Chapter 6
Non-native Seaweeds Drive Changes

in Marine Coastal Communities Around
the World
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Abstract We conducted a bibliographic survey, adding 69 taxa to a published list
of 277 seaweeds, thereby updating the total worldwide list of non-native and
cryptogenic seaweeds to 346. Polysiphonia Greville and Hypnea J.V. Lamouroux
species were the most common taxa on this list, and the Mediterranean Sea and the
NE Atlantic bioregions have received most of the 346 taxa. The most important
vectors that carry non-native seaweeds are hull fouling and the transport of aqua-
culture products including ‘blind passengers’. Once a seaweed has arrived in a new
location, it can establish a permanent population and spread through natural dis-
persal or human activity. Non-native seaweeds have negative impacts on native
species through competition, habitat destruction and keystone competition, but also
positive impacts through habitat formation, food provision and cascading habitat
formation. Quantitative meta-analyses have shown that invasive seaweeds typically
have a negative effect on local plants, but neutral or positive effects on animal
communities. New meta-analyses presented here indicate that impacts increase with
the abundance of non-native seaweeds and that non-native seaweeds may increase
sample similarity in invaded plant communities, but not in animal communities.
The literature on the impact of non-native seaweeds is extensive, but most studies
have focused on a few high-profile species. Comprehensive analyses should be
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done for more species to allow for better predictions. We conclude that non-native
seaweeds have altered shallow coastal communities in most biogeographical
regions, and impacts will likely increase along with increases in human populations,
transport and associated stressors.

Keywords Invasion impact - Invasion success - Meta-analysis - New invasions -
Density-dependent effects - Trophic matching hypothesis

6.1 Introduction—Scope of Seaweed Invasions

Non-native seaweeds are marine macroalgae that have arrived at new locations
aided by human activity, either deliberately or accidentally. Today, non-native
seaweeds comprise hundreds of species distributed in the photic zone throughout
the world’s major biogeographical regions. Many non-native seaweeds are ‘foun-
dation species’ (Dayton 1972) and function as ‘ecosystem engineers’ (Jones et al.
1994), directly or indirectly affecting the availability of resources to other species
by creating, modifying and maintaining habitats (Wallentinus and Nyberg 2007,
Thomsen et al. 2010). Consequently, non-native seaweeds play key ecological and
biogeochemical roles in their new marine ecosystems, sometimes controlling bio-
diversity, ecosystem functioning and energy flow (Williams and Smith 2007).

The success of a non-native seaweeds is typically considered a staged process
that depends on uptake from a donor-region, transport, arrival and release to a
receiver-region, local establishment and proliferation, population growth and
regional spread and range expansion (Sakai et al. 2001; Bates et al. 2014). For each
of these stages, a non-native seaweed has to overcome a series of physical, phys-
iological, demographic and biological barriers and filters that act as a constant sink
for new species and individuals. In this chapter, we first review which seaweed
species have invaded various regions and then provide a brief overview of the two
main approaches in invasion ecology, ‘success’ and ‘impact’ studies and their
related frameworks and working hypotheses. We subsequently provide examples of
impacts on local populations and evaluate existing quantitative syntheses of inva-
sion impacts and identify current research gaps. We then address key research gaps
using meta-analysis to test whether invasive seaweeds have density-dependent
effects and decrease variability in community similarity. This ‘case study section’ is
therefore more detailed than the rest of this review chapter. Finally, we provide a
summary of the major findings from the chapter. Our focus is on non-native sea-
weeds, but we also comment on non-native seagrasses (marine or estuarine
angiosperms) and terrestrial halophytes (salt marsh and mangrove angiosperms),
since they interact with invasive seaweeds in intertidal or brackish habitats
(e.g. Thomsen et al. 2012; Williams and Grosholz 2008).
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We use the term ‘non-native’ (=alien, non-indigenous, exotic, introduced) to
define species that live outside their native distributional range. We include species
that have dispersed by their own means through man-made canals (e.g. Lessepsian
migration where non-native species swim or drift through the Suez Canal) but not
new species that arrived by their own dispersal across natural barriers, and only
survive due to climate changes. We characterise non-native species that are ‘highly
successful’ (e.g. spread rapidly and establish abundant populations) or have a
‘strong impact’ on resident populations or ecosystems as ‘invasive’, but acknowl-
edge the ambiguities and lack of a clear definition for when or where non-native
species are invasive or not (indeed, it is more appropriate to rank non-natives
according to their ‘relative invasiveness’ within the success and impact criteria). We
define cryptogenic species as species that are of uncertain origin: for these species,
detailed taxonomic, biogeographical and molecular analyses are required to
determine whether they are non-natives. Throughout this chapter, we describe
non-native and invasive ‘species’, but we assert that data are always collected from
specific populations (genotypes) that represent a limited subset of a species’ gene
pool. Researchers should, of course, be cautious when success and impact of a
non-native genotype is predicted from a study conducted on a different genotype.

6.2 Research on and Numbers of Non-native Seaweeds

Invasions by marine primary producers have been described by scientists for a long
time. For example, the Danish oceanographer Carl Emil Hansen Ostenfeld
described the invasion of the planktonic diatom Biddulphia (Odontella) sinensis
Greville into the North Sea in 1903, probably transported by ships (Ostenfeld
1908). Over 50 years ago, Charles Elton, in his seminal book on biological inva-
sions, described dramatic ecosystem changes associated with Spartina von Schreber
invasions, converting marine intertidal mudflats to salt marshes on massive scales
(Elton 1958). Elton even applied invasion patterns to support the notion that
‘Falkenbergia rufolanosa’ was the tetrasporophytic phase of Asparagopsis armata
Harvey, because these two seaweed morphologies showed simultaneous spread into
the north-east Atlantic and Mediterranean Sea in the 1920s—1950s (originating from
south-western Australia). However, research on seaweed invasions did not take off
until the 1990s. A ‘topic’ search in the Web of Science using classic invasion
terminology [TS = ((invasion* or exotic* or non-native* or alien*) and (seaweed*
or macro-alga* or macroalga*))] revealed that the first scientific paper on the topic
was published in 1973 (Wassman and Ramus 1973) followed by 2 papers in the
1980s (Russell 1981; Dale 1982), 37 from 1990 to 1999, 210 from 2000 to 2009
and 235 papers from 2010 to 2015. This search does not include all relevant
references—and includes a few less relevant studies—but nevertheless documents
that few studies predated the 1990s. The growing number of primary research
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studies on seaweed invasions has been reviewed in some detail (e.g. Thomsen et al.
2009b; Williams and Smith 2007; Schaffelke et al. 2006; Inderjit et al. 2006;
Johnson and Chapman 2007). The most comprehensive of these reviews was by
Williams and Smith (2007), describing 277 seaweed taxa introduced around the
world including a few unidentified taxa within particular genera (e.g. Bryopsis J.V.
Lamouroux., Ulva Linnaeus subspecies (e.g. Codium fragile ssp. scandinavicum
P.C. Silva and tomentosoides (van Goor) P.C. Silva) and taxa of cryptogenic origin
(including a few that probably are natives, e.g. Alaria esculenta (L.) Greville and
Saccharina ochotensis (Miyabe) C.E. Lane, C. Mayes, Druehl and G.W. Saunders
that are likely natives in Denmark).

Williams and Smith’s (2007) tally is almost a decade old and we considered it
timely to conduct a bibliographic survey to update their list. From this survey, we
identified 69 taxa not included on the list (Table 6.1) expanding the number of
non-native and cryptogenic seaweed taxa globally to 346. This list includes several
cryptogenic taxa that future studies may reclassify as native, but we suggest that the
346 taxa still represent a conservative estimate because (1) our search may have
missed studies, (2) seaweeds may have been introduced to new regions prior to
modern science, (3) morphologically similar non-native and native species may
co-occur and remain taxonomically cryptic, (4) under-studied regions can include
non-native taxa that are (5) poorly described, (6) difficult to identify, (7) rare or
(8) have invaded inaccessible areas and habitats. The 346 seaweeds are represented
by 61 Chlorophycea, 77 Phaeophyceae and 208 Rhodophyceae derived from a
global species pool of ca. 2400 Chlorophycea, 1800 Phaeophyceae and 6300
Rhodophyceae. The seaweed genera with most invasive taxa were Polysiphonia
Greville (15 taxa), Hypnea J.V. Lamouroux (13), Codium Stackhouse and Caulerpa
J.V. Lamouroux (11 each) and Gracilaria Greville (10) and the most invaded
bioregions were the Mediterranean sea (160 taxa), followed by NE Atlantic (93),
oceanic islands (73) Australasia (66), NW Atlantic (34) and the NE Pacific
(33) (Fig. 6.1).

