A Finite Element Analysis to Validate
the Rule-of-Mixtures for the Prediction
of the Young’s Modulus of Composites
with Non-circular Anisotropic Fibres
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Abstract This paper considers the rule-of-mixtures in the context of the tensile
modulus of unidirectional fibre reinforced polymer (FRP) composites made with
fibres of irregular cross-section, having anisotropic mechanical properties. A finite
element model is used to generate data for the determination of the tensile modulus
of the FRP composite. A range of degrees of anisotropy are considered. The error in
the predicted modulus is found to be small for irregular fibres.
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Introduction

The elastic modulus of a composite parallel to the fibre direction is generally
predicted using the Rule of Mixture (RoM) (Daniel and Ishai 2005; Jones 1998;
Summerscales et al. 2010a, 2013), Eq. 1.

E. = ViEf + V,uEy, (1)

where E, is the composite modulus in fibre direction, E; and E,, are the fibre and
matrix modulus respectively and Vyand V,, are the fibre and matrix volume fraction.
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However, the RoM has a number of underlying assumptions:

(a) a perfect bond between the fibres and matrix,

(b) the fibres are parallel, continuous, homogenous, linear elastic and regularly
spaced in the composite, have uniform cross-section along the length, and

(c) the matrix is homogenous, linear elastic and void free.

Despite all these assumptions, the RoM has been successfully used to predict the
modulus of synthetic fibre reinforced composites (Hyer and Waas 2000; Hull and
Clyne 1996), where the fibres have a regular cross-section shape (generally circular)
and variation between fibre cross-sectional areas is low. However, the
Cross-Sectional Area (CSA) of natural fibres is irregular (Virk et al. 2010a),
exhibits greater variation in fibre-to-fibre cross-sectional area (Virk et al. 2010a)
and can vary along the length of the fibre. Moreover, natural fibres have a high
degree of anisotropy in their mechanical properties (Thomason 2009) and large
variability in their mechanical properties (Summerscales et al. 2010a, 2011; Virk
et al. 2009a). These variations are in addition to the above assumptions made to
simplify the RoM model. A Finite Element Analysis (FEA) was carried out to
predict the composite modulus of a unidirectional natural fibre (jute) reinforced
polymer composite and the applicability of the RoM to the natural fibre composite
was assessed. The deviation between FEA and RoM predictions was quantified.

Finite Element Analysis (FEA)

A unidirectional natural fibre composite structure with a fibre volume fraction of
20 % was modelled using finite element software to predict the modulus of the
composite structure. The fibre cross-section shape and area were determined from
micrographs of jute fibres (Fig. 1). The sample preparation used to obtain the
micrographs is given in Virk et al. (2010a). The variation in the fibre cross-sectional
area along the fibre length has been disregarded as only a small length (100 um) of
fibre was simulated in FEA (to reduce FEA model size). The fibres were assumed to
be arranged in uniform square packing in the matrix as the simulated fibre volume
fraction was low.

Typical experimental tensile stress-strain curves for the jute fibre are shown in
Fig. 2 (Virk et al. 2009a). The fibres show elastic behaviour up to failure, therefore
the fibres were modelled as linear elastic. The composite was assumed to be sim-
ulated below the glass transition temperature of the matrix therefore, the behaviour
of the matrix is also assumed to be linear elastic. The material properties for the jute
fibres [corrected for true fibre area (Summerscales et al. 2013; Virk et al. 2012)] and
the epoxy matrix used for the FEA are given in Table 1 (Anon 2014; Thomason
2009; Virk et al. 2009a, b, 2011, 2012). The jute fibres are modelled as orthotropic
with transverse isotropy. The material orientation direction for the anisotropic
natural fibre FEA model is shown in Fig. 3. Direction ‘1’ oriented parallel to the
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Fig. 1 Typical jute fibre cross-sections

Fig. 2 Typical jute fibre 7007
stress-strain curves
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Table 1 Material properties for FEA model (MPa)
Material El E2 E3 Vi2 Vi3 Vo3 G12 G13 G23
Jute 39,618 |5500 |5500 |0.11 0.11 035 |7124.1 7124.1 2037
Matrix 2650 |- - 035 |- - - - -

Anon (2014), Thomason (2009),

Virk et al. (2009a, b, 2011, 2012)

fibre principal axis (along the global Z axis) denotes the direction of E; fibre
modulus. Fibre properties E, and E; are assumed radial symmetric, and hence
numerically equal and are orientated along the radial (2 and 3) directions (global X

and Y axes) respectively.
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Fig. 3 Material orientation direction for the jute fibres

The interface between the fibre and the matrix was modelled using tie constraint
i.e. the bond between the fibres and the matrix was assumed to be perfect. The
composite representative volume was constrained using symmetrical boundary
conditions along the direction normal to the faces of the cube. On each of the
orthogonal axes (—X, —Y and —Z), symmetrical constraints were applied to only
one face of the representative composite cube shown in Fig. 4. The composite was

Fig. 4 Boundary condition definition for FEA model
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loaded along the +Z axis (parallel to the fibre axis) with the prescribed displace-
ment, the load was applied to the face opposite to the symmetric constrained face
(=2).

