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Abstract Gene expression is a fundamental biological process under tight
regulation at all levels in normal cells. Its dysregulation can cause abnormal cell
behaviors and result in diseases, and thus gene expression profiling and analysis
have been widely used to provide the first clue about the molecular mechanisms of
human diseases. Because genes and their products interact with and regulate one
another, it is essential to analyze gene expression data and understand the genetics
of disease in a biological network context. In this chapter, we first introduce the
state-of-the-art gene expression analysis (GEA) with network integration and the
joint analysis of mRNA and miRNA expression to understand disease regulatory
mechanisms and then discuss how disease genes are predicted by incorporating
knowledge of gene regulation and characterized in biological networks.
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5.1 Introduction

In the central dogma of biology, gene expression is the intermediate, critical step at
which genetic information flows from DNA to functional gene products such as
proteins and noncoding RNAs through RNA transcription and translation in each
cell. It is the key step where various types of gene regulation—including DNA
modification, transcriptional regulation, and posttranscriptional modification—take
place. Gene regulation receives and spreads signals in the form of gene regulatory
networks (GRNs), in which a group of genes interact with each other and control
certain cell functions. Dysregulated gene expression in the network due to promoter
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mis-methylation [1, 2], changed transcription factor levels [3, 4], mutated tran-
scriptional regulatory elements (TREs) [5], and miRNA deregulations [6] can result
in abnormal cell behaviors and have all been observed in human diseases.
Considered as intermediate phenotypes, mRNA expression profiles have been
analyzed in biological networks to identify causal genes of human diseases in many
studies [7, 8]. In particular, among gene products, microRNAs (miRNAs) are small
noncoding RNAs overrepresented in GRNs [9, 10]. Recent studies have revealed
their striking gene regulatory activities at the posttranscriptional level [11] and their
profound involvement in human diseases [12].

The prevailing assumption about human diseases is that the disease phenotypes
are the outcome of interactions between genes and environment [13]. Linking
disease phenotypes to genotypes is thus fundamental to understanding human
diseases. Linkage analysis has been effective to study disorders with Mendelian
inheritance patterns. To date, over 3000 genes with mutations linked to disease
phenotypes are cataloged in the Online Mendelian Inheritance in Man (OMIM)
database [14]. However, in contrast to Mendelian diseases with simple genetic
architectures, complex diseases are characterized by the multifactorial nature and
epistasis, in which the causal effects of many risk genes are obscure and cannot be
effectively detected by traditional approaches [15, 16]. Furthermore, unlike
Mendelian disorders where mutations usually occur within protein coding regions,
the majority of mutations of complex diseases occur in noncoding regions asso-
ciated with gene expression regulation [17, 18]. Deciphering the relationship
between genotypes and phenotypes for complex diseases thus requires incorpo-
rating the knowledge of gene expression regulation.

Over the last decade, the Encyclopedia of DNA Elements (ENCODE)
Consortium has been exploring the functional elements in the human genome and
has generated comprehensive data for gene regulation such as transcription factor
binding sites and gene–locus interactions [19]. This knowledge provides important
basis for analyzing genetic factors of complex diseases. On the other hand, newly
developed high-throughput technologies can generate genomic data with an
increasingly large sample size and will certainly improve the statistical power to
detect subtle associations in complex diseases. This shift has made it possible to
tackle the challenges of deciphering complex diseases. With the abundance of
genomic data and knowledge of gene regulation, nevertheless, new approaches are
needed to integrate genomic data and knowledge of gene regulation to connect
genotypes and phenotypes of complex diseases.

Most proteins exert their functions through interactions with other proteins. Such
inter- and intracellular interconnectivity implies that the impact of a specific genetic
variation is not restricted to the activity of the gene product that carries it, but can
spread along the links of the network and alter the activity of other related gene
products that otherwise carry no changes. Therefore, an understanding of
gene/protein network context is essential to understand the genetics of disease. With
the advent of next-generation sequencing, the throughput and the resolution of gene
expression profiling have both been increased to an unprecedented level. In addition
to traditional methods of gene expression analysis (GEA), network-based
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approaches to GEA have also been developed [20–23]. Incorporation of network
information into the estimation procedure of the regression model not only
encourages smoothness in the estimate of contributions of candidate genes but also
integrates into its calculation a priori biological information from the network,
which is ignored in conventional methods. A network-based method for gene set
enrichment analysis has been developed. Combining a graph-based statistic with an
interactive sub-network visualization, EnrichNet takes into account the network
structure of physical interactions between the gene sets of interest and improves the
prioritization of putative gene set associations as well as exploits information from
molecular interaction networks and gene expression data [24]. NetworkAnalyst,
another software tool, can perform network analysis and visualization given a gene
list. It can also consider multiple meta-data parameters to perform a meta-analysis
of multiple gene expression datasets [25].