Finally, we note that in addition to the 346 seaweeds, at least four seagrasses
(Zostera japonica J.V. Lamouroux, Zostera tasmanica Martens ex Ascherson,
Halophila stipulacea (Forsskal) Ascherson, H. Halophila decipiens Ostenfeld), 6
mangroves (Lumnitzera racemosa Wild, Sonneratia caseolaris (Linnaeus),
Sonneratia apetala Buch-Ham, Bruguiera gymnorrhiza (L.) Lam., Bruguiera
sexangula (Lour.) Poiret, Rhizophora mangle Linnaeus) and 10 salt marsh taxa
(Spartina alterniflora Loiseleur-Deslongchamps., S. anglica C.E. Hubb, S. patens
(Ait.) Muhl, S. densiflora Brogelmann., S alterniflora * foliosa von Trinius.,
S. densiflora % foliosa, Phragmites australis (Cav.) von Trinius ex von Steudel.,
Elymus athericus (Link) Kerguélen, Cotula coronopifolia Linnaeus, Ipomoea
cairica (L.) Sweet) have invaded coastlines around the world (Williams 2007;
Fourqurean et al. 2010; Chen et al. 2009; Ren et al. 2009; Krauss and Allen 2003;
Adam 1990).
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Table 6.1 Bibliographic survey of non-native and cryptogenic seaweeds not included in Williams

and Smith (2007)

Taxa (Phyla)

Invaded bioregion

Reference

Aglaothamnion cordatum (Bergesen) Islands Micael et al. (2014)
Feldmann-Mazoyer (R)

Anotrichium okamurae Baldock (R) Med. Zenetos et al. (2010)
Antithamnion hubbsii E.Y. Dawson (R) Med. Zenetos et al. (2010)
Antithamnionella boergesenii (Cormaci Islands Micael et al. (2014)

and G. Furnari) Athanasiadis (R)

Asparagopsis taxiformis Delile Trevisan de
Siant-Léon Lineage 3 (R)

Multiple, unknown

Dijoux et al. (2014)

Asparagopsis taxiformis Delile Trevisan de | NEP Dijoux et al. (2014)
Siant-Léon Lineage 4 (R)

Botrytella cf. parva (Takamatsu) Med. Zenetos et al. (2010)
H.S. Kim (O)

Caulerpa racemosa var. [lamourouxii] f. Med. Zenetos et al. (2010)
requinii (Monagne) Weber-van Bosse (C)

Caulerpa racemosa turbinate (J. Agardh) Med. Zenetos et al. (2010)
Eubank/uvifera (J. Agardh) C. Agardh (C)

Caulerpa taxifolia distichophylla (Sonder) Med. Jongma et al. (2013)
Verlaque, Huisman and Procaccini (C)

Caulerpa webbiana Montagne (C) Islands Micael et al. (2014)
Ceramium cingulatum Weber-van Islands Micael et al. (2014)
Bosse (R)

Ceramium gaditanum (Clemente) Islands Micael et al. (2014)

Cremades (R)

Chondracanthus Kiitzing sp. (R)

NE Atlantic

Mineur et al. (2012)

Chondria dasyphylla (Woodward) C. Islands Micael et al. (2014)
Agardh (R)

Cladophora hutchisioides C. Hoek Med. Zenetos et al. (2010)
and Wormersley (C)

Cladophora ruchingeri (C. Agardh) Australasia Pochon et al. (2015)
Kiitzing (C)

Cladophoropsis membranacea (Hofman Islands Micael et al. (2014)
Bang ex C. Agardh) Bargesen (C)

Cladostephus spongiosus F. hedwigioides NE Pacific Mazariegos-Villareal
(Bory de Saint-Vincen) Prud’homme van et al. (2010)

Reine (O)

Codium arabicum Kiitzing (C) Med. Hoffman et al. (2011)
Codium effusum (Rafinesque) Delle Islands Micael et al. (2014)
Chiaje (C)

Codium parvulum (Bory de Saint Vincent Med. Zenetos et al. (2010)
ex Audoin) P.C. Silva (C)

Ctenosiphonia hypnoides (Welwitsch ex Islands Micael et al. (2014)

Agardh) Falkenberg (R)

(continued)
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Taxa (Phyla)

Invaded bioregion

Reference

Erythrodermis traillii (Holmes ex Batters) Islands Micael et al. (2014)
Guiry and Garbary (R)
Erythrotrichia carnea (Dillwyn) Islands Micael et al. (2014)

J. Agardh (R)

Fredericqia deveauniensis Mags, Le Gall,
Mineur, Provan and G.W. Saunders (R)

NW Atlantic, NE
Atlantic

Maggs et al. (2013)

Gracilariopsis chorda (Holmes) Ohmi (R)

NE Atlantic

Mineur et al. (2012)

Grateloupia asiatica S. Kawaguchi and H. | Med. Zenetos et al. (2010)
W. Wang (R)

Grateloupia minima P.L. Crouan and H.M. Med. Zenetos et al. (2010)
Crouan (R)

Grateloupia subpectinata Holmes (R) Med. Zenetos et al. (2010)
Grateloupia yinggehaiensis H-W. Wang Med. Wolf et al. (2014)
and R.X. Luan (R)

Halimeda sp. J.V. Lamouroux (C) Islands Sissini et al. (2014)
Haliptilon virgatum (Zanardini) Garbary Islands Micael et al. (2014)

and H.W. Johansen (R)

Hydropuntia perplexa (K. Byrne and
Zuccarello) Conkin (R)

Islands, Australasia

Conklin et al. (2014)

Hypnea anastomosons Papenfuss, Lipkin
and P.C. Silva (R)

NE Atlantic

Tsiamis and Verlaque
(2011)

Hypnea flagelliformis Greville ex
J. Agardh (R)

Islands, Med.

Micael et al. (2014)

Hypnea flexicaulis Y. Yamagishi and M.
Masuda (R)

Med.

Wolf et al. (2011)

Hypnea stellulifera (C. Agardh)
Kiitzing (R)

SW Atlantic

de Jesus et al. (2014)

Jania longifurca Zanardini (R) Islands (Micael et al. 2014)
Laurencia chondrioides Borgesen (R) Med. Hoffman et al. (2014)
Laurencia dendroidea J. Agardh (R) Islands, Med. Micael et al. (2014)
Leathesia marina (Lyngbe) Decaisne (O) Islands Micael et al. (2014)
Lomentaria flaccida Tanaka (R) Med. Zenetos et al. (2010)
Lophosiphonia reptabunda (Suhr) Islands Micael et al. (2014)
Kylin (R)

Microspongium tenuissimum (Hauck) A.F. Med. Zenetos et al. (2010)
Peters (O)

Nemalion vermuculare Suringar (R) Med. Zenetos et al. (2010)
Neomeris annulata Dickie (C) Med. Zenetos et al. (2010)
Nitophyllum stellatocorticatum Med. Zenetos et al. (2010)
Okamura (R)

Padina antillarum Kiitzing Piccone (O) Med. Zenetos et al. (2010)
Palisada maris-rubri (K.W. Nam and Med. Zenetos et al. (2012)

Saito) K.W. Nam (R)

(continued)
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Taxa (Phyla)

Invaded bioregion

Reference

Papenfussiella kuromo (Yendo) Islands Micael et al. (2014)
Inagaki (O)

Petalonia binghamiae (J. Agardh) K.L. Islands Micael et al. (2014)
Vinogradova (O)

Polyopes lancifolius (Harvey) Kawaguchi NE Atlantic (Mineur et al. 2009)
and Wang (R)

Polysiphonia ‘tepida’ Holenberg (R) Islands Carlton and Eldredge

(2015)

Polysiphonia schneideri B. Stuercke and
D.W. Freshwater (R)

NE Atlantic

Diaz-Tapia et al.
(2013)

Ptilothamnion pluma (Dillwyn) Thuret (R)

Islands

Micael et al. (2014)

Pylaiella littoralis (L.) Kjellman (O)

Med.

Zenetos et al. (2010)

Pyropia suborbiculata (Kjellman) J.E.
Sutherland, H.G. Choi, M.S. Hwang and
W.A. Nelson (R)

Med., Australasia,
Island, NE, SW, NW
Atlantic

Verges et al. (2013)

Rugulopteryx okamurae ((E.Y. Dawson) L. Med. Verlaque et al. (2009)
K. Hwang, W.J. Lee and H.S. Kim O)

Sphacelaria fusca (Hudson) S.F. Gray (O) Islands Micael et al. (2014)
Sphacelaria tribuloides Tribuloides (O) Islands Micael et al. (2014)
Sphaerotrichia firma (Gepp) A.D. Med. Zenetos et al. (2010)

Zinova (O)

Spongoclonium caribaeum Borgesen) M.
J. Wynne (R)

Islands, Med.

