
Chapter 3
The Importance of Ectomycorrhizal
Networks for Nutrient Retention
and Carbon Sequestration in Forest
Ecosystems

Håkan Wallander and Alf Ekblad

Abstract Extramatrical mycelium (EMM) of mycorrhizal fungi have a funda-
mental role in carbon (C) cycling in forest ecosystems. This carbon is used for
building extensive mycelial networks in the soil as well as for metabolic activity
related to nutrient uptake. Here we discuss the factors that regulate the production
and turnover of EMM and its role in soil C dynamics and nitrogen retention.
C availability seems to be the key factor determining EMM production and possibly
its standing biomass in forests but direct effects of mineral nutrient availability on
the EMM can also be important. There is great uncertainty about the rate of
turnover of EMM, and the increasing evidence that residues of EM fungi play a
major role in the formation of stable N and C in soil organic matter highlights the
need to include mycorrhizal effects in models of global soil C stores.

Keywords Carbon � Nitrogen � Nutrient retention � Extramatrical mycorrhizal
mycelium � Ingrowth mesh bags

3.1 Introduction

Mycorrhizal fungi form extensive mycelial networks in the soils of boreal and
temperate forests (Smith and Read 2008). Most of the trees form symbioses with
ectomycorrhizal fungi (EMF), while shrubs and herbaceous plants are colonized by
arbuscular mycorrhizal fungi, ericoid or orchid mycorrhizal fungi. Here we will
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focus on the EMF mycelial networks formed by many forest trees, especially in
Pinaceae, Fagaceae and Betulaceae.

Trees invest large amounts of carbon (C) to facilitate nutrient uptake by the EMF
networks, especially in nutrient-poor sites, and the growth of these networks is
regulated by the C flux from the trees (Smith and Read 2008). Network func-
tionality diminishes shortly after termination of the current photosynthate flux from
the trees, as has been shown both in microcosms after severing the connection
between the fungus and the host (Söderström and Read 1987), and in field
experiments when the belowground C flux has been terminated by girdling the trees
(Högberg et al. 2001). When uptake is terminated, leaching of nutrients can follow.
This is commonly seen after clear-cutting forests, especially in nutrient-rich sites,
but nutrient retention usually recovers after a few years when field layer vegetation
has been established (Futter et al. 2010). Nitrogen (N) can also leach from standing
forests when N input has been continuously high and the forests are subjected to N
saturation (Emmett 2007). This leaching is possibly an effect of impaired EMF
function (Aber et al. 1998; Högberg et al. 2011).

C sequestration in forest soils is dependent on N availability since the C:N ratio
of stable soil organic matter (SOM) in deeper soil layers is rather constant around
10–15. This value is similar to the ratio of EMF biomass (Wallander et al. 2003)
and it has been suggested that the SOM in boreal forests to a large extent is
composed of EMF residues (Högberg et al. 2011; Clemmensen et al. 2013;
Fernandez et al. 2013; Fernandez and Kennedy 2015). However, the enhanced C
sequestration that occurs after N fertilization (Franklin et al. 2003; Hyvönen et al.
2007) is difficult to attribute to EMF since many of these fungi decline under
elevated N conditions (Wallenda and Kottke 1998; Nilsson and Wallander 2003;
Högberg et al. 2011; Bahr et al. 2013). This makes assessing the role of EMF
networks in C sequestration complicated. The enhanced tree growth and litter
production, and the reduced decomposition of SOM (Nohrstedt et al. 1989;
Franklin et al. 2003), usually found after N fertilization are possible reasons for
enhanced C sequestration. But it is also possible that changes in ectomycorrhizal
(EM) community composition that occurs after N fertilization plays a significant
role since different EM species decompose at different rates (Langley and Hungate
2003; Koide and Malcolm 2009; Koide et al. 2011; Fernandez et al. 2013).
Clemmensen et al. (2013) found larger C sequestration in old compared to young
successional stages of boreal forests in northern Sweden and attributed this, at least
in part, to different mycorrhizal communities (Clemmensen et al. 2015).
Furthermore, certain species of EMF may reduce SOM accumulation by degrading
recalcitrant compounds to obtain N that is delivered to the host trees (Talbot et al.
2008). Thus EMF appears to have a central role in C sequestration, although the
overall effect is difficult to predict because of these opposing processes.

