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Abstract
Eastern tropical Pacific (ETP) coral reefs provide a real-world example of reef growth,
development, structure, and function under the high-pCO2, low aragonite saturation state
(Xarag) conditions expected for the entire tropical surface ocean with a doubling to tripling
of atmospheric CO2. This provides a unique opportunity to examine various aspects of
calcium carbonate (CaCO3) budgets in low-Xarag conditions in the present day. Unlike
anywhere else in the world, the ETP displays a continuum of thermal stress and CO2 inputs
up to levels at which reef building is terminated and reef structures are lost. The response of
coral reef CaCO3 budgets to El Niño warming across the ETP shows that reefs can be
completely lost after experiencing a 2–3 °C thermal anomaly sustained in excess of two
months during the warmest time of the year at Xarag values expected for the rest of the
tropics when atmospheric CO2 doubles. ETP coral reefs have persisted and shown
resilience to this level of thermal stress or acidification when acting alone, but the
combination of the two corresponded with the complete elimination of reef framework
structures in the southern Galápagos Islands over the decade after the 1982–83 El Niño
warming event. Reef carbonate degradation is exacerbated also by diverse agents of
bioerosion such as sea urchins, boring bivalves, and excavating sponges, with experimental
evidence demonstrating that the latter may even increase their activities during ocean
warming and pH decline. This chapter reviews the CaCO3 budget of ETP coral reefs and
discusses how a high-CO2 world may impact the major biotic and abiotic factors
responsible for the cycling of carbonate materials. Coral reefs of the ETP serve as a model
for conditions that will occur in other regions within a few decades.
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18.1 Introduction

The first scientists to visit the eastern tropical Pacific (ETP),
including Charles Darwin, commented on the apparent
absence of reef development (Darwin 1842). Structural reefs
were later discovered and found to have rapid accretion rates
over the past 5600 years, rivaling Holocene reef accretion
rates elsewhere (Glynn et al. 1972; Glynn and Macintyre
1977; see Chap. 6, Toth et al.). Despite rapid accretion at a
few protected sites, ETP reefs are highly porous, unce-
mented accumulations of calcium carbonate (CaCO3) rela-
tive to those in the Indo-Pacific and Caribbean. They are
generally small in areal extent (usually a few hectares),
limited to shallow depths (<15 m), patchily distributed, and
likely ephemeral on geologic time scales (Glynn et al. 1972;
Dana 1975; Manzello 2009). This poor coral reef develop-
ment in the ETP is thought to be a consequence of multiple
stresses that place them at the edge of suitable environmental
conditions for reef accretion: colder temperatures and high
turbidity from frequent upwelling (Dana 1975) and El
Niño-related climate variability (Glynn and Colgan 1992).
Recently, it has been appreciated that these reefs are also
exposed to chronic high-pCO2 conditions as a result of
upwelling and thermocline shoaling that depresses the sat-
uration state of aragonite (Xarag) throughout the ETP
(Manzello et al. 2008).

18.2 Climate Change

18.2.1 Ocean Warming

Climate change models forced with anthropogenic green-
house gases predict continued and accelerated global
warming due to rising concentrations of CO2, primarily from
the combustion of fossil fuels since the industrial revolution
(IPCC 2013). Global mean surface temperature has
increased *0.85 °C during the period 1880–2012 and is
expected to increase by 2.6–4.8 °C under Representative
Concentration Pathway (RCP) 8.5—the worst case scenario
in the latest IPCC report, which has emission rates at or
below current levels of atmospheric CO2 and emission
acceleration (IPCC 2013). Proposed increases in temperature
are of concern because reef-building corals live at or near
their upper thermal limits. Positive ocean temperature
anomalies of as little as 1–2 °C sustained for one to two
months during the warmest part of the year correlate with
mass-coral bleaching and mortality events (Glynn 1993;
Goreau and Hayes 1994; Brown 1997; Berkelmans 2002)
and such temperature anomalies have been shown experi-
mentally to reproduce this bleaching and mortality (Glynn
and D’Croz 1990; Berkelmans and Willis 1999). It is

expected that continued warming will increase both the
frequency and severity of thermal stress and bleaching
events over the next century (Hoegh-Guldberg 1999; Donner
et al. 2005, 2009; Logan et al. 2014; van Hooidonk et al.
2014). Thermal stress events and resultant mass coral
bleaching have indeed become more severe and widespread
over the past 20–30 years (Baker et al. 2008; Eakin et al.
2009), lending support to the notion that reef communities
are already being severely impacted by warming (e.g., Eakin
et al. 2010).

The response of ETP coral reefs to warming associated
with the El Niño-Southern Oscillation (ENSO) is a corner-
stone in the understanding of the effects of climate change
on coral reefs (e.g., Hughes et al. 2003). The first warning
signs of global warming impacts on coral reef ecosystems
manifested in the ETP (Glynn 1983, 1984, 1991). While
some disregarded these observations when first presented,
the deleterious effects of climate change on coral reefs have
now been labeled as ‘incontrovertible’ (Hughes et al. 2003)
and are widely accepted as one of the leading threats to the
persistence of coral reefs (Kleypas and Eakin 2007).
The IPCC (2014) has identified coral reefs as one of the
marine ecosystems most vulnerable to damage from climate
change.

18.2.2 Ocean Acidification

The oceans have taken up approximately 30 % of the
anthropogenic CO2 released into the atmosphere since the
industrial revolution (Sabine et al. 2004; Orr et al. 2005; Le
Quéré et al. 2009), causing an acidification of the surface
ocean in equilibrium with the lower atmosphere (Caldeira
and Wickett 2003). Ocean acidification (OA) decreases the
concentration of the carbonate ion in seawater [CO3

2−] and,
consequently, decreases the saturation state of carbonate
minerals (Ω = [CO3

2−][Ca2+]/K0
sp, where K0

sp is the solubil-
ity product for a carbonate mineral). Acidification is
expected to depress coral reef calcification, increase reef
dissolution and bioerosion, and reduce reef resilience
(Kleypas et al. 1999; Yates and Halley 2006; Tribollet et al.
2009; Anthony et al. 2011)—making coral reefs, along with
Arctic ecosystems, one of the two ecosystems considered at
greatest risk to ocean acidification (IPCC 2014). Despite
these concerns, our understanding of how the combined
effects of warming and OA will alter the structure and
function of coral reef ecosystems is rudimentary.