Micael et al. (2014)

Spyridia ‘filamentosa’ Clade A (Wulfen) Islands Carlton and Eldredge

Harvey (R) (2015)

Spyridia ‘filamentosa’ Clade B (R) Islands Carlton and Eldredge
(2015)

Udotea argentea Zanardini (C) Islands Carlton and Eldredge
(2015)

Ulva obscura Kiitzing (C) Med. (Zenetos et al. 2010)

Ulva ohnoi M. Hiraoka and S. Shimada (C) Islands Carlton and Eldredge
(2015)

Uronema marinum Wormersley (C) Med. Zenetos et al. (2012)

Phyla are shown in brackets, i.e. Rhodophyta (R), Ocrophyta (O) and Chlorophyta (C).
Med. = Mediterranean Sea. Islands = a variety of isolated oceanic islands, e.g. the Azores. We
followed Dijoux (2014) on the Asparagopsis Montagne complex, assuming that Williams and
Smith (2007) included Lineage 2 in their review
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Fig. 6.1 a The most invasive genera, compiled from our list of 346 non-native and cryptogenic
seaweeds. b Regions invaded by most different seaweed taxa [combining our bibliography with
that of Williams and Smith (2007)]. The same taxa can invade multiple bioregions and the total
number of cases in plot b therefore exceeds 346

6.3 How Non-native Seaweeds Get Around

Non-native seaweeds arrive into new regions through intentional or unintentional
vectors. Intentional releases are few, perhaps <3 % of reported new incursions
(Hewitt et al. 2007), and are mainly associated with aquaculture or, in rare
instances, with scientific experimentation (Pickering et al. 2007). New intentional
introductions could become even rarer in future because the public, managers,
politicians and scientists have all become increasingly aware of the potential
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impacts that might occur from intentional introductions. However, increased
demand for food and seaweed-related products in a growing global population
could supersede environmental concerns and lead to more introductions.
Furthermore, some scientists advocate ‘assisted translocation’ (=‘intentional intro-
duction’ in invasion research terminology) of species to new regions, to counter
range contractions and extinctions in a warmer future (for discussions for and
against, see Seddon 2010; Ricciardi and Simberloff 2009; Sandler 2010). Other
researchers may focus on preserving and building ‘ecosystem services’ (Barbier
et al. 2011) and therefore also suggest introductions to add or replace functional
traits that are particularly valuable to humans, such as saltmarsh plants, mangroves
and oysters that have been introduced to reduce erosion, build land and protect
hinterland coastlines.

Most non-native seaweeds are, however, introduced accidentally rather than
deliberately. The most important accidental vectors that have facilitated seaweed
spread are the aquarium trade as ornamental plants, as ‘blind passengers’ associated
with the intentional introductions, in ballast water and sea chests, attached to ship
hulls, and infrastructure breaking down natural barriers such as canal building.
Introductions associated with aquarium trade are particularly infamous due the
release of Caulerpa taxifolia (M. Vahl) C. Agardh into the Mediterranean Sea
(Meinesz 1999). However, the aquarium trade has become increasingly regulated
with black-listed species, quarantine arrangements and stricter importation rules in
many places (Hewitt et al. 2007; Padilla and Williams 2004). Still, non-native
species are continually found in both commercial and personal aquaria and con-
sequently pose a future invasion risk (Odom and Walters 2014; Williams et al.
2013). More seaweeds species (>25) have travelled through the Suez Canal, mainly
from the Red Sea into the Mediterranean Sea (Williams and Smith 2007). However,
there are few analogous marine examples around the world, suggesting that canal
building, so far, has been a geographically isolated vector. Still, the future
expansion of the Panama Canal could cause a similar spread of non-native species
between Atlantic and Pacific bioregions (Ruiz et al. 2009).

Another vector is associated with ballast waters and sea chests (i.e. in waters and
sediments held inside ships). Williams and Smith estimated about 25 known sea-
weed introductions through this vector, and although this vector is considered one
of the most important for marine organisms generally, it is of comparatively little
importance for seaweeds because of the adverse conditions for photosynthetic
macrophytes (dark, nutrient poor, low water movements, high sediment loads) and
because most seaweed propagules have relatively short lifespans (but see Flagella
et al. (2007, 2010) for contrasting examples). Instead, ballast water is a much more
important vector for invertebrates with pelagic larval stages, for
sediment-associated fauna, for filter-feeding animals and for species with dormant
resistant life stages such as many species of phytoplankton (Davidson and Simkanin
2012; Ibrahim and El-naggar 2012).

By far the most important vectors for seaweed introductions are associated with
aquaculture, in particular shellfish transplants, and as hull-fouling organisms.
Shellfish transplants have been particularly important in the past, with more than 70
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species (mostly corticated rhodophyta) reported to be introduced by this vector
(Mineur et al. 2007; Williams and Smith 2007). Oyster transplantations are likely
responsible for several high-profile invasions, including those of Sargassum
muticum (Yendo) Fensholt (Rueness 1989), Gracilaria vermiculophylla (Ohmi)
Papenfuss (Thomsen et al. 2006a) and C. fragile (Suringar) Hariot (Trowbridge
1998). However, methods now exist to kill epibiotic organisms, including sea-
weeds, while ensuring that the shellfish survive, for example by using short-term
bleaching before seeding (Fitridge et al. 2012). Furthermore, increasing use of
shellfish cultured in local, land-based facilities, could also lower the importance of
this vector in future.

The final major vector is hull fouling, which is responsible for more than 70
seaweed introductions (Hewitt et al. 2007; Williams and Smith 2007; Mineur et al.
2008a). Hull fouling is a particularly important vector for filamentous species
(Williams and Smith 2007), although larger species, including high-profile invaders
such as C. fragile and Undaria pinnatifida (Harvey) Suringar likely also have been
introduced to many places through hull fouling. Virtually, all seaweeds are capable
of hull fouling but survival on ship hulls can be constrained by vessel speed,
changes to environmental conditions throughout the voyage (such as changing
salinity and temperature), low nutrient levels in offshore waters and the smooth
surface of many hulls combined with toxic antifouling paints and coatings (Mineur
et al. 2007). Increasing boat activity, both of commercial and recreational vessels,
travelled over long or short distances, will likely continue to make this vector
important in transporting seaweeds around the globe. Finally, we note that vectors
for most non-native seaweeds are poorly described in the scientific literature and
even for the better known case studies, described vectors are more like plausible
guesses than based on rigorous tests and data (Williams and Smith 2007).

6.4 Success and Impacts of Non-native Seaweeds

After uptake, transport to and release into a new location, the success of a
non-native seaweed is measured by how well it survives, grows and reproduces and
whether it disperses and expands to nearby habitats, sites and regions. In these
‘invasion success’ studies, invader attributes are considered dependent variables,
thereby contrasting with ‘invasion impact’ studies where invader attributes are
independent variables. This distinction between success and impact is straightfor-
ward when interpreting data from manipulative studies but can be blurred for
mensurative experiments where key attributes are beyond scientific control. For
example, if mensurative data show a negative relationship between Caulerpa and
seagrass abundances, this can occur because seagrass has a negative effect on
Caulerpa (a success interpretation), because Caulerpa has a negative effect on
seagrass (an impact interpretation), or because the relationship may be a spurious
effect caused by a third unmeasured factor (Bulleri et al. 2010; Glasby 2012; Klein
and Verlaque 2008; Ceccherelli and Campo 2002; Jaubert et al. 1999).
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Success studies Success of an invasive seaweed depends on attributes related to
the non-native seaweed and the invaded system (Catford et al. 2009). System
attributes are typically subdivided into attributes related to abiotic conditions (e.g.
salinity, temperature, hydrodynamic forces and desiccation), resources (e.g. space,
light, nitrogen and phosphorous) and resident community structures (e.g. the
identity and abundance of competitors, facilitators, grazers and other organisms).
Many hypotheses have been proposed to explain the invasion success (or lack of)
non-native species including seaweeds (Mitchell et al. 2006; Catford et al. 2009;
Valentine et al. 2007; Alpert 2006). At least 19 ‘core’ hypotheses are commonly
cited, which can be grouped into three clusters that highlight different aspects of
invasion success. We use Catford et al.’s hypothesis nomenclature (cf. Table 3 in
Catford et al. 2009) but excluded hypotheses that combined multiple core
hypotheses (‘Darwin’s naturalisation’, ‘Global competition’, ‘resource-enemy
release’, ‘indirect effects’, ‘opportunity windows’), that just rebranded other core
hypotheses (‘adaptation’, ‘enemy reduction’) or that predicted success and failure at
the same time and therefore are difficult to test (‘enemy inversion’, ‘dynamic
equilibrium model’, ‘new associations’). We also added ‘facilitation- and
habitat-cascades’ to the list (not included in Catford et al.’s review), because
non-native seaweeds often are key players in these ecological interactions
(Thomsen et al. 2010).

