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Hydrogen Production from Catalytic
Biomass Pyrolysis

Lucı́a Garcı́a, Javier Ábrego, Fernando Bimbela, and José Luis Sánchez

Abstract An overview is presented on different catalytic routes for producing

hydrogen from biomass via pyrolysis processes. Fundamentals of biomass pyrolysis

along with general aspects related to the types of processes and catalysts are

discussed. Processes that allow hydrogen production in this field have been divided

into single-step and multi-step processes. These processes are reviewed in this

chapter, showing the state of the art. In both strategies, a hydrogen-rich product

gas is obtained which, conveniently conditioned and purified, may serve for various

purposes.

Catalytic pyrolysis of raw biomass feedstocks aiming at producing hydrogen can

be carried out by directly contacting the raw material with a catalyst having a high

selectivity towards hydrogen production inside the pyrolysis reactor, in a single-

step process. Another possibility for producing hydrogen from biomass follows a

strategy based on multiple steps. In the majority of multi-step processes, the

biomass raw material is subjected to fast pyrolysis for producing a liquid product,

denoted as biomass pyrolysis liquids or bio-oil, and afterwards processing the

bio-oil or fractions of it in a catalytic steam reforming process with suitable

catalysts.

Future trends of catalytic biomass pyrolysis process technologies are described

in this chapter.
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5.1 Introduction

Biomass is a renewable resource that can be used for hydrogen production. Some of

the advantages of using biomass are the vast variety of materials and the high

dispersion through the planet. This chapter is centered on lignocellulosic biomass

since it is the most studied one.

Pyrolysis is a thermochemical process that consists in the thermal decomposition

of carbon-containing resources (such as biomass) in a non-oxidizing atmosphere

and in the absence of any other reactant agent. Solid, liquid, and gas product

fractions are obtained with proportions that are much dependent on the process

operating conditions, mainly process temperature, heating rate, and residence time

of the vapors.

Pyrolysis is a thermochemical route of biomass conversion that has been

explored for hydrogen production. There are a large number of research works

focusing on hydrogen production by pyrolysis. These works have identified the

catalyst as the key factor in the process. The catalyst increases hydrogen yield

working at moderate temperatures, which is favorable from an energy point

of view.

Catalytic biomass pyrolysis processes can be divided into one-step and multi-

step processes. In one-step process, only one reactor is used. This reactor converts

biomass into hydrogen. In a multi-step process, at least two reactors are required. In

the first one, biomass pyrolysis takes place, and in the second reactor, pyrolysis

products are converted to a high hydrogen yield. In most cases the biomass raw

material is subjected to fast pyrolysis for producing a liquid product, bio-oil. Bio-oil

is easily transported and different strategies can be employed for hydrogen produc-

tion, for example, catalytic steam reforming of aqueous fraction of bio-oil. In the

1980s, several technologies of fast pyrolysis were developed to generate bio-oil.

Bio-oil is the main intermediate in multi-step processes.

Fundamentals of biomass pyrolysis are presented to understand the main oper-

ating variables involved in the process. Some pyrolysis reactors for bio-oil produc-

tion are included, given the relevance of this intermediate.

In the catalyst section, the main properties and performance of the catalyst in the

biomass pyrolysis process are summarized. Also, many experimental works show

the vast variety of catalysts used, being nickel-based catalysts preferred due to their

price.

The main facts of the one-step processes are presented, analyzing hydrogen yield

and the main findings of the literature works. Recent innovative processes such as

biomass pyrolysis in molten alkali and microwave plasma are also included.

The multi-step processes section is mainly focused on catalytic steam reforming

of bio-oil. This option presents some advantages that can be further implemented at

an industrial scale based on economic studies.
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5.2 Fundamentals of Biomass Pyrolysis

Pyrolysis is a thermochemical process that consists in the thermal decomposition of

biomass in a non-oxidizing atmosphere and in the absence of any other reactant

agent. Heating biomass in an inert atmosphere triggers a complex series of chemical

reactions that include primary breakdown of biomass constituents, as well as

secondary reactions involving the products of direct decomposition of biomass.

All these chemical reactions occur coupled to mass and heat transfer processes, and

solid, liquid, and gas product fractions are obtained. Usually, the term pyrolysis

englobes all these simultaneous processes and not only the thermal decomposition

of biomass. The solid fraction that can be obtained from pyrolysis is usually

referred to as char, or, more recently, biochar. The liquid fraction, frequently

named bio-oil, is a product of great interest for hydrogen production by means of

catalytic processes, especially in multi-step processes. The gas fraction is maxi-

mized operating at high temperatures.

5.2.1 Composition and Characteristics of Lignocellulosic
Biomass

Here, the main characteristics of lignocellulosic biomass will be presented. Note

that other types of biomass materials with significant differences in their composi-

tion, such as animal residues, municipal solid waste, sewage sludge, and others, are

not included in this description; however, they might also have potential for

hydrogen production by means of pyrolysis. The three major constituents of

lignocellulosic biomass are cellulose (40–50 %), hemicellulose (20–40 %), and

lignin (5–30 %) [1]. The structure of cellulose, as well as the main monomers of

hemicellulose and lignin, is shown in Fig. 5.1. Some authors have found that

interactions between these components are negligible [2]; thus, the pyrolysis

products could be considered as the summation of the individual contributions

from the three main components.

Apart from the three main components, minor amounts of solvent-extractable

compounds (extractives) can be found in lignocellulosic biomass: triglycerides,

fatty acids, resin acids, steryl esters, sterols, and lignans [3]. Inorganic constituents

can also be found in biomass, with total contents varying in a range from less than

1 % in softwoods to 15 % in herbaceous biomass [4]. Because of the catalytic

effects of most of the main inorganic constituents (K, Ca, Na, P), biomass decom-

position reactions and char formation can be altered by their presence, especially

for cellulose [5].

The original water content of biomass also plays an important role during

pyrolysis for various reasons. First, it influences heat requirements because it

needs to be evaporated in the pyrolysis reactor and may render the process uneco-

nomical. Second, an excessive water content impedes biomass particle size
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reduction, which is needed in several types of pyrolysis reactors. Third, most of the

water ends up in the liquid fraction. Finally, the presence of water has been shown

to produce higher yields of char [6, 7].

