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1 Introduction

By all standards, quantum theory is one of the most successful theories of physics.
It provides the basis of particle physics, chemistry, solid state physics, and it is of
paramount importance for many technological achievements. So far, all experiments
have confirmed its universal validity in all parts of our physical world. Unfortunately,
quantum theory is also one of the most mysterious theories of physics.

In the text books, quantum theory is usually introduced by stating several abstract
mathematical postulates: States are unit vectors in a complex Hilbert space; probabil-
ities are given by the Born rule; the Schrödinger equation describes time evolution
in closed systems, to name just some of them. As many students recognize—and
experienced researchers over the years sometimes tend to forget—these postulates
seem arbitrary and do not have a clear meaning. It is true that they work very well and
are in accordance with experiments, but why are they true? Why is nature described
by these counterintuitive laws of complex Hilbert spaces?

What at first sight seems to be a physically vacuous, philosophical question is in
fact of high relevance to theoretical physics, in particular for attempts to generalize
quantum theory. There have been several attempts in the past to construct natural
modifications of quantum theory—either to set up experimental tests of quantum
physics, or to adapt it in a way which allows for easier unification with general
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relativity. However, modification of quantum theory turned out to be a surprisingly
difficult task.

A historical example is given by Weinberg’s [1] non-linear modification of quan-
tum theory. Only a few months after his proposal was published, Gisin [2] demon-
strated that the resulting theory has an unexpected poisonous property: it allows
for superluminal signalling. It can be shown in general that other proposals of this
kind must face a similar fate [3]. It seems as if the usual postulates of quantum
theory are intricately intertwined, in a way such that modification of one postulate
makes the combination of the others collapse into a physically meaningless–or at
least problematic–theory.

One possible way to overcome this difficulty is to find alternative postulates for
quantum theory that have a clear physical interpretation and do not refer to themathe-
matical structure of complexHilbert spaces. The search for simple operational axioms
dates back to Birkhoff and vonNeumann [4], and includes work byMackey [5], Lud-
wig [6], Alfsen and Shultz [7] and many others. The advent of quantum information
theory initiated new ideas and methods to approach this problem, resulting in the
pioneering work by Hardy [8], and a recent wave of axiomatizations of quantum
theory, including Dakić and Brukner’s work [9], our result [10], the reconstruction
by the Pavia group [11], alternative formulations by Hardy [12, 13] and Zaopo [14].

In this paper, we give a self-contained summary of our results in [10], where
we derive the formalism of quantum theory from four natural information-theoretic
postulates. They can loosely be stated as follows:

1. The state of a composite system is characterized by the statistics of measurements
on the individual components.

2. All systems that effectively carry the same amount of information have equivalent
state spaces.

3. Every pure state of a system can be transformed into every other by continuous
reversible time evolution.

4. In systems that carry one bit of information, all measurements which give non-
negative probabilities are allowed by the theory.

Below,we showhow to derive the usual formalism of quantum theory from these pos-
tulates. Surprisingly, the complex numbers and Hilbert spaces pop out even though
they are not mentioned in the postulates. This is true for all the axiomatization
approaches mentioned above, starting with Hardy’s work [8]: these results allow us
to gain a better understanding of the usual quantum formalism, and resolve some of
the mystery around ad hoc postulates like the Born rule.

Every axiomatization has its own benefits.We think that themain advantage of our
work [10]—as described in this paper—is its parsimony: our postulates are close to a
minimal set of postulates for quantum theory. Accomplishing the goal of minimality
would mean to have a set of axioms such that dropping or weakening any one of
the axioms will always yield new solutions in addition to quantum theory. Currently,
we do not know if we have actually achieved this goal, though we think that we are
pretty close to it (this will be discussed in more detail in Sect. 6). Our attempt to have
as few assumptions as possible is also reflected in the background assumptions: for
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example, we do not assume apriori that the composition of three systems into a joint
system is associative, or that pairs of generalized bits admit an analogue of a “swap”
operation.

