSCs could inhibit T cell responses as well as natural killer cell

function via the NKp30 receptor (Hoechst et al. 2009). Overall, the development of

immunotherapy requires an understanding of the heterogeneous microenvironment,

regulation of cytokines at different stages of HCC, and the functional activity of T

cells, CTLs, NK cells and MDSCs etc.

16.4 Heterogeneity of HCC Genomes

Progress in sequencing technologies have made it possible to examine liver cancer

genomes at high resolution. Somatic mutations, structural alterations, HBV inte-

gration, RNA editing, retrotransposon changes and so on have been comprehen-

sively identified. In addition, integrated analyses of genome, transcriptome and

methylome data have identified various critical genes and pathways involved in

hepatocarcinogenesis, and paved the way for new molecular classifications for

clinical application. Furthermore, the international collaborations of cancer genome

sequencing projects are expected to contribute to an improved understanding of risk

evaluation, diagnosis and therapy strategy for this cancer.

16.4.1 Somatic Alterations in the HCC Genome

Whole-genome and whole-exome sequencing have provided a comprehensive and

high-resolution view of somatic genomic alterations in HCC. The liver cancer

genome contains multiple types of somatic alterations, including mutations such

as single nucleotide substitutions, small insertions and deletions, changes of gene

copy numbers, intra-chromosomal rearrangements and inter-chromosomal

rearrangements. For the past few years, an increasing appreciation and identifica-

tion of somatic mutations that drive human tumors have enable us within reach of

personalized cancer medicine.

16.4.1.1 Genome-Wide Copy Number Analysis

Somatic DNA copy number changes in human cancers genomes have been detected

mainly by array-based comparative genome hybridization methods (CGH). That’s
because array-based CGH can enable high-throughput and high-resolution screen-

ing of genome-wide DNA copy number changes (Pollack et al. 1999). In addition to
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well-known oncogenes e.g. MYC and CCND1, and tumour suppressor genes, such

as TP53 and RB, liver cancers harbour multiple chromosomal amplifications and

deletions, and Shibata et al. have summarized these recurrent copy number alter-

ations on the Table 16.1 (Shibata and Aburatani 2014).

In recent years, several studies reported chromosomal alterations in HCC using

array CGH (Chochi et al. 2009; Kakar et al. 2009; Patil et al. 2005; Schlaeger

et al. 2008). Guo X et al. discovered significant gains in 5p15.33 and 9q34.2–34.3

and losses in 6q, 9p and 14q in addition to the regions that were previously

identified by conventional CGH analyses by a meta-analysis of 159 HCC array

Table 16.1 Amplified and deleted genes in HCC (Wang et al. 2012)

Gene name Locus Function

Recurrently amplified genes in HCC

MDM4 1q32.1 P53 pathway

BCL9 1q21.1 WNT pathway

ARNT 1q21.2 Xenobiotics metabolism

ABL2 1q25.2 Proliferation

MET 7q31.2 Proliferation

COPS5 8q13.1 Proteolysis

MTDH 8q22.1 Metastasis

COX6C 8q22.2 Mitochondria

MYC 8q24.21 Proliferation

CCND1 11q13.2 Proliferation

FGF19 11q13.2 WNT pathway

RPS6KB1 11q23.1 Proliferation

EEF1A2 20q13.33 Translation

Recurrently amplified genes in HCC

TNFRSF14 1p36.33 Immune response

CDKN2C 1p36.11 Cell cycle

ARID1A 1p36.11 Chromatin remodelling

TNFAIP3 6q26 NF-κB pathway

CSMD1 8p23.2 Immune response

DLC1 8P22 Small GTpase

SORBS3 8p21.3 Migration

WRN 8p21.3 DNA repair

SH2D4A 8p21.2 Proliferation

PROSC 8p11.2 Unknown

CDKN2A 9p21.3 Cell cycle

CDKN2B 9p21.3 Cell cycle

PTEN 10q23.31 Proliferation

SPRY2 13q31.1 Proliferation

BRCA2 13q13.1 DNA repair

RB1 13q14.3 Cell cycle

XPO4 13q11 Nuclear export

SMAD4 18q21.3 TGF-β signalling
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CGHs (Chochi et al. 2009; Kakar et al. 2009; Patil et al. 2005; Schlaeger