Not only can disease genes be identified with network-integrated methods, but
also they can be studied as a whole in the context of biological networks. Most
biological networks are scale-free networks whose degree distribution follows a
power law: P X ¼ xð Þ ¼ x�a, in which x is the node degree and a is a constant. In a
scale-free network, a small number of nodes tend to have higher degree (such nodes
are called hubs), while a large number of nodes have low degrees. Generally, we
can divide commonly used network characteristics into different levels. On the gene
(protein) level, degree, closeness centrality, and betweenness centrality are often
used. They measure, respectively, the number of its interactions, its centeredness in
the network, and its importance in communication between genes. On the neigh-
borhood level, clustering coefficient is widely used to measure the probability that
the neighbors of a node are connected with one another. On the gene pairs level,
one of the most used characteristics is the shortest path between two nodes. Studies
of the network characteristics of a group of related disease genes can provide us
insights into the molecular mechanisms of the disease.

5.2 Gene Expression Analysis with Network Integration

Gene expression analysis (GEA) has been widely used in human disease studies.
High-throughput technologies to profile gene expression include DNA microarrays,
serial analysis of gene expression, quantitative RT-PCT, differential-display
RT-PCR, and parallel signature sequencing [26]. Network-based GEA is an effi-
cient way to analyze gene expression data because it takes advantage of the
functional relationship among genes or their products.

Networks are particularly valuable for modeling large-scale biological systems
and have been used with increasing frequency to analyze such complex systems.
Graph theory provides useful mathematical tools for general network analysis [27],
which can be easily adapted to study genes and pathways. Here, we introduce a
class of regression methods with network integration, focusing on the difference
between their approaches and applications. We first introduce linear regression with
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network regularization. We then present a network-regularized logistic regression
method. We next describe a network-regularized Cox model. And finally, we
summarize the application results.

5.2.1 Linear Regression Methods with Network
Regularization

One issue in GEA is the high dimensionality of the transcriptomic data, e.g., the
number of covariates (genes) is much larger than that of observations (samples)
[28]. Providing a straightforward mathematical framework for variation indications,
linear models have been widely used in data analysis [28]. The biological network
can be described as a graph by its adjacency or Laplacian matrix and provides
crucial and complementary biological information to gene expression data. A novel
linear regression method governed by Laplacian network-deduced matrix has been
proposed to identify molecular pathways from gene expression data [20]. In this
method, a network-constrained penalty function is used to penalize the L1-norm of
regression coefficients [20]. The method is in essence a mathematical programming
problem whose solution criterion is ĥ ¼ argminhC h; k; að Þ, in which ĥ is the
estimated contribution coefficient of each gene, C h; k; að Þ is the
network-constrained regularization criterion defined in [20], k and a are the two
parameters to be defined through a leave-one-out cross-validation (CV) process.

5.2.2 Network-Regularized Logistic Regression Method

For classification problems with gene expression data, Logit-Lapnet was put for-
ward to identify molecular pathways associated with breast cancer [21]. It is a
regression method combining logistic models and network regularization with the
graphical Laplacian matrix. The data matrix is derived from gene expression pro-
files. The L1-normed regularization and the corresponding extensions, elastic net
and fused lasso, have been used to identify molecular pathways. Extending the
previous similar approaches, the Logit-Lapnet method incorporates a priori func-
tional information contained in biological networks. We can consider Logit-Lapnet
in a simple way, i.e., as a logistic regression method regularized by lasso and
network two items. Its model estimation is formulated as a convex optimization
problem, guaranteeing the identifiability of an optimal solution (Fig. 5.1). The
optimization criteria, L k; a; bð Þ, contains the generalized L2-norm penalty term
using the Laplacian graphical matrix, which encourages smoothness on contribution
coefficients (see [21] for a quantitative description of the grouping effect on
Logit-Lapnet concerning the structure of network).
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5.2.3 Network-Regularized Cox Model and Its Application