Our result suggests an obvious method to obtain natural modifications of quantum
theory: drop or weaken one of the postulates, and work out mathematically what the
resulting set of theories looks like. It is clear that minimality of the axioms (in the
sense just described) is crucial for this method. In contrast to the usual formulation of
quantum theory, we know for sure that the corresponding alternative “post-quantum”
theories are consistent and do not allow for superluminal signalling as in Weinberg’s
approach. This is due to the fact that the no-signalling principle is built in as a
background assumption. In a way, those theories will be “quantum theory’s closest
cousins”: they are not formulated in terms of Hilbert spaces, but share as many
characteristic features with quantum theory as possible.

As the simplest possible modification, suppose we drop the word “continuous”
from Postulate 3—that is, we allow for discrete reversible time evolution. Then
another solution in addition to quantum theory appears: in this theory, states are
probability distributions, and reversible time evolution is given by permutations of
outcomes. This is exactly classical probability theory on discrete sample spaces. It
turns out to be the unique additional solution in this case.

2 What Do We Mean by “Quantum Theory”?

When talking about axiomatizing quantum theory, there is sometimes confusion
about what we actually mean by it. The term “quantum theory” arouses association
with many different aspects of physics that are usually treated in quantummechanics
text books, such as particles, the hydrogen atom, three-dimensional position and
momentum space and many more.

However, a more careful definition should apply here. As an analogy, consider the
theory of statistical mechanics. This theory consists of an application of probability
theory to mechanics, which means in particular that abstract probability theory can
be studied detached from statistical physics—and this has been done in mathematics
for a long time.

Similarly, we can consider quantummechanics to be a combination of an abstract
probabilistic theory—quantum theory—and classical mechanics. Abstract quantum
theory can be studied detached from its mechanical realization; the main difference
to the previous example lies in the historical fact that the development of quan-
tum mechanics preceded that of abstract quantum theory. In this terminology, we
understand by “quantum theory” the statement that

• states are vectors (resp. density matrices) in a complex Hilbert space,
• probabilities are computed by the Born rule resp. trace rule,
• the possible reversible transformations are the unitaries,
• measurements are described by projection operators, and thus observables are
given by self-adjoint matrices.
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The “classical mechanics” part, on the other hand, determines the type of Hilbert
space to consider (such as L2(R3)), the choice of “Hamiltonians” H which generate
the time evolution,U (t) = exp(i Ht), and the choice of initial states of that time evo-
lution. This conceptual distinction has proven particularly useful in the development
of quantum information theory. It seems that this distinction was always implicit
when expressing the desire to “quantize” any classical physical theory, that is, to
combine it with abstract quantum theory.

Thus, since we are aiming for a reconstruction of abstract quantum theory, we
will not refer to position, momentum, or Hamiltonians in this paper. Instead, we
only use the notions of abstract probability theory: of events, happening with certain
probabilities, and of transformations modifying the probabilities. Furthermore, we
restrict our analysis to finite-dimensional systems: we argue that the main mystery is
why to have a complex Hilbert space at all. If this is understood in finite dimensions,
it seems only a small conceptual (though possibly mathematically challenging) step
to guess the correct infinite-dimensional generalizations.

Since we presuppose probabilities as given, we also do not address the ques-
tion where these probabilities come from. Hence we also ignore the question about
what happens in a quantum measurement, and all other interpretational mysteries
encompassing the formulation of quantum theory. Instead, we restrict ourselves to
ask how the mathematical formalism of quantum theory can be derived from simpler
postulates, and what possible modifications of it we might hope to find in nature.

Questions that we would like to address:

• Howcanwe understand (that is, derive) the complexHilbert space formalism
from simple operational assumptions on probabilities?

• What other probabilistic theories are operationally closest to quantum
theory?

Questions/problems that we do not address:

• How should we interpret “probability”, and where does it come from?
• The measurement problem.
• Interpretation of quantum mechanics.

In order to formulate our postulates, weworkwith a simple and general framework
encompassing all conceivable ways to formulate physical theories of probability: this
is the framework of generalized probabilistic theories.