et al. 2008). In a study by Patil et al. (2005), the correlation between DNA copy

numbers and gene expression pattern at the 8q region was demonstrated, which was

frequently amplified in 49 HCC samples. A study of Roessler et al. (2012) identified

ten driver genes that were associated with poor survival by integrating high-

resolution array CGH data and gene expression profiles of 256 HCC cases to gain

the genes which have the significant correlation between somatic copy number

alterations and the whole genome expression patterns. In order to identify potential

cancer driver genes, Woo et al. (2009) integrated whole genome copy number

profiles of 15 HCC cases with gene expression profiles of 139 HCC cases. They

analyzed genes that have a correlation between expression levels and copy number

changes, finally discovered 50 potential driver genes that are linked to HCC

prognosis.

16.4.1.2 Whole-Exome Sequencing

Advance in sequencing technologies have enabled researchers to explore the liver

cancer genome more deeply. Whole exome sequencing (WES) can efficiently

identify mutations in protein-coding exons, which are much more easily identifiable

than the mutations or variants in non-coding regions. This approach concerns

target-enrichment of whole protein-coding exons across the human genome

(30–40 Mb, approximately 1 % of the whole human genome) adopting

in-solution RNA or oligonucleotide DNA probe hybridization technologies (Gnirke

et al. 2009; Hodges et al. 2007) which enable the comprehensive detection of

somatic alterations in the protein-coding exons, and have discovered many novel

genes involved in liver cancer. In the research of Li M et al., the recurrent

inactivating mutations of the ARID2 gene in 18.2 % of HCV-associated HCCs

were identified by exomic sequencing of 10 HCV-positive HCCs and analysis of an

additional tumour cohort of various aetiological backgrounds (Li et al. 2011).

Huang et al. (2012b) sequenced nine pairs of HCCs and their intrahepatic metas-

tases across whole exome to come out with the result that although about 94.2 %

substitutions were common in both primary and metastatic tumours, a fraction of

mutations were detected in 1.1 % primary or 4.7 % metastatic tumours. Among

these mutations, KDM6A, CUL9, RNF139, AKAP4 and FGD6 were only identified

in the metastatic tumors of three individuals. Using whole-exome sequencing of

87 HCC cases, Cleary et al. (2013) found recurrent alterations in the NFE2L2–

KEAP1 and MLL pathways, while C16orf62 and RAC2 with lower mutation

frequencies. According to copy number analysis of 125 HCC cases and whole

exome sequencing of 24 of these cases, Guichard et al. (2012) detected novel

recurrent mutations in the ARID1A, RPS6KA3, NFE2L2 and IRF2 genes. Inter-

estingly, inactivation of the IRF2 gene was exclusively observed in HBV-related

HCC, which led to disruption of TP53 function. In addition, alterations in chroma-

tin remodelers were found in association with alcohol-related HCC.
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16.4.1.3 Whole-Genome Sequencing

Many research groups have sequenced the whole liver cancer genome in further

attempts to detect all somatic driver events involved in hepatocarcinogenesis.

Whole genome sequencing (WGS) can cover almost all the genome sequences in

human and detect variants in non-coding regions, copy number alterations, genomic

rearrangements, and virus genome integrations except single nucleotide changes

(Nakagawa and Shibata 2013). By sequencing HCV-related HCC cases, >16,000

somatic mutations and 26 intra-chromosomal and interchromosomal

rearrangements inducing four fusion transcripts were identified, including the

TP53, AXIN1, ADAM22, JAK2, KHDRBS2, NEK8, TRRAP and BCORL1

genes, as well as a large number of somatic mutations in genes encoding phospho-

proteins and those with bipartite nuclear signals. Through high-resolution analysis,