Surface waters in many parts of the ETP have lower pH,
lower Xarag, and higher pCO2 (the partial pressure of CO2)
values relative to other tropical waters because CO2-enriched
deep waters are upwelled to the surface layers along the
shallow thermocline (Fig. 18.1) (Takahashi et al. 1997;
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Manzello et al. 2008; see Chap. 3, Fiedler and Lavín). The
intensity of this upwelling varies regionally and strongly
influences reef development across the ETP (reviewed by
Cortés 1997). This unique oceanography of the ETP makes
it an exemplary natural laboratory to study the effects of
high-pCO2 conditions on coral reef ecosystem processes and
responses to disturbance (Manzello 2009). While other
high-pCO2 tropical reef sites are known in the Pacific (e.g.,
Jarvis, Line Islands and CO2 seeps at Maug in the Mariana
Islands and Papua New Guinea), these sites are poorly
characterized and lack the long-term ecological under-
standing of the ETP sites (e.g., Fabricius et al. 2011 in
contrast with Glynn et al. 2001). Bermuda experiences the
lowest Xarag values in the Atlantic because it is a
high-latitude reef system that experiences seasonally low
temperatures but the typical values there (Xarag � 3: Bates
et al. 2009) are still greater than most ETP reef sites
(Manzello 2010a). Some of the lowest known Xarag values
ever documented for any coral reef site in the world are those
from the Galápagos Islands (Manzello et al. 2008; Manzello
2010a).

ETP coral reefs provide a real-world example of reef
growth, development, structure and function under
high-pCO2, low-Xarag conditions that encompass the range
of expected changes for the entire tropical surface ocean
with a doubling to tripling of atmospheric CO2 (Fig. 18.1)
(Manzello et al. 2008; Manzello 2009, 2010a). Reef struc-
tural development is highly limited in the marginal low-Xarag

environment of the ETP and, perhaps most striking,
ephemeral on geologic timescales (Glynn and Colgan 1992;
Macintyre et al. 1992). These high-pCO2 ETP reefs have
been instrumental to understanding the anticipated impacts
of OA on coral reefs in the real-world (see discussion of ETP
reefs in Cohen and Holcomb 2009; Doney et al. 2009;
Hofman et al. 2010; Hoegh-Guldberg 2011; Pandolfi et al.
2011, and others). The naturally high-pCO2 of the ETP
causes reefs in this region to persist near the Xarag distribu-
tional threshold for coral reefs (Kleypas et al. 1999). As a
result, these high-pCO2 reefs are ocean acidification ‘hot-
spots’ because they may: 1) display the first negative effects

of, and 2) be the most affected by rising CO2 levels (Man-
zello et al. 2008; Manzello 2010a). It must be noted that the
ETP will experience the most modest oceanic decrease in
Xarag owing to the already very low Xarag and large natural
variability of this region due to effects of upwelling and
ENSO on carbonate chemistry (Friedrich et al. 2012). It is
possible that the high natural variability and chronically low
Xarag of the ETP could already have led to adaptation to high
pCO2, possibly making resident organisms more tolerant to
future acidification. The rate and magnitude of change in
Xarag due to ocean acidification also is important to the
impact experienced by organisms. Locations like the Car-
ibbean Sea, despite currently having higher absolute Xarag

values than the ETP, will experience a larger magnitude and
rate of change in Xarag with ocean acidification (Friedrich
et al. 2012). Regardless, the ETP will always have the lowest
Xarag values of the tropics. Thus, if there are critical
threshold values of Xarag to reef function, ETP reefs will be
the first to cross that value, and may arguably have already
done so in certain locations like the southern Galápagos
Islands and for certain reef processes.

18.3 Coral Reef Carbonate Budget

18.3.1 CaCO3 Production

There are many calcifying organisms that inhabit coral reefs.
Some CaCO3 production contributes to the reef framework
(e.g., reef building corals and crustose coralline algae), some
to reef sediments [e.g., detrital skeletal material, some
articulated calcareous algae (e.g., Halimeda)], and some to
coating and binding reef materials (e.g., encrusting coralline
algae). Corals are generally the largest producers of reefal
CaCO3 and serve as the major building blocks of reef
framework accumulation (Scoffin et al. 1980; Hubbard et al.
1990; Eakin 1996; Macintyre 1997). An exception to this
can be found in environments where corals are unable to
live, or where their skeletal remains cannot accumulate into
reef framework structures, such as high surge environments

Fig. 18.1 Predicted Xarag values
with increasing atmospheric CO2

(ppm). Adapted from Feely et al.
(2009)
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like algal ridges (Adey 1978; Grigg 1998). Crustose coral-
line algae (CCA) also may opportunistically expand to cover
space after coral mortality (Eakin 1992) and can indeed
cover large areas of reef framework (Eakin 1992, 1996).
Frequently, while non-coral CaCO3 production by certain
organisms can be quite high, (e.g., Halimeda: Rees et al.
2007), the majority of this CaCO3 production generally ends
up in the sediment aprons that flank reef frameworks and
infilling reef cavities, and does not contribute significantly to
the buildup of the rigid, three-dimensional wave resistant
structure of the reef unless bound by cements (Orme 1977;
Hubbard et al. 1990). CCA, bryozoans, vermetid gastropods,
barnacles, and non-boring bivalves can encrust reef frame-
works and contribute to the carbonate budget—in some
cases becoming major parts of the overall reef carbonate
budget. As in most other coral reefs, the carbonate produc-
tion rates and contribution to reef framework building of
these organisms are lower than corals in the ETP (Glynn and
Macintyre 1977; Macintyre et al. 1992; Cortés et al. 1994;
Eakin 1996).

Another source of CaCO3 production on coral reefs is
carbonate cementation. Cementation is the precipitation of
CaCO3 that acts to bind framework components and occlude
porosity (Perry and Hepburn 2008). The precipitation of
much of the aragonite cement in reef environments was
originally thought to be inorganic, or abiotic, driven by the
carbonate supersaturation of reef waters, but this is still
debated (Nothdurft and Webb 2009). The distribution of
most other cement types (i.e., high-mg calcite cements)
within coral skeletal pores and reef rock suggests that their
precipitation is a result of direct microbial precipitation or
microbially mediated microenvironments, although broader
scale physico-chemical control likely plays an important role
(Nothdurft and Webb 2009). For example, endolithic algae
are a nearly ubiquitous feature of coral skeletons living

directly below the live coral tissue layer that, through pho-
tosynthetic CO2 removal, may facilitate the precipitation of
calcium carbonate cements. The high-energy seaward mar-
gins of exposed oceanic reefs are usually the most cemented
reef formations and cement abundance decreases (often to
zero) as water motion decreases across reef crests and into
inner shelves and lagoons (James et al. 1976; James and
Ginsburg 1979). CaCO3 does precipitate inorganically out-
side of high-flow areas (e.g., lagoonal environments), but
these precipitates usually form unlithified mud that does not
bind substrate components (Macintyre and Aronson 2006).