The first hypothesis cluster proposes that invasion success is determined by
attributes associated with the non-native seaweed. This cluster includes the ‘ideal
weed’ (Baker and Stebbens 1965), ‘propagule pressure’ (Lockwood et al. 2009) and
‘sampling’ (Crawley et al. 1999) hypotheses. The ideal weed hypothesis suggests
that certain traits are universally important to successful invaders, particularly r-
selected traits such as fast growth, high reproductive output and high dispersal
capacity. However, there are few consistent patterns for the most successful inva-
sive seaweeds, except perhaps for U. pinnatifida which has many weedy traits
(Valentine et al. 2007). By comparison, propagule pressure and sampling
hypotheses are ‘numbers game’ hypotheses that suggest that the more propagules
(propagule pressure hypothesis, species traits are less important) or the more dif-
ferent species (sampling hypothesis, species traits are more important) that are
introduced to a new region, the greater the chance that one of these propagules will
establish a self-sustaining population (Britton-Simmons and Abbott 2008;
Vaz-Pinto et al. 2012).

The second cluster emphasises that attributes associated with the invaded sys-
tem, such as resource levels and local abiotic conditions, can explain invasion
success. These core hypotheses highlight that high ‘fluctuating resource availabil-
ity’ (Davis et al. 2000), high ‘environmental heterogeneity’ (Melbourne et al.
2007), medium-to-high ‘disturbances’ (Sher and Hyatt 1999), availability of ‘empty
niches’ (Hierro et al. 2005) and low ‘habitat filtering’ (Proches et al. 2008) all
increase the likelihood that non-native species can establish populations following
arrival. These hypotheses suggest that almost any non-native seaweed can be
successful in systems that have a plethora of microhabitats, are heterogeneous, are
frequently disturbed and have unused resources in space and time. Several of these
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processes have been suggested to be important for high-profile seaweed invaders
including U. pinnatifida, S. muticum and Caulerpa racemosa (Forsskal) J. Agardh
(Valentine et al. 2007; Incera et al. 2010; Olabarria and Arenas 2014).

The final cluster emphasises that biological interactions, in particular lack of
co-evolution with local species, can explain success of non-native species. In this
cluster, ‘novel weapons’ (Callaway and Ridenour 2004), ‘enemy release’ (Keane
and Crawley 2002), ‘evolution of increased competitive ability’ (Blossey and
Notzold 1995), ‘enemy of my enemy’ (Eppinga et al. 2006), ‘limited similarity’
(Emery 2007), ‘specialist generalist’ (Sax et al. 2007), ‘invasional meltdown’
(Simberloff and Von Holle 1999) and ‘cascading habitat formation’ (Thomsen et al.
2010) highlight how non-native species become invasive, whereas ‘biotic resis-
tance’ (Elton 1958), ‘missed mutualisms’ (Mitchell et al. 2006) and ‘increased
susceptibility’ (Colautti et al. 2004) highlight why non-native species can fail to
become invasive.

We are not aware of any research that has compared the relative merits of all
these competing and overlapping core hypotheses for non-native seaweeds.
However, we speculate that hypotheses assuming that seaweeds are limited by tight
co-evolutionary processes at their place of origin (and lack of co-evolution at the
new place) are less important for seaweeds, because seaweed—animal interactions
are, compared to terrestrial systems, dominated by generalist-type interactions (Bell
1991; Enge et al. 2013; Hay and Steinberg 1992). Importantly, we hope future
studies will test for interactions between multiple core hypotheses because we
expect that many mechanisms exert selection pressure simultaneously and because
mechanisms likely change during the life cycle of non-native seaweeds
(Britton-Simmons 2006). For example, U. pinnatifida is well adapted to attach to
ship hulls and spread in large numbers (~ propagule pressure hypothesis)
(Hay 1990) but has also many weedy traits, like fast growth and high reproductive
output (~ideal weed hypothesis) (Dean and Hurd 2007; Schiel and Thompson
2012). U. pinnatifida is also successful in settling onto unoccupied microhabitat
space and on biogenic substrata ( ~ environmental heterogeneity hypothesis) (Schiel
and Thompson 2012; Thompson and Schiel 2012), often becomes dominant fol-
lowing disturbances (~ disturbance hypothesis) (Valentine and Johnson 2003,
2004) and is efficient in converting available resources into biomass (~ fluctuating
resource hypothesis) (Tait et al. 2015). Finally, U. pinnatifida is, of course, also
constrained by physiological tolerance levels (~ habitat-filtering hypothesis)
(Morita et al. 2003; Peteiro and Sanchez 2012) even if Undaria colonises sites
outside its native environmental range (James et al. 2014). In short, it is important
that future studies test multiple core hypotheses simultaneously, rather than a single
hypothesis at a time (Britton-Simmons 2006; Olabarria and Arenas 2014; Valentine
et al. 2007; Williams and Smith 2007).

Impact studies In invasion impact studies, the non-native species is considered
the causal agent of ecological change. Impact is therefore a synonym for ‘effect’,
‘consequence’ or ‘cause’. Impact studies focus on how invaders affect a particular
property of a resident system, and the impact on this property can then be larger or
smaller than a reference value (often the non-impacted reference value is defined as
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zero). Impact can therefore be positive (>0), neutral (0) or negative (<0), which is a
statistical measure that differs from the anthropocentric value judgement of whether
an impact is ‘good’ or ‘bad’. Impacts can be reported on cultural (economics,
health, societal) or natural (biotic, abiotic) properties. Biotic properties can be
divided into impacts reported on or above the species level; importantly, impacts
reported above the species level can hide opposing effects if some species benefit
and others are harmed. Invasion impacts, like successes, also depend on attributes
of the non-native seaweeds and attributes associated with the biotic community,
resource levels and abiotic conditions of the invaded system (Thomsen et al.
2011a). A highly cited impact formula suggests that the impact from a non-native
seaweed is proportional to its abundance, its range (distribution) and its per capita
effect (Parker et al. 1999), i.e. what it does to targeted response variables (in the
context of its abundance and distribution). This framework highlights that processes
which determine invasion success (cf. core hypotheses outlined in the previous
section) also modify impact, partly by controlling the distribution and abundance of
the non-native seaweed.

6.5 Common Types of Ecological Impacts

The impacts of invasive seaweeds have been reviewed in some detail (Williams
2007; Schaffelke and Hewitt 2007; Thomsen et al. 2009b; Williams and Smith
2007), concluding that impacts have been quantified from a fraction (<10 %) of
known taxa, that impacts on native species can be strong and that underlying impact
mechanisms are poorly known. Each of the 346 non-native and cryptogenic sea-
weeds have some level of impact on the invaded communities, contributing their
biomass and adding new genotypes to the local species pools, modifying geo-
chemical cycles through metabolic activities and by affecting other species in the
community through ecological processes. However, impacts can be subtle or dif-
ficult to quantify, particularly if the non-native species is cryptic, if interactions with
native species are few and weak, or, if strong interactions only occur in small areas,
in short time windows, or in inaccessible habitats. Below we provide examples of
ecological impacts grouped as ‘negative’ or ‘positive’, occurring through direct or
indirect interactions (in indirect effects, an intermediate species is required for the
impact to manifest).