3 Generalized Probabilistic Theories

Classical probability theory (abbreviated CPT henceforth) is used to describe
processes which are not deterministic. This is achieved by assuming a particu-
lar mathematical structure: a probability space with a unique fixed probability
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Fig. 1 General experimental set up. From left to right there are the preparation, transformation
and measurement devices. As soon as the release button is pressed, the preparation device outputs
a physical system in the state specified by the knobs. The next device performs the transformation
specified by its knobs (which in particular can be “do nothing”). The device on the right performs
the measurement specified by its knobs, and the outcome (x or x̄) is indicated by the corresponding
light

measure, which is used to assign probabilities to all randomvariables. The framework
of generalized probabilistic theories [4, 5, 8, 15–18] generalizes this approach in a
simple way. We will now give a brief introduction to this framework, built on gen-
eral considerations of what constitutes an experiment in physics. For more detailed
introductions, we refer the reader to [16, 17], and for nice presentations of the main
ideas to [21, 22].

In order to set up a common picture, we consider Fig. 1 as the model for what
constitutes a physical experiment. This is just an illustration: the events that we
describemay aswell be natural processes that happenwithout humanor technological
intervention.

The main idea (cf. Fig. 1) is that physical systems can cause objective events
which we call “measurement outcomes”—for example clicks of detectors. We say
that two systems are in the same state ω if all outcome probabilities of all possible
measurements are the same. In order to test this empirically, we always assume that
we can prepare a physical system in a given state as often as wewant. That is, wemay
think of a preparation device which produces a physical system in a particular state.

3.1 States and Measurements

Single outcomes of measurements are called effects, and are denoted by uppercase
letters such as E . The probability of obtaining outcome E , ifmeasured on stateω, will
be denoted E(ω). Thisway, effects becomemaps from states to probabilities in [0, 1].

What can we say about the set of all possible states ω in which a given system can
be prepared? Suppose we have two preparation devices; one of them prepares the
system in some state ω, the other one prepares it in some state ϕ. Then we can use
these devices to construct a new device, which tosses a coin, and then prepares either
state ω with probability p ∈ [0, 1], or state ϕ with probability 1− p. We denote this
new state by
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ω′ := pω + (1 − p)ϕ.

Clearly, if we apply a measurement on ω′, we get outcome E with probability

E(ω′) = pE(ω) + (1 − p)E(ϕ).

Thus, by this construction, we see that states ω become elements of an affine space,
and effects E are affine maps. The set of all possible states—called the state space
S— will be a subset of this affine space. We have just seen that ω ∈ S and ϕ ∈ S
imply pω + (1− p)ϕ ∈ S if 0 ≤ p ≤ 1; that is, state spaces are convex sets (similar
reasoning is given in [8, 17, 19]).

In principle, state spaces can be infinite-dimensional (and in fact, inmany physical
situations, they are). However, in this paper, we will only consider finite-dimensional
state spaces. Then, states ω are determined by finitely many coordinates, and wemay
use this to construct amore concrete representation of states. Denote the dimension of
a state spaceS by d. Then, by choosing d affinely independent effects E1, . . . , Ed , the
probabilities E1(ω), . . . , Ed(ω)determineω uniquely.Wenowuse the representation

ω =

⎡
⎢⎢⎢⎢⎢⎣

1
E1(ω)
E2(ω)

...

Ed(ω)

⎤
⎥⎥⎥⎥⎥⎦

=:

⎡
⎢⎢⎢⎢⎢⎣

1
ω1

ω2
...

ωd

⎤
⎥⎥⎥⎥⎥⎦

∈ S ⊂ R
d+1. (1)

The choice of E1, . . . , Ed is arbitrary, subject only to the restriction that they are
affinely independent. We call a set of effects with this property fiducial, and we refer
to E1(ω), . . . , Ed(ω) as fiducial outcome probabilities [8]. The component ω0 := 1
has been introduced for calculational convenience: it allows us to write the affine
effects E as linear functionals on the larger space R

d+1. It will also turn out to be
particularly useful in calculations involving composite state spaces.

In the following, we will assume that state spaces S are topologically closed and
bounded, i.e. compact (for a physical motivation see [10]). The extremal points of
the convex set S will be called pure states; these are states ω which cannot be written
as mixtures pϕ + (1− p)ϕ′ of other states ϕ �= ϕ′ with 0 < p < 1. It follows from
the compactness of S that every state can be written as a convex combination of at
most d + 1 pure states [20].