5.2.2 Reaction Pathways and Types of Pyrolysis

In most cases, the pyrolysis process takes place at moderate temperatures (300–

600 �C) and is driven towards the production of a majority of solid or liquid

fraction. If a major gaseous fraction is preferred, then gasification or combustion

processes at higher temperatures, involving the presence of oxidizing agents such as

air or steam, are more suitable. Bridgwater [8] classified pyrolysis processes and

indicated that the main product obtained is gas when fast pyrolysis is carried out at

temperatures higher than 700 �C.
Traditionally, a distinction between slow and fast pyrolysis, based on the process

heating rate, has been made at the mentioned temperature interval to distinguish

processes with major solid, liquid, or gas yields. However, this classification
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Fig. 5.1 Main components of lignocellulosic biomass: (a) cellulose, (b) hemicellulose monomers,

and (c) lignin monomers
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oversimplifies the complexity of the pyrolysis process [5]; the residence time of

devolatilization products and the conditions in which this residence time goes by

are equally relevant. These factors are crucial because primary decomposition

condensable products (sometimes called primary tars) can undergo two competitive

reaction pathways: cracking to non-condensable gaseous products or formation of

secondary solid char depending on the reactor conditions (mainly pressure and gas

flow rate) [7, 9] and inorganic content of biomass, as shown in Fig. 5.2. As a result

of both competitive pathways, the final condensable yield is reduced; thus, they

should be avoided if liquid yield has to be maximized. Therefore, the so-called fast

pyrolysis conditions, i.e., high heating rates, careful temperature control, very low

vapor residence times, and rapid cooling of the vapors, are required for maximum

bio-oil production [10].

The thermodynamics of the pyrolysis process are also determined by these

reaction pathways. For instance, secondary char formation from condensable com-

pounds is an exothermal process [7] that might cause an overall exothermal heat of

pyrolysis if operational conditions are directed towards maximum char formation,

whereas if bio-oil (condensable products) is preferred, the overall process will be

clearly endothermic.

5.2.3 Product Distribution and Characteristics

The proportions of the solid, liquid, and gaseous product fractions in non-catalyzed

fast pyrolysis can range between 10–40 %, 20–75 %, and 10–30 %, respectively,

and are greatly dependent on the process operating conditions, mainly process

temperature and pressure, heating rate, and residence time of the vapors. The

biomass feedstock composition and properties (moisture, particle size, or density)

also play an important role in product distribution.

The liquid fraction or bio-oil is a complex mixture of water and diverse organic

compounds. Water (15–30 %) comes from both the original biomass moisture and

devolatilization reactions. A typical composition of the whole bio-oil is (average of

different lignocellulosic biomasses, on a dry basis) [11] 56.7 % C, 6.3 % H,

36.8 % O, and 0.2 % N. The maximum amount of obtainable H2 is limited by

both chemical composition and water content of the liquid fraction.

Bio-oil can be easily separated into two distinct phases either by fractionation

(water addition) or centrifugation. The aqueous phase is a complex mixture
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CHAR
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Fig. 5.2 Simplified

pyrolysis reaction scheme
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consisting of carboxylic acids, aldehydes and ketones, alcohols, sugars, low molec-

ular weight oligomers, and other more complex carbohydrates. The remaining

fraction that is often referred to as pyrolytic lignin or organic phase contains a

wide variety of high molecular mass lignin-derived compounds.

As a whole, bio-oil from lignocellulosic biomass is acidic in nature (with pH

values between 2 and 4) and contains high amounts of oxygenated compounds.

Both characteristics cause chemical instability over time, causing storage problems

[12]. The high oxygen content confers bio-oil a low energy density compared to that

of petroleum-based fuels. Indeed, it has a heating value of less than half of that of

hydrocarbon fuels [13]. Finally, bio-oil might also have high contents of solid

particles in suspension.

The origin of some of the individual components of bio-oil can be directly

related to the main biomass constituents. For instance, levoglucosan,

glycolaldehyde, and cellobiosan are products of cellulose pyrolysis [14], which

has been extensively studied. Their amounts are significantly influenced by inor-

ganic content, and they can further react to form gases or char depending on the

operational conditions. Lignin pyrolysis has been much less investigated [5]; it

produces mainly phenolic compounds such as guaiacols and syringols [15], and

“pyrolytic lignin,” which is composed of relatively large fractions of the original

lignin.

Biomass charcoal, also named char or biochar, is a carbonaceous solid that

retains part of the original biomass structure and can have a carbon content as

high as 90 % [7]. Lignin from biomass produces comparatively higher yields of

char than cellulose and hemicellulose. Lignin also concentrates mostly in the

original inorganic content of biomass. Its main uses are as activated carbon pre-

cursor and as a fuel. Recent research proposes its use as soil amendment with the

additional benefit of long-term carbon capture [16].

The permanent gases from pyrolysis of biomass are mainly composed of CO and

CO2, but also CH4, H2, and light hydrocarbons. Additionally, H2S or NH3 may be

present if the amounts of sulfur or nitrogen in the original biomass are high. The gas

mixture can be burned to provide part of the energy needed to drive the pyrolysis

process or be subjected to catalytic treatment in a one-step process to improve H2

yield, as well as to convert the condensable fraction.

5.2.4 Pyrolysis Reactors

Because bio-oil is an important intermediate in hydrogen production by catalytic

pyrolysis of biomass using multi-step processes, this subsection examines pyrolysis

reactors as they pertain to bio-oil production.

At typical fast pyrolysis conditions (500 �C, hot vapor residence time of ~1 s), a

high yield of up to 75 % bio-oil can be obtained. To achieve these operational

conditions, a fluidized bed is the preferred choice. Other reactors will be briefly

124 L. Garcı́a et al.



discussed. A more detailed description of the main features of fast pyrolysis

reactors can be found in the literature [5, 17].

Fluidized bed reactors allow a very good temperature control and heat transfer to

the biomass material, but require careful selection of feedstock particle size distri-

bution. They can be scaled up to maximum throughputs of several tons per hour.

Usually, a bed material is required for enhancing heat transfer and fluidization of

biomass, if needed. The bed material can be kept bubbling or be transported

(circulating fluidized beds) to a secondary reactor where char is burned and hot

bed material is recycled to the fluidized bed. In both cases, an inert fluidizing agent

(such as nitrogen or recycled combustion gases) is needed.

At temperatures between 400 and 650 �C, Fig. 5.3 shows a typical product

distribution of non-catalyzed, fluidized bed pyrolysis of lignocellulosic biomass

[18]. The yield of hydrogen is generally very low and increases with temperature

[19] without reaching a maximum value within this temperature interval. The

addition of catalysts significantly alters these product distributions and may trigger

hydrogen formation at lower temperatures, as well as higher concentrations of the

desired product.

In fluidized bed reactors, a catalyst of adequate physical properties and fluid

dynamic behavior can be continuously added to the bed for hydrogen production.

However, catalyst particles are subjected to high attrition rates in fluidized beds,

and regeneration of the spent catalyst may require char separation. Additionally,

char particles carry-over can cause volatile decomposition, decreasing bio-oil yield.
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The rotating cone reactor, developed at University of Twente [20], uses centrif-

ugal force to mix hot sand and biomass particles. Rapid heating and small vapor

residence time are achieved. Combustion of char provides the necessary heat for the

process, and no carrier gas is needed. It can be scaled up to several tons per day

[5, 21].