For survival analysis of gene expression data, a Cox proportional hazard model
with network regularization was used to select connected network modules pre-
dictive of survival of breast cancer patients [29]. Its optimization criterion to esti-
mate gene contribution is a modified likelihood function of the Cox model:

hðt; xjÞ ¼ h0ðtÞexTj b, in which h0ðtÞ is the baseline hazard function at time t, xj the
vector of biomarkers for genes, and b the gene coefficient vector. The estimation is
defined as b̂ ¼ argminbC k; a; bð Þ, in which C k; a; bð Þ contains the negative log
likelihood function with L1 + L2 norm and network regularizations on the coeffi-
cient vector. The new Cox model showed better performance in simulation than
conventional Cox models and was much more sensitive to cancer-related genes and
network modules. Genes identified by the new Cox model have clear biological
functions involving cancer cell apoptosis and cell cycle.

5.2.4 Application Results

Performance assessment by simulation demonstrated that Logit-Lapnet outperforms
elastic net and lasso, two alternative methods (Fig. 5.2) [21]. Application of
network-regularized linear regression methods to glioblastoma gene expression data

Fig. 5.1 Logit-Lapnet optimization criteria
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identified pathways that might be related to cancer survival time [20]. In a study of
biomarkers for breast cancer, Logit-Lapnet selected 262 genes, 166 (*63 %) of
which interact with one another (Fig. 5.3). By comparison, lasso selected only 24
genes, 20 of which are isolated, while elastic net selected 393 genes, 232 (*59 %)
of which are interconnected [21]. The advantage of network-regularized Cox model
was demonstrated by its application to breast cancer gene ascertainment [29], in
which it selected more known mutated cancer biomarkers than the conventional
means.

Fig. 5.2 Performance assessment by simulations
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Fig. 5.3 Gene numbers selected by Logit-Lapnet, lasso, and elastic net
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5.3 Analyzing Expression of mRNAs and miRNAs
to Understand Disease Regulatory Mechanisms

Microarray- and sequencing-based gene expression profiling has been widely used
to investigate complex diseases including cancer. Recent studies have discovered
gene signatures of numerous diseases and biomarkers for prognosis prediction and
disease sub-type classification. For example, Wang et al. [30] and van’t Veer et al.
[31], respectively, identified *70 genes that predict breast cancer metastasis risk.
Parker et al. [32] proposed a 50-gene PAM50 model, commonly used for breast
cancer classification. These markers include genes that control cell cycle, prolif-
eration, DNA replication, and repair, many of which are differentially expressed
due to genomic mutations affecting transcriptional regulation.

Testing for differentially expressed genes can yield up to thousands of candidate
genes, and one common way to study their functions is to analyze their enrichment
in biological pathways. Because the experimentally validated canonical pathways
(such as KEGG pathways) are largely incomplete [33], functional interpretation of
the candidate genes based on them can be misleading. A less biased approach is
based on biological networks, especially those derived from high-throughput data.
It can reveal interactions among genes or gene products beyond pathways and has
been shown to outperform methods for breast cancer metastasis prediction based on
differential expression analysis only [34]. Co-expression networks and GRNs are
two representative biological networks widely used to interpret mRNA expression
data in disease phenotypes (Fig. 5.4). They are often constructed or inferred for
each individual experiment and hence reveal cell type or conditional specific
knowledge. In addition, many tools for network-based analysis and visualization
have been developed, including GeneMANIA [35] and Cytoscape [36].

Among gene regulatory mechanisms, miRNAs have recently been revealed as
one of the most important factors. miRNAs are small noncoding RNA molecules
whose main function is to silence gene expression, mainly through transcription
repression or mRNA degradation. They are known to be key regulators in important
cellular processes such as development [37] and cycle progression [38]. In recent
years, they have gained importance in different aspects of human disease research:
as targets of miR mimics [39] or antagomirs [40] to reverse disease progression, as
biomarkers to detect diseases [41, 42], and as drugs to improve the effect of already
developed treatments [43]. Hence, mRNAs and miRNAs regulatory networks
analyses are complementary, and both have become indispensable in the study of
complex human diseases.