Measurements with n outcomes are described by a collection of n effects
E1, E2, . . . , En with the property E1(ω) + E2(ω) + . . . + En(ω) = 1 for all states
ω. This expresses the fact that outcome i happens with probability Ei (ω), and the
total probability is one. Note that two effects E and F can only be part of the same
measurement if E(ω) + F(ω) ≤ 1 for all states ω. Sets of fiducial effects (as intro-
duced above) do not necessarily have this property. A single effect E is always part
of a measurement with two outcomes E and Ē , where Ē(ω) := 1 − E(ω).
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Fig. 2 Examples of convex
state spaces: a is a classical
bit, b and c are classical
3- and 4-level systems, d is a
quantum bit, e is the
projection of a qubit, f and
g are neither classical nor
quantum. Note that quantum
n-level systems for n ≥ 3 are
not balls

(a) (b) (c)

(d) (e) (f) (g)

Figure2 gives some examples of convex state spaces. First, consider a classical
bit, which is described within CPT. We can think of a coin which shows either heads
or tails; in general, it can be in one of those configurations with some probability.
The probability p of showing heads determines the state uniquely, since the tails
probability must be 1− p. Thus, p ∈ [0, 1] is a fiducial probability; recalling (1), we
can represent states as ω = [1, p]T. This yields a one-dimensional state space, with
two pure states [1, 0]T and [1, 1]T, corresponding to coins which deterministically
show heads or tails. It is depicted in Fig. 2a.

Similarly, classical n-level systems have states which correspond to probability
distributions p1, . . . , pn . Since pn = 1− (p1 + · · · + pn−1), the numbers p1, . . . ,

pn−1 are fiducial outcome probabilities, yielding states ω = [1, p1, . . . , pn−1]T.
Geometrically, the resulting state spaces are simplices. They are depicted in Fig. 2b,
c for n = 2 and n = 3.

Quantum systems look very different: as it is well-known, states of quantum 2-
level systems, i.e. qubits, can be parametrized by a vector �r ∈ R

3 with |�r | ≤ 1, such
that every density matrix can be written ρ = (1 + �r · �σ)/2, with �σ = (σx ,σy,σz) the
Pauli matrices. Thus, we can use the vector [1, r ′

x , r ′
y, r ′

z]T to represent states, where
r ′

i := (1 + ri )/2 is the probability to measure “spin up” in i-direction. This state
space is the famous (slightly reparametrized) Bloch ball, cf. Fig. 2d.

Figure2e shows a state spacewhich is a projection of theBloch ball: it corresponds
to the effective state space that we obtain if, for some reason, spin measurements in
z-direction are physically impossible to implement, with states ω = [1, r ′

x , r ′
y]T. The

square state space in Fig. 2f describes a system for which there exist two independent
effects, say X and Y , that can yield probabilities X (ω) and Y (ω) in [0, 1] arbitrarily
and independently from each other. States will be of the form ω = [1,ωx ,ωy]T, with
ωx = X (ω) and ωy = Y (ω).

Consider the two yes-no-measurements which correspond to the effects X and
Y ; we can interpret these as spin measurements in two orthogonal directions, with
“yes”-outcome X or Y for “spin up”, and “no”-outcome X̄ or Ȳ for “spin down”. If
we perform either one of these measurements on the state ω = (1, 1, 1), then we will
get the “yes”-outcome with unit probability – and this is true for both measurements.
If we consider the analogous measurements on the circle state space, we see that the
corresponding behavior becomes impossible: if one of the spin measurements yields
outcome “yes” with certainty, then the other spin measurement must give outcome
“yes” with probability 1/2. This follows from r2x + r2y ≤ 1.
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Thus, the circle state space shows a form of complementarity, which is not present
in the square state space. As this example illustrates, the state space of a physical
system determines many of its information-theoretic properties. Given a description
of the state space S, we can also determine the set of all linear functionals which map
states to the unit interval [0, 1], that is, the candidates for possible effects. However,
not all of them may be possible to implement in physics: maybe some of them are
“forbidden”, similarly as superselection rules forbid some superpositions in quantum
mechanics. Therefore, to every given state spaceSA, there is a set of “allowed effects”
which are interpreted as those that can actually be physically performed.