Negative effects Many negative effects by non-native seaweeds occur through
competition and habitat destruction (direct effects) or keystone competition and
keystone habitat destruction (indirect effects). For example, non-native
canopy-forming seaweeds, like S. muticum, U. pinnatifida and C. fragile some-
times have strong competitive effects on native seaweeds, competing for limiting
resources such as nutrients, light and space (Staehr et al. 2000; Ambrose and Nelson
1982; Britton-Simmons 2004; Schmidt and Scheibling 2006; Levin et al. 2002;
Casas et al. 2004). However, these negative effects appear to be weaker in intertidal
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areas (Sanchez and Fernandez 2005; Forrest and Taylor 2003; South et al. 2015;
Olabarria et al. 2009), perhaps because desiccation and super-saturation of light are
strong stressors here. Furthermore, some of these canopy-forming non-native sea-
weeds shed much of their thalli (S. muticum and C. fragile) or the entire thallus
(U. pinnatifida) (Schiel and Thompson 2012; Wernberg et al. 2001), and effects
associated with a canopy cover therefore could only occur seasonally (South et al.
2015). Similar mechanisms have been observed in soft-bottom systems where
invasive Caulerpa species can compete with native seagrasses (Ceccherelli and
Cinelli 1997; de Villele and Verlaque 1995), although other studies suggest that
competition from Caulerpa is relatively small (Thomsen et al. 2012; Jaubert et al.
1999, 2003; Ceccherelli and Sechi 2002). Non-native seaweeds can also have
negative effects on native organisms through modification or destruction of habitats,
for example if they convert non-vegetated mud or sand habitats to vegetated
meadows. Well-documented examples include G. vermiculophylla (Byers et al.
2012; Thomsen et al. 2007, 2010), Caulerpa species (Gribben and Wright 2006;
Wright and Gribben 2008; Gribben et al. 2009b; McKinnon et al. 2009; Byers et al.
2010; Pacciardi et al. 2011), S. muticum (Strong et al. 2006), and invasive sea-
grasses (Willette and Ambrose 2009, 2012; Baldwin and Lovvorn 1994; Posey
1988; Berkenbusch et al. 2007; Ruesink et al. 2010) and salt marsh plants and
mangroves (Demopoulos and Smith 2010; Thomsen et al. 2009a; Wu et al. 2009;
Neira et al. 2007). In these examples, local species that depend on sand and mud,
such as many infaunal species and burrowing fish, may be negatively affected by
the non-native macrophytes (Wright et al. 2007; Gribben et al. 2009b; Tsai et al.
2010), although in some cases, these organisms can also survive under, around or
on the macrophytes (Gribben and Wright 2006; Wright and Gribben 2008; Gribben
et al. 2009b; McKinnon et al. 2009; Byers et al. 2010; Klein and Verlaque 2011).

Indirect negative effects from invasive seaweeds can occur through keystone
competition where an invader reduces a resource that is important for other species
within that community. For example, syngnathid and monacanthid fish were more
abundant in native seagrass compared to invasive Caulerpa meadows (York et al.
2006), juvenile fish were more abundant in native seagrass beds than in the invasive
seagrass H. stipulacea (Willette and Ambrose 2012) and gastropods and echino-
derms were more abundant on native kelp compared to invasive C. fragile (Schmidt
and Scheibling 2006). These fish, gastropods and echinoderms were probably less
abundant around the non-native macrophytes (than around the native macrophytes),
because these non-native species provide low-quality foraging grounds and poor
protection against predators. In short, if these non-native macrophytes do indeed
reduce the abundance of native seagrass and kelps, then they will have indirect
negative effects on the same invertebrates and fish (=keystone competition).

Positive effects Invasive seaweeds can also have positive effects on local pop-
ulations, directly through habitat formation and modification, and by being con-
sumed by grazers, or indirectly through cascading habitat formation, consumption,
competition or keystone consumption.
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For example, seaweeds invading un-vegetated sediments provide habitat for
epibenthic fauna (Thomsen and Wernberg 2015) that live among or on seaweeds,
including C. racemosa (Klein and Verlaque 2011), C. Taxifolia (M. Vahl) C. Agardh
(McKinnon et al. 2009) and G. vermiculophylla (Byers et al. 2012; Thomsen et al.
2010; Johnston and Lipcius 2012). Similar positive effects on fauna have also been
shown for invasive seagrasses such as H. decipiens (Willette and Ambrose 2012) and
Z. japonica Ascherson and Graebner in Engler (Berkenbusch and Rowden 2007;
Berkenbusch et al. 2007; Posey 1988) when and where they colonise un-vegetated
sediments. Many invasive seaweeds also add structure, biomass and productivity to
vegetated rocky coasts (Thomsen et al. 2015). For example, the canopy-forming
S. muticum and C. fragile provide additional habitat for epiphytic plants and inver-
tebrates (Thomsen et al. 2006b; Jones and Thornber 2010; Schmidt and Scheibling
2006, 2007; Wernberg et al. 2004). Invasive seaweeds not only provide habitat, but
can also be a food source, and indirectly fuel higher order consumers through trophic
cascades. For example, juvenile invasive seaweeds (and seagrass) can provide a
seasonal food supply (Sjotun et al. 2007; Thornber et al. 2004; Reynolds et al. 2012):
Littorina Férussac snails consume C. fragile in tide pools (Scheibling et al. 2008),
waterfowl graze invasive Z. japonica (Baldwin and Lovvorn 1994), and siphonalian
seaweeds (Codium and Caulerpa spp.) are likely to have increased food availability
for specialist saccoglossan grazers (Harris and Jones 2005; Trowbridge 2002;
Trowbridge and Todd 2001). Still, most invasive seaweeds are not considered
preferred food for native larger generalist grazers and smaller meso-grazers and many
produce grazer-deterring secondary metabolites, as shown for S. muticum
(Britton-Simmons 2004; Engelen et al. 2011; Monteiro et al. 2009; Pedersen et al.
2005), C. fragile (Scheibling and Anthony 2001), Caulerpa species (Gollan and
Wright 2006; Boudouresque et al. 1996), G. vermiculophylla (Nejrup and Pedersen
2010; Thomsen and McGlathery 2007; Nejrup et al. 2012; Rempt et al. 2012; Nylund
etal. 2011) and Lophocladia lallemandii (Montagne) F. Schmitz and Womersleyella
setacea (Hollenberg) R.E. Norris (Cebrian et al. 2011; Tomas et al. 2011a, b).

Invasive marine plants can also have positive indirect effects, for example
through cascading habitat formation (Thomsen et al. 2010): invasive S. muticum,
C. fragile and G. vermiculophylla provide primary habitat for sessile plants and
animals, such as filamentous seaweeds and ascidians (Nyberg et al. 2009; Thomsen
et al. 2006b, 2010; Engelen et al. 2013; Gestoso et al. 2012; Jones and Thornber
2010; Schmidt and Scheibling 2006, 2007; Wernberg et al. 2004). These epiphytic
macro-organisms are likely to subsequently provide a secondary habitat for many
other smaller organisms, such as hydrozoa, bryozoa and small mobile invertebrates.
Invasive plants can also have indirect positive effects through cascading habitat
modification. For example, C. taxifolia can reduce sediment redox potential,
altering abiotic conditions and forcing infaunal bivalves to live at the sediment
surface where they are exposed to sessile fouling organisms (Gribben et al. 2009a).
Finally, positive effects of seaweed invasions can also be mediated through cas-
cading consumption (trophic cascades), such as when invasive C. fragile is con-
sumed by (invasive) Littorina snails (Scheibling et al. 2008), which are consumed
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by (invasive) crabs (Eastwood et al. 2007; Trussell et al. 2002, 2004), which are
consumed by native crabs, seabirds and fish (de Rivera et al. 2005).

6.6 Impacts Reviewed Across Studies, Seaweeds
and Habitats

The many case studies about impacts from invasive seaweeds (cf. last section) have
stimulated quantitative meta-analyses that aim to identify impact generalities across
different non-native seaweed species, invaded communities and environmental
conditions. In these studies, documented effects are standardised, typically with the
Hedges d effect size or a log-response ratio (Borenstein et al. 2009), so that effects
can be compared between studies. Here, we summarise the main finding from
meta-analyses that have included non-native seaweeds as a test factor.

