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Preface

This volume focuses on the modern computational and statistical tools for gene
expression and regulation research to improve the understanding prognosis, diag-
nostics, prediction of severity, and therapies for human diseases. The recent
advancements of microarray and next-generation sequencing technologies made it
possible to detect gene expression at a genome-wide scale, which has greatly
facilitated the identification of pathophysiological changes in various diseases. How
are the global gene expression profiles regulated and what are the mechanisms
underlying these changes? How are the signaling pathways altered under patho-
logical conditions? How do the various regulatory molecules interact in a network
to control disease states? How does the different genetic makeup of individuals
affect the disease perceptibility and treatment outcome? These are fundamental
questions for finding cures for complex human diseases and developing personal-
ized medicine that is the future of health care. In this volume, we introduce the
readers to some of state-of-the-art technologies as well as computational and sta-
tistical tools for translational bioinformatics in the areas of gene transcription and
regulation, including the tools for next-generation sequencing analyses, alternative
spicing, the modeling of signaling pathways, network analyses in predicting disease
genes, as well as protein and gene expression data integration in complex human
diseases. This volume is particularly suitable for researchers, physicians, or students
in the field of molecular, clinical biology and bioinformatics. This exciting volume
would not be possible without the expertise and dedication of all the contributing
authors. Finally, I would like to dedicate this volume to my family for their
unconditional love and support.

Houston, TX Jiaqian Wu
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Chapter 1
The Analyses of Global Gene Expression
and Transcription Factor Regulation

Raquel Cuevas Diaz Duran, Sudheer Menon and Jiaqian Wu

Abstract A major challenge in molecular cell biology lies in understanding how
the same genome can give rise to different cell types and how gene expression is
regulated. Gene expression and regulation studies focus on the abundance and
structure of transcripts as well as how RNA production is controlled.
High-throughput sequencing technologies such as RNA sequencing have allowed
more accurate profiling of the transcriptome and the rapid identification of differ-
entially expressed genes among samples. The regulation of gene expression is
orchestrated by transcription factors. The development of ChIP sequencing assay
has made it possible to comprehensively identify transcription factor-binding sites
in vivo, allowing rapid unraveling of signaling pathways. The following chapter
described the common methods used in studying global gene expression and
transcription factor regulation with a special emphasis on bioinformatic analyses.
The final section illustrates an example of an integrated gene expression and reg-
ulation study for identifying key factors regulating self-renewal and differentiation
in hematopoietic precursor cells.

Keywords RNA sequencing � ChIP sequencing � Transcription factors �
Transcriptome
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1.1 Introduction

Gene transcription and regulation are important areas of study because they underlie
many biological processes and phenotypic variations in living organisms. Aberrant
gene expression and regulation lead to diseases. The transcriptome consists of all
transcripts synthesized in an organism including protein-coding, noncoding, alter-
natively spliced, polymorphic, sense, antisense, and edited RNAs. Transcriptome
data analyses, namely the analyses of gene expression levels and structures, are
essential for interpreting the functional elements of the genome and understanding
the molecular constituents of cells and tissues. The regulation of gene expression is
a basic mechanism through which RNA production is coordinated, and it controls
important events such as development, homeostasis, and responses to environ-
mental stimuli. Transcription factors, a type of DNA-binding proteins which rec-
ognize specific sequences, and other proteins work together through a variety of
mechanisms to regulate gene transcription.

In this volume, different aspects regarding the analyses of gene transcription and
regulation are described in individual chapters. In this chapter, we focus on gene
expression level analyses by RNA sequencing (RNA-Seq) and transcription factor
regulation by chromatin immunoprecipitation coupled with sequencing (ChIP-Seq).
First, we review some useful methods developed in the past for characterizing
global gene transcription.

1.2 Methods for Characterizing Global Gene
Transcription

1.2.1 EST Sequencing

It is widely recognized that expressed sequence tag (EST) sequencing has provided
an invaluable resource for identification of novel human genes [1, 2]. EST clus-
tering methods allow EST to be systematically mapped, so that the information is
readily integrated into the positional cloning project UniGene database (http://
www.ncbi.nlm.nih.gov/UniGene). Because ESTs are from single-pass sequencing,
they have to be carefully analyzed to remove genomic DNA and other contami-
nating sequences, such as mitochondrial, ribosomal, vector, and bacterial sequen-
ces. However, EST databases still contain a significant portion of (estimated
5–10 %) artifact sequences such as intronic or intergenic DNA [3, 4]. This is likely
due to the presence of heterogeneous nuclear RNA (hnRNA) in RNA samples
where EST libraries were generated. Moreover, it is difficult to understand the
relationships among short EST sequences. EST clustering may confuse genes
sharing similarities and alternatively spliced transcripts. Additionally, because of
their short length and generally low quality, ESTs only provide limited information
about gene structure and function [1]. Since EST sequencing is biased toward genes
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with high expression levels, the transcripts which are tissue-specific or
low-abundant are less likely to be disclosed by EST sequencing. Therefore,
methods that are less biased, more accurate, and sensitive are needed [5].

1.2.2 SAGE

The serial analysis of gene expression, or SAGE [6], is another technique used to
quantify gene expression levels. SAGE method is designed to add a 9–14 bp tag
adjacent to an NlaIII restriction site at the gene’s 3′ end. It measures transcript levels
by automatically sequencing and counting each SAGE tag. The expression level of
SAGE tags is analyzed and accessioned through the GEO repository. Additionally,
an anatomic viewer “SAGE Genie” makes it easy to search and visualize the
transcription level in different tissues and cell types of the human body (http://cgap.
nci.nih.gov/SAGE). However, SAGE is a high-throughput technology which
measures not the expression level of a gene, but a “tag” that represents a transcript.
Due to alternative transcription, sequencing errors, and other potential effectors,
sometimes two or more genes share the same tag or one gene may have more than
one tag. Thus, the potential loss of fidelity should be taken into consideration.

Long serial analysis of gene expression (LongSAGE) is an adaptation of the
original SAGE approach that can be used to rapidly identify novel genes and exons
[7]. Instead of using an NlaIII restriction site, LongSAGE uses a modification of
longer tags (21 bp) added to a different restriction site (MmeI). The 21 bp tags
include a constant 4 bp restriction site sequence where the transcript was cleaved
and a unique 17 bp adjacent sequence of each transcript. The advantage of
LongSAGE is the uniqueness of each tag in the human genome, which is not
guaranteed by 14 bp tags. Sequencing tag concatamers and searching for the
localization of tags in the genome help to verify predicted genes and to identity
novel transcripts. LongSAGE has been reported to be at least an order of magnitude
more efficient than EST sequencing [8].

1.2.3 Full-Length CDNA Sequencing Projects

In order to better access the biological information of genes including location of
open reading frames, 5′ and 3′ untranslated regions, and splicing patterns,
full-length and high-quality sequences of cDNAs are needed. cDNA sequencing is
a valuable resource not only for characterizing the structure and function of known
genes, but also for discovering novel genes. Especially with the completion of the
human genome, the comparisons of the full-length and high-quality cDNA
sequences with genomes are especially useful in identifying alternative gene
structure and better understanding transcriptome composition during physiological
and disease processes. Moreover, full-length cDNA sequencing projects paved the
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way for proteomic study by identifying new enzymes and proteins, generating
physical clones for expression profiling, testing protein interactions, and generating
hypotheses for biochemical studies.

There have been multiple efforts that aim at capturing the sequence of full-length
clones which can be directly obtained from cDNA libraries generated from mam-
mals and other selected organisms, such as zebra fish, drosophila, and
Caenorhabditis elegans, mouse, and human [9–15]. In particular, NIH Mammalian
Gene Collection project, utilizing large-scale RT-PCR-based cloning methods,
provided thousands of clones of full-length human and mouse open reading frames
[16–18].

1.2.4 Microarrays

DNA microarray is a hybridization-based technology which enables researchers to
analyze the expression of large number of genes in a single reaction. DNA
microarray technology was developed in the early 1990s. The technical advance-
ment of this methodology is to manufacture slides or chips with thousands of
nucleic acid probes immobilized on a small surface area. DNA probes are con-
formed of several specific DNA sequences of genes to which cDNA samples are
hybridized. Samples, also referred to as targets, may be obtained from cells in
different biological or experimental conditions, tissues, organisms, or develop-
mental stages. Probe–target hybridization is quantified by fluorescent labeling. The
signal intensities captured as images after scanning are converted into a data matrix
and processed using software specific to the application of the array to determine
relative abundance of specific cDNA sequences from the samples. The DNA
microarray is an effective tool to investigate the structure and activity of genes at a
genome-wide scale, and it helps to elucidate the molecular mechanisms underlying
normal and dysfunctional biological processes [19–24].

1.2.5 RNA-Seq

Even though microarray technology has provided valuable insights into gene
function throughout the last decade, it suffers from limitations in resolution,
dynamic range, and accuracy. The recently developed RNA-Seq methodology uses
next-generation sequencing (NGS) to sequence cDNAs generated from RNA
samples producing millions of short reads. The number of reads mapped within a
genomic feature of interest (such as a gene or an exon) can be used as a mea-
surement of the feature’s abundance in the analyzed sample. Typical RNA-Seq
procedure is depicted in Fig. 1.1. Briefly, RNAs are converted to a library of cDNA
fragments with adaptors attached to one or both ends. The molecules, with or
without amplification, are then sequenced with high-throughput technology, and
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short sequences from one end or both ends are obtained. The reads are typically
30–400 bp, depending on the DNA sequencing technology used. There are various
high-throughput sequencing platforms available for RNA-Seq such as Illumina,
Applied Biosystems SOLiD, and Roche 454 Life Science systems. The total reads
obtained after sequencing are either aligned to a reference genome or transcriptome,
or assembled de novo without genomic sequence guidance to create a genome-scale
transcription map providing both transcriptional structure and expression level for
each gene.

RNA-Seq has several advantages over microarrays [25–27]. First, sequencing
technology is much more sensitive and quantitative than microarrays and it can
provide a large dynamic range of detection (>9000-fold) [28]. Additionally,
sequencing data are more specific and have less background. Moreover, sequencing
experiments do not depend on the limited features of tiled microarrays and can

Fig. 1.1 RNA-Seq workflow. RNA-Seq begins with isolation of high-quality total RNA followed
by conversion into cDNA, fragmentation, and adaptor ligation. Fragmented cDNA is used to
construct a library for sequencing. Raw data, consisting of reads of a defined length, are
preprocessed according to a set of quality control metrics, such as base quality, minimum read
length, untrimmed adaptors, and sequence contamination. After filtering and trimming, reads are
aligned to a reference genome or transcriptome depending on the objective of the experiment and
the nature of the samples. Subsequently aligned reads are assembled. RNA-Seq assembly involves
merging reads into larger contiguous sequences based on similarity. After assembly, reads are
quantified in order to measure transcriptional activity. Read counts are generally computed in
RPKM of FPKM in order to perform further downstream analysis, such as differential expression,
pathway and gene set overrepresentation analysis, and interaction networks

1 The Analyses of Global Gene Expression … 5



therefore be used to interrogate any location in the genome and to detect and
quantify the expression of previously unknown transcripts and splicing isoforms.
Finally, sequencing is not limited by array hybridization chemistry, such as melting
temperature, cross-hybridization, and secondary structure concerns.

1.2.5.1 Data Analysis General Workflow

RNA-Seq experiments result in millions of short sequence reads which require
computational methods for comprehensive transcriptome characterization and
quantification. Steps for data analysis vary according to the desired biological
problem to be assessed and to the availability of reference genome or transcriptome
data. A generic overview of the routine analyses performed is included in Fig. 1.1.
The main tasks of data analysis are read mapping also referred to as alignment,
transcriptome assembly, expression quantification, and downstream applications.
Steps for data analysis, although it is sequential, may be performed with different
computational tools and algorithms which require specific data formats and external
files. It is desirable to automate the multiple data analysis steps in a pipeline.
A pipeline is a reusable script with defined inputs, outputs, and parameters for each
processing step. Several software platforms which collect different RNA-Seq
analysis tools for each task have been developed such as PRADA [29], Tuxedo
[30], MAP-R-SEQ [31], and GENE-Counter [32]. However, pipelines may be
custom-built by users, selecting the most appropriate tools according to experi-
mental data and desired downstream analysis [33]. The following subsections
describe the different RNA-Seq data analysis tasks.

1.2.5.2 Quality Control and Preprocessing

The first step in data analysis is quality control. Accuracy in library preparation and
sequencing steps contribute to the quality of reads, which if overseen may lead to
erroneous mappings, misassembles, and false expression estimates. The quality
control should include the assessment of read length, GC content, sequence com-
plexity, sequence duplication, polymerase chain reaction artifacts, untrimmed
adapters, low-confidence bases, 3′/5′ positional bias, sequence contamination, and
fragment biases [34]. Quality control metrics are obtained directly from raw reads.
Raw reads are typically in FASTQ format, text-based files which contain a
sequence identifier, a nucleotide sequence, and its corresponding quality score [35].
A brief overview of the most important quality control processes to be performed is
described next.

(a) Base Quality: Since RNA-Seq technologies rely on complex interactions
between chemistry, hardware, and optical sensors, sequencing platforms
provide metrics for assessing error probabilities. Base quality is measured by
computing the confidence on base calling, the process by which the sequencer
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analyzes colorimetric sensor signals to predict individual bases. Base calling
quality values are expressed in Phred scale, an error probability log trans-
formation which has the advantage of converting low error probabilities to
high-quality values and vice versa [36]. Quality values q are calculated for
each base as:

q ¼ �10 log10ðpÞ ð4:1Þ

where p is the estimated error probability of a base call. Base quality values
are encoded with ASCII characters with the sequence data in FASTQ format
[35]. Typically, good reads should have base qualities greater than 20;
however, this threshold depends on the platform used. It is important to
inspect the reads’ base quality distribution to detect regions of poor base
quality, which may be filtered or trimmed preserving the order of reads, thus
increasing mapping efficiency. This process is also referred to as quality
trimming and will be discussed next.

(b) Filtering and Trimming: Reads should be inspected for the presence of
sequencing adapters, tags, and contaminating sequences, which should be
removed before quality control processing. Adapter sequences and tags used
during library construction should be removed prior to mapping.
Contaminating sequences such as DNA, rRNA, or sequences from other
organisms or vectors should be filtered out.
Additionally, reads should be filtered according to mean base quality or to the
proportion of bases whose quality is below a user-defined threshold. There is
no consensus on the optimal base quality threshold for trimming, and it is
rather a trade-off between mapping efficiency and coverage. Software for
filtering generally outputs synchronized filtered reads. When low-quality bases
are located at the ends of reads, trimming is a better option than filtering. The
basic principle of read trimming is to assess base quality keeping the longest
possible high-quality read segments. Trimming with respect to base quality
may be performed using running sum algorithms or sliding window-based
algorithms. Running sum algorithms basically find the summation of the
differences between all base quality values against a quality threshold, and
sequences are trimmed at the base that makes the running sum minimum.
When analyzing reads with a sliding window, the user defines a window size
and a mean base quality threshold. Depending on the tool used, the window
may slide from the 5′ or the 3′ ends of reads. Sliding the window from the 5′
end will trim the read until the window’s quality lies below a threshold,
maintaining the beginning of the sequence, whereas sliding from 3′ end will
trim until a passing quality window is encountered. An excellent evaluation on
the performance of several trimming tools was published by Del Fabbro et al.
[37]. Some common tools used for trimming are Trimmomatic [38], Cutadapt
[39], PRINSEQ [34], and ConDeTri [40].
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Reads with a high frequency of ambiguous bases, bases not identified during
sequencing, should be filtered out since they can lead to erroneous mapping and
misassemblies. Low-complexity sequences (homopolymers, di-trinucleotides)
will also result in mapping errors and should therefore be trimmed.

(c) GC Content Determination: Another important metric that should be consid-
ered is reads’ mean GC content, which if plotted should follow a normal
distribution centered on the organism’s normal content. Variations on the GC
content might be due to the PCR amplification process and therefore may be
sample specific. An approach to reduce GC content systematic bias is con-
ditional quantile normalization, a technique in which the distribution of read
counts is modified by estimating quantiles obtained with a median regression
on a subset of genes [41].

(d) Minimum Read Length: The distribution of read lengths should be verified
after trimming since reads may have ended up as very short fragments, which
become difficult for mapping. The minimum read length is a user-defined
variable, and its value depends on desired downstream applications.

(e) Fragment Biases: RNA fragmentation creates segments whose starting points
were assumed to be located uniformly at random within a transcript. However,
it has been demonstrated that there are both positional [42] and
sequence-specific [43, 44] biases derived from fragmentation and reverse
transcription. Positional bias describes the fact that reads’ starting positions are
non-uniformly distributed since they are preferentially located toward the
transcripts’ boundaries. Sequence-specific bias refers to the phenomenon by
which the sequences at the reads’ boundaries, such as the random hexamer
primers used for reverse transcription priming, introduce biases in nucleotide
composition and influence the likelihood of being sequenced. Furthermore,
fragment length also generates bias since long transcripts result in more reads
mapping to them than smaller transcripts. Thereby, for genes with equal levels
of expression, the long genes will be overrepresented, distorting the relative
expression among genes [45]. Since RNA-Seq read counts are proportional to
transcript abundances, expression estimates should be made after fragment
bias correction. An effective approach for fragment bias correction has been
implemented in the Cufflinks [46] transcriptome assembly and differential
expression RNA-Seq analysis tool. The fragment bias correction was based on
an algorithm which learns the read sequences and models them as a likelihood
function involving abundance and bias parameters such as the probability of
finding a fragment with a specific length in a given position [47]. In this
manner, bias and expression estimation are performed simultaneously.

1.2.5.3 Read Alignment

In order to determine transcript abundance from reads, it is necessary to align or
map reads to a previously assembled reference genome or transcriptome to deter-
mine the read’s origin. Mapping to a reference genome is more common since it
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increases the potential information which may be obtained (e.g., identification of
novel transcripts and genes) and because many transcriptomes are incomplete.
Mapping is a challenging task since RNA-Seq reads are relatively short and they
may match non-contiguous regions of the genome due to splice junctions.
Furthermore, alignment tools must cope with mismatches and indels caused by
genomic variation and sequencing errors. Many alignment tools have been devel-
oped. A comprehensive list of alignment tools and their properties was initially
published by Fonseca et al. [48] and is kept updated on the Web [49]. A list of some
common aligners and their main properties is included in Table 1.1.

The main consideration to be addressed when selecting an aligner is whether
RNA-Seq reads span splice junctions. As depicted in Fig. 1.1, unspliced or con-
tiguous alignment tools such as BWA [50], Bowtie [51], and Bowtie2 [52] are
useful when mapping reads to a transcriptome, when sequencing microRNAs, or
when the organism under study has no intronic regions. Unspliced aligners are thus
limited to identifying known exons and do not allow for new splicing event
identification. Spliced alignment tools are used when mapping to reference gen-
omes without relying on previously known splice sites. Some of the most com-
monly used tools for spliced alignment are TopHat [53], TopHat2 [54], Palmapper
[55], and STAR [56].

Alignment to a reference genome starts with indexing, the process with which
auxiliary structures called indices are created for either the reference sequence or
the sequenced reads to allow for faster queries. Indexing the reference genome is
more time efficient and thus is used by most alignment tools. Alignment algorithms
used for sequencing data analysis are mainly classified into hash tables and suffix
trees according to the property of the index used. Hash table indexing was first
introduced as an alignment tool by BLAST [67], using a seed and extend approach.
In hash table indexing, reads are divided into short k-mer subsequences called
“seeds” and stored in a hash table. The algorithm assumes that at least one “seed” in
a read will match the reference. Once a “seed” is aligned, it is extended using more
sensitive algorithms such as Smith–Waterman [68] or Needleman–Wunsch [69].
Modifications to hash table indexing algorithms have been performed, and they
have been implemented in Novoalign [59], MAQ [65], SHRiMP2 [70], and BFAST
[57], among other alignment tools. Suffix trees, on the other hand, are based on the
premise that an inexact matching problem may be converted into an exact matching
task by constructing a tree (an ordered tree data structure) with all the possible
substrings that make up a sequence. The suffix tree data structure enables fast
substring searches regardless of sequence size [71]. Among different suffix tree
algorithms, one of the most efficient is the FM-index [72] which is based on the
Burrows–Wheeler transform (BWT) [73]. BWT is a reversible permutation of
characters in a string, and FM-indexing addresses permutations (nodes in a tree)
constantly using a backward search. FM-index and BWT, both originally designed
for data compression, have been successfully implemented for storing reference
genomes and performing rapid queries.
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Reference genome indexes may be built or downloaded as GTF/GFF annotation
files most commonly from Ensembl [74] and Illumina iGenomes Web sites [75].
GTF files must be selected carefully using a standard assembly so that chromosome
names, gene identifiers, transcription starting sites, and all genomic annotations
match between experiments.

Bowtie and Bowtie2 are two of the most efficient unspliced alignment tools
because of their low memory requirements and high speed; they both implement an
FM-indexing algorithm for achieving ultra-fast alignments. However, neither of
these tools are suitable for performing spliced alignments since they cannot align
reads when there are large gaps (introns). TopHat addresses spliced alignment
limitations by performing a multistep alignment process and using Bowtie as an
alignment engine. In the first step, reads are mapped to a reference genome, setting
aside reads which were not aligned. In the next step, reads that could not be mapped
are broken down into segments and remapped. Finally, reads whose segments were
mapped into the same user-defined intronic region are assembled and mapped to
that genomic region in an attempt to find splice sites. With this approach, TopHat
identifies splice sites without previous splice site annotations and finds novel
splicing events [53].

RNA-Seq alignment results are output as SAM/BAM files, and they generally
need some further processing such as conversion, sorting, indexing, or merging.
SAMTools, implemented in C and Java, is a library for parsing and manipulating
alignments prior to downstream analysis [76]. Visualizing aligned reads in a
genomic context is recommended for assessing exon coverage, spotting indels and
SNPs, displaying splice junctions, identifying novel transcripts, etc. Some available
tools for visualization of alignment files are Integrative Genomics Viewer
(IGV) [77], Savant [78], and Integrated Genome Browser (IGB) [79].

1.2.5.4 Transcriptome Assembly

In order to quantify gene expression levels from aligned reads, it is necessary to
identify which gene isoform generated each read. Therefore, the main aim of
transcript assembly is to reconstruct complete transcripts from small overlapping
fragments. There are several methods for transcriptome reconstruction, and they can
be categorized into genome-guided and genome-independent methods. In
genome-guided methods, reads are first mapped to a reference genome and a
splicing or exon graph is then constructed for each gene to identify all possible
isoforms according to exon combinations. In the splicing graph, each node repre-
sents an exon and each connection is an exon junction. Paths that are not evidenced
by RNA-Seq reads are eliminated. There are different graph topologies which are
implemented to best describe exon combinations for building transcript isoforms.
One of the most commonly used tools for genome-guided transcript assembly is
Cufflinks, which connects aligned reads based on the location of their spliced
alignments [46].

12 R. Cuevas Diaz Duran et al.



Genome-independent transcriptome reconstruction aims at finding as many long
contiguous segments as possible from an assembly graph. The most common
strategy is to build a de Bruijn graph, which models overlapped sequence data as a
set of k-mers (k consecutive nucleotides) and their connections [80–82]. Sequences
are represented as paths, and branches not supported by reads are eliminated;
remaining paths are considered transcript variants. The length of the k-mer has an
effect on the complexity of the graph, and, although it is conceptually simple, de
Bruijn reconstruction approaches have complications such as finding the balance
between sensitivity and graph complexity [83]. The value of k must be smaller than
the read length. However, if k is too small, the graph will have excessive con-
nections and will be very sensitive to sequencing errors. If k is too large, there must
be enough data to make the graph connected. To resolve such issues, several
assemblies should be performed with variable values of k. Some common de novo
assemblers based on de Bruijn graphs are ABySS [84], Trinity [85], Velvet [82],
and Oases [86].

1.2.5.5 Expression Quantification

Expression quantification may be performed with respect to transcripts or to genes.
Gene expression, the sum of the expression of all its isoforms, is computed by
counting reads per gene according to the reference genome’s annotation used for
mapping. Read counts need to be normalized due to variability introduced by read
length bias [45, 87] and due to fluctuations in the number of reads per run [88].
Quantification tools generally output read counts in raw counts, reads per kilobase
of transcript per million mapped reads (RPKM), or fragments per kilobase of
transcript per million mapped reads (FPKM). RPKM measure normalizes read
counts according to the length and to the number of mapped reads per sample [88].
FPKM is used for normalization of paired-end reads since it incorporates depen-
dency estimation [46]. In statistical dependence between two variables (paired-end
reads), the levels of one of the variables vary in an exactly determined way with
respect to levels of the other variable. All quantification tools are taken as input read
alignments in SAM/BAM formats and their reference genome annotation files in
GTF/GFF or BED format. They differ in how they handle multimapping reads,
which affects expression quantification accuracy [46, 89, 90]. To deal with mapping
uncertainty, tools such as Cufflinks use a maximum likelihood function which
works by dividing multimapping reads probabilistically according to the abundance
of genes they were mapped to [91].

1.2.5.6 Differential Expression Analysis

Often, it is necessary to compare the expression levels of genes or other genomic
features between different samples or biological conditions; this is referred to as
differential expression analysis. Comparisons are typically performed in a

1 The Analyses of Global Gene Expression … 13



univariate way since it is not possible to fit a multivariate statistical model due to
the number of samples being much less than the number of genes.

The ability of detecting differential expression in RNA-Seq experiments depends
on the sequencing depth, gene expression, and even on the gene’s length, as pre-
viously mentioned. A difference in gene expression between two groups is sig-
nificant only if it is greater than the variability within the group. For estimating
variability, biological replicates should be considered. The number of replicates to
be used depends on the experiment and the statistical power desired. The purpose of
replication is to estimate the variability between and within groups, which is
important for hypothesis testing. The set of standards, guidelines, and best practices
for RNA-Seq published by the ENCODE Consortium [92] states that two or more
biological replicates are sufficient as long as the Pearson correlation of gene
expression between them lies between 0.92 and 0.98.

Since RNA-Seq experiments are based on read counts, the initial methods for
differential analysis modeled reads as Poisson distributions [46, 87]. However, due
to biological variability and the limited number of samples, methods that model
count variability as a nonlinear function of mean counts with parametric approaches
(e.g., normal, negative binomial distributions) have become popular. Commonly
used tools such as DESeq [93], edgeR [94], and Cuffdiff [46] use a negative
binomial distribution for modeling RNA-Seq counts. Recently, it has been sug-
gested that RNA-Seq count data may be transformed to apply normal-based
microarray-like statistical methods as in the case of Limma software [95]. RNA-Seq
data must be normalized transforming counts to have similar empirical distributions
across all samples in order to enable comparisons between samples and genes. This
step is executed internally by differential expression analysis tools. Table 1.2 makes
a comparison of some commonly used differential expression analysis tools.
A differential expression analysis should produce a ranked list of differentially
expressed genes to be used in downstream applications.

1.2.5.7 Downstream Analysis

Interpretation, visualization, and summarization of differential expression results
are important for downstream interpretations. Heat maps and PCA plots are com-
mon for finding clusters of differentially expressed genes.

It is of interest to correlate differentially expressed genes to gene sets repre-
senting functions, categories, pathways, and others incorporating existing biological
knowledge into the analysis. An overrepresentation analysis requires a list of dif-
ferentially expressed genes which are tested statistically for enrichment in gene sets
such as gene ontology (GO) categories, Kyoto Encyclopedia of Genes and
Genomes (KEGG), Reactome pathways, and many other databases [96, 97].

14 R. Cuevas Diaz Duran et al.



1.3 Characterizing Transcription Factor Regulation
by ChIP-chip and ChIP-Seq Methods

The mapping of binding sites for transcription factors (TF), the core transcriptional
machinery, and other DNA-binding proteins is essential for understanding gene
regulation. Regulatory networks formed by transcription factors and the coordi-
nated activation of their specific target genes play a major role in controlling many
cellular processes. The traditional way of constructing gene regulatory networks,
via sequential analysis of one or a few genes, is time consuming and labor inten-
sive. Recently, the development of ChIP-chip or ChIP-Seq technology has made it
possible to comprehensively identify most in vivo target genes of a given TF at a
genome-wide scale, allowing rapid unraveling of signaling pathways [99–101].

In ChIP experiments, TFs are first cross-linked to DNA by treatment with
formaldehyde, and chromatin is fragmented to *300–500 bp fragments. TF-bound
chromatins are then immunoprecipitated with specific antibody. Next, the cross-link
is reversed by heating to release the precipitated DNA. Immunoprecipitated DNA
fragments are hybridized to a microarray (ChIP-chip) or sequenced to generate

Table 1.2 Overview of common tools for differential expression analysis

Properties Cuffdiff DESeq edgeR baySeq Limma

Language C++ R R R R

Operating system Unix-based
OS

Unix-based
OS,
Windows

Unix-based
OS,
Windows

Unix-based
OS, Windows

Unix-based
OS, Windows

Data
normalization

Geometric
mean,
quartile,
FPKM

Scaling Model-based
global
scaling
(TMM)

Scaling,
quantile, TMM

Quantile
normalization,
loess
regression,
TMM

Read count
distribution

Beta
negative
binomial
distribution

Negative
binomial
distribution

Negative
binomial
distribution

Negative
binomial
distribution

Voom
transformation
of counts into a
log distribution

Differential
expression test

t-test Fisher’s
exact test

Fisher’s
exact test

Empirical
Bayes method
to obtain
posterior
probabilities

Empirical
Bayes method

False discovery
rate
(FDR) estimation
method

Benjamini–
Hochberg

Benjamini–
Hochberg

Benjamini–
Hochberg

Bayesian Benjamini–
Hochberg

Reference [30] [93] [94] [98] [95]

TMM Trimmed mean of M values

1 The Analyses of Global Gene Expression … 15



millions of short sequence tags (ChIP-Seq). Various arrays have been used for
ChIP-chip analysis, for example, proximal promoter arrays where about *1 kb
PCR products encompassing transcription start sites are used as probes; arrays
composed of CpG islands amplified by PCR; large promoter arrays which consist of
tiling oligonucleotides of promoter sequences extending up to several kb upstream
of the transcription start site; and genome tiling arrays in which a non-repetitive
sequence from entire chromosomes is reconstituted using oligonucleotides. As
chromosomal sequence is densely covered, higher resolution can be achieved with
genome tiling microarrays.

As described previously, sequencing offers various advantages over microarray
methods; thus, it has become the predominant technique for profiling genome-wide
protein–DNA interactions, chromosomal proteins, and histone marks in vivo [102–
104]. For example, the ChIP-Seq assays have higher resolution, lower noise, and
better genomic coverage when compared to ChIP-chip assays. Therefore, ChIP-Seq
provides more precise mapping of protein-binding sites and sequence motif iden-
tification [103, 105]. Several factors influencing ChIP-Seq fidelity need to be
addressed.

