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Summary

Electron transfer plays a central role in many biological processes such as, for instance,
photosynthesis or oxidative phosphorylation, but also in other bioenergetic processes such as
denitrification or sulfate and sulfite reduction. Moreover, electron transfer is a key step in
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many enzymatic reactions. The framework of Marcus theory provides the theoretical basis
to describe the kinetics of these reactions. The parameters to calculate rate constants can
be estimated using protein crystal structures. Namely, the electronic coupling is related
to the edge-to-edge distance between the redox-active sites. The reaction free energy
and the reorganization energy can be obtained, for instance, from continuum electrostatic
calculations. However, to perform complicated tasks, proteins often combine many redox
cofactors and couple the redox reactions to protonation reactions or conformational changes.
Moreover, electron transfer proteins are often embedded in membranes, and thus membrane
potential and concentration gradients influence the reactions. One approach to describe such
complex systems is the so-called microstate model, in which each state of a system is
represented by a vector in which each component defines the status of each site (for instance
oxidized or reduced, protonated or deprotonated). On the basis of this microstate description,
it is possible to calculate the thermodynamics and kinetics of a complex protein system. In
this article, we will review the principle features of the microstate model and explain how
the parameters of the microstate model can be calculated using continuum electrostatics. The
microstate model provides the theoretical framework to go from molecular structures to the
mechanism of complex protein machines.

I. Introduction

Electron transfer reactions are central in
many biological processes such as photo-
synthesis and oxidative phosphorylation, to
name just the most prominent biochemical
pathways. Additionally, electron transfer
also plays a central role in biochemical
pathways such as the nitrogen cycle and
the sulfur cycle that are of geochemical
relevance. In recent years, the biochemical
electron transfer processes also raised an
increased interest because of its use in
microbial fuel cells (Logan 2008; Zhou et al.
2013). Electron transfer reactions are even
possible candidates to be processes at the
origin of life in hydrothermal vents where
electron transfer reactions are driven by
pH gradients (Martin et al. 2008). These
reactions are in some respect just the reverse
of the chemi-osmotic theory of Mitchell
(1961) and may thus help to explain the
origin of the non-equilibrium state that is
characteristic for living organisms.

Considering the central role of redox
reactions in biochemical systems, it is not
surprising that the redox potential is tightly
controlled in the cell (Banerjee 2008). In fact,
there are several redox buffering systems
in the cell that are interconnected through

various complex enzymatic systems. One
of the most prominent biological redox
buffers is glutathione, a tri-peptide which
forms dimers through its thiol group upon
oxidation (Deponte 2013). Glutathione
functions as an antioxidant in plants, animals,
fungi, and some bacteria and archaea and
prevents harmful reactions which can be
caused by reactive oxygen species such as
free radicals and peroxides. Oxidized glu-
tathione is reduced by nicotinamide adenine
dinucleotide phosphate (NADP) through a
reaction that is catalyzed by glutathione
reductase. Glutathione reductase links the
redox buffer glutathione to the anabolic
redox pool of NADPH, which is mainly
generated in the pentose phosphate pathway
and, in the case of plants and cyanobacteria,
in the light phase of photosynthesis. The
major catabolic redox coenzyme is nicoti-
namide adenine dinucleotide (NAD) which
lacks one phosphate group in comparison
to NADP and thus has different binding
properties, enabling enzymes to differentiate
between NAD and NADP. The redox pools
of NAD/NADH and NADP/NADPH are
connected through the enzyme nicotine
amide nucleotide transhydrogenase, a multi-
domain membrane protein (Pedersen et al.
2008). Quinones, especially ubiquinone,



6 Electron Transfer: From Simple Proteins to Complex Machineries 101

plastoquinone, menaquinone and related
molecules play a central role in many
bioenergetic reactions. Quinones take up
electrons from various metabolic reactions
and can channel their redox-energy into
the Q-cycle that is catalyzed by bc-type
cytochromes (Mitchell 1976; Crofts 2004).
These membrane-linked redox buffers are
in contact with the redox buffers in the
aqueous medium in the cell through several
enzymes. A description of the mechanism
of bc-type cytochromes are discussed in
articles by Xia et al. Trumpower and Hasan
et al. in this volume. Although this short
discussion of the different redox reactions
in the cell shows only the tip of the iceberg,
it underlines the prevalence and importance
of complex biological redox reactions for
biochemical processes. Many more different
redox reactions play a central role in the
metabolism and we are only at the beginning
of understanding what is happening in the
cells and how complex enzymes direct and
use the electron flow in the cell.

There are two groups of proteins that
can undergo redox changes: (i) the electron
transport proteins that simply take up
electrons from a protein complex and
transport them further to other complexes
(e.g. monomeric cytochromes, ferredoxins,
flavodoxins, thioredoxins, and cupredoxins);
(ii) the large group of oxido-reductase
enzymes which catalyze redox reactions
often with the help of metal ions or other
prosthetic groups. The first group played
an important role in the theoretical analysis
of electron transport in proteins since they
are relatively simple and therefore allow
a detailed study of the electron transfer
reactions. Much of our understanding
of electron transfer reactions in proteins
originates from studies of such small
proteins such as cytochrome c or azurin
in connection with non-natural electron
transfer partners (Gray and Winkler 1996).
Complex oxido-reductase enzymes are
instead a challenge, since they often involve
many redox-active sites and couple the
redox reactions for instance to protonation

reactions or conformational changes. The
theoretical understanding of these complex
reactions is still in its infancy, however much
of the theoretical framework developed from
simple electron transfer reactions can be
employed.

Although electron transfer proteins often
contain cofactors, there are also a few
proteinogenic amino acids that are redox-
active. In particular, pairs of cysteine
residues, which can form disulfide bridges,
are common redox-regulated motives, for in-
stance in thioredoxins and also in many other
redox sensitive proteins (Woycechowsky and
Raines 2000). Furthermore, also tyrosine and
tryptophan residues are known to undergo
redox state changes in proteins (Warren et al.
2012). Another amino acid that can undergo
redox changes in proteins is glycine, which
can form radicals (Stubbe and van der Donk
1998). These glycine radicals in conjunction
with a cysteine residue can catalyze complex
chemical reactions in so-called glycine
radical enzymes (Stubbe and van der Donk
1998). In the resting form of the enzyme,
a radical is localized at a glycine residue.
Upon substrate binding, the glycyl radical
abstracts a hydrogen atom from an adjacent
cysteine residue, which then performs the
actual catalytic reaction. Another redox-
active amino acid that is sometimes found
in proteins is seleno-cysteine in which
the thiol group is replaced by a selenol
group. The pKa value of the selenol is 5.2,
much lower than that of a thiol (8.3), and
its redox properties are also considerably
shifted (Wessjohann et al. 2007). Besides
these redox-active aminoacids, there are
also protein-derived cofactors that are
post-translationally formed by chemical
modifications of amino acids (Davidson
2007). Examples of such groups are
trihydroxyphenyl-alanine quinone, lysine
tyrosylquinone, cysteine tryptophylquinone
or tryptophan tryptophylquinone. Other
cofactors are generated by cross-linking
aminoacids such as, for instance, tyrosine
and histidine in the active site of cytochrome
c oxidase.
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However, the large majority of electron
transfer proteins bind redox cofactors as
prosthetic groups. Such cofactors can be
organic cofactors such as flavins or quinones;
pure metal clusters such as copper centers,
iron sulfur centers, non-heme iron centers,
nickel-iron or molybdenum-iron centers,
or manganese centers; or they can be of
mixed organic/inorganic origin such as
hemes or molybdopterin-centers (da Silva
and Williams 2001). A special role is
played by chlorophyll molecules, which
are tetrapyrrole cofactors, similar to hemes,
with a non-redox-active magnesium ion in
the center of the ring. Pheophytins have an
identical organic scaffold but lack any central
ion. These later two cofactors are normally
involved in light harvesting and participate
in electron transfer only in photosynthetic
reaction centers.

Many of the redox enzymes that
perform complex reactions contain more
than one redox center. Famous examples
are the photosynthetic reaction center,
which couples photoexcitation to charge
separation, and the cytochrome bc1 and
cytochrome b6f complexes, which generate
a trans-membrane proton electrochemical
gradient through bifurcation reactions, and
cytochrome c oxidase, which couples the
exergonic reduction of oxygen to an ender-
gonic proton transfer across the membrane.
Some examples are shown in Fig. 6.1. A
crucial point for the understanding of the
mechanism of these enzymes is the coupling
of the electron transfer reactions to proton
transfer reactions, to conformational changes
and to other electron transfer reactions.
A theoretical analysis of electron transfer
reactions can help to reveal the mechanism of
complex enzymes. In order to properly model
complex electron transfer reactions that are
coupled to conformational changes, to proton
transfer reactions, or to other chemical
reactions, different theoretical methods need
to be combined. In this article, we will review
the most important methods and explain the
theoretical framework for analyzing complex
reactions.

II. Theoretical Description of
Electron Transfer Reactions

A. Marcus Theory of Electron Transfer

Even if biological redox reactions can involve
association and dissociation reactions
and can thus be bimolecular (Eq. 6.1),
the actual electron transfer reaction is
monomolecular:

D� C A ˛ D� � � �A ET
˛ D � � �A� ˛ D C A�

(6.1)
This system consists of two redox active
sites, the donor (D) and the acceptor (A).
In the reactant state (D� � � �A), the electron
is localized at the donor and in the product
state (D � � �A�), the electron is localized at
the acceptor. The actual electron transfer step
can be described by transition state theory,
i.e. to obtain the following rate constants
for the forward (kfor) and for the backward
(kback) reaction. One can write:

kfor D �

ˇh
exp

�
� ˇG¤� (6.2)

kback D �

ˇh
exp

�
� ˇ.G¤ C�Gı/

�
(6.3)

where G¤ is the free activation energy, �Gı
is the reaction free energy, � is the transmis-
sion coefficient which accounts for the prob-
ability of being reactive once the transition
state is reached, ˇ is 1=kBT (kB is the Boltz-
mann constant, T the absolute temperature),
and h the Planck constant (see Fig. 6.2).