In ablative pyrolysis reactors, biomass is pressed against a hot surface, either in

motion (rotating cylinder, disk or blade) or static (vortex or cyclone reactors). The

main advantages of these systems are the possibilities of processing big biomass

particles, using cold gas carriers, and including a catalyst in the hot surface [5]. Its

applicability to large-scale systems is limited because scaling is a linear function of

heat transfer area [21].

Auger and screw reactors involve mechanically mixing biomass with hot sand

and transporting the mixture inside a cylinder. No carrier gas is needed so that auger

and screw reactors offer good potential for scale-up [21].

5.3 Catalysts

Like any other hydrogen production process, biomass pyrolysis requires the use of

catalysts to produce a hydrogen-rich gas. In fact, the catalyst is considered as a

critical factor in the hydrogen production process from biomass to obtain high

selectivity and high hydrogen purity. Key properties for a catalyst to be used for

hydrogen production are C-C and C-O bond cleavage activity, WGS activity, low

coke formation, resistance to deactivation by poisoning, and thermal and mechan-

ical stability. Properties of the catalyst support are also important: usually it also

presents an intrinsic catalytic activity that can enhance the reforming or act as a

deterrent to coke deposition, which is one of the main drawbacks of the process.

The performance of a catalyst depends on its intrinsic characteristics, such as

active metal nature, metal dispersion, and surface area, but also on the chemical

nature of the compounds to be reformed. Thus, the process is not only influenced by

the biomass being treated, but also by the pyrolysis conditions, as explained in

previous sections. Furthermore, the selected process, one-step or multi-step, and the

reactors, fixed and fluidized beds, have also a significant influence on catalyst

performance.

Regarding the nature of catalysts, one approach is the use of noble metals, which

have a high activity towards hydrogen production and lower selectivity to coke

formation. In Table 5.1, several noble metal catalysts used in pyrolysis-based

hydrogen production are shown. As can be seen, platinum is the most widely

used catalyst of this kind.

However, and due to the scarcity in nature and high prices of noble metals, the

use of transition metals, especially nickel, has also been studied, in spite of their

lower activity and higher tendency to coke deactivation.

Apart from noble metals, the use of several different catalysts such as Na2CO3,

K2CO3, CaMgCO3, La/Al2O3, and Cr2O3, among others, was reported in a recent
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review [31]. ZnCl2- and Ni-based catalysts are mentioned as having more potential

towards maximum gas production. The use of other metals is scarcer in literature,

for instance, Shoja et al. [32] used iron fillings for tar cracking in a dual bed reactor,

at 850 �C.
Ni-based catalysts constitute the most solid alternative approach to noble metals

in the design of suitable catalysts for the steam reforming of bio-oil or its fractions.

The advantages of Ni-based catalysts compared to those based on noble metals are

principally high activity and selectivity towards H2 production at a much cheaper

cost. However, Ni-based catalysts are more susceptible to carbon formation [33].

Table 5.2 shows both commercially prepared and laboratory-prepared Ni cata-

lysts. Alumina is the preferred support, although many more materials can be found

in the available literature. A previous reduction of the active metal is not always

used, as the presence of a certain amount of hydrogen in the gas, or its in situ

formation, is enough to reduce the Ni oxides at the reactor temperature.

As concluding remarks, and despite the wide range of materials, preparation

methods, raw materials, and experimental conditions, it is clear that the presence of

an active catalyst and a high temperature (over 1000 K) are needed in order to

obtain a hydrogen yield that can reach around 100 g H2/kg of biomass. Still there is

much work to do on the improvement of on-stream catalyst stability over long

periods of time, on the grounds that the economy of the process will significantly

rely on catalyst performance and durability.

Table 5.1 Noble metal-based catalysts for hydrogen production

Reference Catalysts

Preparation

method Parameters analyzed

Takanabe

et al. [22–

24]

0.5 % Pt/ZrO2 Wet

impregnation

Activity tests with model compounds,

reaction and deactivation mechanisms

Rioche

et al. [25]

Cordierite Pt, Rh, Pd,
(1 %)/Al2O3 Rh, Pd

(1 %) /CeZrO2

Incipient wet-

ness

impregnation

Catalyst screening over different

model compounds, reaction

temperature

Basagiannis

and

Verykios

[26]

Pt, Pd (1 %)/Al2O3

0.5 % Rh/Al2O3

Wet

impregnation

Catalyst screening, reaction tempera-

ture, time on stream

Basagiannis

and

Verykios

[27]

5 % Ru/15 %

MgO/Al2O3

Wet

impregnation

Long-term stability tests with model

compounds and the aqueous fraction,

reaction temperature, space velocity,

structured forms of the catalyst

Basile

et al. [28]

Dense Pd/25 % Ag

membrane

Cold rolling +

diffusion

rolling

Permeation tests of the membrane

reactor, pressure effect

Iwasa

et al. [29]

1–10 % Pt over Al2O3,

ZrO2, and other

supports

Impregnation

over the

support

Steam reforming of acetic acid in

fixed bed

Dubey

et al. [30]

5 % Pt/C Commercial

(Arora-

Matthey)

Acetol aqueous reforming, 623–

773 K in fixed bed
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Table 5.2 Ni-based catalysts for H2 or H2-rich gas production from biomass pyrolysis

Reference Catalysts Parameters analyzed

Wang et al. [34] UCI G-90C (15 % Ni/70–76 %

Al2O3/5–8 % CaO)

Reaction temperature, S/C ratio,

residence time, activity tests with

model compounds, reaction

mechanisms

Wang

et al. [35, 36]

Commercial catalysts UCI G-90C,

ICI 25-4M, ICI 46-1, UCI G-90B,

BASF G1-25S, ICI 46-4, UCI G91

Catalyst screening, feedstock

screening, reaction temperature, S/C

ratio, residence time, space velocity,

long-term stability tests, regenera-

tion cycles

Marquevich

et al. [37–39]

UCI G-90C, ICI 46-1 Activity and long-term stability tests

with model compounds and with

bio-oil, reaction temperature, S/C

ratio, space velocity, reactor scale

Garcı́a et al. [33] UCI G91, ICI 46-1, ICI 46-4, Süd

Chemie C11-NK

Catalyst screening in the steam

reforming of the aqueous fraction of

bio-oil, reaction temperature, S/C

ratio, space velocity

Kechagiopoulos

et al. [40]

Süd Chemie C11-NK Activity tests with model com-

pounds and with the aqueous frac-

tion, reaction temperature, S/C ratio,

catalyst regeneration

Davidian

et al. [41]

