
Chapter 1
The Analyses of Global Gene Expression
and Transcription Factor Regulation
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Abstract A major challenge in molecular cell biology lies in understanding how
the same genome can give rise to different cell types and how gene expression is
regulated. Gene expression and regulation studies focus on the abundance and
structure of transcripts as well as how RNA production is controlled.
High-throughput sequencing technologies such as RNA sequencing have allowed
more accurate profiling of the transcriptome and the rapid identification of differ-
entially expressed genes among samples. The regulation of gene expression is
orchestrated by transcription factors. The development of ChIP sequencing assay
has made it possible to comprehensively identify transcription factor-binding sites
in vivo, allowing rapid unraveling of signaling pathways. The following chapter
described the common methods used in studying global gene expression and
transcription factor regulation with a special emphasis on bioinformatic analyses.
The final section illustrates an example of an integrated gene expression and reg-
ulation study for identifying key factors regulating self-renewal and differentiation
in hematopoietic precursor cells.
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1.1 Introduction

Gene transcription and regulation are important areas of study because they underlie
many biological processes and phenotypic variations in living organisms. Aberrant
gene expression and regulation lead to diseases. The transcriptome consists of all
transcripts synthesized in an organism including protein-coding, noncoding, alter-
natively spliced, polymorphic, sense, antisense, and edited RNAs. Transcriptome
data analyses, namely the analyses of gene expression levels and structures, are
essential for interpreting the functional elements of the genome and understanding
the molecular constituents of cells and tissues. The regulation of gene expression is
a basic mechanism through which RNA production is coordinated, and it controls
important events such as development, homeostasis, and responses to environ-
mental stimuli. Transcription factors, a type of DNA-binding proteins which rec-
ognize specific sequences, and other proteins work together through a variety of
mechanisms to regulate gene transcription.

In this volume, different aspects regarding the analyses of gene transcription and
regulation are described in individual chapters. In this chapter, we focus on gene
expression level analyses by RNA sequencing (RNA-Seq) and transcription factor
regulation by chromatin immunoprecipitation coupled with sequencing (ChIP-Seq).
First, we review some useful methods developed in the past for characterizing
global gene transcription.

1.2 Methods for Characterizing Global Gene
Transcription

1.2.1 EST Sequencing

It is widely recognized that expressed sequence tag (EST) sequencing has provided
an invaluable resource for identification of novel human genes [1, 2]. EST clus-
tering methods allow EST to be systematically mapped, so that the information is
readily integrated into the positional cloning project UniGene database (http://
www.ncbi.nlm.nih.gov/UniGene). Because ESTs are from single-pass sequencing,
they have to be carefully analyzed to remove genomic DNA and other contami-
nating sequences, such as mitochondrial, ribosomal, vector, and bacterial sequen-
ces. However, EST databases still contain a significant portion of (estimated
5–10 %) artifact sequences such as intronic or intergenic DNA [3, 4]. This is likely
due to the presence of heterogeneous nuclear RNA (hnRNA) in RNA samples
where EST libraries were generated. Moreover, it is difficult to understand the
relationships among short EST sequences. EST clustering may confuse genes
sharing similarities and alternatively spliced transcripts. Additionally, because of
their short length and generally low quality, ESTs only provide limited information
about gene structure and function [1]. Since EST sequencing is biased toward genes
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with high expression levels, the transcripts which are tissue-specific or
low-abundant are less likely to be disclosed by EST sequencing. Therefore,
methods that are less biased, more accurate, and sensitive are needed [5].

1.2.2 SAGE

The serial analysis of gene expression, or SAGE [6], is another technique used to
quantify gene expression levels. SAGE method is designed to add a 9–14 bp tag
adjacent to an NlaIII restriction site at the gene’s 3′ end. It measures transcript levels
by automatically sequencing and counting each SAGE tag. The expression level of
SAGE tags is analyzed and accessioned through the GEO repository. Additionally,
an anatomic viewer “SAGE Genie” makes it easy to search and visualize the
transcription level in different tissues and cell types of the human body (http://cgap.
nci.nih.gov/SAGE). However, SAGE is a high-throughput technology which
measures not the expression level of a gene, but a “tag” that represents a transcript.
Due to alternative transcription, sequencing errors, and other potential effectors,
sometimes two or more genes share the same tag or one gene may have more than
one tag. Thus, the potential loss of fidelity should be taken into consideration.

Long serial analysis of gene expression (LongSAGE) is an adaptation of the
original SAGE approach that can be used to rapidly identify novel genes and exons
[7]. Instead of using an NlaIII restriction site, LongSAGE uses a modification of
longer tags (21 bp) added to a different restriction site (MmeI). The 21 bp tags
include a constant 4 bp restriction site sequence where the transcript was cleaved
and a unique 17 bp adjacent sequence of each transcript. The advantage of
LongSAGE is the uniqueness of each tag in the human genome, which is not
guaranteed by 14 bp tags. Sequencing tag concatamers and searching for the
localization of tags in the genome help to verify predicted genes and to identity
novel transcripts. LongSAGE has been reported to be at least an order of magnitude
more efficient than EST sequencing [8].

1.2.3 Full-Length CDNA Sequencing Projects

In order to better access the biological information of genes including location of
open reading frames, 5′ and 3′ untranslated regions, and splicing patterns,
full-length and high-quality sequences of cDNAs are needed. cDNA sequencing is
a valuable resource not only for characterizing the structure and function of known
genes, but also for discovering novel genes. Especially with the completion of the
human genome, the comparisons of the full-length and high-quality cDNA
sequences with genomes are especially useful in identifying alternative gene
structure and better understanding transcriptome composition during physiological
and disease processes. Moreover, full-length cDNA sequencing projects paved the
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way for proteomic study by identifying new enzymes and proteins, generating
physical clones for expression profiling, testing protein interactions, and generating
hypotheses for biochemical studies.

There have been multiple efforts that aim at capturing the sequence of full-length
clones which can be directly obtained from cDNA libraries generated from mam-
mals and other selected organisms, such as zebra fish, drosophila, and
Caenorhabditis elegans, mouse, and human [9–15]. In particular, NIH Mammalian
Gene Collection project, utilizing large-scale RT-PCR-based cloning methods,
provided thousands of clones of full-length human and mouse open reading frames
[16–18].