the authors also identified intratumor heterogeneity of the mutations, including

inactivation of the TSC complex in a subpopulation of HCV-related HCCs (Totoki

et al. 2011). By performed whole-genome sequencing of 27 HCCs and matched

normal genomes, Fujimoto et al. showed that 25 of which were associated with

HBV or HCV infection. The average number of somatic point mutations at the

whole-genome level was 4.2 per Mb. Moreover, several chromatin regulators

mutations, including ARID1A, ARID1B, ARID2, MLL, MLL3, BAZ2B, BRD8,

BPTF, BRE and HIST1H4B, were identified in 50 % tumors. These mutations were

marginally linked to the stage of liver fibrosis and hepatic invasion (Fujimoto

et al. 2012). By a whole-genome sequencing study of 88 matched HCC tumor/

normal pairs, 81 of which are Hepatitis B virus (HBV) positive, Kan et al. (2013)

seeked to identify genetically altered genes and pathways implicated in

HBV-associated HCC cases. They found the most frequently mutated oncogene

(15.9 %) and the most frequently mutated tumor suppressor (35.2 %) are beta-

catenin and TP53, respectively. The Wnt/beta-catenin and JAK/STAT pathways,

mutated in 62.5 % and 45.5 % of cases, respectively, are possible to be two major

oncogenic drivers in HCC. This research also identified several prevalent and

potentially actionable mutations, such as activating mutations of Janus kinase

1 (JAK1) in 9.1 % of patients, suggesting that these genes or pathways could be

new therapeutic targets in HCC (Kan et al. 2013).

16.4.2 Somatic Change of Retrotransposons in HCC

The human genome contains a variety of repetitive genome sequences, including

tandem repeats and retrotransposons e.g. short interspersed nuclear elements

(SINEs) and long interspersed nuclear elements (LINEs). In the human genome,

Alu and LINE-1 are major forms of SINEs and LINEs, respectively (Treangen and

Salzberg 2012). LINE-1 retrotransposons are a major source of endogenous muta-

genesis in humans (Burns and Boeke 2012; Levin and Moran 2011).
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Retrotransposon insertions can deeply alter gene structure and expression (Levin

and Moran 2011; Cordaux and Batzer 2009; Han et al. 2004; Faulkner et al. 2009)

and have been identified in nearly 100 cases of diseases (Faulkner 2011; Hancks

and Kazazian 2012). LINE-1 activity is consequently suppressed in most somatic

cells by methylation of a CpG island in the internal LINE-1 promoter (Coufal

et al. 2009; Swergold 1990). By contrast, LINE-1 is often hypomethylated in tumor

cells, removing a key obstacle to retrotransposition (Levin and Moran 2011).

Shukla et al. (2013) used enhanced retrotransposon capture sequencing (RC-seq)

to detect 19 HCC tumors and matched adjacent liver tissue that were confirmed

positive for HBV or HCV infection and elucidated endogenous LINE-1-mediated

retrotransposition in the germline and somatic cells of HCC patients. The authors

reported two archetypal mechanisms revealing MCC and ST18 as HCC candidate

genes. MCC is a highly plausible liver tumor suppressor. However distinct germline

LINE-1 or Alu insertions contribute to MCC suppression in tumor and nontumor

liver tissue and then activate the WNT/CTNNB1 pathway. The other event is a

tumor-specific LINE-1 insertion which activates a potential oncogene, Suppression

of tumorigenicity 18 (ST18), in liver tumors (Shukla et al. 2013).

16.4.3 HBV Genome Integrations in the Host Genome

Chronic HBV infection is a major risk factor for HCC, and more than half of HCC

cases in the world are attributed to HBV infection. HBV is a DNA virus whose

genome can be integrated into the host genome. The integration of the viral DNA

sequences affect host gene expression near the integration site and its effect on the

integrity of the host genome is associated with virus-mediated hapatocarci-

nogenesis (Neuveut et al. 2010). By Southern blot analysis or inverse PCR,

previous studies identified the integration of HBV DNA sequences into host

genomes both in HCC samples and non-tumorous tissues from patients with chronic

HBV hepatitis (Brechot et al. 1980). Advanced current genome sequencing tech-

nology have enabled researchers to detect virus integration events more compre-

hensively and at higher resolution than previously.