Johnson Matthey 4 % Ni/2 % K/car-

rier La2O3-Al2O3

Bio-oil cracking activity tests, cata-

lyst regeneration cycles, reaction

mechanism

Waheed and

Williams [42]

10 % Ni over calcined dolomite,

prepared by wet impregnation on the

calcined support

Pyrolysis + steam reforming of rice

husk, wheat straw, and bagasse. 51 g

H2/kg biomass obtained at 950 �C
from rice husk

Zhao et al. [43] Ni over cordierite (monolith) Rice husk pyrolysis in a rotary kiln

and steam reforming of the resulting

vapors. 65 g H2/kg obtained at

1123 K

Qinglan

et al. [44]

NiMo/Al2O3 commercial catalyst 36 g H2/kg was produced at 723 K

under nitrogen atmosphere in a

one-step fluidized bed process

Zhang et al. [45] Ni/Al2O3, Co/Al2O3, NiCo/Al2O3 120 g H2/kg biomass was obtained

with the bimetallic catalyst at 825 �C
Ansari et al. [46] Ni-Fe/Al2O3, prepared by impregna-

tion or microemulsion

15 % H2 in gas, batch experiments

with bagasse at 850 �C
Liu et al. [47] 9 % Ni over calcined sepiolite, pre-

pared by wet impregnation

Two-step pyrolysis +reforming,

heated by microwave radiation.

100 g H2/kg biomass (hyacinth)

128 L. Garcı́a et al.



5.4 One-Step Processes

In one-step processes of catalytic pyrolysis, the catalyst is located in the same vessel

where pyrolysis occurs. Considering the schematic representation of catalytic

pyrolysis proposed by Garcia et al. [48], both stages, being pyrolysis the first and

the action of catalyst the second, occur in the same reactor.

One-step processes have the advantages of process integration and smaller

equipment costs compared to multi-step processes. Process integration can achieve

some energy savings, as endothermic reactions, such as pyrolysis, occur simulta-

neously with other exothermic reactions such as water-gas-shift reaction. Heating

of pyrolysis products is not required, as it happens, for example, in catalytic steam

reforming of bio-oil, one example of multi-step process. The equipment cost

diminishes because only one reactor is required in the process.

The drawbacks of this alternative are more severe catalyst deactivation and

lower hydrogen content in product gas compared to multi-step processes. Consid-

ering a one-step process with a continuously fed fluidized reactor, high liquid yield

is produced at relatively low temperature and the catalyst must convert/transform it

into gases; as a consequence, more “work” for the catalyst is required [48]. In

contrast, considering a multi-step process with two reactors, where in the first

pyrolysis is being carried out at high temperature, more cracking occurs and less

liquid production is generated (also, liquid conversion by thermal cracking can

occur in the piping between the first and the second step, where catalyst is placed);

as a consequence, less “work” of the catalyst is needed and then less catalyst

deactivation will be observed.

The comparison of one-step process such as catalytic pyrolysis in a continuously

fed fluidized reactor [48, 49] with a multi-step process such as catalytic steam

reforming of bio-oil [50] indicates that lower hydrogen content in product gas is

achieved in one-step catalytic pyrolysis than in catalytic steam reforming of bio-oil.

For instance, the content of hydrogen in product gas was 67 vol.% (nitrogen and

steam free) at 650 �C and 0.042 g catalyst h/g organics in the steam reforming of the

aqueous fraction of bio-oil [50], a multi-step process, while in catalytic pyrolysis of

biomass (pine sawdust), a one-step process, the content at the same temperature was

52 vol.% (nitrogen free) at 0.8 g catalyst h/g biomass [48].

In catalytic pyrolysis, one-step process, the moisture of biomass is involved and

no more water is added; thus water-gas-shift reaction hardly takes place. In spite of

the low content of hydrogen, this process can produce a gas with a H2/CO ratio

useful as synthesis gas for processes such as methanol or Fischer-Tropsch, among

others.

In catalytic steam reforming of bio-oil, multi-step process, water is added and

water-gas-shift reaction converts CO into CO2 and H2, increasing the hydrogen

content in product gas. If the purpose is the generation of hydrogen-rich gas in

one-step process, the addition of water is required and then the suitable process is

steam gasification [51].
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One-step catalytic pyrolysis processes can be divided in two groups: conven-

tional and innovative processes. Table 5.3 presents a summary of experimental

works of conventional one-step catalytic pyrolysis processes, carried out at bench

scale. In this table it can be observed that catalytic pyrolysis is carried out at

atmospheric pressure and temperatures from 450 to 850 �C. There are two different
types of experimental installations. In the first type, a batch of biomass is loaded in

the reactor, being 90 g the highest amount of biomass reported [52]. The second

type uses a continuously fed fluidized bed reactor with a biomass feeding rate lower

than 32 g/h [49].

Chen et al. [52] recommended the use of 30 % weight of catalyst load to

biomass. Also, they found Cr2O3 as the best catalyst with stronger catalytic role

Table 5.3 Experimental works of conventional one-step catalytic pyrolysis

Institution

Operating

conditions

Experimental

installation Catalyst Biomass

University of Waterloo

(Canada)

500–700 �C
atmospheric

pressure

Continuous-fed flu-

idized bed reactor,

diameter¼ 25.4 mm,

biomass flow rate

<32 g/h

Ni-Al

coprecipitated

and Ni-Al with

Mg or K

Poplar

sawdust

University of

Zaragoza (Spain)

[49, 53]

University of Zaragoza

(Spain) [48, 54, 55]

650 and

700 �C
atmospheric

pressure

Continuous-fed flu-

idized bed reactor,

diameter¼ 25.4 mm,

biomass flow rate

<25 g/h

Ni-Al

coprecipitated

Pine

sawdust

Karadeniz Technical

University (Turkey)

[56, 57]

501–752 �C
atmospheric

pressure

Batch, 1.5 g biomass ZnCl2,

K2CO3, and

Na2CO3

(impregnated

biomass)

Cotton

cocoon

shell, tea

factory

waste, and

olive husks

Delft University of

Technology (The

Netherlands) [52]

500,

750, and

850 �C

Batch, fixed bed of

biomass (70–90 g) +

cracking reactor

CaO, FeO,

Al2O3, MnO,

Cr2O3, CuO,

and Na2CO3

Pine saw-

dust and rice

straw

CIRAD-Fôret and

Institute Européen des

Membranes (France)

[58]

700 �C Batch, 10 g biomass Ni or Fe

nitrates

(impregnated

biomass)

Oak

sawdust

Tianjin University of

Science &Technology

and Nanjing University

of Technology (China)

[44]

450,

500, and

590 �C
atmospheric

pressure

Continuous-fed flu-

idized bed reactor,

diameter ¼ 25 mm,

biomass flow rate ¼
5 g/h

NiMo/Al2O3 Pine, Alas-

kan spruce,

tropical

lauan, and

rice husks

University of Tehran

and Research Institute

of Petroleum Industry

(Iran) [46]

850 �C
atmospheric

pressure

Batch, 1 g biomass

(two beds in the

same reactor)

Ni-Fe/γ-Al2O3 Powdered

bagasse
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than other metal oxides. Cr2O3 showed the highest yields to total gas and hydrogen

content in gas in their experiments.