1.2.4 Microarrays

DNA microarray is a hybridization-based technology which enables researchers to
analyze the expression of large number of genes in a single reaction. DNA
microarray technology was developed in the early 1990s. The technical advance-
ment of this methodology is to manufacture slides or chips with thousands of
nucleic acid probes immobilized on a small surface area. DNA probes are con-
formed of several specific DNA sequences of genes to which cDNA samples are
hybridized. Samples, also referred to as targets, may be obtained from cells in
different biological or experimental conditions, tissues, organisms, or develop-
mental stages. Probe–target hybridization is quantified by fluorescent labeling. The
signal intensities captured as images after scanning are converted into a data matrix
and processed using software specific to the application of the array to determine
relative abundance of specific cDNA sequences from the samples. The DNA
microarray is an effective tool to investigate the structure and activity of genes at a
genome-wide scale, and it helps to elucidate the molecular mechanisms underlying
normal and dysfunctional biological processes [19–24].

1.2.5 RNA-Seq

Even though microarray technology has provided valuable insights into gene
function throughout the last decade, it suffers from limitations in resolution,
dynamic range, and accuracy. The recently developed RNA-Seq methodology uses
next-generation sequencing (NGS) to sequence cDNAs generated from RNA
samples producing millions of short reads. The number of reads mapped within a
genomic feature of interest (such as a gene or an exon) can be used as a mea-
surement of the feature’s abundance in the analyzed sample. Typical RNA-Seq
procedure is depicted in Fig. 1.1. Briefly, RNAs are converted to a library of cDNA
fragments with adaptors attached to one or both ends. The molecules, with or
without amplification, are then sequenced with high-throughput technology, and
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short sequences from one end or both ends are obtained. The reads are typically
30–400 bp, depending on the DNA sequencing technology used. There are various
high-throughput sequencing platforms available for RNA-Seq such as Illumina,
Applied Biosystems SOLiD, and Roche 454 Life Science systems. The total reads
obtained after sequencing are either aligned to a reference genome or transcriptome,
or assembled de novo without genomic sequence guidance to create a genome-scale
transcription map providing both transcriptional structure and expression level for
each gene.

RNA-Seq has several advantages over microarrays [25–27]. First, sequencing
technology is much more sensitive and quantitative than microarrays and it can
provide a large dynamic range of detection (>9000-fold) [28]. Additionally,
sequencing data are more specific and have less background. Moreover, sequencing
experiments do not depend on the limited features of tiled microarrays and can

Fig. 1.1 RNA-Seq workflow. RNA-Seq begins with isolation of high-quality total RNA followed
by conversion into cDNA, fragmentation, and adaptor ligation. Fragmented cDNA is used to
construct a library for sequencing. Raw data, consisting of reads of a defined length, are
preprocessed according to a set of quality control metrics, such as base quality, minimum read
length, untrimmed adaptors, and sequence contamination. After filtering and trimming, reads are
aligned to a reference genome or transcriptome depending on the objective of the experiment and
the nature of the samples. Subsequently aligned reads are assembled. RNA-Seq assembly involves
merging reads into larger contiguous sequences based on similarity. After assembly, reads are
quantified in order to measure transcriptional activity. Read counts are generally computed in
RPKM of FPKM in order to perform further downstream analysis, such as differential expression,
pathway and gene set overrepresentation analysis, and interaction networks
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therefore be used to interrogate any location in the genome and to detect and
quantify the expression of previously unknown transcripts and splicing isoforms.
Finally, sequencing is not limited by array hybridization chemistry, such as melting
temperature, cross-hybridization, and secondary structure concerns.

1.2.5.1 Data Analysis General Workflow

RNA-Seq experiments result in millions of short sequence reads which require
computational methods for comprehensive transcriptome characterization and
quantification. Steps for data analysis vary according to the desired biological
problem to be assessed and to the availability of reference genome or transcriptome
data. A generic overview of the routine analyses performed is included in Fig. 1.1.
The main tasks of data analysis are read mapping also referred to as alignment,
transcriptome assembly, expression quantification, and downstream applications.
Steps for data analysis, although it is sequential, may be performed with different
computational tools and algorithms which require specific data formats and external
files. It is desirable to automate the multiple data analysis steps in a pipeline.
A pipeline is a reusable script with defined inputs, outputs, and parameters for each
processing step. Several software platforms which collect different RNA-Seq
analysis tools for each task have been developed such as PRADA [29], Tuxedo
[30], MAP-R-SEQ [31], and GENE-Counter [32]. However, pipelines may be
custom-built by users, selecting the most appropriate tools according to experi-
mental data and desired downstream analysis [33]. The following subsections
describe the different RNA-Seq data analysis tasks.

1.2.5.2 Quality Control and Preprocessing

The first step in data analysis is quality control. Accuracy in library preparation and
sequencing steps contribute to the quality of reads, which if overseen may lead to
erroneous mappings, misassembles, and false expression estimates. The quality
control should include the assessment of read length, GC content, sequence com-
plexity, sequence duplication, polymerase chain reaction artifacts, untrimmed
adapters, low-confidence bases, 3′/5′ positional bias, sequence contamination, and
fragment biases [34]. Quality control metrics are obtained directly from raw reads.
Raw reads are typically in FASTQ format, text-based files which contain a
sequence identifier, a nucleotide sequence, and its corresponding quality score [35].
A brief overview of the most important quality control processes to be performed is
described next.

(a) Base Quality: Since RNA-Seq technologies rely on complex interactions
between chemistry, hardware, and optical sensors, sequencing platforms
provide metrics for assessing error probabilities. Base quality is measured by
computing the confidence on base calling, the process by which the sequencer
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analyzes colorimetric sensor signals to predict individual bases. Base calling
quality values are expressed in Phred scale, an error probability log trans-
formation which has the advantage of converting low error probabilities to
high-quality values and vice versa [36]. Quality values q are calculated for
each base as:

q ¼ �10 log10ðpÞ ð4:1Þ

where p is the estimated error probability of a base call. Base quality values
are encoded with ASCII characters with the sequence data in FASTQ format
[35]. Typically, good reads should have base qualities greater than 20;
however, this threshold depends on the platform used. It is important to
inspect the reads’ base quality distribution to detect regions of poor base
quality, which may be filtered or trimmed preserving the order of reads, thus
increasing mapping efficiency. This process is also referred to as quality
trimming and will be discussed next.