5.3.1 Co-expression Network

Co-expression networks aim at finding genes sharing similar expression patterns
across diverse conditions by measuring the correlation of expression between each
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pair of genes, under the assumption that they function together in tightly connected
biology processes. The weighted gene co-expression network analysis (WGCNA)
[44] is now a popular way to find modules—i.e., groups of genes—as higher-order
expression patterns and disease signatures. Gene–gene correlations are first quan-
tified by Pearson’s correlation coefficient, and modules are then identified using a
topological overlap measure algorithm. A composite Z summary statistic indicates
module preservation: whether the modules are robust in different conditions and
independent datasets. One can then find contribution made by highly preserved
modules to certain trait by measuring correlation coefficient between module
eigengene value (the first principal component) and quantitative phenotypes. Hub
genes (i.e., genes with many connections) in such modules are important.
The WGCNA has been mostly used in developmental studies, where there are no
controls and samples are usually arranged in a time course, such as hematopoietic
stem cell ontogeny [45] and brain neuron formation [46]. Databases such as
GeneMANIA [35] and COXPRESdb [47], which compile assorted datasets, are
good co-expression data sources for query genes of interest.

Fig. 5.4 Gene expression data analysis with gene networks
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5.3.2 Genetic Regulatory Network

Reconstruction of GRNs is an age-old challenge. Various algorithms can achieve
this, but no single method shows the optimal performance across all datasets [48].
One of the well-established methods is context likelihood of relatedness (CLR), an
extension of the relevance network technique based on mutual information
(MI) [49]. The approach first scores the MI between each pair of a transcriptional
regulator (TR) and its potential target gene, and then scores the likelihood of the
regulation within its network context; those with high values are likely to form a
regulatory relationship. Because a TR may regulates its targets in a nonlinear way,
mutual information is a better choice than correlation for not requiring linearity or
continuity of the dependence. In addition, the CLR method can be combined with
WGCNA to find TRs in modules [45]. Recently, the DREAM4 in Silico network
challenge [48] compared over 30 GRN-inference methods for high-throughput data.
GENIE3 [50], a random forest-based method, is one of the top-performing meth-
ods. It treats GRN inference as a feature selection problem and predicts the
expression of a target gene from the expression of all other genes (input genes)
using random forests or extra-trees machine learning approaches. The contribution
of an input gene on target gene expression is used to build the putative regulatory
links. After aggregating links from all genes, the whole GRN is reconstructed from
ranked interactions. Databases such as RegulonDB [51] provide experimentally
confirmed regulatory interactions that can also validate the accuracy of the GRN
inference methods.

5.3.3 miRNAs Regulation in Human Disease

Studies have implicated miRNAs in many diverse illnesses such as hepatitis B and
C [52, 53], cardiac and heart diseases [54, 55], and even behavior and neuronal
system diseases such as Tourette’s syndrome [56]. In particular, important is the
study of miRNAs in cancer research, as they are known to regulate important
processes in cancer biology such as angiogenesis [57], apoptosis [58], and cell
differentiation [59]. Here, we describe the common principle of these analyses—the
integration of miRNAs and mRNAs expression, sequence pairwise information,
and functional information.

miRNA regulation analysis. miRNAs regulate gene transcriptional activity by
total or partial matching of nucleotide sequences with targeted mRNAs. Many
computational algorithms are available to predict miRNA targets based on different
criteria such as base pairing and target accessibility [60–62]. In general, their
predictions are considered to be complementary and are usually combined to
increase the overall sensitivity of the prediction [63, 64]. Each method, however,
suffers from high false-positive and false-negative rates [65]. This happens even
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with the inclusion of experimental validated interactions from databases such as
miRWalk [66] or miRecords [67]. Thus, the predicted mRNA–miRNA interactions
should be considered as working hypotheses, since they do not necessarily fit with
the disease phenotypes. In the study of disease gene regulation, it is advisable to
integrate these predictions not only with differential expression values of mRNAs
from case and control individuals, but also with miRNAs expression values.