The first meta-analysis of seaweed invasion impacts reviewed field-based impact
experiments and showed that invasive seaweeds generally had significant negative
effects on local plant abundances, richness and diversity (Thomsen et al. 2009b). By
contrast, there were no significant effects on seaweed ‘processes’ (e.g. growth,
photosynthesis, respiration) or the abundance, richness and diversity of animal
communities. However, the latter analysis was based on a small sample size and
had large confidence limits. A follow-up analysis confirmed that non-native sea-
weeds, across the reviewed studies, have negative effects on diversity of native
seaweeds (Thomsen et al. 2014). This study also tested whether trophic and
functional ‘matching’ (i.e. pairing the trophic level or function of the invader and
the impacted organism) could provide first-order predictions about impacts on
diversity metrics. It was hypothesised that the net effect from non-native seaweeds
on diversity would be negative within a trophic level but zero (or even positive)
across trophic levels, based on the assumption that competition processes would
dominate in the community within trophic levels (in plant—plant interactions) and
habitat formation, habitat-modification and food-provisioning processes would
dominate across trophic levels (in plant-animal interactions). The hypothesis was
confirmed, showing negative effects of non-native seaweeds on the diversity of
local seaweed communities, but with positive effects on local animal communities.
Furthermore, a recent analysis reconfirmed that non-native seaweeds generally have
negative effects on species within the same trophic levels (Maggi et al. 2015),
although this study found no effects on species at higher trophic levels (effect size
on animals was not statistically different from zero). The discrepancies between
these meta-analyses (positive vs. no effect on animal communities) were likely due
to there being different study-inclusion criteria. Maggi et al. (2015) included, in
contrast to Thomsen et al. (2014), mensurative experiments, laboratory experiments
and litter-bag experiments where the invader was dead and decomposing (Rodil
et al. 2008; Taylor et al. 2010). These two analyses therefore highlight that readers
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should be careful when extrapolating meta-analytical results beyond the domain of
reviewed primary studies.

Three other meta-analyses have examined aspects of seaweed invasions. An
analysis of seaweed impacts on seagrasses, measured in field and laboratory
experiments, showed that non-native seaweeds have a less negative impact than
native seaweeds (Thomsen et al. 2012). However, this analysis was confounded by
the taxonomic status and attachment type of the non-native seaweeds, which were
dominated by studies on Caulerpa species, a special group of clonal seaweeds
attached with rhizomes to sediments. These types of non-native seaweeds have few
documented cases of negative effects on seagrasses compared to many native
seaweed taxa that are found in seagrass beds entangled around stems or epiphytic
on leaves.

More recently, Tamburello et al. (2015) used a subset of the data analysed in
Maggi et al. (2015), to test whether impacts co-vary with Halpern’s (2008) ‘global
cumulative human impact index’. In other words, they tested whether seaweed
invasion impacts increase or decrease with impacts from human activities
(Halpern’s index merges a range of human activities including pollution, fisheries,
climate changes and eutrophication). This analysis showed that impacts from
non-native seaweeds on community biomass and abundance become less negative
or even neutral when moving from relatively pristine to heavily impacted envi-
ronments (but the opposite trend was found on community ‘evenness’). Thus,
invasion impact appears to co-vary with other human stressors, being greater in
stressed systems (presumably with lower resilience). Finally, Thomsen et al. (2015)
conducted a meta-analysis to test whether invasion impacts on local plant com-
munities differ when the invader itself was included as part of the total community.
This analysis showed again that seaweed invaders have significant negative impacts
on plant abundance and plant community richness, but also that these negative
effects were cancelled out when the taxonomic status and abundance of the invader
were included in the calculations of total community biomass and richness (i.e. the
effect size was no longer significantly different from zero). Thus, non-native sea-
weeds appear, across species and invaded systems, to substitute, rather than
increase or decrease, standing biomass and richness.

These meta-analyses all suggested that more impact studies are needed, espe-
cially on functional community responses, such as total system productivity, res-
piration, decomposition rates and nutrient uptake (Altieri et al. 2009; Green et al.
2012, 2013; Tait et al. 2015; Cacabelos et al. 2012; South et al. 2015). Furthermore,
although the impact literature is extensive, the vast majority of case studies have
tested for impacts of six high-profile invaders (S. muticum, U. pinnatifida,
C. taxifolia, C. racemosa, C. fragile and G. vermiculophylla) likely biasing tests
towards detecting strong impacts. It is critical that comprehensive impact analyses
are conducted on more of the non-native seaweeds that have colonised coastlines
around the world, to allow for better generalisations about seaweed invasions across
habitats, bioregions and species assemblages.
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6.7 New Meta-analysis; Impact Is Density-dependent
and Non-native Seaweeds Affect Community
Similarity

Two key aspects related to seaweed invasion impacts have not yet been tested with
meta-analyses: density dependency and impacts on community structure measured
by multivariate metrics. Below we address these research gaps.

6.7.1 New Meta-analysis 1: Density-dependent Effects

We tested whether impacts from non-native seaweeds are density dependent
(density is defined loosely to include any abundance metric such as counts, length,
coverage, biomass or volume); i.e. whether effects vary with the amount of an
invasive seaweed found in a plot, site and region. We identified peer-reviewed
papers describing manipulative field experiments in which invader abundance was
controlled using addition or removal techniques with replicated treatments and
controls. We included only experiments reporting impacts from at least three in-
vasion densities (one of which could be a non-invaded control) so that paired effects
within a study could be contrasted between low and high density treatments
(Table 6.2).

We used Hedges effect size d, corrected for small sample sizes, to standardise
effects between treatments, allowing us to include zero-value responses (Borenstein
et al. 2009). An all-inclusive unbiased data selection criterion (Englund et al. 1999)
was used to extract effect sizes for each paper, calculating d-values for all reported
impacted resident organisms, test combinations (e.g. different depth levels Thomsen
2010) and quantified responses also on the same resident organism, such as seagrass
leaf length, above ground biomass and below ground biomass (Drouin et al. 2012).
One study presented data as x—y points on a graph of abundance of the seaweed
versus fauna (because applied densities changed over time) (Byers et al. 2012). We
extracted these x—y data and reclassified data into low (control), medium and high
seaweed densities. To avoid problems associated with temporal autocorrelation, we
included only the last data points from repeated measure experiments (Parker et al.
2006). Following the calculations of Hedges d between controls and invaded
treatments, we calculated a ‘Ad’ for each paired response (responses are paired
because the same un-invaded control data are used to calculate d for both the low
and high density treatments) (Thomsen et al. 2011b). If more than three invasion
densities were tested, we contrasted only the effects between the lowest and highest
densities. Nested and orthogonal experiments within research papers were treated as
independent studies. Two tests examined whether effect sizes depended on the
density of the non-native seaweeds. In the first, we examined whether paired d-
values were different, using the formula Ad = ldhign — diowl. In the second, more
conservative, test, we examined whether the high density d was numerically larger
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Taxa Data from | Reference
figure
Caulerpa racemosa (Forsskal) J. Agardh, C. taxifolia 4 Balata et al. (2004)
(M. Vahl) C. Agardh
Lophocladia lallemandii (Montagne) F. Scmitz 3 Bedini et al. (2014)
Zostera japonica Aschershon and Graebner 2c—d Berkenbusch and
Rowden (2007)
Zostera japonica 5b Berkenbusch et al.
(2007)
Caulerpa racemosa 4 Box et al. (2010)
Sargassum muticum (Yendo) Fensholt 2 Buschbaum et al.
(2006)
Gracilaria vermiculophylla (Ohmi) Papenfuss 4c, 5c, 6¢c | Byers et al. (2012)*
Sargassum muticum 3a Cacabelos et al.
(2010)
Codium fragile (Suringar) Hariot 3a-b, Drouin et al.
4a—c (2012)*
Multiple (Eucheuma denticulatum (N.L. Burman 4a-b EKkI16f et al. (2005)
F.S. Collins and Hervey + Kappaphycus alvarezii)
Caulerpa scalpeliformis 9 Falcao and de
Szechy (2005)
Undaria pinnatifida (Harvey) Suringar 5 Forrest and Taylor
(2003)
Multiple (Gracilaria salicornia (C. Agardh) E.Y. 4 Fukunaga et al.
Dawson + Acanthophora spicifera (M. Vahl) Borgesen) (2014)
Caulerpa taxifolia 6a—b Gallucci et al.
(2012)
Caulerpa racemosa 2 Gennaro and Piazzi
(2011)
Sargassum muticum 2a, 4 Gestoso et al.
(2010)
Caulerpa taxifolia 4 Gribben et al.
(2013)
Asparagopsis armata (Harvey) 3 Guerra-Garcia et al.
(2012)
Gracilaria vermiculophylla 1-2 Hammann et al.
(2013)*
Sargassum muticum 4a—c, Harries et al. (2007)
9a—
Undaria pinnatifida Table 6.1 | Irigoyen et al.

