
Chapter 2
Functional Significance of Anastomosis
in Arbuscular Mycorrhizal Networks
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Abstract Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs
(Glomeromycota), which live symbiotically in the roots of most land plants and
facilitate mineral nutrition of their hosts. Their spores are able to germinate in the
absence of host-derived signals, but are unable to complete the life cycle without
establishing a functional symbiosis with a host plant. Such behaviour did not
represent a selective disadvantage, as a result of diverse survival strategies allowing
them to compensate for the lack of host-regulated germination and to overcome
their obligate biotrophic state. The ability to form hyphal fusions (anastomoses)
between compatible mycelia may represent an important mechanism evolved by
AMF to increase their chances of survival, since fungal germlings can plug into
pre-existing extraradical mycelial networks, thus gaining immediate access to
plant-derived carbon before asymbiotic growth arrest. In fusions between hyphae of
the same or different individual germlings of the same isolate, perfect anastomoses
occur with the highest frequency and are characterized by protoplasm continuity
and complete fusion of hyphal walls. High anastomosis frequencies are also
detected between extraradical mycelial networks produced by the same isolate,
spreading from plants of different species, genera and families. Pre- and post-fusion
incompatibility are often observed in hyphal interactions between asymbiotic and
symbiotic mycelium and between genetically different germlings belonging to the
same isolate, while pre-fusion incompatible responses, hindering hyphal fusions,
occur between germlings of geographically different isolates. The analysis of
vegetative compatibility/incompatibility during hyphal fusions represents a
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valuable tool for genetic studies of AMF, which are recalcitrant to axenic culti-
vation. Molecular analyses of the progeny of mycelium derived from nonself
vegetative fusions of genetically different germlings of R. irregularis showed that
genetic exchange occurs, despite low anastomosis frequencies and post-fusion
incompatible responses, suggesting that anastomosis between genetically different
mycelia may represent a recombination mechanism in the absence of an evident
sexual cycle.

Keywords Mycorrhizal networks � Network nutrient transfer � Hyphal anasto-
mosing ability � Hyphal recognition � Non-self hyphal compatibility

2.1 Introduction

The majority of land plants establish mutualistic symbioses with arbuscular myc-
orrhizal (AM) fungi (AMF), a group of beneficial soil microorganisms fundamental
for plant nutrition and ecosystem biodiversity and productivity, affecting the com-
position of plant communities in terms of survival, competition and diversity of
plants (van der Heijden et al. 1998; Wardle et al. 2004; Smith and Read 2008). AMF
belong to the Glomeromycota, are obligate biotrophs and colonise the roots of their
host plants obtaining sugars, which they are not able to synthesize. In exchange, the
host plants receive mineral nutrients, absorbed and translocated through a fine net-
work of extraradical hyphae extending from the roots to the surrounding soil. Such
belowground networks represent the key structure for soil nutrient uptake and
transfer to the roots, and are thought to have played a fundamental role in land
colonisation by early terrestrial plants, which, lacking an extended root system,
could have been facilitated by the AMF symbionts functioning as an auxiliary
absorbing structure (Pirozynski and Malloch 1975). Fossil records and molecular
data have supported such a view, considering AMF as evolutionarily successful
living fossils, having survived 460 to possibly 980 million years (Simon et al. 1993;
Remy et al. 1994; Phipps and Taylor 1996; Redecker et al. 2000; Blair 2009).

Mycorrhizal networks spreading from colonised roots into the surrounding soil
represent the structure where the flow of nutrients is realized. Such a flow consists
of a bidirectional flux of mineral nutrients, mainly P, N, Cu, Fe, K, Zn (Smith and
Read 2008), from the soil to the host plant, and of sugars acquired by intraradical
hyphae and transferred to other fungal structures in the soil, i.e. mycelium and
spores. Moreover, mycorrhizal networks are of fundamental importance for plants,
since they can grow indefinitely in every direction, foraging for soil nutrients far
from the roots with high efficiency, given the very fine dimensions of hyphae (5–
10 µm diameter).