Many processes, particularly those biogeochemical pro-
cesses that affect reef porewater chemistry, influence reef
cementation (James et al. 1976; James and Ginsburg 1979;
Macintyre and Marshall 1988; Tribble et al. 1992; Tribble
1993; Rasser and Riegl 2002; Perry and Hepburn 2008).
Advection of seawater supersaturated with respect to CaCO3

into reef frameworks is considered a prerequisite for exten-
sive cementation (Buddemeier and Oberdorfer 1986; Tribble
et al. 1992). As a result, anthropogenic acidification may
reduce future cement precipitation (Andersson et al. 2003)
by reducing Xarag in the oceanic waters bathing reefs. Those
cements composed of the more soluble high-mg calcite
phase of CaCO3 are expected to be most affected by OA
(Andersson et al. 2008). Indeed, CaCO3 cements do not
currently precipitate above trace levels in the ETP
(Fig. 18.2) (Manzello et al. 2008) and are not found in fossil
sediments for the last several thousand years (Glynn and
Macintyre 1977). Concomitantly, rates of bioerosion in the
ETP are the highest measured anywhere in the world
(Manzello et al. 2008; see Chap. 12, Alvarado et al.).

Processes of construction and destruction are often closely
balanced on coral reefs (Glynn and Manzello 2015). As such,
any disturbance that impairs coral growth can potentially drive
coral reefs into a state of degradation. Coral mass mortality

(a) (b) (c)

Fig. 18.2 Thin-section photomicrographs of cement distributions. a Abundant cementation in the intraskeletal cavities of a coral from high-Xarag

environment in Bahamas (Xarag > 4). Arrows point to examples of aragonite cement crystals. b Example of most heavily cemented sample from
moderate-Xarag in Panama. c Sample from low-Xarag Galápagos (Xarag < 3), in which cement is absent from all intraskeletal pores. From Manzello
et al. (2008, © PNAS)
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events illustrate a tipping point in the dynamics between reef
construction and destruction; as such disturbances are usually
followed by a decline in topographic complexity and can even
result in the loss of framework structures (Alvarez-Filip et al.
2009; Manzello 2009). Such structural degradation was
observed in Panama and the Galápagos Islands after the 1982–
83 El Niño event (Glynn 1988; Eakin 2001).

18.3.2 CaCO3 Loss

18.3.2.1 Bioerosion
The breakdown and erosion of coral skeletons and reef
framework structures by the activities of organisms is termed
bioerosion (Neumann 1966). Bioerosion is a fundamental
process that can strongly limit the growth rates and patterns
of coral reef development and sustainability if the balance
between constructional and destructional processes is altered
(Goreau and Hartman 1963; Risk and MacGeachy 1978;
Scoffin et al. 1980; Hutchings 1986; Tribollet and Golubic
2005). There are a wide variety of organisms that bioerode
coral reef carbonates. These organisms have been charac-
terized according to whether they live externally or inter-
nally within calcareous structures, their mechanisms of
bioerosion (e.g., grazers, borers, scrapers), and the size of the
responsible organism (e.g., macro- vs. microborers; see
Chap. 12, Alvarado et al.).

Sea urchins are external bioeroders that play a significant
role in the ETP (Glynn et al. 1979, 2015; Glynn 1988; Eakin
1996). The long-spined (Diadema mexicanum) and
pencil-spined sea urchins (Eucidaris galapagensis) are the
dominant eroders in terms of CaCO3 degradation per unit
area in Panama and the Galápagos Islands, respectively
(Glynn et al. 1979; Eakin 1996). The corallivorous puffer-
fish, Arothron meleagris, is also an external bioeroding
agent on ETP reefs, but contributes less to the total CaCO3

breakdown on these reefs (Glynn et al. 1972; Guzmán and
Robertson 1989; Palacios et al. 2014). Recent research has
shown that corallivory by A. meleagris can remove up to
16 % of the annual carbonate produced by pocilloporid
corals (Palacios et al. 2014). Bioerosion by other fishes on
ETP reefs (e.g., scarids, balistids, monacanthids) plays only
a minor role in the CaCO3 budget (Eakin 1996).

An entire community of other eroders lives and produces
sediment within branching coral frameworks. This commu-
nity includes internal eroders such as clionaid sponges,
endolithic algae, polychaetes, sipunculans, and lithophagine
bivalves, and external eroders such as polychaetes, gas-
tropods, and crustaceans. These organisms contributed
equally to sediment production as echinoids during erosion

experiments in the Galápagos and Panama (Glynn 1988) and
were the largest biogenic source of sediment in carbonate
budgets in Panama (Eakin 1996).

Among the intraskeletal bioeroders, boring bivalves are
recognized as having the greatest impact at several ETP sites
(Cantera et al. 2003; Londoño-Cruz et al. 2003; Fonseca
et al. 2006; see Chap. 12, Alvarado et al.). Lithophaga
spp. bivalves can be highly abundant in the ETP, primarily
within the skeleton of the coral Porites lobata, but also in
Pocillopora spp. In the ETP, these boring molluscs achieve
the highest densities (100s of individuals per m2 surface
area; Scott et al. 1988; Kleemann 1990, 2013) that have ever
been documented, where they significantly compromise the
integrity and strength of the skeleton they bore into (Scott
and Risk 1988) and where feeding on them by triggerfish
can cause significant coral fragmentation (Guzmán and
Cortés 1989; see Chap. 15, Glynn et al.). Polychaete worms
can also be locally abundant within massive pavonid corals
in the ETP (Manzello, pers. obs.). Boring sponges (e.g.,
Cliona spp.), which can be dominant agents of CaCO3

breakdown in other geographic areas like the Caribbean
(Neumann 1966; Scoffin et al. 1980), appear to play a more
limited role in the ETP (Scott et al. 1988; Carballo et al.
2008). This is somewhat paradoxical given that these
organisms are thought to be stimulated by elevated nutrient
levels (Risk and MacGeachy 1978; Rose and Risk 1985) and
upwelling is a source of elevated nutrient concentrations
throughout the ETP (D’Croz and O’Dea 2007). In general,
there is confusion as to the importance of internal boring
organisms as their numbers can dramatically vary in abun-
dance across reef zones and from reef to reef (Macintyre
1984). Recently, the importance of endolithic algae in the
process of bioerosion has been recognized (Tribollet et al.
2002; Tribollet and Golubic 2005). The role of these
important bioeroders deserves further attention in the ETP,
especially given that their rate of dissolution is stimulated by
OA (Tribollet et al. 2009; Fang et al. 2013, 2014).