1.3.1 Analysis of ChIP-Seq Data

The typical output of a ChIP-Seq experiment is a list of millions of short sequence
reads. Processing such reads requires filtering and cleaning, mapping to a reference
genome, and identification of peak regions. Once significant peaks have been
identified, they must be examined, annotated, and associated to a genomic region.
The final result is the identification of a transcription factor’s motif and binding
sites. A general ChIP-Seq workflow is shown in Fig. 1.2. The main issues to
consider when analyzing ChIP-Seq data are the following:

(a) Control Sample: ChIP-Seq experiments are prone to artifacts due to effects of
DNA shearing and repetitive DNA sequences. DNA shearing during sonica-
tion is not uniform because open chromatin regions are fragmented more
easily, thus resulting in an uneven distribution of reads. Repetitive DNA
sequences may seem enriched when the number of repeats is not considered in
calculations. Therefore, the use of a control sample is recommended for peak
comparison and significance assessment. Three commonly used control
samples are as follows: DNA prior to immunoprecipitation, immunoprecipi-
tated DNA without an antibody, and immunoprecipitated DNA using a
non-DNA-binding antibody (e.g., anti-IgG antibody). There is no consensus
on which is the most appropriate control.

(b) Sequencing Depth: For a ChIP-Seq analysis to be effective, sufficient genomic
coverage, referred to as sequencing depth, is important. However, sequencing

16 R. Cuevas Diaz Duran et al.



depth is a potential source of bias since at high sequencing depths, open
chromatin regions generate redundant reads which represent false positives
[106]. The choice of sequencing depth depends on the genome’s size and on
the expected number and size of the transcription factor-binding sites.
Transcription factors generate highly localized ChIP-Seq signals, and for
mammalian genomes, there are thousands of binding sites. For mammalian
transcription factors, at least 20 million uniquely mapped reads are currently

Fig. 1.2 ChIP-Seq workflow. ChIP-Seq experiments allow in vivo determination of where
proteins, such as transcription factors, bind to the genome. Bound proteins are cross-linked to
chromatin, then fragmented, and immunoprecipitated. ChIP-enriched DNA fragments are used for
library construction and sequencing. Reads are filtered according to base quality. Test and control
sequences are used for computational mapping to identify genomic locations of bound DNA
transcription factors, unveiling potential protein–DNA interactions. Mapped reads are converted
into an integer count of “tags.” As illustrated, different tools may be used for finding statistically
relevant peaks. Finally, the peaks can be visualized and mapped to nearby genes
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used for most experiments [107]. For histone marks or proteins with more
binding sites such as RNA polymerase II, a higher sequencing depth (e.g., 60
million reads) is needed. To verify whether the sequencing depth was
appropriate, a saturation analysis is recommended. Saturation analysis consists
of increasing the number of randomly selected reads during read mapping and
peak calling for verifying the consistency of peaks called. Saturation analyses
are included in some peak caller tools such as SPP [108].

(c) Quality Control Filtering and Read Mapping: Like RNA-Seq data, ChIP-Seq
reads must be preprocessed before mapping in order to identify possible
sequencing errors and biases. The first filtering criterion is the base calling
confidence, computed with the Phred quality score for each sequence tag.
Low-quality reads should be filtered out and low base quality read ends
trimmed. Tools for filtering, trimming, and mapping ChIP-Seq data are the
same as for RNA-Seq. After filtering and trimming, the reads are aligned.
Alignment/mapping of ChIP-Seq reads is less complex than RNA-Seq reads
since large gaps corresponding to splice junctions will not be present.
ChIP-Seq aligners generally consider mismatches due to sequencing errors,
single nucleotide polymorphisms, and indels. Commonly used mappers are
Bowtie [51], BWA [50], SOAP [109], and MAQ [65]. The percentage of
uniquely mapped reads must be calculated, and values above 70 % are gen-
erally considered normal [110]. However, these values are organism, platform,
or protocol dependent. Multimapped reads are most likely due to regions of
repeated DNA, and most peak-calling algorithms will filter them out.
Library complexity is the fraction of mapped DNA fragments which are
non-redundant, and it may be addressed using the PCR bottleneck coefficient
(PBC) from the ENCODE project [111]. PBC computes the fraction of
genomic locations with only one unique read mapped against the ones with at
least one mapped read. Low-complexity libraries might be due to not enough
recovered DNA, resulting in the same PCR-amplified products being
sequenced repeatedly. Generally, library complexity is related to antibody
quality, over cross-linking, sonication, or over PCR amplification.

(d) Background Signal: Another metric to be considered after mapping is the
signal to noise ratio (SNR) of the experiment. During the ChIP-Seq experi-
ment, most of the unbound DNA fragments are washed in the immunopre-
cipitation step and the library is built with protein–DNA-bound fragments.
However, due to nonspecific binding of molecules, non-useful fragments may
remain in the library and be sequenced. Such reads become generally spread in
the genome and are referred to as background noise and may result in false
positives. Noise may be computed from the control sample or modeled with a
Poisson or negative binomial distribution.
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(e) Peak Calling: One of the most important aims of ChIP-Seq experiments is
finding enriched regions in the genome in which more transcription factors
(ChIP-Seq tags) were bound to DNA through the number of mapped reads,
referred to as “peaks.” Several peak callers have been developed, and they
mostly differ from each other in the algorithms for signal smoothing and
background modeling. Models implemented for statistical assessment of peaks
range from Poisson (CSAR [112]), local Poisson (MACS [113]), negative
binomial (CisGenome [114]), and even some machine learning techniques,
such as hidden Markov models (HPeak [115]). Peak callers report a p value or
false discovery rate (FDR) as an enrichment metric which is greatly affected
by variables, such as sequencing depth, real number of binding sites, and the
statistical model used. There is no consensus on how to best estimate the best
FDR value for ChIP-Seq experiments. Table 1.3 lists the main characteristics
of some commonly used peak callers.

(f) Reproducibility: It is recommended to develop experiments with at least two
biological replicates for verifying reproducibility of reads and identified peaks
[107]. The reproducibility of reads can be computed with metrics such as
Pearson correlation coefficient of mapped read counts at each genomic site
[116].

(g) Downstream Analysis: Once significant and reproducible peaks have been
found, it is necessary to associate them with relevant genomic regions, such as
transcription start sites, gene promoters, and intergenic regions. It is common
to view the identified peaks and reads in a genome browser to examine regions
of interest. Generally, peaks are uploaded as BED or GFF file formats and
reads with WIG file format. HOMER or BEDTools may be used to calculate
distances from peaks to landmark regions (e.g., genes). The most common
downstream analysis of a ChIP-seq experiment is the discovery of binding
sequence motifs [117]. The read sequences of the top-scoring peaks can be
entered in FASTA format into motif discovery programs such as MEME [118]
resulting in motif discovery, enrichment, and location analysis.

The in vivo binding targets of TFs identified above can be further correlated with
the differentially expressed genes using Gene Set Enrichment Analysis (GSEA)
software [101, 123]. The factors that show enriched binding to the differentially
expressed genes can be selected for further genetic testing. Finally, to understand
the intricate relationship of the TFs that are differentially expressed, one can con-
struct a network among coregulated TFs and incorporate ChIP-Seq result into the
network. Thus, the underlying regulatory mechanism can be revealed, such as
autoregulation (where a factor interacts with its own promoter region), cross-factor
control (where pairs of factors directly bind each other’s promoter regions), and
positive/negative feedback loop.
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1.4 Integrated Study of Gene Expression
and Transcriptional Regulation—An Example:
Identification of Key Factors Regulating Self-renewal
and Differentiation in EML Hematopoietic Precursor
Cells by RNA-Seq and ChIP-Seq Analyses

1.4.1 The Multipotential EML Cell Line Is a Favorable
System to Study the Control of Early Hematopoietic
Self-renewal and Differentiation

The hematopoietic system has provided a leading model for stem cell studies, and
there is great interest in elucidating the mechanisms that control the decision of
HSC self-renewal and differentiation [124–130]. This switch is important for
understanding hematopoietic diseases and manipulating HSCs for therapeutic
purposes. However, because HSCs are currently unable to proliferate extensively
in vitro, this severely limits the types of biochemical analyses that can be per-
formed, and consequently, the mechanisms that control the decision between
early-stage HSC self-renewal and differentiation remain unclear [131].

The mouse (Mus musculus) EML (erythroid, myeloid, and lymphocytic) mul-
tipotential hematopoietic precursor cell is an ideal system for studying the molec-
ular control of early hematopoietic differentiation events. EML cells are derived
from mouse bone marrow cells and are cultured in the presence of stem cell factor
(SCF). These cells can be rederived or repeatedly cloned, and still retain their
multipotentiality [132–134]. The ability of EML cells to propagate extensively in
medium containing SCF makes them ideal for biochemical and genetic assays, as
well as for high-throughput functional screens [126, 135]. Phenotypically, EML
cells express many of the cell surface markers’ characteristic of hematopoietic
progenitor cells, including SCA1, CD34, and c-KIT. Functionally, when treated
with different growth factors, such as SCF, IL-3, GM-CSF, and EPO, EML cells
can differentiate into distinct cell lineages including B-lymphocyte, erythrocyte,
neutrophil, macrophage, mast cell, and megakaryocyte lineages [132].

Interestingly, in culture, the Lin-SCA+ CD34+ subpopulation of EML cells gives
rise to a mixed population containing similar numbers of self-renewing Lin-SCA+
CD34+ precursor cells and partially differentiated Lin-SCA-CD34− cells (hence-
forth referred to as CD34+ and CD34− cells, respectively) [136]. Although the two
populations resemble each other morphologically, only the CD34+ population
propagates in SCF-containing media, while the growth of CD34− cells requires the
cytokine IL-3 [136]. The closest normal analogs of CD34+ cells are short-term
(ST) HSC or multipotent progenitors (MPP). Similar to short-term (ST) HSC,
CD34+ cells are capable of self-renewal; like MPP, when treated with cytokines
such as IL-3, CD34+ cells can give rise to CD34− cells with more restricted
potential. A number of erythroid genes, such as α- and β-hemoglobin, Gata1, Epor
(erythropoietin receptor), and Eraf (erythroid associated factor), as well as mast cell
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proteases are expressed at a significantly higher level in the CD34− cell population
than in CD34+ cells [136, 137]. This indicates that the CD34− cells were, at min-
imum, differentiated into a state with prominent erythroid potential.

The ability of CD34+ cells to both differentiate and self-renew in suspension
culture, in the absence of any anatomical niche or other cell types, suggests that
CD34+ cells are regulated by a tightly controlled endogenous mechanism that
guides the generation of the variety and relative abundance of the cell types in
culture. Understanding the molecular events that regulate the transition between the
two types of putative precursors in the EML multipotent hematopoietic cell line will
give insights into the fundamental mechanisms of autonomous and balanced cell
fate choice available to stem cells and intermediate-stage cancer precursor cells
[126].

1.4.2 Mapping Transcription Regulatory Networks
and Identifying Master Regulators

The regulatory inputs and functional outputs of various downstream genes con-
stitute network-like architectures [138]. The linkage relationships in a complex
network provide causal clues about how a specific eukaryotic process is regulated at
the molecular level. Using these methods, regulatory networks have been con-
structed for the yeast cell cycle [139–141], yeast development [141, 142], and
human embryonic stem cell self-renewal [99]. For example, in the study of yeast
pseudohyphal development, the binding targets of six key transcription factors
(Ste12, Tec1, Sok2, Phd1, Mga1, and Flo8) were identified. The binding network
formed by these factors and their target genes were analyzed, and Mga1 and Phd1
were found to be the targets of many factors in the network. These factors were
called target hubs [142].

It appears that target hubs are especially likely to be “master regulators.” Master
regulators have been identified as transcription factors whose ectopic expression
alone is capable of activating a biological pathway. For example, MyoD is capable
of activating a terminal muscle differentiation program in primary cells and in
differentiated cell lines [143]. The target hubs Mga1 and Phd1 also appear to be
such “master regulators,” serving as key nodal points that orchestrate a large
number of regulatory inputs into a complex response [144–146]. Overexpression of
either of these target hub proteins under conditions that do not normally activate the
pseudohyphal response specifically induces this process. The distinct nature of the
master regulators allows us to use them as a switch to control cellular processes,
which has important therapeutic applications.
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1.4.3 Identifying Key Factors Regulating Self-renewal
and Differentiation

In order to identify the “switch” in cell self-renewal and differentiation, we con-
structed regulatory circuits controlling early hematopoietic differentiation by using
the gene expression and ChIP-Seq data. We examined transcription factors that
were significantly upregulated in CD34+ cells relative to CD34− cells using
RNA-Seq and found Tcf7 (also referred to by the symbol Tcf1) to be the most
strongly upregulated transcription factor (Fig. 1.3) [27].

The binding motifs of the TCF family of transcription factors are significantly
enriched among genes that are expressed at a higher level in CD34+ than in CD34−

Fig. 1.3 Heat map of
differentially expressed
transcription factors
(>1.5-fold) between
Lin-CD34+ cells and
Lin-CD34− cells. Two
replicates were shown for
each cell type. Red color
represents upregulated genes
and green color represents
downregulated genes. Genes
mentioned in the text are
labeled. CD34 and Ly6a
(Sca1) are cell surface
markers. Adapted from Wu
et al. [27]

1 The Analyses of Global Gene Expression … 23



24 R. Cuevas Diaz Duran et al.



cells [27]. Therefore, we hypothesize that there are key regulators in transcriptional
regulatory networks that determine the choice between EML cell self-renewal and
differentiation, and TCF7 is one of the key transcription factors.

Subsequently, we identified in vivo binding targets of TCF7 using ChIP-Seq [27].
We found that TCF7 binds to its own promoter and the promoter of Runx1 (Aml1), a
developmental determinant in hematopoietic cells that is best known for its critical
role in haematological malignancies [147, 148] (Fig. 1.4). We showed that TCF7
and RUNX1 (AML1) bind to each other’s promoter regions, and a large number of
common target genes are bound by RUNX1 and TCF7. TCF7 is necessary for the
production of the short isoforms, but not the long isoforms of RUNX1, suggesting
that TCF7 and the short isoforms of RUNX1 function coordinately in regulation.
TCF7 knockdown experiments and Gene Set Enrichment Analyses suggest that
TCF7 plays a dual role in promoting the expression of genes characteristic of
self-renewing CD34+ cells while repressing genes activated in the partially differ-
entiated CD34− state. Finally, through network analysis, we found that TCF7 and
RUNX1 bind and regulate a network of upregulated transcription factors in the
CD34+ cells which characterize the self-renewal property of the CD34+ cells,
including Stat3, Sox4, F, Scl/Tal1, Etv6/Tel, Ppard, Smads, Cebpa, Gfi1, and Fli-1
(Fig. 1.5).

In summary, our results elucidated novel components and mechanisms that
control the renewal and differentiation of hematopoietic precursor cells. The elu-
cidation of the networks suggested potential master regulators that control early
hematopoietic differentiation. Genetic manipulation of the master regulators may
reveal how to induce hematopoietic precursor cell self-renewal in vitro or repro-
gram partially differentiated hematopoietic precursor cells back to a self-renewing
state. Increasing the long-term ability of human hematopoietic precursor cells to
reconstitute bone marrow is highly relevant for the therapy of leukemia and
regenerative medicine.

b Fig. 1.4 Identification of transcription factor-binding targets using ChIP sequencing. a Tcf7 is
bound by both itself and by RUNX1 (AML1). Peaks indicate ChIP sequencing signal. Input genomic
DNA serves as the negative control. The “binding sites” tracks (black vertical bars) show the
transcription factor-binding loci determined using the PeakSeq program (normalized against
genomic input DNA; q-value 0.001). Data are visualized in Integrated Genome Browser.
b Identification of evolutionarily conserved RUNX1-binding sites at Tcf7 promoter region using
REGULATORY VISTA. The graph shows conserved and aligned AML1/RUNX1 transcription
factor-binding sites between mouse and human genomes using a matrix similarity score of 1 (the mt
stringent). Two versions of the AML1-binding sites were found (AML1 andAML_Q6). The *ECRs:
Evolutionarily conserved regions are indicated by deep red blocks. The degree of conservation (50–
100 %) is indicated by the height of the peaks. Coding region is shown in blue, and UTR is shown in
yellow. c Runx1 promoter is bound by both TCF7 and itself. Adapted from Wu et al. [27]
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1.5 Future Prospective

The advancement of sequencing technology and computational analyses has greatly
increased our knowledge of gene transcription and regulation. However, many
challenges still remain. Difficulties in deciphering the anatomy of mammalian genes
exist at multiple levels, including topics discussed in later chapters, such as com-
plicated RNA, large amounts of intervening (noncoding) sequences, and the
imperfection of computational algorithms. Additional issues include overlapping
reading frames of protein-coding genes, antisense transcriptional units, the situation
where the exon of one gene is encoded within the intron of another, and pseudo-
genes [149–151]. It will be impossible to find all genes and regulatory elements
solely by analyzing genomic nucleotide sequences. Therefore, the eventual solution
of annotation lies in large-scale systematic functional genomics experiments and
conservation information from cross-genome comparisons [152].

Fig. 1.5 Transcription factors TCF7 together with RUNX1 regulate a transcriptional regulatory
network. The network involved in HSC establishment and development (red nodes), cell growth
control (blue nodes), and multipotency (orange nodes) was identified among upregulated genes in
CD34+ cells (twofold) and displayed by Ingenuity Pathway Analysis software (IPA). Gray lines
are IPA-annotated relations based on the literature. Pink lines indicate TCF7 or RUNX1 binding to
gene targets that were identified by our ChIP-Seq experiments. The shades of green color of the
nodes in the network indicate the level of upregulation in CD34+ cells. Sox4, Mpo, Tal1, and
Ppard were TCF7-binding targets that were added to the network manually because of their
obvious interesting function in hematopoiesis and self-renewal. All other nodes were from default
IPA analysis. Direct relations were indicated by solid line or arrows. Indirect relations were
indicated by dotted line. Please see Ingenuity Pathway Analysis software (IPA, https://analysis.
ingenuity.com/) Online Help section for detailed definitions. Adapted from Wu et al [27]
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Additionally, we should always take caution when interpreting data from a
single kind of “omic” approach. For example, we cannot immediately conclude that
a protein is expressed at a higher level from an upregulated signal by using
microarray or RNA-Seq alone. Integrating data obtained from multiple distinct
approaches will make conclusions more reliable. Theoretically, as multiple “omic”
functional maps are overlaid, genes involved in the same process will cocluster in
various maps. There are many challenges ahead in developing statistical and
computational strategies for integrating these data, for improving annotation, and
for making them available to the scientific community. The long-term goal is to
understand the intricate and dynamic functional relationships between all compo-
nents involved in particular biological processes as a whole, in order to be able to
predict the potential behaviors of these systems in response to perturbations and
thus be able to restore. This approach will provide answers for treating diseases.
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Chapter 2
Global Approaches to Alternative Splicing
and Its Regulation—Recent Advances
and Open Questions

Yun-Hua Esther Hsiao, Ashley A. Cass, Jae Hoon Bahn, Xianzhi Lin
and Xinshu Xiao

Abstract Pre-mRNA splicing is an essential RNA processing step in eukaryotes.
Alternative splicing generates distinct spliced isoforms of the same gene, thereby
dramatically increasing transcriptome diversity. Since most human genes undergo
alternative splicing, this process contributes to a wide spectrum of biological
functions in healthy and disease states. Splicing is closely regulated by various cis-
regulatory elements and trans-factors. With the advent of high-throughput experi-
mental technologies and bioinformatic algorithms, we now have powerful means to
study alternative splicing globally and uncover its functional impact and regulatory
mechanisms. As more RNA sequencing (RNA-Seq) data from normal and disease
conditions are becoming available, many studies are underway to dissect global
misregulation of splicing in diseases and develop novel splicing-targeted thera-
peutics. In this chapter, we first discuss the experimental and bioinformatic
approaches for identification of alternative splicing, followed by a comprehensive
review on the state-of-the-art methodologies to study splicing regulation. In addi-
tion, we discuss the current challenges and open questions in the RNA splicing field
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including gene expression kinetics, co-transcriptional splicing, and therapeutic
approaches targeting splicing.

Keywords Alternative splicing � RNA � RNA-Seq � Gene regulation

2.1 Introduction

First discovered nearly 40 years ago [1, 2], pre-mRNA splicing consists of a series
of biochemical reactions that function to remove introns and ligate flanking exons.
Exon–intron boundaries are defined by highly conserved consensus sequences
including the 5′ splice site (5′ss, or donor site), 3′ splice site (3′ss, or acceptor site),
and branch point sequences (BPSs) (Fig. 2.1). These sequences are recognized by
the spliceosome, a dynamic multi-ribonucleoprotein complex composed of small
nuclear ribonucleoproteins (snRNPs) (refer to [3] for detailed reviews). The
spliceosome is the basic machinery that carries out splicing reactions.

In recent years, it was estimated that more than 90% of human genes are processed
through alternative splicing where multiple spliced isoforms are generated from a
single gene, thus significantly increasing transcriptome diversity [4–6]. The most
extreme case of alternative splicing is the Drosophila Down Syndrome cell adhesion
molecule gene (Dscam) which includes 48 exons and can theoretically produce
38,016 alternative transcripts from a single gene [7]. Different types of alternative
splicing exist with themost common ones being exon skipping, alternative 5′ss usage,
alternative 3′ss usage, mutually exclusive exons, and intron retention [8].

It is now well established that alternative splicing contributes to a wide spectrum
of cellular functions [9]. Disruption of normal splicing was reported for a large
number of human diseases, which has been reviewed extensively [10–12]. As a
functionally critical process, alternative splicing is regulated by a myriad of cis-
elements and trans-acting factors (Fig. 2.1). Splicing regulatory elements (SREs)
reside in exons or introns and function to either enhance or silence splicing. These
cis-elements are thus named accordingly as: exonic splicing enhancers (ESEs),
intronic splicing enhancers (ISEs), exonic splicing silencers (ESSs), and intronic
splicing silencers (ISSs). These cis-elements interact with many trans-acting factors
(i.e., splicing factors), including serine/arginine-rich (SR) proteins and heteroge-
neous nuclear ribonucleoproteins (hnRNPs) [13]. RNA secondary structures also
affect alternative splicing, likely by facilitating or blocking accessibility of splicing
factors to their cognate RNA [14].

Understanding the regulatory mechanisms of alternative splicing in health and
disease is an essential topic of gene regulation. Recent advances in high-throughput
technologies and related bioinformatic methodologies are enabling exciting dis-
coveries in this area. Here, we first focus on global approaches for splicing iden-
tification, followed by an in-depth review of methodologies to study splicing
regulatory mechanisms.
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2.2 Identification and Validation of Alternative Splicing
Events

2.2.1 Identification of Alternative Splicing Events

2.2.1.1 High-Throughput Experimental Approaches

The first high-throughput method developed to detect and quantify alternative
splicing events was customized microarrays [15–17]. An initial study by Hu et al.
[18] used multi-probe design of Affymetrix arrays to detect splicing variants,
demonstrating the utility of microarrays for splicing analyses. Later studies [19, 20]
developed different techniques to improve the microarray probe design and suc-
cessfully profiled alternative splicing events and their expression on the genome-
wide scale. Johnson et al. [19] used splice junction arrays to probe around 10,000
human multi-exon genes across 52 tissues. Besides the known alternative splicing
events, they were also able to discover novel spliced isoforms of many genes. Pan
et al. [20] took the focused probe design approach (see review [16]) with three exon
body probes and three spliced junction probes for each known alternative splicing
event to achieve more sensitive expression quantification. In this study, they were
able to globally determine the tissue specificity of alternative splicing events in
mouse tissues. Many recent studies adopted different probe designs and microarray
platforms to investigate splicing profiles and splicing levels in healthy and disease
samples (reviewed in [15–17]).

Since the advent of next-generation sequencing (NGS), RNA-Seq became an
essential technology for global studies of alternative splicing (Fig. 2.2a). It provides
a means to directly or indirectly sequence the RNA molecules in a high-throughput
manner. At present, often-used RNA-Seq methods first convert the RNA sample of
interest into cDNAs, which are then made into a sequencing library that consists of
short DNA fragments (corresponding to the RNA of interest) flanked by
pre-designed adapter oligos. The DNA library is then sequenced from one end
(single-end sequencing, or SE) or both ends (paired-end sequencing, or PE) to yield
final RNA-Seq reads [21]. The resulting RNA-Seq reads correspond to a snapshot
of RNA expression in the respective cellular sample.

RNA-Seq is advantageous in several ways. First, it can detect novel isoforms and
alternative splicing events that are not yet annotated [22, 23]. Second, RNA-Seq is not
affected by the cross-hybridization problem that confounds many microarray-based
studies [21]. Third, RNA-Seq data can provide relatively accurate quantification of
levels of gene expression and splicing [21, 24]. Lastly, RNA-Seq provides
single-nucleotide information that enables studies of genetic variants [25, 26] and
RNA editing sites [27–30], in addition to gene or exon expression. Using RNA-Seq, a
large number of alternative splicing events were identified in human and mouse
tissues [4, 5].

Although RNA-Seq has dramatically improved our knowledge on alternative
splicing, there are still remaining challenges to be addressed [21, 31]. RNA-Seq
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library construction is the first critical step. Different library preparation protocols
were developed to study various biological questions and thus have their own
merits and limitations [32, 33]. In addition, RNA-Seq library generation protocols
often need optimization for specific RNA samples based on sample quality, con-
centration, and other variables. In large-scale experiments, batch effects in
RNA-Seq data may be a critical problem to consider [34], which may mislead study
conclusions if not properly accounted for. Finally, RNA-Seq experiments are still
costly, especially for studies of alternative splicing. In such applications, reads
covering spliced junctions are examined closely to guide the identification and
quantification of alternative splicing. Thus, it is highly desirable to have a relatively
large number of spliced reads. Often-used settings of RNA-Seq in splicing studies
favor PE reads, long read length (e.g., >75 bp), and high sequencing depth
(≥100 million PE reads for human samples) [35, 36].

Alternative approaches were developed to address some of the above challenges
in RNA-Seq. For example, RNA-mediated oligonucleotide annealing, selection,
and ligation with next-generation sequencing (RASL-Seq) allows for RNA-Seq of a
limited set of exons in hundreds or thousands of biological samples [37] (Fig. 2.2b).
Thus, it is ideal for large-scale analysis of up to 500 exons in complex networks or
pathways [37]. The main difference between RNA-Seq and RASL-Seq is the use of
oligonucleotides that recognize a specific spliced junction in the latter method.
After ligating the pairs of oligos, these specific RNAs are then isolated with
biotinylated oligo-dTs and pulled down with streptavidin-coated magnetic beads.
A unique barcode for each sample is incorporated during PCR, allowing for pooled
sequencing of >1500 samples per lane [37]. Analyzing expression of a limited
number of genes in many samples has clinical applications, such as screening for
drugs that inhibit splicing events implicated in cancer [38]. One factor of consid-
eration in RASL-Seq is the efficiency and specificity of ligation; Rnl2 was shown to
have higher efficiency than T4 ligase [39].

b Fig. 2.1 Overview of previous studies in alternative splicing regulation. Cis-regulatory elements
and trans-acting factors are key components in the splicing regulatory networks (alternative
splicing regulome), which have been actively examined. Combined with global profiles of
alternative splicing patterns, bioinformatic models were developed to predict the relative impacts
of different regulators and splicing outcome of a given exon. Experimental validations are critical
steps to evaluate the accuracy of the predicted splicing regulation. The bottom diagram illustrates
well-known components of splicing regulation. The yellow box represents an alternatively skipped
exon, which has ESE and ESS motifs that can be recognized by splicing factors. The flanking
introns of this exon harbor ISE and ISS motifs. Interactions between the splicing factors and the
core splicing machinery (U1, U2 snRNPs, etc.) are illustrated. Splicing enhancers (ESEs, ISEs)
normally promote exon inclusion, which is represented by the arcs with arrowheads, whereas
splicing silencers (ESSs, ISSs) repress exon inclusion, which is represented by flat-headed arcs.
Genetic variants may disrupt splicing motifs and alter the binding strength of splicing factors
(illustrated by the x). Other mechanisms such as RNA modifications or RNA secondary structures
may also affect alternative splicing, which are not illustrated in this diagram. ESE: exonic splicing
enhancer; ESS: exonic splicing silencer; ISE: intronic splicing enhancer; ISS: intronic splicing
silencer; 5'ss: 5' splice site; 3'ss: 3' splice site and BP: branch point
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A limitation common to all sequencing-based methods is the sequencing read
length, which is typically much shorter than the full-length isoform of long tran-
scripts. Full-length isoforms are thus reconstructed computationally using over-
lapping reads, though there is always a degree of uncertainty [40, 41]. To overcome
this limitation, a new method SeqZip was recently developed [42] (Fig. 2.2c). It
uses *40–60nt DNA “ligamers” that recognize the 5′ and 3′ ends of single or
multiple alternatively spliced exons that may be thousands of nucleotides apart,

Fig. 2.2 High-throughput experimental approaches for splicing detection. a RNA-Seq, the most
popular method for splicing analysis, begins with creating cDNA libraries of fragmented RNA.
Then, sequencing adapters are added to make a sequencing library, followed by PCR amplification
and sequencing. In data analysis, reads that span spliced exon junctions and those that are located
within exon bodies are identified bioinformatically to detect and quantify alternative splicing. This
method can provide data for many expressed exons (+++) in the sample of interest. The cost of
RNA-Seq is relatively high, which may limit the number of samples (+) that can be analyzed in a
specific study. b RASL-Seq requires a pair of pre-designed oligonucleotides that recognize specific
splice junctions of intact (i.e., unfragmented) mRNA. Biotinylated oligo-dTs with
streptavidin-coated magnetic beads are then used to pull down the RNA. Barcode incorporation
during PCR allows for pooled sequencing of *1500 samples per sequencing lane. Compared to
RNA-seq, RASL-Seq is ideal for few (up to 500) exons (+) in hundreds or thousands of samples
(+++). c SeqZip uses DNA “ligamers” to directly sequence long transcript isoforms, causing
intermediate regions to loop out. Compared to RNA-Seq and RASL-Seq, SeqZip is specialized for
targeting long transcripts

42 Y.-H.E. Hsiao et al.



causing the intermediate sequence to loop out [42]. Multiple ligamers hybridized to
the same transcript are then ligated together, thereby connecting distant exons in the
same transcript. Assessing the length and sequence of the DNA ligamers allows for
deduction of the full-length isoform. Thus, SeqZip greatly improves the ability to
sequence long transcripts.

Aside from the above-mentioned RNA-based approaches, protein-based
approaches may be used to identify changes in protein expression resulting from
alternative splicing events. Mass spectrometry has been used to identify alternative
splicing events in breast cancer [43]. Still, RNA-based approaches are far more
commonly used for alternative splicing identification. The choice of experimental
method depends on the experimental goal. As sequencing technology improves, so
will the ability to identify alternative splicing events.

2.2.1.2 Bioinformatic Algorithms for Analyzing Alternative Splicing
Using RNA-Seq

Current bioinformatic methods for analyzing alternative splicing in RNA-Seq can be
largely classified into two categories: exon-centric and isoform-centric. Exon-centric
approaches directly estimate the splicing level of each exon typically by calculating
its percent spliced-in (PSI) [4], a measure of the frequency of exon inclusion among
all mature mRNA molecules of the gene (also see reviews [44, 45]). In contrast,
isoform-centric methods aim to quantify the abundance of each alternative isoform
of the gene, which can be followed by further comparisons to determine differential
splicing [46–48].

The benefit of using exon-centric splicing detection is that the type and PSI of
each alternatively spliced exon are directly interrogated. Such single-exon infor-
mation is useful in designing experiments to validate and further examine these
events [36, 49]. PSI can be calculated in different ways. First, abundance of reads
aligned directly to alternative exon junctions is used, with the exon body reads
optionally included [36, 49]. However, it is difficult to precisely estimate the PSI
value in cases of complex alternative splicing. To overcome this problem, other
tools, such as SplAdder and DiffSplice [50, 51], adopt a splicing graph strategy to
capture the complexity of alternative splicing by building a graph of spliced iso-
forms where nodes represent exons and edges represent spliced introns. Input
RNA-Seq data are used to update the alternative path in the graph. The challenge in
these approaches is that the splicing graph can be complicated by poorly supported
events, so post-filtering is necessary to reduce false positives. In general,
exon-centric methods alone do not support identification of novel alternative
splicing events due to their requirement of gene annotation.