(b) Filtering and Trimming: Reads should be inspected for the presence of
sequencing adapters, tags, and contaminating sequences, which should be
removed before quality control processing. Adapter sequences and tags used
during library construction should be removed prior to mapping.
Contaminating sequences such as DNA, rRNA, or sequences from other
organisms or vectors should be filtered out.
Additionally, reads should be filtered according to mean base quality or to the
proportion of bases whose quality is below a user-defined threshold. There is
no consensus on the optimal base quality threshold for trimming, and it is
rather a trade-off between mapping efficiency and coverage. Software for
filtering generally outputs synchronized filtered reads. When low-quality bases
are located at the ends of reads, trimming is a better option than filtering. The
basic principle of read trimming is to assess base quality keeping the longest
possible high-quality read segments. Trimming with respect to base quality
may be performed using running sum algorithms or sliding window-based
algorithms. Running sum algorithms basically find the summation of the
differences between all base quality values against a quality threshold, and
sequences are trimmed at the base that makes the running sum minimum.
When analyzing reads with a sliding window, the user defines a window size
and a mean base quality threshold. Depending on the tool used, the window
may slide from the 5′ or the 3′ ends of reads. Sliding the window from the 5′
end will trim the read until the window’s quality lies below a threshold,
maintaining the beginning of the sequence, whereas sliding from 3′ end will
trim until a passing quality window is encountered. An excellent evaluation on
the performance of several trimming tools was published by Del Fabbro et al.
[37]. Some common tools used for trimming are Trimmomatic [38], Cutadapt
[39], PRINSEQ [34], and ConDeTri [40].
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Reads with a high frequency of ambiguous bases, bases not identified during
sequencing, should be filtered out since they can lead to erroneous mapping and
misassemblies. Low-complexity sequences (homopolymers, di-trinucleotides)
will also result in mapping errors and should therefore be trimmed.

(c) GC Content Determination: Another important metric that should be consid-
ered is reads’ mean GC content, which if plotted should follow a normal
distribution centered on the organism’s normal content. Variations on the GC
content might be due to the PCR amplification process and therefore may be
sample specific. An approach to reduce GC content systematic bias is con-
ditional quantile normalization, a technique in which the distribution of read
counts is modified by estimating quantiles obtained with a median regression
on a subset of genes [41].

(d) Minimum Read Length: The distribution of read lengths should be verified
after trimming since reads may have ended up as very short fragments, which
become difficult for mapping. The minimum read length is a user-defined
variable, and its value depends on desired downstream applications.

(e) Fragment Biases: RNA fragmentation creates segments whose starting points
were assumed to be located uniformly at random within a transcript. However,
it has been demonstrated that there are both positional [42] and
sequence-specific [43, 44] biases derived from fragmentation and reverse
transcription. Positional bias describes the fact that reads’ starting positions are
non-uniformly distributed since they are preferentially located toward the
transcripts’ boundaries. Sequence-specific bias refers to the phenomenon by
which the sequences at the reads’ boundaries, such as the random hexamer
primers used for reverse transcription priming, introduce biases in nucleotide
composition and influence the likelihood of being sequenced. Furthermore,
fragment length also generates bias since long transcripts result in more reads
mapping to them than smaller transcripts. Thereby, for genes with equal levels
of expression, the long genes will be overrepresented, distorting the relative
expression among genes [45]. Since RNA-Seq read counts are proportional to
transcript abundances, expression estimates should be made after fragment
bias correction. An effective approach for fragment bias correction has been
implemented in the Cufflinks [46] transcriptome assembly and differential
expression RNA-Seq analysis tool. The fragment bias correction was based on
an algorithm which learns the read sequences and models them as a likelihood
function involving abundance and bias parameters such as the probability of
finding a fragment with a specific length in a given position [47]. In this
manner, bias and expression estimation are performed simultaneously.

1.2.5.3 Read Alignment

In order to determine transcript abundance from reads, it is necessary to align or
map reads to a previously assembled reference genome or transcriptome to deter-
mine the read’s origin. Mapping to a reference genome is more common since it
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increases the potential information which may be obtained (e.g., identification of
novel transcripts and genes) and because many transcriptomes are incomplete.
Mapping is a challenging task since RNA-Seq reads are relatively short and they
may match non-contiguous regions of the genome due to splice junctions.
Furthermore, alignment tools must cope with mismatches and indels caused by
genomic variation and sequencing errors. Many alignment tools have been devel-
oped. A comprehensive list of alignment tools and their properties was initially
published by Fonseca et al. [48] and is kept updated on the Web [49]. A list of some
common aligners and their main properties is included in Table 1.1.

The main consideration to be addressed when selecting an aligner is whether
RNA-Seq reads span splice junctions. As depicted in Fig. 1.1, unspliced or con-
tiguous alignment tools such as BWA [50], Bowtie [51], and Bowtie2 [52] are
useful when mapping reads to a transcriptome, when sequencing microRNAs, or
when the organism under study has no intronic regions. Unspliced aligners are thus
limited to identifying known exons and do not allow for new splicing event
identification. Spliced alignment tools are used when mapping to reference gen-
omes without relying on previously known splice sites. Some of the most com-
monly used tools for spliced alignment are TopHat [53], TopHat2 [54], Palmapper
[55], and STAR [56].