Data on the mechanisms of absorption of mineral nutrients, in particular phos-
phate, confirmed the key role played by mycorrhizal networks in plant nutrition.
Phosphorus can be absorbed in the soil-plant interface by both root hair and
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epidermal cells and in the soil-fungus interface by fungal hyphae that transfer P to
root cells in the root cell-fungus interface (Karandashov and Bucher 2005).
Molecular studies show that genes for phosphate uptake are differentially expressed
in extraradical hyphae (Harrison and van Buuren 1995; Maldonado-Mendoza et al.
2001; Casieri et al. 2013), and that the mycorrhizal network is structurally and
functionally able to capture high quantities of phosphate from the soil (Smith et al.
2003).

A reverse flow of sugars occurs from host plants to fungal symbionts. The
amount of C, obtained from the host plant and transformed by the fungal symbiont
into trehalose and other polyols may reach 20 % of total photosynthate, depending
on different plant-fungus combinations (Jakobsen and Rosendahl 1990).

Since AMF have a wide host range, mycorrhizal networks can simultaneously
colonise diverse root systems, interconnecting plants belonging to the same and
different species, genera and families (Eason et al. 1991; Lerat et al. 2002;
Giovannetti et al. 2004). Thus, common mycorrhizal networks (CMNs) represent
the physical structures through which carbon, mineral nutrients and water can move
from plant to plant (Johansen and Jensen 1996; Egerton-Warburton et al. 2007;
Simard et al., Chap. 5, this Vol.), allowing plants to share ecosystem resources
which may modify and/or facilitate plant coexistence.

The occurrence of AMF mediated interplant C transfer, requiring a net flux of C
from the fungal symbiont to the host, was reported in some mycoheterotrophic plants
(Bidartondo et al. 2002), while C allocation from one green plant to another through
AMF mycelial networks is much more controversial. Early findings suggesting C
transfer between plants through AMF hyphae (Hirrel and Gerdemann 1979; Francis
and Read 1984; Grime et al. 1987; Martins 1993) were followed by other reports that
showed the occurrence of interplant C flow, but pointed out that transferred C
remained in fungal root tissues without moving into the shoots (Watkins et al. 1996;
Graves et al. 1997; Fitter et al. 1998). Some findings supported the view of an
exchange of C between plants, at least in particular conditions (Lerat et al. 2002;
Carey et al. 2004), while others, utilising in vitro mycorrhizal root organ cultures or
plants, further confirmed that C originating from a donor plant was retained in fungal
cells (Pfeffer et al. 2004; Voets et al. 2008; Lekberg et al. 2010).

It has been suggested that N and P can move from a plant to another through
mycorrhizal networks (Whittingham and Read 1982; Haystead et al. 1988). Studies
on N fixing plants utilizing 15N showed that AMF mediated N transfer may occur
(Frey and Schüepp 1992; Martins and Cruz 1998), although also indirect pathways
may be significant (Ikram et al. 1994; Rogers et al. 2001). However, a laboratory
experiment that utilized two plant compartments linked only by AMF hyphae and
separated by an air gap, confirmedN transfer together with transfer of analogs of P and
K (Meding and Zasoski 2008). Direct interplant P transfer through hyphal connec-
tions, suggested by early field and laboratory studies (Chiariello et al. 1982; Francis
et al. 1986), was not confirmed by other experiments, suggesting that the observed
flow could result from the release of P from donor roots into the soil or to the
mobilization of nutrients from a dying donor plant (Newman and Ritz 1986; Newman
and Eason 1989, 1993; Johansen and Jensen 1996). An elegant experimentation using
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32P as a tracer confirmed belowground P transfer from donor to receiver plants
mediated by interconnected mycorrhizal networks (Mikkelsen et al. 2008). Recently,
a differential allocation of P and N to plant hosts either belonging to diverse species or
with high/low C source strength was demonstrated for CMNs formed by different
AMF isolates (Fellbaum et al. 2014; Walder et al. 2015).