Instead of focusing on specific splicing events, isoform-centric methods use
RNA-Seq to construct isoforms and estimate their expression levels [52–55]. Most
tools also utilize the reference genome to guide isoform reconstruction, but others
perform de novo transcriptome assembly without relying on the reference genome.
The latter type is particularly helpful for alternative splicing analyses in species
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with poorly annotated genomes. Early isoform-centric methods were developed
under the assumption that the read distribution is uniform, though this is rarely the
case. New methods are now available to account for RNA-Seq read non-uniformity
[56, 57]. Another recent development for isoform-centric analysis is the
alignment-free approach, which bypasses the time-consuming alignment step by
building a hash index from the reference transcripts using sequence k-mers as keys
and applying an expectation maximization algorithm to estimate isoform abundance
[46, 47]. This approach speeds up the computational time considerably while
maintaining prediction accuracy. However, it remains to be evaluated whether such
methods perform well in the presence of sample-specific genetic variants.

Once alternative splicing is identified, both classes of methods provide a means
to detect differentially spliced events. The outcome from exon-centric analyses is a
list of differentially spliced events that can be directly used for further analysis (e.g.,
experimental validation, functional interpretation, and regulatory studies). On the
other hand, isoform-centric analysis captures the splicing complexity of a series of
related events within the same isoform, but further steps are often needed to pin-
point individual splicing events of interest. In Table 2.1, we summarize often-used
tools for splicing analysis.

2.2.2 Validation of Alternative Splicing Events

In silico tools that detect alternative splicing events based on RNA-Seq data usually
generate a large number of candidates. A subset of these events should be exper-
imentally validated in vivo or in vitro. Verification experiments for alternative
splicing events are readily carried out by reverse transcription followed by PCR
(RT-PCR) using primers that target flanking constitutive exons [58]. This strategy
works well for alternative splicing events in genes with intermediate or high
expression levels. In order to verify lowly expressed events, in vitro minigene
expression analysis by RT-PCR can be utilized [59–61]. Compared with in vivo
assays, the minigene system is able to validate events regardless of their endoge-
nous expression level. However, since only a limited region flanking the exon of
interest can be cloned into the minigene vector, this in vitro approach may not
faithfully reproduce in vivo splicing patterns. It should be noted that both types of
experiments are considered low-throughput and labor intensive, thus only validat-
ing a relatively small number of events.

High-throughput methods for validation of alternative splicing events are in great
demand and several such approaches are on the horizon. For example, RT-PCR
experiments may be scaled up when used in conjunction with microfluidic devices
[62]. In addition, recent methods, such as the “designer exons” approach [63], may
be further developed for this purpose. With the rapid technology development in
synthetic biology and genome editing, it is likely that high-throughput splicing
validation will soon become a reality.
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2.3 Methodologies for Studies of Splicing Regulation

Pre-mRNA splicing is regulated by a large number of cis-elements and trans-acting
factors. In this section, we will review the bioinformatic and experimental
approaches for the identification and analysis of splicing regulatory mechanisms.

2.3.1 Cis-Regulation of Alternative Splicing

2.3.1.1 Splice Site Consensus Sequence

Splice site sequences are among the best-characterized cis-elements in splicing
regulation, owing to the simplicity of their identification. Each internal exon is
flanked by a 5′ss and a 3′ss. Thus, splice site sequences can be easily collected
based on gene annotation. The majority of human exons are flanked by the GU-AG
canonical sequences. However, the splice site signals normally involve a much
longer sequence motif, which confers specificity and a dynamic range of splice site
strength. Using known splice site sequences as training data, many algorithms were
developed to predict splice site strength (see reviews [64, 65]). The most intuitive
model is the position weight matrix (PWM), which is straightforward to implement
but fails to consider the positional dependency between nucleotides in the splice site
[66]. Other algorithms adopt more sophisticated probabilistic models such as neural
networks or maximum entropy to more accurately estimate the splice site scores
[67, 68].

2.3.1.2 Branch Point Sequences (BPSs)

The prediction of BPS is challenging because its location in the intron can be highly
variable. For example, a BPS may be close to the 3′ss (*40nt upstream) or
100–400nt upstream of the 3′ss in the AG exclusion zone (AGEZ) [69].
Additionally, the BPS motif is highly degenerate [70] and multiple potentially
functional BPSs may exist in a particular intron. A number of bioinformatic
methods were developed to identify BPS and evaluate their strength. Human Splice
Finder [66] uses PWMs and the algorithm proposed by Gooding et al. [69] to search
for BPS candidates in a limited region. Another predictive approach makes use of
sequence conservation and partial sequence complementarity of U2 snRNA to the
BPS [71, 72]. A recent study showed that using machine learning methods such as
support vector machines together with polypyrimidine and other sequence infor-
mation could increase accuracy in BPS prediction [73]. Pastuszak et al. took
advantage of the fact that Splicing Factor 1 (SF1) recognizes BPSs and restricted
their motif analysis to sites with high SF1 binding affinity to predict BPS with
relatively high accuracy [74].
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Recently, a few studies used the NGS technology to identify BPS globally. In
the RNA-Seq data, a minority of reads may derive from the junction of the
5′ss-branch point of the intron lariat. A search for such reads has led to successful
identification of hundreds of BPS in human RNA-Seq data sets [75, 76]. The
advantage of these approaches is that they do not require prior knowledge about the
BPS locations or sequences. However, one drawback is that lariat reads are very
rare among those generated from standard RNA-Seq libraries. Thus, very deeply
sequenced data sets are needed to obtain adequate lariat read coverage. Another
NGS-based method, called CaptureSeq [77], was applied recently to identify BPS
[78]. In this method, tiling arrays were designed that contain oligonucleotide probes
to target the 5′ss-branch point junctions [78]. cDNAs from the RNA samples of
interest were then hybridized, eluted, and sequenced. As a complementary
approach, RNase R digestion was applied to enrich for reads containing BPS
without requiring pre-designed arrays. This study identified >50,000 human BPS in
>10,000 genes, which enabled further investigation of global features of this class
of splicing regulatory signal [78].

2.3.1.3 Splicing Regulatory Elements

Besides the core splicing signals, a large number of motifs in the exons or introns
can also regulate splicing (Fig. 2.1) [8]. Identification and characterization of these
SREs are instrumental to the understanding of splicing regulatory mechanisms. In
general, genome-wide experimental or bioinformatic screens have been designed to
identify SREs. Wang et al. developed the first large-scale screen of ESSs using
splicing reporter assays in cultured cells [59]. This effort successfully identified
hundreds of ESS sequences and shed light on the global properties of these ele-
ments. Later, a number of other experimental screens were carried out to identify
different types of SREs [79–82]. These studies greatly expanded the catalog of
known or predicted SREs without the associated trans-factors necessarily identi-
fied. Other experimental methods that pinpoint SREs for known splicing factors
will be discussed later.

In addition to the experimental approaches, bioinformatic methods are also
essential to SRE studies. Fairbrother et al. developed a motif comparison approach,
RESCUE-ESE, to identify ESEs by evaluating motif enrichment correlated with
different features of splicing [83]. Similar principles were applied later to identify
other types of SREs [84, 85]. A myriad of other bioinformatic methods were also
developed for this purpose, such as those based on comparative genomics [86],
PWMs [87], or machine learning techniques [88–91].

With the increasing number of SREs, a great deal of effort was dedicated to
understand the functional interaction among different elements and their
context-dependent roles in splicing regulation. For example, Bayesian networks
were used to study coevolutionary relationships of SREs in eukaryotes that reflect
functional interaction [60]. Bioinformatic and statistical methods, combined with
experimental approaches, were used to infer combinatorial function of different
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types of SREs [92–94]. The function of individual motifs (corresponding to one
splicing factor) was studied in detail via bioinformatic modeling and analysis to
reveal their context-dependent function globally [61, 95–97] (refer to [98] for a
detailed review of this topic).

2.3.2 Genetic Variants Associated with Splicing

Genetic variants [such asmutations or single-nucleotide polymorphisms (SNPs)] play
important roles in gene regulation because they can potentially alter cis-regulatory
motifs. Previous studies estimated that 15–60 % of point mutations that result in
human genetic diseases disrupt splicing [10, 99–102]. In recent years, exciting
progress has been made in analyzing the involvement of genetic variants in modu-
lating alternative splicing, which is reviewed in this section.

2.3.2.1 Splicing QTLs

Splicing quantitative trait loci (sQTL) analysis is an often-used method to identify
SNPs associated with splicing phenotypes. In this method, the correlation between
SNP genotypes and exon inclusion levels is examined using different means,
ranging from simple linear correlation to model-based analysis [103–105]. Early
sQTL studies used microarrays to detect isoform or exon expression levels, which is
rapidly replaced by RNA-Seq-based analysis. However, this method requires a
large number of samples to achieve adequate statistical power. In addition, sQTL
analyses only deduce correlative relationships, without the capability of pinpointing
the causal SNP for splicing alteration.

2.3.2.2 Machine Learning-Based Methods

In contrast to sQTLs, methods based on machine learning principles aim to predict
the functional (causal) SNP that modulates alternative splicing. Different types of
machine learning or statistical methods were adopted for this purpose [106–108].
One study used a random forest-based strategy and predicted exonic splicing-
altering variants [106]. Another study developed a splicing code where “code
quality” was optimized using information theory on a large number of features
[109]. This splicing code was applied to predict genetic variants that may alter
splicing [108–110]. One common challenge to such approaches is the limited
availability of training data sets that should include experimentally validated SNPs
with confirmed function in splicing and those that are known to have no influence
on splicing. To overcome this problem, previous studies used disease-causing
exonic mutations from existing databases as positive training data set and common
SNPs in the general population as negative data set (assuming they do not affect
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splicing) [106, 107]. In contrast, the splicing code-based studies used human
RNA-Seq data of different tissues to derive the code, without the need of direct
model training using splicing-related variants [108–110].

2.3.2.3 Allele-Specific Alternative Splicing

To infer genetic regulation of alternative splicing, another powerful approach is
built upon allele-specific expression (ASE) of genetic variants. ASE refers to the
biased expression of the two alleles of a variant in diploid cells. RNA-Seq data
provide single-nucleotide information that is appropriate for ASE studies. One
advantage of ASE analysis is that the two alleles of a variant serve as within-sample
controls of each other, which naturally eliminates the environmental and trans-
acting effects that might alter splicing patterns or introduce variance in the data
[111]. Nevertheless, one challenge in using RNA-Seq for ASE analysis lies in the
step of read mapping. It is now clear that standard mapping methods induce a
mapping bias that favors the reference allele of the genetic variant because the
reference genome is utilized in mapping [112, 113]. Various strategies were
developed to reduce this type of bias [27, 28]. Once ASE patterns are identified,
they can be further analyzed to detect allele-specific alternative splicing events, as
proposed in [25]. While sQTL studies and machine learning methods necessitate
many data points for correlative analysis or model training, the ASE-based
approach can predict splicing-associated genetic variants using RNA-Seq data of a
single individual. Thus, it is both cost-effective and computationally inexpensive.

2.3.3 Trans-acting Regulators of Alternative Splicing

2.3.3.1 Methods for Identification of Splicing Factors

Recently, an increasing number of RNA-binding proteins (RBPs) have been iden-
tified as regulators of splicing [98]. However, the associated splicing factors are not
yet known for a large number of SREs identified using the experimental or bioin-
formatic methods described above. To this end, a modified RNA affinity purification
method was used to identify trans-factors for known SREs [81, 82, 114]. In addition,
in vivo siRNA screens targeting known splicing factors were also used to reveal the
trans-factor for specific SREs [79, 115–117].

Previous efforts were also dedicated to predict or validate proteins with splicing
regulatory activity [98]. For example, a computational pipeline was designed to
search for proteins with splicing factor-like properties, which led to the discovery of
an SR-related protein with important function in neuronal tissues [118]. Given a
pool of RBPs, a previous study screened for splicing-related ones by examining the
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correlation of their expression with changes in levels of alternative splicing [119].
Combined with motif analysis, the authors successfully identified known and novel
splicing factors.

2.3.3.2 Methods for Identifying Binding Motifs of Splicing Factors

Given a splicing factor or RBP, a number of experimental methods were developed
to identify their binding motifs globally. These methods can be largely categorized
into two classes depending on their in vitro or in vivo nature. The Systematic
Evolution of Ligands by EXponential enrichment (SELEX) approach is one of the
in vitro methods [120]. SELEX was applied to identify ESEs and other SREs in
several studies [121]. Recently, this method was combined with microarray assays
to increase the throughput [122]. Another in vitro method called RNAcompete uses
in vitro transcribed RNA (structured or unstructured) for pull-down with an RBP of
interest, followed by microarray analysis of the bound RNA [123]. Binding motifs
of over 200 RBPs were determined by this method [119]. More recently, a new
in vitro method called RNA Bind-n-Seq (RBNS) was developed to improve
quantification of the sequence and structural specificity of RBPs [124]. Besides
canonical motifs, RBNS identified additional near-optimal binding motifs, which
were shown to be functional in vivo [124].

To identify global in vivo binding sites of RBPs, the most widely used method is
UV cross-linking and immunoprecipitation (CLIP) followed by sequencing
(CLIP-Seq) [125]. Variations of this method are also used for different applications,
including high-throughput sequencing of RNAs isolated by CLIP (HITS-CLIP)
[126], photoactivatable-ribonucleoside-enhanced cross-linking and precipitation
(PAR-CLIP) [127], and individual-nucleotide resolution UV cross-linking and
immunoprecipitation (iCLIP) [128]. Detailed discussions of these methods are
provided by previous reviews [129, 130]. Briefly, CLIP-based methods have rela-
tively high sensitivity and specificity compared to RNA immunoprecipitation alone.
However, the cross-linking efficiency is generally limited in regular CLIP, which is
improved in PAR-CLIP via the usage of 4-thiouridine, a photo-activated nucleotide.
Deletions, substitutions, or insertions usually occur near the cross-linking sites in
CLIP-Seq/HITS-CLIP [131], whereas T-to-C substitutions are observed near the
cross-linking sites in PAR-CLIP. These mutations can serve as diagnostic features to
pinpoint binding sites. Nonetheless, accurate read mapping tolerating such mutations
is challenging. Currently, bioinformatic tools are designed to handle read mapping,
cluster calling, and motif enrichment. In the future, development of tools that inte-
grate these basic analyses with RNA secondary structure, evolutionary conservation,
and in vitro binding data will tremendously facilitate a systematic understanding of
protein–RNA interaction.
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Notably, the ENCODE Consortium has devoted great efforts to generate
CLIP-Seq data of about 200 RBPs. In addition, shRNA knockdown experiments of
each RBP are carried out followed by RNA-Seq in cultured cells (K562 and
HepG2). These data sets will facilitate identification of splicing regulatory motifs,
analysis of splicing factor functions, and generation of global regulatory maps of
these RBPs.

2.3.4 Splicing Code

While most existing methods focus mainly on one or a few aspects of splicing
regulation, Barash et al. took a step further to assemble a “splicing code” by
integrating hundreds of RNA features and the alternative splicing patterns of a wide
panel of tissues [109]. This model takes as input exon sequences of interest and
their flanking introns, and recursively selects for features and parameters that
maximize the “code quality.” The code was later improved using Bayesian neural
networks on an expanded list of RNA features [132, 133] and applied to predict
splicing-altering disease mutations [108]. The above work mainly focused on
analysis of alternatively skipped exons. A more recent splicing code was designed
to identify RNA sequence features that categorize several major classes of alter-
native splicing, including exon skipping, alternative 5′ss, and alternative 3′ss exons
[134]. This work demonstrated that RNA sequence features (splice sites, conser-
vation levels, and exon/intron architecture) confer strong discriminatory contribu-
tions to classify different types of splicing.

Current versions of the splicing code are not able to predict absolute levels of
exon inclusion, but rather focus on predictions of relative changes in splicing across
tissues or in the presence of genetic mutations. Future development of the splicing
code could be empowered by consideration of regulatory networks of multiple
splicing factors, epigenetic influence, and kinetic aspects of splicing, some of which
are discussed below.

2.3.5 Useful Databases

Over the years, the splicing community has built many databases and Web
resources to include data on global profiling of alternative splicing and systematic
analysis of splicing regulatory mechanisms. Table 2.2 summarizes some of these
resources ranging from catalogs of alternative splicing events to disease-related
mutations that affect splicing.
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2.4 Ongoing Questions

2.4.1 Gene Expression Kinetics and Co-Transcriptional
Splicing

With the advent of RNA-Seq and related methodologies described previously in this
chapter, it is now possible to study kinetics of gene expression and splicing on the
global scale. It was recently shown that several steps in RNA processing often, but
not always, occur co-transcriptionally, including capping, splicing, and polyadeny-
lation, allowing for efficient and accurate pre-mRNA maturation (reviewed in
[121, 135, 136]). In particular, co-transcriptional splicing depends on the rate of RNA
Pol II elongation with the idea that slower elongation allows more time for splicing to
complete. Pol II elongation can be affected by nucleosome positioning, DNA
methylation, histone modifications, and chromatin remodeling [137, 138] (Fig. 2.3).
Additionally, the C-terminal domain of RNA Pol II can be post-translationally and
reversibly modified to guide interactions with different proteins involved in RNA
processing. Thus, chromatin modifications, transcription, and splicing are all inter-
connected processes [136, 137].

To study dynamic regulation of gene expression and/or co-transcriptional
splicing, nascent RNA must be captured. Modified RNA-Seq methods such as
genomic run-on sequencing (GRO-Seq) or sequencing of 4-thiouridine-labeled
RNA may be analyzed in conjunction with RNA-Seq [139–141]. Additionally, cell
fractionation and selection of non-polyadenylated RNA in the chromatin fraction
may be used. Recently, a native elongating transcript sequencing (NET-Seq)
approach was used by two groups to identify spliceosome-mediated cleavage, Pol II
dynamics related to splicing, and antisense transcription [142, 143]. Figure 2.3
illustrates co-transcriptional splicing and other events described below including
RNA editing, mirtron biogenesis, and circRNA biogenesis.

2.4.2 RNA Modifications

RNA modifications such as methylation (primarily N6-methyladenosine, or m6A)
and RNA editing were not extensively studied until recently. m6A, originally
identified in tRNAs, rRNAs, and snoRNAs, was recently shown to be widespread
in mRNAs with potential impact on splicing, mRNA degradation, and RNA sec-
ondary structures [144, 145]. The most prevalent form of RNA editing is the
conversion of adenosine to inosine (A-to-I) via deamination, typically in
double-stranded RNA (dsRNA) regions by adenosine deaminases acting on RNA
(ADARs) (Fig. 2.3). In order for editing to affect splicing, it is expected to occur
before splicing is completed. Indeed, several lines of evidence suggest editing
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precedes splicing (reviewed in [146]), although exceptions do exist. These findings
are only the beginning of a new era of functional and mechanistic studies of RNA
modifications.

2.4.3 Splicing Generates Other RNA Species

Although introns are typically degraded after removal, certain introns can also be
further processed to generate other RNA species. For example, biogenesis pathways
of snoRNAs, mirtrons, and simtrons rely on intron splicing (reviewed in [147]).
Whereas canonical miRNA biogenesis depends on the microprocessor (DGCR8
and DROSHA), mirtrons depend on lariat debranching (Fig. 2.3) and simtrons
depend on U1 snRNP. Another RNA species underappreciated until recently are

Fig. 2.3 Co-transcriptional splicing and related RNA products. Co-transcriptional splicing of two
introns with splicing rates α and β is shown. The following epigenetic factors are illustrated: DNA
methylation (m) enrichment in exons [138], dynamic phosphorylation (P) of the C-terminal
domain of RNA Pol II [137], and nucleosomes slowing down Pol II transcription. Splicing coupled
with RNA editing and the biogenesis of mirtrons and circRNAs are shown in the insets. RNA
editing can generate new splice sites (e.g., changing A to I may create a new AG 3′ss, RNA editing
inset, top [146]) and prevent circRNA biogenesis (RNA editing inset, bottom [151]). Mirtrons are
derived from lariats that are debranched by DBR1 and processed by DICER (mirtron biogenesis
inset [147]). QKI regulates the production of a subset of circRNAs (circRNA Biogenesis inset
[155])
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circular RNAs (circRNAs) (reviewed in [148, 149]). It was shown that biogenesis
of certain circRNAs depends on intronic sequence content [150–152], which may
compete with pre-mRNA splicing [153]. Additionally, circRNAs can contain both
exons and introns, and two of these were shown to regulate gene expression [154].
The splicing factor QKI was shown to regulate production of many circRNAs
(Fig. 2.3) [155]. The biogenesis and functions of circRNAs are currently under
active investigation.

2.4.4 Global Misregulation of Splicing in Disease

Since splicing is required for RNA maturation, misregulation of splicing may lead
to disease states [11]. In addition to well-known splicing diseases, such as myotonic
dystrophy [156], there are several examples of point mutations in specific genes that
cause splicing misregulation (reviewed in [121, 157]). Furthermore, global splicing

Fig. 2.4 Therapeutic approaches to modulate splicing. a Small molecule therapy. Phosphorylation
or dephosphorylation of SR proteins are regulated by CDC2-like kinase (CLK), dual-specificity
tyrosine-(Y)-phosphorylation-regulated kinase (DYRK), SR protein kinase (SRPK), and protein
phosphatase-1 (PP1). Inhibitors of these kinases and phosphatase affect the associated splicing
events. b Antisense oligonucleotides therapy. SR protein or other splicing factor binding sites can
be blocked by ASO to achieve specific alternation of splicing. c Trans-splicing therapy. ASO
linked to a restoring normal exon can rescue an abnormal splicing event that may result due to
multiple mutations
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misregulation also characterizes some diseases such as cancer. The Cancer Genome
Atlas (TCGA, www.cancergenome.nih.gov) provides a wealth of genomic data
from cancer patients and controls, allowing for the study of global splicing alter-
ations within and across cancer types [158, 159]. Splicing abnormalities were also
shown in autistic brains [160]. Although splicing alterations in cancer are well
established, it is difficult to identify the mechanistic cause and functional signifi-
cance of these events, especially considering that up to hundreds of RBPs may be
involved in the regulation of thousands of alternative splicing events in both normal
and disease states [121, 157]. In the future, an understanding of the causes and
functional consequences may lead to splicing-targeted therapeutics.

2.5 Splicing as a Therapeutic Target

Given the critical roles of splicing misregulation in disease, a number of strategies
are under development to therapeutically correct aberrant splicing events. First,
small molecules can be used to directly modulate the activity of splicing factors
[161]. The advantage of this method is the ease of delivery and the potential for
individual-specific dosage control. As examples, small molecule inhibitors were
examined that target SR protein kinases (SRPKs), CDC2-like kinases (CLKs), or
protein phosphatase-1 (PP1), which can then modulate phosphorylation of SR
proteins (Fig. 2.4). However, such inhibitors often have off-target effects and affect
splicing of many genes.

A more targeted approach involves usage of antisense oligonucleotides (ASO),
reverse complementary sequences that bind to target mRNA sequences. Because
ASOs are sequence-specific, they can block binding of splicing factors at specific
loci and modulate alternative splicing. For example, aberrant splicing events caused
by an intronic mutation in the human β-globin gene were corrected by ASO
treatment in a β-thalassemia mouse model [162]. In addition, clinical trials are
underway for ASO-based therapy of Duchenne muscular dystrophy and spinal
muscular atrophy [163]. Although ASO therapy overcomes the nonspecificity issue
of small molecules, their delivery is relatively difficult. Another method,
trans-splicing, is an effective strategy for repairing multiple mutations in exons or
transcripts. Also referred to as Spliceosomal-mediated RNA trans-splicing
(SMaRT) [164], this method can replace the entire mRNA sequence 5′ or 3′ of a
target splice site by trans-splicing between an ASO and the endogenous RNA [165].
This approach was proposed as a therapy for β-thalassemia to replace the first exon
of the β-globin gene resulting from aberrant splicing [166]. However, the delivery
of trans-splicing therapy is also challenging, as it necessitates incorporation of DNA
vectors to cells (10).
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2.6 Conclusions

In recent years, technological advances brought a fundamental shift in our approa-
ches to splicing-related questions. Global analyses that combine high-throughput
experimental assays and bioinformatic methods are becoming indispensible. As a
result, numerous novel insights have been revealed regarding the landscape of
alternative splicing and the regulatory mechanisms of splicing in various cell types.
These global discoveries constitute a foundation for further mechanistic and func-
tional studies in model systems and translational research. However, there still exist
many challenges in handling high-throughput experiments and data analysis. We
expect that these challenges will be addressed via methodology development
and standardization, which will further catalyze exciting discoveries in splicing
research.
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Chapter 3
Long Noncoding RNAs: Critical
Regulators for Cell Lineage Commitment
in the Central Nervous System

Xiaomin Dong, Naveen Reddy Muppani and Jiaqian Wu

Abstract Less than 3 % of the human genome encodes protein sequences and the
majority of transcribed sequences are noncoding. Long noncoding RNAs
(lncRNAs) refer to transcripts lacking in protein-coding potential and longer than
200 nt. lncRNAs are less conserved across species and expressed at a relatively
lower level. The expression patterns of lncRNAs are more cell-type-specific than
protein-coding genes. Currently, there are 8359 lncRNA genes annotated in
Mouse GENCODE version M6 and 15,931 in Human GENCODE version 23. The
number of lncRNA genes is still steadily increasing. Many lncRNAs have been
shown to play crucial roles in regulating the expression of protein-coding genes
during various biological processes. Particularly, lnRNAs can function as regulators
during development and cell differentiation. Herein, we discussed the regulated
expression and the functions of lncRNAs, as well as the underlying molecular
mechanisms. Specifically, we highlighted the importance of lnRNAs in the central
nervous system, and their regulatory roles during neural cell-fate determination.
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3.1 Introduction

Only a small portion of the mammalian genome encodes proteins [1–3].
Transcription of the genome is developmentally regulated and it generates a large
number of noncoding RNAs, such as transfer RNAs (tRNAs), ribosomal
RNAs (rRNAs), microRNAs (miRNA), and long noncoding RNAs (lncRNAs).
tRNAs and rRNAs are important components of the protein synthesis machinery
and play key roles in cellular protein synthesis. miRNAs and lncRNAs are con-
sidered to play crucial roles in regulation of gene expression [4, 5]. lncRNAs are
nonprotein-coding transcripts and their size is longer than 200 bp. Thousands of
lncRNAs were identified in mice and humans through RNA-sequencing studies
[3, 6, 7]. lncRNAs were found to be controlled by various regulatory factors and
displayed spatiotemporal expression profiles [8]. lncRNAs appeared to have
functions in a variety of physiological processes such as development, homeostasis,
stress response, and differentiation [3, 9, 10]. lncRNAs were shown to regulate
various biological processes by influencing the expression of key molecules
involved in these processes at transcriptional and posttranscriptional levels. Thus,
lncRNAs and their functional diversity have received a great deal of interest in
recent years.

Recent advances in genomic and molecular approaches provided novel insights
and tools toward understanding the mechanisms underlying the function of
lncRNAs [11, 12]. However, it is difficult to predict functions of lncRNAs across
species due to poor sequence conservation. Many lncRNAs were found to modulate
both individual gene expression and global gene networks in response to complex
developmental and environmental signals. Recent studies demonstrated lncRNAs
could act in cis to activate or silence neighboring protein-coding gene expression.
Besides, lncRNAs could also exert trans-effect to regulate gene expression by
interacting with various cellular factors. Although lncRNAs may act in cis or in
trans to modulate single gene expression, the global changes in gene networks were
mainly induced by trans-effect of lncRNAs. For the trans-effect of lncRNAs,
emerging evidence indicates that lncRNAs could act as scaffolds to form functional
complexes with epigenetic regulators and recruit these complexes at their action
sites to affect the expression of individual gene or gene clusters by modulating
chromatin epigenetic states [13]. In addition, lncRNAs physically interact with
transcription factors and modulate their transcriptional activities on multiple target
genes. Furthermore, interaction of lncRNAs with splicing factors was found to
cause alternative splicing and affect global splicing patterns [14].

lncRNAs have emerged as important regulators in the central nervous system
(CNS). The findings from the ABA (Allen Brain Atlas) data revealed that 849 out
of 1328 lncRNAs examined were expressed within the adult mouse brain [8, 15].
Most of them were transcribed in a developmentally regulated and cell-type-specific
manner. This suggested that lncRNAs were highly integrated into regulatory net-
works and played critical roles in differentiation of neural cells in the CNS.
Additionally, perturbations of lncRNAs’ expression were detected in neurological
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disorders, further supporting the possibility that lncRNAs are important regulatory
factors in CNS [16–19]. In this chapter, we review recent emergent studies and
highlight lncRNAs as important regulators for cell lineage commitment in CNS.

3.2 Identification and Classification of Long Noncoding
RNA

Large-scale RNA-sequencing projects revealed that a majority of the mammalian
genome is extensively transcribed and produces a large number of
nonprotein-coding transcripts [1–3, 20–27]. Application of genome tiling array
technology and deep sequencing to transcriptome profiling revealed that thousands
of loci in mammals were transcribed to generate long nonprotein-coding transcripts
[22, 28]. lncRNAs are one kind of these nonprotein-coding transcripts with a length
ranging from 200 bp to several kilobases. lncRNAs were classified into various
categories, such as intronic and exonic, intergenic, overlapping, bidirectional, and
sense or antisense, relative to adjacent protein-coding genes (as shown in Fig. 3.1)
[29–31]. Intergenic lncRNAs are transcribed from the regions between two
protein-coding genes. Transcription of lncRNAs can also be initiated from an intron
or exon of a gene. In some cases, a part of lncRNA sequences could be overlapping
with the protein-coding sequences of a gene, although these lncRNAs do not have
the capability of encoding any protein. Bidirectional lncRNAs are oriented head to
head with an adjacent protein-coding gene, and the distance between their TSS
(transcription start site) is less than 1 kb. lncRNAs are transcribed either in sense or
antisense orientation compared to the direction of transcription of adjacent
protein-coding genes.

lncRNAs may undergo alternative splicing and contain typical characteristics of
mRNAs, such as 5′ 7-methylguanosine capping and 3′ polyadenylation [32–34].
A number of them exhibit specific temporal and spatial expression patterns in
various tissues or cell types [3, 6, 8]. In mammalian genome, chromatin regions
actively transcribed by RNA polymerase II to produce multi-exonic transcripts are
marked by H3K4me3 and H3K36me3 chromatin modification-signatures (K4–K36
signature) [35]. Transcribing lncRNAs can also share these chromatin signatures
indicating they may be produced through a similar biogenic process as mRNA [36].
Together, the nonprotein-coding transcripts transcribed from chromosome regions
harboring the K4–K36 signature, containing single or multiple exons, and not
completely overlapping with known protein-coding genes, could be considered as
lncRNAs. These criteria have been used recently in several lncRNA discovery
studies [37].
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Fig. 3.1 Transcription of lncRNAs. lncRNAs transcription initiation site can be located within an
intron or exon region of a protein-coding gene or regions between two different protein-coding
genes on chromosomes. lncRNAs can be transcribed in either sense or antisense orientation (a, b).
lncRNAs may locate between two different protein-coding genes. Some lncRNAs may overlap
with a part of an exon of the adjacent protein-coding gene (c). Although they contain a part of an
exon sequence of a known protein-coding gene, they fail to encode any protein. Transcription of
lncRNA can also be initiated on the same point of DNA (less than 1 kb distance from adjacent
protein-coding gene), but on the opposite strand of adjacent protein-coding gene (d)
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3.3 Regulation of lncRNAs Expression

Developmental and tissue-specific temporal expression of lncRNAs suggested that
their expression is tightly regulated via various regulatory mechanisms, such as
transcription factors, epigenetic modifiers, and miRNA. lncRNAs were also shown
to modulate the cellular levels of lncRNAs as shown in Fig. 3.2.