In the work of Ansari et al. [46], the reactor contains two beds in a continuous

downflow. This is considered as one-step process because only one reactor is used.

In the first bed the pyrolysis of bagasse is carried out, and the second bed, below the

first one, contains the catalyst and the catalytic cracking of tar is performed. They

tested Ni-Fe/γ-Al2O3 catalysts prepared by two methods: co-impregnation and

microemulsion. Using a microemulsion technique with a water to surfactant ratio

of 1, the average metal particle size was decreased to 3.7 nm. Using this catalyst, the

gas yield increased from 0.397 to 0.758 m3/kg and decreased the tar yield from

0.445 to 0.237 g/g biomass compared to the noncatalytic process, while the heating

value of the product gas remained almost constant (10–11 MJ/m3). This last result is

a consequence of the decrease in CnHm yield due to catalytic cracking.

Qinglan et al. [44] used a fluidized bed, where the primary decomposition and

secondary reactions occurred simultaneously. The catalyst selected was a commer-

cial NiMo/Al2O3 catalyst. In their study, four biomasses were tested: pine, Alaskan

spruce, tropical lauan and rice husks. They found similar results in gas yields of the

three woody biomass samples. They attributed this result to their similar composi-

tions. Different results were obtained with rice husks compared to woody biomass.

As an example, H2 yield of woody biomass was higher than that of rice husks under

the same operating conditions.

Arauzo et al. employed nickel-based catalysts prepared by coprecipitation in the

laboratory [49, 53]. Some catalysts were modified with magnesium or potassium.

They concluded that the addition of magnesium in the catalyst did improve resis-

tance to attrition but resulted in a minor loss in gasification activity and increased

coke production. The addition of potassium had little effect.

Garcia et al. employed also a Ni-Al coprecipitated catalyst prepared in the

laboratory [48, 54, 59]. They studied the influence of calcination and reduction

conditions on catalyst performance. They concluded that carrying out the catalytic

pyrolysis at 650 and 700 �C, the catalyst calcined at 750 �C can be reduced by H2

and CO generated during the pyrolysis reaction. The catalyst calcined at 850 �C
required more severe reduction conditions to achieve the active phase of the

catalyst. In pyrolysis at 650 �C, the most stable catalyst performance is achieved

using the catalyst calcined at 850 �C and reduced during 1 h with a hydrogen flow

rate of 3080 cm3 (STP)/min. At a reaction temperature of 700 �C, the highest H2

and CO yields are obtained using the catalyst calcined at 750 �C without previous

reduction.

Garcia et al. [48] also studied the influence of catalyst weight/biomass flow rate

(W/mb) ratio on gas production using the Ni-Al coprecipitated catalyst calcined at

750 �C without previous reduction. For W/mb ratios �0.4 h, no significant modi-

fications were observed on the initial yields of different gases, with a gas compo-

sition similar to thermodynamic equilibrium. For W/mb ratios <0.4 h, a simple

first-order kinetic equation has been suggested for H2 and CO formation. These

authors analyzed gas yield evolution over time. Figure 5.4 shows the results for an

experiment carried out at 700 �C with a W/mb ratio of 0.31 h. As can be observed,
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total gas and H2 and CO yields diminish with experimental time, while CO2, CH4,

and C2 yields increase. This evolution is a consequence of the loss of catalyst

activity. The deactivation of the catalyst is mainly caused by the formation of

carbon deposits on the catalyst surface.

In all the mentioned studies, the effect of the catalyst is the same: increasing gas

yield and decreasing liquid yield. Hydrogen yield significantly increases with the

presence of the catalyst. In Table 5.4 some results of gas yields and gas composition

extracted from some experimental works are shown.

The comparison of these results is difficult. The temperatures of catalytic

pyrolysis in the works of Qinglan et al. [44] and Garcia et al. [48] are different,

although both studies were performed in an experimental installation with a fluid-

ized bed reactor. Moreover, the catalysts are different. For both studies the maxi-

mum hydrogen content showed in Table 5.4 is around 52 vol.%. For a batch

installation [58] a smaller hydrogen content was obtained, 28.7 vol.%.

It is worth mentioning that gas yield can be as high as 0.9 g gas/g biomass, for

temperatures of 650 and 700 �C obtained in the work of Garcia et al. [48]. The time

for these experiments was 49 and 181 min at 650 and 700 �C, respectively, which
correspond to 20.4 and 50.6 g biomass fed in, respectively.

The use of a different approach to carry out the pyrolysis of biomass in

innovative processes such as the use of a molten alkali reactor or a microwave

plasma deserves also to be mentioned.

Jiang et al. [60] studied six biomass feedstocks (fir sawdust, birch sawdust,

redwood sawdust, rice stalk, cole stalk, and rice husks) in a stainless steel reactor

with about 700 g of molten alkali (NaOH) at temperatures from 350 to 550 �C. The
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Fig. 5.4 Gas yield evolution versus time for an experiment of catalytic pyrolysis. Temperature ¼
700 �C, W/mb ¼ 0.31 h. Total gas ■; H2 ~; CO □; CO2 Δ; CH4 �; C2 ○ (Reprinted with

permission from Garcı́a et al. [48], Copyright © 1998 American Chemical Society)
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product gas only contained hydrogen and methane. Redwood sawdust was the

biomass with the highest H2 yield (65.4 g H2/kg biomass at 450 �C). The increase
of temperature caused the increase in H2 yield with values from 30.7 to 66.5 g H2/kg

biomass at 350 and 550 �C, respectively, using rice stalk as feed. The introduction

of additives, especially NiCl2, led to increased H2 yields. H2 content in pyrolysis

gas was higher than 80 % in most of the studied conditions.

Microwave plasma reactor was used in the study of Spirulina algae pyrolysis by

Lin et al. [61]. The pyrolysis was carried out at temperatures of 790, 820, and

848 �C and at atmospheric pressure. 1 g of biomass was loaded in a quartz tube.

Although no catalyst was used, significant content of H2 in product gas and high H2

yield were obtained, with values of 45 vol.% and 31.5 g H2/kg biomass, respec-

tively, at 848 �C.
Figure 5.5 shows H2 yield generated in some one-step pyrolysis processes, both

conventional and innovative. It is generated the highest yield of H2 in molten alkali

(NaOH-NiCl2) with a value of 67 g H2/kg biomass [60].