For long range electron transfer reactions,
the donor and the acceptor are only weakly
electronically coupled. Thus, the reaction is
non-adiabatic and its rate can be obtained
from Fermi’s golden rule (Marcus and Sutin
1985).

kET D 2�

„ H2
DA.FC/ (6.4)

where H2
DA is the electronic coupling

between the reactant state and the product
state (sometimes called donor state and
acceptor state, respectively) and .FC/ is the
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Fig. 6.1. Multicenter redox proteins. (a) Complex I catalyzes the transfer of electrons fromNADH to ubiquinone.
The electron transfer via several iron sulfur centers drives a proton transfer across the membrane in a not
understood way. (b) Ethylbenzene Dehydrogenase is a molyptopterin enzyme. The electron transfer to the active
site occurs via one heme and several iron-sulfur centers. (c) Cytochrome c Nitrite Reductase catalyzes the six-
electron reduction of nitrite to ammonia. The electrons are provided by several heme centers in the protein. This
enzyme couples the reduction of ammonia to the quinone/quinol pool in the membrane. (d) Cytochrome bc1
uses the driving force of the electron transfer from ubiquinol to cytochrome c to generate a proton gradient. This
proton pumping is achieved by a complex redox loop reaction called the Q-cycle.

Franck-Condon weighted density of states,
i.e. the Franck-Condon factor. Equation 6.4
separates the electronic factors (represented
by the electronic coupling) from the nuclear
factors (represented by the Franck-Condon
factor which accounts for the structural
adaptation of the donor site, the acceptor
site, and their surroundings) (Marcus and
Sutin 1985). A classical form of the

Franck-Condon factor is given by the
following expression:

.FC/ D 1p
4�ˇ�1�

exp
�

� ˇ .�Gı C �/2

4�

�

(6.5)

where � is the reorganization energy and
�Gı is the reaction free energy. The reor-
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Fig. 6.2. The transition from the reactant state (or
donor state) to the product state (or acceptor state)
occurs over a barrier �G¤. The free energy difference
between the two states is�Gı. Thus, the back reaction
has a barrier that is the sum of the two energies�G¤C
�Gı.

ganization energy accounts for the structural
reorganization of the reactant state to the
product state upon the reaction. Comparing
Eq. 6.2 with Eqs. 6.4 and 6.5, one can rec-

ognize that the term .�GıC�/2
4�

corresponds
to the activation free energy. Instead, the
electronic coupling together with the preex-
ponential factor of Eq. 6.5 are related to the
transmission coefficient � in Eq. 6.2.

In summary, electron transfer reactions
are influenced by three energetic parameters:
the electronic coupling of the donor and
the acceptor, the reaction free energy, and
the reorganization energy. Each of these
parameters can be estimated from molecular
structures using various theoretical models
as discussed below.

B. Electronic Coupling

The electronic coupling quantifies how easily
an electron can move from the donor to the
acceptor. The closer the donor site and the
acceptor site the more rapid the transfer. If
the distance between the redox centers in a
protein becomes larger than 20Å, the elec-
tron transfer rate between them is so slow

that it is basically inconsequental. The ac-
tual electron transfer is a tunneling event, in
which the electronic states of the protein are
used as a bridge. Several theoretical methods
have been developed to calculate the tunnel-
ing efficiency.

In the simplest model, an electron with the
mass m tunnels between two narrow wells
that are separated by a uniform energy barrier
of the height V . The electronic coupling in
such a system decreases exponentially with
the distance R between the wells (Gamow
1928; Gray and Winkler 2005).

HDA
2 D Hı

DA
2 exp

�
� 2

p
2mV

„ .R � Rı/
�

D Hı
DA
2 exp

�
� b.R � Rı/

�
(6.6)

This model describes reasonably well the
distance and the barrier height dependence
of electron transfer between two cofactors
embedded in a protein matrix. This picture
captures the view that the electronic coupling
between redox cofactors in a protein
medium is mainly dependent on the distance
between the cofactors. The intervening
medium represents a barrier to the electron.
The protein medium lowers the barrier
compared to the vacuum and provides an
electronic bridge. To estimate electronic
coupling between cofactors in a protein,
different models have been developed
ranging from methods based on quantum
chemical calculations (Stuchebrukhov 2003),
to electron transfer pathways (Gray and
Winkler 1996), or a simple, experimentally
parametrized distance dependence (Moser
et al. 1992; Page et al. 1999) just to name
some of the models [also see Krishtalik in
this volume]. In the later model, the specific
nature of the intervening protein medium
such as secondary or tertiary structure is
not taken into consideration. Surprisingly,
the different methods gave similar results
leading to an exponential decay of the
electronic coupling as a function of the
distance between the donor site and the
acceptor site. This finding indicates that the
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excited reactant state r*

reactant state r

product state p

DGO

λ
λ

DG*

DG

excited product state p*

Fig. 6.3. The Marcus model of electron transfer. The reactant and the product states are described as red and
blue harmonic potentials, respectively. The energy difference between the two states, i.e. the reaction free energy,
is given by �Gı. The energy �G� represents the vertical excitation energy leading to the Franck-Condon state.
The reorganization energy � is the energy required to adopt the nuclear configuration of the product state without
leaving the potential energy curve of the reactant state. The same reorganization energy can be defined for the
backward reaction. As can be seen, � D �Gı C�G�. The activation free energy�G¤ can be obtained from the
reorganization energy and the reaction free energy. The idea of Marcus was to separate the fast relaxing electronic
polarization (represented by magenta arrows) from the slowly relaxing solvent polarization (represented by green
arrows). In the equilibrium states, both polarizations adapt fully to the given charge distribution, while in the
vertically excited Franck-Condon state only the electronic polarization is adapted to the charge distribution.

electronic coupling is not much influenced
by the specific nature of the protein
medium.

C. Reorganization Energy

The reorganization energy � accounts for the
structural reorganization of the reactant and
the product state including the surrounding
medium. Figure 6.3 shows the meaning of the
reorganization energy. Assuming a harmonic
potential, the reorganization energy is the
energy required to adapt the geometry of the
product state in the reactant state and vice
versa. The potential energy of the two states
can then be expressed as

Vr.Ex/ D Gr C 1

2
k.Ex � Exr/2 (6.7)

Vp.Ex/ D Gp C 1

2
k.Ex � Exp/2 (6.8)

where Ex represents the collective coordinates
of the system, i.e. the position of all atoms,
the index p indicates the product state,
the index r the reactant state, and k is a
force constant. The reorganization energy is
given by

� D 1

2
k.Exp � Exr/2 (6.9)

Since the electron transfer reaction is ac-
companied with large changes in the elec-
trostatic potential because of the transferred
charge, the effects on the medium surround-
ing the redox-active sites can be rather long
range (on the order of 20Å). Therefore, it
is appropriate to separate the reorganization
energy into an inner sphere reorganization
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energy �i and an outer sphere reorganization
energy �ı

� D �i C �ı (6.10)

The inner sphere reorganization energy is
mainly connected to changes in the redox
active site itself and can be calculated by
an expression that is similar to Eq. 6.9. The
outer reorganization energy is connected to
changes in the surrounding medium such
as the solvent or the protein environment.
Marcus suggested that the outer sphere
reorganization energy can be calculated
on the basis of a continuum electrostatic
model (Marcus 1956). Namely, the idea
is to separate the fast electronic response
(10�15 � � � 10�16 s) from the slow molecular
(orientational) response (10�11 � � � 10�14 s)
as explained in Fig. 6.3. This part can be
described by an electrostatic model as will be
discussed below (section “III.B. Calculating
the Outer Sphere Reorganization Energies”).

D. Reaction Free Energy

The reaction free energy �Gı is often
approximated by the difference between the
donor and acceptor redox groups. Even if
this approximation is often justified, it is not
always correct, since the interaction between
the redox active groups influences the
reaction free energy (Ullmann and Bombarda
2013). The situation becomes even more
complex when the redox reaction is coupled
to proton binding or the protein contains
many redox active cofactors. Instead, it is
always correct to consider the reaction free
energy as the energy difference between the
product state and the reactant state:

�G D Gp � Gr (6.11)

The microstate model (Becker et al. 2007;
Bombarda and Ullmann 2011; Ullmann and
Bombarda 2013), which will be explained
in section “III.D. Interacting Redox Active
Groups,” takes this energy difference cor-
rectly into account.

E. Moser-Dutton Ruler

A practical although not exclusive way of
calculating electron transfer rate constants is
the Moser-Dutton ruler (Moser et al. 1992;
Page et al. 1999), which represents an em-
pirical formula for electron transfer rates
that relies on the theoretical basis of Marcus
theory. The parameters were obtained by fit-
ting known electron transfer rates to a linear
equation of the form

lg kexet D A � B.R � Rı/ � C
.�Gı C �/2

�

(6.12)

A was found to be 13.0; B has an average
value of 0.6Å�1 (a more complex expression
can be used if the packing density is consid-
ered (Page et al. 1999)); C has a value of
3.1 (eV)�1. Rı is the van der Waals contact
distance, which was assumed to be 3.6Å. For
endergonic reaction, Eq. 6.12 was extended
to account for the uphill step (Eq. 6.13) with
D= 0.06 eV.

lg kexet DA�B.R�Rı/�C
.��Gı C �/2

�
� �Gı

D
(6.13)

The justification of Eq. 6.13 has been dis-
cussed in the literature and an alternative
formulation based on the Marcus equation
was proposed (Crofts and Rose 2007).