In this chapter we will discuss (1) how the production of EMF networks can be
measured under field conditions, (2) how the production is regulated, and (3) to
what extent EMF networks are important for ecosystem processes such as nutrient
retention and C sequestration.
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3.2 Methods to Study Production of EMF in the Field

3.2.1 Observational Methods

One of the problems with quantifying standing biomass or production of EM
networks in the field is difficulties in separating mycorrhizal mycelia from sapro-
trophic mycelia. There is no biochemical or DNA-based marker to distinguish
extramatrical mycorrhizal mycelia (EMM) from the complex fungal soil community
since EM fungi do not form a monophyletic clade (Tedersoo et al. 2010), but there
are various ways to overcome this problem. Production of EMM can be studied in
the field through direct observation in root windows or minirhizotrons (Coutts and
Nicoll 1990; Treseder et al. 2005; Pritchard et al. 2008), although the resolution is
too low to observe individual hyphae. Coutts and Nicoll (1990) followed the
growth rate of the advancing hyphal front of two EM species observed through
observation windows installed on 2 m large tubes placed outside. The estimated
growth rate of Thelephora terrestris was 1–3 mm day−1 during the plant growing
season which is similar to what has been found for EMF in laboratory microcosms
(Read 1992) as well as under axenic growth (Gafur et al. 2004). Furthermore, the
mycelium continued to grow over the winter, although at a slower rate
(0.3 mm day−1). Laccaria proxima on the other hand grew slower and the myce-
lium disappeared during the autumn. In this way observation methods are useful for
determining longevity of EMM and Pritchard et al. (2008) found that EM rhi-
zomorphs observed in minirhizotrons lived much longer than mycorrhizal root tips
(mean longevity 532 and 104 days respectively, Fig. 3.1). Observation methods are
useful to study seasonal dynamics of EMF networks in the field but it is more
difficult to quantify the production in terms of biomass.

3.2.2 Mesh Bags

The most common approach to quantify EMM production is the use of ingrowth
mesh bags (Wallander et al. 2001; Fig. 3.2) or in-growth cores (Godbold et al.
2006; Hendricks et al. 2006). Such techniques have so far been used to estimate
EMM production at *140 different sites (Ekblad et al. 2013). The mesh bags or
cores are usually filled with sand, free of fungal material, and incubated in the soil
for various periods of time. The amount of fungal biomass detected at harvest is
used as an estimate of EMM production. However, colonization by saprophytic
fungi can also occur, although to a smaller extent, and to account for this, trenched
plots can be used to measure production of the saprophytic mycelium only
(Wallander et al. 2001). It should be noted that trenching by forcing down tubes
into the soil will only last a limited amount of time since EMM may enter the tubes
from below. In studies in Sweden such trenched plots were free of EMM for one
growing season but EM fungi entered some of the tubes after two growing seasons
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(Wallander et al. 2001, 2011). Molecular analysis of the fungal communities of
ingrowth mesh bags has revealed that between 70 and 90 % of the sequences
obtained from the bags originate from fungi known to form ectomycorrhizal
symbiosis (Parrent and Vilgalys 2007; Wallander et al. 2010; Berner et al. 2012).
Another approach to check for saprophytic ingrowth is to analyse the C isotopic
signature of mycelia extracted from mesh bags (Wallander et al. 2001). Fruitbodies
of wood—and litter decomposing fungi usually have a δ13C value that is 2–3 ‰
higher than values for EMF fruitbodies (Högberg et al. 1999; Taylor et al. 2003;
Hobbie et al. 2012) and the δ13C of mycelia in mesh bags usually resemble values
for EMF fruitbodies (Wallander et al. 2001; Hagerberg et al. 2003; Mikusinska
et al. 2013). However, with time, it is possible that fungi that decompose the EMF
mycelium will establish in the bags; whether the mycelium formed by these fungi
differs in δ13C from EMF is unknown.