HBV integration was reportedly observed within or upstream of the TERT gene

in tumor tissues in HCC cases with HBV infection (Fujimoto et al. 2012). Further-

more, Sung et al. (2012) reported integration events at the MLL4, CCNE1, SENP5,

FN1 and ROCK1 genes. They conducted whole-genome sequencing of 81 -

HBV-positive and seven HBV-negative HCC samples and found that most HBV

breakpoints in HCC were close to active coding genes, which potentially enabled

HBV to integrate into the open chromatin region more effectively (Sung

et al. 2012). Jiang et al. (2012a) also made comprehensive analyses of

HBV-related HCC and their corresponding normal tissues. They found clonal and

high-abundance viral integrations in tumor tissue, while many viral integration sites

randomly scattered throughout the genome in nontumor liver tissues (Jiang

et al. 2012b). These research indicated that a heterogeneous and widespread viral
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integration landscape in HCC as well as nontumor liver tissue and integration

events may cause aberrant expression of genes near the integration sites, alterations

of DNA copy number and emergence of fusion genes (Sung et al. 2012; Jiang

et al. 2012b). Moreover, recurrent integration of HBV was also detected in the

FAR2, ITPR1, MAPK1, IRAK2 and MLL genes (Sung et al. 2012; Gozuacik

et al. 2001; Paterlini-Brechot et al. 2003; Murakami et al. 2005; Saigo et al. 2008).

16.4.4 DNA Methylation in HCC

(update) DNA methylation and demethylation is an important mechanism of

regulating gene expression and chromatin structure in normal cells. DNA methyl-

ase contribute to the methylation of cytosine at CpG islands at the gene promoter

region. Aberrant DNA methylation at the gene promoter region is an important

mechanism in inactivation of tumor suppressor gene (Nagae et al. 2011; Hendrich

and Bird 1998).

Altered DNA methylation is an early event in HCC development. Global

hypomethylation has a critical role in increasing chromosomal instability and

mainly affected intergenic regions of the genome (Eden et al. 2003). DNA

hypermethylation is the state where the methylation of “normally” undermethylated

DNA domains, which predominantly consist of CpG islands (Rollins et al. 2006),

increases. Abnormal gains of DNA methylation (hypermethylation) of typically

unmethylated CpG island-containing promoters can lead to transcriptional repres-

sion and loss of gene function. In addition, non-CpG island-containing promoter

coding region hypermethylation contribute to genes inactivation (Pogribny and

James 2002; Tomasi et al. 2012).

The study of Udali et al. (2015) used array-based DNA methylation and gene

expression data of all annotated genes from eight HCC patients undergoing curative

surgery to analyze by comparing HCC tissue and homologous cancer-free liver

tissue. They identified 159 hypermethylated-repressed, 56 hypomethylated-

repressed, 49 hypermethylated-induced, and 30 hypomethylated-induced genes.

Notably, promoter DNA methylation proved to be a novel regulatory mechanism

for the transcriptional repression of genes e.g. involving the retinol metabolism

(ADH1A, ADH1B, ADH6, CYP3A43, CYP4A22, RDH16), one-carbon metabo-

lism (SHMT1), iron homeostasis (HAMP), and potential tumor suppressors

(FAM107A, IGFALS, MT1G, MT1H, RNF180).

Nishida et al. (2014) applied Infinium Human Methylation 450 Bead Chip array

which can analyze >485,000 CpG sites distributed throughout the genome to

analyze comprehensive methylation from 117 liver tissues consisting of 59 HCC

and 58 noncancerous livers. They identified 38,330 CpG sites with significant

differences in methylation levels between HCCs and nontumors livers (DMCpGs).

Among the DMCpGs, 92 % were hypomethylated and only 3051 CpGs (8 %) were

hypermethylated in HCC. The DMCpGs were more common within intergenic
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regions with isolated CpGs. However, DMCpGs that were hypermethylated in HCC

were predominantly located within promoter regions and CpG islands.

Shen et al. (2012) analyzed tumor and adjacent nontumor tissues from 62 Tai-

wanese HCC cases using Illumina methylation arrays which can screen 26,486

autosomal CpG sites. They found that a total of 2324 CpG sites significantly

differed in methylation level. Among these CpG sites, 684 CpG sites significantly

hypermethylated and 1640 hypomethylated in tumor compared to nontumor tissues.