There are several other methods to esti-
mate electron transfer rates. One of the more
popular methods is the pathway model that
was developed by Gray, Beratan, Onuchic,
and coworkers (Gray and Winkler 1996).
This model estimates the electronic coupling
as a product of through-bond/through-
space/through-hydrogen-bond couplings.
Other methods rely on quantum chemical
methods (Stuchebrukhov 2003). However, a
major advantage of the Moser-Dutton ruler
is its simplicity and its clear connection
to molecular structures. The parameter R
is the edge-to-edge distance between the
cofactors involved in the electron transfer
process. This distance can be estimated from
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crystal structures of the relevant proteins.
The other two parameters, namely the
reorganization energy � and the reaction
free energy �Gı, can be also estimated
from the structure either by molecular
mechanics calculations (Beveridge and
DiCapua 1989; Muegge et al. 1997) or by
continuum electrostatic calculations (Sharp
1998; Ullmann and Knapp 1999).

F. Tuning of Electron Transfer Rates in
Proteins

The protein can tune electron transfer rate
constants by adapting the three energetic
parameters of the Marcus equation: the
electronic coupling, the reorganization
energy and the reaction free energy. As
discussed above, the electronic coupling
between the redox cofactors can only be
efficiently varied by changing the distance
between them. Changing protein residues
in the electron pathways between the
donor moiety and the acceptor moiety has

only minor effects presumably because
the packing between the donor and the
acceptor does not change very much and
thus the electron always finds pathways
that are equally well-suited to transfer the
electron (Ullmann and Kostić 1995). Thus,
in a given protein fold, the electron coupling
cannot be much changed unless larger
conformational changes occur. An example
of such a conformational change affecting
electron transfer reactions is the movement of
the Rieske-head domain in cytochrome bc1
shown in Fig. 6.4 (Zhang et al. 1998).

As discussed above, another parameter of
the Marcus equation is the reorganization en-
ergy. The inner sphere reorganization energy
is mainly connected to the nature of the redox
active group (Olsson et al. 1998; Ryde and
Olsson 2001). The protein can influence this
parameter only to some extent, for instance
through strain exerted on the redox center.
The outer sphere reorganization energy is
connected to the solvent and protein reorga-
nization. Thus, this parameter cannot also be

Fig. 6.4. Movement of the Rieske-Domain in cytochrome bc1. The Rieske iron sulfur center (red balls) receives
an electron from an ubiquinol (yellow) and transports this electron to cytochrome c1. The second electron of
the ubiquinol is transferred to the heme bp (light grey) and from there further to the heme bn (dark grey) and a
quinone (brown). The subscript p or n indicate whether the heme is closer to the electrochemically positive or
negative side of the membrane, respectively. The conformational change of the Rieske domain (shown in red)
facilitates the electron transfer from the Rieske iron sulfur center to cytochrome c1 by changing the electronic
coupling between the redox centers. The movement of the Rieske domain is a key element of the Q-cycle through
which the cytochrome bc1 complex can generate a proton gradient.
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much influenced in a given protein scaffold,
since the protein has a low polarizability.
Nevertheless, the outer sphere reorganization
energy is influenced by the solvent exposure
of the redox active group and the polarity of
the protein medium.

The parameter that is most easily influ-
enced by the protein environment is the re-
action free energy. Biological systems have
several ways to tune the redox properties of
a particular site. The nature of the redox
active site is the most crucial. Depending on
whether an iron-sulfur cluster or a heme is
chosen as a redox site, the redox potential
will be different. Also the nature of the lig-
ands of the metal center influences the redox
properties. Thus, for instance it is known
from model compounds of heme proteins,
that the change from a histidine-histidine
ligated heme to a histidine-methionine lig-
ated heme decreases the redox potential from
�70 to �220mV (Wilson 1983). The protein
environment is probably most important for
the fine tuning of redox properties of a redox-
active site (Zheng and Gunner 2009). The
protein environment can tune the redox po-
tential by (i) placement of charges or dipoles
in the vicinity of the redox active site (for
instance hydrogen bonds or salt bridges),
(ii) changing the solvent accessibility of the
redox active site, and (iii) coupling of the
reduction to the protonation of a nearby site
(redox-Bohr effect).

III. Electrostatic Methods for
Estimating Reaction Free Energies
and Reorganization Energies

The protein can electrostatically tune the re-
dox potential of a redox active group. This
tuning can be understood theoretically by
using a continuum electrostatic model of the
protein.

A. The Poisson-Boltzmann Equation

Electrostatic interactions are the most
important interactions in biomolecules. Most
of the effects in biochemical systems are

dominated by electrostatics. It is therefore
not too surprising that an electrostatic model
can describe very well many features of
biomolecular systems. This model relies on
the Poisson-Boltzmann equation.

The basic idea of the Poisson-Boltzmann
model is to describe the protein as a region
with a low dielectric permittivity which is
embedded in a region of high dielectric
permittivity (aqueous solvent). The charge
distribution of the protein is described by a
fixed charge distribution in the low dielectric
region, which is given by the molecular
structure of the protein. Charges and dipoles
are modeled by (fractional) point charges
that are placed at the center of the atoms.
The dissolved ions are represented by a
Boltzmann-distributed charge density. The
boundary of the low dielectric region is
defined by the solvent accessible surface of
the protein (Connolly 1983). Mathematically,
the whole system is described by the Poisson-
Boltzmann equation (Eq. 6.14) (Warwicker
and Watson 1982; Honig and Nicholls
1995),

r Œ".r/r�.r/� D ��f .r/ �
KX
iD1

cbulki Zieo

� exp
��Zieo�.r/

RT

�
(6.14)

where r is the differential operator,
".r/ is the spatially varying dielectric
permittivity, �f .r/ is the spatially fixed
charge density which is usually defined
by point charges at the positions of the
nuclei of the solute molecule; cbulki is the
bulk concentration of the ionic species i
with the charge Zi (eo is the elementary
charge). The sum runs over all K ionic
species in the solvent and describes a
Boltzmann distribution of the ions in the
electrostatic potential �.r/ of the protein.
The electrostatic potential �.r/ can be
obtained by solving Eq. 6.14.

Generally, non-linear partial differential
equations like the one in Eq. 6.14 are difficult
to solve even numerically. However by
approximating the exponential term as a
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series, Eq. 6.14 can be linearized. With the
common definitions of the ionic strength

I D 1
2

KP
iD1

cbulki Z2i and the modified inverse

Debye length N	 D
q

2NAe2oI
kBT

the linearized
Poisson-Boltzmann equation assumes the
form that is found in biophysics text books
(Eq. 6.15).

r Œ".r/r�.r/� D ��prot.r/C N	2.r/�.r/ (6.15)

In Eq. 6.15, the term ".r/ reflects the spatially
varying permittivity (or dielectric constant).
The first term on the right hand side describes
the spatially fixed charge distribution in the
protein and the second term describes the
charge distribution due to the mobile ions
which adopt a Boltzmann distribution in the
field of the protein.

The Poisson-Boltzmann equation in its
linearized form can be solved analytically
only for particular geometries. However,
there are several methods that can solve
the Poisson-Boltzmann equation numerically
for arbitrary geometries. The solution of
the Poisson-Boltzmann equation can be
expressed as a potential that is composed
of two contributions:

�.r/ D
MX
iD1

qi
4�"p j r � r0

i j C �rf.r/ (6.16)

First, the Coulomb potential at the position
r caused by M point charges qi at positions
r0
i in a medium with a permittivity "p, and
second, the reaction field potential arising
from the M point charges qi and the dielec-
tric boundary between the protein and the
solvent, as well as from the distribution of
ions in the solution. The reaction field po-
tential originates from the polarization of the
solvent by the solute. Usually, the reaction
field potential stabilizes charged states. At
the molecular level, a smaller part of this po-
larization originates from the deformation of
the electron density of the solvent due to the
presence of the solute, while the larger part
originates from the orientational polarization
of the solvent molecules.

The total electrostatic energy of a system
in aqueous solution consists of two parts: the
interaction between the components of the
system and the interaction of the system with
the solvent. The first contribution is obtained
by charging the charge set �2 in the presence
of the electrostatic potential caused by charge
�1. Assuming that the charge set �2 consists
of a single charge qf , the interaction energy
becomes

Ginter D
qfZ

0

�.�1; rq/dq D �.�1; rq/qf (6.17)

Since the potential �.�1; rq/ at the position
rq of the charge qf is totally independent
of the charge qf itself, the integration in
Eq. 6.17 reduces to a simple multiplication.
Equation 6.17 can be generalized to the inter-
action between two disjunct sets of charges
fqg and fpg, which is given by

Ginter D
NqX
iD1

qi �.fpg; rqi/ D
NpX
iD1

pi �.fqg; rpi/
(6.18)

where Nq and Np are the number of charges
in the charge sets fqg and fpg, respectively,
�.fpg; rqi/ is the potential caused by the
charge set fpg at the position of the charge qi
and �.fqg; rpi/ is the potential caused by the
charge set fqg at the position of the charge pi.
As can be seen from Eq. 6.18, this interaction
energy is symmetric.

The second contribution is the reaction
field energy, which is also sometimes called
“self-energy”. This energy originates from
the interaction energy of the charge set fqg
with its own reaction field potential �rf. To
obtain this energy, one imagines the charging
of a particle in a dielectric medium, and asks
what is the energy of this charging process.
Analogous to Eq. 6.17, we can write

Grf D
qfZ

0

�rf .q; rq/dq (6.19)

In contrast to the situation in Eq. 6.17, the
reaction field potential �rf depends on the
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charge of the particle. For simplicity, one
assumes a linear response, i.e. �rf .qf ; rq/ D
Cqf . From Eq. 6.19, we obtain

Grf D
qfZ

0

Cq dq D 1

2
Cq2f D 1

2
�rf .qf ; rq/qf

(6.20)
Equation 6.20 can be generalized to obtain
the reaction field energy of a charge set fqg

Grf D 1

2

NqX
iD1

qi �rf.fqg; rqi/ (6.21)

As shown above, the factor 1
2
in this equa-

tion is a consequence of the linear response
approach.