Mycorrhizal networks interconnecting different plants may function as
plant-plant underground communication ways, allowing signals transfer among
plants and activating defence pathways before pathogen attacks. For example,
tomato plants connected by Funneliformis mosseae (formally Glomus mosseae)
CMNs showed increased expression of defence-related genes and higher levels of
disease resistance enzymes in healthy “receiver” plants after inoculation of ‘donor’
plants with the pathogen Alternaria solani (Song et al. 2010). In addition,
aphid-free Vicia faba connected to aphid-infested plants via a CMN showed aphid
repellence and aphid enemy attraction due to systemic changes in the production of
volatiles (Babikova et al. 2013). CMNs are also able to widen the action of alle-
lochemicals in natural environments and to affect interactions within plant com-
munities (see Jakobsen and Hammer, Chap. 4, this Vol.), as plant-derived
allelopathic substances and herbicides supplied to mycorrhizal plants may be
transferred to the target plant, leading to their accumulation at levels that cannot be
reached by soil diffusion (Barto et al. 2011; Achatz et al. 2013). In addition, CMNs
may allow water flux between interconnected plants, facilitating plant survival
during drought (Egerton-Warburton et al. 2007).

Further studies aimed at detecting and quantifying mineral nutrient and carbon
transfer in the fungal network could improve our understanding of its functional
significance and of the role played by AMF in the distribution of resources in plant
communities. Moreover, since mycorrhizal networks may also represent a chan-
neling system for a wide exchange of information molecules between plants, they
appear to play a fundamental role in the dynamics and evolution of the complex
network of interactions regulating ecosystem functioning.

In this chapter wewill review the developments which contributed to give a picture
of mycorrhizal networks as one of previously unimagined dynamism.Wewill discuss
the structure of AMF networks, the cellular events leading to anastomosis formation,
and the phenomenon of self/nonself recognition and nonself incompatibility between
hyphae belonging to the same and to genetically different AMF.

2.2 Structure of Mycorrhizal Networks

The structure, viability, extent and interconnectedness of AMF mycelium are of
critical importance for the establishment and maintenance of the flow of nutrients
from soil to plant roots and were investigated by many authors. Using a destructive
approach, the extent of AMF networks was estimated to range from 2.7 to 20.5 m/g
of soil, depending on the fungal species (Giovannetti and Avio 2002; Mikkelsen
et al. 2008).
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Some non destructive observations of AMF extraradical mycelium (ERM),
carried out by using root observation chambers (Friese and Allen 1991) and in vitro
dual systems (Bago et al. 1998a), provided qualitative information on its archi-
tecture and development before and after symbiosis establishment.
A non-destructive in vivo bi-dimensional experimental system (sandwich system),
allowed the visualization and quantification of the whole intact AMF network
produced by the AM fungus F. mosseae living in symbiosis with three different
plant species: Allium porrum, Thymus vulgaris and Prunus cerasifera (Fig. 2.1).
After 7 days’ growth the length of ERM spreading out from root-based hyphae into
the surrounding environment ranged from 5169 mm in T. vulgaris to 7471 mm in A.
porrum, corresponding to 10 and 40 mm mm−1 root length, respectively. The mean
growth rate was 738–1067 mm d−1, depending on the host plant (Giovannetti et al.
2001). By contrast, in a tri-dimensional soil system lower values were detected,
ranging from 3.1 to 3.8 mm d−1 for F. mosseae and F. caledonius ERM spreading
from Trifolium subterraneum mycorrhizal roots (Mikkelsen et al. 2008).

Besides ERM extent, fungal biomass is important for the role played by myc-
orrhizal networks in the transfer of C from atmosphere to soil (Bago et al. 2000;
Treseder and Allen 2000), since they can supposedly sequester large quantities of
organic C in their walls in the form of recalcitrant compounds, such as chitin and

Fig. 2.1 Visualisation of intact extraradical mycelium of Funneliformis mosseae spreading from
colonised roots of Allium porrum showing the network structure realised by means of frequent
anastomoses interconnecting nearby hyphae (arrows)
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chitosan (Gooday 1990). Specific fungal weights, assessed using different AMF
species and experimental systems, ranged from 3.85 to 7.84 µg/m of mycelium
(Bethlenfalvay and Ames 1987; Frey et al. 1994; Miller et al. 1995; Fortuna et al.
2012). The extraradical network of the AM fungus F. mosseae IMA 1, visualised
by means of a bi-dimensional experimental system, appeared highly branched
(0.86–0.97 branches mm−1), while its viability, determined by the localization of
formazan salts depositions (SDH activity), was 100 %, after 7 days’ growth
(Fig. 2.2) (Giovannetti et al. 2001).