Identification of miRNA regulatory mechanisms. Regulatory mechanisms of
biological processes generally involve more than one miRNA and mRNA func-
tioning together. Many computational approaches have been proposed to identify
such regulatory mechanisms. They differ from one another in their methodological
approaches and their usage of mRNA/miRNA expression values and external
information such as potentially involved pathways. Methods used in different
contexts include Bayesian networks [68], probabilistic methods [69], LASSO
regression [70], or rule-based methods [71]. Despite their differences, the overall
analytical flow of these methods is similar (Fig. 5.5).

Functional analysis of miRNA regulation. It is common to infer the function
of a miRNA from its gene targets (for possible bias in such an approach, see [72]).

mRNA miRNA
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Fig. 5.5 miRNA analysis pipeline

124 Q. Zhang et al.



The incorporation of external information, such as functional terms related to
mRNA targets, makes it possible to deduce the involvement of miRNAs regulation
in biological pathways [73]. This strategy can be used to interpret functional
enrichment results and to find regulatory modules of miRNAs–mRNAs partici-
pating in the same processes [74]. Several resources provide direct functional
annotation of miRNAs (Table 5.1).

Table 5.1 Useful resources of miRNA regulation for human disease studies

Resource Description Ref.

MiRNA database

miRBase Database of miRNA sequences and annotations for 206
different organisms

[99]

miRNA-target interaction

microRNA.
org

Database of predicted microRNA targets & target
down-regulation scores. It includes experimentally observed
expression patterns

[100]

miRWalk Database that provides information on miRNA from human,
mouse and rat on their predicted as well as validated binding
sites on their target genes. It includes information on
experimentally validated miRNA interaction information
associated with genes, pathways, diseases, organs, OMIM
disorders, cell lines, and literature on miRNAs

[66]

multiMiR R package and database for miRNA-target interaction which
includes information based on disease annotation and drug
microRNA response, in addition to many experimental and
computational databases

[101]

CancerMiner Database including recurring microRNA-mRNA associations
across cancer type

[102]

Functional information

mir2Disease A manually curated database providing a comprehensive
resource of miRNA deregulation in various human diseases

[103]

mirFocus Database providing leads for in-depth analysis of
miRNA-target gene pathways and the related miRNA
annotations

www.
mirfocus.
org

HmDD Database with curated experiment-supported evidence for
human microRNA (miRNA) and disease associations

[104]

miRCancer Database providing a collection of miRNA expression profiles
in various human cancers, automatically extracted from the
published literatures in PubMed

[105]

Variant information

PolymiRTS Database of naturally occurring DNA variations in microRNA
(miRNA) seed regions and miRNA-target sites underlying in
gene expression and disease phenotypes

[106]

miRdSNP Data source of dSNPs and robust tools to capture their spacial
relationship with miRNA-target sites on the 3’UTRs of human
genes

[107]
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5.4 Predicting Disease Genes by Incorporating Knowledge
of Gene Regulation

The identification of disease genes is a fundamental objective in medical research.
With the advent of high-throughput genotyping technologies, a large number of
disease-associated variants have been identified by genome-wide association
studies (GWASs) [75]. Such disease variants provide valuable signals for uncov-
ering underlying disease genes and unraveling disease mechanisms, which can be
improved by leveraging the knowledge of gene regulation.

5.4.1 Importance of Knowledge of Gene Regulation
in Complex Disease Prediction

Both genetic predisposition and environmental factors may contribute to the
pathogenesis of complex diseases. The origins of genetic predisposition are genetic
variants that affect gene functions and thus contribute to disease susceptibility.
Some of these variants are located in coding regions and affect gene functions by
altering the corresponding protein sequences. The others, located in noncoding
regions, may affect (TREs), such as transcription factor binding sites, resulting in
dysregulation of gene expression.

Uncovering disease causal genes that underlie the association signals discovered
in GWAS is challenging. The simplest method is to select genes closest to
disease-associated variants as the causal genes. However, because single nucleotide
polymorphisms (SNPs) used in GWAS are tagging SNPs, representing linkage
disequilibrium (LD) blocks, disease-associated SNPs discovered in GWAS are
most likely not causal SNPs but mere their proxies. Another more sophisticated
method is to first define the LD regions tagged by GWAS SNPs and then identify
genes overlapping LD regions as candidate causal genes [76]. Causal genes near
GWAS SNPs are likely to be included in this way. However, causal genes whose
expression is affected by causal SNPs through modifying their TREs will almost
certainly be missed, as they fall outside LD regions. To include these “distal” causal
genes, it requires knowledge of gene regulation and, more specifically, knowledge
of regulatory relationship between loci and genes.