3.3.1 Transcriptional Regulation of lncRNA Expression

Transcription factors were found to regulate the expression of many lncRNAs [38].
Several lncRNAs contain putative binding sites for transcription factors, such as
NF-κB, NANOG, OCT4, and SOX2 [39–41]. lncRNA JADE contains five putative
NF-κB-binding sites. Upon DNA damage, NF-κB induces the JADE promoter
activation [41]. p53 transactivates several lncRNAs, such as lincRNA-p21 and
lincRNA-Mkln1 [42]. Apart from transcription factors regulation of lncRNAs,
diverse epigenetic modifications might influence their transcription as well [43, 44].

Site-specific cytosine methylation was noticed in both Xist and HOTAIR within
or near functionally important regions where chromatin-associated protein com-
plexes can be recruited [45]. Up-regulation of various lncRNAs was observed as a
result of decreased methylation at CpG islands of their promoter regions [46]. This

Fig. 3.2 Regulation of lncRNAs expression. lncRNAs expression could be regulated at
transcriptional and posttranscriptional levels. Transcription factors, lncRNAs, methylation of
CpG islands, and histone epigenetic modifications at lncRNA promoter region are the main
mechanisms that regulate expression of lncRNA transcripts at the transcriptional level.
Posttranscriptional regulation includes miRNA-mediated degradation of lncRNAs

3 Long Noncoding RNAs: Critical Regulators for Cell Lineage … 77



suggested that methylation on cytosine may serve as a general mechanism in the
regulation of expression of long noncoding RNAs.

In addition to DNA methylation, several studies reported that epigenetic mod-
ifications on histones can influence lncRNAs expression. For example,
hypoxia-induced histone deacetylase 3 caused histone deacetylation at the promoter
region of lncRNA-LET. This led to a down-regulation in lncRNA-LET expression
[47]. When hepatocellular carcinoma (HCC) cells were treated with trichostatin A
(TSA), a histone deacetylase inhibitor, lncRNA uc002mbe.2, was up-regulated [48].
EZH2, a histone-lysine N-methyltransferase, is the catalytic subunit of the
Polycomb Repressive Complex 2 (PRC2). In embryonic stem cells, EZH2 mediates
H3K27 methylation and thereby repressing the expression of several lncRNAs
(e.g., FT31040 and FT38422) [49]. In addition, some lncRNAs can be regulated by
other lncRNAs. For example, Xist expression is blocked by Tsix, a lncRNA tran-
scribed in the antisense orientation from a promoter downstream of Xist [50].

3.3.2 Posttranscriptional Regulation of lncRNA Expression

miRNA-mediated degradation is a common posttranscriptional mechanism that
influences cellular mRNA levels. Similar to mRNAs, lncRNAs expression was
found to be regulated by miRNAs. A direct regulation of lncRNA MEG3 (mater-
nally expressed gene 3) expression by the micro-RNA, miR-29a, was reported [43].
The miR-295 as a part of the Dicer-miRNA-Myc circuit promoted transcription of
various lncRNAs [51]. Furthermore, the involvement of miRNA-671,
miRNA-let-7b, miRNA-141, and miRNA-9 in degradation of different lncRNAs
was also reported [52–54].

Thus, the transcriptional and posttranscriptional regulatory mechanisms modu-
lating the expression of lncRNAs seem to be similar to most protein-coding genes.
Developmental-specific expression of transcription factors, histone modifications at
lncRNAs promoter regions, and miRNAs seem to play roles in the regulation of
lncRNAs expression in a developmental stage specific manner.

3.4 Functions of lncRNAs

To date, the potential functions of most lncRNAs have not been well characterized.
Initially, lncRNAs were thought to mainly serve as precursors for small RNAs [21].
Compared to protein-coding RNAs, lncRNAs are usually expressed at a lower level
and lack apparent sequence conservation across species. These observations fueled
the debate whether lncRNAs are generated due to transcriptional noise resulting
from low RNA polymerase fidelity, or if they are artifacts of high-throughput
sequencing [3, 55, 56]. However, studies in mice showed that the expression of
many lncRNAs was developmental context restricted [29, 57]. Many of them were
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specifically expressed during embryonic stem cell differentiation and in the brain.
These studies also revealed specific subcellular localization of lncRNAs [8, 58–60].
A recent study showed that lncRNAs were expressed in a more tissue-specific
manner than protein-coding genes across 24 human tissues and cell types observed
[3]. This evidence suggests that many, if not all, lncRNAs are under explicit control
and may have critical functions during development [61].

Compared to miRNAs or protein-coding mRNAs, it is more difficult to infer
lncRNAs function directly from their sequence or structure, because of the large
diversity and poor sequence conservation across species. Identifying individual
lncRNA function usually requires direct functional tests, e.g., loss-of-function or
gain-of-function experiments [37]. An evolutionary analysis on lncRNAs revealed
their conserved function despite limited sequence conservation [36, 62–64]. Several
lines of research evidence indicate their involvement in a broad range of biological
activities, such as chromosomal dynamics, telomere biology, and subcellular
structural organization [61].

3.5 Molecular Mechanisms of lncRNAs

The precise mechanisms by which lncRNAs may function are not fully understood
yet. lncRNAs may elicit their biological functions by interacting with protein
complexes that transactivate genes or they may modify chromatin epigenetic states,
and RNA editing, etc.

3.6 Involvement of lncRNAs in Transcriptional
Regulation of Gene Expression

Enhancer and promoter regions of protein-coding genes are bound by transcription
factors and cofactors. Interactions of lncRNA with these factors may participate in
the process of regulation of transcription of various genes in cis or in trans [65, 66].
lncRNAs can be transcribed from enhancer or promoter regions of the protein-
coding genes and recruit chromatin-binding proteins and modulate nearby protein-
coding gene expression on the same chromosome in cis. For example, a lncRNA
transcribed from the upstream of cyclin D1 binds to RNA-binding protein TLS
(also known as FUS). This interaction is required for TLS to inhibit the histone
acetyltransferase activities of CREB-binding protein and p300 to repress cyclin D1
expression [67]. In mouse, lncRNA Evf-2 is transcribed from Dlx5/6 locus and can
recruit a transcription factor DLX2 at this locus. The Evf-2 acts as a cofactor and
promotes transcriptional activity of DLX2 to transactivate the adjacent genes at the
Dlx5/6 locus [68].
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Additionally, lncRNAs can also regulate the transcription of target genes on
other chromosomes in trans, without impacting their neighboring genes. Generally,
these lncRNAs alter global transcription by influencing the activity of transcription
factors in trans. One study demonstrated that upon depletion of nutrients or growth
factors, a noncoding RNA named growth arrest-specific 5 (Gas5) was highly
expressed in growth-arrested cells. Gas5 was found to act as a glucocorticoid
response element (GRE) and competed with other GRE to bind to the glucocorti-
coid receptor (GR). By preventing the binding of GR to correct regulatory GRE and
repressing the transcriptional activity of GR, Gas5 inhibited the expression of
several responsive genes associated with cell survival and metabolism [69].
lncRNA B2 was shown to mediate regulation of global gene transcription in trans.
This lncRNA bound and suppressed RNA polymerase II activity. B2 was induced
upon a stress condition, and its induction caused a global transcription repression
[70, 71].

lncRNAs can act as either activators or repressors by influencing epigenetic
processes in cis or in trans. Functional involvements of lncRNAs in chromatin
modifications were also reported [72]. Various studies revealed that lncRNAs could
assist epigenetic changes by recruiting chromatin remodeling complexes to specific
genomic loci [61, 73]. For example, Xist (inactive X-specific transcript, causes X
chromosome inactivation in cis) and HOTAIR (HOX transcript antisense RNA,
silences HOXD locus in trans) mediated recruitment of PRC2 on their respective
targets [74, 75]. A study showed that different regions of HOTAIR bind to different
subunits of the histone modification complexes, functioning as a modular scaffold
for chromatin-modifying complex formation to regulate expression of various genes
[76]. The lncRNA Air is antisense to Igf2r (insulin-like growth-factor type-2
receptor) gene [77]. It promotes the silencing of Igf2r, Slc22a2 and Slc22a3 by
triggering G9a methyltransferase recruitment at the promoter region of these genes
[78]. The lncRNA Kcnq1ot1 (Kcnq1 opposite transcript1) was transcribed from
intron 11 of the Kcnq1 gene in the antisense direction [79]. It regulates methylation
of the Kcnq1 gene promoter by interacting with DNMT1 (DNA methyltransferase
1) and recruiting EZH2, as well as G9a at the Kcnq1 gene promoter [80–83]. In
addition to these early examples, several other lncRNAs were also found to be
associated with chromatin-modifying complexes and affect gene expression [73]. In
humans, *20 % lncRNAs bind to the PRC complex, and 52 % of all known
lncRNAs can interact with other chromatin-modifying complexes such as CoREST
and SMCX [73]. These findings evidenced that lncRNAs can bind to
chromatin-modifying complexes to guide them to specific locations on the chro-
mosome. Differentially expressed lncRNAs can bind to several ubiquitously
expressed chromatin-modifying complexes and thereby helping to establish cell
type and condition-specific epigenetic states [61]. Such a mechanism resolves the
paradox that a small repertoire of chromatin-modifying complexes, which are often
comprised of RNA-binding domains with little DNA sequence specificity, were
able to establish complex epigenetic states across different cell types arising
throughout development [61]. The ability of lncRNAs to recruit chromatin-binding
proteins (transcription factors or epigenetic modifiers) to gene promoters can largely
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expand their transcriptional regulatory repertoire, as different protein factors can be
combined together with various lncRNAs to regulate specific target gene expression
as shown in Fig. 3.3.

3.6.1 Involvement of lncRNAs in Posttranscriptional
Regulation of Gene Expression

miRNAs can influence mRNA decay by binding to 3′ UTR (untranslated region) of
their target genes, thus affecting protein translation. Similar to miRNAs, some
lncRNAs also have the ability to recognize complementary sequences which allow
highly specific interactions, and bind to their target mRNAs. These interactions
regulate posttranscriptional modifications of mRNAs, such as splicing, editing,
transport, translation, and degradation as shown in Fig. 3.4 [61]. Many lncRNAs
were transcribed as antisense transcripts. An example is the zeb2nat (Zeb2 antisense
RNA), which complements the 5′ splice site of an intron in Zeb2 5′ UTR. The
expression of zeb2nat prevented the splicing of this intron required for proper
translation of the ZEB2 protein. Similar to zeb2nat, many other lncRNAs may also
have regulatory functions in alternative splicing of mRNA. In addition, lncRNAs

Fig. 3.3 Involvement of lncRNAs in transcriptional regulation of gene expression. lncRNAs
could regulate gene expression in cis or in trans. They form complexes with transcription factors
or epigenetic modifiers and thereby influencing the transcription of genomic adjacent
protein-coding genes on the same chromosome in cis or genes on the other chromosome in trans
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were also found to interact with splicing factors. For example, lncRNA Malat1
(metastasis associated lung adenocarcinoma transcript 1) co-localized with many
splicing factors in nuclear speckles [14]. Serine Arginine (SR)-splicing factors are
capable of regulating alternative splicing and this capability depends on their
concentration and phosphorylation. Malat1 physically interacts with SR proteins.
This interaction modulates the levels of phosphorylation on SR proteins, their
cellular distribution and thereby influencing alternative splicing mediated by them.

Interestingly, lncRNAs could also compete with miRNAs for their binding site
on target mRNAs. lncRNA linc-RoR was reported to play an important role in
embryonic stem cell renewal. Since linc-RoR was highly expressed in embryonic
stem cell, it titrated away microR-145 and protected OCT4, SOX2, and NANOG
that are required for embryonic stem cell renewal [84]. lncRNAs were also found to
influence protein subcellular localization. For example, the lncRNA NRON bound
to the members of the nucleocytoplasmic trafficking machinery and specifically
inhibited nuclear accumulation of the transcription factor NFAT and thereby its
transcriptional activities [85]. The involvement lncRNAs in RNA editing, and their
influence on localization of cellular factors explains their regulatory roles related to
functions of proteins and several biological processes.

The above-mentioned evidence indicates that the lncRNA-mediated regulation
of the expression of several genes is not only at the transcriptional level, but also at
the posttranscriptional level.

Fig. 3.4 Involvement of lncRNAs in posttranscriptional regulation of gene expression. lncRNAs
were involved in posttranscriptional regulation of gene expression by modulating splicing, editing,
transport, translation, and degradation of a mRNA
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3.7 Expression and Function of lncRNAs in CNS

The functions of lncRNAs in CNS were mainly investigated by analyzing their
developmental, tissue- and cell-type-specific expression. Studies from the ABA
(Allen Brain Atlas) data revealed that about two-thirds of lncRNAs were expressed
within the adult mouse brain [8]. Expression of lncRNAs was found to be devel-
opmental stage and tissue-specific. In additional studies, gene expression analysis
of both protein-coding and noncoding genes was performed in mouse brain and six
layers of mouse neocortex by using in situ hybridization and RNA-Seq technology
[15]. The results indicated that lncRNAs expression was significantly associated
with genomic sequence nearby or overlapping protein-coding genes. Interestingly,
the majority of these protein-coding genes were transcriptional regulators or factors
involved in nervous system development.

In addition to studies in adult brain, the expression analyses of lncRNAs were
also performed in embryonic brain [86, 87]. A recent study used next-generation
sequencing to analyze lncRNAs expression in proliferating neural stem cells, dif-
ferentiating progenitors and neurons [15]. Several lncRNAs were found to be
involved in neurogenic commitment and neuronal survival [88]. Another study
focused on the expression of lncRNAs during different stages of embryonic brain
development [89]. This study revealed that thousands of embryonic, brain-specific
lncRNAs are differentially expressed during brain development suggesting their
potential involvement in brain development. Most of them are expressed at lower
levels in adult brain compared to embryonic brain. Additionally, a large fraction of
these lncRNAs located within imprinted gene (the expression of imprinted gene
only occurs from one allele and is determined in a parent-specific manner) clusters
was suggested to act in imprinting lncRNAs to control brain development, similar
to other imprinted transcripts [88]. Taken together, this evidence implies that
lncRNAs may play critical roles in controlling brain development.

Since dynamic changes of lncRNAs were observed during neural cell differen-
tiation, it was suggested that lncRNAs expression is also regulated by cellular
factors [90]. Both transcription factors and epigenetic modifiers were found to
contribute to the modulation of lncRNAs expression in CNS.

The repressor element 1 silencing transcription factor (REST) functions as an
important transcriptional repressor to control neuronal gene expression during
nervous system development. Based on unbiased genome annotation in mouse and
humans, about one-fourth of REST-binding sites were located within 10 kb of
lncRNAs [91]. lncRNA AK046052 and AK090153 were identified to be REST
target genes and their expression was inhibited by REST in neural stem cells.

The lncRNA rhabdomyosarcoma 2 associated transcript (RMST) was specifically
expressed in the brain. Previous studies indicated RMST was regulated by tran-
scription factor PAX2 at the mouse mid-hindbrain boundary [92]. More recently,
binding of REST to RMST was revealed by ENCODE transcription factor binding
analysis and ChIP experiments [93]. Moreover, REST knockdown resulted in
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increased expression of RMST, confirming the repressive function of REST on
RMST transcription.

Another example is utNgn1-mediated epigenetic silencing of Neurog1. utNgn1
is transcribed from one of the enhancer elements located 7 kb upstream of the
Neurog1 gene. The involvement of Neurog1 in neuronal fate commitment has been
described [94]. The expression of utNgn1 was positively associated with Neurog1
mRNA expression during neural development. Polycomb group (PcG) proteins are
epigenetic chromatin modifiers. They can modify methylation states of histones at
promoter regions and repress gene transcription. They were found to inhibit both
the utNgn1 and Neurog1 expressions. On the other hand, Wnt3a was shown to
up-regulate both utNgn1 and Neurog1 expressions [95].

3.8 Roles of lncRNAs in Cell Lineage Commitment in CNS

Neural stem cells (NSCs) are multipotent stem cells that have limited ability to
differentiate compared to embryonic stem cells (ESCs) [96]. These cells exist in both
the embryonic cortical ventricular zone (VZ) and postnatal ventricular–subventric-
ular zone (V-SVZ) in the brain. They can both self-renew and differentiate to neu-
rons, astrocytes, and oligodendrocytes. The proper generation of these cell types is of
importance for the normal brain development. Disturbing this process may cause
developmental defects or diseases in the brain [97]. In addition, NSCs can give rise
to neurons as well as glial cells to facilitate the recovery process after brain injury,
such as traumatic brain injury (TBI) and ischemic brain injury [98–100].

lncRNAs appear to be involved in the cell-type specification during NSCs dif-
ferentiation. They were found to have cell-type and subcellular-specific expression
patterns in brain [88]. Moreover, dramatic changes in lncRNAs expression were
observed during neuronal–glial cell-fate switch, as well as neuronal and oligo-
dendrocyte lineage differentiation in a previous study [90]. This study also noted
that lncRNAs are located close to, and showed similar expression profiles, as
protein-coding genes involved in the neural differentiation processes. Furthermore,
another study demonstrated that lncRNAs Dlx1as and Six3os can regulate neuro-
genesis from NSCs. In this study, the expression of lncRNAs in the main cell types
of the SVZ was analyzed and showed differential lnRNAs expression in neural cells
types [101]. In addition, both up-regulated and down-regulated lncRNAs were
identified during in vitro differentiation of neural stem cells. Knockdown studies to
detect the roles of lncRNAs in neuronal differentiation were also performed and
revealed that ablation of Six3os resulted in an increase in the number of astrocytes
and a decrease in the number of neuron, as well as oligodendrocytes in neural stem
cell differentiation. An increase of astrocytes and a decrease of neurons were also
observed as a result of Dlx1as knockdown.

De novo identification of novel lncRNAs from RNA-Seq data of purified cell
types can further expand the lncRNA repertoire and elucidate lncRNAs’ function in
cell lineage commitment in CNS. We reported 811 lncRNAs with the criterion of
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FPKM > 1 from the eight brain cell types (neurons, astrocytes, oligodendrocyte
precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes,
microglia, endothelial cells, and pericytes from mouse cerebral cortex) based on the
GENCODE annotation [27]. Some lncRNAs are highly expressed, with 12 having
FPKM values >100 in the brain. We found that some lncRNAs are
cell-type-specific or enriched. Astrocytes and neurons express larger numbers of
lncRNAs (109 ± 2 and 92 ± 3, respectively) than myelinating oligodendrocytes and
endothelial cells (44 ± 3 and 48 ± 3, respectively). We are in the process of
broadening lncRNA catalog by ab initio transcriptome reconstruction and charac-
terizing the regulation of unannotated lncRNAs in cell-fate determination by inte-
grating differential gene expression and transcription factor occupancy information.
lncRNAs involved in oligodendrocyte precursor differentiation from NSCs have
been identified by loss-of-function experiments. All the above observations sug-
gested a role of lineage-enriched lncRNAs in the cell-fate decision of NSCs. Some
examples of lncRNAs involved in cell lineage commitment in CNS are shown in
Table 3.1.

3.8.1 Cis-Acting lncRNAs in Cell Lineage Commitment
in CNS

Attention had been focused on understanding the influence of lncRNAs in the
transcription regulation of adjacent protein-coding genes on the same chromosome.
Recently, a number of lncRNAs have been shown to function locally and control
the expression of their neighboring genes to influence cell-fate specification and
differentiation of CNS.

NKX2.2 is a known transcriptional factor regulating oligodendrocyte lineage
differentiation [102]. Nkx2.2 antisense is transcribed in the antisense orientation to
the Nkx2.2 gene and localized in the cytoplasm. Overexpression of Nkx2.2 anti-
sense in neural stem cells could act in cis to up-regulate Nkx2.2 mRNA levels and
promote oligodendrocyte lineage differentiation [103].

Evf-2 is another lncRNA acting as a transcriptional co-activator to regulate gene
expression and cell-fate specification in CNS. It is expressed in immature neurons
and its coding sequence is located in the intergenic region of the Dlx5 and Dlx6
genes. The DLX homeodomain transcription factors are known to play an important
role in neural differentiation [115–118]. Ablation of Dlx1, Dlx2, Dlx5, and Dlx6 led
to a reduction in the number of interneurons in mice. Moreover, the DLX2 protein
was demonstrated to bind to the Dlx5/6 intergenic sequence region [119]. Evf-2 was
found to not only enhance and stabilize the binding of DLX2 protein to the Dlx5/6
intergenic sequence [68], but also recruit DLX and MECP2 to the Dlx5/6 intergenic
region to inhibit the transcription of Dlx-5 and Dlx-6 [104]. In addition, loss of Evf-
2 function caused decreased GABAergic interneurons in postnatal day 2 hip-
pocampus and dentate gyrus [104]. These multiple lines of evidence implicate a
potential role for Evf-2 in neural differentiation.
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Transcription factor SOX2 is required for NSCs pluripotency and neurogenesis.
Its expression level is high in NSCs and down-regulated after NSCs differentiation
[120]. Loss of SOX2 led to a reduced number of mature neurons after NSCs
differentiation in vitro. Furthermore, it also caused a loss of GABAergic neurons
and hippocampal neurogenesis in vivo [121]. Sox2 gene is located in an intronic
region of lncRNA Sox2ot (Sox2 overlapping transcript). Sox2ot is transcribed in the
same direction as Sox2 and has several isoforms, such as Sox2ot-s1 and Sox2ot-S2

Table 3.1 Examples of lncRNA involved in cell lineage commitment in CNS

lncRNA Classification Function Classification
of effect

Ref.

Nkx2.2
antisense

Antisense Up-regulates Nkx2.2 mRNA levels and
promote oligodendrocyte lineage
differentiation

In cis [103]

Evf-2 Intergenic Recruits DLX and MECP2 to the Dlx5/6
intergenic region to inhibit the
transcription of Dlx-5 and Dlx-6

In cis [104]

Sox2ot Overlapping Up-regulates Sox2 expression and may be
functionally associated with Sox2 in
neurogenesis

In cis [105,
106]

utNgn1 Intergenic Promotes the expression of Neurog1 and
Tbr2

In cis [95]

RMST Intergenic Forms RNA-protein complex with SOX2
to regulate a set of downstream genes
implicated in neurogenesis

In trans [93]

RNCR2 Intergenic Modulates retinal differentiation by
interacting with SF1 splicing factor and
affecting alternative splicing patterns of
other genes

In trans [107]

Tug1 Intergenic Causes global changes in expression of
photoreceptor genes during retinal
development

In trans [108]

Six3 Antisense Affects the expression of Six3-associated
genes through interacting with EZH2
during retinal development

In trans [109,
110]

TUNA Intergenic Recruits PTBP1, hnRNP-K, and NCL to
the Sox2 promoter region

In trans [111]

Pnky Intergenic Interacts with
polypyrimidine-tract-binding protein 1
(PTBP1) to regulate neurogenesis

In trans [112]

Paupar Intergenic Regulates the transcription of Pax6
locally and transcription of
neuro-developmental genes distally

In trans and
In cis

[113]

Dali Intergenic Regulates the transcription of Pou3f3
locally and interact with the POU3F3
protein to regulate transcription of neural
differentiation genes distally

In trans and
In cis

[114]
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[105, 106]. With similar expression patterns to Sox2, Sox2ot was detected in cul-
tures of mouse neurospheres in vitro and adult mouse tissues [8, 106]. More
recently, a study showed that ectopic expression of Sox2ot up-regulated the
expression of Sox2 by 20-fold [122]. Thus, Sox2ot was suggested to regulate Sox2
expression and may be functionally associated with Sox2 in neurogenesis [105].

3.8.2 Trans-Acting lncRNAs in Cell Lineage Commitment
in CNS

lncRNAs were also able to interact with epigenetic modifiers, transcription factors,
and splicing factors and influence their molecular functions. Therefore, lncRNAs
can distally target different loci in the genome to modulate global gene expression
[59]. Recently, some trans-acting lncRNAs were shown to control lineage differ-
entiation in the CNS.

The rhabdomyosarcoma 2 associated transcript (RMST) was found to be express
mainly in the CNS, especially in the developing dopaminergic neurons of the
ventral midbrain [123]. A previous study demonstrated that RMST expression was
elevated during neuronal differentiation [93]. Depletion of RMST inhibited neuro-
genic program, while overexpression of RMST induced neuronal differentiation.
This evidence implies a functional role of RMST in neural cell-fate decision [124].
Further investigations revealed that RMST was transcriptionally repressed by REST
and interacted with the SOX2 protein. During neuronal differentiation, REST levels
decrease [125, 126]. Meanwhile, up-regulated RMST may form RNA-protein
complex with SOX2 to regulate a set of downstream genes implicated in neuro-
genesis [93].

Additionally, retinal noncoding RNA 2 (RNCR2) (also known as Gomafu or
Miat) is located in the nucleus and is highly expressed in the developing retina.
Furthermore, RNCR2 was detected in differentiating oligodendrocytes, as well as
neurons and exhibited a specific expression pattern in brain [8, 90]. In vivo elec-
troporation was performed in mouse retina to knockdown the expression of RNCR2.
The loss of RNCR2 promoted retinal cell differentiation. RNCR2 was exclusively
retained in the nucleus as many other lncRNAs are and did not shuttle between the
nucleus and cytoplasm [21, 127, 128]. When RNCR2 was fused with IRES-GFP,
the IRES-GFP induced translocation of RNCR2 from the nucleus to the cytoplasm.
This led to an enhancement in amacrine and Müller glial differentiation as caused
by the loss of RNCR2 in the nucleus [127]. These results suggest that
nuclear-retained RNCR2 regulated the retinal cell fate. Moreover, it was proposed
that RNCR2 may modulate retinal differentiation by interacting with SF1 splicing
factor and affecting alternative splicing patterns of other genes [107].

Tug1 (taurine up-regulated gene 1) is another lncRNA involved in retinal
development. Tug1 was required for retinal differentiation and acted in trans to
modulate photoreceptor genes through interactions with PRC2 [73]. Knockdown of
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Tug1 caused global changes in expression of photoreceptor genes, improper pho-
toreceptor development, and cell death [108].

Six3 (sine oculis homeobox homolog 3) was found to be expressed in the mouse
retina and associated with retinal development [109]. Six3OS is the
antisense-transcript of the Six3 gene. To evaluate the effect of Six3OS on retinal
development, both overexpression and knockdown experiments were performed
in vivo [110]. The results indicated the involvement of Six3OS in retinal cell
differentiation and that Six3OS may act in trans to affect the expression of Six3-
associated genes through interactions with EZH2.

The highly conserved lncRNA, TUNA (Tcl1 upstream neuron-associated
lincRNA) was found to be associated with neural development and function in
zebrafish, mice, and humans [111]. It also plays a key role in pluripotency and neural
differentiation of mouse ESCs. It is required for neural lineage commitment of ESCs
and to maintain stemness of ESCs. According to RNA pulldown and RNA
immunoprecipitation experiments, TUNA was found to interact with three multi-
functional proteins, including polypyrimidine-tract-binding protein (PTBP1/PTB/
hnRNP-I), heterogeneous nuclear ribonucleoprotein K (hnRNP-K), and nucleolin
(NCL). Impact of NCL on chromatin remodeling and transcription was previously
reported [129, 130]. Notably, hnRNP-K and PTBP-1 were implicated in neural
differentiation through posttranscriptional mechanisms [131, 132]. TUNA recruited
PTBP1, hnRNP-K, and NCL to the Sox2 promoter region and promoted its trans-
activation. Moreover, TUNA knockdown inhibited neural lineage differentiation
from ESC. Apart from their individual target genes, TUNA and Sox2may co-regulate
a set of common genes to influence the ESC state and neurogenesis [111].

A neural-specific lncRNA Pinky (Pnky) is expressed in NSCs of the developing
mouse and human brain [112]. It regulated neurogenesis from NSCs in the
embryonic and postnatal brain. Knockdown of Pnky potentiated neuronal lineage
commitment both in culture and in vivo. Its knockdown increased neuron pro-
duction up to 4-fold in postnatal NSCs. Knockdown of Pnky in the embryonic
mouse cortex led to an increase in neuronal differentiation and a decrease in the
NSC population [112]. Pnky was shown to interact with Polypyrimidine-
tract-binding protein 1 (PTBP1). PTBP1 is a RNA-splicing factor and can act as
a repressor for neuronal differentiation. The expression of PTBP1 was decreased
during neurogenesis and PTBP1 knockdown resulted in an increase in neurogenesis
[133]. Furthermore, both Pnky and PTBP1 were found to regulate a common set of
transcripts involved in neuronal differentiation [112].

3.8.3 lncRNAs with Both Cis and Trans-Effects on Cell
Lineage Commitment in CNS

Some lncRNAs are able to function locally on nearby genes, as well as on distal
genes located on different chromosomes. For example, lncRNA CTBP1-AS was
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shown to influence prostate cancer progression either by directly inhibiting the
expression of C-terminal binding protein1 (CTBP1) in cis or by suppressing
tumor-repressor genes globally in trans [134]. Recent studies demonstrated some
lncRNAs with both cis and trans-acting function in lineage differentiation in the
CNS.

An evolutionarily conserved lncRNA Paupar is transcribed from 8.5 kb
upstream of Pax6 gene [113]. Knockdown of Paupar was shown to control the
growth and differentiation of neural cells by a loss-of-function assay. Paupar was
able to locally regulate the transcription of Pax6. Transcription factor PAX6 was
implicated in controlling progenitor cell potency and neuronal cell specification
[135]. Additionally, Paupar was shown to bind to specific genomic regions distally
and regulate the transcription of neuro-developmental genes in trans [113].

DNMT1-associated long intergenic noncoding RNA (Dali) is a conserved
intergenic lncRNA expressed in the central nervous system [114]. It is transcribed
from downstream of the Pou3f3 transcription factor gene and co-expressed with
Pou3f3 in neural cell lineages. Dali regulates the transcription of the Pou3f3 locus.
Distally, it targets active promoters of neural differentiation genes and regulates
their expression. This regulation was in part mediated through physically inter-
acting with the POU3F3 protein. Dali epigenetically regulates neural differentia-
tion. In mice and humans, Dali interacts with DNMT1 and regulates DNA
methylation of CpG island-associated promoters in trans. Depletion of Dali dis-
rupted differentiation of neuroblastoma cells [114].