The reaction field energy can be used
to calculate the electrostatic contribution of
the solvation energy, which is the energy to
transfer from vacuum into a solvent with a
given dielectric constant "s. This approach
was used by Max Born to calculate the sol-
vation energy of a ion with the radius r and
the charge Z (Born 1920)

�Gsolv D � 1

4�"ı
.Zeı/2

2r

�
1 � 1

"s

�
(6.22)

This equation is part of an expression for
the outer reorganization energy derived by
Marcus (1956), which will be discussed in
the next section.

Although the continuum electrostatic ap-
proach is relatively simple, it is surprising
how well it works to understand the energet-
ics of biochemical systems (Ullmann et al.
2008). It can be used to analyze electron and
proton transfer reactions as will be explained
in the following.

B. Calculating the Outer Sphere
Reorganization Energies

By separating the fast and the slow polar-
ization, Marcus derived a simple expression
for the outer sphere reorganization energy
for the transfer of the charge �e between
two spherical ions with the radii a1 and a2

Donor Site

Reactant State

+1 −1

−1

−1

0

0

R

a1 a2

Product State

Charge Difference

Acceptor Site

Fig. 6.5. Model of the charge transfer between two
spheres at a separation R with the radii a1 and a2, re-
spectively. The charge difference between the product
state and the reactant state can be used to calculate
the outer sphere reorganization energy and leads to
Eq. 6.23.

at a distance R (Marcus 1956), leading to
Eq. 6.23

�o D �e2

4�"ı

 
1

2

� 1
a1

C 1

a2

�
� 1

R

! 
1

"op
� 1

"s

!

(6.23)

where "op is the optical dielectric constant
and "s is the dielectric constant of the sol-
vent (Fig. 6.5). The optical dielectric constant
takes into account only the electronic polar-
ization and thus has a value of about 2.

Equation 6.23 can be interpreted as hav-
ing two contributions: (i) the difference be-
tween the solvation energy of ions in a low
dielectric medium with a purely electronic
polarization ("op) and a solvent with a higher
dielectric constant "s and (ii) interaction en-
ergy of the charge difference between the re-
actant and the product state. Since the charge
difference is considered, the charge at the
donor site and the acceptor site is C1 and �1,
respectively. The interaction between these
charges gives rise to the 1=R term. The sol-
vation energy difference is related to the
Born formula (Eq. 6.22). Thus, the influence
of the reaction field originating from the
donor site is neglected at the acceptor site
and vice versa. This approximation is valid
if R is large. The outer sphere reorgani-
zation energy is always a positive number,
since the optical dielectric constant, which



6 Electron Transfer: From Simple Proteins to Complex Machineries 111

accounts only for the purely electronic polar-
ization, is much smaller than the solvent di-
electric constant and the separation between
the charges is much larger than the radius of
the spheres.

The idea that underlies Eq. 6.23 can
be generalized such that it can be used
to calculate the reorganization energy of
a protein (Sharp 1998). For proteins, the
numerical solution of the Poisson-Boltzmann
equation must be used instead of the Born
formula. The outer sphere reorganization
energy in this frame work is given by

�o D 1

2

X
i

�
�r��r.f�qg; ri/

��p�r.f�qg; ri/
�
�qi (6.24)

where the charge set f�qg is the difference
between charges assigned to the product state
and the reactant state, respectively

�qi D qpi � qri (6.25)

In Eq. 6.24, the term �r��r.f�qg; ri/ reflects
the potential considering the fast electronic
relaxation and is the numerical solution of
Eq. 6.26

r"opr�r��r.f�qg/ D ��.f�qg/ (6.26)

The term �p�r.f�qg; ri/ represents the
potential considering slow orientiational
relaxation which is given by the numerical
solution of Eq. 6.27

r".r/r�p�r.f�qg/D��.f�qg/C N	2�p�r.f�qg/
(6.27)

With this approach, the reorganization en-
ergy of a charge transfer reaction can be
easily calculated on the basis of molecu-
lar structures using the numerical solution
of the Poisson-Boltzmann equation. Inter-
estingly, in this approach the outer sphere
reorganization energy depends only on the
charge difference between the reactant state
and the donor state and to a minor extent
on the shape of the low dielectric region
defined by the protein. Thus, in the frame

work of this continuum electrostatic model,
the surrounding protein residues do not have
much influence on the outer sphere reorga-
nization energy except by defining the di-
electric boundaries. Consequently, one would
expect that the reorganization energy cannot
be much altered by mutations.

C. Calculating Redox Potentials of
Proteins

The redox potential of a group characterizes
the energetics of an electron transfer reaction,
since it is proportional to the energy change
upon electron release or uptake. The calcu-
lation of absolute redox potentials requires
very high-level quantum chemical calcula-
tions and is often not very accurate. However,
changes in the redox potentials arising from
the protein are mainly caused by electrostatic
interactions. Thus, it is possible to determine
the changes of the redox potential of a group
A due to the protein environment compared
to a model compound of the group for which
the redox potential Eo

model;A is known. There
are two contributions to the redox potential
shift, one originates from the changes of the
reaction field when the model compound is
moved from the aqueous solution into the
protein (��Gredox

Born;A). The other originates
from the interaction of the redox active group
with the charges and dipoles of the protein
(��Gredox

back;A). The redox potential in the pro-
tein Eo

intr;A is thus expressed by

Eo
intr;A D Eo

model;A � 1

F
.��Gredox

Born;A C��Gredox
back;A/

(6.28)

where

��Gredox
Born;A

D 1

2

NQ;AX
iD1

Qred
i;A Œ�p.riIQred

A / � �m.riIQred
A /�

�1
2

NQ;AX
iD1

Qox
i;AŒ�p.riIQox

A / � �m.riIQox
A /�

(6.29)
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��Gredox
back;A

D
NpX
iD1

qiŒ�p.riIQred
A / � �p.riIQox

A /�

�
NmX
iD1

qiŒ�m.riIQred
A / � �m.riIQox

A /�

(6.30)

The summations in Eq. 6.29 run over the
NQ;A atoms of group A that have different
charges Qox

i;A and Qred
i;A in the oxidized (ox)

and in the reduced (red) state, respectively.
The first summation in Eq. 6.30 runs over
the Np charges of the protein that belong
to atoms in non-titratable groups. The sec-
ond summation in Eq. 6.30 runs over the Nm
charges of atoms of the model compound
that do not have different charges in the
different redox states. The terms �m.ri;Qox

A /,
�m.ri;Qred

A /, �p.ri;Qox
A /, and �p.ri;Q

red
A / de-

note the values of the electrostatic potential
at the position r of the atom i. The electro-
static potential can be obtained by solving
the Poisson-Boltzmann equation numerically
using the shape of either the protein (sub-
script p) or the model compound (subscript
m) as dielectric boundary and assigning the
charges of the redox-active group A in either
the oxidized (Qox

A ) or the reduced (Qred
A ) form

to the respective atoms.
The background energy ��Gredox

back;A
reflects the interaction of the redox-active
group with charges of the protein. Thus,
it is this term that is mainly influenced by
mutations of residues or by variations of
the protonation state of nearby residues.
The Born term ��Gredox

Born;A is sensitive to
changes in the protein shape and thus it may
change in case the border between protein
and solvent is modified by mutations or by
conformational changes in the vicinity of the
active site.

The equilibrium between the redox couple
Aox=A�

red is defined by

Aox C e� KET• A�
redI KET D ŒA�

red�

ŒAox�Œe��
(6.31)

where KET is the equilibrium constant. One
can define the solution redox potential E and
the redox potential Eo of the redox couple
Aox=A�

red as E D �RT=F ln 
Œe�� and Eo D
RT=F lnKET , respectively. With the factor
RT=F, where F is the Faraday constant, one
obtains E and Eo in the units volts; 
 is the
activity coefficient. The relation between Eo

and the standard reaction free energy Go
redox

is given by Go
redox D FEo. With these defi-

nitions and Eq. 6.31, one obtains the Nernst
equation for a single electron reduction:

E D Eo C RT

F
ln
ŒAox�

ŒA�
red�

(6.32)

The probability hxi that a redox-active group
is in its oxidized state is defined as hxi D
ŒAox�=.ŒA�

red�C ŒAox�/. The relation between
the probability hxi, the solution redox poten-
tial E, and the redox potential Eo is given by

hxi D exp
�

F
RT .E � Eo/

�

1C exp
�

F
RT .E � Eo/

� (6.33)

Consequently, the free energyGredox required
to oxidize a one-electron redox-active group
at a given redox potential of the solution E is
given by Eq. 6.34.

Gredox D �F.E � Eo/ D �RT ln
hxi

1 � hxi (6.34)

D. Interacting Redox Active Groups

In many redox proteins, there is more than
one redox active group and these redox
active groups interact. Because of these
interactions, the titration curves of the
individual redox active sites can become
irregular. These irregular titration curves
originate from the population of several
microstates. The simplest case is a system
with two interacting sites.