Alignment to a reference genome starts with indexing, the process with which
auxiliary structures called indices are created for either the reference sequence or
the sequenced reads to allow for faster queries. Indexing the reference genome is
more time efficient and thus is used by most alignment tools. Alignment algorithms
used for sequencing data analysis are mainly classified into hash tables and suffix
trees according to the property of the index used. Hash table indexing was first
introduced as an alignment tool by BLAST [67], using a seed and extend approach.
In hash table indexing, reads are divided into short k-mer subsequences called
“seeds” and stored in a hash table. The algorithm assumes that at least one “seed” in
a read will match the reference. Once a “seed” is aligned, it is extended using more
sensitive algorithms such as Smith–Waterman [68] or Needleman–Wunsch [69].
Modifications to hash table indexing algorithms have been performed, and they
have been implemented in Novoalign [59], MAQ [65], SHRiMP2 [70], and BFAST
[57], among other alignment tools. Suffix trees, on the other hand, are based on the
premise that an inexact matching problem may be converted into an exact matching
task by constructing a tree (an ordered tree data structure) with all the possible
substrings that make up a sequence. The suffix tree data structure enables fast
substring searches regardless of sequence size [71]. Among different suffix tree
algorithms, one of the most efficient is the FM-index [72] which is based on the
Burrows–Wheeler transform (BWT) [73]. BWT is a reversible permutation of
characters in a string, and FM-indexing addresses permutations (nodes in a tree)
constantly using a backward search. FM-index and BWT, both originally designed
for data compression, have been successfully implemented for storing reference
genomes and performing rapid queries.
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Reference genome indexes may be built or downloaded as GTF/GFF annotation
files most commonly from Ensembl [74] and Illumina iGenomes Web sites [75].
GTF files must be selected carefully using a standard assembly so that chromosome
names, gene identifiers, transcription starting sites, and all genomic annotations
match between experiments.

Bowtie and Bowtie2 are two of the most efficient unspliced alignment tools
because of their low memory requirements and high speed; they both implement an
FM-indexing algorithm for achieving ultra-fast alignments. However, neither of
these tools are suitable for performing spliced alignments since they cannot align
reads when there are large gaps (introns). TopHat addresses spliced alignment
limitations by performing a multistep alignment process and using Bowtie as an
alignment engine. In the first step, reads are mapped to a reference genome, setting
aside reads which were not aligned. In the next step, reads that could not be mapped
are broken down into segments and remapped. Finally, reads whose segments were
mapped into the same user-defined intronic region are assembled and mapped to
that genomic region in an attempt to find splice sites. With this approach, TopHat
identifies splice sites without previous splice site annotations and finds novel
splicing events [53].

RNA-Seq alignment results are output as SAM/BAM files, and they generally
need some further processing such as conversion, sorting, indexing, or merging.
SAMTools, implemented in C and Java, is a library for parsing and manipulating
alignments prior to downstream analysis [76]. Visualizing aligned reads in a
genomic context is recommended for assessing exon coverage, spotting indels and
SNPs, displaying splice junctions, identifying novel transcripts, etc. Some available
tools for visualization of alignment files are Integrative Genomics Viewer
(IGV) [77], Savant [78], and Integrated Genome Browser (IGB) [79].

1.2.5.4 Transcriptome Assembly

In order to quantify gene expression levels from aligned reads, it is necessary to
identify which gene isoform generated each read. Therefore, the main aim of
transcript assembly is to reconstruct complete transcripts from small overlapping
fragments. There are several methods for transcriptome reconstruction, and they can
be categorized into genome-guided and genome-independent methods. In
genome-guided methods, reads are first mapped to a reference genome and a
splicing or exon graph is then constructed for each gene to identify all possible
isoforms according to exon combinations. In the splicing graph, each node repre-
sents an exon and each connection is an exon junction. Paths that are not evidenced
by RNA-Seq reads are eliminated. There are different graph topologies which are
implemented to best describe exon combinations for building transcript isoforms.
One of the most commonly used tools for genome-guided transcript assembly is
Cufflinks, which connects aligned reads based on the location of their spliced
alignments [46].

12 R. Cuevas Diaz Duran et al.



Genome-independent transcriptome reconstruction aims at finding as many long
contiguous segments as possible from an assembly graph. The most common
strategy is to build a de Bruijn graph, which models overlapped sequence data as a
set of k-mers (k consecutive nucleotides) and their connections [80–82]. Sequences
are represented as paths, and branches not supported by reads are eliminated;
remaining paths are considered transcript variants. The length of the k-mer has an
effect on the complexity of the graph, and, although it is conceptually simple, de
Bruijn reconstruction approaches have complications such as finding the balance
between sensitivity and graph complexity [83]. The value of k must be smaller than
the read length. However, if k is too small, the graph will have excessive con-
nections and will be very sensitive to sequencing errors. If k is too large, there must
be enough data to make the graph connected. To resolve such issues, several
assemblies should be performed with variable values of k. Some common de novo
assemblers based on de Bruijn graphs are ABySS [84], Trinity [85], Velvet [82],
and Oases [86].

1.2.5.5 Expression Quantification

Expression quantification may be performed with respect to transcripts or to genes.
Gene expression, the sum of the expression of all its isoforms, is computed by
counting reads per gene according to the reference genome’s annotation used for
mapping. Read counts need to be normalized due to variability introduced by read
length bias [45, 87] and due to fluctuations in the number of reads per run [88].
Quantification tools generally output read counts in raw counts, reads per kilobase
of transcript per million mapped reads (RPKM), or fragments per kilobase of
transcript per million mapped reads (FPKM). RPKM measure normalizes read
counts according to the length and to the number of mapped reads per sample [88].
FPKM is used for normalization of paired-end reads since it incorporates depen-
dency estimation [46]. In statistical dependence between two variables (paired-end
reads), the levels of one of the variables vary in an exactly determined way with
respect to levels of the other variable. All quantification tools are taken as input read
alignments in SAM/BAM formats and their reference genome annotation files in
GTF/GFF or BED format. They differ in how they handle multimapping reads,
which affects expression quantification accuracy [46, 89, 90]. To deal with mapping
uncertainty, tools such as Cufflinks use a maximum likelihood function which
works by dividing multimapping reads probabilistically according to the abundance
of genes they were mapped to [91].

1.2.5.6 Differential Expression Analysis

Often, it is necessary to compare the expression levels of genes or other genomic
features between different samples or biological conditions; this is referred to as
differential expression analysis. Comparisons are typically performed in a
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univariate way since it is not possible to fit a multivariate statistical model due to
the number of samples being much less than the number of genes.