3.9 Conclusions

In summary, we reviewed the significant roles of lncRNAs, especially their role as
cell-fate determinants in CNS. However, the elucidation of the regulatory functions
of lncRNAs in CNS cell-fate determination is limited so far. The cell lineage
commitment could involve more complex regulatory mechanisms. Other functions
of lncRNAs may exist and need to be discovered. Most of the previous studies
employed lncRNAs overexpression or silencing methods to study functions of
lncRNAs. As many lncRNAs are localized in the nucleus, the RNAi method might
not efficiently knockdown their expression due to a lack of the RNAi machinery in
the nucleus. Therefore, new technical advancements are highly desirable in order to
gain further insights into the roles of lncRNAs in CNS development and other
biological processes.
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Chapter 4
Gene Expression Models of Signaling
Pathways

Jeffrey T. Chang

Abstract Aberrant pathway activation is a hallmark of a range of diseases, from
atherosclerosis to diabetes to cancer. The ability to easily measure the compendium
of activated pathways in a biological sample would greatly impact the study of
these diseases. To do so, methods have been developed recently that leverage the
gene expression profile of a cell. While these profiles provide a quantitative mea-
sure of the expression levels of every gene in the genome, they are also a reflection
and amalgamation of all the processes, many of which require the concerted activity
of a group of genes, that are activated in a biological sample. To interpret these
profiles, methods have been developed over the last decade that can quantify the
activation of individual processes. In short, each process is modeled as a gene
expression signature, which is comprised of a set of genes whose expression levels
are indicative of activation of the process. To score the activation of that process in
a cell, computational algorithms have been developed that can compare the sig-
nature against the gene expression profile of the cell. This chapter describes the
development of signatures and signature databases, as well as computational
approaches to predict pathway activation in gene expression profiles.
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4.1 Introduction

The development of DNA microarrays in 1995 provided the widespread ability for
scientists to measure the expression level of genes across the genome [1]. The early
DNA microarrays were based on glass slides, in which oligonucleotide probes
targeting each transcript were affixed. The cDNA from samples of interest could be
hybridized to the probes. By measuring a detectable marker, such as a fluorescent
molecule, that is conjugated to the cDNA, a quantitative measure that correlates
with the amount of each transcript in the sample could be detected. Since then,
additional technologies have been developed, such as procedures creating probes
using a photolithography method (such as currently used in Affymetrix microar-
rays) [2–5], or using bead-based methods (used in Illumina microarrays) [6].
Although microarrays have been successful, they are currently being supplanted for
the detection of gene expression by technologies using next-generation sequencing
such as RNA-Seq [7]. Nevertheless, microarrays are still being used due to their
cost advantage. Regardless, although the technologies to measure gene expression
have progressed rapidly over the last 20 years, the end product is the same: a
relative measure of the gene expression values across a genomic scale. In addition,
even though the technology to measure the gene expression levels differs, the broad
principles for how to interpret these values remain the same.

The interpretation of gene expression profiles has evolved in parallel with the
technologies. With the ability to measure the gene expression level of all genes on a
genome scale came along the desire to compare the genes across different condi-
tions. That is, a screen for gene expression changes by looking for differential gene
expression across biological or experimentally derived conditions. Early examples
of the types of experiments involving differential gene expression are the identifi-
cation of genes that changed conditions between normal and disease states [8],
cycles in the cell cycle [9, 10], and other biological studies [11, 12].

4.2 Machine Learning

Although the study of the gene expression changes of individual genes is important,
it was quickly realized that gene expression profiles contain additional information.
That is, the patterns of gene expression changes across a set of genes are also
informative. The biological justification for this is that biological processes, such as
cell proliferation, motility, immune response, are carried forth not by the activity of
a single gene, but by the multiple genes acting in concert. This led to the deduction
that the analysis of patterns of gene expression, of multiple genes working together,
can provide insight into the working of a cell.

To find patterns of gene expression, clustering methods were developed.
Clustering methods can find patterns that are apparent when looking at a group of
data samples [13, 14]. That is, a single sample can provide the relative expression of
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genes in that sample. With two samples, the changes in expression of a gene can be
determined (although in practice, many replicates of the samples are done to reduce
noise). However, with multiple samples, one can compare the patterns of expression
(i.e., in which samples the expression is up or down) across a set of genes. This is
known as a guilt-by-association inference [15–18] (Fig. 4.1). The interpretation of
this inference is that if two genes show a similar pattern of expression across a set of
samples ( i.e., they are activated and have high expression in the same samples, and
are also repressed with low expression in the other samples), then they are likely to
be regulated by the same mechanism. Given these conditions, the genes are asso-
ciated transcriptionally, and we infer that they may be involved in the same process.
Thus, if we know the function of one gene, then we can use that to predict the
function of the other. This approach is commonly used to predict the function of
unannotated genes, although there are limitations to this method [19].

To find genes that have similar gene expression profiles, clustering methods are
used. At the same time, the algorithm can also detect groups of samples that have
same profiles. Not only are the genes then predicted to have the same functions, but
also some similarity can be inferred for the samples, because similar groups of
genes are activated. This has been used to great effect in cancer genomics. One of
the first successes of this approach is the clustering of breast cancers into different
subtypes [20]. Using an unbiased measure based on transcriptional profiles, breast
cancer was split into four subtypes that exhibit different levels of activation. These
subtypes have subsequently been refined [21]. Nevertheless, the different subtypes
of breast cancers were found to exhibit very distinct and clinically relevant
behaviors. The HER2+ and basal subtypes lead to the worst outcomes [22], and
recommendations are being crafted to vary patient treatments depending on the
subtype of their disease [23]. This demonstrates that the patterns of gene expression
profiles can be applied in an unbiased manner to learn about biology and guide
clinical treatment.

Reflecting the fact that clustering is unbiased, it is also sometimes called
unsupervised machine learning, as opposed to supervised machine learning meth-
ods [24]. Both unsupervised and supervised machine learning are concerned with
finding patterns of data. The difference between these two approaches is whether

Fig. 4.1 Guilt by association
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the algorithm is searching for patterns in a completely unbiased manner (for
unsupervised), or searching for the presence or absence of a previously known
pattern (for supervised machine learning). In contrast to unsupervised clustering, a
supervised machine learning algorithm starts with a specific expression profile of
interest and then examples whether a test sample also exhibits that expression
profile. The existence of supervised machine learning methods means that previ-
ously established expression profiles can be detected in other samples. That is, if
one has an expression profile, consisting of genes that are somehow altered, one can
measure its presence in another data set. This forms the basis of pathway analysis.

4.3 Pathway Activation in Gene Expression

After the invention of microarrays, it has been observed that essentially every
biological process leaves an imprint on the gene expression profile of a cell. While
it might have been possible that gene expression was limited to the measurements
of activities that involved transcriptional changes, a surprising result is the ability
for gene expression profiles to also reflect other post-transcriptional changes. Many
biological processes are regulated on a post-transcriptional level, such as plasma

Fig. 4.2 Clinical relevance of gene expression signatures
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membrane receptor activation, kinase cascades, and protein localization events.
However, essentially all of these events eventually result in a cascade of changes
that lead to changes in gene expression levels.

Among many events that lead to changes in gene expression profiles, the acti-
vation of pathways does as well [25] (Fig. 4.2). Aberrant pathway activation is a
hallmark of a range of diseases, and this has probably been best seen in cancer [26,
27] (Fig. 4.3). While cancer is driven by well-known oncogenes and tumor sup-
pressor genes, they affect pathways that can also be perturbed by mutations in many
other genes. While there are thousands of genes have been reported to be mutated in
cancer, the mutations affect a much more limited number of core pathways [27].
Many of the genes that are altered are poorly annotated, and therefore, it is
unknown what pathway is affected by their mutations. Nevertheless, because a
knowledge of the altered pathway can affect prognosis and treatment, there is a
great interest in understanding which are the pathways affected by the mutant genes.

4.4 Pathway Definitions

Although the term pathway is commonly used, for gene expression analysis, it is
helpful to separate the molecular components of the pathway into two classes. In
one, a pathway consists of the sequence of molecules that form a signal transduction
activity. We call the molecules that comprise this sequence as the members of the
pathway (Fig. 4.4). These members are related by biochemical relationships, such as
physical binding, phosphorylation, and ubiquitination. For example, if we consider
the Rb pathway, which controls the G1/s check point, as curated in BioCarta [28], we
see that it includes many members. Rb drives the control of cell cycle progression
into S phase and is considered a major tumor suppressor pathway. The Rb protein
itself is a member of the pathway [29, 30]. Upstream of it, Rb is phosphorylated by
cyclins, including Cyclin D and Cyclin E, which are also considered members. Upon
phosphorylation, it derepresses the E2F transcription factors (also members), which
then transcriptionally activates genes that allow for cell cycle progression.

Next, we define the second type of components of a pathway. These are mole-
cules that are their transcriptional effectors. These are the genes whose expressions
are increased or decreased upon activation of the pathway. Continuing the example
above, the effectors of the Rb pathway would be the genes whose expression

Fig. 4.3 Activation of pathways across tumor samples
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changes in response to activation of Rb, specifically, the transcriptional targets of the
E2F transcription factors, including E2F1 itself, DHFR, TK, or CCNE1 [31, 32]. In
other words, every transcriptional target of E2Fs would comprise the Rb pathway.
E2F1 is a transcriptional effector because it induces its own expression. Rb would
not be, since its expression is unchanged upon its activation.

Distinguishing the members from effectors of a pathway is useful for gene
expression analysis of pathways. The members of a pathway are not necessarily
regulated transcriptionally. When the pathway is activated or inactivated, the
expression levels of the proteins do not change. Therefore, when predicting the
activation of the pathway, the expression levels of the members are not necessarily
good markers (although they are often used that way in practice). However, the
transcriptional effectors are viable indicators of pathway activation. Changes in the
effectors can provide clues to the status of the pathway. The methods that can
integrate and score their gene expression levels are described below

4.5 Pathway Databases and Representations

Pathways are comprised of transcriptional effectors that can be used in gene
expression signatures. While the pathway diagrams from typical databases also
show edges that indicate the types (and often the direction) of interactions among
molecules, that information is typically not used in the calculation of gene
expression signatures. Only the identities of the genes are important. Thus, path-
ways are represented by lists of genes, or sometimes called bags of genes or gene
sets, underscoring the fact that the genes are unstructured and unordered (Fig. 4.5).

One limitation to the bag of gene representation is that it does not account for the
fact that some genes may be more conclusive markers of pathway activation than
others. To do this, it is possible to add a weight to the genes for a signature that reflects
their importance. In this way, the relative importance of a gene to predict the activation
of a pathway can bemodeled. The expression levels of the genes can be combined by a
computational method that can account for the weights to predict the outcomes.
Sometimes, a weighted list of genes is called a gene expression signature.

Fig. 4.4 Pathway members
and effectors
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Curated lists of pathways are contained in many databases, such as KEGG [33,
34], BioCarta [28], Reactome [35], or Nature-NCI Pathway Interaction Database
[36]. In these databases, curators have collected pathways from the literature (or
other databases). There are also attempts, such as Pathway Commons, to provide a
comprehensive set of pathways by combining them from other sources [37]. One of
the limitations of these databases is the fact that the notion of a pathway is fluid and
varies from source to source. There is no agreement on what constitutes a single
pathway, and also no clear consensus on the boundaries between pathways.
Therefore, there are differences in the pathways among the databases.

There are also databases that contain gene sets, such as GeneSigDB [38] or
MSigDB (Molecular Signatures Database) [39]. MSigDB is comprised of gene sets
that are curated from the literature, as well as other sources. This database does not
contain only the gene sets with pathway members or effectors. Instead, it also
consists of gene sets for other phenomena, such as the genes residing on specific
chromosome bands and gene ontology functions [40]. However, it is currently the
most comprehensive database of gene sets for pathways.

Finally, there are also databases that contain weighted gene expression signa-
tures for pathways, such as SIGNATURE [41]. The SIGNATURE database con-
sists of gene expression signatures for oncogenic pathways, including pathways
such as Myc, Ras, EGFR, and E2F. The signatures contain specifically the tran-
scriptional effectors, coupled with weights indicating their relative importance to
predicting pathway activation. This has been used for predicting response to tar-
geted therapies [42] and identifying subtypes of cancers [43], as well as decom-
posing pathways into modular structures [44].

4.6 Measuring Pathway Activation

A range of tools have been developed that can score the activation of pathways
from gene expression data. One of the most straightforward approaches, and the
first to be developed, is exemplified by tools such as DAVID [45] or GATHER
[46]. Here, a gene expression data set covering a biological condition of interest is
first processed and converted into a gene set. For example, if the goal is to compare

Fig. 4.5 Representations of
pathways
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the pathways in two different conditions, such as tissues with and without a disease,
the genes that are differentially expressed in the conditions are extracted and
converted into a bag of gene-type gene set. This can be done by setting an explicit
cutoff, where genes with an expression change beyond this cutoff are in the gene
set, while those with less change are not. In practice, sophisticated statistical tests
are used [47–52]. Once a gene set representing the data set of interest is created, it is
compared against the gene sets representing the transcriptional effectors of path-
ways. The statistical significance of the overlap can be scored using a Fisher’s exact
test [53], a hypergeometric distribution [54], a Bayesian test [46], or a variant of one
of these [55]. The gene sets of pathways that achieve statistical significance rep-
resent the pathways that are associated with the disease.

There is a commercial pathway analysis database called Ingenuity Pathway
Analysis that is frequently used. The pathway database was specifically developed
by the company and human curated. A pathway analysis here results in a list of
statistically significant pathways, as well as figures that show their topologies.

One of the limitations in the approach to identify pathways above is that it
requires a cutoff to select the gene set that represents the biological data set. This
assumes that biological processes are driven by the genes with the largest changes
in gene expression. However, it is possible that processes are driven by a multitude
of genes with smaller gene expression changes. Under this model of pathway
activation, it would be more correct to look for the coordinated changes of a group
of genes, even if their gene expression changes are not very big. To do this,
enrichment algorithms, such as gene set enrichment analysis (GSEA), have been
developed [56–59]. To perform a GSEA analysis, the biological condition of
interest must be represented by a gene expression data set with exactly two con-
ditions, such as the disease and control samples described above. Given this data
set, GSEA can apply a gene set and determine whether the genes in the gene set
overall exhibit a change. Specifically, GSEA scores the association of a gene set
with a gene expression data set using an adapted Kolmogorov–Smirnov test. By
analyzing all the gene sets from a database of pathway gene sets (typically those
from the MSigDB), GSEA can find pathways that are differentially regulated across
two conditions.

There are two limitations of GSEA. First, it scores whether a pathway is dif-
ferentially activated across two conditions. It does not have the capability to score
the activation of a pathway in individual samples. Second, it treats each gene in the
gene set as being equally important and does not consider that some genes may
have a stronger ability to predict pathway activation than others.

To address the first limitation of GSEA, methods have been developed to apply
GSEA to single samples, such as ssGSEA [60] or GSVA [61]. These are variants of
GSEA where the significance of each pathway is based on the absolute expression
levels in each sample, rather than the difference between two groups of samples.
This allows the calculation of a score for individual samples. The calculation of the
statistical significance is done in a similar way to the standard GSEA algorithm.

To address both limitations of GSEA, one can also use quantitative gene
expression signatures [62–71], like those in the SIGNATURE system described
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above [41–43]. This system uses a supervised machine learning framework to score
the activation of pathways. In such systems, the gene expression profile that
exemplifies an activated pathway is generated from a training set that consists of
gene expression profiles of conditions in which pathways are on or off (Fig. 4.6).
The pathway off state is typically cells in quiescence, while the pathway on state is
cells in which a single pathway is activated by ectopic activation of the pathway.
Using this training set, machine learning algorithms can make quantitative models
of the activation of the pathway. The SIGNATURE system is based on logistic
regression [72, 73], although many other algorithms, such as singular value
decomposition-based regressions, have been used [74]. Using supervised machine
learning algorithms, it is possible to score the pathway in a new sample. The main
limitation of this system is the need for a quantitative gene set, created from a
training set. This requires specially created training sets. Because of this extra
requirement, database of gene sets, such as MSigDB, cannot be used. Therefore,
there are many fewer profiles available. The largest study with these pathways uses
up to 52 profiles [75].

In addition to gene expression information, other types of genomic information
can also provide hints as to whether a pathway is activated. Due to the rise of
technologies that can easily collect other types of genomic information, such as
copy number alterations or mutations, efforts have been developed to combine all of
this information to predict the activation of a pathway. An early project to do this is

Fig. 4.6 Gene expression
signatures
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called PARADIGM [76]. Here, a Bayesian network is used to model pathways
using the structures provided by the NCI PID database. Then, given genomic data
that indicate the level of gene expression or copy number variation, the model can
predict the level of activation of the pathway. This has been shown to identify
patterns across groups of tumors that can classify them into distinct survival
categories.

4.7 Conclusions

There is a range of representations and approaches for analyzing the activation of
pathways in gene expression signatures. The theoretical foundation underlying
these approaches is the idea that the gene expression profile of a cell is a reflection
of the underlying activities occurring in the cell. That is, while many cellular
activities happen on the post-transcriptional level and do not immediately involve
transcriptional regulation, eventually the signaling pathways lead to changes in the
transcription of genes that can be detected in gene expression profiles.

There are some areas in the gene expression analysis of pathways which still
require further development. First, there are clear differences in how pathways work
across tissues and cell types. This fact is well understood in cancer cells. For
example, EGFR inhibitors have been seen to be effective in colorectal cancers [77–
79]. However, they have not seen the same success in breast cancer, even in patients
with over-expression of EGFR [80–82]. Therefore, there is clearly a qualitative
difference in how the pathway works across these two tissues. Trying to understand
the differences in pathways across cell types, and thus the differences in their gene
expression signatures, might affect the prediction of pathway activation from gene
expression signatures. This is still an under-explored area.

Another important question in the analysis of gene expression signatures is the
degree of variation that is seen across the signatures. That is, there are many
different sets of genes that can predict the activation of the same biological process.
Three independent signatures that can all predict the prognosis of breast cancer data
sets have very few genes in common [83]. The signatures are robust in that they can
predict prognosis across data sets, so it is not that their biology is completely
different. Furthermore, many distinct gene sets can be created that predict prog-
nosis. This shows that the ability to predict a biological function with a gene
expression profile can be robust, even while the identities of the genes in the
signature vary.

Nevertheless, despite their limitations, gene expression signatures are starting to
find their way into clinical use, particularly in cancer treatments. Oncotype DX is a
gene expression signature, clinically implemented as an RT–PCR assay, that is used
to predict the outcomes in node-negative cancers [84]. Also in breast cancer,
subtypes can be determined with a PAM50 test [22]. This demonstrates the power
of gene expression signatures to assay the underlying biology of a sample.
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The ability of patterns of genes to be able to score biological phenotypes and
predict clinical outcomes is an unanticipated consequence of the genomic assays
developed to measure the expression of genes. Because of the development of
computational technologies to interpret the gene expression changes, gene
expression signatures of the activation of pathways and other biological processes
have become a portable currency that can be used to compare the biological state of
different samples. In other words, gene expression signatures are markers that can
be used to interrogate the function of a cell, including the activation of pathways.
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Chapter 5
From Gene Expression to Disease
Phenotypes: Network-Based Approaches
to Study Complex Human Diseases

Quanwei Zhang, Wen Zhang, Rubén Nogales-Cadenas,
Jhin-Rong Lin, Ying Cai and Zhengdong D. Zhang

Abstract Gene expression is a fundamental biological process under tight
regulation at all levels in normal cells. Its dysregulation can cause abnormal cell
behaviors and result in diseases, and thus gene expression profiling and analysis
have been widely used to provide the first clue about the molecular mechanisms of
human diseases. Because genes and their products interact with and regulate one
another, it is essential to analyze gene expression data and understand the genetics
of disease in a biological network context. In this chapter, we first introduce the
state-of-the-art gene expression analysis (GEA) with network integration and the
joint analysis of mRNA and miRNA expression to understand disease regulatory
mechanisms and then discuss how disease genes are predicted by incorporating
knowledge of gene regulation and characterized in biological networks.

Keywords Gene expression � Disease phenotypes � Biological networks

5.1 Introduction

In the central dogma of biology, gene expression is the intermediate, critical step at
which genetic information flows from DNA to functional gene products such as
proteins and noncoding RNAs through RNA transcription and translation in each
cell. It is the key step where various types of gene regulation—including DNA
modification, transcriptional regulation, and posttranscriptional modification—take
place. Gene regulation receives and spreads signals in the form of gene regulatory
networks (GRNs), in which a group of genes interact with each other and control
certain cell functions. Dysregulated gene expression in the network due to promoter
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mis-methylation [1, 2], changed transcription factor levels [3, 4], mutated tran-
scriptional regulatory elements (TREs) [5], and miRNA deregulations [6] can result
in abnormal cell behaviors and have all been observed in human diseases.
Considered as intermediate phenotypes, mRNA expression profiles have been
analyzed in biological networks to identify causal genes of human diseases in many
studies [7, 8]. In particular, among gene products, microRNAs (miRNAs) are small
noncoding RNAs overrepresented in GRNs [9, 10]. Recent studies have revealed
their striking gene regulatory activities at the posttranscriptional level [11] and their
profound involvement in human diseases [12].

The prevailing assumption about human diseases is that the disease phenotypes
are the outcome of interactions between genes and environment [13]. Linking
disease phenotypes to genotypes is thus fundamental to understanding human
diseases. Linkage analysis has been effective to study disorders with Mendelian
inheritance patterns. To date, over 3000 genes with mutations linked to disease
phenotypes are cataloged in the Online Mendelian Inheritance in Man (OMIM)
database [14]. However, in contrast to Mendelian diseases with simple genetic
architectures, complex diseases are characterized by the multifactorial nature and
epistasis, in which the causal effects of many risk genes are obscure and cannot be
effectively detected by traditional approaches [15, 16]. Furthermore, unlike
Mendelian disorders where mutations usually occur within protein coding regions,
the majority of mutations of complex diseases occur in noncoding regions asso-
ciated with gene expression regulation [17, 18]. Deciphering the relationship
between genotypes and phenotypes for complex diseases thus requires incorpo-
rating the knowledge of gene expression regulation.

Over the last decade, the Encyclopedia of DNA Elements (ENCODE)
Consortium has been exploring the functional elements in the human genome and
has generated comprehensive data for gene regulation such as transcription factor
binding sites and gene–locus interactions [19]. This knowledge provides important
basis for analyzing genetic factors of complex diseases. On the other hand, newly
developed high-throughput technologies can generate genomic data with an
increasingly large sample size and will certainly improve the statistical power to
detect subtle associations in complex diseases. This shift has made it possible to
tackle the challenges of deciphering complex diseases. With the abundance of
genomic data and knowledge of gene regulation, nevertheless, new approaches are
needed to integrate genomic data and knowledge of gene regulation to connect
genotypes and phenotypes of complex diseases.

Most proteins exert their functions through interactions with other proteins. Such
inter- and intracellular interconnectivity implies that the impact of a specific genetic
variation is not restricted to the activity of the gene product that carries it, but can
spread along the links of the network and alter the activity of other related gene
products that otherwise carry no changes. Therefore, an understanding of
gene/protein network context is essential to understand the genetics of disease. With
the advent of next-generation sequencing, the throughput and the resolution of gene
expression profiling have both been increased to an unprecedented level. In addition
to traditional methods of gene expression analysis (GEA), network-based
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approaches to GEA have also been developed [20–23]. Incorporation of network
information into the estimation procedure of the regression model not only
encourages smoothness in the estimate of contributions of candidate genes but also
integrates into its calculation a priori biological information from the network,
which is ignored in conventional methods. A network-based method for gene set
enrichment analysis has been developed. Combining a graph-based statistic with an
interactive sub-network visualization, EnrichNet takes into account the network
structure of physical interactions between the gene sets of interest and improves the
prioritization of putative gene set associations as well as exploits information from
molecular interaction networks and gene expression data [24]. NetworkAnalyst,
another software tool, can perform network analysis and visualization given a gene
list. It can also consider multiple meta-data parameters to perform a meta-analysis
of multiple gene expression datasets [25].

Not only can disease genes be identified with network-integrated methods, but
also they can be studied as a whole in the context of biological networks. Most
biological networks are scale-free networks whose degree distribution follows a
power law: P X ¼ xð Þ ¼ x�a, in which x is the node degree and a is a constant. In a
scale-free network, a small number of nodes tend to have higher degree (such nodes
are called hubs), while a large number of nodes have low degrees. Generally, we
can divide commonly used network characteristics into different levels. On the gene
(protein) level, degree, closeness centrality, and betweenness centrality are often
used. They measure, respectively, the number of its interactions, its centeredness in
the network, and its importance in communication between genes. On the neigh-
borhood level, clustering coefficient is widely used to measure the probability that
the neighbors of a node are connected with one another. On the gene pairs level,
one of the most used characteristics is the shortest path between two nodes. Studies
of the network characteristics of a group of related disease genes can provide us
insights into the molecular mechanisms of the disease.

5.2 Gene Expression Analysis with Network Integration

Gene expression analysis (GEA) has been widely used in human disease studies.
High-throughput technologies to profile gene expression include DNA microarrays,
serial analysis of gene expression, quantitative RT-PCT, differential-display
RT-PCR, and parallel signature sequencing [26]. Network-based GEA is an effi-
cient way to analyze gene expression data because it takes advantage of the
functional relationship among genes or their products.

Networks are particularly valuable for modeling large-scale biological systems
and have been used with increasing frequency to analyze such complex systems.
Graph theory provides useful mathematical tools for general network analysis [27],
which can be easily adapted to study genes and pathways. Here, we introduce a
class of regression methods with network integration, focusing on the difference
between their approaches and applications. We first introduce linear regression with
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network regularization. We then present a network-regularized logistic regression
method. We next describe a network-regularized Cox model. And finally, we
summarize the application results.

5.2.1 Linear Regression Methods with Network
Regularization

One issue in GEA is the high dimensionality of the transcriptomic data, e.g., the
number of covariates (genes) is much larger than that of observations (samples)
[28]. Providing a straightforward mathematical framework for variation indications,
linear models have been widely used in data analysis [28]. The biological network
can be described as a graph by its adjacency or Laplacian matrix and provides
crucial and complementary biological information to gene expression data. A novel
linear regression method governed by Laplacian network-deduced matrix has been
proposed to identify molecular pathways from gene expression data [20]. In this
method, a network-constrained penalty function is used to penalize the L1-norm of
regression coefficients [20]. The method is in essence a mathematical programming
problem whose solution criterion is ĥ ¼ argminhC h; k; að Þ, in which ĥ is the
estimated contribution coefficient of each gene, C h; k; að Þ is the
network-constrained regularization criterion defined in [20], k and a are the two
parameters to be defined through a leave-one-out cross-validation (CV) process.

5.2.2 Network-Regularized Logistic Regression Method

For classification problems with gene expression data, Logit-Lapnet was put for-
ward to identify molecular pathways associated with breast cancer [21]. It is a
regression method combining logistic models and network regularization with the
graphical Laplacian matrix. The data matrix is derived from gene expression pro-
files. The L1-normed regularization and the corresponding extensions, elastic net
and fused lasso, have been used to identify molecular pathways. Extending the
previous similar approaches, the Logit-Lapnet method incorporates a priori func-
tional information contained in biological networks. We can consider Logit-Lapnet
in a simple way, i.e., as a logistic regression method regularized by lasso and
network two items. Its model estimation is formulated as a convex optimization
problem, guaranteeing the identifiability of an optimal solution (Fig. 5.1). The
optimization criteria, L k; a; bð Þ, contains the generalized L2-norm penalty term
using the Laplacian graphical matrix, which encourages smoothness on contribution
coefficients (see [21] for a quantitative description of the grouping effect on
Logit-Lapnet concerning the structure of network).
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5.2.3 Network-Regularized Cox Model and Its Application

For survival analysis of gene expression data, a Cox proportional hazard model
with network regularization was used to select connected network modules pre-
dictive of survival of breast cancer patients [29]. Its optimization criterion to esti-
mate gene contribution is a modified likelihood function of the Cox model:

hðt; xjÞ ¼ h0ðtÞexTj b, in which h0ðtÞ is the baseline hazard function at time t, xj the
vector of biomarkers for genes, and b the gene coefficient vector. The estimation is
defined as b̂ ¼ argminbC k; a; bð Þ, in which C k; a; bð Þ contains the negative log
likelihood function with L1 + L2 norm and network regularizations on the coeffi-
cient vector. The new Cox model showed better performance in simulation than
conventional Cox models and was much more sensitive to cancer-related genes and
network modules. Genes identified by the new Cox model have clear biological
functions involving cancer cell apoptosis and cell cycle.

5.2.4 Application Results

Performance assessment by simulation demonstrated that Logit-Lapnet outperforms
elastic net and lasso, two alternative methods (Fig. 5.2) [21]. Application of
network-regularized linear regression methods to glioblastoma gene expression data

Fig. 5.1 Logit-Lapnet optimization criteria
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identified pathways that might be related to cancer survival time [20]. In a study of
biomarkers for breast cancer, Logit-Lapnet selected 262 genes, 166 (*63 %) of
which interact with one another (Fig. 5.3). By comparison, lasso selected only 24
genes, 20 of which are isolated, while elastic net selected 393 genes, 232 (*59 %)
of which are interconnected [21]. The advantage of network-regularized Cox model
was demonstrated by its application to breast cancer gene ascertainment [29], in
which it selected more known mutated cancer biomarkers than the conventional
means.

Fig. 5.2 Performance assessment by simulations
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Fig. 5.3 Gene numbers selected by Logit-Lapnet, lasso, and elastic net
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5.3 Analyzing Expression of mRNAs and miRNAs
to Understand Disease Regulatory Mechanisms

Microarray- and sequencing-based gene expression profiling has been widely used
to investigate complex diseases including cancer. Recent studies have discovered
gene signatures of numerous diseases and biomarkers for prognosis prediction and
disease sub-type classification. For example, Wang et al. [30] and van’t Veer et al.
[31], respectively, identified *70 genes that predict breast cancer metastasis risk.
Parker et al. [32] proposed a 50-gene PAM50 model, commonly used for breast
cancer classification. These markers include genes that control cell cycle, prolif-
eration, DNA replication, and repair, many of which are differentially expressed
due to genomic mutations affecting transcriptional regulation.

Testing for differentially expressed genes can yield up to thousands of candidate
genes, and one common way to study their functions is to analyze their enrichment
in biological pathways. Because the experimentally validated canonical pathways
(such as KEGG pathways) are largely incomplete [33], functional interpretation of
the candidate genes based on them can be misleading. A less biased approach is
based on biological networks, especially those derived from high-throughput data.
It can reveal interactions among genes or gene products beyond pathways and has
been shown to outperform methods for breast cancer metastasis prediction based on
differential expression analysis only [34]. Co-expression networks and GRNs are
two representative biological networks widely used to interpret mRNA expression
data in disease phenotypes (Fig. 5.4). They are often constructed or inferred for
each individual experiment and hence reveal cell type or conditional specific
knowledge. In addition, many tools for network-based analysis and visualization
have been developed, including GeneMANIA [35] and Cytoscape [36].

Among gene regulatory mechanisms, miRNAs have recently been revealed as
one of the most important factors. miRNAs are small noncoding RNA molecules
whose main function is to silence gene expression, mainly through transcription
repression or mRNA degradation. They are known to be key regulators in important
cellular processes such as development [37] and cycle progression [38]. In recent
years, they have gained importance in different aspects of human disease research:
as targets of miR mimics [39] or antagomirs [40] to reverse disease progression, as
biomarkers to detect diseases [41, 42], and as drugs to improve the effect of already
developed treatments [43]. Hence, mRNAs and miRNAs regulatory networks
analyses are complementary, and both have become indispensable in the study of
complex human diseases.