18.3.2.2 Physical Erosion (Wave Energy, Storms)
The majority of coral reefs in the ETP exist in sheltered
environments and are not exposed to high levels of wave
energy (see Chap. 6, Toth et al.). As such, physical erosion
of CaCO3 reef structures is, at best, an episodic occurrence
in the ETP that is limited only to the strongest storm events.
Furthermore, most ETP reefs occur outside of the tropical
cyclone belt, but occasionally tropical storms can affect reef
communities (e.g., Lirman et al. 2001). Nevertheless,
physical disturbance can be relegated to a minor role in the
breakdown and destruction of ETP reef framework
structures.
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18.3.2.3 Chemical Erosion (Dissolution)
A global model of carbonate production showed that most
coral reefs could experience net dissolution with a doubling
of atmospheric CO2 due to expected declines in calcification,
even if rates of dissolution do not change with acidification
(Silverman et al. 2009). It has been suggested that reef
dissolution will increase via the enhancement of pore-water
acidity within reef frameworks and sediments as OA pro-
gresses (Yates and Halley 2006). Kinsey (1978) pointed out,
however, that rates of reef dissolution are erratic, unpre-
dictable, and highly variable. As such, we currently have a
very limited understanding of the overall magnitude that
purely chemical dissolution plays in reefal CaCO3 in gen-
eral, and especially among ETP reefs. The dissolution signal
measured in bulk seawater overlying coral reefs at night is
driven, to some unknown extent, by those organisms that
chemically erode carbonate (e.g., Lithophaga: Lazar and
Loya 1991; Cliona: Fang et al. 2013; Wisshak et al. 2013).
Preliminary data show that dissolution does occur within
pore-waters of the Uva Island reef in Pacific Panama, but it
still isn’t clear how this relates to other reefs, if the naturally
high-pCO2 stimulates this process, or if it is inherently
controlled by the oxidation of organic matter (e.g., Tribble
1993). This is a fruitful area for future research in the ETP
and on reefs across the globe.

18.3.3 Carbonate Budgets of the ETP

Rapid growth of pocilloporid corals provides a competitive
advantage for space on ecological timescales, while the high
skeletal density of these corals imparts a greater preservation
potential on geologic timescales. These traits help explain
why pocilloporid corals are often the dominant reef builders
throughout the ETP (Cortés 1997; Glynn and Maté 1997).
The best developed reefs in the ETP occur off the Pacific
coast of Panama in the nonupwelling Gulf of Chiriquí
(Glynn and Macintyre 1977; Macintyre et al. 1992). Not
surprisingly, rates of carbonate production by pocilloporid
corals in this region are among the highest reported in the
ETP, only exceeded by more recent reports from Mexico.
Estimated coral carbonate production rates for the Uva
Island reef, in the Gulf of Chiriquí, ranged from 64.4 to
67.2 tonnes ha−1 year−1 (Table 18.1). The Secas reef, also in
the Gulf of Chiriquí, revealed a similar production rate of
67 tonnes ha−1 year−1. The production rates for corals in the
upwelling Gulf of Panama were about 30 % (Señorita reef)
and 75 % (Saboga reef) of those reported under nonup-
welling conditions in the Gulf of Chiriquí.

Coral carbonate production rates demonstrate high
inter-annual variability, which is evident from estimates
determined at the Cabo Pulmo reef for three periods from 1987
to 2012 (Table 18.1). The carbonate production rates ranged
from low values of 17–39 tonnes ha−1 year−1 in 2003 to high
values of 89.5–203.6 tonnes ha−1 year−1 in 1987. The very
high rates of production in Mexico are based on areas of the
reef with very high coral cover and may overestimate
whole-reef production (Calderon-Aguilera, pers. commn.).
We expect that reef- scale carbonate production tracks SST
and Xarag across the wider ETP, as it does in Panama and
Galápagos (Manzello et al. 2008, 2014). Individual coral
calcification rates and overall population-level CaCO3 pro-
duction of the coral species Porites panamensis is indeed
positively and linearly related to SST in Mexico
(Nozagaray-López et al. 2014). Other large differences are
related to reductions in live coral cover, a result of severe coral
mortality caused by thermal bleaching and physical storm
damage. The significant declines in production after 1987
were attributed to the 1997 El Niño warming event and Hur-
ricane Isis in 1998 (Calderón-Aguilera et al. 2007). A large
increase in carbonate production by 2012was accompanied by
an increase in live coral cover, a result of community recovery.
Three other coral reefs on the Mexican mainland (Chimo,
Tenacatita, and La Entrega) demonstrated similar inter-annual
differences in carbonate production depending on variations in
local live coral cover levels (Table 18.1).