The ability of detecting differential expression in RNA-Seq experiments depends
on the sequencing depth, gene expression, and even on the gene’s length, as pre-
viously mentioned. A difference in gene expression between two groups is sig-
nificant only if it is greater than the variability within the group. For estimating
variability, biological replicates should be considered. The number of replicates to
be used depends on the experiment and the statistical power desired. The purpose of
replication is to estimate the variability between and within groups, which is
important for hypothesis testing. The set of standards, guidelines, and best practices
for RNA-Seq published by the ENCODE Consortium [92] states that two or more
biological replicates are sufficient as long as the Pearson correlation of gene
expression between them lies between 0.92 and 0.98.

Since RNA-Seq experiments are based on read counts, the initial methods for
differential analysis modeled reads as Poisson distributions [46, 87]. However, due
to biological variability and the limited number of samples, methods that model
count variability as a nonlinear function of mean counts with parametric approaches
(e.g., normal, negative binomial distributions) have become popular. Commonly
used tools such as DESeq [93], edgeR [94], and Cuffdiff [46] use a negative
binomial distribution for modeling RNA-Seq counts. Recently, it has been sug-
gested that RNA-Seq count data may be transformed to apply normal-based
microarray-like statistical methods as in the case of Limma software [95]. RNA-Seq
data must be normalized transforming counts to have similar empirical distributions
across all samples in order to enable comparisons between samples and genes. This
step is executed internally by differential expression analysis tools. Table 1.2 makes
a comparison of some commonly used differential expression analysis tools.
A differential expression analysis should produce a ranked list of differentially
expressed genes to be used in downstream applications.

1.2.5.7 Downstream Analysis

Interpretation, visualization, and summarization of differential expression results
are important for downstream interpretations. Heat maps and PCA plots are com-
mon for finding clusters of differentially expressed genes.

It is of interest to correlate differentially expressed genes to gene sets repre-
senting functions, categories, pathways, and others incorporating existing biological
knowledge into the analysis. An overrepresentation analysis requires a list of dif-
ferentially expressed genes which are tested statistically for enrichment in gene sets
such as gene ontology (GO) categories, Kyoto Encyclopedia of Genes and
Genomes (KEGG), Reactome pathways, and many other databases [96, 97].
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1.3 Characterizing Transcription Factor Regulation
by ChIP-chip and ChIP-Seq Methods

The mapping of binding sites for transcription factors (TF), the core transcriptional
machinery, and other DNA-binding proteins is essential for understanding gene
regulation. Regulatory networks formed by transcription factors and the coordi-
nated activation of their specific target genes play a major role in controlling many
cellular processes. The traditional way of constructing gene regulatory networks,
via sequential analysis of one or a few genes, is time consuming and labor inten-
sive. Recently, the development of ChIP-chip or ChIP-Seq technology has made it
possible to comprehensively identify most in vivo target genes of a given TF at a
genome-wide scale, allowing rapid unraveling of signaling pathways [99–101].

In ChIP experiments, TFs are first cross-linked to DNA by treatment with
formaldehyde, and chromatin is fragmented to *300–500 bp fragments. TF-bound
chromatins are then immunoprecipitated with specific antibody. Next, the cross-link
is reversed by heating to release the precipitated DNA. Immunoprecipitated DNA
fragments are hybridized to a microarray (ChIP-chip) or sequenced to generate

Table 1.2 Overview of common tools for differential expression analysis

Properties Cuffdiff DESeq edgeR baySeq Limma

Language C++ R R R R

Operating system Unix-based
OS

Unix-based
OS,
Windows

Unix-based
OS,
Windows

Unix-based
OS, Windows

Unix-based
OS, Windows

Data
normalization

Geometric
mean,
quartile,
FPKM

Scaling Model-based
global
scaling
(TMM)

Scaling,
quantile, TMM

Quantile
normalization,
loess
regression,
TMM

Read count
distribution

Beta
negative
binomial
distribution

Negative
binomial
distribution

Negative
binomial
distribution

Negative
binomial
distribution

Voom
transformation
of counts into a
log distribution

Differential
expression test

t-test Fisher’s
exact test

Fisher’s
exact test

Empirical
Bayes method
to obtain
posterior
probabilities

Empirical
Bayes method

False discovery
rate
(FDR) estimation
method

Benjamini–
Hochberg

Benjamini–
Hochberg

Benjamini–
Hochberg

Bayesian Benjamini–
Hochberg

Reference [30] [93] [94] [98] [95]

TMM Trimmed mean of M values
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millions of short sequence tags (ChIP-Seq). Various arrays have been used for
ChIP-chip analysis, for example, proximal promoter arrays where about *1 kb
PCR products encompassing transcription start sites are used as probes; arrays
composed of CpG islands amplified by PCR; large promoter arrays which consist of
tiling oligonucleotides of promoter sequences extending up to several kb upstream
of the transcription start site; and genome tiling arrays in which a non-repetitive
sequence from entire chromosomes is reconstituted using oligonucleotides. As
chromosomal sequence is densely covered, higher resolution can be achieved with
genome tiling microarrays.

As described previously, sequencing offers various advantages over microarray
methods; thus, it has become the predominant technique for profiling genome-wide
protein–DNA interactions, chromosomal proteins, and histone marks in vivo [102–
104]. For example, the ChIP-Seq assays have higher resolution, lower noise, and
better genomic coverage when compared to ChIP-chip assays. Therefore, ChIP-Seq
provides more precise mapping of protein-binding sites and sequence motif iden-
tification [103, 105]. Several factors influencing ChIP-Seq fidelity need to be
addressed.

1.3.1 Analysis of ChIP-Seq Data

The typical output of a ChIP-Seq experiment is a list of millions of short sequence
reads. Processing such reads requires filtering and cleaning, mapping to a reference
genome, and identification of peak regions. Once significant peaks have been
identified, they must be examined, annotated, and associated to a genomic region.
The final result is the identification of a transcription factor’s motif and binding
sites. A general ChIP-Seq workflow is shown in Fig. 1.2. The main issues to
consider when analyzing ChIP-Seq data are the following:

(a) Control Sample: ChIP-Seq experiments are prone to artifacts due to effects of
DNA shearing and repetitive DNA sequences. DNA shearing during sonica-
tion is not uniform because open chromatin regions are fragmented more
easily, thus resulting in an uneven distribution of reads. Repetitive DNA
sequences may seem enriched when the number of repeats is not considered in
calculations. Therefore, the use of a control sample is recommended for peak
comparison and significance assessment. Three commonly used control
samples are as follows: DNA prior to immunoprecipitation, immunoprecipi-
tated DNA without an antibody, and immunoprecipitated DNA using a
non-DNA-binding antibody (e.g., anti-IgG antibody). There is no consensus
on which is the most appropriate control.