Such a system has four possible mi-
crostates: fully reduced, reduced at one
group, reduced at the other group, and
fully oxidized (Fig. 6.6). These states can
be respectively described by their redox
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Fig. 6.6. Titration behavior of molecules with one and two redox-active groups. (a) Titration curve of a single
redox-active group. The titration curve has a sigmoidal shape. (b) Titration curve of a molecule with two titratable
groups. The contributions of the populations of the different microstates lead to non-sigmoidal titration curves.
The microstates and their populations, the titration curves and the sites are color coded in the reaction scheme
and in the diagram. For instance, the titration curve of the red site is the sum of the probability of the microstate
population curve of the state (11) in magenta and the microstate population curve of state (10) in green.

state vectors: 11, 10, 01, and 00, where
1 marks that the group is reduced and 0
that it is oxidized. In order to obtain the
titration curve of group one, the probabilities
of all microstates in which this group is
reduced need to be added. For instance the
titration curve of group one is given by
hx1i D h10i C h11i. The titration curves
of such groups can considerably deviate
from standard sigmoidal titration curves and
can show highly irregular features because
of electrostatic interactions between the
groups. The assignment of an Eı value to one
particular group is in such cases difficult if
not impossible. To eliminate the difficulties,
the problem can be reformulated. Instead of
considering a protein as a system of groups
with a certain probability of being reduced,
the problem can be formulated in terms of

well-defined microstates of the protein which
have a certain probability of occurrence as
will now be outlined.

Let us consider a system that possesses K
redox-active sites. Such a system can adopt
M D 2K states assuming that each sites can
exist in two forms. The interaction between
them can be modeled electrostatically. Each
state of the system can be written as a K-
dimensional vector Ex D .x1; � � � ; xK/, where
xi is 1 or 0 if site i is reduced or oxidized,
respectively. Each state of the system has a
well-defined energy which depends on the
redox energetics of the individual sites (Eintr

i )
and the interaction between sites (Wij). The
energy of a state Ex� is given by (Bashford and
Karplus 1990; Ullmann and Knapp 1999;
Ullmann 2000; Gunner et al. 2006; Nielsen
and McCammon 2003):
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G.Ex�/ D
KX
iD1
.x�;i � xı

i /F.E � Eintr
i /

C1

2

KX
iD1

KX
jD1
.x�;i � xı

i /.x�;j � xı
j / Wij (6.35)

where R is the gas constant, T the absolute
temperature, and F the Faraday constant; x�;i
denotes the redox form of the site i in state
Ex� , xı

i is the reference form of site i; Eintr
i is

the redox potential that site i would have if
all other sites are in their reference state (this
value is also called the intrinsic redox po-
tential; see section “III.C. Calculating Redox
Potentials of Proteins”); E is the reduction
potential of the solution; Wij represents the
interaction energy between site i and j. It can
be calculated from Eq. 6.36.

Wij D
NQ;AX
AD1

ŒQred
i;A �Qox

i;A�Œ�p.rA;Q
red
j /��p.rA;Qox

j /�

(6.36)
Equation 6.35 can be used to calculate

either microscopic redox potentials or also
microscopic reaction free energies by sub-
tracting the appropriate microstate energies
from each other. For example, if we con-
sider a system with two sites as depicted
in Fig. 6.6, we can calculate a microscopic
redox potential from the energy difference
between the states (1,0) and (1,1). This mi-
croscopic redox potential will differ from
the microscopic redox potential between the
states (0,0) and (0,1) because of electrostatic
interactions between the two groups. The
reaction free energy is given by the energy
difference between the states (0,1) and (1,0).
This reaction free energy can be used in
Marcus theory to calculate electron transfer
rates.

The equilibrium properties of a physical
system are completely determined by the
energies of its states. To keep the notation
concise, states will be numbered by Greek
indices in the subscript, i.e., for state ener-
gies we write G� instead of G.Ex�/. For site
indices, the roman letters i and j will be used.

The equilibrium probability of a single state
Ex� is given by

peq� D e�ˇG�
Z

(6.37)

with ˇ D 1=RT and Z being the partition
function of the system.

Z D
MX
�D1

e�ˇG� (6.38)

The sum runs over all M possible states.
Properties of single sites can be obtained
from Eq. 6.37 by summing up the individual
contributions of all states. For example, the
probability of site i being reduced is given by

hxii D
MX
�

x�;ip
eq
� (6.39)

where x�;i denotes the redox form of site i in
the charge state Ex� . For small systems, this
sum can be evaluated explicitly. For larger
systems, Monte-Carlo techniques can be
used to determine these probabilities (Beroza
et al. 1991; Ullmann and Ullmann 2012).

In general, the titration curves in such
a system do not have to be sigmoidal and
can even be non-monotonic (Onufriev et al.
2001). However as a consequence of statisti-
cal thermodynamics, it can be proven that the
macroscopic titration curve of a system can
be always decomposed into standard titration
curves (Nernst functions) as long as there
is no positive cooperativity (Ullmann 2003;
Ullmann and Bombarda 2013).

In principle, 2K�1 different microscopic
redox potentials can be assigned to each
redox-active group in a protein, where K
is the number of redox active groups in
the molecule. Since however, most of the
interactions are relatively weak, most of these
microscopic redox potentials will be very
similar. But in case of strong interactions,
a larger variation of the redox potential can
be observed. As an example, Fig. 6.7 shows
the calculated redox potentials of the hemes



6 Electron Transfer: From Simple Proteins to Complex Machineries 115

S
pe

ci
al

 P
ai

r
T

itr
at

io
n 

cu
rv

es
a

b
c

d
e

f

1.
0

51
0

42
0

40
0

38
0

36
0

34
0

32
0

30
0

28
0

50
0

49
0

48
0

47
0

46
0

45
0

0.
8

0.
6

Oxidation Probability

Site Redox Potential [mV]

Site Redox Potential [mV]

0.
4

0.
2

16
0

30
0

30 20 10 −1
0

−2
0

−3
0

−4
00

28
0

26
0

24
0

22
0

20
0

18
0

16
0

14
0

12
0

10
0 80 60 40 200.
0 −2

00
20

0
40

0

c 55
9

c 55
2

c 55
4

S
P

c 55
6

60
0

S
ol

ut
io

n 
R

ed
ox

 P
ot

en
tia

l [
m

V
]

S
ol

ut
io

n 
R

ed
ox

 P
ot

en
tia

l [
m

V
]

Site Redox Potential [mV]

Site Redox Potential [mV]

Site Redox Potential [mV]

S
ol

ut
io

n 
R

ed
ox

 P
ot

en
tia

l

0

−2
00

20
0

40
0

60
0

0

S
ol

ut
io

n 
R

ed
ox

 P
ot

en
tia

l [
m

V
]

−2
00

20
0

40
0

60
0

0

S
ol

ut
io

n 
R

ed
ox

 P
ot

en
tia

l [
m

V
]

−2
00

20
0

40
0

60
0

0

−2
00

20
0

40
0

60
0

S
ol

ut
io

n 
R

ed
ox

 P
ot

en
tia

l [
m

V
]

0
−2

00
20

0
40

0
60

0
0

H
em

e 
c 5

59

H
em

e 
c 5

52
H

em
e 

c 5
56

H
em

e 
c 5

54

F
ig
.6

.7
.
C
al
cu
la
te
d
re
do
x
tit
ra
tio

n
be
ha
vi
or

of
sp
ec
ia
lp

ai
r
(S
P)

an
d
th
e
he
m
es

of
th
e
R
C
fr
om

B
.v
ir
id
is
.(
a)

Pr
ob
ab
ili
ty

of
th
e
ox
id
iz
ed

fo
rm

of
th
e
re
do
x-
ac
tiv

e
si
te
s;

(b
)
to

(f
)
so
lu
tio

n
re
do
x-
po
te
nt
ia
ld

ep
en
de
nc
e
of

th
e
si
te
re
do
x
po
te
nt
ia
lo

f
th
e
sp
ec
ia
lp

ai
r
(b
),
he
m
e
c 5
5
9
(c
),
he
m
e
c 5
5
2
(d
),
he
m
e
c 5
5
6
(e
),
he
m
e
c 5
5
4
(f
).
T
he

da
sh
ed

lin
es

sh
ow

th
e
di
ff
er
en
tm

ic
ro
sc
op
ic
re
do
x
po
te
nt
ia
ls
,t
he

bl
ue

lin
es

sh
ow

th
e
av
er
ag
e
re
do
x-
po
te
nt
ia
lw

hi
ch

de
pe
nd
s
on

th
e
so
lu
tio

n
re
do
x
po
te
nt
ia
l.



116 G. Matthias Ullmann et al.

and the special pair of bacteriochlorophylls
in the photosynthetic reaction center from
B. viridis. This protein possesses four heme
groups that facilitate the rereduction of the
special pair after photooxidation (Fig. 6.10).
As can be seen from the graphs in Fig. 6.7,
the microscopic redox potentials may vary
quite substantially and cannot necessarily
be read as midpoint potentials directly from
the titration curves which are depicted in
Fig. 6.7a. An effective redox potential or
midpoint potential can be defined from
the redox potential-dependent reduction
probability

Eı
i D E � RT

F

 
ln

hxii
1 � hxii

!
(6.40)

This effective midpoint potential can depend
on the solution redox potential because of
the interaction between the redox active
sites. It represents an equilibrium redox
potential (Ullmann and Bombarda 2013).
The value of this effective midpoint potential
varies between the most extreme microscopic
redox potentials (see Fig. 6.7). However,
it must be underlined that this effective
midpoint potential is not necessarily the
functionally relevant redox potential at which
an enzyme is working as will be shown later
(section “IV. Complex Electron Transfer
Proteins”).

E. Looking at the Coupling of Reduction
Reactions to Protonation Reaction

Redox reactions are often coupled to pro-
tonation reactions. Such a coupling can be
very strong, meaning that as soon as an
electron binds a proton also binds stoichio-
metrically. In other cases, the coupling is
relatively weak, meaning that the coupling
is substoichiometric. Biologically, this cou-
pling of protonation and reduction can help
on the one hand to tune the redox potential
of a redox active group; on the other hand,
it is essential for the electron transfer driven
proton transfer that plays a central role in
biological energy transduction (Nicholls and
Ferguson 2013).