The CaCO3 budgets of ETP reefs are highly dynamic,
with many reefs switching from net deposition before to net
erosion following the 1982–83 ENSO-related mass mor-
tality of corals (Glynn 1988; Eakin 1996; Reaka-Kudla
et al. 1996). Additionally, the lack of cementation has
produced reefs consisting of fragile stacks of coral skele-
tons. In fact, many reef structures in the Galápagos Islands
were completely eroded down to the antecedent basalt
foundation in less than a decade (Glynn 1994; Manzello
2009). Reef structures have persisted in Panama, despite
the switch from net construction to net erosion following
two severe ENSO events (Eakin 1996, 2001). Figure 18.3
shows a diagrammatic budget for the solid-phase CaCO3 in
the Uva reef system before and after the extensive
bleaching caused by the 1982–83 El Niño. The major
erosion that followed the 1983 coral bleaching and mor-
tality in Panama did, however, convert a large section of
the Uva reef structure to sediment, converting reef frame-
work to a sandy plain (Eakin 2001). It is important to note
that each El Niño event has a very different downstream
effect. While the 1997–98 event has been argued by some
to be the largest El Niño in the historical record (Wolter and
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Timlin 1998; McPhaden 1999; Wang and Weisburg 2000),
warming patterns in the eastern tropical Pacific were quite
different than those in 1982–83, resulting in less coral
bleaching in Panama (Glynn et al. 2001). The rapid
destruction and disappearance of Galápagos reefs is the end
result of several cascading factors that include the extreme
thermal anomaly with its resultant mass coral bleaching and
mortality, less preexisting amounts of reef framework
compared to Panama, persistent high abundances and
concentration of bioeroding echinoids, and poor sexual
recruitment by corals (Glynn 1994). The role of high-pCO2,
low-X seawater that minimizes carbonate cement precipi-
tation and facilitates bioerosion in the ETP together add a
key piece to the puzzle as to why reefs throughout the ETP
are poorly developed and ephemeral on geologic
time-scales (Manzello et al. 2008).

18.4 ETP Carbonate Budgets
withWarmingandAcidification

18.4.1 Effects of Warming/Bleaching on CaCO3

Budget: Acute, Pulse Stressor

To date, thermal stress has been an acute disturbance that has
occurred with approximate ENSO periodicity in the ETP. An
acute, or pulse stressor is a single, short-term disturbance
that alters the environment (Connell 1997). In contrast, a
chronic, or press stressor is a condition that persistently
alters the environment. Acute thermal stress and bleaching
are known to reduce coral skeletal extension and calcifica-
tion (Goreau and Macfarlane 1990; Leder et al. 1991;
Manzello et al. 2015a, b). In the best-case scenario, ocean
warming will negatively affect CaCO3 production due to

Table 18.1 Coral carbonate production rates across the eastern tropical Pacific

Study Site Species-composition Live coral cover (%) Productiona metric tons ha−1 year−1 Authority

Cabo Pulmo
Mexico

23°25ʹN Pocillopora,
Porites, Pavona,
Psammocora

62 89.5–203.6 (1987) Reyes-Bonilla (1993)

12 17–39 (2003) Calderón-Aguilera et al. (2007)

25.7 68 (2012) Reyes-Bonilla et al. (2014)

Chimo
Mexico

20°2ʹN Pocillopora 5.4–6.2 9.2–20.0 (2003) Calderón-Aguilera et al. (2007)

Tenacatita
Mexico

19°16ʹN Pocilliopora 52.9 88.8–204.0 (2003) Calderón-Aguilera et al. (2007)

La Entrega
Mexico

15°45ʹN Pocillopora 40.9 65.5–150.5 (2003) Leyte-Morales (2001)

Saboga Is
Panamá

8°38ʹN Pocillopora,
Pavona, Porites,
Gardineroseris,
Psammocora

45–55 51 (1971) Glynn (1976)
Glynn (1977)

Señorita Is
Panamá

8°27ʹN Pocillopora 25–30 20.5 (1971) Glynn et al. (1972)

Secas Is
Panamá

7°57ʹN Pocillopora 34 67 (1972) Glynn et al. (1972)
Glynn (1976)

Uva Is
Panamá

7°49ʹN Pocillopora, 36–39 64.4 (pre-1983) Wellington and Glynn (2007)

Gardineroseris,
Psammocora

25.4 67.2 (post-1983) Eakin (1996)

Gorgona Is
Colombia

2°58ʹN Pocillopora 49.6 56 Palacios et al. (2014)

Devil’s Crown
Galápagos

1°12ʹS Pocillopora, 10 10 (1975–1976) Glynn et al. (1979)

Porites, Pavona,
Psammocora

50 55

Floreana Is
Galápagos

1°16ʹ–1°19ʹS Pocillopora
Porites, Pavona,
Psammocora

0.91 0.082 (2000–2001) Bustamante et al. (2008)
Okey et al. (2004)

aMinimum and maximum production values are indicated for Mexican sites. Years sampled are noted in parentheses
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depressions in coral growth. If the frequency of thermal
stress events increases or if temperatures surpass the optimal
range for coral growth, warming would then act like a
chronic disturbance, perennially reducing growth. In fact,
one potential “nugget of hope” identified for corals is the
switching or shuffling of zooxanthellae to clades that are
more resistant to thermal stress (e.g., Baker 2001, see
Chap. 13, Baker et al.). Thermally-resistant zooxanthellae,
such as Clade D Symbiodinium, are less productive than
other clades (Stat and Gates 2011). Such symbiont switching
or shuffling as a response to a warming climate is likely to
slow coral growth (Little et al. 2004) and reduce coral fitness
(Jones and Berkelmans 2011). Additionally, the growth and
calcification of corals and coral reefs will decline due to
mortality associated with thermal stress, regardless of
acidification.

While most coral species, including the major reef
builders, have regained their former abundances in Panama
since the 1982–83 El Niño, one species may have been
driven to extinction. Millepora boschmai is a species of
hydrocoral in the ETP that may have already suffered
extinction as a result of thermal stress-induced bleaching
(Glynn 2011). It was originally believed extinct after the
1982–83 El Niño (Glynn and de Weerdt 1991), but a small
population was later located (Glynn and Feingold 1992).
This remnant population died during thermal stress from the
1997–98 El Niño event (Glynn et al. 2001). In total, three
hydrocorals (Millepora platyphylla, M. boschmai, M. intri-
cata) and three scleractinians (Pavona chiriquiensis, Porites

panamensis, Gardineroseris planulata) experienced pre-
sumed extinctions, local extirpations or severe reductions in
abundances in the ETP following the 1982–83 and 1997–98
ENSOs (Glynn et al. 2001). Remnant patches of G. planu-
lata that survived the 1982–83 ENSO in the Galápagos
Islands also disappeared following the 1997–98 event,
causing local extinctions (Glynn et al. 2001). While G.
planulata is a significant reef-builder on some ETP reefs,
most of those driven to extinction or extirpation were not.
Even so, the potential for the extirpation or extinction of
species from ETP reefs points to the impact that high tem-
peratures can have on corals and even the extinction of coral
species in general (Brainard et al. 2013).