The interconnectedness of mycorrhizal networks is the result of fusions (anas-
tomoses) between contacting hyphae. The number of anastomoses in extraradical
mycelium ranged between 0.75 per 100 cm of hypha in Gigaspora margarita to
0.51 per mm of hypha in F. mosseae, whereas fusion frequencies ranged between 0
in Ambispora leptoticha, Gigaspora albida, Gigaspora gigantea and Dentiscutata
heterogama, to 64 % in F. mosseae (Table 2.1). Fusion frequencies showed the
highest values in in vivo systems, both in bi-dimensional (up to 64 %) and in
tri-dimensional models (up to 37.4 %) (Table 2.1). In some isolates of the AMF
species Rhizoglomus clarus, anastomosis frequencies recorded in extraradical
(symbiotic) mycelium were different from those observed in hyphae originating
from germinating spores (asymbiotic) mycelium (Purin and Morton 2013), whereas
slight differences were reported for F. mosseae (Giovannetti et al. 1999, 2004). In
an in vitro root organ culture system, characterised by high soluble nutrient levels, a
low number of anastomoses was recorded, with a maximum of 17 fusions per meter
of Rhizoglomus proliferus hyphae, although 100 % of such fusions were beteen
different hyphae in Rhizoglomus intraradices, R. proliferus and Glomus hoi (de la
Providencia et al. 2005; Voets et al. 2006). Networks formed by Gigasporaceae
showed no fusions in vivo (Purin and Morton 2011), whereas a low number of
anastomoses was produced in root-organ cultures: interestingly, about 95 % of

Fig. 2.2 Visualisation of succinate dehydrogenase activity (SDH) evidenced by formazan salt
depositions, showing complete fusions of hyphal walls and the establishment of protoplasmic
continuity in anastomosing extraradical hyphae of Funneliformis mosseae
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fusions detected in these two genera occurred within the same hypha (de la
Providencia et al. 2005; Voets et al. 2006).

It is interesting to note that, using data obtained from studies of ERM devel-
opment in soil and hyphal fusion frequencies in tri-dimensional agar or soil sys-
tems, even the apparently low anastomosis rate results in the production of 100–410
interhyphal connections per gram of soil (Giovannetti and Avio 2002; Voets et al.
2006; Mikkelsen et al. 2008).

Other studies, carried out on mycorrhizal networks produced by geographically
different isolates of the globally distributed AMF species F. mosseae and R.
intraradices (two isolates for each species) living in symbiosis with Medicago
sativa, revealed that the structure of the network significantly differed among AMF
isolates, since the hyphal length ranged from 4 to 21 mm per mm of root length and
the number of anastomoses per hyphal contact varied between 30 and 67; Avio
et al. 2006). Such a high interconnectedness was shown to play an important role in
the translocation and flow of nutrients from soil to host plants, affecting plant
growth and nutrition (Avio et al. 2006).

Fig. 2.3 Radar chart showing mycorrhizal network variables characterizing different isolates of
Funneliformis mosseae, IMA1 and AZ225, and Rhizoglomus intraradices, IMA5 and IMA6,
expressed as percentages of the highest obtained value. Fungal variables are measured as: specific
hyphal length, mm mm−1 colonised root length; hyphal density, mm mm−2; anastomosis number
mm−1 hyphal length; anastomosis density mm−2; anastomosis frequency, percentage of hyphal
contacts leading to hyphal fusions
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Although the sandwich system is bi-dimensional and may affect hyphal anas-
tomosis and growth rate, its use extended the knowledge of the mechanisms
underlying plant interconnectedness, revealing an unexpected and remarkable
outcome: the root systems of plants belonging to different species, genera and
families and colonised by the same fungal symbiont could be interconnected by
means of linkages between contiguous mycorrhizal networks (Giovannetti et al.
2004). The extraradical hyphae spreading from Allium porrum root system were
able to establish connections with those originating from Daucus carota,
Gossypium hirsutum, Lactuca sativa, Solanum melongena, colonized by the same
strain of the AM symbiont F. mosseae (Fig. 2.4). The percentages of hyphal
contacts leading to anastomosis between extraradical networks originating from
different plant species, ranging from 44 % in the pairing A. porrum-S. melongena to
49 % in A. porrum-G. hirsutum, were significantly lower than those detected
between hyphae belonging to the same plant, which ranged from 46 % in D. carota
to 64 % in L. sativa and showed also a host plant effect.