Table 5.4 Product distribution and gas composition in noncatalytic pyrolysis and conventional

one-step catalytic pyrolysis

Temperature (�C)
experimental installation

Garcia et al. [48] Qinglan et al. [44]

Bru

et al. [58]

650

fluidized

bed

700

fluidized

bed

590

fluidized

bed

700

fluidized

bed 700 batch

Noncatalytic product yields (g/g biomass)

Gas 0.338 0.496 0.161 0.343 0.280

Liquid 0.506 0.388 � � 0.449

Char 0.038 0.036 � � 0.217

Gas composition (% vol.)

H2 16.9 18.8 29.4 30.6 12.5

CO 55.4 55.6 43.5 46.4 46.8

CO2 12.6 9.7 10.9 6.5 27.3

CH4 10.6 10.6 11.3 10.0 13.4

C2 4.5 5.4 4.9 6.5 �
Catalytic product yields (g/g biomass)

Gas 0.909 0.916 0.541 0.358

Liquid 0.091 0.031 � 0.379

Char 0.058 0.069 � 0.219

Gas composition (% vol.)

H2 52.1 47.4 52.9 28.7

CO 40.5 46.1 33.7 35.5

CO2 5.3 3.0 8.7 28.6

CH4 2.1 2.4 3.8 7.2

C2 0 1.1 0.9 �
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5.5 Multi-step Processes

The present section aims at presenting an overview of the different multi-step

approaches that have been proposed regarding hydrogen production from catalytic

pyrolysis of biomass.

A scheme of the different multi-step routes that lead to hydrogen from catalytic

pyrolysis of biomass is presented in Fig. 5.6.

As can be seen, after the pyrolysis stage, three main alternatives have been

proposed by various research groups in the literature, which ultimately can be

divided into two: catalytic reforming of bio-oil, fractions of it or from its resulting

products after a preliminary thermal processing of the bio-oil (pre-reforming), and

direct catalytic cracking of the bio-oil. In all these cases, different reactor config-

urations and designs have been proposed in addition to the significant efforts made

by many researchers for developing suitable catalysts for these processes, as

previously discussed in this chapter.

All these routes necessarily require a downstream gas conditioning step if high-

purity hydrogen is sought. Conventional hydrogen purification processes include

further processing downstream of the hydrogen-rich product gas in catalytic water-

gas-shift (WGS) reactors [62] and use of hydrogen-selective membranes [63] or

pressure-swing adsorption (PSA) equipment [64, 65], among others.
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Fig. 5.5 Hydrogen yield generated in one-step pyrolysis processes
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5.5.1 Catalytic Steam Reforming of Bio-Oil

The first studies on hydrogen production from multi-step processes involving

biomass pyrolysis were pioneered in 1993 by the National Renewable Energy

Laboratory (Colorado, USA) [66, 67]. The strategy proposed by the research

group led by Chornet is the catalytic steam reforming of the liquid pyrolysis

products or its fractions. A separation of the bio-oil into two phases by water

addition was used. The lignin-derived fraction would be devoted to the production

of value-added chemicals, benefitting from a high content in phenolic compounds,

whereas the carbohydrate-rich aqueous fraction would be subjected to catalytic

steam reforming in a process similar to that employed in the production of hydrogen

by catalytic steam reforming of natural gas and naphthas [35, 68].

The initial works of this group [34–36] preliminarily explored this process by

means of thermodynamic analyses and also conducting experimental tests in a

laboratory scale, using a dual fixed-bed quartz microreactor system coupled to a

molecular beam mass spectrometer (MBMS). A detailed description of the setup

can be found, for example, in the work of Wang and co-workers [34], where the

possible reaction mechanisms for producing hydrogen were discussed in depth after

conducting the steam reforming of bio-oil model compounds (acetic acid and

hydroxyacetaldehyde). Further on, a catalytic fixed-bed reactor setup at bench

scale was used in the catalytic steam reforming tests using the aqueous fraction

of poplar bio-oil produced at NREL [36]. Screening of catalysts, feedstocks, and

operating conditions was initially conducted with different oxygenates used as

model compounds [35], representative of the complex composition of bio-oils,

and subsequently extended to the aqueous fraction of bio-oil [36]. Both commercial

Biomass Pyrolysis Bio -oil

PRE -REFORMER (S)FRACTIONATION
CATALYTIC 
CRACKING

CATALYTIC STEAM/AQUEOUS PHASE 
REFORMING

HYDROGEN

GAS CONDITIONING: WGS REACTOR, PURIFICATION SYSTEMS 
(PSA CYCLES , MEMBRANES, ETC .)

Fig. 5.6 Scheme of multi-step pyrolysis processes for H2 production
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and research Ni-based catalysts were tested, along with a commercial

low-temperature shift conversion Cu-based catalyst [35].

In that work, two possible alternatives for hydrogen production from biomass

pyrolysis oil were proposed: a regionalized system consisting of small- to medium-

scale pyrolysis units coupled to a centralized large-scale catalytic reforming unit, in

which the fractionation step would be carried out and subsequently the aqueous

fraction of bio-oil would be processed for producing hydrogen. The other envisaged

possibility was an integrated system consisting of larger processing plants in which

biomass would be directly converted to hydrogen having all the necessary steps:

pyrolysis reactor coupled to a catalytic reformer in which pyrolysis vapors would

yield hydrogen via steam reforming. Given the intrinsic characteristics of biomass

(low energy content, dispersed localization of the feedstock, etc.), from the feasi-

bility analysis carried out, it was concluded that the first alternative was more

adequate for producing hydrogen from biomass pyrolysis.

Later on, Czernik et al. [68] proposed a different configuration for the catalytic

steam reforming reactor, as a result of the major problem encountered in their

previous works, which is catalyst deactivation caused by the formation of carbo-

naceous deposits. Thus, it was proposed that a fluidized bed reactor could be a more

appropriate configuration for the catalytic reformer. As a result, that work and the

subsequent works of this group [69–71] focused on the development of suitable

catalysts for steam reforming of oxygenates using both a microscale fixed-bed

reactor configuration and a 2-in.-diameter fluidized bed reactor setup. A different

approach for hydrogen production via distributed bio-oil reforming was further

followed by this group, which will be discussed in depth later.

Following the approach of catalytic steam reforming of bio-oil or fractions of it,

different research groups have also explored this route ever since. Universidad de

Zaragoza (Zaragoza, Spain) worked on the development of suitable catalysts for the

process using different process configurations as a result of collaborations with

NREL [33].

Afterwards, the research conducted by Universidad de Zaragoza focused on the

development of Ni-based catalysts using both a small bench-scale fixed-bed unit

[50, 72–76] and a bench-scale fluidized bed setup [76–82]. The fluidized bed setup

included a feeding system consisting of a quartz coaxial injection nozzle made of

four concentric tubes which helped feeding the liquid feed in the form of spray

while avoiding clogging as a result of the refrigeration supplied by the external

cooling jacket formed by the outer tubes.