18.4.2 Effects of Acidification on CaCO3

Budget: Chronic, Press Stressor

Unlike thermal stress, OA is a chronic disturbance. The
majority of research indicates that coral calcification will
decline as a function of increasing atmospheric CO2 (e.g.,
Langdon and Atkinson 2005). Yet the response to
high-pCO2 is not equal for all coral species, with some
species being more tolerant to high-pCO2 conditions than
others in both laboratory and field studies (Langdon and
Atkinson 2005; Manzello 2010b; Rodolfo-Metalpa et al.
2011; McCulloch et al. 2012). High-pCO2 and temperature
may interact such that the effects of high-pCO2 do not
manifest at low temperatures or the effect of one variable is

(a) (b)

Fig. 18.3 Graphical diagram of CaCO3 fluxes in Uva Island coral reef system, showing flux values from model (rounded to 100 kg/y). a Budget
after extremely strong 1982–83 El Niño. b Budget prior to extremely strong 1982–83 El Niño. Positive fluxes and values in green; negative fluxes
and values in red. Width of arrows is proportional to magnitude of fluxes. After Eakin (1996)
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exacerbated by the other (Reynaud et al. 2003; Anthony
et al. 2008; Rodolfo-Metalpa et al. 2011). Growth declines
may not begin until a threshold temperature is reached or
exceeded. This, or perhaps the ability of some coral species
to better up-regulate the pH of their calcifying fluid than
others (McCulloch et al. 2012), may explain why declines in
massive coral growth have not been observed in some field
studies despite rising pCO2 (Helmle et al. 2011; Cooper
et al. 2012). Heterotrophic feeding and elevated nutrients
may counteract the effect of declining X over some
unknown, but limited range providing some degree of
optimism as OA progresses (Cohen and Holcomb 2009).
The relatively nutrient rich waters of the ETP may foster
enhanced heterotrophy or fertilization of endosymbiotic
zooxanthellae, enhancing coral calcification in waters that
might otherwise have sub-optimal Xarag for reef growth
(Manzello et al. 2014).

In addition to the effects on calcification, there is evidence
that reduced pH has a negative effect on coral reproduction,
with impacts on fertilization, larval settlement, and growth
(Albright et al. 2010) and additionally on larval oxygen
consumption and metamorphosis (Nakamura et al. 2011).
Impaired recruitment reduces long-term reef growth, espe-
cially during recovery from disturbance. Sexual recruitment
has been observed to be especially low in the ETP (Glynn
et al. 1991, 2011; Glynn and Fong 2006).

Coral growth rates have declined over the past 30 years in
the western Pacific, ETP, Indian, and North Atlantic Oceans
(Edmunds 2007; Bak et al. 2009; De’ath et al. 2009; Tanzil
et al. 2009; Manzello 2010b). Pocillopora damicornis has
undergone a significant decline in growth at the Uva reef in
Panama at a similar rate (approximately 1 % year−1) to that
documented in two independent studies from the Great
Barrier Reef and Thailand (Manzello 2010b). Not all species
of coral in Panama, however, have exhibited growth declines
(Manzello 2010b).

Selection for thermally tolerant symbionts by
ENSO-related bleaching may be causing or contributing to
declines in the growth rates of certain species of corals
(Manzello 2010b). For instance, pocilloporid corals have
shown an increased tolerance to recurrent thermal stress
events in Panama because they more frequently host
thermo-tolerant symbiotic algae (Glynn et al. 2001; see
Chap. 13, Baker et al.). Massive pavonid corals have shown
less tolerance to thermal stress presumably because of less
flexibility in hosting resistant algal endosymbionts (Glynn
et al. 2001). The cost of this increased temperature tolerance
in the Pocilloporidae, however, may be a more rapid decline
in growth rate than what is anticipated from acidification.
Growth rates of P. damicornis are correlated with Xarag

across the ETP (Glynn 1977; Manzello 2010b). Conversely,
massive pavonid corals have extension rates as high or
higher in low-Xarag environments, which suggests that these

species may be more tolerant to acidification than the
Pocilloporidae. These differing sensitivities to thermal stress
and ocean acidification will be a fundamental determinant of
eastern tropical Pacific coral reef community structure with
accelerating climate change that has implications to the
future of reef communities worldwide.

The biologically-mediated dissolution of CaCO3 by both
clionaid sponges and endolithic algae is enhanced by OA
(Tribollet et al. 2009; Wisshak et al. 2012; Fang et al. 2013,
2014; Reyes-Nivia et al. 2013; Enochs et al. 2015). Tribollet
et al. (2009) found that filaments of the ubiquitous endolithic
boring alga, Ostreobium querkettii, were able to penetrate
deeper into coral rock substrates under high-CO2 conditions,
leading to an increase in CaCO3 dissolution. Reyes-Nivia
et al. (2013) observed increases in endolith biomass and
respiration during combined exposure to elevated CO2 and
temperature, which led to increases in dissolution. These
workers found a significant effect of substrate, as skeletons
of the coral Porites cylindrica exhibited an increase in the
relative abundance of O. querkettii within the endolithic
community and a greater increase in endolith bioerosion
when compared to the denser Isopora cuneata. This is
intriguing as previous research has indicated that internal
bioerosion increases with skeletal density (Highsmith 1981;
Schönberg 2002), but the response with climate change and
OA may differ and could follow an opposite pattern.

The increase in dissolution by endolithic algae, specifi-
cally Ostreobium with decreasing seawater pH, may also
have implications for carbonate cementation of coral reefs.
Ostreobium growth initiates endolithically within CaCO3

crystals, but can later become chasmolithic (living inside
cavities not of their own making) or epilithic, growing out-
side of the substrate and extending into the surrounding
seawater (Kobluk and Risk 1977a). Following the death of
the epilithic algal filaments, they can become completely
calcified and this can occur within 2–3 months of substrate
infestation (Kobluk and Risk 1977a, b). These calcified fil-
aments can then coalesce to form a cement envelope that
was hypothesized to reduce intergranular porosity and bind
grains. This process differs from the infilling of vacated
microborings by detrital or precipitated micrite (e.g., Bath-
urst 1966), as only external dead filaments become calcified,
whereas those within borings do not.