We introduce some notions which will be useful later: A set of states ω1, . . . ,ωn

is called distinguishable if there is a measurement with outcomes represented by
effects E1, . . . , En , such that Ei (ω j ) = δi j , which is 1 if i = j and 0 otherwise. The
interpretation is that we can build a device which perfectly distinguishes the different
states ω j . Given a physical system A, we define the capacity NA as the maximal size
of any set of distinguishable states ω1, . . . ,ωn ∈ SA. A measurement which is able
to distinguish NA states (that is, as much as possible) will be called complete. For
a quantum state space, NA equals the dimension of the underlying complex Hilbert
space.

We denote the real vector space which carriesSA by VA. Then effects are elements
of the dual space V ∗

A . For a quantum N -level system, VA is the real vector space of
Hermitian N × N -matrices with complex entries. Following Wootters and Hardy
[8, 23], we also use the notation K A := dim VA = dim(SA)+1, that is the number of
degrees of freedom that is necessary to describe an unnormalized state. For a qubit,
for example, we have NA = 2, but K A = 4. In quantum theory, K A = N 2

A equals the
number of independent real parameters in a density matrix (dropping normalization).
In classical probability theory, we always have K A = NA.

3.2 Transformations

A transformation is a map T which takes a state to another state. Which transfor-
mations are actually possible is a question of physics. However, there are certain
minimal assumptions that every transformation must necessarily satisfy in order to
be physically meaningful in the context of convex state spaces. First, transformations
must respect probabilistic mixtures—that is,

T (pω + (1 − p)ϕ) = pT (ω) + (1 − p)T (ϕ).

This is because both sides of the equation can be interpreted as the result of randomly
preparingω orϕ (with probabilities p resp. 1− p) and applying the transformation T .
Thus, transformations (from one system to itself) are affine maps which map a state
space SA into itself; we can always assume that they are linear maps T : VA → VA.

If both T and T −1 are physically allowed transformations, we call T reversible.
The set of reversible transformations on a physical system A is a group GA. For phys-
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ical reasons, we assume that GA is topologically closed, hence a compact group [24]
(it may be a finite group).

Reversible transformations map a state space bijectively onto itself —hence they
are symmetries of the state space. For example, in quantum theory, reversible trans-
formations are the unitary conjugations, ρ �→ UρU †. In the Bloch ball representation
of the qubit (as in Fig. 2d), thesemaps are represented as rotations, such that the group
of reversible transformations is isomorphic to SO(3).

However, as this example also shows, not all symmetries are automatically allowed
reversible transformations: a reflection in the Bloch ball is a symmetry, but it is not
an allowed transformation (in the density matrix picture, it would correspond to an
anti-unitary map).

In summary, for what follows, a physical system A is specified by threemathemat-
ical objects: the state space SA, the group of reversible transformations GA (which
is a compact subgroup of all symmetries of SA), and a set of physically allowed
effects. The latter will not be given a particular notation, but we assume that the
set of allowed effects is topologically closed. For obvious physical reasons, if E is
an allowed effect and T ∈ GA, then E ◦ T is an allowed effect; similarly, convex
combinations of allowed effects are allowed.

3.3 Composite Systems

If we are given two physical systems A and B, we would like to define a composite
system AB which is also a physical system in the sense described above, with its
own state space SAB , group of reversible transformations GAB , and set of allowed
effects.

In contrast to quantum theory, the framework of general probabilistic theories
allows many different possible composites for two given systems A and B. Every
possible composite AB has a set ofminimal physical assumptions that it must satisfy:

• If ωA ∈ SA and ωB ∈ SB are two local states, then there is a distinguished
state ωAωB ∈ SAB which is interpreted as the result of preparing ωA and ωB

independently on the subsystems A and B.
• If E A and EB are local allowed effects on A and B, then there is a distinguished
allowed effect E A EB on AB which is interpreted as measuring E A on A and EB

on B independently, yielding the total probability that outcome E A happens on
system A, and outcome EB happens on system B.