Fig. 3.1 Number of days
until 25, 50 or 75 % mortality
of mycorrhizal tips and of
rhizomorphs of two diameter
classes; a ambient CO2,
b elevated CO2. Data from
minirhizotrons installed in a
loblolly pine forest in North
Carolina (from data in
Pritchard et al. 2008)
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Studies using natural soil in mesh bags or cores have shown higher production
rates of EMM than studies using sand (Hendricks et al. 2006). The reason for this is
probably that soil is a more natural substrate for the fungi, but problems arise when
using soil since it contains background fungal material that needs to be subtracted
before EMM production can be calculated. This seems to work when the soil has
low SOM content (Hendricks et al. 2006; Sims et al. 2007) but under other cir-
cumstances fungal biomass background values are too high to make ingrowth
measurements reliable (Wallander personal observation). An alternative approach to
estimate EMM production in mesh bags or cores filled with soil is to use the different
C isotopic signatures of C4 and C3 plant material (Godbold et al. 2006; Wallander
et al. 2011). In this case mesh bags or cores are filled with 13C-enriched C4 material
(soil or plant material) and the change in isotopic composition that occurs when the
bags/cores are colonized by 13C depleted EMM is followed and used to calculate C
flux into the bags. This approach was used by Godbold et al. (2006) who estimated a
C flux to EMF of around 1000 g C m−2 during a period of 2.5 years in a poplar
plantation in Italy. Wallander et al. (2011) used a mixture of sand and compost made
of maize leaves (a C4 plant) in mesh bags and estimated a C flux of around
100 g C m−2 over a three year period in Norway spruce forests in Sweden.

One of the problems of using ingrowthmesh bags or cores to quantify EMM is that
the fungal community that colonizes the bags/cores may not be representative of the
soil community. The reason for this is the use of artificial substrate (sand) and the fact
that fungal-free bags or cores select for fast-growing EMF species. Fungi that

Fig. 3.2 A harvested mesh bag after 2 years incubation in a Norway spruce forest in Sweden has
been opened in the lab. Abundant mycelia and rhizomorphs of EM fungi are clearly visible. Photo:
Adam Bahr
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proliferate in the mineral soil may be overrepresented in the bags when a sandy sub-
strate is used. One way to overcome some of these problems may be to incubate mesh
bags for longer timeperiodsandanalyseannualproductionand turnoverofEMMin the
meshbags after colonizationby fast-growingEMFspecies has terminated.However, it
is not known whether the contribution of saprotrophic mycelium increases over time,
and this needs to be tested. Production of specific species can probably bemeasured by
qPCRor othermolecular techniques, and theCflux into the bags or cores over time can
be followed by isotopic techniques as discussed above. The mesh bag method is best
suited for relative comparisons between different forest management practices or
treatments and for comparing how different mesh bag amendments influence EMM
production. Estimations of absolute amounts produced must be interpreted with cau-
tion. For a more detailed review on this subject see Wallander et al. (2013).

3.2.3 Exploration Types

EMF communities can be extremely diverse (Dahlberg 2001) and the composition
of the EM community is probably of large importance for ecosystem processes such
as nutrient retention and C sequestration. One approach to handle this diversity of
EMF in functional terms has been to classify the species into exploration types
based on the amount of hyphae emanating from the root tips and the presence and
differentiation of rhizomorphs (Agerer 2001, 2006). The different C demand among
the explorations types will most likely have profound effects on their ecological
roles in terms of nutrient uptake/retention and their potential to sequester C. When
more physiological data have been collected about the different exploration types it
might be possible to incorporate them into ecosystem models with the aim to
increase predictions of key ecological processes such as nutrient uptake, leaching of
nutrients and SOM cycling. Work along this line has been started by Weigt et al.
(2011, 2012a, b) who have quantified the amount of mycelium produced by rep-
resentatives of a few different exploration types in laboratory experiments. If these
values are applied to EM communities that have been identified on root tips in the
field, it might be possible to extrapolate potential EMM production in field sites
from EM community composition estimated from analysis of root tips.

3.3 Regulation of EM Growth by C Supplied
from the Host Trees

3.3.1 Tree Growth

Since the EMM depends on C delivered from the host trees, higher photosynthetic
rates can potentially result in higher EMM production. Support for this view was
found by Korkama et al. (2007) who studied EMM production related to fast- and
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slow-growing spruce clones. Significantly higher EMM production was found in the
fast-growing compared to slow-growing ones (Fig. 3.3). Furthermore, EMM pro-
duction was correlated to fine root biomass suggesting that enhanced belowground
allocation of C was necessary to sustain the better growth of fast-growing clones. In
a larger data set of Scandinavian Norway spruce forests (data from Ekblad et al.
2013), EMM growth and spruce productivity were positively correlated (Fig. 3.4),
but other factors such as nutrient availability are important for the relative allocation
above and belowground (see below) which complicates the picture.