The 684 hypermethylation markers could be utilized for plasma DNA diagnostics.

In addition, They identified the top 500 significant CpG sites using a 450 K array

from 66 HCC cases. These differential methylations were able to distinguish HCC

from adjacent nontumor tissues (Shen et al. 2013).

Previous study (Nishida et al. 2007) reported that extensive methylation is

involved in CTNNB1 mutations, while TP53 mutation in HCC is often character-

ized by chromosomal instability. CpG islands promoter of the tumour suppressor

genes CDKN2A and CDKN2B are frequently hypermethylated, leading to inacti-

vation of the RB pathway (Zang et al. 2011). Methylation of the CDKN2A gene

promoter occurs in 73 % of HCC tissues (Wong et al. 1999), 56 % of HBV-related

HCC, and 84 % of HCV-related HCC (Narimatsu et al. 2004). Moreover,

RASSF1A is methylated in up to 85 % of HCCs (Zhang et al. 2002), GSTP1 in

50–90 % (Yang et al. 2003; Zhong et al. 2002), and MGMT in 40 % (Zhang

et al. 2003).

16.5 Heterogeneity of Signaling Pathways Affects
the Progression of HCC

16.5.1 p53 Gene Pathway

As a tumor suppressor, p53 can initiate cell-cycle arrest, apoptosis, and senescence

in response to cellular stress to maintain the integrity of the genome. About 50 %

human tumors carry mutant p53, and many p53 mutants facilitate oncogenic

functions such as increased proliferation, viability, and invasion or dominant-

negative regulate the remaining wild-type p53 (Muller and Vousden 2013).

p53 plays important and unique roles in HCC. A study indicated that ablation of

the p53-mediated senescence program in hepatic stellate cells under chronic liver

damage promotes liver fibrosis and cirrhosis, which are associated with reduced

survival; in addition, loss of p53 enhances the transformation of adjacent epithelial

cells into HCC (Lujambio et al. 2013). p53 is mainly regulated by the E3 ubiquitin

ligase MDM2. MDM2 binds p53 blocking p53-mediated transcriptional regulation,

while simultaneously promoting its degradation (Brown et al. 2011). In addition,

the MDM2–p53 binding can be disrupted by a small inhibitor Nutlin-3, which

thereby activates p53 dependent apoptosis in different HCC cell lines (Zheng

et al. 2010a). Therefore, Inhibition of MDM2–p53 binding could reactivate p53
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in cancer cells with wild-type p53 and may offer an effective therapeutic approach

for millions of cancer patients (Brown et al. 2011).

16.5.2 Hedgehog Pathway

Hedgehog signaling contributes to many aspects of cell differentiation, organ

formation, cancergenesis and cancer metastasis. It is widely accepted that Hedge-

hog activity plays an important role in the progression of HCC. Many studies report

that aberrant activation of Hedgehog signaling promote proliferation, viability,

migration and invasion of HCC cells with complex underlying mechanisms

(Zheng et al. 2010b, 2012; Lu et al. 2012).

Gli, Smo and PTCH were found to be overexpressed in HCC patients (Che

et al. 2012; Jeng et al. 2013; Zhang et al. 2013). Lu et al. (2012) reported that Shh

treatment can stimulate Hedgehog signaling to promote HCC cell invasion and

migration by increasing GLI1 expression. Sicklick et al. (2006) found

overexpression of Smo and an increase in the stoichiometric ratio of Smo to

PTCH mRNA levels in HCC, this effect is associated with tumor size and Smo

and PTCH may be prognostic marker of HCC. Downstream transcription factors,

Gli, affect the proliferation, migration, invasion, angiogenesis, aberrant autophagy

and stem cell regeneration in HCC (Zheng et al. 2013). Previous studies have found

that GLI1 contributes to the EMT phenotype and intrahepatic metastasis and portal

venous invasion of human HCCs (Zheng et al. 2010b). Other studies reported that

GLI1 expression in HCC tissues is associated with disease-free survival, overall

survival and rapid recurrence (Zheng et al. 2012). In vitro experiments indicated

that GLI1 promotes proliferation, viability, colony formation, migration and inva-

sion of Huh7 cells. In addition, inhibition of Hedgeho signaling by GANT61, which

is a small-molecule inhibitor of GLI1, led to autophagy. The result demonstrate that