• This intuition is mathematically expressed by demanding that

E A EB(ωAωB) = E A(ωA)EB(ωB)

where both E A EB and ωAωB are affine in both arguments. This also formalizes
the physical assumption that the temporal order of the local preparations resp.
measurements is irrelevant.
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From the previous point, we can infer that we can represent independent local prepa-
rations ωAωB and measurement outcomes E A EB by tensor products:

E A EB ≡ E A ⊗ EB, ωAωB ≡ ωA ⊗ ωB .

The vector space VAB that carries the composite state space must thus satisfy

VA ⊗ VB ⊆ VAB . (2)

For the dimensions of these spaces, we obtain

K A K B ≤ K AB . (3)

Now consider two different measurements (for simplicity with two outcomes)
EB, ĒB := 1B − EB and FB, F̄B := 1B − FB , where 1B denotes the trivial effect
on system B which yields unit probability on every normalized state. We can think
of an agent Bob, holding system B, who may decide freely (say, according to some
local random variable) whether to perform measurement EB, ĒB or FB, F̄B .

Suppose that Alice (holding system A) performs some measurement after Bob
has chosen and performed his measurement on a bipartite state ωAB . The marginal
probability that she obtains (not knowing Bob’s outcome) is the same in both cases:

E A ⊗ 1B(ωAB) = E A ⊗ EB(ωAB) + E A ⊗ ĒB(ωAB)

= E A ⊗ FB(ωAB) + E A ⊗ F̄B(ωAB).

The same holds with the roles of A and B reversed. This equation follows from our
assumptions above on how to represent local measurements.We have proven that our
assumptions imply the no-signalling property: Bob cannot send information to Alice
merely by his choice of local measurement (and vice versa). Moreover, the previous
equation shows that the outcome probabilities of all of Alice’s measurements are
described by the reduced state ωA := IdA ⊗ 1B(ωAB) (note that IdA is the identity
transformation,while 1B is a linear functional). This state corresponds to themarginal
of ωAB on A, and is uniquely characterized by the equation

E A(ωA) = E A ⊗ 1B(ωAB)

for all functionals (in particular, all allowed effects) E A.
For physically meaningful composites AB, we should demand that reduced states

ωA, ωB of all bipartite states ωAB ∈ SAB are valid local states themselves. In fact, we
will demand something which is stronger and contains this as a special case. Suppose
that Alice and Bob shareωAB and Bob performs a measurement and obtains outcome
EB . Knowing this outcome leaves a conditional state ωEB

A at Alice’s side, which by
elementary probability theory satisfies
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E A(ω
EB
A ) = E A ⊗ EB(ωAB)

1A ⊗ EB(ωAB)
. (4)

We demand that ωEB
A ∈ SA for all allowed effects EB and all ωAB ∈ SAB . The

reduced state ωA can be written

ωA = λωEB
A + (1 − λ)ω ĒB

A

with λ = 1A ⊗ EB(ωAB); thus, ωA ∈ SA by convexity.
In some situations, this condition is automatically satisfied, namely if all effects

on A and B are allowed (recall that not all effects need to be physically possible to
implement; above, we have discussed that only a subset of effectsmight be physically
allowed). The proof will also illustrate that the cone of unnormalized states is a useful
concept.

Lemma 1 Suppose that A and B are state spaces such that all effects are allowed.
Then, the inclusion of conditional states in the local state spaces follows directly from
the fact that the composite state space AB contains all product states and effects.

Proof Define the cone of unnormalized states A+ on A by

A+ := {λωA | ωA ∈ SA,λ ≥ 0}.

Since 1A(λω) = λ for ω ∈ SA, a vector ω ∈ A+ is a normalized state, i.e. ω ∈ SA,
if and only if 1A(ωA) = 1.

The cone of unnormalized effects is

A+ := {λE A | E A(ωA) ∈ [0, 1] for all ωA ∈ SA,λ ≥ 0}.