According to such data, connections between different plants are not exclusively
established through hyphae spreading from mycorrhizal roots and colonising con-
tiguous host plants (Newman 1988; Graves et al. 1997; Van der Heijden et al.

Fig. 2.4 Hyphal connections established between extraradical mycorrhizal networks originating
from Allium porrum (left) and Solanum melongena (right) colonised by the same Funneliformis
mosseae isolate IMA1
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1998), but also by means of fusions between mycorrhizal networks originating from
different plants, which could potentially create indefinitely large numbers of link-
ages through which nutrients can be transported over long distances. As the visu-
alisation of such linkages in soil is not possible, because every kind of sampling
would destroy the structure of the fungal network, an indirect approach confirmed
the occurrence of anastomosis between contiguous ERM in a soil experimental
system (Mikkelsen et al. 2008).

In our laboratory we recently demonstrated the ability of hyphae originating
from individual germinated spores to fuse and incorporate into hyphae of the
mycorrhizal network produced by plants colonised by the same fungal strain, and to
establish vital connections with nuclei flowing in anastomosis bridges (Sbrana et al.
2011; Table 2.1). This phenomenon represents an important mechanism evolved by
AMF to increase their chances of survival. Indeed, although AMF are obligate
biotrophs, their spores can germinate in the absence of host-derived chemical
signals, giving rise to coenocytic colonies where an active bidirectional flow of
nuclei, mitochondria, fat droplets, vacuoles and organelles is easily detectable
(Bago et al. 1998b; Logi et al. 1998) and whose extent may range from 18 to 50 mm
(Bécard and Piché 1989; Gianinazzi-Pearson et al. 1989; Logi et al. 1998). Such
asymbiotic hyphae, being unable to establish a symbiosis, rapidly undergo a pro-
grammed growth arrest accompanied by protoplasm withdrawal and resource
reallocation towards mother spores (Mosse 1959; Hepper 1983; Bécard and Piché
1989; Logi et al. 1998). This energy-saving behaviour, though important to allow
long-term maintenance of spore viability and host-infection ability (Beilby and
Kidby 1980; Koske 1981; Tommerup 1984; Logi et al. 1998), could have repre-
sented an evolutionary selective disadvantage. The ability of fungal germlings to
plug into pre-existing extraradical mycelium may increase their probability of
survival, allowing them to gain access to plant-derived carbon circulating in the
network before asymbiotic growth arrest.

2.3 Cytology of Anastomosis Formation

The word anastomosis derives from Greek and originally referred to an opening or
junction through a mouth as of one body of water with another. In human anatomy,
it commonly refers to a connection that is created between tubular structures, such
as blood vessels, involving the concept of fluid flow. In mycology, anastomoses
(vegetative hyphal fusions), first described in 1933 (Buller 1933), occur between
hyphae of Ascomycota and Basidiomycota (Gregory 1984; Ainsworth and Rayner
1986; Leslie 1993). Anastomoses were formerly believed to be lacking or rare in
Zygomycetes (Gregory 1984; Carlile 1995) but some authors mentioned their
occurrence without giving any quantitative data on their frequency or the cyto-
logical events involved (Godfrey 1957; Mosse 1959; Tommerup 1988; Giovannetti
et al. 1993).
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Anastomoses between living hyphae of AMF were first studied and monitored in
asymbiotic mycelium originating from individually germinated spores (Giovannetti
et al. 1999). By using a combination of time-lapse and video-enhanced light
microscopy, image analysis, and epifluorescence microscopy the dynamics of
anastomosis formation was monitored, cytoplasmic flow and nuclear exchange
were visualised, and the occurrence and frequency of anastomosis between hyphae
of germlings belonging to the same and to different isolates, species and genera
were assessed. Anastomoses formed in hyphae belonging to the same germling or
to different germlings of the same strain were characterized by cellular compati-
bility, consisting in complete fusion of hyphal walls, cytoplasmic flow and
migration of organelles and nuclei through hyphal bridges (Table 2.1). The histo-
chemical localization of formazan salts in hyphal fusions, evidencing
SDH-succinate dehydrogenase activity, allowed the detection of successful anas-
tomoses, characterised by viable hyphal connections and protoplasmic continuity
(Giovannetti et al. 1999).