These studies aimed at the development of catalysts with good activity and

selectivity to hydrogen, as well as resistant to deactivation by coke deposition and

to attrition. The effect of the Ni content on the carbon conversion to gas and the

product gas yields, especially H2, was studied. Furthermore, the incorporation of

modifiers to the catalysts was also explored in various works in order to, on the one

hand, decrease the formation of carbonaceous deposits on the catalyst surface and,

on the other hand, increase the mechanical resistance of the catalysts, thus devel-

oping more stable catalysts that ultimately could be used in the fluidized bed reactor

during longer operation times. Other works can be found in the literature aiming at
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the development of suitable catalysts using fixed-bed reactors, both with model

compounds [22, 25, 26, 83–86] and with bio-oil or fractions of it [22, 25, 27, 87–

91]. Li et al. [92] conducted the catalytic steam reforming of the aqueous fraction of

bio-oil using various Ni-based and dolomite catalysts in a stainless steel lab-scale

fluidized bed reactor. A similar approach was followed by Xu et al. [93] using

sieved particles obtained from a milled commercial NiO/MgO catalyst for the

steam reforming of bio-oil from rice husk. Panigrahi et al. at the University of

Saskatchewan also conducted steam gasification of bio-oil aiming at hydrogen

production in an Inconel tubular reactor containing a noncatalytic fixed bed

[94]. The reaction bed was composed of quartz chips, but the possible catalytic

wall effect provoked by the presence of active metals such as Ni, Cr, Fe, or Mn in

the Inconel alloy was not discussed.

Other alternative configuration is that proposed by the University of

Thessaloniki and the Centre for Research and Technology Hellas (CERTH) from

Greece. The production of hydrogen was investigated in a spouted bed reactor at a

pilot scale [95, 96]. The reactor was made of stainless steel and has two differen-

tiated parts: an inverted conical base followed by a 0.05-m inner diameter cylin-

drical part. The main advantage of such reactor configuration compared to others is

related to the efficient heat recirculation caused by the particular solids dynamics in

the spouted bed reactor. On the negative side, spouted bed reactors, similarly to

what occurs in fluidized bed configurations, present significant catalyst losses as a

result of attrition, which compromises the scale-up and development of such

processes at full scale.

These authors explored the steam reforming of model compounds and of the

aqueous fraction of bio-oil at atmospheric pressure, varying the usual operating

process parameters and also studying the addition of small amounts of oxygen

(temperature, steam to carbon molar ratio, and oxygen to carbon ratio). Different

catalysts were tested, both commercial and other Ni based prepared over various

supports. The authors reported good results in terms of limiting the formation of

carbonaceous deposits as a result of the type of reactor used, while particularly a

Ni/olivine catalyst presented an adequate mechanical resistance to attrition and

yielded the most promising results using model compounds. However, the results of

the catalytic steam reforming tests using the aqueous fraction of pine bio-oil

reflected a low reforming activity and, subsequently, low hydrogen yields.

The University of Twente (Netherlands) also developed an interesting proof of

concept for hydrogen production from catalytic pyrolysis of biomass

[97, 98]. Instead of bio-oil fractionation followed by catalytic steam reforming,

the group led by Van Swaaij proposed a different approach, aiming at an industrial

development of hydrogen production from bio-oil. A two-stage reactor concept

consisting of a sand fluidized bed and a catalytic fixed bed was developed. The

proposed alternative aimed at overcoming two main problems. On the one hand,

large-scale fixed-bed reactors would require a high heat supply at the entrance of

the reactor, which could result in a significantly lowered temperature at that point.

On the other hand, decoupling of the evaporation, primary pyrolysis oil conversion,

and gas conditioning enabled to diminish significantly the catalyst deactivation by
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deposition of coke on the catalyst surface, since the preliminary cracking of

organics from the bio-oil upon heating took place in the inert bed of the fluidized

reactor, and simpler molecules could be reformed in the catalytic fixed bed. This

also made it unnecessary to develop catalysts with increased mechanical strength.

The two-stage reactor was also proposed by Wu et al. [99], though in this case,

both primary and secondary reformers were two catalytic fixed-bed reactors made

of stainless steel. The concept proposed by the authors aimed at preserving the

steam reforming catalyst operating lifetime by including a low-cost primary

reforming catalyst (olivine) that could prevent the Ni-based catalyst in the second-

ary reformer from rapid deactivation by coke formation. Kan et al. [100] also

proposed a dual fixed-bed configuration with two reaction beds in a tubular quartz

reactor at lab scale, though in this case the first reaction bed contained quartz sand,

thus serving for the vaporization and cracking of the crude bio-oil, and in a second

catalytic bed, containing a NiCuZnAl catalyst, steam reforming of the bio-oil

vapors took place. More recently, researchers from the University of the Basque

Country (Spain) have also explored this approach [101, 102], by using a two-reactor

configuration composed of a fixed-bed pre-reformer (thermal step) containing an

inert filler (e.g., glass spheres) operating at low temperature (between 200 and

400 �C) and a catalytic fluidized bed reactor for the steam reforming of the bio-oil

vapors using Ni-based catalysts.

Another interesting possibility is the cyclic operation of the catalytic fixed-bed

reactor by means of developing a chemical looping steam reforming process

[103]. This cyclic approach is similar to that initially proposed by the group of

Mirodatos for catalytic cracking of the crude bio-oil [41], which will be further

discussed. The authors claimed that it is possible to use a Ni-based steam reforming

catalyst as an oxygen transfer material operating in a series of cycles of reduction/

oxidation. The bio-oil would be steam reformed during the reduction step, in which

the catalyst could be reduced during the beginning of the step and afterwards the

catalyst could be regenerated in the oxidation step by burning off the carbonaceous

deposits formed on the catalyst surface.

Other reactor configurations include a Y-shaped dual catalytic reactor proposed

by Hu and Lu that aimed at combining steam reforming of bio-oil and dry reforming

of bio-oil using CO2 [104]. In one branch of the Y-shaped reactor, there is a

catalytic fixed-bed reactor (catalytic bed I), in which steam reforming of bio-oil

takes place (partial oxidation and oxidative steam reforming are suggested as

alternative processes that could take place in this catalytic fixed bed with the

pertinent selection of catalysts and reactants). In the second branch acting as

inlet, another portion of the bio-oil would directly be fed into the reactor for

conducting catalytic dry reforming using the CO2 from the product gas stream

coming out of the catalytic bed I. The catalytic dry reforming takes place in the last

section of the reactor, where a second catalytic fixed bed (catalytic bed II) is placed.