Given that ocean acidification stimulates the growth of
Ostreobium (Reyes-Nivia et al. 2013), it could be argued that
acidification may promote cementation rather than depress it
as has previously been suggested (Manzello et al. 2008) vis-
à-vis the micritization process described by Kobluk and Risk
(1977a, b). This is an intriguing proposition that deserves
further investigation, yet by this rationale it seems that east-
ern Pacific coral reefs should be heavily cemented. Though
the abundance and biomass of endolithic algae have not been
directly assessed on ETP reefs, it seems logical to suggest
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that they most likely achieve high abundances as a result of
the combination of low pH seawater, as well as high nutri-
ents. The precipitation of carbonate cements is very low
throughout the ETP and microborings were never infilled
(Manzello et al. 2008), which is common in other
shallow-water carbonate environments. Furthermore, the
only limited cements that were observed were aragonitic; no
high-mg calcite precipitates or cements were found. This
follows the general scheme supporting an overriding ther-
modynamic control on cement precipitation given that
high-mg calcite is more soluble than aragonite and is
hypothesized to be a first responder to OA (Andersson et al.
2008). Certain organic coatings/matrices, or the creation of
microenvironments due to biological activity, may ultimately
be a localized driver of cementation in carbonate depositional
environments, including coral reefs (e.g., Reid and Macintyre
1998), but the absence of significant cementation in ETP
coral reefs suggests that seawater highly supersaturated with
respect to aragonite is a prerequisite for these processes.

Bioerosion by clionaid sponges is also expected to
increase in a high-CO2 world (Wisshak et al. 2012; Fang
et al. 2013, 2014; Enochs et al. 2015). Dissolution by the
common Caribbean clionaid sponge Pione lampa (formerly
Cliona lampa) is predicted to increase 99 % by the year
2100 due to OA, which is almost two times the anticipated
depression in coral calcification (Enochs et al. 2015). Fang
et al. (2013) showed that both sponge biomass and bioero-
sion rate increased in the zooxanthellate Pacific clionaid
sponge Cliona orientalis with exposure to combined low pH
and high temperature conditions. However, these workers
found that under experimental conditions mimicking ele-
vated temperatures and CO2 concentration expected by the
end of the century for a business-as-usual emissions sce-
nario, C. orientalis bleached and Symbiodinium population
abundances decreased with increasing CO2. In spite of this,
the bleached sponges under the highest CO2 and temperature
treatments had the greatest rates of bioerosion, even though
sponge biomass declined with bleaching and was higher at
lower CO2 levels. In a related study, these workers found
that C. orientalis consumed more carbon than it produced at
high temperatures (Fang et al. 2014). As a result, the stim-
ulation of bioerosion with ocean acidification in this species
may be limited ultimately by high temperatures due to
bleaching, reductions in biomass, and an overall negative
energy balance (Fang et al. 2014). Zooxanthellate excavating
sponges may display increased bioerosion rates with acidi-
fication to an upper thermal threshold, beyond which rates
would likely decline due to bleaching, and cease, if mortality
occurs. There could be an optimal pH as well where sponge
dissolution peaks as rates of bioerosion decline at the highest
CO2 values for the azooxanthellate sponge P. lampa (Enochs
et al. 2015).

18.4.3 Interacting Effects of Warming
and Acidification

Historical and recent coral growth investigations have
revealed the species-specific response of ETP corals to
thermal stress and OA is complex. Two massive agariciid
coral species (Pavona clavus and Pavona gigantea) have
similar extension rates across natural CO2 gradients, but are
highly susceptible to thermal stress. Branching pocilloporid
corals have demonstrated an increased tolerance to recurrent
thermal stress events, potentially showing some ability to
cope with warming (Glynn et al. 2001; Baker et al. 2004;
however, see LaJeunesse et al. 2007, 2008). Pocilloporids
have suffered a significant decline in growth rate at the Uva
Island reef in Panama, however, possibly due to their
increased temperature tolerance from hosting thermally
resistant symbionts, OA, or both combined (Manzello
2010b). Despite their sensitivity to thermal stress, the mas-
sive pavonid corals rarely suffer complete, whole-colony
mortality as tissues usually survive on the sides of the colony
not exposed to direct sunlight (Glynn et al. 2001). In sum-
mary, the massive pavonids, like many other massive coral
taxa, appear to be more tolerant to the combination of OA
and ocean warming.

Recent work has shown that warming and acidification
interact synergistically to impact corals. Anthony et al.
(2008) demonstrated that both the massive coral Porites
lobata and the branching coral Acropora intermedia were
more susceptible to bleaching at elevated temperatures when
subjected to low pH, compared to susceptibility in waters of
contemporary pH levels for the Great Barrier Reef. In fact,
they concluded that acidification has a greater impact on
coral bleaching and productivity than on calcification. While
experiments examining interactions between these factors
are still at an early stage, it appears that the effects of
warming and acidification may be exacerbated when both
occur together. When rising temperatures remain below
stressful levels, however, elevated thermal conditions may
offset growth depression due to acidification (Lough and
Barnes 2000; Cooper et al. 2012).

18.4.4 The Future of CaCO3 Production
on ETP Reefs

As stated earlier, ETP reefs provide a real-world example of
coral reef growth and development in low-Xarag waters. This
provides a unique opportunity to examine various aspects of
CaCO3 budgets under low-Xarag conditions in the present
day. The precipitation of inorganic cements is highly limited
in these low-Xarag reef environments. The thickness of ETP
pocilloporid reef frameworks reflects Xarag in a positive,
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linear fashion (Fig. 18.4), illustrating the net result of coral
calcification (CaCO3 production) minus its loss (erosion)
under high-pCO2. These poorly cemented reef framework
components are only held in place by a thin veneer of
encrusting organisms, namely crustose coralline algae
(CCA) and an organic matrix of sponges and other associ-
ated organisms. This point is important given that the geo-
logic record suggests that encrustation by CCA is
insignificant and subordinate to cementation in the con-
struction and binding of framework structures (Macintyre
1997). Indeed, bioerosion rates in the Galápagos Islands and
Panama are among the highest measured for any reef system
to date (Glynn et al. 1979; Glynn 1988; Eakin 1996;
Reaka-Kudla et al. 1996; see Chap. 12, Alvarado et al.).

Even with societal or governmental action to begin
reducing emissions, in less than 40 years all of the ETP and
most of the world’s reefs could be at or below Xarag levels
now seen in the Galápagos Islands (van Hooidonk et al.
2014). Without major changes in global fossil fuel use,
corals will experience carbonate conditions similar to those
of the last great extinction event during the Eocene by the
end of this century (Zachos et al. 2005).