The morphological types of hyphal fusions were mainly tip-to-side, and rare
tip-to-tip fusions were observed. During pre-contact interactions, approaching
hyphal tips were actively attracted towards the nearby hyphae and showed growth
orientation, while the approached hyphae initiated new hyphal tips, suggesting the
existence of an interhyphal remote signalling. When a tip contacted a trunk hypha,
it stopped growing and in some cases appeared swollen, but more often the walls
fused without any apparent tip swelling, while a protoplasmic flow was established
through the fusion pore. The cascade of cellular and biochemical events, including
cell wall degradation and synthesis, leading to the formation of a hyphal bridge
connecting the two previously separated hyphae remains to be unravelled. Further
investigations should be performed to answer the question as to whether the
complex process of anastomosis formation starts with a physiological switch
making hyphae growing nearby fusion-competent as a result of remote chemical
signals controlling pre-fusion events, similarly to what happens during the sexual
phase of other fungi (Bistis 1981; Snetselaar et al. 1996).

The complete formation of hyphal fusions in living hyphae of AMF was
accomplished in 35 min, after hyphal contact in F. mosseae and F. caledonius
(Giovannetti et al. 1999), and in 4 h after a hyphal tip showed directed growth towards
another hypha in R. irregularis (Sbrana, unpublished results). In hyphal fusions, the
intense protoplasmic flow subsequent to anastomosis was visualised by the bidi-
rectional movement of particles—vacuoles, mitochondria, nuclei, and fat droplets—
migrating at the speed of 1.8–0.26 µm s−1 in F. caledonius, F. mosseae and R.
irregularis (Giovannetti et al. 1999; Sbrana, unpublished results). Nuclear occurrence
in hyphal bridges, evidenced by DAPI staining and epifluorescence microscopy was
detected between hyphae belonging to the same germling and to different germlings
of the same AMF isolate, in F. caledonius, R. intraradices, F. mosseae, showing the
complete compatibility and interconnectedness of the mycelia.

Nuclear migration in AMF hyphal fusion bridges was confirmed by the visu-
alisation—by immunofluorescence microscopy—of nuclei closely associated to
cytoplasmic microtubules, which are believed to mediate nuclear division and
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migration processes in fungi (Morris and Enos 1992; Ästrom et al. 1994). In fungi
three types of cytoplasmic microtubule (cMT)-dependent nuclear movements have
been observed using live cell imaging: short-range oscillations (up to 4.5 µm/min),
rotations (up to 180° in 30 s), and long-range nuclear bypassing (up to 9 µm/min)
(Lang et al. 2010). In Ashbya gossypii long-range nuclear movements were regu-
lated by cytoplasmic microtubule cytoskeleton emanating from each nucleus and by
dynein, and nuclear pulling was due to cytoplasmic microtubule cytoskeleton
cortical sliding (Grava et al. 2011).

The migration and intermingling of nuclei in hyphal bridges indicate that
anastomoses in AMF play a fundamental role not only in the establishment of
“mycelial interconnectedness”, allowing intrahyphal communication and home-
ostasis, as proposed by Rayner (1996), but also in the information flow leading to a
physiological and genetic integration among vegetatively compatible individual
germlings. Cytological observations of C. etunicatum mycelium showed that
nuclear mobility contributed to mix different lineages of nuclei within the coeno-
cytic hyphae, and that the occurrence of asynchronous nuclear replication allowed
changes in relative rates of such nuclear lineages. Moreover, a selective elimination
of compromised nuclei, through a programmed death process, was observed during
spore development, suggesting that also a nuclear-level selection operates in
Glomeromycota (Jany and Pawlowska 2010).

Anastomosis frequency ranged from 35 to 69 % between contacting hyphae of
the same germling and from 6 to 90 % between hyphae of different germlings of the
same strain (Table 2.1) in different experimental systems. However, no information
is available on the factors controlling anastomosis frequency, involving either the
extracellular environment or the intrahyphal microenvironment, possibly differen-
tiating hyphae into fusion-competent regions, as observed in other fungal species
(Hickey et al. 2002).