Since protonation and redox reactions
can be considered in general as binding
reactions, they are basically all described
by the same underlying theory. Figure 6.8
summarizes and compares the similarity
among the description of protonation
reactions by the Henderson-Hasselbalch
equation, redox equilibria by the Nernst
equation, and a general thermodynamic
description of binding equilibria. Because of
this resemblance, protonation equilibria can
be described by the same theoretical tools
as redox equilibria. Since there are usually
several protonatable groups in a protein,
one has to consider the interaction between
the protonatable groups and the mutual
interaction between the protonatable groups
and the redox active groups. The state vector
defined above needs to be extended to a 2NCK

dimensional vector where N is the number
of protonatable groups and K is number of
redox active groups. Equation 6.35 needs to
be extended to include the effect of the pH.

G.Ex�/ D
NX
iD1
.x�;i � xı

i /RT ln 10 .pH � pK intr
a;i /

C
KX
iD1
.x�;i � xı

i /F.E � Eintr
i /

C1

2

NCKX
iD1

NCKX
jD1

.x�;i � xı
i /.x�;j � xı

j / Wij (6.41)

In this equation, pK intr
a;i is the intrinsic pKa

value, i.e., the pKa value that the site would
have if all other titratable groups are in their
respective reference state. By analogy to
the intrinsic redox potential, the intrinsic
pKa value is calculated using an appropriate
model compound and takes into account the
protonation energy shift due to the change
in the solvation energy (��GBorn

i ) and the
change due to the interaction with non-
titrating background charges (��Gback

i ).

pK intr
a;i D pKmodel

a � 1

RT ln 10
.��GBorn

i

C��Gback
i / (6.42)
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Fig. 6.8. Comparison of the theoretical formulations of protonation equilibria, redox equilibria and general
binding equilibria. The direct comparison shows the equivalence of the formulations and the relationship between
the corresponding terms. Moreover, it allows to see the relation protonation reactions and reduction reactions to
a more general binding formalism. The meaning of the symbols is explained in the text.

These energy shifts as well as the interaction
energyWij between two groups can be calcu-
lated on the basis of the Poisson-Boltzmann
equation as described above (Bashford and
Karplus 1990; Ullmann and Knapp 1999).

The formalism described here is applica-
ble only to sites that have two states, i.e.,
either protonated and deprotonated or oxi-
dized and reduced. For some redox active
sites such as quinones or flavins, the situation
is more complicated, because they have mul-
tiple redox and protonation states for just one
site. Furthermore, changes in the conforma-
tion of the amino acids side chain (rotamers)
as well as larger conformational changes may

need to be considered. For all such cases,
the formalism needs to be extended (Ullmann
and Ullmann 2012). The equations become
slightly more complicated; nevertheless, the
basic philosophy stays the same and the mi-
crostate model can be applied.

F. Influence of Membrane Potential and
Transmembrane Gradients

Many electron transfer proteins are embed-
ded in membranes and generate an elec-
trochemical gradient consisting of a proton
gradient and a membrane potential across
these membranes. This electrochemical



118 G. Matthias Ullmann et al.

transmembrane gradient is used by ATP-
synthase membrane protein complex to
transduce the electrochemical energy into
chemical energy in the form of ATP. Thus,
the effect of transmembrane gradients
and membrane potentials also need to be
considered to describe energy transduction
processes properly.

The influence of a membrane potential on
the energetics of a membrane protein can
be incorporated in the Poisson-Boltzmann
theory (Roux 1997). The linearized Poisson-
Boltzmann equation (see section “III.A. The
Poisson-Boltzmann Equation”) of a mem-
brane system with a membrane potential ‰
present is given by

r Œ".r/r�.r/� D ��f.r/C ".r/	.r/2 Œ�.r/

�‰‚.r/� (6.43)

where ‚.r/ is a simple step function which
is equal to zero at the extracellular side
and equal to one at the cytoplasmic side
(Heaviside step function). The potential �.r/
which is obtained as the numerical solution
of Eq. 6.43 can be expressed as (You and
Bashford 1995; Roux 1997)

�.r/ D
MX
iD1

qi
"p j r � r0

i j C �rf.r/C‰�mp.r/

(6.44)
As in Eq. 6.16, the first term describes the
Coulomb electrostatic potential at the po-
sition r caused by M point charges qi at
positions r0

i in a medium with a dielectric
permittivity "p. The second term describes
the reaction field potential �rf.r/ originating
from the dielectric boundary between the
protein and the solvent as well as from the
distribution of ions in the solution, and the
third term describes the potential originat-
ing from the transmembrane potential. In
Eq. 6.44, �mp.r/ is a dimensionless function,
which depends on the dielectric properties
of the system and the ion distribution in the
medium but not on the charge distribution
within the protein. The function �mp.r/ has

the property that 0 � �mp.r/ � 1 (Roux
1997). This function �mp.r/ describes how
the membrane potential is modulated inside
the membrane protein and can deviate from a
simple linear function (Roux 1997).

The ions, protons and electrons that are
transferred across the membrane are also
influenced by the membrane potential. By
analogy to the chemical potential 
c of a
substance c, one can define the electrochem-
ical potential 
c for the ionic species c with
charge zc and activity 
Œc� in a system with a
membrane potential ‰:


c D 
c C zcF‚.r/‰ (6.45)

with


c D 
c D 
ı
c C RT ln 
Œc� (6.46)

The energy for moving an ion across a
membrane has thus two contributions:
one arising from the work against the
concentration difference between the two
sides of the membrane and a second arising
from work against the membrane potential
‰ (Cramer and Knaff 1991; Nicholls
and Ferguson 2013). The work required
to transfer an ion from one side of the
membrane to the other is given by the
difference between the electrochemical
potential at the two sides of the mem-
brane.

In order to account for the membrane
potential in the energy calculation of a mi-
crostate, it is necessary to include the effect
of the membrane potential on the binding
energetics. Moreover, also the ligand concen-
trations on the two sides of the membrane
may be different. Thus, a generalized version
of Eq. 6.41 which uses binding free energies
and electrochemical potentials instead of re-
dox potentials, pKa values and pH values
defines the state energy for a transmembrane
protein with N sites connected to the extra-
cellular region (EC), and K sites connected
to the cytoplasmic region (CP) (Calimet and
Ullmann 2004; Bombarda et al. 2006) is
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Gn.

EC
c;i ; 


CP
h;j /

D
NX
iD1
.xni � xı

i /.G
ı
intr;i � 
EC

i /

C
KX
jD1
.xnj � xı

j /.G
ı
intr;j � 
CP

j /

C1

2

NCKX
iD1

NCKX
jD1

Wij.x
n
i � xı

i /.x
n
j � xı

j /

(6.47)

where 
EC
i and 
CP

j are the electrochemical
potentials of the ligand (for instance elec-
trons or protons) binding to site i at the ex-
tracellular and site j at the cytoplasmic side,
respectively. As before, the intrinsic binding
energy (G

ı
intr;i) is the binding energy that

the site i would have in the presence of a
membrane potential if all the other titratable
sites are in their reference state. The intrinsic
binding energy G

ı
intr;i has several contribu-

tions (For sites j, an analogous expression has
to be used):

G
ı
intr;i D Gı

model;iC��Gsolv
i C��Gback

i C��G‰i
(6.48)

i.e., in addition to the terms in Eq. 6.28,
Eq. 6.48 includes the interaction with the
membrane potential ��G‰i , which can be
obtained from

��G‰i D F‰ �i

D F‰
MiX
kD1

�mp.rk/.Qb
k;i � Qu

k;i/

(6.49)

where the quantity �i describes the relative
effect of the membrane potential on the en-
ergy; �mp.r/ is the dimensionless function
defined in Eq. 6.44; Mi is the number of
charges of residue i that change during the
reaction;Qb

k;i andQ
u
k;i are the charges of atom

k of residue i in the bound and unbound form,
respectively.

It is important to realize that due to the
membrane potential, there is an important

EC

0

+ +

− −

Ψ

Ψ

CP

Fig. 6.9. Schematic representation of the ion, proton
or electron flow in a membrane. In this scheme the
membrane potential ‰ D  CP �  EC < 0, with  CP
and  EC being the potential in the cytoplasm (CP) and
in the extracellular space (EC), respectively. In case
of protons, one could make the assumption that the
hydrogen bond network connects the titratable sites to
either the EC region or to the CP region (i.e. protons
cannot flow through the protein). Proton displacement
along one hydrogen bond network is favored in the
direction of decreasing potential, electrons would flow
in the opposite direction. Under the condition that
the protons cannot pass the membrane, the membrane
potential will increase the protonation probability of a
titratable site receiving a proton from the EC region
and it will decrease the protonation probability of a
titratable site receiving a proton from the CP region.
The opposite is true for electrons.

difference between the sites connected to
the cytoplasm and the sites connected to the
extracellular region (Bombarda et al. 2006).
For example, a negative membrane poten-
tial as in Fig. 6.9 favors the protonation of
sites connected to the extracellular side, since
proton uptake is energetically downhill with
regard to the membrane potential (Fig. 6.9).
In contrast, protonation of sites connected to
the cytoplasm is hindered in the presence of
a negative membrane potential, since proton
uptake is uphill with regard to the membrane
potential (Bombarda et al. 2006). The oppo-
site behavior will be found for electrons, i.e.
the reduction from the extracellular side will
be disfavored in the presence of a negative
membrane potential, but favored from the
cytoplasmic side.
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IV. Complex Electron Transfer
Proteins