5.3.1 Co-expression Network

Co-expression networks aim at finding genes sharing similar expression patterns
across diverse conditions by measuring the correlation of expression between each
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pair of genes, under the assumption that they function together in tightly connected
biology processes. The weighted gene co-expression network analysis (WGCNA)
[44] is now a popular way to find modules—i.e., groups of genes—as higher-order
expression patterns and disease signatures. Gene–gene correlations are first quan-
tified by Pearson’s correlation coefficient, and modules are then identified using a
topological overlap measure algorithm. A composite Z summary statistic indicates
module preservation: whether the modules are robust in different conditions and
independent datasets. One can then find contribution made by highly preserved
modules to certain trait by measuring correlation coefficient between module
eigengene value (the first principal component) and quantitative phenotypes. Hub
genes (i.e., genes with many connections) in such modules are important.
The WGCNA has been mostly used in developmental studies, where there are no
controls and samples are usually arranged in a time course, such as hematopoietic
stem cell ontogeny [45] and brain neuron formation [46]. Databases such as
GeneMANIA [35] and COXPRESdb [47], which compile assorted datasets, are
good co-expression data sources for query genes of interest.

Fig. 5.4 Gene expression data analysis with gene networks
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5.3.2 Genetic Regulatory Network

Reconstruction of GRNs is an age-old challenge. Various algorithms can achieve
this, but no single method shows the optimal performance across all datasets [48].
One of the well-established methods is context likelihood of relatedness (CLR), an
extension of the relevance network technique based on mutual information
(MI) [49]. The approach first scores the MI between each pair of a transcriptional
regulator (TR) and its potential target gene, and then scores the likelihood of the
regulation within its network context; those with high values are likely to form a
regulatory relationship. Because a TR may regulates its targets in a nonlinear way,
mutual information is a better choice than correlation for not requiring linearity or
continuity of the dependence. In addition, the CLR method can be combined with
WGCNA to find TRs in modules [45]. Recently, the DREAM4 in Silico network
challenge [48] compared over 30 GRN-inference methods for high-throughput data.
GENIE3 [50], a random forest-based method, is one of the top-performing meth-
ods. It treats GRN inference as a feature selection problem and predicts the
expression of a target gene from the expression of all other genes (input genes)
using random forests or extra-trees machine learning approaches. The contribution
of an input gene on target gene expression is used to build the putative regulatory
links. After aggregating links from all genes, the whole GRN is reconstructed from
ranked interactions. Databases such as RegulonDB [51] provide experimentally
confirmed regulatory interactions that can also validate the accuracy of the GRN
inference methods.

5.3.3 miRNAs Regulation in Human Disease

Studies have implicated miRNAs in many diverse illnesses such as hepatitis B and
C [52, 53], cardiac and heart diseases [54, 55], and even behavior and neuronal
system diseases such as Tourette’s syndrome [56]. In particular, important is the
study of miRNAs in cancer research, as they are known to regulate important
processes in cancer biology such as angiogenesis [57], apoptosis [58], and cell
differentiation [59]. Here, we describe the common principle of these analyses—the
integration of miRNAs and mRNAs expression, sequence pairwise information,
and functional information.

miRNA regulation analysis. miRNAs regulate gene transcriptional activity by
total or partial matching of nucleotide sequences with targeted mRNAs. Many
computational algorithms are available to predict miRNA targets based on different
criteria such as base pairing and target accessibility [60–62]. In general, their
predictions are considered to be complementary and are usually combined to
increase the overall sensitivity of the prediction [63, 64]. Each method, however,
suffers from high false-positive and false-negative rates [65]. This happens even
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with the inclusion of experimental validated interactions from databases such as
miRWalk [66] or miRecords [67]. Thus, the predicted mRNA–miRNA interactions
should be considered as working hypotheses, since they do not necessarily fit with
the disease phenotypes. In the study of disease gene regulation, it is advisable to
integrate these predictions not only with differential expression values of mRNAs
from case and control individuals, but also with miRNAs expression values.

Identification of miRNA regulatory mechanisms. Regulatory mechanisms of
biological processes generally involve more than one miRNA and mRNA func-
tioning together. Many computational approaches have been proposed to identify
such regulatory mechanisms. They differ from one another in their methodological
approaches and their usage of mRNA/miRNA expression values and external
information such as potentially involved pathways. Methods used in different
contexts include Bayesian networks [68], probabilistic methods [69], LASSO
regression [70], or rule-based methods [71]. Despite their differences, the overall
analytical flow of these methods is similar (Fig. 5.5).

Functional analysis of miRNA regulation. It is common to infer the function
of a miRNA from its gene targets (for possible bias in such an approach, see [72]).

mRNA miRNA

Differential expression Differential expression

Predicted targets 

Experimentally validated targets 

Integration method:
Bayesian network,
machine learning,

mathematical regression,
… Functional information

miRNA/mRNA regulatory modules 

Pathways analysis 

Biological processes regulated by miRNAs activity 

Cases Controls Cases Controls 

Optional input data

Fig. 5.5 miRNA analysis pipeline
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The incorporation of external information, such as functional terms related to
mRNA targets, makes it possible to deduce the involvement of miRNAs regulation
in biological pathways [73]. This strategy can be used to interpret functional
enrichment results and to find regulatory modules of miRNAs–mRNAs partici-
pating in the same processes [74]. Several resources provide direct functional
annotation of miRNAs (Table 5.1).

Table 5.1 Useful resources of miRNA regulation for human disease studies

Resource Description Ref.

MiRNA database

miRBase Database of miRNA sequences and annotations for 206
different organisms

[99]

miRNA-target interaction

microRNA.
org

Database of predicted microRNA targets & target
down-regulation scores. It includes experimentally observed
expression patterns

[100]

miRWalk Database that provides information on miRNA from human,
mouse and rat on their predicted as well as validated binding
sites on their target genes. It includes information on
experimentally validated miRNA interaction information
associated with genes, pathways, diseases, organs, OMIM
disorders, cell lines, and literature on miRNAs

[66]

multiMiR R package and database for miRNA-target interaction which
includes information based on disease annotation and drug
microRNA response, in addition to many experimental and
computational databases

[101]

CancerMiner Database including recurring microRNA-mRNA associations
across cancer type

[102]

Functional information

mir2Disease A manually curated database providing a comprehensive
resource of miRNA deregulation in various human diseases

[103]

mirFocus Database providing leads for in-depth analysis of
miRNA-target gene pathways and the related miRNA
annotations

www.
mirfocus.
org

HmDD Database with curated experiment-supported evidence for
human microRNA (miRNA) and disease associations

[104]

miRCancer Database providing a collection of miRNA expression profiles
in various human cancers, automatically extracted from the
published literatures in PubMed

[105]

Variant information

PolymiRTS Database of naturally occurring DNA variations in microRNA
(miRNA) seed regions and miRNA-target sites underlying in
gene expression and disease phenotypes

[106]

miRdSNP Data source of dSNPs and robust tools to capture their spacial
relationship with miRNA-target sites on the 3’UTRs of human
genes

[107]
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5.4 Predicting Disease Genes by Incorporating Knowledge
of Gene Regulation

The identification of disease genes is a fundamental objective in medical research.
With the advent of high-throughput genotyping technologies, a large number of
disease-associated variants have been identified by genome-wide association
studies (GWASs) [75]. Such disease variants provide valuable signals for uncov-
ering underlying disease genes and unraveling disease mechanisms, which can be
improved by leveraging the knowledge of gene regulation.

5.4.1 Importance of Knowledge of Gene Regulation
in Complex Disease Prediction

Both genetic predisposition and environmental factors may contribute to the
pathogenesis of complex diseases. The origins of genetic predisposition are genetic
variants that affect gene functions and thus contribute to disease susceptibility.
Some of these variants are located in coding regions and affect gene functions by
altering the corresponding protein sequences. The others, located in noncoding
regions, may affect (TREs), such as transcription factor binding sites, resulting in
dysregulation of gene expression.

Uncovering disease causal genes that underlie the association signals discovered
in GWAS is challenging. The simplest method is to select genes closest to
disease-associated variants as the causal genes. However, because single nucleotide
polymorphisms (SNPs) used in GWAS are tagging SNPs, representing linkage
disequilibrium (LD) blocks, disease-associated SNPs discovered in GWAS are
most likely not causal SNPs but mere their proxies. Another more sophisticated
method is to first define the LD regions tagged by GWAS SNPs and then identify
genes overlapping LD regions as candidate causal genes [76]. Causal genes near
GWAS SNPs are likely to be included in this way. However, causal genes whose
expression is affected by causal SNPs through modifying their TREs will almost
certainly be missed, as they fall outside LD regions. To include these “distal” causal
genes, it requires knowledge of gene regulation and, more specifically, knowledge
of regulatory relationship between loci and genes.

5.4.2 Gene Regulation Data Resources and Complex
Disease Risk Loci

Studies have shown that disease-associated SNPs are overrepresented in loci
implicated in gene regulations [77–79] (Fig. 5.6). There are several important
resources for the knowledge of aforementioned gene-locus regulation linkage.
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Expression quantitative trait loci (eQTL) are genomic loci whose genotypes are
associated with transcript levels. eQTL data provide valuable information of
gene-locus regulatory relationship and are useful in prioritizing GWAS signals [80].
In addition, the ENCODE Project inferred regulatory relationship from correlation
between DNase I hypersensitivity of loci and promoters in different cell and tissue
types [81]. Furthermore, FANTOM5 generated regulation information between
enhancers and target genes by comparing their transcriptional activities across
different cell types [78]. These regulatory data repositories serve as important
information resources for not only prioritizing but also exploring new disease
causal factors, on both SNP and gene levels.

5.4.3 Linking Distal Candidate Causal Genes
by Incorporating the Knowledge of Gene Regulation

As mentioned earlier, causal genes may not always fall in the same haplotype block
carrying GWAS SNPs, and thus, it requires other information in addition to LD to
identify them. Figure 5.7 shows an example of successfully uncovering a promising
causal gene underlying a GWAS SNP by using the gene regulatory information.
SNP rs2159767 is a GWAS SNP associated with schizophrenia [82]. The LD
region indexed by rs2159767 is in a gene desert and thus devoid of any genes. In it,
however, we found two TREs that are likely to regulate two distal genes, fragile X
mental retardation 1 (FMR1), and fragile X mental retardation 1 neighbor
(FMR1NB), respectively. Notably, FMR1 is a literature-supported SZ gene [83],

The number of eQTLs overlapping SZ-linked SNPs 

Observed:
399 

(P-value = 0) 

Fr
eq

ue
nc

y

Fig. 5.6 Enrichment of schizophrenia-associated SNPs at eQTLs. We compiled 125,568 eQTLs
from GTEx studies and identified 15,027 SNPs in high linkage disequilibrium with 261
schizophrenia-associated SNPs that we collected from the GWAS catalog [111] and a
meta-analysis of schizophrenia [76]. 399 eQTLs are SZ-linked SNPs (P = 0, permutation test
with 100 repetitions)
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and we found that a SNP (rs59460742) within the TRE associated with FMR1 is in
strong LD (r2 = 0.587) with rs2159767. Those evidences imply that the causal
factor of the GWAS signal could be the SNP within the TRE that results in the
dysregulation of FMR1.

5.4.4 Distal and Proximal Candidate Causal Genes

In general, incorporating LD information can improve the detection of causal genes
in the proximity of GWAS signals, but finding distal causal genes relies on the
knowledge of gene regulation. Using LD and gene regulation information, we
identified three overlapping sets of candidate causal genes for schizophrenia
(Fig. 5.8). There are 485 proximal and 158 distal candidate causal genes. Together,
these two numbers indicate that incorporating gene regulatory information can
substantially expand the set of candidate causal genes (about one-third in the
aforementioned schizophrenia case). Although irrelevant distal genes could be

147 M
147,100 K                          147,200 K                          147,300 K                          147,400 K                           147,500 K                          147,600 K  

SNP
rs2159767

TRE TRE

rs59460742 rs5936341

Chr X

Fig. 5.7 Distal disease causal gene candidates. Gene regulatory information can link genes far
away from the disease-associated GWAS SNP (schizophrenia-associated rs2159767 in this case)
to the disease risk region (the red block)

Candidate causal genes
linked through eQTLs

Candidate causal genes linked
through the information of TREs
from ENCODE and FANTOM5

Candidate causal genes 
linked through linkage
disequilibrium 

4 2 

103 

146 

8 10 

370 

Fig. 5.8 Schizophrenia
causal gene candidates.
Candidates genes are linked to
261 schizophrenia-associated
SNPs through different gene
regulatory information
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introduced due to false regulatory linkage, incorporating the knowledge of gene
regulation can cover potential risk genes in a more comprehensive manner, which
will also facilitate the downstream analysis.

5.5 Characterizing the Network and Association
Properties of Disease Genes

Since last decade, a large number of causal or closely related genes have been
reported for many diseases by experimental or computational methods [84, 85].
However, a complex disease usually reflects the perturbation to the complex
intracellular network, rather than a consequence of an abnormality within a single
gene [86]. By studying disease genes in the context of biological networks, we
consider the disease genes as a whole instead of studying them individually. Such
studies may not only provide clues to uncover the molecular mechanisms of dis-
eases, but also reveal distinguishing properties of disease genes, which can be used
to predict unknown disease genes.

5.5.1 Network Characteristics Analysis of Disease Genes

Interactions among disease genes in biological networks. Disease genes can be
mapped into the network (Fig. 5.9a), and a sub-network around them can be
extracted to obtain a view of the local interactions among them [27]. It is
well-known that the protein products of different genes harboring causal mutations
for the same Mendelian disease often physically interact. A recent study suggested
that in many complex diseases, proteins encoded by genes from disease-associated
regions also tend to physically interact [87]. This characteristic is the foundation of
“guilty-by association” policy to predict unknown disease genes.

Distinct network properties of disease genes. Studies have found that some
network properties can distinguish a group of disease genes from background genes
or another set of genes, and thus are particularly informative for the relevant disease
(Fig. 5.9b, c). In yeast, it was found that disease genes in general tend to have
higher degrees, cluster together, and locate at the central network locations [88], but
another study on human did not find higher degrees for disease genes [89]. In
humans, it was reported that cancer proteins tend to have higher degrees and locate
at central part of the network [90]. Moreover, it was found that cancer proteins tend
to have higher betweenness (which measures the importance of a gene in com-
munication between other gene pairs) and shorter shortest-paths than both the
essential and the background proteins [91]. The specificity of network character-
istics of disease genes can provide us clues to specific mechanisms behind the
diseases.
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Network characteristics of disease genes in different biological networks and
species. A recent cancer study found that prognostic genes are less likely to be hub
genes in co-expression networks, and this pattern is unique to the corresponding
cancer-type-specific network. Enriched in modules, prognostic genes are especially
likely to be module genes conserved across different cancer co-expression networks
[92]. In addition to co-expression network, researchers also integrated
tissue-specific gene expression with protein interaction to derive tissue-specific PPI
networks [93]. This provides an opportunity to study network characteristics of
disease genes in tissue-specific PPI networks.

5.5.2 Software Tools for Network Characteristics Analysis

Many software tools have been developed for network characteristics analysis
(Table 5.2). Some allow users to upload their own gene list for targeted analysis.

(a) (b)

(c)

Fig. 5.9 Network characteristics of cancer genes. Among 547 cancer genes from COSMIC
(Version 70; Aug 2014) [112], 386 of them were analyzed in the background network HINT [113].
a 394 directly physical interactions between cancer genes products. b Cancer genes tend to have
higher degrees than background genes in HINT (P = 5.136 × 10−22, Wilcoxon rank-sum test).
c Cancer genes tend to have higher betweenness than background genes in HINT
(P = 3.509 × 10−18, Wilcoxon rank-sum test)
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For example, TopoGSA can generate 2D or 3D plots for submitted genes, which
show difference network characteristics simultaneously [94]. When microarray data
are uploaded, differentially expressed genes can be automatically identified and
used as targeted genes for the analysis. TopoGSA can also compare the network
characteristics of targeted genes with those of known gene sets (e.g., pathways).
SNOW [95], a similar tool, can calculate the network characteristics and estimate
their statistical significance. NetworkAnalyzer can also carry out a similar analysis
when genes from the network are selected [96]. In addition to these methods,
several tools for general network analysis can also be helpful (Table 5.2).

Table 5.2 Tools for network characteristics analysis

Tools Description and access Ref.

Targeted analysis

TopoGSA Generate 2D or 3D plots of network characteristics to visualize
the network characteristic for each uploaded gene. Comparison
with known gene sets based on 2D or 3D plots to visually
identify similar pathways to the uploaded dataset
The Web server can be accessed at http://www.topogsa.org

[94]

SNOW Compute several network characteristics and estimate the
statistical significance by comparing the network characteristics
of the uploaded genes to those of the background genes or those
in random networks
The Web server can be accessed at http://snow.bioinfo.cipf.es

[95]

NetworkAnalyzer Compute and display a comprehensive set of topological
parameters. It can analyze the whole network or subset of nodes
from the network
It is a plug-in of Cytoscape

[96]

General analysis

CentiScaPe Compute 9 kinds of centralities of genes (proteins) in biological
networks. It can highlight the genes whose centralities are
higher or (lower) than the user-defined thresholds. It can
generate “plot by node,” which shows the centralities of one
gene with background information about the centralities (e.g.,
min, mean). It can also generate “plot by centrality” to identify
group of genes clustered together according to combinations of
centralities. Attributes from experiments can be also uploaded
to analyze relationship between experimental data and gene
centralities
It is a plug-in of Cytoscape

[108]

CenTiBiN Compute and explore 17 kinds of centralities of genes (proteins)
in biological networks
The Web server can be accessed at http://centibin.ipk-
gatersleben.de, and there is also instable Windows application.

[109]

CentiLib CentiLib is a Java-based library and user-friendly plug-in for the
analysis and visual exploration of centralities in networks.
CentiLib can achieve similar functions as CenTiBiN, but it is
easier to use and it can deal with weighted networks
The software and manual can be downloaded at
http://centilib.ipk-gatersleben.de/

[110]
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5.5.3 Association Between Disease Genes
and Other Gene Sets

Another important utility of networks is to find the association between disease
genes and other functional groups of genes. For example, recent studies suggested
that the it is important to consider the relationship between genetic diseases and the
aging process for understanding the molecular mechanisms of complex diseases. To
better understand such association, one study investigated the relationship among
aging genes and disease genes in a human disease-aging network [97]. The study
found that (1) human disease genes are much closer to aging genes than expected
by chance; (2) aging genes contribute significantly to association among diseases
compared with nonaging genes with similar degrees.

It is important to assess functional association between a group of genes (e.g.,
candidate disease genes) and predefined gene sets. Overrepresentation-based
enrichment analysis is commonly used for this task. This method, however, has
several shortcomings. First, only shared genes between the input gene list and the
known gene sets are considered, but current data of gene sets are not complete.
Second, genes in the gene sets are treated equally, disregarding the network
structure of physical or functional interactions between genes. To address these
limitations, it is applicable to combine information of protein–protein interaction
network with known get sets. To tackle these problems, several such tools have
been developed. Glaab et al. [98] combined information from pathways databases
and interaction networks and obtained more robust pathways and process repre-
sentations. Their method first maps the genes in pathways into a protein–protein
interaction network and then extends the pathways by including densely interacting
partners. Later, Glaab et al. [24] proposed another tool for network-based gene set
enrichment analysis. This approach first maps the target genes and reference gene
sets into the network. It then scores the distance between the mapped target genes
and reference dataset using a random walk with restart algorithm and compares the
score against a background model. This method can use the network distance to
differentiate gene sets with similar enrichment levels assessed by overrepresentation
analysis. More importantly, it can identify novel functional associations (with no or
few shared genes) and can evaluate tissue-specific association.

5.6 Conclusions

Gene expression is under tight regulation at all levels in normal cells. The char-
acteristic forms and behaviors of different cell types are the result of their varying
patterns of expression of the same set of genes. The dysregulation of gene
expression can cause abnormal cell behaviors and result in diseases, and thus, gene
expression profiling could provide the first clue about the molecular mechanisms of
a disease. Two recent developments are spearheading the advancement of disease
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research in this field: First, next-generation sequencing technologies have increased
the throughput and the resolution of gene expression studies to an unprecedented
level; second, new computational methods with sophisticated data integration,
especially network integration, have been developed for gene expression data
analysis. Biological networks can provide important a priori functional information
in data analysis, and since last decade, many different types of them have been
constructed: Not only the number has increased but also the coverage of them has
increased dramatically. With such recent resource and technology development,
biology has entered a new data-driven phase in the twenty-first century. Now is a
particularly challenging and exciting time for disease research with gene expression
assay, as more and more gene expression data are being generated at an
ever-accelerating speed.
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Chapter 6
Introduction to Isoform Sequencing Using
Pacific Biosciences Technology (Iso-Seq)

Manuel L. Gonzalez-Garay

Abstract Alternative RNA splicing is a known phenomenon, but we still do not
have a complete catalog of isoforms that explain variability in the human tran-
scriptome. We have made significant progress in developing methods to study
variability of the transcriptome, but we are far away of having a complete picture of
the transcriptome. The initial methods to study gene expression were based on
cloning of cDNAs and Sanger sequencing. The strategy was labor-intensive and
expensive. With the development of microarrays, different methods based on exon
arrays and tiling arrays provided valuable information about RNA expression.
However, the microarray presented significant limitations. Most of the limitations
became apparent by 2005, but it was not until 2008 that an alternative method to
study the transcriptome was developed. RNA Sequencing using next-generation
sequencing (RNA-Seq) quickly became the technology of choice for gene
expression profiling. Recently, the precision and sensitivity of RNA-Seq have come
into question, especially for transcriptome reconstruction. This chapter will describe
a relatively new method, “Isoform Sequencing” (Iso-Seq). Iso-Seq was developed
by Pacific Biosciences (PacBio), and it is capable of identifying new isoforms with
extraordinary precision due to its long-read technology. The technique to create
libraries is straightforward, and the PacBio RS II instrument generates the infor-
mation in hours. The bioinformatics analysis is performed using the freely available
SMRT® Portal software. The SMRT® Portal is easy to use and capable of per-
forming all the steps necessary to analyze the raw data and to generate high-quality
full-length isoforms. For the universal acceptance of the Iso-Seq method, the
capacity of the SMRT® Cells needs to improve at least 10- to 100-fold to make the
system affordable and attractive to users.
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6.1 Introduction

The complete set of all RNA molecules in a cell or a population of cells is called the
transcriptome. Qualitative and quantitative information about the transcriptome is
essential to understand the molecular mechanisms of cellular physiology. The first
attempts to study gene expression dated back to the late 1970s. During that period,
Dr. James Alwine and colleges from Stanford University developed a new method,
the Northern Blot. Northern Blot consists of running agarose gels, transferring the
RNA to membranes, and hybridizing with radioactive probes, in order to detect a
few genes per experiment [3]. Moving from single-gene studies to full transcrip-
tomes required the development of catalogs of genes and RNAs. The first catalog of
RNA molecules was developed using Expressed sequence tags (EST) and com-
plementary DNA (cDNA) sequences [36, 46]. Such catalogs were used during the
early 1990s to create custom-made microarrays and eventually commercial
high-density oligo microarrays. A group of microarrays, the exon arrays, contained
probes for all the exon from known genes, including exon/intron boundaries. These
arrays were used in expression profiling and played a significant role in detecting
new alternatively spliced isoforms and monitoring their expression patterns in
different tissues. Another type of microarrays, the tiling arrays, contains overlap-
ping probes for regions of the genome, especially in coding regions. The high
density of probes in coding regions allowed the mapping of new genes and isoforms
[33]. By 2006, issues with reliability and reproducibility of data obtained from
expression microarrays were apparent in the scientific community [1, 13]. Some of
the issues included: (a) limited range of sensitivity on both the low and high ends;
(b) cross-hybridization and non-specific hybridization issues; (c) probe saturation,
affecting the accurate quantification of high-abundance transcripts; and (d) the
presence of single nucleotide polymorphisms and insertions or deletions in samples,
impacting the performance of a probe [2, 6, 33, 49, 57].

6.2 The RNA-Seq Era

With the development of the next-generation sequencing technology (NGS), find-
ing the application of this technology to RNA sequencing was a logical
step. During 2008, new RNA sequencing methods were contributed by four dif-
ferent groups that published their protocols and their datasets within days of each
other. All the four groups used the Illumina sequencing technology applied to
sequence RNA from different organisms [30, 34, 35, 62]. The new method was
named RNA-Seq, after the catchy name given by Mortazavi’s group [34]. An
interesting fact during that period was that a different group published a similar
method a year before the four groups, but used pyrosequencing technology [61].

As soon as the new data were released, bioinformaticians started to develop new
algorithms and software capable of analyzing the new type of information
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generated by RNA-Seq. By 2009, publications started to emerge reporting the
development of new software such as the splice-aware aligner, Bowtie [25]; a new
statistical method to estimate differential expression, DEGseq [59]; a tool to dis-
cover splice junctions, TopHat [55]; and a transcriptome reconstruction program,
Cufflinks [56].

During the last six years, the original software packages matured very quickly,
and a myriad of new software packages has been continuously generated by the
scientific community [65].

6.2.1 The Standard RNA-Seq Protocol

Figure 6.1 shows an overview of the steps in a standard RNA-Seq workflow. The
workflow consists of five basic steps:

(a) Isolation of RNA.
(b) Isolation of polyA mRNA (optional).
(c) RNA fragmentation.
(d) Synthesis of high-quality double-stranded cDNA.
(e) Library preparation.

The library is then submitted to sequencing [60]. The resulting sequencing reads
are stored in one or two files in FASTQ format. FASTQ is the standard file format
for DNA sequencing data, which stores both nucleotides and quality scores [11].

6.2.2 RNA-Seq Analysis

The analysis strategy falls into two categories depending on whether a reference
genome assembly is available. If the reference genome is available, the best
approach is to use a reference-based strategy. If the reference genome is not
available, a de novo strategy should be used.

Figure 6.2 shows a typical analytical workflow for the reference-based strategy.
The process consists of the following steps:

1. The raw reads (contained in FASTQ files) are mapped to a reference genome
using a splice-aware aligner. Most aligners take advantage of the prior knowl-
edge provided by the reference genome and the current information about the
structure of the genes that have already been mapped to the genome (GFF
annotations). Currently, most if not all the splice-aware aligner store the
alignments in a file of type BAM.

2. The transcript reconstruction is performed by using the overlapping reads to
create a graph that represents all possible splicing isoforms. Then full-length
isoforms are generated from the graph.

6 Introduction to Isoform Sequencing … 143



3. The majority of RNA-Seq experiments use replicas and comparisons between
samples, and consequently, it is a part of the workflow to merge the results from
multiple transcript assemblies to generate a global transcriptome.

4. Differential expression between samples is calculated using statistical analysis.

There are other additional steps implemented by some packages such as nor-
malization and transcript abundance; however, for simplification, these steps are not
shown in Fig. 6.2.

(a)

(c)

(e)

(g)

(f)

(d)

(b)

Fig. 6.1 Overview of a typical RNA-Seq protocol. Total RNA is Isolated (a); polyA mRNA
fraction is isolated (b); RNA is fragmented (c); high-quality double-stranded cDNA is synthesized
(d); adaptors are ligated to the cDNA to create a library (e); the library needs to pass a quality
control, and then, it is loaded into the sequencing instrument (f); after few days, the instrument will
generate raw information. The raw information need to be preprocessed with Illumina’s
proprietary software CASAVA to generate FASTQ files (g)
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The strategy of de novo transcriptome assembly is used when a reference gen-
ome is not available or when the investigator wants to avoid mapping bias. The
method consists in using de Bruijn graph to create contigs from the original reads.

Fig. 6.2 Overview of a typical RNA-Seq analysis workflow. FASTQ files are mapped to a
reference genome using a splice-aware aligner (Step 1). Some aligners like TopHat takes a gene
annotation file in GFF/GTF format to improve the alignment. The input files for the splice-aware
aligner are in Box A. The transcript reconstruction is performed in step 2. The input files required
are in Box B. An assembled transcriptome is the output of the transcript reconstruction program,
e.g., Cufflinks (Box C). Normally, this type of experiments requires replicas (box E), and for
differential expression, an additional group of files from a second sample are used (Boxes 2A, 2B,
2C and 2E). For a better reconstruction of the transcriptome, programs like cuffmerge aggregate all
the assembled transcripts into a single transcriptome (Box D). Finally, a differential expression
program like cuffdiff compares the alignments from sample-1 against the alignments of sample-2
using the transcriptome as the source of annotations (input Boxes E, 2E and D)
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Once the transcriptome is assembled, the process continues by annotating the
transcripts, calculating abundance of isoforms and differential expression.

Both methods, reference-based and de novo, require considerable amount of
computational resources to reconstruct the full-length transcripts from the reads
[32, 65].

6.2.3 RNA Studies Under Fire

During 2013, Dr. Tal Nawy, associate editor of the scientific journal Nature,
interviewed Dr. Snyder, a pioneer of deep RNA sequencing, and Dr. Tilgner, a
member of Dr. Snyder’s laboratory. Dr. Snyder commented about the ironic fact
that during a RNA-Seq experiment, the RNA needed to be shredded before creating
the sequencing library, and then, the complex transcriptome had to be assembled
bioinformatically after the library was sequenced. Dr. Snyder argued that there was
insufficient length in the NGS reads to generate a good transcript reconstruction. He
recommended using longer reads from Pacific Biosciences (PacBio) to cover an
entire transcript by a single read and avoid the arduous process of transcript
reconstruction [37]. Dr. Snyder’s comments coincided with the publications of two
large-scale studies aimed to evaluate the software used during RNA-Seq. The
studies were performed by the Genome Annotation Assessment Project (RGASP)
consortium [16, 53]. The paper published by Engström et al. systematically eval-
uated the majority of the spliced alignment programs commonly used for RNA-Seq.
In their publication, 26 mapping protocols based on 11 programs were evaluated,
and major performance differences were discovered between methods on numerous
benchmarks, including alignment yield, basewise accuracy, mismatch and gap
placement, exon junction discovery, and suitability of alignments for transcript
reconstruction. The alignment pipeline GSTRUCT (based on GSNAP), and the
aligners GSNAP [63], MapSplice [58], and STAR [12] outperformed the rest of the
aligners. However, these four programs also presented shortcomings; more
noticeably, their output contained large number of false exon junctions. Not sur-
prisingly, GSNAP [63] and GSTRUCT require considerable computing time when
compared against STAR [16]. STAR [12] is known for its fast performance. The
benchmarks from its original publication indicated that STAR [12] was orders of
magnitude faster than GSNAP [63], MapSplice [58], and the popular aligner
TopHat2 [12, 22, 55]. The Engström et al. study was an eye-opener for developers
and users of the alignment programs. Since the publication of the results, there have
been new releases for some of the programs described in the report. The new
releases fixed some of the problems described in the paper. Other groups wrote new
aligners to replace their previous aligners, as was the case for Dr. Salzberg’s
TopHat’s aligner engine Bowtie [24, 25]. Dr. Salzberg’s group developed a new
aligner HISAT. According to the benchmarks provided in the publication, HISAT is
the fastest system currently available, approximately 50 times faster than TopHat2
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and 12 times faster than GSNAP, with equal or better accuracy than any other
method [21].