No hyphal fusions over 220 and 460 contacts were detected in Gigaspora rosea
and Racocetra castanea mycelium, revealing an additional character differentiating
the family Glomeraceae from the Gigasporaceae (Giovannetti et al. 1999). Such a
difference was confirmed by in vitro experiments carried out using RiT-DNA
transformed carrot roots, which reported very low values of anastomosis formation
between different hyphae in AMF species belonging to Gigasporaceae (de Souza
and Declerck 2003; de la Providencia et al. 2005; Table 2.1). Interestingly, the
fusions observed were likened to a healing process (Gerdemann 1955; de Souza and
Declerck 2003), which could be functional to the restriction of damages as a result
of ageing, lytic events or physical lesions. In some species, short-length hyphal
sections were able to undergo septa formation rapidly to shelter from the external
environment and new hyphal tips growing from detached sections formed anasto-
moses among them. A differential behaviour was observed between Dentiscutata
reticulata, where only a recovery of hyphal integrity was achieved, and R. clarus
where the healing mechanism led to hyphal recovery and to a new growth into the
surrounding medium (de la Providencia et al. 2007). Differences in hyphal fusion
regulating mechanisms between these two species, mostly still unknown, could
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explain such different behaviour, supporting the view that Glomeraceae and
Gigasporaceae have developed different survival strategies.

Anastomosis between vegetative hyphae may represent the first step of the
parasexual cycle, allowing the formation of a heterokaryotic coenocytic mycelium
where distinct nuclear genotypes are maintained for an indefinite/definite period of
time (Pontecorvo 1956). However, no evidence of parasexual hybridization by
means of hyphal fusions has so far been reported in AMF, as described in other
fungi (Schardl et al. 1994). Though, in R. intraradices high-mobility domains
containing transcriptional factors, with significant similarity to genes controlling
mating type in Phycomyces blakesleeanus (Idnurm et al. 2008) and transcripts
encoding for the meiotic recombination machinery, as well as meiosis-specific
proteins (Tisserant et al. 2012), were detected. Moreover, 51 genes showing
homology to those required for the proper completion of meiosis in Saccharomyces
cerevisiae were identified in Glomus spp. (Halary et al. 2011), indicating the
possibility of sexual reproduction in AMF. Indeed, findings consistent with
recombination were reported for different AMF species, suggesting the occurrence
of gene exchange, which could be realised by means of intermingling of nuclei
during anastomosis (Vandenkoornhuyse et al. 2001; Croll et al. 2009; den Bakker
et al. 2010; de la Providencia et al., 2013; Beaudet et al. 2015; Boon et al. 2015;
Weichert and Fleißner 2015). Further research is needed to understand how fusions
between genetically different lineages may alter the genetic structure and the
reproductive success of AMF populations.

2.4 Vegetative Compatibility and Incompatibility
in Anastomosing Hyphae

Studies on fungal somatic fusions revealed beneficial outcomes of frequent
self-anastomoses, which increase the absorbing surface and the foraging ability of
hyphal colonies (Aanen et al. 2008; Richard et al. 2012). Although enhanced
mycelial fitness has been reported also after nonself fusions, their frequency is low,
as vegetative compatibility is under the control of het or vic (heterokaryon or
vegetative incompatibility genes) genes (Glass and Kuldau 1992; Leslie 1993;
Glass and Kaneko 2003). The occurrence of incompatible het/vic alleles in fusing
hyphae triggers incompatible responses, including programmed cellular compart-
mentalization and death (Glass and Dementhon 2006). Such incompatibility sys-
tems have probably evolved to limit mycelial damages resulting from genetic
conflicts, due to DNA exchange, and from the transfer of pathogenic elements
(viruses, deleterious mitochondria and plasmids) (Biella et al. 2002; Malik and
Vilgalys 1999).

In AMF, experiments carried out on hyphae of germlings belonging to different
genera and species, and to geographic isolates of the same species, revealed their
ability to discriminate self from nonself. Hyphae belonging to different species or
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genera do not form anastomoses and, during interspecific and intergeneric inter-
actions, do not show any contact interference. For example, no hyphal fusions were
detected on a total of 90, 140, 232 and 98 hyphal contacts between hyphal
germlings of F. mosseae and F. caledonius, F. mosseae and Gigaspora rosea, F.
caledonius and G. rosea, G. rosea and R. castanea, respectively.