Hedgehog signaling is involved in aberrant autophagy of HCC cells (Wang

et al. 2013). Furthermore, Several Gli target genes have been identified such as

cMyc, Cyclin D1 and FOXM1 (cell proliferation) and Bcl-2 (survival) (Lin

et al. 2010). For example, the down-regulation Hedgehog signaling pathways

could induce cell arrest at G1 and cause apoptosis by downregulation of Bcl-2

(Chen et al. 2008; Cheng et al. 2009; Kim et al. 2007; Zhang et al. 2011).

16.5.3 Wnt/β-Catenin Signaling

The Wnt/β-catenin signaling pathway is mainly composed of the Wnt protein, Wnt

protein ligand frizzled protein, and related regulator proteins such as GSK-3β and

β-catenin. Previous study indicated that aberrant activation of WNT signalling is a

driving molecular event in many types of tumors, including liver cancers (Polakis

2012). The aberrant Wnt/β-catenin signaling pathway plays an important role in
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liver physiology and pathology. Various molecular and genetic factors such as

CTNNB1, AXIN1 and AXIN2 participate to the aberrant activation of the Wnt/-

catenin pathway. Gain-of-function mutations of CTNNB1 which encode for

β-catenin are occurred in about 90 % HCCs (Bruix and Sherman 2011). In contrast,

loss-of-function mutations of negative regulators such as AXIN1, AXIN2 and APC

genes are also observed in such aberrant pathway (Laurent-Puig and Zucman-Rossi

2006). When upstream stimulation activate the pathway, the Wnt protein binds to

its ligand and β-catenin accumulates in cells, where β-catenin is activated and

transferred into nucleus. In the nucleus, β-catenin dimerizes with the downstream

specific transcription factor LEF/TCF, which regulates the transcription of key

genes such as cyclin D (Thompson and Monga 2007; Langeswaran et al. 2013).

16.5.4 PI3K/AKT/mTOR Signaling Pathway

The PI3K/AKT/mTOR signaling pathway is a central regulator of various onco-

genic processes including cell growth, proliferation, metabolism, survival regula-

tion, antiapoptosis and angiogenesis. It also plays significant function in HCC and is

activated in 30–50 % of HCC. There is growing evidence to suggest that activation

of the PI3K/AKT/mTOR pathway is associated with less differentiated tumors,

earlier tumor recurrence, and worse survival outcomes (Zhou et al. 2010). In normal

tissue, this pathway is negatively regulated by the tumor suppressor phosphatase

and tensin homolog (PTEN) on chromosome 10. Abnormal PTEN function and

expression may lead to excessively activation of the PI3K/AKT/mTOR pathway in

HCC (Zhou et al. 2011). Previous study has found that the loss of PTEN and

overexpression of pAkt and p-mTOR were linked to the tumor differentiation,

TNM stage, intrahepatic metastasis, vascular invasion Ki-67 labeling index, and

MMP-2 and MMP-9 upregulation of human HCCs (Chen et al. 2009; Grabinski

et al. 2012). Furthermore, Mcl-1, an anti-apoptotic molecule transcribed via a PI3K/

Akt dependent pathway, was associated with HCC poor survival (Personeni

et al. 2013).

16.5.5 Ras/Raf/MAPK Signaling Pathway

The MAPK intracellular signaling network is often activated in cancer cells. Recent

researches show that HCC cells activation and proliferation is known to involve

various different signaling pathways as previously mentioned (Laurent-Puig and

Zucman-Rossi 2006). Among them, the Ras/Raf/MAPK signaling pathways is one

of the most critical pathways in pathogenesis, development and proliferation of

HCC and have been extensively investigated (Llovet and Bruix 2008).

The intracellular part of Ras/Raf/MAPK pathway is downstream of several

receptor tyrosine kinases such as the EGFR, PDGFR and VEGFR which transmit
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growth factor signals from the cell membrane to the nucleus regulating multiple

cellular functions including cell growth and survival, and differentiation. However,

multiple upstream receptors including other receptor tyrosine kinases, integrins,

serpentine receptors, heterotrimeric G-proteins, and cytokine receptors are able to

activate Ras (Cantrell 2003).