Since we have said that all effects are allowed, every linear map E A : VA → R with
E A(ω) ∈ [0, 1] is an allowed effect. The set A+ contains all non-negative multiples
of those. Both sets A+ and A+ are closed convex cones [25], where “cones” refers
to the fact that if x is in the set, then λx is also in the set for all λ ≥ 0.

It is now easy to see that A+ is the “dual cone” (A+)∗ of A+, where

(A+)∗ ≡ {E : VA → R | E(ω) ≥ 0 for all ω ∈ A+}.

Since (A+)∗∗ = A+, we get also that A+ is the dual cone of A+; in other words,

A+ = {ω ∈ VA | E(ω) ≥ 0 for all E ∈ A+}.

Recall the definition of the conditional state in (4). It follows directly from this
definition that E A(ω

EB
A ) ≥ 0 for all allowed effects E A, hence for all E A ∈ A+. But

then, we must have ωEB
A ∈ A+. Since 1A(ω

EB
A ) = 1, we get ωEB

A ∈ SA. The same
reasoning holds for B instead of A. �
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Our state spaces also carry a group of reversible transformations. If G A ∈ GA is
a reversible transformation on A, and G B ∈ GB one on B, it is physically clear that
we should be able to accomplish both transformations locally independently; i.e.,
G A ⊗ G B ∈ GAB . We will assume that composite state spaces satisfy this condition.

One of our postulates below will be the postulate of local tomography. This is an
additional condition on composites AB which is sometimes, but not always imposed
in the framework of general probabilistic theories: It states that

global states are uniquely determined by the statistics o f

local measurement outcomes.

Local measurement outcomes correspond to effects of the form E A ⊗ EB . Thus, the
postulate of local tomography states that E A ⊗ EB(ωAB) = E A ⊗ EB(ϕAB) for all
E A, EB implies that ωAB = ϕAB .

Since the E A span the dual space V ∗
A , and the EB span V ∗

B , the local measurement
outcomes span a (K A K B)-dimensional subspace of V ∗

AB :

dim span{E A ⊗ EB} = (dim V ∗
A)(dim V ∗

B ) = K A K B .

Any state ωAB ∈ SAB can thus be uniquely specified by K A K B linear coordinates

E (i)
A ⊗ E ( j)

B (ωAB), i = 1, . . . , K A; j = 1, . . . , K B;

in fact, one of these coordinates is redundant, since 1A ⊗1B(ωAB) = 1, so K A K B −1
coordinates are sufficient. Thus,we obtain an injective affinemap from the (K AB−1)-
dimensional convex set SAB into R

K A K B−1, which proves that

K AB − 1 = dim SAB ≤ K A K B − 1.

Due to Eq. (3), we obtain
K AB = K A K B .

Reading the argumentation backwards shows that this equation is in fact equivalent
to local tomography, as pointed out by Hardy [8]. It also follows from Eq. (2) that

VAB = VA ⊗ VB .

Thus, we get a certain type of tensor product rule for composite state spaces,
including 1AB = 1A ⊗ 1B . Note that this is not as strong as the tensor product rule
of quantum theory, which in addition uniquely specifies the set of global states on
composite systems. In contrast, our tensor product rule only says that the surrounding
vector spaces satisfy VAB = VA ⊗ VB , but does not uniquely specify SAB in terms
of SA and SB . In particular, classical probability theory satisfies this tensor product
rule as well. Suppose that A is a classical bit, and B is a classical 3-level system.
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Then the composite AB is classical 6-level system, i.e. K AB = 6, while K A = 2 and
K B = 3. We get K AB = K A K B , which is equivalent to local tomography.

To see that this framework allows for state spaces that are physically very different
from quantum theory, suppose that A and B are both the square state space from
Fig. 2f. Then, define the global state space SAB as the set of all vectors x ∈ AB with
E A ⊗ EB(x) ∈ [0, 1] for all effects E A and EB , and 1A ⊗1B(x) = 1 (normalization).
It turns out that this state space contains so-called PR-box states that violate the Bell-
CHSH inequality by more than any quantum states [17]. The set of states SAB itself
turns out to be the eight-dimensional no-signalling polytope for two parties with
two measurements and two outcomes each. The fact that these state spaces can have
stronger non-locality than quantum theory has been extensively studied [16, 17,
27–31] and is a main reason for the popularity of general probabilistic theories in
quantum information.