5.4.2 Gene Regulation Data Resources and Complex
Disease Risk Loci

Studies have shown that disease-associated SNPs are overrepresented in loci
implicated in gene regulations [77–79] (Fig. 5.6). There are several important
resources for the knowledge of aforementioned gene-locus regulation linkage.
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Expression quantitative trait loci (eQTL) are genomic loci whose genotypes are
associated with transcript levels. eQTL data provide valuable information of
gene-locus regulatory relationship and are useful in prioritizing GWAS signals [80].
In addition, the ENCODE Project inferred regulatory relationship from correlation
between DNase I hypersensitivity of loci and promoters in different cell and tissue
types [81]. Furthermore, FANTOM5 generated regulation information between
enhancers and target genes by comparing their transcriptional activities across
different cell types [78]. These regulatory data repositories serve as important
information resources for not only prioritizing but also exploring new disease
causal factors, on both SNP and gene levels.

5.4.3 Linking Distal Candidate Causal Genes
by Incorporating the Knowledge of Gene Regulation

As mentioned earlier, causal genes may not always fall in the same haplotype block
carrying GWAS SNPs, and thus, it requires other information in addition to LD to
identify them. Figure 5.7 shows an example of successfully uncovering a promising
causal gene underlying a GWAS SNP by using the gene regulatory information.
SNP rs2159767 is a GWAS SNP associated with schizophrenia [82]. The LD
region indexed by rs2159767 is in a gene desert and thus devoid of any genes. In it,
however, we found two TREs that are likely to regulate two distal genes, fragile X
mental retardation 1 (FMR1), and fragile X mental retardation 1 neighbor
(FMR1NB), respectively. Notably, FMR1 is a literature-supported SZ gene [83],

The number of eQTLs overlapping SZ-linked SNPs 

Observed:
399 

(P-value = 0) 

Fr
eq

ue
nc

y

Fig. 5.6 Enrichment of schizophrenia-associated SNPs at eQTLs. We compiled 125,568 eQTLs
from GTEx studies and identified 15,027 SNPs in high linkage disequilibrium with 261
schizophrenia-associated SNPs that we collected from the GWAS catalog [111] and a
meta-analysis of schizophrenia [76]. 399 eQTLs are SZ-linked SNPs (P = 0, permutation test
with 100 repetitions)
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and we found that a SNP (rs59460742) within the TRE associated with FMR1 is in
strong LD (r2 = 0.587) with rs2159767. Those evidences imply that the causal
factor of the GWAS signal could be the SNP within the TRE that results in the
dysregulation of FMR1.

5.4.4 Distal and Proximal Candidate Causal Genes

In general, incorporating LD information can improve the detection of causal genes
in the proximity of GWAS signals, but finding distal causal genes relies on the
knowledge of gene regulation. Using LD and gene regulation information, we
identified three overlapping sets of candidate causal genes for schizophrenia
(Fig. 5.8). There are 485 proximal and 158 distal candidate causal genes. Together,
these two numbers indicate that incorporating gene regulatory information can
substantially expand the set of candidate causal genes (about one-third in the
aforementioned schizophrenia case). Although irrelevant distal genes could be

147 M
147,100 K                          147,200 K                          147,300 K                          147,400 K                           147,500 K                          147,600 K  

SNP
rs2159767

TRE TRE

rs59460742 rs5936341

Chr X

Fig. 5.7 Distal disease causal gene candidates. Gene regulatory information can link genes far
away from the disease-associated GWAS SNP (schizophrenia-associated rs2159767 in this case)
to the disease risk region (the red block)
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linked through eQTLs

Candidate causal genes linked
through the information of TREs
from ENCODE and FANTOM5

Candidate causal genes 
linked through linkage
disequilibrium 

4 2 
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8 10 
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Fig. 5.8 Schizophrenia
causal gene candidates.
Candidates genes are linked to
261 schizophrenia-associated
SNPs through different gene
regulatory information
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introduced due to false regulatory linkage, incorporating the knowledge of gene
regulation can cover potential risk genes in a more comprehensive manner, which
will also facilitate the downstream analysis.