(2011)

(continued)
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Taxa Data from | Reference
figure
Caulerpa racemosa 4 Klein and Verlaque
(2011)
Sargassum muticum 3a, 3¢ Lang and
Buschbaum (2010)
Sargassum muticum 4a-b, 5a— | Lang and
Buschbaum (2010)*
Codium fragile 2a— Lutz et al. (2010)
Caulerpa taxifolia 6a Mateu-Vicens et al.
(2010)
Caulerpa taxifolia 2a-b McKinnon et al.
(2009)
Multiple (large group) 3 Mineur et al.
(2008b)
Sargassum muticum 3j Olabarria et al.
(2009)
Caulerpa racemosa 2,5 Pacciardi et al.
(2011)
Caulerpa racemosa, Womersleyella setacea (Hollenberg) |3 Piazzi and Balata
R.E. Norris (2009)
Caulerpa racemosa 2 (Piazzi and Balata
2008)
Caulerpa racemosa, C. taxifolia, Multiple (Acrothamnion | 4a—c Piazzi and Cinelli
preissii (Sonder) E.M. Wollaston + Womersleyella (2003)
setacea)
Acrothamnion preissii, Womersleyella setacea, Multiple 5a-b Piazzi et al. (2002)
(Acrothamnion preissii + Womersleyella setacea)
Caulerpa racemosa, C. taxifolia, Multiple (C. racemosa + |3 Piazzi et al. (2003)
C. taxifolia)
Caulerpa racemosa 2 Piazzi et al. (2005)
Caulerpa racemosa 2 Piazzi and
Ceccherelli (2006)
Sargassum muticum 2 Sanchez et al.
(2005)
Sargassum muticum 6, 3a4, Sanchez and
3b4 Fernandez (2005)
Codium fragile S5a-b Schmidt and
Scheibling (2006)
Caulacanthus ustulatus (Mertens ex Turner) Kiitzing la, 1c, le, | Smith et al. (2014)
2a—f
Undaria pinnatifida Raw data | South et al. (2015)
Sargassum muticum 5b Staehr et al. (2000)
Sargassum muticum 2a-b Strong et al. (2006)

(continued)
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Table 6.2 (continued)

Taxa Data from | Reference
figure

Gracilaria vermiculophylla Raw data | Thomsen and
McGlathery (2006)

Gracilaria vermiculophylla Raw data | Thomsen (2010)

Gracilaria vermiculophylla la-h Thomsen (2010)*

Gracilaria vermiculophylla Raw data | Thomsen et al.
(2010)

Caulerpa racemosa 4 Vazquez-Luis et al.
(2012)

Sargassum muticum 2a—d Wernberg et al.
(2004)

Sargassum muticum 4 White and Shurin
(2011)*

Caulerpa taxifolia 2a-d York et al. (2006)

References with asterisks were used for meta-analysis of density effects; all other references were
used for meta-analysis of multivariate dispersion effects (i.e. showing MDS plots or where we have
access to raw data). Note that multiple effect sizes could often be calculated from a single figure
(e.g. as different MDI values for different sites)

than its paired low density d, using the formula Ad = ldhion! — ldiowl. Analysing
numerical Ad-values is necessary to ensure that density-dependent facilitation is not
cancelled out by density-dependent inhibition. Non-independent Ad-values from a
study were averaged to produce independent Ad-values, using equal weight for
each reported type of impact. Finally, un-weighted fixed effects analyses were made
on the independent Ad-values in Metawin 2.1, to calculate Ad.ymutative and 95 %
bias-corrected confidence limits (CL) with 999 permutations (Rosenberg et al.
2000). Ad.ymutaiive Was interpreted to be significantly different from zero if the 95 %
CL did not overlap zero.

In the first test, overall heterogeneity of effect sizes was small (Q = 1.49,
df =9, p = 0.99), indicating that effect sizes share a common value. The overall
Adymutative Was 0.61 and the 95 % bias-corrected confidence limits did not bracket
zero (0.40-0.84) indicating that dy,;, was indeed different from d,,,. In the second
test, overall heterogeneity of effect sizes was again small (Q . = 1.29, df = 9,
p = 0.99). This Ad.ymulatve Was slightly lower (0.52) and the 95 % bias-corrected
confidence limits again did not bracket zero (0.31-0.74) highlighting that dy;g, had
a larger magnitude than d,,,,. We conclude, therefore, based on the few studies that
have tested for density-dependent effects, that seaweed invasion impacts, as a
general rule, are density dependent. However, more studies are needed to enable
specific analyses, for example, to identify non-linear density dependency, changes
from positive to negative effect sizes, to locate thresholds and to make regression
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models that can predict which non-native seaweeds have particular strong
density-dependent impacts. This analysis also highlights that all seaweed invasion
impact studies should report the abundance of the studied invader.

6.7.2 New Meta-analysis 2: Effects on Community
Structures

Non-native seaweeds have strong effects on population abundances, growth,
survival and community diversity and richness (all univariate metrics, see previous
sections). However, non-native seaweeds can also affect multivariate community
structure, often assessed through multivariate analysis of variance (Manova,
Permanova) and multivariate regressions, and visualised on dimensional reduction
methods such as principal coordinates analysis (PCA, PCO) or multidimensional
scaling (MDS) (Viejo 1999; Staehr et al. 2000; Piazzi and Balata 2008). These
methods typically test whether multivariate ‘centroids’ or ‘dispersion’ differ
between invaded and non-invaded communities. The ‘centroid-analysis’ is
non-directional in that it tests whether the ‘mean’ invaded community is different
from the ‘mean’ non-invaded community. However, the ‘dispersion-analysis’ is
directional, with several well-known examples suggesting that invaded communi-
ties are less dispersed in multivariate space (i.e. are more ‘homogenous’) than
non-invaded communities (Staechr et al. 2000; Piazzi and Balata 2008).
Unfortunately, invasion studies do not usually publish the entire species-sample
data matrix or the associated sample similarity matrix from which multivariate
dispersions can be calculated. Instead, multivariate invasion impact is typically
visualised with 2D plots, where each x—y point represents a sample that can contain
many species. The spatial distances between these sample points correlate with how
similar the communities are, and invaded samples will be clustered compared to
non-invaded samples if the invader increases community similarity in space
(e.g. Fig. 2, Piazzi and Balata 2008) or over time (e.g. Fig. 5b, Staehr et al. 2000).

Here, we develop a method to test whether non-native seaweeds increase sample
similarity across studies, by extracting x—y coordinates from published MDS plots.
From these coordinates, sample matrices can be reconstructed, composed of two
universal ‘pseudo-species’ from which the (imperfect) sample similarity matrices
can be calculated. Reconstructed similarity matrices were then used to calculate
Multivariate Dispersion Index values to test whether invasive seaweeds, across
studies, increased between-sample similarities. These ‘MDI’ values have a mini-
mum of —1 (dissimilarities among invaded samples are lower than any dissimi-
larities among non-invaded samples = non-native seaweeds ‘homogenise’ local
communities) and a maximum of 1 (the opposite case = non-native seaweeds make
local communities more heterogeneous (Warwick and Clarke 1993).
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We located peer-reviewed studies that compared samples from invaded and
non-invaded communities in 2D MDS plots (Table 6.2) by searching Google
Scholar and by back-tracking references in past reviews (Williams 2007; Thomsen
et al. 2009b, 2011b, 2014; Schaffelke and Hewitt 2007; Maggi et al. 2015; Williams
and Smith 2007). We included a few studies that did not show MDS plots for which
we had access to raw data and therefore could calculate the sample similarity
matrices (using common methods; Bray—Curtis similarity coefficient, square root
transformed data and excluding the abundance of the invasive species) (Thomsen
et al. 2010; Thomsen and McGlathery 2006; South et al. 2015). MDS plots were
imported into TechDig and rescaled from O to 1 for the longest axis. Each sample
was classified as invaded or non-invaded and its x—y coordinates extracted. A few
samples overlapped on the plots, making it difficult to extract all samples (but
>90 % of all samples were extracted from each plot). Extracted x—y coordinates
represent the relative abundance of two ‘universal pseudo-species’ in the invaded
versus non-invaded samples. Paired similarity matrices between the invaded and
non-invaded samples were reconstructed from the two-species communities using
Euclidean distances for untransformed data. This method provides a perfect spatial
fit between the abundance of the pseudo-species and the published MDS plots they
were derived from (see Fig. 6.2 for examples). For each plot, we also extracted data
to test whether MDI values depended on whether (1) the impacted community was