Mechanisms for the increased activity of the Ras/Raf/MAPK signaling pathway

in HCC include aberrant upstream signals, inactivation of Raf kinase inhibitor

protein and induction by hepatitis viral proteins (Galuppo et al. 2014).

Several components of this pathway are mutated in HCC. Bos (1989) found that

about 30 % of HCC bear Ras mutations. The Raf family consists of three isoforms,

A-Raf, B-Raf and C-Raf. Overexpression of wild-type C-Raf-1 proto-oncogene has
been reported in liver cirrhosis and HCC (Jenke et al. 1994; Huang and Sinicrope

2010). Sorafenib has activity inhibiting B-Raf (Tannapfel et al. 2003). Huynh

et al. (2003) found overexpression of MEK1/2 and ERK1/2, and phosphorylation

of ERK1/2 in 100 % (46/46), 91 % (42/46) and 69 % (32/46) HCC, respectively.

16.5.6 Notch Signaling

Notch signalling is an evolutionarily conserved pathway that involves in a variety

of fundamental cellular processes such as cell fate and differentiation (Artavanis-

Tsakonas et al. 1999; Lai 2004). The effects of Notch signaling seem heterogeneous

in HCC progression (Strazzabosco and Fabris 2012). Activation of Notch signaling

could lead to reduced cell proliferation and tumor growth in HCC (Viatour

et al. 2011). And in addition, it also participates in invasion and migration of

HCC cells (Zhou et al. 2013). Several researches indicated that NOTCH is activated

in mice and human HCC samples (Tschaharganeh et al. 2013; Villanueva

et al. 2012). However, other reports found the activation of NOTCH signalling as

a suppressor feedback mechanism during HCC progression (Viatour et al. 2011; Qi

et al. 2003). These contradictions suggest that biological activities of NOTCH

signaling during hepatocarcinogenesis mainly depend on the cellular environment,

which is also reported in other tumor types (Radtke and Raj 2003).

16.5.7 KEAP1-NFE2L2 Pathway

A sequence-specific transcriptional factor, encoded by the NFE2L2 gene,

upregulates genes associated with oxidative stress and other metabolic pathways

(Taguchi et al. 2011). And the level of the NFE2L2 protein is regulated by the

ubiquitin proteasome pathway, and KEAP1 functions as an E3 ubiquitin ligase. A

study found that NFE2L2 coding for NRF2 a transcription factor crucial for cellular

redox homeostasis, was mutated in 6.4 % of HCC (Shibata et al. 2008). The
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mutation disrupts direct NFE2L2–KEAP1 interaction, or inactivating mutations of

the KEAP1 gene are recurrently reported in HCC (Guichard et al. 2012).

16.6 Conclusion

Heterogeneities in aetiological factors, tumor microenvironment, genetic variations

and signaling pathways contribute to HCC progression, which makes it difficult to

properly stage the disease and thereby estimate the prognosis. Besides the

established main role of hepatitis virus infections and of alcohol use in the risk of

HCC, multiple genetic factors also play an significant role. Advances in sequencing

technologies have guided the examination of HCC genomes into a new view. In

addition to copy number changes and mutations, analyses have identified additional

genome alterations, including DNA methylation, HBV integration, retrotransposon

changes an so on. The integration of data from different levels of global analyses

have identified various critical genes and pathways involved in hepatocarci-

nogenesis. The heterogeneity of HCC makes it difficult to clarify the mechanism

of cancer development and to develop effective therapeutics. For future clinical

research design, it is essential to take into account how to eliminate the confounding

effects from interpatients and intratumor heterogeneity of genome, aetiological

factors and tumor microenvironment. Precision medicine based on global genetic

analysis will become more and more important to overcome the heterogeneity of

HCC. While some genetic profiles or signaling pathways may prove to be potential

targets for clinical application. Therefore, targeting these heterogeneity in HCC

patients will definitely create a new field for developing personal treatment options.
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