5.5 Characterizing the Network and Association
Properties of Disease Genes

Since last decade, a large number of causal or closely related genes have been
reported for many diseases by experimental or computational methods [84, 85].
However, a complex disease usually reflects the perturbation to the complex
intracellular network, rather than a consequence of an abnormality within a single
gene [86]. By studying disease genes in the context of biological networks, we
consider the disease genes as a whole instead of studying them individually. Such
studies may not only provide clues to uncover the molecular mechanisms of dis-
eases, but also reveal distinguishing properties of disease genes, which can be used
to predict unknown disease genes.

5.5.1 Network Characteristics Analysis of Disease Genes

Interactions among disease genes in biological networks. Disease genes can be
mapped into the network (Fig. 5.9a), and a sub-network around them can be
extracted to obtain a view of the local interactions among them [27]. It is
well-known that the protein products of different genes harboring causal mutations
for the same Mendelian disease often physically interact. A recent study suggested
that in many complex diseases, proteins encoded by genes from disease-associated
regions also tend to physically interact [87]. This characteristic is the foundation of
“guilty-by association” policy to predict unknown disease genes.

Distinct network properties of disease genes. Studies have found that some
network properties can distinguish a group of disease genes from background genes
or another set of genes, and thus are particularly informative for the relevant disease
(Fig. 5.9b, c). In yeast, it was found that disease genes in general tend to have
higher degrees, cluster together, and locate at the central network locations [88], but
another study on human did not find higher degrees for disease genes [89]. In
humans, it was reported that cancer proteins tend to have higher degrees and locate
at central part of the network [90]. Moreover, it was found that cancer proteins tend
to have higher betweenness (which measures the importance of a gene in com-
munication between other gene pairs) and shorter shortest-paths than both the
essential and the background proteins [91]. The specificity of network character-
istics of disease genes can provide us clues to specific mechanisms behind the
diseases.
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Network characteristics of disease genes in different biological networks and
species. A recent cancer study found that prognostic genes are less likely to be hub
genes in co-expression networks, and this pattern is unique to the corresponding
cancer-type-specific network. Enriched in modules, prognostic genes are especially
likely to be module genes conserved across different cancer co-expression networks
[92]. In addition to co-expression network, researchers also integrated
tissue-specific gene expression with protein interaction to derive tissue-specific PPI
networks [93]. This provides an opportunity to study network characteristics of
disease genes in tissue-specific PPI networks.

5.5.2 Software Tools for Network Characteristics Analysis

Many software tools have been developed for network characteristics analysis
(Table 5.2). Some allow users to upload their own gene list for targeted analysis.

(a) (b)

(c)

Fig. 5.9 Network characteristics of cancer genes. Among 547 cancer genes from COSMIC
(Version 70; Aug 2014) [112], 386 of them were analyzed in the background network HINT [113].
a 394 directly physical interactions between cancer genes products. b Cancer genes tend to have
higher degrees than background genes in HINT (P = 5.136 × 10−22, Wilcoxon rank-sum test).
c Cancer genes tend to have higher betweenness than background genes in HINT
(P = 3.509 × 10−18, Wilcoxon rank-sum test)
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For example, TopoGSA can generate 2D or 3D plots for submitted genes, which
show difference network characteristics simultaneously [94]. When microarray data
are uploaded, differentially expressed genes can be automatically identified and
used as targeted genes for the analysis. TopoGSA can also compare the network
characteristics of targeted genes with those of known gene sets (e.g., pathways).
SNOW [95], a similar tool, can calculate the network characteristics and estimate
their statistical significance. NetworkAnalyzer can also carry out a similar analysis
when genes from the network are selected [96]. In addition to these methods,
several tools for general network analysis can also be helpful (Table 5.2).

Table 5.2 Tools for network characteristics analysis

Tools Description and access Ref.