No hyphal compatibility between germlings belonging to geographically dif-
ferent isolates of F. mosseae was observed, even if pre-contact tropism, directional
growth and branching of approaching hyphae occurred. In the interaction between
F. mosseae isolates IN101, BEG25 and AZ225C (Giovannetti et al. 2003),
approaching hyphae showed directed growth, branching and initiation of tips
contacting the receiving hyphae, which were able to sense the presence of
approaching hyphae and produced new lateral tips growing towards them.
Interestingly, either prior to or after physical contact between hyphae, clear
pre-fusion incompatible responses (rejection responses), were evidenced, such as
apical swellings, wall thickening and cell wall depositions in the contacting hypha,
followed by protoplasm withdrawal from hyphal tips, vacuolization and septa
formation (Fig. 2.5).

The different ranges of events leading to the development of hyphal bridges and
to the formation of anastomoses suggested the existence of a highly regulated
system of self-recognition, leading to compatibility between hyphae belonging to
the same network and between germlings and mycelia originated from spores
produced by the same isolate. Such events are mirrored by nonself discrimination
mechanisms, leading to nonself incompatibility between hyphae of AMF belonging
to different genera, species, and geographic isolates of the same species. Though,

Fig. 2.5 Pre-fusion incompatible interactions between hyphae belonging to two geographically
different isolates of the AMF species Funneliformis mosseae, IMA1 and AZ225, after SDH
staining. Note the retraction septa developed by an approaching hypha after protoplasm
withdrawal (arrows)
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the specific chemical signals triggering interhyphal attraction and regulating veg-
etative compatibility/incompatibility, and leading to self recognition and nonself
discrimination, remain poorly understood.

Post-fusion incompatible interactions, showing protoplasm withdrawal and cross
wall formation in fused hyphae, were demonstrated in germinating spores and
vegetative hyphae of Ascomycota, where incompatibility results from heterodimers
of het or vic proteins (Glass et al. 2000; Saupe 2000; Glass et al. 2004). In AMF,
nonself vegetative fusions (Fig. 2.6) were detected between genetically different
single spore isolates (clonal lineages) of R. irregularis, which established vital
connections, thereby creating the possibility for genetic exchange (Table 2.1;
Fig. 2.7). Molecular analyses of the progeny of the mycelium derived from such
nonself vegetative fusions evidenced the transmission of specific genetic markers,
showing that genetic exchange had indeed occurred, despite the low anastomosis
frequencies (Croll et al. 2009). Recent findings confirmed the occurrence of nonself
anastomoses in R. clarus and the possibility of genetic exchange and heteroplasmy
as a result of either perfect fusions or post-fusion incompatible interactions in
Rhizoglomus isolates (Purin and Morton 2011, 2013; de la Providencia et al. 2013;
Beaudet et al. 2013; Lin et al. 2014).

In conclusion, AMF hyphae are capable of recognition and fusion, thus pro-
ducing large mycorrhizal networks where important nutritional, genetic and
information flows are active. Such property is crucial for the survival of AMF
populations, because it can directly affect their fitness, viability and reproductive
success. The visualisation of AMF networks and of their structure unravelled a high
level of interconnectedness, fundamental for facilitating the interchange of mineral
nutrients, water and sugars flowing from soil to plants and from plants to soil.

Fig. 2.6 Post-fusion incompatible interactions between hyphae belonging to two genetically
different isolates of Rhizoglomus irregularis. Note the retraction septum and protoplasm
withdrawal developed after fusion (arrow)
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In addition, the ability of self recognition and nonself discrimination of AMF
hyphae suggests that the mycorrhizal network is also a site of information flow. The
capacity of extraradical hyphae of fusing by means of anastomosis, interconnecting
many different plants in the community, confirms that mycorrhizal networks can
contribute to the formation of indefinitely large potential functional guilds (see
Simard et al., Chap. 5, this Vol.), playing a key role in the complex web of
interactions that regulates the functioning of natural and agricultural ecosystems.
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