The fibres and the matrix were modelled using a mesh of 3D stress elements
(Abaqus®C3DS8R: an 8-node linear brick, reduced integration, hourglass control).
In each case the mesh used ~ 25,000 elements for the matrix and ~4000 elements
for each fibre as shown in Fig. 5.

An implicit solver was used to obtain the linear solution for the FE model. The
computation time was 10 min on a Quad core 1.6 GHz computer. The reaction
forces and the corresponding extension in the structure were recorded for each
equilibrium iteration. These were used to calculate the average stress and strain
respectively using the original composite area and fibre length. The effective
modulus of the structure was calculated from the average stress and strain values
generated from the forces and displacements in the FEA analysis

The FEA predicted the composite stiffness for a 20 % fibre volume fraction
irregular fibre jute/epoxy composite to be 10.12 GPa. The corresponding RoM
prediction (Virk et al. 2012) was 10.04 GPa. The discrepancy between the FEA and
RoM predictions is 0.72 %. Thus it can be concluded that the RoM can be safely
applied to predict the elastic modulus of composite reinforced by anisotropic natural
fibres with irregular CSA.

To provide a baseline comparison, equivalent models were run with (a) circular
cross-section fibres with equal diameters, and (b) circular cross-section fibres with
varying fibre diameters (Fig. 6). The FEA derived composite modulus for circular
cross-section fibres with equal and varying diameter was 10.02 and 10.01 GPa
respectively. The small difference can be due to the circle being approximated by

OO0
SN

ZFAN)
2
XXX

27
el

Si¥

!

Fig. 5 FEA mesh for the natural fibre composite model
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Fig. 6 FEA mesh for the circular fibre composite models

flat sided elements. Comparing FEA prediction to the RoM estimate, an error of
—0.23 and —0.29 % was calculated for circular fibres with equal or varying
diameters respectively.

Poisson’s Ratio

It is not easy to accurately measure the Poisson’s ratios of natural fibres. Therefore,
to assess the effect of the Poisson’s ratio on the predicted composite modulus a FEA
study was carried out where the fibre Poisson’s ratio, vy, was assumed to vary
between 0.05 and 0.95. The first subscript ‘1’ indicates the stimulus and the second
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subscript ‘2’ response. The fibre material properties were varied such that the
material stability requirements specified by the conditions of symmetry of com-
pliances (Eqs. 2-3) and the Lempricre (1968) criteria for the limits on Poisson’s
ratios in orthotropic materials (Eqs. 4-5) were satisfied.

viiEj = v;iE; (2)
1/2
vi| < (Ei/E;) 3)
E\,Ey,E3,G2,G13,Go3 > 0 (4)
1 —viavar — va3v3n — v3viz — 2v2v3avi3 > 0 (5)

The shear modulus of the fibre was predicted using Huber (1923) equation,
VEE;
Gy =Vt (6)
2[1+ /i)
The bulk modulus of the fibre was calculated using Eq. 7 (Summerscales 2000),
K — VE\Ey B
f 3[1 — 2\3/\)12\/31\)23]

The analytical Egs. 8 and 9 were used to predict the upper and lower bounds on
the elastic modulus in the fibre direction in a unidirectional composite (Zweben
1994).

(7)

4V, (1= Vy) (v = v)”
Vi/Kn+ (1= Vy)/Kr+1/Gy

Ee(U) = ViEr + (1= V) En + (3)

4Vy (1= V) (v = vw)”
Vi/Kn+ (1= Vy) /K +1/G,,

Eo(L) = ViEy + (1= V) En+

©)

where E. is the composite modulus in the fibre direction, U and L are upper and
lower bound respectively, Vis the fibre volume fraction, v, is the axial Poisson’s
ratio of the fibre (v1,), vy, is the Poisson’s ratio of the matrix, E is the axial modulus,
G is the shear modulus, K is the bulk modulus and subscript f and m indicate the
fibre and matrix respectively.