A. Simulating Complex Electron Transfer
Networks

To explore possible mechanisms of large
protein complexes such as for instance
the photosynthetic reaction center or also
cytochrome bc complexes, it is often required
to examine many different possibilities.
Sometimes, even many mechanisms may
be possible simultaneously and a single
answer may not exist. Such complex reaction
schemes can be investigated using the
microstate model introduced in section
“III.D. Interacting Redox Active Groups”.
The kinetics of such reactions can be
simulated by a master equation approach.
The rate constants which are required

for such simulations can be calculated
using the methods introduced above.
Thus, combined with a master equation
approach, continuum electrostatics offers
a possibility to access the non-equilibrium
behavior of biomolecular systems. In the
microstate formalism, charge transfer events
are described as transitions between well-
defined microstates of a system. The time
dependence of the population of each
microstate can be simulated using a master
equation

d

dt
p�.t/D

MX

D1

k�
p
.t/ �
MX

D1

k
�p�.t/ (6.50)

where p�.t/ denotes the probability that the
system is in charge state � at time t, k�

denotes the probability per unit time that
the system will change its state from 

to �. In Eq. 6.50, first sum includes all the
reactions that form state �, the second sum
includes all the reactions that annihilate state
�. The summations run over all possible
states 
. Simulating charge transfer by
Eq. 6.50 assumes that these processes can be
described as a Markovian stochastic process.
This assumption implies that the probability
of a given charge transfer depends only on

the current state of the system and not on the
pathway in which the system has reached
this state. The system given by Eq. 6.50
is a system of coupled linear differential
equations with constant coefficients, which
can be written in the form

dp.t/
dt

D Ap.t/ (6.51)

The diagonal element A�� of the matrix A
is the negative of the sum over all the rate
constants k
� annihilating the state �. The
off-diagonal element A�
 is the rate constant
k�
 for the conversion of state 
 to state
� (Becker et al. 2007). The analytical solu-
tion for such equations can be written as (Fer-
reira and Bashford 2006; Becker et al. 2007)

p�.t/ D
MX



c
v
;�e
�˛
t (6.52)

where ˛
 is the 
th eigenvalue of the
matrix A, and v
;� is the �th element of
the 
th eigenvector of matrix A; c
 are
integration constants determined from the
initial probabilities p at t D 0 (i.e. all the
terms e˛
t D 1).

c D V�1p.0/ (6.53)

where V�1 is the inverse of the matrix
containing the eigen vectors of A.

Equation 6.52 describes the time depen-
dence of the probability distribution of mi-
crostates of the system. For these microstates,
energies G� and transition probabilities k�

can be assigned unambiguously. The time-
dependent probability of finding a single site
in a particular form can be obtained by sum-
ming up individual contributions from the
time-dependent probabilities p�.t/.

hxii.t/ D
MX
�

x�;ip�.t/ (6.54)

If the reactions are electron transfer reac-
tions, their rate constants can be estimated
using, for example, the rate laws developed
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by Moser and Dutton (Moser et al. 1992;
Page et al. 1999) described in section “II.E.
Moser-Dutton Ruler”.

B. Analyzing Calculated Electron
Transfer Networks

For the analysis of a complex charge transfer
system, it is of particular interest to follow
the flow of charges through the system, i.e.,
the charge flux. The flux from state � to state

 is determined by the population of state �
times the probability per unit time that state
� will change into state 
, i.e., by k
�P�.t/.
The net flux between states 
 and � is thus
given by

J�
.t/ D k�
P
.t/ � k
�P�.t/ (6.55)

J�
 (Eq. 6.55) is positive if there is a net
flux from state 
 to state �. This flux
analysis allows deduction of the reaction
mechanism from even very complex reaction
schemes (Becker et al. 2007).

In cases where the number of possible
microstates is too large, the differential
equation can not be solved analytically.
Thus, approximations and simulations need
to be applied. One attractive simulation
is a dynamic Monte Carlo simulation
scheme (Gillespie 2001; Till et al. 2008),
which allows the simulation of very complex
reaction mechanisms such as proton transfer
through a protein matrix. Again, the
reaction parameter can be obtained using
simple approximations such as continuum
electrostatics. Each simulation describes
one particular reaction path through the
possible states of the system. A reaction
mechanism can then be inferred from the
analysis of many such trajectories. Up
to now, this method was only applied to
relatively simple systems (Till et al. 2008).
However, future application to enzymes
which involve chemical transformation,
proton and electron transfer, as well as
conformational changes, seems possible and
is a promising future road for analyzing
enzyme functions.

C. Electron Transfer from the C-Subunit
of the Photosynthetic Reaction Center to
the Special Pair

The microstate model described above has
been used to simulate the kinetics of electron
transfer between the tetraheme-subunit and
the special pair of the photosynthetic reaction
center of Blastochloris viridis (Becker et al.
2007; Bombarda and Ullmann 2011). The
comparison with the experimental data (Or-
tega and Mathis 1993) shows that contin-
uum electrostatic calculations can be used in
combination with the empirical rate law of
Eq. 6.12 to reproduce measurements on the
re-reduction kinetics of the photo-oxidized
special pair (SP) in the bacterial photosyn-
thetic reaction center.

Re-reduction of the SP in B. viridis is
facilitated by the cytochrome C-subunit

heme C554

heme C556

heme C552

heme C559

special pair

cytoplasm

periplasm

QAQB

Fig. 6.10. Photosynthetic reaction center from
B. viridis. In addition to the special pair, the accessory
chlorophylls, the pheophytins and the quinones, this
reaction center possesses four heme groups that
re-reduce the special pair after photooxidation. The
re-reduction kinetics of this protein has been well
investigated experimentally.
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(Fig. 6.10). The C-subunit, contains four
heme cofactors forming a transfer chain.
The heme groups are commonly labeled
according to their absorbance maxima
(subscripts) as heme c559, heme c552, heme
c556 and heme c554. To simulate electron
transfer within the C-subunit and between
the C-subunit and the SP, a model was
constructed consisting of the five redox-
active groups. Redox potentials of these
groups and interaction energies for pairs
of these groups were calculated using the
model with pure electrostatic interaction. In
addition, the available structural information
was used to calculate reorganization energies
for all different pairs of redox-active
groups (Becker et al. 2007; Bombarda and
Ullmann 2011).

In the experimental studies, Ortega
et al. (1993) exposed the reaction center
of B. viridis to different redox-potentials.
The system was prepared experimentally
in charge configurations with 4, 3 and
2 electrons distributed over the system
consisting of the four hemes and the SP.
The re-reduction kinetics of the SP was
measured after photo-induced oxidation.
These experimental setups can be mimicked
by simulations. To illustrate the kinetics seen
in such simulations, the result obtained for a
system starting from 3 electrons distributed
over the four heme groups is shown in
Fig. 6.11. In Fig. 6.11a, the time-dependent
probability distribution of the accessible
microstates is shown. The corresponding
oxidation probabilities for the hemes and the
SP are shown in Fig. 6.11b. It can be seen
that only a limited number of microstates
contribute significantly to the probability
distribution in the pico- to microsecond time
domain. However, this feature does not imply
that only this limited number of microstates
is important for the kinetics of the system.
The detailed information available from the
simulation data allows to track the electron
fluxes between microstates and thus electron
movements between individual sites in a
reaction scheme (Fig. 6.12).

The redox microstates can be denoted as
vectors of 1 (reduced sites) and 0 (oxidized

sites). The first element denotes the redox
state of the special pair, the next four ele-
ments denote redox states of the hemes in the
order of their distance to the SP, starting from
the nearest. The kinetics depicted in Fig. 6.11
suggests a rather simple picture for the time
dependence of the population of accessible
microstates. Starting from a population
of the two microstates (0,1,1,1,0) (90%)
and (0,1,0,1,1) (10%) after photooxidation,
the system relaxes towards an equilibrium
distribution which is mainly given by one mi-
crostate (1,1,0,1,0). However, the underlying
transfer dynamics of the system as depicted
in Fig. 6.12 is considerably more complex.
The highly populated initial state (0,1,1,1,0)
can rapidly decay into the final state via just
one intermediate, (1,0,1,1,0). In contrast, the
initial state (0,1,0,1,1) has to relax towards
the final state via a succession of several
intermediates. These intermediate states are
only transiently populated. Each flux into one
of the intermediates is accompanied by an
equally high flux out of these intermediates.
For example, the transition from the
initial state to the intermediate (1,0,0,1,1)
is rapidly followed by a transition to a
second intermediate state (1,0,1,0,1). This
intermediate state in turn either decays into
state (1,0,1,1,0) via an electron transfer from
heme c554 to heme c556, or alternatively to
state (1,1,0,0,1) via electron transfer from
heme c552 to heme c559.

The procedure outlined here can also be
applied to proton transfer reactions. Thus, the
strategy to combine continuum electrostatics
with the master equation represents an im-
portant method to understand the mechanism
of complex charge transfer systems.