Rather than focusing on the production of hydrogen, the goal is to produce syngas,

though by varying the process conditions the syngas could have different H2/CO

molar ratios.
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From an industrial point of view, the most adequate configuration for the bio-oil

steam reforming unit is probably that following a similar approach to what the

University of Twente proposed. Thus, the industrial unit should have a pre-reformer

plus a main catalytic steam reformer, since it would be more flexible in terms of

admitting various feedstocks, would mitigate the catalyst deactivation by carbon

formation, and could have a better energy efficiency, while benefiting at the same

time from a smaller size of the main reformer [105]. This could enhance the

economic viability of the process. Trane et al. [105] proposed a simple flow sheet

of a two-reactor industrial plant for the steam reforming of bio-oil in which the

production of hydrogen takes place in three steps: a low-temperature steam

reforming reactor (pre-reformer), a high-temperature reformer, and a

low-temperature shift reactor. An optional downstream desulfurization reactor

was proposed in two possible locations: after the pre-reformer or right after the

water-gas-shift reactor.

5.5.2 Catalytic Cracking of Bio-Oil

A different approach was proposed by the group of Mirodatos from the Catalysis

Research Institute in France [41, 106, 107]. The group proposed an alternative

strategy, which is to control the carbon deposition during a cracking step and to

frequently regenerate the catalyst, in resemblance to the catalytic cracking of

methane for hydrogen production. Therefore, the continuous hydrogen production

process requires at least two (or more) parallel reactors. In one reactor the catalytic

cracking reaction producing hydrogen is taking place, while on the other reactor,

the coke is gasified or burned in order to restore the catalytic activity, periodically

switching the cracking/regeneration cycle in each reactor. Thus, this approach is

claimed to operate in autothermic regime, with the combustion of the coke during

the regeneration step in one of the reactors supplying the necessary heat for the

cracking hydrogen production step in the other reactor.

This group designed a double-walled stainless steel tubular reactor at laboratory

bench scale that had an external cooling jacket using water as refrigerant in order to

inject bio-oil at temperatures below 50 �C, thus avoiding undesired polymerization

of bio-oil and clogging of the reactor. Bio-oil without any further addition of water

was injected by means of a syringe pump through a capillary located on top of the

catalytic fixed-bed reactor.

Recently, the research team led by Czernik at the National Renewable Energy

Laboratory (USA) has proposed a different strategy, which is based on distributed

bio-oil reforming aiming at developing an integrated system that will provide

distributed production of hydrogen [108]. The project tackles the challenge of

hydrogen production in a dispersed manner by converting bio-oil to H2 at a targeted

total dispensed hydrogen cost between 2 and 4 US$/kg of H2 (produced, delivered,

and dispensed, but untaxed). The rationale of the work lies on the much easier

transportation of liquid bio-oil to scattered points in which H2 may be required (e.g.,
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fueling stations), which could be delivered and stored in order to be processed into

hydrogen in the vicinity of the demanding points.

The proof of concept aims at developing a compact, low-capital cost and little-

to-none maintenance process. The proposed schematic flow diagram comprises a

multi-step approach, in which bio-oil (blended with an alcohol, such as methanol,

so as to control the physical and chemical properties of the liquid, namely, viscos-

ity) is firstly volatilized using ultrasonic atomization in a nozzle evaporator oper-

ating at temperatures around 400 �C. The vapors would flow through a hot filter at

operating temperatures between 400 and 600 �C in order to collect solid char

formed during the volatilization process. The next step includes a catalytic partial

oxidation/steam reforming packed-bed reactor operating at 800–850 �C in auto-

thermal regime (by adding small amounts of air that will burn part of the feed and

thus provide the necessary heat for maintaining the process in autothermal regime).

The catalyst would either be a Ni-based or a Pt-based. The authors claim that the

best results to date have been obtained in preliminary tests in a bench-scale reactor

system using the latter (a Pt-based commercial catalyst supplied by BASF). The

other elements from the system include a third step consisting of a catalytic WGS

packed-bed reactor operating at 350 �C and further separation and purification of

hydrogen from the product gas stream by means of an electrochemical separator.

5.5.3 Other Approaches

The production of hydrogen by means of aqueous phase catalytic reforming of

bio-oil was explored by the University of Massachusetts [109]. The concept of

aqueous phase reforming of biomass oxygenates derives from the preliminary

studies on hydrogen production by biomass supercritical water gasification devel-

oped by the research group led by Antal [110]. Later on, the research group led by

Dumesic at the University of Wisconsin extensively developed the concept of

catalytic reforming of oxygenates in liquid phase [111–113].

The idea is to conduct the catalytic reforming in liquid medium by using

moderate pressures, typically in the range of 1500–5000 kPa, and thus diminishing

the reforming temperature to values around 500 K. The tubular reactor has an

upflow packed catalytic bed configuration and is made of stainless steel due to the

pressurized conditions. A gas-liquid separator is necessary in order to obtain the

H2-rich product gas. In the work of the research group led by Huber [109], a diluted

aqueous fraction of bio-oil (a concentration of around 4–5 % of bio-oil in the

solution) was subjected to aqueous phase reforming for producing hydrogen over

a 1 wt.% Pt/Al2O3 catalyst, with mixed results. The authors reported low conver-

sions, but high hydrogen selectivity. A process flow diagram for the development of

a bio-oil aqueous phase reforming process was proposed in the PhD thesis devel-

oped by Vispute [114].

Other alternative concepts deal with alternative means for supplying the neces-

sary heat for the reforming reactions, namely, by using an annular Ni-Cr electric
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wire through which an alternative electric current passes [100, 115] or use of

microwave power [47].

5.6 Concluding Remarks and Future Outlook

There are many research works that have studied hydrogen production from

catalytic biomass pyrolysis.

Of the two approaches for producing hydrogen from pyrolysis of biomass, the

multi-step can benefit from the economy of scale, as lignocellulosic biomass is a

naturally dispersed resource, and transporting bio-oil to a central reforming unit, of

bigger size, could be economically more favorable. Thus, bio-oil is the most

important intermediate in the multi-step processes of catalytic biomass pyrolysis.

Catalysts are a key point in the process, and due to the heterogeneity of biomass

available and the different processes, at this moment it has to be tailor-designed for

each application. Research in new processes and new catalyst formulations is

required to solve the inconveniences of catalyst deactivation, although studies are

already being carried out in this direction.

There is lack of economy and energy analyses that can help to spur research and

focus efforts on industrial application. Hydrogen is an important raw gas with

application both in chemical synthesis and as a fuel in high efficiency systems

such as fuel cells. The depletion of oil will increase even more the interest in

hydrogen from renewable sources with pilot or demonstration scale plants probably

becoming feasible as the price of oil rises.
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