Fig. 3.3 The biomass of extraradical mycelia developing in mesh bags (bars) is related to the fine
root density (lines) under slow (S1–S4) and fast-growing Norway spruce (Picea abies) clones (F1–
F4). Fungal biomass was estimated visually under a dissecting microscope and according to
aggregation of the sand. It was classified into four categories: (0) no mycelial strands and sand
aggregation; (1) a few mycelial strands but no sand aggregation; (2) moderate number of mycelial
strands and some sand aggregation; (3) considerable extraradical mycelium and sand aggregation
(from Korkama et al. 2007)
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Fig. 3.4 Relationship between growth of extramatrical mycelium (EMM; Kg ha−1 year−1) in the
top 10 cm and wood production (m3 ha−1 year−1) in the Norway spruce stands from Table 2 in
Ekblad et al. (2013). Open triangles (young stands 10–20 year), closed triangles (young stands
with P deficiency, needle P < 1.3 mg P g−1), open squares (stands older than 20 year), closed
squares (older stands with P deficiency)
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3.3.2 Tree Age

Trees usually peak in nutrient uptake during canopy closure when nutrient demand
is highest. When the trees mature more nutrients are supplied through internal
cycling (Kimmins 2004). EMM growth in the soils shows similar pattern
(Kalliokoski et al. 2010; Wallander et al. 2010), and its peak in production seems to
be close to that of the usual canopy closure stage of coniferous forests in southern
Scandinavia (25–40 years, Schmalholz and Hylander 2009).

3.3.3 Seasonality

Winter is obviously a season with poor EMM growth in boreal and boreo-nemoral
regions but might be a period of active growth in warmer climates. Thus, in pine
forests of northeastern Spain the living EMM biomass, quantified by specific pri-
mers and qPCR, peaked in February for Boletus edulis and in December for
Lactarius deliciosus (De la Varga et al. 2013). Also in cooler temperate regions
some species are able to continue growing at a low rate during winter, at least in the
study in UK by Coutts and Nicoll (1990). But EMM growth is probably not directly
related to temperature in the same way as growth of saprotrophs in soil, since EMM
growth depends on C allocated from the trees. In northern temperate and boreal
regions maximal growth can be expected in the second half of the growing season
when the above ground C sink in terms of tree growth has ceased. Support for this
view was found by Nilsson et al. (2007) who found better EMM growth in oak
forests during the colder fall period compared to the warmer summer period.
Another factor that might be confounding in these studies is soil humidity which
usually is higher in the fall than in the summer.

3.3.4 Elevated CO2

Elevated CO2 could potentially increase the photosynthetic rate and thereby
increase EMM growth. However this will also depend on other factors since
nutrient availability may limit photosynthesis resulting in less or no increased
growth rate after elevated CO2. Several studies in the laboratory have demonstrated
increased EMM growth after elevated CO2 (e.g. Rouhier and Read 1998), but
although an increased rhizomorph production and longevity was observed in a
Pinus taeda plantation (Pritchard et al. 2008), these results have been difficult to
repeat in the field (Godbold et al. 2006; Parrent and Vilgalys 2007; Dawes et al.
2013). The effect of elevated CO2 on EMF was recently reviewed by Fransson
(2012).
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3.3.5 Herbivory

Herbivory of tree foliage could potentially result in reduced EMM growth if
photosynthetic capacity declines, but few studies have tested this. However, her-
bivory from scale insects reduced colonization of pinyon pines by EMF (Del
Vecchio et al. 1993) and suilloid fungi have shown reduced growth more than other
species after artificial herbivory (Kuikka et al. 2003). These species appear to have
higher C demands when tested in the laboratory (Fransson et al. 2007) which may
be one explanation for their decline after herbivory.

3.4 How Nutrient Availability Influence C Allocation
and EMM Growth

Nutrient availability strongly affects C allocation pattern in the host trees. Work by
Ericsson (1995; Fig. 3.5) demonstrated that allocation belowground increased when
N, P, S and Fe was limiting growth, while limitation of K, Mg, and Mn resulted in
reduced belowground allocation. This was explained by impaired photosynthesis at
K, Mg and Mn limitation resulting in lower carbohydrate production. In contrast
limitation of N, P, S and Fe resulted in impaired growth but lower direct effects on
photosynthesis, leading to accumulation of carbohydrates in the leaves. These
carbohydrates could be loaded into the phloem and transported belowground
(Ericsson 1995). Much less is known about how EMM is influenced by nutrient

Fig. 3.5 Root weight ratio
(RWR) in Betula pendula
seedlings grown at different
nutrient regimes. The
indicated nutrients were
added to give plant growth
rates between 20 and 100 %
of optimum. Reduced
availability of N, S, P and Fe
resulted in increased RWR
while reduced availability of
K, Mg and Mn resulted in
increased RWR (data from
Ericsson 1995)
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limitation and excessive amounts of nutrients, but as demonstrated in the following
section, the current knowledge appear in many respects to follow the results found
by Ericsson (1995) for roots.