(b) Sequencing Depth: For a ChIP-Seq analysis to be effective, sufficient genomic
coverage, referred to as sequencing depth, is important. However, sequencing
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depth is a potential source of bias since at high sequencing depths, open
chromatin regions generate redundant reads which represent false positives
[106]. The choice of sequencing depth depends on the genome’s size and on
the expected number and size of the transcription factor-binding sites.
Transcription factors generate highly localized ChIP-Seq signals, and for
mammalian genomes, there are thousands of binding sites. For mammalian
transcription factors, at least 20 million uniquely mapped reads are currently

Fig. 1.2 ChIP-Seq workflow. ChIP-Seq experiments allow in vivo determination of where
proteins, such as transcription factors, bind to the genome. Bound proteins are cross-linked to
chromatin, then fragmented, and immunoprecipitated. ChIP-enriched DNA fragments are used for
library construction and sequencing. Reads are filtered according to base quality. Test and control
sequences are used for computational mapping to identify genomic locations of bound DNA
transcription factors, unveiling potential protein–DNA interactions. Mapped reads are converted
into an integer count of “tags.” As illustrated, different tools may be used for finding statistically
relevant peaks. Finally, the peaks can be visualized and mapped to nearby genes
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used for most experiments [107]. For histone marks or proteins with more
binding sites such as RNA polymerase II, a higher sequencing depth (e.g., 60
million reads) is needed. To verify whether the sequencing depth was
appropriate, a saturation analysis is recommended. Saturation analysis consists
of increasing the number of randomly selected reads during read mapping and
peak calling for verifying the consistency of peaks called. Saturation analyses
are included in some peak caller tools such as SPP [108].

(c) Quality Control Filtering and Read Mapping: Like RNA-Seq data, ChIP-Seq
reads must be preprocessed before mapping in order to identify possible
sequencing errors and biases. The first filtering criterion is the base calling
confidence, computed with the Phred quality score for each sequence tag.
Low-quality reads should be filtered out and low base quality read ends
trimmed. Tools for filtering, trimming, and mapping ChIP-Seq data are the
same as for RNA-Seq. After filtering and trimming, the reads are aligned.
Alignment/mapping of ChIP-Seq reads is less complex than RNA-Seq reads
since large gaps corresponding to splice junctions will not be present.
ChIP-Seq aligners generally consider mismatches due to sequencing errors,
single nucleotide polymorphisms, and indels. Commonly used mappers are
Bowtie [51], BWA [50], SOAP [109], and MAQ [65]. The percentage of
uniquely mapped reads must be calculated, and values above 70 % are gen-
erally considered normal [110]. However, these values are organism, platform,
or protocol dependent. Multimapped reads are most likely due to regions of
repeated DNA, and most peak-calling algorithms will filter them out.
Library complexity is the fraction of mapped DNA fragments which are
non-redundant, and it may be addressed using the PCR bottleneck coefficient
(PBC) from the ENCODE project [111]. PBC computes the fraction of
genomic locations with only one unique read mapped against the ones with at
least one mapped read. Low-complexity libraries might be due to not enough
recovered DNA, resulting in the same PCR-amplified products being
sequenced repeatedly. Generally, library complexity is related to antibody
quality, over cross-linking, sonication, or over PCR amplification.

(d) Background Signal: Another metric to be considered after mapping is the
signal to noise ratio (SNR) of the experiment. During the ChIP-Seq experi-
ment, most of the unbound DNA fragments are washed in the immunopre-
cipitation step and the library is built with protein–DNA-bound fragments.
However, due to nonspecific binding of molecules, non-useful fragments may
remain in the library and be sequenced. Such reads become generally spread in
the genome and are referred to as background noise and may result in false
positives. Noise may be computed from the control sample or modeled with a
Poisson or negative binomial distribution.
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(e) Peak Calling: One of the most important aims of ChIP-Seq experiments is
finding enriched regions in the genome in which more transcription factors
(ChIP-Seq tags) were bound to DNA through the number of mapped reads,
referred to as “peaks.” Several peak callers have been developed, and they
mostly differ from each other in the algorithms for signal smoothing and
background modeling. Models implemented for statistical assessment of peaks
range from Poisson (CSAR [112]), local Poisson (MACS [113]), negative
binomial (CisGenome [114]), and even some machine learning techniques,
such as hidden Markov models (HPeak [115]). Peak callers report a p value or
false discovery rate (FDR) as an enrichment metric which is greatly affected
by variables, such as sequencing depth, real number of binding sites, and the
statistical model used. There is no consensus on how to best estimate the best
FDR value for ChIP-Seq experiments. Table 1.3 lists the main characteristics
of some commonly used peak callers.

(f) Reproducibility: It is recommended to develop experiments with at least two
biological replicates for verifying reproducibility of reads and identified peaks
[107]. The reproducibility of reads can be computed with metrics such as
Pearson correlation coefficient of mapped read counts at each genomic site
[116].

(g) Downstream Analysis: Once significant and reproducible peaks have been
found, it is necessary to associate them with relevant genomic regions, such as
transcription start sites, gene promoters, and intergenic regions. It is common
to view the identified peaks and reads in a genome browser to examine regions
of interest. Generally, peaks are uploaded as BED or GFF file formats and
reads with WIG file format. HOMER or BEDTools may be used to calculate
distances from peaks to landmark regions (e.g., genes). The most common
downstream analysis of a ChIP-seq experiment is the discovery of binding
sequence motifs [117]. The read sequences of the top-scoring peaks can be
entered in FASTA format into motif discovery programs such as MEME [118]
resulting in motif discovery, enrichment, and location analysis.