Targeted analysis

TopoGSA Generate 2D or 3D plots of network characteristics to visualize
the network characteristic for each uploaded gene. Comparison
with known gene sets based on 2D or 3D plots to visually
identify similar pathways to the uploaded dataset
The Web server can be accessed at http://www.topogsa.org

[94]

SNOW Compute several network characteristics and estimate the
statistical significance by comparing the network characteristics
of the uploaded genes to those of the background genes or those
in random networks
The Web server can be accessed at http://snow.bioinfo.cipf.es

[95]

NetworkAnalyzer Compute and display a comprehensive set of topological
parameters. It can analyze the whole network or subset of nodes
from the network
It is a plug-in of Cytoscape

[96]

General analysis

CentiScaPe Compute 9 kinds of centralities of genes (proteins) in biological
networks. It can highlight the genes whose centralities are
higher or (lower) than the user-defined thresholds. It can
generate “plot by node,” which shows the centralities of one
gene with background information about the centralities (e.g.,
min, mean). It can also generate “plot by centrality” to identify
group of genes clustered together according to combinations of
centralities. Attributes from experiments can be also uploaded
to analyze relationship between experimental data and gene
centralities
It is a plug-in of Cytoscape

[108]

CenTiBiN Compute and explore 17 kinds of centralities of genes (proteins)
in biological networks
The Web server can be accessed at http://centibin.ipk-
gatersleben.de, and there is also instable Windows application.

[109]

CentiLib CentiLib is a Java-based library and user-friendly plug-in for the
analysis and visual exploration of centralities in networks.
CentiLib can achieve similar functions as CenTiBiN, but it is
easier to use and it can deal with weighted networks
The software and manual can be downloaded at
http://centilib.ipk-gatersleben.de/

[110]
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5.5.3 Association Between Disease Genes
and Other Gene Sets

Another important utility of networks is to find the association between disease
genes and other functional groups of genes. For example, recent studies suggested
that the it is important to consider the relationship between genetic diseases and the
aging process for understanding the molecular mechanisms of complex diseases. To
better understand such association, one study investigated the relationship among
aging genes and disease genes in a human disease-aging network [97]. The study
found that (1) human disease genes are much closer to aging genes than expected
by chance; (2) aging genes contribute significantly to association among diseases
compared with nonaging genes with similar degrees.

It is important to assess functional association between a group of genes (e.g.,
candidate disease genes) and predefined gene sets. Overrepresentation-based
enrichment analysis is commonly used for this task. This method, however, has
several shortcomings. First, only shared genes between the input gene list and the
known gene sets are considered, but current data of gene sets are not complete.
Second, genes in the gene sets are treated equally, disregarding the network
structure of physical or functional interactions between genes. To address these
limitations, it is applicable to combine information of protein–protein interaction
network with known get sets. To tackle these problems, several such tools have
been developed. Glaab et al. [98] combined information from pathways databases
and interaction networks and obtained more robust pathways and process repre-
sentations. Their method first maps the genes in pathways into a protein–protein
interaction network and then extends the pathways by including densely interacting
partners. Later, Glaab et al. [24] proposed another tool for network-based gene set
enrichment analysis. This approach first maps the target genes and reference gene
sets into the network. It then scores the distance between the mapped target genes
and reference dataset using a random walk with restart algorithm and compares the
score against a background model. This method can use the network distance to
differentiate gene sets with similar enrichment levels assessed by overrepresentation
analysis. More importantly, it can identify novel functional associations (with no or
few shared genes) and can evaluate tissue-specific association.

5.6 Conclusions

Gene expression is under tight regulation at all levels in normal cells. The char-
acteristic forms and behaviors of different cell types are the result of their varying
patterns of expression of the same set of genes. The dysregulation of gene
expression can cause abnormal cell behaviors and result in diseases, and thus, gene
expression profiling could provide the first clue about the molecular mechanisms of
a disease. Two recent developments are spearheading the advancement of disease
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research in this field: First, next-generation sequencing technologies have increased
the throughput and the resolution of gene expression studies to an unprecedented
level; second, new computational methods with sophisticated data integration,
especially network integration, have been developed for gene expression data
analysis. Biological networks can provide important a priori functional information
in data analysis, and since last decade, many different types of them have been
constructed: Not only the number has increased but also the coverage of them has
increased dramatically. With such recent resource and technology development,
biology has entered a new data-driven phase in the twenty-first century. Now is a
particularly challenging and exciting time for disease research with gene expression
assay, as more and more gene expression data are being generated at an
ever-accelerating speed.
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