The fibre material properties used for the FEA study and Eqgs. 8 and 9 are given
in Table 2. The FEA models used for this study were same as detailed above i.e.
irregular fibre cross-section and two equivalent models with round fibres, with
(a) constant and (b) varying fibre diameter.
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Table 2 Fibre properties for FEA model (MPa)

A.S. Virk et al.

E, E; = E5 Vi2 = Vi3 V21 = V31 V23 Gip = Gy3 Ga3 K¢
39,618 5500 0.05 0.007 0.35 7246 2037 3930
39,618 5500 0.11 0.015 0.35 7090 2037 4253
39,618 5500 0.15 0.021 0.35 6990 2037 4459
39,618 5500 0.25 0.035 0.35 6752 2037 4984
39,618 5500 0.35 0.049 0.35 6529 2037 5554
39,618 5500 0.45 0.062 0.35 6321 2037 6196
39,618 5500 0.55 0.076 0.35 6125 2037 6941
39,618 5500 0.65 0.090 0.35 5942 2037 7827
39,618 5500 0.75 0.104 0.35 5769 2037 8906
39,618 5500 0.85 0.118 0.35 5605 2037 10,259
39,618 5500 0.95 0.132 0.35 5451 2037 12,013
11.0
A Irregular fibres (FEA)
10.8 O  Round fibres varying Dia. (FEA)
[ Round fibres constant Dia. (FEA)
Upper bound (Equation 8)
T 106 4 -——~- Lower bound (Equation 9)
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Fig. 7 Predicted composite modulus

Poisson's Ratio [v,,]

The composite modulus predicted for different Poisson’s ratio using FEA and
Egs. 8 and 9 at 20 % fibre volume fraction is shown in Fig. 7. For all the cases it
was observed that with the change in the Poisson’s ratio (from 0.05 to 0.95) the
predicted minimum modulus occurs when the fibre axial (v;) and the matrix
Poisson’s ratios are numerically equivalent. Note that the right hand term in Eqgs. 8
and 9 goes to zero under this condition. The predicted composite modulus increases
either side of this minimum. The FEA model predicts slightly higher modulus for
the irregular fibres than for the circular fibres with varying or constant diameter.
The difference between FEA predicted modulus for circular fibres with varying or
constant diameter was small. The lower bound of the modulus predicted by Eq. 9



A Finite Element Analysis to Validate the Rule-of-Mixtures ... 181

Table 3 Comparison of the errors arising in each of the FEA models

Poisson’s Round fibres of Round fibres of varying | Irregular cross-section
ratio constant diameter diameter fibres

Composite Error Composite Error Composite Error

modulus (%) modulus (%) modulus (%)

(GPa) (GPa) (GPa)
0.05 10.04 —-0.07 10.03 -0.14 10.13 0.90
0.11 10.02 —-0.23 10.01 —-0.29 10.12 0.72
0.15 10.01 -0.31 10.01 —-0.38 10.11 0.63
0.25 10.00 —-0.46 9.99 —-0.52 10.09 0.47
0.35 9.99 —-0.51 9.99 —-0.57 10.08 0.41
0.45 10.00 —-0.46 9.99 -0.52 10.09 0.47
0.55 10.01 -0.31 10.01 -0.37 10.11 0.63
0.65 10.04 —0.05 10.03 —-0.13 10.14 0.91
0.75 10.07 0.31 10.07 0.23 10.18 1.31
0.85 10.12 0.78 10.11 0.69 10.23 1.83
0.95 10.18 1.38 10.17 1.26 10.29 2.49
Max 10.18 1.38 10.17 1.26 10.29 2.49
Mean 10.04 0.01 10.04 —-0.07 10.14 0.98
Min 9.99 -0.51 9.99 -0.57 10.08 0.41

was able to capture the trend in FEA predicted modulus, but the upper bound
(Eq. 9) only predicted the minimum and deviated strongly either side of this value

The discrepancy between the FEA and standard RoM (Eq. 1) predictions are
given in Table 3. The difference between the two prediction methods (standard
RoM and FEA) is less than 2.5 %. Thus it can be concluded that the variation in the
Poisson’s ratio has only small (potentially insignificant) effect on the predicted
composite modulus.

Conclusions

The finite element analysis reported above shows that the RoM can be safely
applied to predict the elastic modulus of composites reinforced by anisotropic
natural fibres of non-circular cross-section. Further, variation in the anisotropy by
changing Poisson’s ratio only has minimal effect on the predicted composite
modulus.
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