3.4.1 Nitrogen

The large production of EMM in boreal forests is attributed to N commonly being
the limiting nutrient in these ecosystems. EMF are well adapted to cope with N
limitation by producing large mycelia that can take up and store N during periods of
high N availability (Mikusinska et al. 2013). In addition, many species can mobilize
and take up organic forms of N (Perez-Moreno and Read 2001). Thus it is not
surprising that the activity of EMF is reduced when N input to the system increases.
This can be seen both in terms of fruitbody formation and in the number of myc-
orrhizal root tips (Wallenda and Kottke 1998; Peter et al. 2001; Lilleskov et al.
2002; Lilleskov et al. 2011). EMF species more efficient in taking up organic N are
usually the ones that become less frequent in response to inorganic N loads (Taylor
et al. 2000; Lilleskov et al. 2011).

Growth of EMM is strongly reduced after N addition in laboratory-grown
seedlings (Wallander and Nylund 1992; Arnebrant 1994) and recent work using
ingrowth mesh bags have confirmed this also for EMM growth in natural forests
(Nilsson and Wallander 2003; Hendricks et al. 2006; Parrent and Vilgalys 2007;
Kjøller et al. 2012). It should however be noted that this negative effect is reduced
when N is balanced by other nutrients (Wallander et al. 2011). The number of
mycorrhizal root tips or the fungal biomass on the root tips may remain similar after
several years of annual N addition (Kåren and Nylund 1997), while the growth of the
EMM was severely reduced in the same forest (Nilsson and Wallander 2003). This
suggest that C demanding fungi (e.g. suilloid spp., Fransson et al. 2007), decline
after N input. This was also found along a N deposition gradient in Alaska
(Lilleskov et al. 2002) where the contact type Lactarius theiogalus (presumably low
C demand) dominated (68.5 % of colonized root tips) in the most N-polluted site,
while it decreased to only 7.4 % of root tips in the least N-polluted site. In contrast,
medium-distance types like Amphinema byssoides and Piloderma byssinum (pre-
sumably high C demand) became more abundant in the least N-polluted site (40 %),
while they were totally absent at higher N input sites. Along another short-distance
N deposition gradient in a Norway spruce forest in Denmark, Kjøller et al. (2012)
found that Lactarius quietus (contact type) dominated the root community at the
forest edge (56 %) with the highest inorganic N deposition (43 kg N ha−1) while
short distance types (89 %, mainly Tylospora fibrillosa and Cenococcum geophilum)
dominated further into the forest (N deposition 27 kg N ha−1). Very few medium and
long-distance types were formed in this forest (<5 % in the forest, 0 % at the edge),
probably because of the rather high deposition of inorganic N. EM communities
dominated by contact types, with less well developed mycorrhizal networks, may
result in vulnerability to N leaching. This aspect will be further elaborated below.
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3.4.2 Phosphorus

P deficiency is less common in boreal and temperate regions than in tropical
regions, but mass balance calculations suggest that intensive harvesting of forest
residues in combination with high N deposition will lead to P deficiencies in many
forests in temperate and boreal regions (Akselsson et al. 2006). In laboratory grown
seedlings, P deficiency resulted in strong enhancement of EMM production
(Wallander and Nylund 1992; Ekblad et al. 1995). Phosphorus effects on the EMM
has not been much studied in the field but Wallander and Thelin (2008) found that
EMM ingrowth into sand-filled bags amended with apatite was higher than in bags
filled with sand only, but this effect disappeared when the forests were fertilized
with P and K. The magnitude of the EMM ingrowth response to apatite was
negatively correlated to needle P status which supports the view that P availability
in the soil is of great importance for the regulation of EMM production (Wallander
and Thelin 2008). Since P is rarely limiting tree growth in temperate and boreal
forests, the needle P status is probably not low enough to stimulate growth of EMM
under field situations. However, Bahr et al. (2013) found a negative correlation
between EMM growth and needle P status also when needle P levels were above
1.3 mg P g−1, which was the threshold value where apatite stimulated EMM growth
in the study by Wallander and Thelin (2008). Furthermore, Blum et al. (2002) found
apatite to be an important calcium source for ectomycorrhizal trees in base-poor
forest ecosystems in the US.