V. Conclusions

In this article, we reviewed how our under-
standing of the electron transfer in proteins
on the basis of Marcus theory can help to
analyze the mechanism of complex protein
machines that can couple redox reactions
to proton transfer reactions. Even the effect
of membrane potentials and transmembrane
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Fig. 6.11. Simulation of the re-reduction kinetics of the special pair of the photosynthetic reaction center in a
system with three electrons. (a) The time-dependent probability distribution of microstates after photo-oxidation
of the SP. The state vector is given in the order (SP, heme c559, heme c552, heme c556, heme c554). In the state
vector, 1 denotes a reduced site and 0 an oxidized site. States that are not shown are not significantly poplulated.
(b) Oxidation probabilities of the four hemes and the SP. Initially, three electrons are distributed over the four
hemes.

concentration gradients can be included in
the calculations. The theoretical basis of
the analysis of complex protein machines
is the microstate model. In this model, the
protein is divided into several functional
groups, which can be, for instance, redox-

active centers (like hemes or iron sulfur
clusters), protonatable residues (like histidine
or glutamate), or enzymatic active sites. The
part of the protein that does not belong to a
functional group is considered a background
that interacts with the functional groups.
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Fig. 6.12. Reaction scheme for the rereduction kinetics of the special pair of the photosynthetic reaction center
in a system with three electrons. The reaction scheme is deduced from the flux analysis. Each rectangle represents
a microstate of the photosynthetic reaction center, the rhombi inside the rectangle represent the hemes (the order
top to bottom: heme c554, heme c556, heme c552, heme c559), the overlapping rhombi represent the special
pair. The reduced state of the cofactors is indicated by a red sphere. After photooxidation of the special pair
(red arrows), several electron transfer reactions lead to the new equilibrium. The microstates representing the
starting and the final configurations of the system in the simulation are depicted in the top and the bottom row,
respectively. The values in parentheses denote the maximal probability observed during the simulation. Only
fluxes (in s�1) contributing significantly are indicated by arrows and their maximum value is given.

The state of the protein is characterized by
defining the state of each functional group
(for instance redox state or protonation state).
In this picture, a protein with N sites has

many states (precisely
NQ
iD1

si, where si is the

number of states of site i). The energy of a
particular state is defined by the sum of the
energies of each particular site and the inter-
actions between the sites. In this energy sum,
the interaction with membrane potentials or
other external fields can also be included.

Thermodynamic properties can be
calculated by averaging over all possible
states of the systems using statistical
thermodynamics. If the system has so
many states that explicit averaging is
not possible, Metropolis Monte Carlo
can be applied. To simulate the kinetic
behavior of the protein, a master equation
including all transitions between the states
can be used. A flux analysis can help to
extract mechanistic information from the
simulation.
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The microstate model is fairly general
and does not rely on any particular way
by which the state energies or the transi-
tion rate constants are calculated. In this
article, we showed that the use of contin-
uum electrostatic theory on the basis of the
Poisson-Boltzmann equation is particularly
useful, since, even for very large systems,
the calculations are still tractable and lead to
biophysically and biochemically meaningful
results. The energies and rate constants of
the microstate model could also be calculated
with more accurate methods. However, it is
important to realize that proteins that contain
many cofactors cannot be regarded as a sum
of these cofactors. Instead such proteins can
exist in many states. Which states are func-
tionally important, for instance, in catalytic
cycles can be revealed by the analysis de-
scribed in this article. We are convinced that
the methods described here will allow analy-
sis of many complex enzymatic reactions.

Acknowledgements

This work was supported by the DFG RTG
1640 (Photophysics of Synthetic and Biolog-
ical Multichromophoric Systems) and by the
DFG Grant BO 3578/1.

References

Banerjee R (2008) Redox biochemistry. Wiley, Hobo-
ken

Bashford D, Karplus M (1990) pKas of ionizable
groups in proteins: atomic detail from a continuum
electrostatic model. Biochemistry 29:10219–10225

Becker T, Ullmann RT, Ullmann GM (2007) Simula-
tion of the electron transfer between the tetraheme-
subunit and the special pair of the photosynthetic
reaction center using a microstate description. J Phys
Chem B 111:2957–2968

Beroza P, Fredkin DR, Okamura MY, Feher G (1991)
Protonation of interacting residues in a protein by a
Monte Carlo method: application to lysozyme and
the photosynthetic reaction center. Proc Natl Acad
Sci USA 88:5804–5808

Beveridge DL, DiCapua FM (1989) Free energy via
molecular simulation: applications to chemical and

biomolecular systems. Ann Rev Biophys Biochem
18:431–492

Bombarda E, Ullmann GM (2011) Continuum electro-
static investigations of charge transfer processes in
biological molecules using a microstate description.
Faraday Discuss 148:173–193

Bombarda E, Becker T, Ullmann GM (2006) The
influence of the membrane potential on the protona-
tion of bacteriorhodopsin: insights from electrostatic
calculations into the regulation of proton pumping. J
Am Chem Soc 128:12129–12139

Born M (1920) Volumen und Hydratationswärme der
Ionen. Z Physik 1:45–48

Calimet N, Ullmann GM (2004) The influence of a
transmembrane pH gradient on protonation proba-
bilities of bacteriorhodopsin: the structural basis of
the back-pressure effect. J Mol Biol 339:571–589

Connolly M (1983) Solvent-accessible surfaces of pro-
teins and nucleic acids. Science 221:709–713

Cramer WA, Knaff DB (1991) Energy transduction in
biological membranes. Springer, New York

Crofts AR, Rose S (2007) Marcus treatment of en-
dergonic reactions: a commentary. Biochim Biophys
Acta 1767:1228–1232

Crofts AR (2004) The cytochrome bc1 complex: func-
tion in the context of structure. Ann Rev Physiol
66:689–733

da Silva JF, Williams R (2001) The biological chem-
istry of the elements – the inorganic chemistry of
life. Oxford University Press, New York

Davidson VL (2007) Protein-derived cofactors. Ex-
panding the scope of post-translational modifica-
tions. Biochemistry 46:5283–5292

Deponte M (2013) Glutathione catalysis and the reac-
tion mechanisms of glutathione-dependent enzymes.
Biochim Biophys Acta 1830:3217–3266

Ferreira A, Bashford D (2006) Model for proton trans-
port coupled to protein conformational change: ap-
plication to proton pumping in the bacteriorhodopsin
photocycle. J Am Chem Soc 128:16778–16790

GamowG (1928) Zur Quantentheorie des Atomkernes.
Z Physik 51:204–212

Gillespie DT (2001) Approximate accelerated stochas-
tic simulation of chemically reacting systems. J
Chem Phys 115:1716–1733

Gray HB, Winkler JR (1996) Electron transfer in pro-
teins. Annu Rev Biochem 65:537–561

Gray HB, Winkler JR (2005) Long-range electron
transfer. Proc Natl Acad Sci USA 102:3534–3539

Gunner MR, Mao J, Song Y, Kim J (2006) Factors
influencing the energetics of electron and proton
transfers in proteins. What can be learned from
calculations. Biochim Biophys Acta 1757:942–968

Honig B, Nicholls A (1995) Classical electrostatics in
biology and chemistry. Science 268:1144–1149



126 G. Matthias Ullmann et al.

Logan BE (2008) Microbial fuel cells. Wiley, Hoboken
Marcus RA, Sutin N (1985) Electron transfer in

chemistry and biology. Biochim Biophys Acta
811:265–322

Marcus RA (1956) On the theory of oxidation-
reduction reactions involving electron transfer. J
Chem Phys 24:966–978

Martin W, Baross J, Kelley D, Russell MJ (2008)
Hydrothermal vents and the origin of life. Nat Rev
Microbiol 6:805–814

Mitchell P (1961) Coupling of phosphorylation to
electron and hydrogen transfer by a chemi-osmotic
type of mechanism. Nature 191:144–148

Mitchell P (1976) Possible molecular mechanisms of
the protonmotive function of cytochrome systems. J
Theor Biol 62:327–367

Moser CC, Keske JM, Warncke K, Farid RS, Dutton
PL (1992) Nature of biological electron transfer.
Nature 355:796–802

Muegge I, Qi PX, Wand AJ, Chu ZT, Warshel A (1997)
The reorganization energy of cytochrome c revisited.
J Phys Chem B 101:825–836

Nicholls DG, Ferguson S (2013) Bioenergetics, 4th
edn. Elsevier, Amsterdam

Nielsen JE, McCammon JA (2003) Calculating
pKa values in enzyme active sites. Protein Sci
12:1894–1901

Olsson MHM, Ryde U, Roos BO (1998) Quantum
chemical calculation of the reorganization energy of
blue copper proteins. Prot Sci 81:6554–6558

Onufriev A, Case DA, Ullmann GM (2001) A novel
view on the pH titration of biomolecules. Biochem-
istry 40:3413–3419

Ortega JM, Mathis P (1993) Electron transfer from the
tetraheme cytochrome to the special pair in isolated
reaction centers of Rhodopseudomonas viridis. Bio-
chemistry 32:1141–1151

Page CC, Moser CC, Chen X, Dutton PL (1999)
Natural engineering principles of electron tunneling
in biological oxidation-reduction. Nature 402:47–52

Pedersen A, Karlsson GB, Rydström J (2008)
Proton-translocating transhydrogenase: an update
of unsolved and controversial issues. J Bioenerg
Biomemb 40:463–473

Roux B (1997) The influence of the membrane po-
tential on the free energy of an intrinsic protein.
Biophys J 73:2981–2989

Ryde U, Olsson MHM (2001) Structure, strain and
reorganization energy of blue copper models in the
protein. Int J Quant Chem 81:335–347

Sharp KE (1998) Calculation of electron trans-
fer reorganization energies using the finite dif-
ference poisson-Boltzmann model. Biophys J 73:
1241–1250

Stubbe J, van der Donk WA (1998) Protein radicals in
enzyme catalysis. Chem Rev 98:705–776

Stuchebrukhov A (2003) Long-distance electron
tunneling in proteins. Theor Chem Acc 110:
314–344

Till MS, Becker T, Essigke T, Ullmann GM (2008)
Simulating the proton transfer in Gramicidin A by
a sequential dynamical Monte Carlo method. J Phys
Chem B 112:13401–13410

Ullmann GM, Bombarda E (2013) pK(a) values and
redox potentials of proteins. What do they mean?
Biol Chem 394:611–619

Ullmann GM, Knapp EW (1999) Electrostatic com-
putations of protonation and redox equilibria in
proteins. Eur Biophys J 28:533–551
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