The second RGASP’s paper authored by Steijger et al. [53] evaluates the
methods for transcript reconstruction. The group evaluated 25 protocols based on
14 computational methods. They found that all the protocols are capable of
detecting annotated features with great confidence features in a simple organism
like C. elegans. The confidence was reduced with a more complex organism like
D. melanogaster. With a complex organism like humans, there was a great level of
variability in the ability to detect annotated features from the transcriptome. Some
of the methods, like Cufflinks [48], were able to detect 80 % of the annotated
features, but only 60 % of the annotated features were correct. Other methods like
SLIDE [27] obtained a 75 % detection rate and a 90 % precision rate. Velvet [64]
and Trembly [Gerstein M unpublished] also had very good precision and detection
rate, but many others have low scores in both precision and sensitivity. The main
surprise was found when the programs tried to assemble a complete isoform. Valid
isoforms were assembled for roughly half of expressed genes on average
(H. sapiens mean 41 %, maximum 61 %; D. melanogaster mean 55 %, maximum
73 %; C. elegans mean 50 %, maximum 73 %), and for those genes with assembled
isoforms, only one isoform was typically identified. Expression-level estimates also
varied widely across methods, even when based on similar transcript models. The
authors concluded that isoform identification is a limiting factor for RNA-Seq
experiments [53].

6.2.4 Long Reads, a Solution to the RNA-Seq Problem

A solution to the current problem of RNA-Seq will require technology capable of
providing long reads in the range of 1.5–10 kbp. The median length of human gene
transcripts is about 2.5 kbp; long reads should be able to provide full-length mRNA
isoforms, detect new isoforms, and bypass the transcript reconstruction process by
identifying isoforms directly.

Recently, Roche announced the shutdown of the 454 pyrosequencing technol-
ogy, and Life Technologies replaced ABI SOLiD technology in favor of the Ion
Torrent sequencing technology. With those changes, there are only two major
players left in the arena of next-generation sequencing: Illumina and Ion Torrent.
Both technologies provide relatively short reads, Illumina with 100–150 bp reads,
and Ion technology with 200–400 bp reads.

The so-called third-generation sequencing technology promises affordable,
real-time sequencing with long reads (>5 kbp). There are at least two companies
that fill the void for such technology: Oxford Nanopore and Pacific Biosciences. At
the time of writing, the Oxford Nanopore technology is still in an early stage of
development. There are several reports about the technology [5, 31, 47, 54], but it is
not commercially available yet. During 2014, the results from the first early access
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to the MinION Nanopore sequencer were presented and discussed online. The
experiences and comments from users look very encouraging.

PacBio has been available for several years through USA core centers. PacBio
provides single molecule real-time (SMRT®) sequencing with reads greater than
10 Kb. Moreover, there are several freely available datasets [41], and PacBio’s
analytical software is available as open source software [45]. Having datasets and
open source software provides a tremendous advantage for anyone willing to try
this new technology.

6.3 Pacific Biosciences Technology

The direct observation of processive DNA polymerization was a paramount
accomplishment and the basis of the SMRT® technology. To develop real-time
sequencing, it was necessary to reduce the observation volume and bring down the
concentrations of labeled nucleotides relevant to the enzyme. To solve the problem,
PacBio created zero-mode waveguides (ZMWs). PacBio’s ZMW is a tiny hole in an
aluminum cladding film that guides light energy into a volume that is small in all
dimensions compared to the wavelength of the light. PacBio uses ZWS to illumi-
nate only a section of a well where a DNA polymerase is immobilized. The con-
ditions in the ZWS enable single fluorophore detection despite the relatively high
concentrations of labeled dNTP. PacBio also developed special fluorophores linked
to the terminal phosphate moiety (phospholinked) of the nucleotide. When the
DNA polymerase incorporates the nucleotide, the phosphodiester bond formation
releases the fluorophore, generating a completely natural DNA strand. Generating
unmodified DNA Strands prevents any adverse effects in the fidelity and rate of the
DNA polymerase. The current PacBio RS II system is capable of processing
150,000 DNA fragments in a single SMRT® cell (Fig. 6.3), and each DNA frag-
ment has the potential to generate a read of 20 Kb. One single run processes up to
16 SMRT® cells in less than 4 h [14, 23, 43]. PacBio technology has been used for
de novo assembly of genomes [9, 15], targeted sequencing [7, 8], base modification
detection [17, 18], and more recently for isoform sequencing (Iso-Seq). In the next
section, we will focus exclusively on the Iso-Seq method.

6.3.1 Iso-Seq Experimental Pipeline

The Iso-Seq method is a new technique; the first application was published in 2012
[Larsen]. Figure 6.4 illustrates the current experimental pipeline. The pipeline
consists of the following steps:

1. Isolation of total RNA. The method depends on the isolation of high-quality total
RNA. The recommendations from PacBio and multiple publications are to use
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the TRIzol® Plus RNA Purification Kit from Life Technology and to follow the
manufacturer’s instructions [28].

2. PolyA mRNA selection (optional). The majority of the applications require the
isolation of polyA mRNA, but the Iso-Seq method is flexible enough to allow
the sequencing of different types of RNA.
PacBio recommends using the Poly(A)Purist™ MAG Kit from Life
Technologies for the isolation of polyA mRNA [29].

3. cDNA synthesis with adapters. PacBio currently recommends using the
SMARTer PCR cDNA Synthesis Kit from Clontech to generate full-length
cDNA [10].

4. Size partitioning. To avoid an over-representation of smaller transcripts, PacBio
recommends using the bluePippin system [50] to fractionate the cDNA.
However, it is possible to use a regular gel system or the newest sageELF system
[51] to fractionate the cDNA. Size selection allows for more even representation
across cDNA of different size ranges, since smaller fragments may load prefer-
entially on the sequencer. Three different fractions are isolated: (a) 1–2 Kb;
(b) 2–3 Kb; and (c) 3–6 Kb. Optionally, you could include a fourth fraction of
5–10 Kb. Furthermore, PacBio found that the larger fractions benefit from a
second fractionation step to clean any carryover from the smaller fractions.

5. Large-Scale PCR for SMRTbellTM Library Preparation. After size selection, the
double-stranded cDNA is not sufficient for SMRTbellTM library construction.
PacBio recommends a PCR amplification using the KAPA HiFi Enzyme [20].
To download the entire protocol with the most updated conditions for the PCR

(a) (b)

Fig. 6.3 PacBio SMRT® Cell and ZMW. The picture and the diagram were obtained from the
media kit section of ©Pacific Biosciences with sole intention to explain their technology. Panel A
displays a single SMRT® cell, representing the minimum unit for sequencing on a PacBio RS II.
Each cell contains 150,000 ZMW, where single polymerases are immobilized and single fragments
of DNA would be sequenced in real time. Panel B displays a single ZMW where one DNA
polymerase is immobilized to the bottom. A laser light from the PacBio RS II illuminates the
SMRT® cell from below. The light enables the detection of the release of one of four different
colored fluorophores after each base is incorporated into the DNA. The final result is a real-time
movie of a polymerase in action

6 Introduction to Isoform Sequencing … 149



reaction, go to the PacBio’s SMRT sample prep web site [44] and search for the
Iso-Seq™ procedure.

6. SMRTbellTM Library Preparation. The reagents necessary to transform the
cDNAs into a circularized molecule are obtained directly from PacBio con-
sumable reagents [40] and search for “SMRTbellTM Template Prep Kit 1.0.”
After completing this step, the library is ready to be loaded into a SMRT® Cell
and placed in the instrument.

Fig. 6.4 Overview of the Iso-Seq protocol. (1) Total RNA is Isolated; (2) polyA mRNA fraction
is isolated; (3) full-length CDNA with adapters is generated; (4) A size selection is performed to
isolate at least three fractions: 1–2 Kb, 2–3 Kb, and 3–6 Kb. PacBio recommends to use
BluePippin® system; (5) a large-scale PCR amplification is recommended before adding the
SMRTbellTM by ligation; (6) the isoSeq library is loaded into the SMRT® Cell, and the cell is
placed in the PacBio RS II®; and (7) few hours later, the raw data are available
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6.3.2 Iso-Seq Analytical Pipeline

6.3.2.1 Primary Analysis

The current instrument, PacBio RS II, includes a computational cluster “Blade
Center.” The blade center is responsible for primary data analysis. The primary data
analysis consists of real-time signal processing, base calling, and quality assessment.
Currently, each SMRT® Cell contains 150,000 ZMWs, where single polymerase is
immobilized. Consequently, each SMRT® cell is capable of sequencing 150,000
DNA sequences in real time. The blade cluster performs in real time: (a) the con-
version of the images (movies) to trace files; (b) the conversion of trace to pulse;
(c) conversion of pulse to base; and (d) base to circular consensus. All the files
generated by a single SMRT® cell are stored in a compressed archive of type HDF5
[19]. The information generated by a single SMRT® cell is stored into one bas.h5,
three bax.h5 [38] files, and onemetadata.xml file [39]. The metadata.xml file contains
the instrument information and experimental conditions that were used during the
run. It is important to notice that recently, the bas.h5 file was relocated inside the bax.
h5 files; therefore, it is possible that some datasets do not have bas.h5 files present.

6.3.2.2 Secondary Analysis

The software responsible for the secondary analysis is provided by PacBio under
the name “SMRT® Portal suite” (currently version 2.3). The SMRT® Portal suite is
freely available from the PacBio development network [42]. The site also contains
detailed information about installation. It is important to realize that there are a large
number of files generated by each SMRT® cell; consequently, the software requires
a computer cluster running a modern version of RedHat, CentOS, or Ubuntu. The
computer cluster should have at least 16 computer nodes and a distributed computer
management system like Sun Grid Engine (SGE). Moreover, SMRT® Portal will
need a few terabytes of disk space to store all the raw files, temporary files, and final
results. It is advisable to get help from an experienced Linux administrator to
guarantee that the SMRT® suite works properly and can submit jobs to the com-
puter cluster. The SMRT® Portal is a LAMP/Tomcat server bundled with PacBio
software that functions as an interface for analyzing sequencing data generated by
the PacBio RS. The SMRT® Portal can design secondary analysis jobs, submit
them to the computer cluster, and generate reports from the results as soon as they
are available. The SMRT® Portal user interface consists of three tabs: (a) the design
job tab (Fig. 6.5a); (b) the monitor job tab; and (c) the view data tabs (Fig. 6.5b).
The design job tab will import the raw data and select a protocol from a pull-down
menu. Each one of the protocols contains a sequential list of calls to command line
programs or scripts. PacBio developers generated some of the protocols, while
users contributed others. For the Iso-Seq analysis, the RS_Iso-Seq protocol needs to
be selected. Underneath the protocol name, there are submenus where parameters
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are set or modified for each one of the series of modules that belong to the protocol
(Fig. 6.5c). The RS_Iso-Seq protocol requires three modules: the filtering module,
the Isoseq_classifier module, and the Isoseq_cluster module. After setting all the
parameters and typing a name for the job, the protocol is ready to be submitted. The
job can be monitored by using the monitor job tab, and when the job is finished,
the results will be displayed in the data view tab.

Figure 6.6 illustrate the Iso-Seq workflow in more detail:

(a) Reads are extracted from PacBio’s raw data by the read of inserts protocol.
(b) Reads are classified as full-length and non-full-length by the classify protocol.

b Fig. 6.5 The SMRT® Portal User Interface. Panel A displays the design job tab. The design job
tab is the interface to import the raw data, design the job, and select the protocol. For the IsoSeq
method, the RS_IsoSeq_1 protocol should be selected. Panel B shows the view data tab with an
example of a completed job where you can visualize the results of the job. Panel C shows a
submenu where you can set the parameters for a module

Fig. 6.6 The Iso-Seq workflow. PacBio raw data are stored in three types of files: Bas.h5, Bax.h5,
and metadata.xml. After the data are imported into the SMRT® Portal, the reads of inserts module
extract the reads from the raw files as.fasta files and.ccs.h5 files. The reads are classified into
full-length, non-chimeric rolls and non-full-length, non-chimeric rolls by the classify module. The
chimeric rolls are processed outside the SMRT® Portal interface using the developmental tools
from PacBio. The full-length reads are cluster by ICE and submitted to Quiver to obtain
high-quality full-length transcripts (cluster module)
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(c) Full-length, non-chimeric reads are clustered using the isoform-level cluster-
ing (ICE).

(d) Isoforms from ICE are processed with Quiver to try to extend/improve the
quality of the full length by using the non-full-length reads. PacBio calls the
final group of full-length isoforms “Polished.”

The Iso-Seq protocol does not require a reference genome to generate isoforms;
however, if the reference genome is provided, the GMAP module could be acti-
vated. Alternatively, you could run GMAP form the command line. GMAP is a
splice-aware aligner that maps the isoforms into the reference genome and removes
redundant versions of the isoforms, cleaning up the final list of transcripts.

6.4 Scientific Applications of Iso-Seq Technology

The number of publications that use the Iso-Seq method keeps increasing every
year. Since the initial development of Iso-Seq method, over a dozen articles have
been published in high-impact journals. In this section, three projects will be dis-
cussed. The selected articles represent, in our opinion, important applications of the
Iso-Seq method. The first paper demonstrated how the Iso-Seq method was able to
identify*50,000 different antigen-binding regions from a complex genomic region
that is the target of recombination events associated with B-cell maturation [26].
The second article demonstrated the ability to identify full-length mRNAs and new
isoforms in a complex transcriptome [52]. In the third paper, the authors used a
hybrid approach consisting of combining Illumina and PacBio data to increase the
identification of isoforms. By using statistical inference, they were able to identify
over 2000 new isoforms not reported before, including 216 novel non-annotated
gene loci [4].

6.4.1 Iso-Seq and Expression in Complex Genomic Regions

The Iso-Seq technology is relatively young; the first published project that used
Iso-Seq was released in 2012 [26]. Larsen and Smith focused their efforts toward
understanding the bovine immunoglobulin G (IgG) repertoire. The project was
directed to sequence transcripts from a region with very high variability, the IgH
variable region. The investigators generated *50,000 high-quality cDNAs, from
which 99.9 % corresponded to antigen-binding regions [26]. This project used a
technique between amplicon sequencing and Iso-Seq sequencing, since the inves-
tigators enriched only the IgH variable region after generating the cDNA. The
researchers demonstrated the power of long reads by isolating thousands of
molecules that differ by a small number of variations introduced during the
recombination events associated with B-cell maturation.
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6.4.2 Iso-Seq, a Tool to Use to Survey for New Isoforms

Dr. Snyder’s group demonstrated that the Iso-Seq technology is capable of
sequencing full-length RNA, with little to no sequence loss at the 5′ end. In their
paper, the authors were able to sequence transcripts without fragmentation or
amplification. They used a commercial RNA sample that consisted of RNA from 20
different organs and tissues. The authors were able to sequence full-length RNA
molecules of up to 1.5 Kb. In total, they identified *14,000 spliced GENCODE
genes that mapped with high confidence to the GENCODE annotations. Moreover,
they found that 10 % of the transcripts represented new isoforms [52]. It is important
to notice that the authors used the original protocol for their publication. The original
protocol did not include size selection; consequently, the system preferentially
sequenced smaller molecules. The current protocol discussed in the previous section
used size selection to cover large isoforms. Moreover, the current protocol has
additional improvements to increase yield, such as PCR optimization before size
selection, and a second large-scale PCR to increase the number of rare isoforms.

6.4.3 A Hybrid Approach Combining Illumina and PacBio
Data

In 2013, a group of scientists, led by Professor Wing Hung Wong from Stanford
University, used a hybrid sequencing method to obtain a better understanding of the
diversity of mRNA isoforms in human embryonic stem cells (hESCs). Their hybrid
method consisted of combining Illumina sequencing information with PacBio long
reads. They reported 8084 RefSeq-annotated isoforms detected as full length and an
additional 5459 isoforms predicted through statistical inference. Over one-third of
the predicted isoforms were novel isoforms, and they also found 275 RNAs from
new gene loci. The new loci represent a group of genes expressed only in
pluripotent cells. The statistical inference method used by this group is available to
other researchers that wish to use their hybrid sequencing method [4].

6.5 Conclusions

In this chapter, we discussed the importance of alternative splicing and the different
methods used to identify RNA isoforms. Since 2008, RNA-Seq has become the
predominant technology to perform transcriptome profiling. However, recently, a
team of bioinformaticians benchmarked the tools that are commonly used to ana-
lyze RNA-Seq and found significant problems when trying to assemble a tran-
scriptome from a complex organism. None of the available tools were able to
correctly recreate all the valid isoforms for a transcriptome; only half of the genes
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were assembled correctly, and from those genes with assembled isoforms, only one
isoform was typically identified. Expression-level estimates also varied widely
across methods, even when based on similar transcript models. The authors con-
cluded that isoform identification is a limiting factor for RNA-Seq experiments
[53]. Scientists like Dr. Snyder are arguing that there was insufficient length in the
current NGS reads to generate good transcript reconstruction. He recommends the
use of longer reads to cover the entire transcript by a single read and avoid the
arduous process of transcript reconstruction. The Iso-Seq method, recently devel-
oped by PacBio, is capable of identifying new isoforms with extraordinary preci-
sion due to its long-read technology. The technique to create libraries is
straightforward, and the PacBio RS II instrument generates the information in hours
no days like in the case of RNA-Seq. The bioinformatics analysis is performed
using the freely available SMRT® Portal software. The final result of the Iso-Seq
pipeline is a list of full-length isoforms, and judging by recently published data, a
significant number of the isoforms are novel [4, 52]. At this point, the Iso-Seq
method is not a quantitative method but a powerful survey tool capable of identi-
fying new isoforms.

The obvious benefits of Iso-Seq sequencing are a follows:

• Sequence full-length mRNA transcripts, with no assembly required.
• Characterize gene–isoform expression across an entire transcriptome, or within

targeted regions.
• Discover novel genes and gene isoforms even in well-characterized samples.
• Perform de novo gene annotation, with or without a reference genome.
• Gather complete information about alternatively spliced exons, transcriptional

start sites, polyadenylation sites, and strand orientation.
• Improve quantitation accuracy for functional genomics studies.

Even with all the benefits of using Iso-Seq, for the universal acceptance of the
Iso-Seq method, the capacity of the SMRT® Cells needs to improve at least 10- to
100-fold to make the system affordable and attractive to users. The Iso-Seq method
is not a drop-in replacement for the RNA-Seq method but a complementary tool.
While Iso-Seq is a powerful survey tool capable of identifying new isoforms, the
RNA-Seq provides all the statistical methods for measuring differential expression
(DE). A hybrid approach that combines both methods is the optimal solution to
study the transcriptome as demonstrated by Au’s group [4].
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Chapter 7
Systematic and Integrative Analysis
of Gene Expression to Identify Feature
Genes Underlying Human Diseases

Zixing Wang, Wenlong Xu and Yin Liu

Abstract Over the past two decades, the advances in genomics technology have
opened the door for rapid biological data acquisition and have revolutionized many
aspects of biomedical research. Given the complex and noisy nature of the
large-scale biological data, there is a high demand for developing variable selection
approaches to identifying disease biomarkers in the field of translational bioinfor-
matics. These biomarkers offer early detection of pathogenesis, inform prognosis,
provide guidance for the treatment, and monitor disease progresses. In this chapter,
we focused on developing a variety of methods that systematically analyzed
whole-genome gene expression data for identifying feature genes associated with
patient clinical parameters. In the first method, we constructed a gene co-expression
network and then selected genes that are informative for classifying different cancer
subtypes based on gene connectivity within the co-expression network. In the
second method, we incorporated prior biological pathway information to recon-
struct a gene network and then identified hub genes that are associated with cancer
prognosis. Finally, we identified protein subnetworks instead of individual genes as
biomarkers for classifying different types of brain injuries. Our study has set up a
framework that can be easily generalized to integrate different types of genomics
and proteomics information for better identifying feature genes to improve accuracy
of disease diagnosis and treatment.

Z. Wang
Department of Bioinformatics and Computational Biology, University of Texas MD
Anderson Cancer Center, 77455 Fannin Street, Houston, TX, USA

W. Xu � Y. Liu (&)
Department of Neurobiology and Anatomy, University of Texas Health Science
Center at Houston, Medical School Building, Suite 7.046, 6431 Fannin Street,
Houston, TX 77030, USA
e-mail: Yin.Liu@uth.tmc.edu

Y. Liu
University of Texas Graduate School of Biomedical Science, 6767 Bertner Avenue,
Houston, TX, USA

© Springer Science+Business Media Dordrecht 2016
J. Wu, Transcriptomics and Gene Regulation,
Translational Bioinformatics 9, DOI 10.1007/978-94-017-7450-5_7

161



Keywords Gene expression biomarkers � Feature selection � Protein interaction �
Network

7.1 Introduction

Within the past decade, there has been a growing demand for proper usage of
disease biomarkers in clinical diagnosis and prognosis. Disease biomarkers are
typically selected according to their power in discriminating different disease states.
They offer early detection of pathogenesis, inform prognosis, provide guidance for
the treatment, and monitor disease progresses. In the functional genomic era, recent
advances in high-throughput technologies open up for new opportunities that can
meet challenges in the area of biomarker identification. For example, when the
expression profiles of thousands of genes are available, the biomarker discovery can
be modeled as a feature gene selection problem that tends to find the most relevant
features (genes) for appropriate disease classification [1].

Figure 7.1 shows the development of a gene expression biomarker from
large-scale gene expression data for cancer prognosis. Cancer cells often involve
multiple genomic changes that together are responsible for uncontrolled cell
growth. As cellular behavior is controlled by gene activity, it is logical to assume
that differences in the tumor samples could be inferred from differences in their
gene expression. Therefore, gene expression profiles can be used on the identifi-
cation of prognostic biomarkers in cancer. Given the gene expression profile on
tumor samples with known clinical outcome, the set of genes that correlates best
with the relevant clinical parameters can be identified by feature selection methods.
Next, the gene signature is validated on another set of independent samples of
known clinical outcome, and its performance is evaluated. Then, the gene signature
needs to go through regulatory approval before it is used in clinical setting. Finally,
patients prognosis outcome can be predicted and classified based on the gene
signature.

Feature selection has been well studied in the context of supervised learning
where the label information is available [2, 3]. It evaluates the relevance of features
by the extent of alignment between features and the class label. However, in
practice, there are usually abundant features but lack of class label information.
Under such circumstances, unsupervised feature selection becomes an alternate
solution. One of the application domains of unsupervised feature selection is on
selecting relevant feature genes for clustering similar samples into one group in an
unsupervised manner. In this context, feature selection algorithms can be catego-
rized as either the wrapper or the filter approaches according to the evaluation
criterion in searching for relevant features. For the wrapper approaches, each
candidate feature or feature subset is obtained by conducting a combinatorial search
in full feature space and each candidate is evaluated by measuring its goodness with
a specific clustering algorithm [4, 5]. The wrapper approaches have shown their

162 Z. Wang et al.



effectiveness on low dimensional data. However, one problem of these methods,
when applied to large datasets, is the high-computational complexity since the size
of candidate subset space is exponentially increased with the number of features.
Furthermore, the wrapper approach lacks robustness and is biased toward the
specific clustering algorithm used [6]. In contrast, the filter approach is more effi-
cient in that it does not utilize any clustering algorithms to evaluate the candidate
features. Instead, features are evaluated according to certain criteria (e.g., feature
variance, entropy-based distance [7], similarity among feature [8], and Laplacian
score [9]), and then, a number of less informative features are filtered out before
clustering algorithm is performed. This approach is much faster and more efficient
than the wrapping method in high-dimensional dataset analysis.

Despite the wide application of these approaches on feature selection problems,
there has relatively limited success in applying these techniques to better clarify and
characterize the clinical heterogeneity observed for many complex diseases. In
recent years, high-throughput gene expression profile measured by microarray and
next-generation sequencing (NGS) techniques has been proven as an informative
platform by which genome-scale events can be translated into medical practice.

(a)

(e) (d)

(b) (c)

Fig. 7.1 The steps for developing a gene expression biomarker. a The whole-genome gene
expression profile on tumor samples with known clinical outcome. b The set of feature genes
correlated with clinical parameters can be identified by bioinformatics approaches. c The gene
signature is evaluated and validated with an independent set of samples with known clinical
outcome. d The identified gene signature is subject to regulatory approval. e The approved gene
signature can be used to stratify patients
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For example, based on gene expression profiles, interesting cluster distinctions can
be identified among patients, which may correspond to particular phenotypes, such
as different clinical syndromes or cancer types [10]. Under such circumstances,
many traditional feature selection methods fell short to capture the full spectrum of
the underlying structure of sample clusters. It is noted that gene expression could be
influenced by the cell type, cell phase, external signals, and many more factors;
therefore, the gene expression dataset can be contributed by all these factors mixing
together. Multiple meaningful clustering structures can coexist based on the same
dataset, and the same set of samples can undergo different partitions based on
different subsets of selected feature genes. Thus, a good feature selection algorithm
should be able to select informative genes that best preserve multiple clustering
structures in the data.

In this chapter, we describe novel methods to achieve feature gene selection for
downstream clustering/classification analysis [11–14]. These methods are based on
systematic and integrative analysis of gene expression profiles. In the first method,
we conceptually build a gene correlation, or co-expression network, in which nodes
and edges represent genes and their expression similarity, respectively. This net-
work paradigm is based upon the assumption that each gene may induce a specific
partition of the sample space in the absence of a priori information about the
variable space. Therefore, given the thousands of genes in the high-throughput
expression profile, there might be a number of distinct sample clustering solutions
on the same set of samples. In this context, the imminent task is to combine these
multiple partitions into a single consensus clustering, which should share as much
information as possible with the given pool of sample partitions. This notion of
integrating multiple clustering solutions is in line with the framework of cluster
ensembles [15], which tend to reuse the existing knowledge and minimize the
information loss incurred in the process of cluster assembling. Based on the
assumption that higher correlated gene expression profiles tend to produce more
similar partition structures, we propose to assemble genes according to their
expression similarity rather than their sample partitions. Following this line of
reasoning, we select a list of individual genes that sustains the most similarity with
other genes, so that the final sample partition based on this gene list is a combi-
nation with the most consensus information among the partitions inferred by each
individual gene.

We note that a gene network constructed exclusively from expression infor-
mation will neglect prior biological knowledge or information about the gene
interaction. As a result, one-dimensional aspect of gene expression analysis may
overlook the intrinsic relationships among genes. Recently, integrative analysis of
gene expression has received a great deal of attention. A multi-dimensional char-
acterization of the genomic data has become a standard practice. This is particularly
true when a vast repository of prior biological knowledge has been rapidly accu-
mulated over past few years. There is a strong interest in leveraging this prior
information to effectively interrogate the genomic expression data and to achieve
the goal of identifying genes that may jointly influence a biological response. For
this purpose, we have developed a L1 penalized least square estimator, named the
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prior lesso (pLasso) method, for the reconstruction of gene networks [13]. In this
method, we partition edges between genes into two subsets: One subset of edges is
present in known pathways, whereas the other has no prior information associated.
Our method assigns different prior distributions to each subset according to a
modified Bayesian information criterion that incorporates prior knowledge on both
the network structure and the pathway information. After the gene network is
reconstructed, the top genes with the most neighbors in the inferred network were
selected as feature genes that are subject to further testing on their power in pre-
dicting survival outcome of cancer patients. Finally, in the third method we will
describe in the chapter, we aim to identify biomarkers not as individual genes but as
gene subnetworks. In traditional expression profiling studies, genes that are not
significantly differentially expressed between classes are often neglected. These
discarded genes’ modest association with specific phenotypes may represent false
negatives and may be important biomarkers. We expect that these genes may be
identified within functional unites of genes that in aggregate have a significant
association to a specific phenotype. Therefore, we develop a network-based
approach incorporating gene expression profiles and the protein–protein interaction
information from existing databases to identify gene subnetwork biomarkers and
apply this approach on traumatic brain injury (TBI) study for characterizing classes
of TBI.

7.2 Leveraging Gene Co-expression Networks in Feature
Selection

In line with the framework of ensemble clustering, the connectivity of one gene
node in the co-expression network is used to estimate the information gain as a filter
criterion throughout the network. The gene connectivity is defined as the degree of
similarity between its expression profiles with others. We design a simple network
inference method to construct the co-expression network in Sect. 7.2.1 and then
propose a transformed gene connectivity measure for module recovery in
Sect. 7.2.2. Sections 7.2.3 and 7.2.4 show the performance of our method based on
simulation datasets and real dataset analysis, respectively.

7.2.1 Gene Co-expression Network Analysis and Gene
Connectivity

We define the similarity sij between the expression profiles of genes i and j using the
absolute value of the Pearson correlation sij = abs(cor(xi, xj)), where xi and xj
represent the gene expression profiles for genes i and j, respectively. Therefore, the
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similarity matrix can be denoted by Sij = [sij]. We then transform this similarity
matrix into an adjacency matrix using a “soft” power transformation function [16]:

aij ¼ sij
�� ��b ð7:1Þ

with a single parameter β, where β ≥ 1. Here, aij is an element of the adjacency
matrix. Soft-thresholding results in a completely connected network with each edge
being assigned a weight.

Given a n × n symmetric adjacency matrix, the connectivity ki of gene i is
defined by

ki ¼
X
j6¼i

aij ð7:2Þ

For the soft-thresholding transformation, the connectivity of gene i equals the sum
of weights between gene i and all other genes in the weighted network. To select the
relevant genes for clustering analysis, we first rank the genes according to their
connectivity, which can be obtained for all the genes. The genes with low ranks are
filtered, while the genes with top ranks are considered to have high degree of
connectivity and are selected for clustering analysis.

7.2.2 Module Identification and Visualization

A gene co-expression network can be used to identify co-regulated subsets of
genes, known as modules, such that genes within a module are more highly cor-
related than those between modules. Usually, a module corresponds to certain
function unit in the complex network, such as different biological processes or
pathways. We introduce a new module identification and visualization method. Our
module identification method is based on using a node similarity measure of their
relative interconnectedness coupled with the hierarchical clustering method. We
calculate the Jaccard similarity coefficient Jij to represent the similarity measure.

Jij ¼ hij
ki þ kj � hij

ð7:3Þ

where hij ¼
P

u aiuauj, which equals the total interconnectedness of genes i and j in
the soft-thresholding transformation. Therefore, the similarity measure will be
affected by the selection of the transformation parameters. In our implementation,
we adjust the power function parameter β to explore their effects on the results of
variable selection. Once the similarity measure matrix is obtained, we reorder it by
hierarchical clustering of each row and column to put similar genes in an adjacency
zone [17]. Since the similarity measure matrix is symmetric, these highly similar
genes would form a “hot” block along the diagonal in the heatmap and can be
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identified as a module by visual inspection. The genes in the resulting modules are
expected to be tightly connected to each other in the gene co-expression network
and thus are highly co-expressed.

7.2.3 Feature Selection Performance in Simulation Studies

We used a simulation setting similar to that in Witten and Tibshirani [18]. Each
simulation dataset contains 60 samples from three classes C1, C2, and C3 (20
samples from each), and each sample Xi is a d—dimensional vector that follows
Nðli;RdÞ and is independent of other samples. Thus, the clustering structure is
determined by the specification of µis that are defined as

lij ¼

l 1i2C1 � 1i2Cn1
� �

if j� 10

l 1i2Cn1 � 1i2C1
� �

if 10\j� 20

l 1i2C2 � 1i2Cn2
� �

if 20\j� 30

l 1i2Cn2 � 1i2C2
� �

if 30\j� 40
0 otherwise

8>>>>>><>>>>>>:
ð7:4Þ

where l is a positive constant and set to 1 in the experiment. This configuration of l
sets the first 40 genes as informative genes, designating the other genes as noise.
We take Rd ¼ diagðr1; . . .; rdÞ where r1; . . .; rd are set such that the population
variance of each variable is one. In the simulation, the first 20 genes together can be
considered as a module since their expression profiles are highly correlated and this
module differentiates samples in class C1 from the others, whereas the next 20
genes form another module that differentiates samples in class C2 from others.
Therefore, these two sets of genes exhibit different sample partitions.