3.4.3 Other Nutrients

Under laboratory conditions, both K (Ekblad et al. 1995) and Mg (Wallander and
Nylund 1992) deficiency has resulted in reduced EMM growth, supporting the
finding by Ericsson (1995) of reduced belowground C allocations during such
conditions (Fig. 3.5). These findings have however not been confirmed under field
conditions, since Hagerberg et al. (2003) found no difference in EMM growth in
Norway spruce forests with varying K availability. Some indications that Mg
deficiency may impair EMM growth was found in a study in the Czech Republic by
Berner (2013). EMM was much lower in Norway spruce forest growing on
Mg-poor granite soil compared to similar forests growing on more Mg-rich
amphibolite or serpentinite bedrock. Furthermore, a positive correlation between
needle Mg concentration and EMM growth was found. It should however be noted
that many other factors also varied among these sites and a causal relationship
between Mg availability and EMM growth could not be established in this study.
Mg deficiency can have severe effects on belowground C allocation since carbo-
hydrate loading of the phloem can be impaired (Cakmak and Kirkby 2008). The
forest die-back that occurred in central Europe during 1980–1990 was suggested to
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be caused by Mg deficiency as a result of acid rain (Schulze 1989). The Mg
deficiency was proposed to be the result of dysfunctional mycorrhizal associations
when belowground C allocation was impaired (Mejstrik 1989).

3.5 Ecological Consequences of Altered EMM Production

3.5.1 Nitrogen Leaching

Boreal forest soils have large retention capacity for N, especially when the C:N
ratio of the organic layer (O horizon) is above 30. Nitrate leaching can be induced
when ratios drop below 25, especially if N deposition exceeds 10 kg N ha−1

(Gundersen et al. 1998). Increased N retention was correlated to enhanced fungal
proportion of the microbial biomass in a gradient of C:N ratios of Norway spruce
forests in southern Scandinavia (Nilsson et al. 2012) and this may be attributed to
the high capacity of EMF networks to assimilate N (Read et al. 2004). Wallander
et al. (2004) estimated that EMM contained between 100 and 200 kg N ha−1 in
Norway spruce and mixed oak/Norway spruce forests in southern Sweden. This
amount is higher than what is found in the tree stems in the same forests (Thelin
et al. 2002). The high N retention capacity of EMF is an effect of the large flux of C
to the EMM in forest ecosystems, resulting in a well-developed EMM network in
the soil that efficiently captures available N. Some of the N that is taken up is
allocated to the host trees but significant amounts are also retained in the EMF
biomass in the soil (Näsholm et al. 2013). Aber et al. (1998) suggested that N was
exuded from EMF as enzymes that formed stable complexes with humus material in
the soil, while Högberg et al. (2011) and Fernandez et al. (2013) proposed that the
EMF mycelia itself could be a precursor for stable N. This view is supported by the
fact that recalcitrant SOM deeper in the soil becomes more and more similar to
EMF in terms of C:N ratio and N isotopic signatures (Boström et al. 2007; Lindahl
et al. 2007; Högberg et al. 2011; Clemmensen et al. 2013). Furthermore, Näsholm
et al. (2013) concluded that EMF immobilize large amounts of N in boreal forests to
restrict establishment of species that are more N demanding. Along these lines,
Franklin et al. (2014) developed a model that could explain why ectomycorrhizal
symbiosis does not alleviate nitrogen limitation in boreal forests.

The efficiency by which forest trees and their EMF networks capture N to avoid
leaching of N may depend on availability of other nutrients. Stevens et al. (1993)
found enhanced N leaching from Sitka spruce stands which had developed K and P
deficiency, while leaching was repressed upon fertilization with K and P. In the
French Ardennes increased N leaching has been correlated with reduced availability
of nutrients such as K, Mg and P (Jonard et al. 2012). Root (Gress et al. 2007) and
EMM (Wallander and Thelin 2008) growth were enhanced in P-rich microsites in
P-poor Norway spruce forests with high N input. This enhanced growth may
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explain the reduced N leaching after P fertilization. Slow release P fertilizer has
been used in Finland (Aarnio et al. 2003) and this approach may reduce N leaching
from forests with low P availability.