(a) MDIsargassum (BA)=-0.58  (b) MDI Caulerpa (5m) = -0.40 (C) MDI Caulerpa (25m) = -0.45
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Fig. 6.2 Relative abundance of universal ‘pseudo-species’ 1 and 2 in invaded (black squares) and
non-invaded (white circles) samples, reconstructed from two MDS plots; Fig. 5 in Staehr et al. (2000)
and Fig. 2 in Piazzi and Balata (2008). The MDS plots were imported into TechDig and rescaled from
0 to 1 for the longest axis. Each sample was classified as invaded or non-invaded and its coordinates
extracted (representing the relative abundance of universal ‘pseudo-species 1 and 2°). Similarity
matrices were calculated for invaded and non-invaded samples using Euclidean distances based on
the relative abundances of the two pseudo-species. Finally, MDI values were calculated for each set of
paired similarity matrices (Warwick and Clarke 1993). The negative MDI values shown above each
plot indicate invasion-driven ‘homogenisation’, i.e. invaded samples are spatially clustered both in
time (a before vs. after invasion) and space (b at 5 m depth, ¢ at 25 m depth)
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composed of plants, animals or both (Thomsen et al. 2014), (2) the impacted
community was composed of sessile, mobile organisms or both (Thomsen et al.
2014), (3) the field method was based on a manipulative or mensurative experiment
(Maggi et al. 2015) and (4) analysis included (Staehr et al. 2000; Klein and
Verlaque 2011) or excluded (Balata et al. 2004) the abundance of the invader in the
similarity matrix. We finally calculated a MDI value for each reconstructed paired
invaded versus non-invaded similarity matrix (Warwick and Clarke 1993).
Meta-analytical methods followed the previous density analysis; factorial and
nested experiments were treated as independent data, as were effects from the same
invasive species reported in different studies. Only the last data point was used from
repeated measure data and only effects that compared the highest invader density to
non-invaded samples were used from multidensity experiments. Invasion effects
reported on different communities within a single study (e.g. on endobenthic and
epibenthic communities, Lang and Buschbaum 2010) were also treated as inde-
pendent effects. Cumulative effect sizes (MDI.ymmulative) With 95 % bias-corrected
CL were calculated in Metawin 2.1 with 999 permutations (Rosenberg et al. 2000).
MDIymmutative Was interpreted to be significantly different from zero or another
MDIummutative if the 95 % CL did not overlap zero or each other, respectively.
We found no significant effects, i.e. treatments were not significantly different
from zero or each other (Fig. 6.3a-d). Still, there were several interesting
(non-significant) trends, indicating that effect sizes were larger and more negative
within rather than between trophic or functional groups (Fig. 6.3a, b). Perhaps with
more studies, and smaller confidence limits, it will become clearer whether
non-native seaweeds, as a general rule, homogenise ‘similar’ invaded plant com-
munities but not ‘different’ invaded animal communities. Our results also highlight
that conclusions based on a few well-cited studies (Staehr et al. 2000; Piazzi and
Balata 2008) should only cautiously be interpreted out of the context of the
methods, invasive species, invaded community and surrounding abiotic environ-
ment. We expect analogous multivariate directional tests in future will have
stronger predictive power, when (1) more studies report impacts on different types
of communities, (2) more test factors and levels within factors are included in tests
(e.g. on form-groups such as epiphytes, canopies and understory communities) and
(3) tests also include interactions between factors (e.g. between form-groups and
field and data collection methods). Finally, future studies should also test how
robust our ‘dispersion meta-analysis’ is by modelling how much dispersion values
can vary in direction and magnitude depending on MDS stress values, chosen
dispersion index (e.g. Permdisp vs. MDI), plot type (e.g. PCO vs. MDS), distance
metric (e.g. Bray—Curtis vs. Gower), measurements variables (e.g. cover vs. bio-
mass data) and transformation methods (e.g. untransformed vs. log-transformed).
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Fig. 6.3 Meta-analysis of 243 MDI values extracted from MDS plots that contrast invaded and
non-invaded community samples. Negative values correspond to samples being more similar
(‘homogenisation’) and numbers in brackets correspond to replication levels. Impacts of invasive
seaweeds were evaluated on (a) plant (Pla), animal (Ani) or combined (Pla + Ani) communities,
(b) sessile (Ses), mobile (Mob) or combined (Ses + Mob) communities, (¢) communities measured
in mensurative (Mens) or manipulative (Manip) field experiments and (d) communities where the
invader itself was included or excluded. For plot d, MDI values were calculated for 5 types of
reported similarity matrices; (1) excluding the invader (Excluded), (2) including the invader’s new
recruits (Rec), (3) including both the new recruits and the abundance of the invader itself
(Rec + Adult), (4) studies where it could not be determined (Unknown) and (5) irrelevant studies
(Not Rel), i.e. where the invaded community is different from the invasive species (here animal
communities)

6.8 Summary

We conducted a bibliographic survey, adding 69 taxa to a published list of 277
seaweeds, thereby updating the total worldwide list of non-native and cryptogenic
seaweeds to 346. None of these new non-native seaweeds have received much
scientific scrutiny, but several may over time become abundant in invaded regions.
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The seaweed genera with most non-native taxa are Polysiphonia, Hypnea, Codium,
Gracilaria and Caulerpa. Bioregions that have received most non-native seaweeds
are the Mediterranean Sea, followed by NE Atlantic, Australasia, NE Pacific and
the NW Atlantic. Our tally is most likely an underestimate because (1) seaweeds
may have been introduced to new regions prior to modern science, (2) morpho-
logically similar non-native and native species may co-occur and remain taxo-
nomically cryptic, (3) under-studied regions can include non-native taxa that are
(4) poorly described, (5) difficult to identify, (6) rare or (7) have invaded inac-
cessible areas and habitats. The most important vectors that carry seaweeds around
the world are hull fouling and as ‘blind passengers’ associated with aquaculture (in
particular seaweeds attached to shell transplants), together accounting for >75 % of
known seaweed introductions. These vectors are likely to continue to spread sea-
weeds around the world.

Once a non-native seaweed has arrived in a new location, it can establish a
permanent population, spread (secondarily) through natural dispersal or associated
with human vectors, increase in abundance and affect local species and ecosystem
properties. Establishment, increase in abundances and secondary spread is quanti-
fied in ‘success studies’, whereas the effects on the invaded communities are
quantified in ‘impact studies’. The success of non-native seaweeds depends on
attributes of the non-native seaweeds and attributes associated with the invaded
system, including the biotic community, resource levels and abiotic conditions.
Many ‘core hypotheses’ have been suggested to explain why some non-native
species (seaweeds included) become invasive or fail, of which the ‘ideal weed’,
‘propagule pressure’, ‘sampling’, ‘fluctuating resource availability’, ‘environmental
heterogeneity’, ‘disturbances’, ‘empty niches‘, ‘habitat filtering’, ‘limited similar-
ity’ and ‘specialist-generalist matching’ are important to understand. Impact
framework also suggests the direction and magnitude of impacts depends on
attributes of the non-native seaweeds and attributes associated with the biotic
community, resource levels and abiotic conditions of the invaded system. Thus, any
process that increases success (cf. core hypotheses outlined above) should modify
impact, by controlling the distribution and abundance of the non-native seaweed.
Impacts can, like success, be difficult to quantify, if the non-native seaweed is
inconspicuous or difficult to identify or find, if interactions with native species are
few and weak, or if strong interactions occur only in small areas, short time win-
dows and in inaccessible habitats. Case studies have shown that many negative
effects by non-native seaweeds occur though competition and habitat destruction
(direct effects) or keystone competition and keystone habitat destruction (indirect
effects). However, invasive seaweeds can also have positive effects on local pop-
ulations, directly through habitat formation and modification and by being con-
sumed, or indirectly through cascading habitat formation, consumption,
competition or keystone consumption.

Case studies documenting seaweed invasion impacts have stimulated
meta-analytical synthesis that aims to identify impact generalities across different
invasive seaweeds, invaded communities and environmental conditions.
Meta-analyses have shown that invasive seaweeds typically have a negative effect
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on local plant abundances, richness and diversity but positive or neutral effects on
animal communities. Furthermore, negative effects reported on local plants can
become less negative or neutral when moving from pristine to heavily
human-impacted environments. Finally, our new meta-analyses presented in this
chapter indicate that impacts increase with the abundance of non-native seaweeds
and that non-native seaweeds may increase sample similarity in invaded plant
communities, but not in animal communities (but these findings were based on a
non-significant trend). Although the impact literature is extensive, most studies
have tested for impacts of only 6 high-profile invaders (S. muticum, U. pinnatifida,
C. taxifolia, C. racemosa, C. fragile and G. vermiculophylla). It is therefore
important that similar comprehensive analyses are conducted on non-native sea-
weeds to allow for better generalisations and predictions about seaweed invasion
impacts.

In conclusion, at least 346 non-native and cryptogenic seaweeds have altered
local shallow water coastal communities in most major biogeographical regions
around the world, and this pattern is likely to increase as human populations,
transport and other co-occurring stressors continue to increase.
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