The in vivo binding targets of TFs identified above can be further correlated with
the differentially expressed genes using Gene Set Enrichment Analysis (GSEA)
software [101, 123]. The factors that show enriched binding to the differentially
expressed genes can be selected for further genetic testing. Finally, to understand
the intricate relationship of the TFs that are differentially expressed, one can con-
struct a network among coregulated TFs and incorporate ChIP-Seq result into the
network. Thus, the underlying regulatory mechanism can be revealed, such as
autoregulation (where a factor interacts with its own promoter region), cross-factor
control (where pairs of factors directly bind each other’s promoter regions), and
positive/negative feedback loop.
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1.4 Integrated Study of Gene Expression
and Transcriptional Regulation—An Example:
Identification of Key Factors Regulating Self-renewal
and Differentiation in EML Hematopoietic Precursor
Cells by RNA-Seq and ChIP-Seq Analyses

1.4.1 The Multipotential EML Cell Line Is a Favorable
System to Study the Control of Early Hematopoietic
Self-renewal and Differentiation

The hematopoietic system has provided a leading model for stem cell studies, and
there is great interest in elucidating the mechanisms that control the decision of
HSC self-renewal and differentiation [124–130]. This switch is important for
understanding hematopoietic diseases and manipulating HSCs for therapeutic
purposes. However, because HSCs are currently unable to proliferate extensively
in vitro, this severely limits the types of biochemical analyses that can be per-
formed, and consequently, the mechanisms that control the decision between
early-stage HSC self-renewal and differentiation remain unclear [131].

The mouse (Mus musculus) EML (erythroid, myeloid, and lymphocytic) mul-
tipotential hematopoietic precursor cell is an ideal system for studying the molec-
ular control of early hematopoietic differentiation events. EML cells are derived
from mouse bone marrow cells and are cultured in the presence of stem cell factor
(SCF). These cells can be rederived or repeatedly cloned, and still retain their
multipotentiality [132–134]. The ability of EML cells to propagate extensively in
medium containing SCF makes them ideal for biochemical and genetic assays, as
well as for high-throughput functional screens [126, 135]. Phenotypically, EML
cells express many of the cell surface markers’ characteristic of hematopoietic
progenitor cells, including SCA1, CD34, and c-KIT. Functionally, when treated
with different growth factors, such as SCF, IL-3, GM-CSF, and EPO, EML cells
can differentiate into distinct cell lineages including B-lymphocyte, erythrocyte,
neutrophil, macrophage, mast cell, and megakaryocyte lineages [132].

Interestingly, in culture, the Lin-SCA+ CD34+ subpopulation of EML cells gives
rise to a mixed population containing similar numbers of self-renewing Lin-SCA+
CD34+ precursor cells and partially differentiated Lin-SCA-CD34− cells (hence-
forth referred to as CD34+ and CD34− cells, respectively) [136]. Although the two
populations resemble each other morphologically, only the CD34+ population
propagates in SCF-containing media, while the growth of CD34− cells requires the
cytokine IL-3 [136]. The closest normal analogs of CD34+ cells are short-term
(ST) HSC or multipotent progenitors (MPP). Similar to short-term (ST) HSC,
CD34+ cells are capable of self-renewal; like MPP, when treated with cytokines
such as IL-3, CD34+ cells can give rise to CD34− cells with more restricted
potential. A number of erythroid genes, such as α- and β-hemoglobin, Gata1, Epor
(erythropoietin receptor), and Eraf (erythroid associated factor), as well as mast cell
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proteases are expressed at a significantly higher level in the CD34− cell population
than in CD34+ cells [136, 137]. This indicates that the CD34− cells were, at min-
imum, differentiated into a state with prominent erythroid potential.

The ability of CD34+ cells to both differentiate and self-renew in suspension
culture, in the absence of any anatomical niche or other cell types, suggests that
CD34+ cells are regulated by a tightly controlled endogenous mechanism that
guides the generation of the variety and relative abundance of the cell types in
culture. Understanding the molecular events that regulate the transition between the
two types of putative precursors in the EML multipotent hematopoietic cell line will
give insights into the fundamental mechanisms of autonomous and balanced cell
fate choice available to stem cells and intermediate-stage cancer precursor cells
[126].

1.4.2 Mapping Transcription Regulatory Networks
and Identifying Master Regulators

The regulatory inputs and functional outputs of various downstream genes con-
stitute network-like architectures [138]. The linkage relationships in a complex
network provide causal clues about how a specific eukaryotic process is regulated at
the molecular level. Using these methods, regulatory networks have been con-
structed for the yeast cell cycle [139–141], yeast development [141, 142], and
human embryonic stem cell self-renewal [99]. For example, in the study of yeast
pseudohyphal development, the binding targets of six key transcription factors
(Ste12, Tec1, Sok2, Phd1, Mga1, and Flo8) were identified. The binding network
formed by these factors and their target genes were analyzed, and Mga1 and Phd1
were found to be the targets of many factors in the network. These factors were
called target hubs [142].

It appears that target hubs are especially likely to be “master regulators.” Master
regulators have been identified as transcription factors whose ectopic expression
alone is capable of activating a biological pathway. For example, MyoD is capable
of activating a terminal muscle differentiation program in primary cells and in
differentiated cell lines [143]. The target hubs Mga1 and Phd1 also appear to be
such “master regulators,” serving as key nodal points that orchestrate a large
number of regulatory inputs into a complex response [144–146]. Overexpression of
either of these target hub proteins under conditions that do not normally activate the
pseudohyphal response specifically induces this process. The distinct nature of the
master regulators allows us to use them as a switch to control cellular processes,
which has important therapeutic applications.
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1.4.3 Identifying Key Factors Regulating Self-renewal
and Differentiation

In order to identify the “switch” in cell self-renewal and differentiation, we con-
structed regulatory circuits controlling early hematopoietic differentiation by using
the gene expression and ChIP-Seq data. We examined transcription factors that
were significantly upregulated in CD34+ cells relative to CD34− cells using
RNA-Seq and found Tcf7 (also referred to by the symbol Tcf1) to be the most
strongly upregulated transcription factor (Fig. 1.3) [27].