In another recent paper, Blanes et al. (2012) was able to separate the effect of
autotrophs (roots + EMF) and saprotrophs on N retention by combining fertilization
treatments with root-exclusion and isotope labeling. They found enhanced N
retention in N-saturated forests after P fertilization, mainly due to a better N uptake
by EM roots as shown by a 15N labeling experiment. Trenching verified that N
retention was also enhanced among saprotrophic organisms after P fertilization,
probably by fungi since short-lived bacteria with much lower C:N ratios are less
likely to be important for N retention (Högberg et al. 2011). Interestingly the P
effect on the N retention by saprotrophs was only found in trenched plots, sug-
gesting superior N retention capacity by the autotrophic (root + EMF) compared to
the saprotrophic organisms.

N leaching from standing forest can be an effect of impairment of EMM growth
as discussed above. But it can also be an effect of a changed EM community to
species with lower capacity to take up N. Kjøller et al. (2012) found enhanced N
leaching and a drastically changed EMF community when moving towards a forest
edge that is more exposed to N deposition compared to more protected areas within
the forest. The EMF community at the forest edge was dominated by smooth root
tips with low capacity to form extensive mycelia networks and presumably low
capacity to retain N. Lilleskov et al. (2002) suggested a shift in the EMF com-
munity of N-saturated forests to species more efficient in P uptake, which could lead
to less efficient N uptake and more N leaching. Although smooth root tips probably
are inefficient in P uptake, other N tolerant species such as Paxillus involutus are
known to have extremely high P uptake rates (Colpaert et al. 1999), and it would be
interesting to see if the N uptake rates from such species are reduced under con-
ditions of high N input, which would allow more N to leach. Gorissen and Kuyper
(2000) have demonstrated that nitrophilic (N tolerant) species such as Laccaria
bicolor retain more N in the fungal biomass while nitrophobic (N sensitive) Suillus
bovinus deliver more N to the host plant when studied in a pot experiment. If
nitrophilic species can reduce N uptake by retaining it in their biomass rather than
transferring it to the host plant, they may tolerate N better by spending less C on N
assimilation. This would allow them to spend more C on EMM growth under
excess N, as suggested in the hypothesis presented by Wallander (1995). In support
for this hypothesis, Gruffman et al. (2012) found recently that, contrary to inorganic
N, organic N fertilizer (based on amino acids) C did not impair ectomycorrhizal
colonization of Norway spruce roots. The reason is probably a lower C cost for the
fungus when amino acids are taken up instead of inorganic N, and this will result in
more C available for fungal growth. Organic N fertilizers were as efficient as
inorganic fertilizers and were recommended in nurseries to improve mycorrhiza
formation (Gruffman et al. 2012).
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3.5.2 The Importance of EMM for C Sequestration

Recent results suggest that EMM contribute significantly to SOM formation.
Godbold et al. (2006) used ingrowth cores with soil that had a different C isotopic
signature than the colonizing EMM, and found that EMM accounted for an accu-
mulated input of 1000 g C m−2 over a period of*2.5 years, which corresponded to
62 % of new soil C in a poplar plantation in Italy. Wallander et al. (2011) used a
similar approach by amending 13C-enriched maize compost material to mesh bags
and found a lower (100 g C m−2), but still significant, C input to a Norway spruce
forest soil through EMM over a period of two years. Furthermore, by using 14C
dating of SOM at different soil depth and a modeling approach in boreal forests in
northern Sweden, Clemmensen et al. (2013) concluded that the majority (70 %) of
the C in the upper 20 cm of the soil in later successional forests originated from
roots and associated EMM while this figure declined to 47 % in stands at earlier
stages of successions. This was explained by impaired degradation of fungal resi-
dues in later successional forests. It is possible that different EM and ericoid
mycorrhizal species contribute differently to SOM formation by producing com-
pounds that are more or less recalcitrant (Clemmensen et al. 2015). Fernandez et al.
(2013) demonstrated recently that root tips formed by Cenococum geophilum
persisted 4–10 times longer than other EMF species in the soil which suggest that
this species is resistant to decay and may contribute significantly to C sequestration.
In support for this Dahlberg et al. (1997) found that sclerotia formed by this fungus
could make up 400 kg ha−1 in a Swedish Norway spruce forest soil. Some recent
results highlight the capacity of many EM species to degrade or modify SOM,
which may lead to enhanced decomposition and reduced C sequestration (Chapela
et al. 2001; Talbot et al. 2008; Courty et al. 2010). These effects are however
debated. Treseder et al. (2006) could not demonstrate any C uptake by EM fungi
from 14C-labelled litter added to an oak forest but work at natural 14C abundance of
fungal proteins suggested uptake of C (as amino acids or oligopeptides) by several
taxa of EMF (Hobbie et al. 2013). Talbot et al. (2008) suggested that EM fungi
released C as a side effect when removing N-rich compounds and Lindahl et al.
(2007) demonstrated an increasing C:N ratio of SOM in the lower part of the
organic horizon where EMF dominate, indicating preferential uptake of N-rich
compounds. Old SOM may also be released through priming when labile C is
exuded by roots and associated EMF (Dijkstra and Cheng 2007).
Peroxidase-encoding genes have been identified among a wide range of EMF
suggesting that these fungi degrade SOM in a similar way as white rot fungi
(Bödecker et al. 2009) and other EMF seem to use the Fenton reaction to modify
SOM to obtain N-rich compounds in a similar way as brown rot fungi (Rineau et al.
2012; Lindahl and Tunlid 2015).