Given the simulation dataset, we evaluate the performance of our variable
selection method based on the soft-thresholding transformation. Herein, we use
F-score and classification error rate (CER) as measuring metrics, where
F = 2 × Precision × Recall/(Precision + Recall). For CER, it is defined as the
deviation of sample clustering (p1) from the true clustering labels (p2) with fol-
lowing formula:

CER p1; p2ð Þ ¼
P

i[ i0 1p1 ið Þ¼¼p1 i0ð Þ �1p2 ið Þ¼¼p2 i0ð Þ
�� ��

n
2

� � ð7:5Þ

where n is the sample size. Note that smaller CER values reflect more accurate
clustering results. A CER of zero indicates that the clustering results p1 and p2 agree
perfectly.

The soft-thresholding transformation is only dependent on the power function
parameter β. As shown in Fig. 7.2, the power transformation significantly improved
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the performance of variable selection and led to a higher F-score peak and lower
CER than the original non-transformed one (β = 1). We further found the perfor-
mance was not a monotonic function of β. Among the four power functions with
different parameters β, the optimal value of F-score and CER was achieved when β
was set to 3. This indicates that 3 is the optimal power function parameter in the
simulated dataset, and it results in an optimized state for emphasizing the corre-
lation associated with true gene relationships by diminishing the noisy effects.

We also have applied the soft-thresholding transformation on the gene
co-expression network for module identification. Note that the sensitivity of this
method varies depending on the co-expression network size and the composition of
variable space. In the analysis, we assigned the value of u to 1.5 in the simulation
setting to demonstrate a clear module structure. Figure 7.2c shows the discovered
modules in the network when the power function parameters are varied in the
transformed network. Two “hot blocks” can be clearly identified along the diagonal,
each of which corresponds to the original defined module in the simulation setting
with a few missing genes. Although due to varying values of the transformation
parameters, the boundaries between blocks exhibited distinctive sharpness
(Fig. 7.2c), the module structure, and the genes included in each module were the
same, indicating the relative robustness of our method in module identification. We
also evaluated their clustering performance. Each of the blocks induced a specific
bipartitioning of the sample space that is equivalent to the sample partition inferred
by the corresponding modules in our simulation setting.

(a)

(c)

(b)

Fig. 7.2 Performance of feature gene selection from the simulated dataset with 500 genes. a The
average of F-scores and b the classification error curves based on soft-thresholding transformation
with different values of power function parameter β. The horizontal line in a and b represents the
performance based on all genes without the feature selection step (500 genes totally). c The first
block shows the module structure in the gene co-expression network. The rest on the right are
zoomed-in view of the modules highlighting the genes included in two modules with the power
function parameter β = 2, 3, 5 and 7, respectively
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7.2.4 Real Data Application

Along with simulations, we have applied our method to two real experimental
datasets: leukemia [19] and colon cancer data [20]. The leukemia dataset consists of
72 patients with two subtypes of acute leukemia: acute myeloid leukemia (AML) and
acute lymphoblastic leukemia (ALL). The latter is composed of two subclasses,
B-cell and T-cell types. Therefore, there could be two possible biologically mean-
ingful clustering solutions including one with two clusters of samples (AML and
ALL) and the other with three clusters (T-cell ALL, B-cell ALL, and AML).

Following Dudoit and Fridlyand [21], three preprocessing steps are applied to
the original data matrix and a final 72 × 3571 data matrix was obtained. Because the
preprocessing steps included thresholding the gene expression values with a floor
and a ceiling boundaries, many artificially high correlations can be introduced. We
filter out these genes whose medians equal to the boundary values and obtained
3033 genes in total. We first studied the module organization of the gene space and
the associated sample partition in the leukemia dataset. As shown in the Fig. 7.3a,
the topological similarity matrix exhibited a sharp separation of modules from its

(a) (b)

(c) (d)

Fig. 7.3 Module analysis and clustering results for the leukemia and colon datasets. Top panel
Zoomed-in view of the module structure in the gene co-expression network of the leukemia (a) and
colon dataset (b). Bottom panel The clustering performance for new partition structures based on
soft-thresholding transformation with various power functions, Laplacian score method, or
Max-variance method. c Leukemia dataset and d colon cancer dataset
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neighboring genes. We evaluated the sample clustering performance of modules by
using the gene set included in each module for sample partitioning. We found that
most of them induced a meaningful partition of the sample space. Specifically, the
first module at the bottom right corner rendered a dichotomy of the samples
according to the known classification, ALL/AML, with the CER value equaling
0.155, whereas the second module tends to distinguish B-cell ALL patients from
the rest with a CER value of 0.2, indicating the unrecognized similarity between
ALL T-cell samples and AML samples in the dataset. The other modules also
impose a potential novel partition of samples. These results confirmed multiple
possible clustering solutions in the leukemia dataset. We also performed feature
selection to select individual genes based on their connectivity in the transformed
network using soft-thresholding transformation. For the three-class solution, the
100 genes selected from the network-based analysis yielded the sample partition
coinciding almost precisely with the known classification (T-cell ALL, B-cell ALL
and AML) with CER equaling to 0.08. The genes selected from our method may
also represent new sample partition. This is supported by the observation that our
method achieved better separation of B-cell AML samples from the rest, compared
with other filter methods. Results in Fig. 7.3c showed that our approach achieved a
better optimal CER value compared with the Laplacian score and the maximum
variance methods, with a comparable number of genes selected.

We also analyzed the colon cancer data [20]. The colon dataset contains two
classes of samples based on disease status with 62 total samples: 40 tumor samples
and 22 normal samples. However, an independent study reported that there was an
inconsistency in the experimental protocols used to process the dataset [22]. The 22
samples including 11 tumor and 11 normal samples were processed by protocol 1,
and the rest of 40 samples were processed by protocol 2. Taking the different
protocols into consideration, the study has at least three different possible sample
partition structures based on disease status, sample protocols, and their combina-
tion. Dozens of modules were identifiable along the diagonal of the similarity
matrix (Fig. 7.3b). Each module exhibits a distinctive partition of the sample space.
Among the first three modules at the bottom right, module 1 had strong tendency to
partition the samples according to the normal versus tumor classification with a
CER value (0.35), whereas module 3 was informative for the partition based on
different protocols (CER = 0.27). Also, the number of genes included in these two
modules differed. Module 1 was the biggest among these 3 modules in terms of the
number of genes included. These results indicate that the classification of tumor
versus normal samples is a more dominant factor in the sample clustering compared
to the different sample protocols. It was interesting to observe that the number of
genes in module 2 was similar compared to module 1. However, their clustering
behaviors differed, suggesting that module 2 may inform a novel sample partition of
the colon cancer dataset. The aforementioned module analysis reinforced the idea
that the colon cancer dataset has at least three different clustering solutions. In a
new two-class solution where the samples were processed by two different proto-
cols, our approach achieved a much better performance than the other methods with
a different number of genes selected (Fig. 7.3d). For instance, when β was 40 or
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above, our method had a CER value equal to 0.15 with 70 genes selected, whereas
the Laplacian score and maximum variance methods fared much worse.

We further examined the selected gene lists with varied power transformation
parameter β in both datasets. We found that the overlap among the gene lists
increased as β became larger. After β reached 80 for the leukemia dataset, the gene
lists essentially remained unchanged. This is consistent with their similar clustering
performance as shown in Fig. 7.3c, d. However, in the simulation studies, the
optimal value of β was small (β = 3), reflecting different variable compositions in
these two datasets. As shown in Fig. 7.4, these implications became clear that,
unlike 40 informative genes in simulation (Fig. 7.4a), the correlation of the 100
selected genes has a mixture distribution with two components, one at the high end

(a)

(b)

(c)

Fig. 7.4 The correlation distribution of full variable space and informative gene set. a The
simulated dataset with 500 genes, b the leukemia, and c the colon cancer dataset
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of the distribution and another is close to zero (Fig. 7.4b). Since the component in
the high end was well separable from the other for the full gene space, the power
function will aggravate the situation so that these highly connected genes tend to be
selected as informative genes disregarding the value of β parameter. This may
explain the saturating effect of β parameter in the performance. Given the
assumption that experimental gene expression data represent several active bio-
logical processes, where genes corresponding to each of the process tend to be
highly correlated with one another but not well correlated with genes participating
in other biological processes, it is reasonable to expect that in real expression
analyses, the gene sets will have a mixture distribution with multiple well-separated
components for their pairwise correlation. Therefore, the selected genes should not
be sensitive to the power function parameter β when it is above a certain threshold.
This was further validated in the colon cancer data analysis (Fig. 7.4c). Similar to
the leukemia dataset, the gene set has two well-separated clusters of correlation at
two ends, which may explain their saturating behavior of clustering performance
when β reaches a certain value. In conclusion, both simulation studies and real data
application have demonstrated that our feature selection method has better per-
formance in terms of the reliability of the selected genes and sample clustering
results. In addition, a module recovery method is developed that can help discover
novel sample partitions that might be hidden when performing clustering analyses
using all available genes.

7.3 Incorporating Prior Pathway Information to Identify
Genes Associated with Cancer Prognosis

We propose a gene network reconstruction method incorporating prior biological
knowledge on gene pathways or gene–gene interactions. Based on the inferred gene
network, we select the highly connected genes aiming to accurately discriminate
different disease types. Instead of focusing on the marginal correlation described in
the previous section, here we perform partial correlation analysis to construct the
gene network through a least square regression approach. The partial correlation
measures the direct association between two genes in the gene association network.
Therefore, compared to the marginal correlation, it has an important advantage in
the network inference where it enables to distinguish direct from indirect gene
associations that originate via intermediate genes (sequential pathways) or due to
other genes (common causes). With this adaption, we can easily derive partial
correlation from a least square regression approach, which creates additional
capacity to incorporate prior biological knowledge on gene networks. In Sect. 7.3.1,
we describe the rationale of the prior-dependent lasso-based network reconstruction
method, named pLasso. We implement this method on both simulated and real
datasets and then evaluate the performance of highly connected genes from the
inferred network based on its classification power in Sects. 7.3.2 and 7.3.3.
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7.3.1 Lasso-Based Network Reconstruction

The gene network can be described by a graph G = (V, E), where V is the node set
representing genes and E is the edge set representing conditional independence. We
can model the joint distribution of multiple genes with the Gaussian graphical
model (GGM). In the GGM, we assume the available data X is a random variable
generated from a multivariate Gaussian distribution with mean zero and covariance
matrix. X can be obtained from large-scale genomic information, such as the
microarray or the RNA-seq data. The inverse of the covariance matrix, known as
the precision matrix, describes the conditional independence structure of X. The
precision matrix can be easily linked to the partial correlation in the graphical
model, where the pattern of zero entries in the matrix corresponds to conditional
independence between variables. However, the genomic data present modeling
challenges due to the small n (the number of samples) but large p (the number of
variables) problem. To overcome this problem, we designate lasso-based regular-
ized high-dimensional regression [23–25]. In this study, we use Meinshausen and
Buhlmann’s [26] neighborhood selection method. Basically, lasso regression is
applied to each node in the network, reducing the original problem to multiple
sparse linear regression problems.

Given the regression coefficients β, where each gene is considered as the
response variable sequentially and all the other genes are the covariates, the partial
correlation coefficients can be derived. To incorporate the prior information in
network inference, we present a Bayesian interpretation for lasso regression.
Tibshirani [27] indicated that the lasso estimate can be viewed as the model of the
posterior distribution of β with a double exponential distributed prior (or Laplacian
prior) by maximizing the log posterior distribution of
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where C is a constant. Thus, the lasso penalty can be regarded as the logarithm of the
prior distribution of the parameter β = (β1,…, βp)

T, which is a Laplacian prior with
mean equal to 0. Because prior distributions model our prior knowledge of the data,
the known network structure can be introduced in a very natural way in the form of
prior probabilities. A mixture of two Laplacian prior distributions for the regression
coefficients is proposed as in Eq. (7.7) with different parameters λ1 and λ2.
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Here, λ1 and λ2 are regularization parameters. βnon-prior and βprior represent the
regression coefficients corresponding to the edges absent and present in the prior
knowledge. The prior distribution of regression coefficients for the edges not
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present in known databases is concentrated and then enforces most regression
coefficients shrinking to 0. On the other hand, the prior distribution of regression
coefficients corresponding to existing edges in the known databases is diffuse.
A reliable data source reflects increased confidence in the gene interaction. Their
regression coefficient profile is scattered away from zero. Therefore, it is preferable
to include the regression coefficients representing the known gene interactions in
the lasso-based modeling. In our pLasso method, we select different values of the
regularized parameter λ (λ1 and λ2) in two lasso penalty terms, thus allowing the
lasso regression coefficients corresponding to the edges absent and present in the
prior knowledge to have different prior distributions. However, how to assign these
two regularization parameter is a challenging problem. In this study, we propose a
modified BIC score for regularization parameter selection [13].

7.3.2 Simulation Studies

To demonstrate the performance of the proposed pLasso method, we conducted
simulation studies to empirically compare our method with the traditional lasso
method. In the experiment, we designed two simulation scenarios on different
network scales. The first simulated network is a small network with 40 nodes, an
average node degree of 4 and a maximum degree of 6. The 80 (40 × 4/2) edges
were randomly assigned to the 780 (40 × 39/2) node pairs with the limit that the
maximum node degree is not exceeded. According to this network structure, we
simulated its associated gene expression datasets similar to others [24, 25].
Basically, we first constructed a positive definite partial correlation matrix P based
on the simulated network. Then, the gene expression data were simulated from a
standard multivariate normal distribution with correlation structure derived from
P with each gene having 10, 100, and 200 replicates so that we could further
investigate the effect of sample size on the performance of our method. Our second
simulation scenario has a larger network with 300 nodes and 900 edges, an average
degree of 6 and a maximum degree of 12. Each gene was simulated with 10, 100,
and 200 replicates. In real situations, the true underlying network is only partially
known and is mixed with spurious edges. To investigate the performance of our
pLasso method with imperfect prior information, we have simulated prior infor-
mation with different precision levels varying from 0.1 to 1.0. The total number of
edges in the prior data was set equal to the number of edges in the true underlying
network. Therefore, a precision level of 0.1 indicates that 10 % of the edges in prior
are true edges, while the other 90 % are spurious ones, and a precision level of 1.0
indicates a perfect prior with all true edges included. To incorporate the prior
information, the network recovery method pLasso was implemented to search over
a sequence of µ from 0 to 1.2 with an increment of 0.1 to get the optimal λ2, where
λ2 = µ × λ1. The optimal λ2 value was obtained when the minimum BIC score was
achieved. The parameter λ1 used in pLasso was set the same as that in the original
lasso approach based on the BIC criterion. We have demonstrated that in all
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simulation scenarios, combining prior knowledge with higher precision in pLasso
led to a higher F-score, a weighted average of the precision and recall rates of the
method. Nevertheless, we found F-scores from pLasso were consistently higher
than those from a traditional lasso method. Even when the precision of the prior was
as low as 0.1, pLasso achieved an F-score comparable to or slightly higher than did
the lasso method for all the simulation scenarios [13]. Therefore, even if perfect
prior information cannot be obtained in practice, our approach helps to distinguish
the true edges from the spurious ones and outperforms a traditional lasso method
that neglects prior information.

7.3.3 Integrative Analysis of Breast Cancer Gene
Expression Data

To evaluate the performance of the pLasso method, we applied it to a publicly
available dataset for network inference. This is a microarray gene expression study
of breast cancer [28], measuring gene expression profiles of 286
lymph-node-negative breast cancer patients. Among these patients, 107 patients
have developed a distant metastasis, whereas 179 patients are metastasis free. In the
analysis of breast cancer data, our objective is to reconstruct the gene regulatory
networks for two pathophenotypes of breast cancer, the metastasis-free group and
the group with metastases. Since the performance of lasso and pLasso are sensitive
to the sample size, we only used 107 of 179 metastasis-free patients so that the
sample size of the metastasis-free group is the same as that of the patients with
metastases. We utilized a prior gene network compiled from the KEGG database
and the Pathway Commons Web resource. With traditional lasso method, the
inferred network from patients with metastases had 21,360 edges. For the pLasso
setting, we set the precision of the prior knowledge to 0.6, as we expect that 60–
70 % of the edges present in the prior knowledge would align with the interactions
in the true network corresponding to breast cancer samples [29]. Both patient
groups resulted in networks with similar number of edges. In the groups of patients
with metastases, we inferred a network with 5187 genes and 29,821 edges, whereas
the metastasis-free patient group yielded a network with 5106 genes and 29,364
edges. An example showing the difference between the inferred networks from the
lasso and pLasso approaches in patients with metastases is illustrated in Fig. 7.5.
The metastatic progression of breast cancer is directly caused by the disregulation
of numerous cellular signaling pathways. BUB1B, as a protein kinase, has been
known to be essential in the mitotic checkpoint during normal mitosis progression.
Recently, an analysis on multiple public datasets of gene expression discovered that
BUB1B is associated with early distant metastases in breast cancer [30]. Here, we
took BUB1B and its neighbors to exemplify the inferred network structure differ-
ence in breast cancer patients with metastases. As shown in Fig. 7.5, in the group of
breast cancer patients with metastases, BUB1B possessed a higher node degree of
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34 in the pLasso inferred network than that in the lasso inferred network (node
degree of 19). We found 26 out of 42 edges present in the prior knowledge were
included in the pLasso inferred network, while only 7 edges in the prior were
recovered in the Lasso inferred network. As expected, one effect of incorporating
prior knowledge is the inclusion of more edges from the prior. In addition to this
effect, due to the nature of lasso linear regression, addition of edges from the prior
will yield information on the conditional independence between other edges. This
could trigger the elimination of spurious edges in the estimated network, as we have
seen in this application, where we found 4 edges inferred from the lasso method
were not present in the network inferred by pLasso.

Here, we constructed two regulatory networks in different pathophenotypes,
compared to a unified co-expression gene network in previous section. These two
networks exhibit distinctive connection structures, including their topologies. In
particular, the highly connected genes, or hub genes located at the functional center
of the network, should have a high tendency to be associated with their phenotypic
outcome. To verify this assumption, we selected the distinctive hub genes across
different phenotype and then exploited their discriminating power of two disease
states. We examined the 100 hub genes having most neighbors in the inferred
network of patients showing distant metastasis, but not in the other group of
metastasis-free patients. Among the 214 lymph-node-negative breast cancer
patients we used to construct the gene networks, 107 showed evidence of distant
metastasis and were considered as failure in our distant-metastasis-free survival
analysis. For each of the hub genes we investigated, we divided the patients into
two equal groups based on their expression values of the hub genes: the
high-expression group and the low-expression group. We expected that for some of

Fig. 7.5 BUB1B and its neighbor genes inferred from pLasso (left) and lasso (right) methods in
patients with metastases. The circles shaded in blue indicate the inferred neighbor genes existed in
the prior databases. The edges in red mark the difference between lasso and pLasso inferred
networks
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these hubs, the two groups would exhibit significant differences in their
distant-metastasis-free survival outcome. To test this hypothesis, we used the
“Survival” package in R to calculate the Kaplan–Meier survival curves. For each
hub, its statistical significance was determined by controlling the false discovery
rate at 0.2 with the Benjamini and Hochberg (BH) multiple testing procedure for the
p values obtained from log-rank tests [31]. Based on this significance criterion, we
found that the gene expression values of 18 % of hubs were significantly associated
with breast cancer patient outcome. For the networks inferred from original lasso
method, the expression values of 13 % of hubs showed significant association with
breast cancer outcome. As the control, only 8 ± 2 % of 100 randomly selected genes
demonstrated the significant association between their expression values and patient
outcome. In addition, the list of selected gene hubs inferred from our pLasso
method was used to predict survival outcome of an independent group of patients
[32]. The identified gene signature achieved the highest sensitivity, with a com-
parable specificity among all the method we compared in the prognostic prediction
results. These results together suggest we have successfully set up a framework
capable of incorporating prior information for gene network reconstruction. As our
knowledge of gene interactions accumulates over time, the pLasso method lends
itself a potential improvement of performance since an increasing amount of prior
knowledge gets incorporated into the analysis.

7.4 Identification of Protein Subnetworks as Biomarkers
for Classifying Different Types of Brain Injuries

7.4.1 Neuroscience Research with Bioinformatics
Approaches

Experimental advances in high-throughput technologies have provided neurosci-
entists a wealth of information that spans multiple levels of the nervous system. The
rapid accumulation of genomic and proteomic information has provided valuable
resources that motivate us to study how the genome as a whole contributes to the
development, structure, and function of the nervous system. The intersection of
bioinformatics and neuroscience research in the past 10 years has been focusing on
the following areas: microarray, NGS, and proteomic techniques applied in brain
diseases for disease biomarker identification; tools and methods in gene expression
and sequencing study; methods for network analysis connecting molecular path-
ways to disease mechanisms and nervous function; and the development of
user-friendly genome-scale resources such as the Allen Brain Atlas and BrainMap
databases [33–35]. With large-scale genomic and proteomic information available,
the omics or discovery-based approaches aim to extend the scope of brain research
from individual genes or pathways to a system-level understanding of brain circuit
function. These approaches have led to a revolution in the field of neuroscience
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research, by allowing high-throughput hypothesis generation, compared to the
single hypothesis-testing approaches utilized in the traditional neurobiology labo-
ratories. One area in which the omics-based approaches have been promising is in
the detection of biomarkers for neurological and psychiatric diseases, as the focus is
on generating novel hypotheses about gene signatures underlying disease mecha-
nisms and discovering new therapeutic interventions. How to investigate brain
functions in health and disease by integrating data simultaneously gathered at
multiple levels of the nervous system remains a challenging task. Nevertheless, the
strength of applying bioinformatics approaches combined with genomic and pro-
teomic experimental techniques have been demonstrated in the area of feature gene
identification. For example, a recent study by Emes et al. [36] combined genomic
and bioinformatics approaches to successfully identify synaptic proteins that have
changed during evolution and investigated how these proteins might relate to brain
anatomy and function. Another study applied bioinformatics approaches to identify
a unique gene signature that distinguishes familiar Alzheimer’s disease mutation
carriers from their normal siblings [37]. While the power of omics-based approa-
ches has been clearly demonstrated in these studies, the adoption of these
approaches has been challenging in the field of neuroscience. This is mainly due to
the extreme heterogeneity and complexity of brain systems relative to other
non-neural tissues. The complexity and the volume of the information available also
have posed challenges in data sharing and modeling. New tools are required for
encompassing multiple levels of the nervous system to allow us both to find pat-
terns in the data and to test specific hypotheses. We expect the signaling or
metabolic networks inferred by these tools help to guide the diagnosis and the
treatment of neurological diseases. In Sects. 7.4.2 and 7.4.3, we have undertaken a
systematic and quantitative study of TBI, a leading cause of death and disability in
industrialized countries with approximately 1.7 million people sustaining a TBI in
the USA each year (TBI statistics provided by the Centers for Disease Control).

7.4.2 Classifying Traumatic Brain Injuries with Network
Biomarkers

TBI results from an external force causing immediate damage to brain tissue,
followed by secondary pathogenic events which ultimately give rise to neurode-
generation. Dependent on the context of the primary injury, different cell responses
are initiated that can exacerbate the injury to varying degrees. Cell death resulting
from the initial impact on the brain tissue is irreversible so treatments normally
focus on minimizing the secondary injury due to these cell responses. To date, these
secondary injury responses have not been well characterized, leaving molecular
classification of TBI cases difficult [38]. TBI remains a leading cause of death and
disability in the industrialized countries and represents a growing health problem
[39]. Thus, even a modest improvement in patient outcome could have significant
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public health benefits. An important topic in TBI study is to identify sensitive and
specific biomarkers of TBI with diagnostic capabilities. Because for the mild TBI
patients, 40–50 % suffer persistent neurological problems from one to three months
following injury and 25 % after one year, it is often challenging to tell from
traditional neurological scale whether the patient has experienced mild or moderate
TBI. So effective biomarker identification can provide some insights on the early
diagnosis and therapeutic development for treating mild or moderate TBI patients.
TBI subtype classification is an important step toward the development and
selective application of novel treatments.

Here, we aim to improve the identification of biomarkers that can distinguish the
cortical contusion injury (CCI) and fluid percussion injury (FPI) in rodent animal
models, representing focal and diffuse TBIs, respectively. If successfully identified,
these biomarkers could be used to better direct treatments to TBI patients, and more
optimistically, they could be potential targets of novel treatments. We have per-
formed classification analyses of TBI cases using gene expression profiles.
Typically, in expression profiling studies, genes that are not significantly differ-
entially expressed between classes of genes (i.e., genes that are not associated with
a class of TBI at a significance threshold) are neglected. These discarded genes’
modest association may represent false negatives and may actually be important
biomarkers of TBI. We hypothesize that these genes may be identified within
functional units of genes that in aggregate have a significant association to a TBI
class. To test this hypothesis, we identify biomarkers not as individual genes but as
gene subnetworks by incorporating the gene expression profiles from CCI and FPI
insults and the protein–protein interaction information from existing databases. The
protein–protein interaction data provides direct information on specific protein
relationships occurring along the backbone of the signaling network, while the
whole-genome expression profiles are currently the largest source of
high-throughput genomic information available, providing gene expression infor-
mation on thousands of genes in different cells, tissues, or pathological specimens
under various conditions. We expect the resulting subnetworks can provide novel
hypotheses for testing the role(s) of pathways involved in different TBI classes.

7.4.3 Overview of Subnetwork Biomarker Identification

A binary protein interaction network was constructed from three sources of protein
interactions, including the HPRD and BioGRID databases, and the interactions
defined from an experiment by Chuang et al. [40], Peri et al. [41], Stark et al. [42].
This combined resource results in a protein interaction network with 8781 genes
and 27,829 edges. Three types of brain injuries were applied to rats in a laboratory
environment: CCI, FPI, and blast injury (as control). Gene expression values were
then overlaid on the protein network. Each edge of this network was weighted by
the level of co-expression between its two corresponding genes using Spearman

7 Systematic and Integrative Analysis of Gene Expression … 179



correlation. Figure 7.6 demonstrates the overview of our subnetwork identification
approach.

We define the subnetwork scoring function S, where M is defined as the mod-
ularity of the subnetwork and R is a measure of class relevance (or the discrimi-
natory power of the subnetwork nodes to identify classes): S = β1M + β2R. Here, β1
and β2 allow us to weight the effects of the modularity and class relevance on the
subnetwork score. To get a measure of how strongly the nodes within a module are
connected, the modularity M is calculated as the mean of the clustering coefficients
Ci for each nodes of the subnetwork, where Ci is defined as described in Dong and

Fig. 7.6 Subnetwork identification for TBI classification. Top panel Overview of subnetwork
identification approach. Bottom panel An example of discriminative subnetwork. The overall
expression activity of the shown subnetwork is different between the mild cortical contusion injury
(CCI) and the mild fluid percussion injury (FPI) samples. Nodes and edges represent proteins and
protein interactions, respectively. The circle-shaped nodes indicate the corresponding genes are
significantly up-regulated in FPI samples (FDR controlled q value <0.05), but not in CCI samples.
The diamond-shaped nodes indicate the corresponding genes are not differentially expressed
between FPI and CCI samples
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Horvath [42]. R is a measure of the ability for a module to distinguish two classes.
A t test is used to compare the subnetwork expression values for the samples of two
classes, so R = T(v1, v2), where an expression value vj is simply an average of the
normalized gene expression values (z-scores) for each node of the subnetwork for a
given sample j.

To identify subnetworks that discriminate CCI, FPI, and controls, nodes were
scored comparing each of these classes against the other two classes. In each of
these settings, subnetworks were identified that discriminate a single class from the
others. Individual differentially expressed genes were used as seeds for growing
potential subnetworks. From these seeds, two neighboring nodes were iteratively
added to the seed and subnetwork scores were recalculated. The pair of neighboring
nodes that gave the biggest improvement in subnetwork score was added to the seed
to form an initial subnetwork of three genes (i.e., an initial triangular subnetwork).
Single neighbor nodes were then added iteratively until the subnetwork score could
no longer be improved. We noted genes were shared across subnetworks, resulting
in redundant subnetworks. We removed the low-scoring subnetwork if there is a
significant overlap (>50 %) between a high-scoring subnetwork and itself. This
process resulted in a set of subnetworks containing relatively unique genes, dif-
ferentiating between CCI, FPI, and controls. To select the significant subnetworks,
we performed two tests of significance. The first one generates the null distribution
by permuting the expression vector of the gene in the network, so this dissociates
the relationship between interaction and expression. The score of each identified
protein subnetwork is indexed on the null distribution of all random network scores.
Only those with p value smaller than 0.01 will be selected for further analysis. The
second significance test generates the null distribution by permuting the phenotype,
again only the networks with an empirical p value smaller than 0.01 will be
selected.

Unlike traditional expression profiling methods, our network-based analysis can
identify genes that are not differentially expressed and are often neglected. We
determine whether such genes are essential for maintaining the integrity of a sub-
network whose overall expression is discriminative between samples. An example
of the resulting discriminative subnetwork is shown in Fig. 7.6. The genes inter-
feron-γ (IFNG) and myc-interactor (NMI) did not show significant differentiated
expression between CCI and FPI samples, but they played an important role in the
discriminative subnetwork by interconnecting many differentially expressed genes,
such as JAK1, JAK2, JAK3, STAT1, and STAT3. Given the fact that both IFNG
and NMI genes are well-known players in the cytokine signaling pathway involved
in inflammatory response, our results suggest they can serve as potential targets for
intervention. In addition, another advantage of our network-based analysis
demonstrated from our preliminary study is that the list of identified significant
gene subnetworks achieves higher sensitivity and specificity in classifying the
heterogeneous responses corresponding to different classes of TBI, compared to a
conventional analysis using an individual gene list. We therefore believe effectively
incorporating gene expression profiles into protein interaction information can
identify functional subnetworks that better classify different classed of TBI and are
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more reproducible across related studies than individual genes selected without
network information. We understand that translating the knowledge gained from an
animal model to molecular biomarkers identification in patients is practically
challenging, simply because the brain tissue in TBI patients is rarely available, but
the use of peripheral tissues such as lymphoblast or blood could be a potential
solution. If successful, these identified biomarkers could be used to better direct the
early diagnosis and treatment to TBI patients, and more optimistically, they could
help to develop rationale-based therapies for treating the millions of Americans who
suffer from TBI.

7.5 Conclusion and Future Directions

Feature selection is never a trivial problem, particularly in high-dimensional data
analysis where few dozens of informative variables are often dispersed over a noisy
background with thousands of non-informative variables. Network analysis plays
an increasingly important role in the exploration of information communication and
has been used to study the information on the relationship between genes or pro-
teins. We envision that by leveraging the structure of gene co-expression network
and protein interaction information, we successfully develop variable selection
methods that aim to better identify feature genes associated with patient clinical
parameters. Our work has set up a framework that can be easily generalized and
extended to incorporate prior information of different types for feature gene
identification.

Neuroscience has no doubt provided a rich application area for informaticians.
More than a decade after the human genome sequencing was completed, there is a
high demand for bioinformatics tools to explore a wealth of neuroscience infor-
mation at multiple levels of nervous system, spanning from molecules to behavior.
Our work provides an example on how bioinformatics approaches can be applied in
neuroscience research by performing a genome-wide data analysis to gain a better
understanding of interacting signaling pathways. The developed approaches will
enable the generation of hypotheses subject to experimental validation. The
resulting experimental data will, in turn, be used to generate more refined models
that will advance our understanding of brain function.
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