Coral reefs are declining globally and the present condi-
tion of Caribbean reefs may be the most alarming. There have
been multiple interacting disturbances impacting Caribbean
coral reefs that have directly caused, or acted to exacerbate
large-scale coral mortality. The collapse of Caribbean coral
reefs has been attributed to several factors that include:
(1) white-band disease, which decimated the acroporid corals
that were historically the dominant reef-builders in shallow
environments, (2) the basin-wide ecological extinction of the
keystone sea urchin herbivore Diadema antillarum due to an
unidentified pathogen, (3) overfishing, (4) coral bleaching,
and (5) land-based sources of pollution (Hughes 1994;
Aronson and Precht 2001; Jackson et al. 2001; Eakin et al.

2010). Live coral cover has declined by about 80 % since the
1970s, the remaining reef frameworks are losing architectural
complexity, the production of CaCO3 has decreased to half of
historical averages, and nearly one-third of sites recently
surveyed were net erosional (Gardner et al. 2003;
Alvarez-Filip et al. 2009; Perry et al. 2013). Many Caribbean
reefs are in accretionary stasis, which means that they are at
or close to CaCO3 budget neutral; leading to concern about
the persistence of architecturally complex reef framework
structures (Perry et al. 2013).

Kennedy et al. (2013) simulated carbonate budget
dynamics of Caribbean coral reefs based on the expected
ecological response to the latest climate projections with the
interacting role of local management of fisheries and
land-based sources of pollution. A trend towards net erosion
was apparent under all increased temperature and CO2 sce-
narios, however, local-scale management of fisheries,
specifically protection of parrotfishes, delayed the transition
to reef loss by a decade. Positive CaCO3 budgets were
generated only when local management occurred in concert
with aggressive emission reductions to limit global warming
to less than 2 °C. Coral calcification declines from warming
and acidification were most important in carbonate budget
simulations for healthy, coral-dominated reefs. The controls
on overall bioerosion rate (e.g., sea urchin population sizes,
sponge boring rates, nutrification) became the dominant
drivers of the carbonate budget with low coral cover.

Unlike anywhere else in the world, the ETP displays a
continuum of thermal stress and CO2 inputs up to levels at
which reef building is terminated and reef structures are lost
(Manzello 2009). A thermal anomaly of 2–3 °C for several
months killed 95–97 % of zooxanthellate corals in the
Galápagos Islands during the 1982–83 ENSO (Glynn 1990).
Reef structures were completely lost in <10 years in this
natural laboratory (Glynn 1994; Manzello 2009). The car-
bonate chemistry conditions in the Galápagos Islands pro-
vide an analog to what is expected for the rest of the tropical
surface ocean with a doubling (2 � CO2: 560 ppm CO2,
Xarag = 3.0) and tripling of atmospheric CO2 (3 � CO2:
840 ppm CO2, Xarag = 2.5) (Manzello et al. 2008). Xarag

values in the southern Galápagos Islands are commonly <3.0
and mean values at one site have been measured as low as
2.3 (Manzello 2010a; Manzello et al. 2014). Conversely,
reef frameworks, while fragile, have persisted in Panamá
despite net erosion following two severe ENSO events
(Eakin 2001). Xarag values in Panama range from approxi-
mately 2.8 to 3.0 in the upwelling Gulf of Panama and from
3.0 to 3.5 in the non-upwelling Gulf of Chiriquí (Manzello
2010a). The thermal anomaly in Panama was 1–2 °C for two
months during the 1982–83 ENSO (Podestá and Glynn
2001; see Chap. 8, Glynn et al.). More than 75 % of all
zooxanthellate corals died in Panama (Glynn 1990), but
sufficient numbers of the predominant reef builders survived,
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and recovery has been prolific despite another very strong
ENSO event in 1997–98 (Glynn and Fong 2006). This
suggests that the upper limit for reef growth and persistence
may be a 2–3 °C thermal anomaly sustained in excess of two
months during the warmest time of the year under more than
a doubling of CO2.

ENSO variability is expected to continue into the future
and the frequency of extreme El Niño events is predicted to
increase (Cai et al. 2014). The models do project substantial
increases in extreme temperatures that include the length,
frequency, and/or intensity of warm spells (IPCC 2011). As
climate change raises the baseline temperatures upon which
extreme events such as El Niño occur, even such events that
were not severe in the past become severe in the future.
Therefore, there is reason to expect more frequent and severe
coral reef bleaching in the ETP in the coming years.

The existence of coral reefs beyond this century is in
jeopardy. The concern over the dramatic losses of live coral
(Gardner et al. 2003) has quickly evolved to a fear that the
underlying framework of coral reefs may erode away in a
high-CO2 world (Hoegh-Guldberg et al. 2007; Manzello
et al. 2008; Perry et al. 2013). Coral cover has declined across
large geographic scales (Gardner et al. 2003; De’ath et al.
2012), leading to concomitant declines in CaCO3 production.
Furthermore, declines in coral growth and calcification have
been documented in all tropical seas over the past 30 years
(Edmunds 2007; Cooper et al. 2008; Bak et al. 2009; De’ath
et al. 2009; Tanzil et al. 2009; Manzello 2010b). The pro-
duction of CaCO3 on coral reefs has likely declined at a
global scale. As a result, the future impacts of OA to the
negative side of the coral reef carbonate budget, via stimu-
lation of biologically-mediated dissolution (bioerosion), may
be more detrimental than the decline of coral calcification.
Indeed, Kennedy et al. (2013) explicitly demonstrated that
changes to coral calcification are most significant to the
CaCO3 budget when coral cover is high. When coral cover is
low, bioerosion becomes the dominant process.

In the ETP, the combination of natural ocean acidification
and extreme temperatures during El Niño events has led to
the development of fragile, uncemented reefs with a great
susceptibility to major losses from thermal stress events.
Unfortunately, global ocean acidification and warming will
threaten many reefs worldwide with similar conditions
within this century and the current trajectories of fossil fuel
use will soon drive Xarag levels in the ETP much lower than
those surrounding any coral reefs extant today. At the same
time, continued warming threatens the return of mass coral
bleaching. Today, coral reefs of the ETP can serve as a
model for reef conditions we will likely witness in other
regions within a few decades.
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