The contribution of EM fungi to SOM formation depends on production, turn-
over and recalcitrance of EMM in the soil. When studied in microcosm systems, the
mycelium of several long-distance types (e.g. Suillus spp., Paxillus involutus) are
known to spread rapidly to colonize nutrient-rich organic patches, but disappear
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after a couple of weeks when the nutrients are exhausted (Bending and Read 1995).
Other types form perennial mycelial mats in the soil (Ingham et al. 1991; Kluber
et al. 2010) that presumably affect SOM formation differently than more short-lived
types. Many short-distance and contact types produce very little mycelium but
contribute to accumulation of SOM since they decompose much more slowly than
non-mycorrhizal roots (Langley and Hungate 2003). In contrast, Koide et al. (2011)
found that non-mycorrhizal roots decomposed faster than EM roots in a similar
experiment. The reason for this controversy is not known but could be related to
differences in species composition. Mycorrhizal mycelia decomposed fast when
incubated in forest soil, 40–80 % of the mass remained after 1 month (Fernandez
and Koide 2012). Bahr et al. (2015) found that most of the mycelium (90 %)
produced in mesh bags incubated in forest soil degraded within a year. Although the
rate of decomposition is of relevance for SOM formation, the most important aspect
for long-term C sequestration is the proportion of the litter material that remain in
the soil for longer time periods. For pine needle litter, Berg et al. (2010) demon-
strated that up to 17–53 % of the mass remained after 3–5 years of incubation in
litter bags. At the time of harvest decomposition rate had approached zero. If such
high amounts of remaining material also exist among EM fungi, and if different
species vary in this respect, the composition of the EM community could have a
fundamental role in SOM formation. Another aspect recently highlighted is that the
molecular structure of SOM does not alone control the long-term decomposition of
SOM (Schmidt et al. 2011). Instead, the degree of protection from decomposition in
the soil was suggested to be a more important regulator (Schmidt et al. 2011).
Molecules can be protected inside soil aggregates and on mineral surfaces (Sollins
et al. 2009), and one challenge for future research is to sort out the role of myc-
orrhizal fungi in this respect. The interactions between EMF and minerals have
been reviewed recently (Hoffland et al. 2004; Finlay et al. 2009), but the possible
role of these processes in C sequestration has been largely neglected. On the other
hand, the decomposition of forest humus, with low amounts of mineral surfaces,
was extremely slow in late successional forests in boreal forest chronosequence
(Clemmensen et al. 2013), suggesting the molecular structure of SOC to be the most
important factor in determining decomposition rates in these forests.

3.6 Conclusions

Accurate data on production, biomass and turnover of ectomycorrhzial mycelium
are essential for improving the ability of ecosystem models to predict nutrient
leaching and C sequestration in forest ecosystems. The composition of the EM
community appears to have a fundamental role on N retention and turnover of
EMM and more research on the influence of individual species on these processes is
urgently needed. A possible way forward could be to classify EMF into functional
groups along the lines of Agerer (2001). Apart from morphological characters,
other criteria’s such as nitrophilic/nitrophobic, enzyme production, sensitivity to
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disturbance etc. could be useful when defining the groups. There is increasing
evidence that the EMM of mycorrhizal fungi play a key role in C cycling in
ecosystems. This was highlighted in a recent paper from a boreal forest
chronosequence in Sweden which suggests that belowground litter of roots and
rhizosphere fungi, with EMF being the most prominent, contributed up to 70 % of
the C sequestered in SOM (Clemmensen et al. 2013). The importance of EMF for
the C cycling in forests has been the topic of two other recent reviews (Cairney
2012; Ekblad et al. 2013). Having other focuses than the present review, we
therefore recommend the reading of these for a more complete cover of the subject.
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