The binding motifs of the TCF family of transcription factors are significantly
enriched among genes that are expressed at a higher level in CD34+ than in CD34−

Fig. 1.3 Heat map of
differentially expressed
transcription factors
(>1.5-fold) between
Lin-CD34+ cells and
Lin-CD34− cells. Two
replicates were shown for
each cell type. Red color
represents upregulated genes
and green color represents
downregulated genes. Genes
mentioned in the text are
labeled. CD34 and Ly6a
(Sca1) are cell surface
markers. Adapted from Wu
et al. [27]
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cells [27]. Therefore, we hypothesize that there are key regulators in transcriptional
regulatory networks that determine the choice between EML cell self-renewal and
differentiation, and TCF7 is one of the key transcription factors.

Subsequently, we identified in vivo binding targets of TCF7 using ChIP-Seq [27].
We found that TCF7 binds to its own promoter and the promoter of Runx1 (Aml1), a
developmental determinant in hematopoietic cells that is best known for its critical
role in haematological malignancies [147, 148] (Fig. 1.4). We showed that TCF7
and RUNX1 (AML1) bind to each other’s promoter regions, and a large number of
common target genes are bound by RUNX1 and TCF7. TCF7 is necessary for the
production of the short isoforms, but not the long isoforms of RUNX1, suggesting
that TCF7 and the short isoforms of RUNX1 function coordinately in regulation.
TCF7 knockdown experiments and Gene Set Enrichment Analyses suggest that
TCF7 plays a dual role in promoting the expression of genes characteristic of
self-renewing CD34+ cells while repressing genes activated in the partially differ-
entiated CD34− state. Finally, through network analysis, we found that TCF7 and
RUNX1 bind and regulate a network of upregulated transcription factors in the
CD34+ cells which characterize the self-renewal property of the CD34+ cells,
including Stat3, Sox4, F, Scl/Tal1, Etv6/Tel, Ppard, Smads, Cebpa, Gfi1, and Fli-1
(Fig. 1.5).

In summary, our results elucidated novel components and mechanisms that
control the renewal and differentiation of hematopoietic precursor cells. The elu-
cidation of the networks suggested potential master regulators that control early
hematopoietic differentiation. Genetic manipulation of the master regulators may
reveal how to induce hematopoietic precursor cell self-renewal in vitro or repro-
gram partially differentiated hematopoietic precursor cells back to a self-renewing
state. Increasing the long-term ability of human hematopoietic precursor cells to
reconstitute bone marrow is highly relevant for the therapy of leukemia and
regenerative medicine.

b Fig. 1.4 Identification of transcription factor-binding targets using ChIP sequencing. a Tcf7 is
bound by both itself and by RUNX1 (AML1). Peaks indicate ChIP sequencing signal. Input genomic
DNA serves as the negative control. The “binding sites” tracks (black vertical bars) show the
transcription factor-binding loci determined using the PeakSeq program (normalized against
genomic input DNA; q-value 0.001). Data are visualized in Integrated Genome Browser.
b Identification of evolutionarily conserved RUNX1-binding sites at Tcf7 promoter region using
REGULATORY VISTA. The graph shows conserved and aligned AML1/RUNX1 transcription
factor-binding sites between mouse and human genomes using a matrix similarity score of 1 (the mt
stringent). Two versions of the AML1-binding sites were found (AML1 andAML_Q6). The *ECRs:
Evolutionarily conserved regions are indicated by deep red blocks. The degree of conservation (50–
100 %) is indicated by the height of the peaks. Coding region is shown in blue, and UTR is shown in
yellow. c Runx1 promoter is bound by both TCF7 and itself. Adapted from Wu et al. [27]
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1.5 Future Prospective

The advancement of sequencing technology and computational analyses has greatly
increased our knowledge of gene transcription and regulation. However, many
challenges still remain. Difficulties in deciphering the anatomy of mammalian genes
exist at multiple levels, including topics discussed in later chapters, such as com-
plicated RNA, large amounts of intervening (noncoding) sequences, and the
imperfection of computational algorithms. Additional issues include overlapping
reading frames of protein-coding genes, antisense transcriptional units, the situation
where the exon of one gene is encoded within the intron of another, and pseudo-
genes [149–151]. It will be impossible to find all genes and regulatory elements
solely by analyzing genomic nucleotide sequences. Therefore, the eventual solution
of annotation lies in large-scale systematic functional genomics experiments and
conservation information from cross-genome comparisons [152].

Fig. 1.5 Transcription factors TCF7 together with RUNX1 regulate a transcriptional regulatory
network. The network involved in HSC establishment and development (red nodes), cell growth
control (blue nodes), and multipotency (orange nodes) was identified among upregulated genes in
CD34+ cells (twofold) and displayed by Ingenuity Pathway Analysis software (IPA). Gray lines
are IPA-annotated relations based on the literature. Pink lines indicate TCF7 or RUNX1 binding to
gene targets that were identified by our ChIP-Seq experiments. The shades of green color of the
nodes in the network indicate the level of upregulation in CD34+ cells. Sox4, Mpo, Tal1, and
Ppard were TCF7-binding targets that were added to the network manually because of their
obvious interesting function in hematopoiesis and self-renewal. All other nodes were from default
IPA analysis. Direct relations were indicated by solid line or arrows. Indirect relations were
indicated by dotted line. Please see Ingenuity Pathway Analysis software (IPA, https://analysis.
ingenuity.com/) Online Help section for detailed definitions. Adapted from Wu et al [27]
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Additionally, we should always take caution when interpreting data from a
single kind of “omic” approach. For example, we cannot immediately conclude that
a protein is expressed at a higher level from an upregulated signal by using
microarray or RNA-Seq alone. Integrating data obtained from multiple distinct
approaches will make conclusions more reliable. Theoretically, as multiple “omic”
functional maps are overlaid, genes involved in the same process will cocluster in
various maps. There are many challenges ahead in developing statistical and
computational strategies for integrating these data, for improving annotation, and
for making them available to the scientific community. The long-term goal is to
understand the intricate and dynamic functional relationships between all compo-
nents involved in particular biological processes as a whole, in order to be able to
predict the potential behaviors of these systems in response to perturbations and
thus be able to restore. This approach will provide answers for treating diseases.
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