It is important to keep in mind that the conditions above do not determine the
composite state space SAB uniquely, even if SA and SB are given. For example, if SA

and SB are quantum state spaces, then the usual quantum tensor product is a possible
composite SAB , but there are infinitely many other possibilities: one of them is to
defineSAB as the set of unentangled global states. It satisfies all conditionsmentioned
above.

3.4 Equivalent State Spaces

In classical physics, choosing a different inertial coordinate system does not alter the
physical predictions of Newtonian mechanics. A similar statement is true for convex
states spaces.

Consider a system A, given by a state space SA, a group of transformations GA,
and some allowed effects. Suppose that B is another system, and suppose that there
is an invertible linear map L : VA → VB such that

• SB = L(SA),
• E A is an allowed effect on A if and only if E A ◦ L−1 is an allowed effect on B,
• GB = L ◦ GA ◦ L−1.

We will then call A and B equivalent. Physically, this means that the systems A
and B are of the same type in the following sense. Suppose that we prepare a state
ωA, perform a transformation TA, and finally ask for the occurrence of an effect E A.
The total probability of this is then the same as if we prepare the state ωB = LωA,
perform a transformation TB = L ◦ TA ◦ L−1, and ask for the occurrence of the effect
EB := E A ◦ L−1. In this sense, all physical scenarios on A can be “translated” into
physical scenarios on B, and vice versa. One may then argue that the linear map
L just mediates between two different ways of describing exactly the same type of
physical system. As an example, we may describe the state space of a qubit either
as a set of 2 × 2 density matrices, or as a set of three-dimensional real vectors, i.e.
Bloch vectors. These are two different descriptions for exactly the same physics.
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Thus, in our endeavor to derive quantum theory, we have to prove that all state
spaces satisfying our postulates are equivalent to quantum state spaces.

4 The Postulates

In this section, we describe our postulates and explain their physical meaning. We
start with an axiom on composite state spaces that has already been mentioned in
Sect. 3.3 above:

Postulate 1 (Local tomography) The state of a composite system AB is completely
characterized by the statistics of measurements on the subsystems A, B.

Thename“local tomography” comes from the interpretation that state tomography
on composite systems can be done by performing local measurements and subse-
quently comparing the outcomes to uncover correlations. As already mentioned, this
postulate is equivalent to K AB = K A K B , where K A denotes the number of degrees
of freedom needed to specify an unnormalized state on A.

Our second postulate formalizes a property of physics that physicists intuitively
take for granted, and that is in fact used very often in performing real experiments.
Imagine some physical three-level system (that is, with three perfectly distinguish-
able states and no more: N = 3) that we can access in the lab (it might be quantum,
classical, or describable within another theory). Now suppose that, for some rea-
son, we have a situation where we never find the system in the third of the three
distinguishable configurations on performing a measurement.

To have a concrete example, consider a quantum system that consists of three
energy levels which can be occupied by a single particle. Suppose the system is
constructed such that the third energy level is actually never occupied (maybe because
the corresponding energy is too high).

The consequence that we expect is the following: We effectively have a two-
level system. This is definitely true for quantum theory, and classical probability
theory, but it is not necessarily true for other generalized probabilistic theories. In
general, for any number of levels (perfectly distinguishable states) N , we expect to
have a corresponding state space SN . And the collection of states ω ∈ SN which has
probability zero to be found in the N th level uponmeasurement should be equivalent
to SN−1.

In actual physics, this property is used all the time: We apply “effective descrip-
tions” of physical systems, by ignoring impossible configurations. Qubits manufac-
tured in the lab usually actually correspond to two levels of a systemwith manymore
energy levels, set up in a way such that the additional energy levels have probability
close to zero to be occupied.

One may argue that practicing physics would be very difficult if this property did
not hold: we would then possibly have to take into account unobservable potential
configurations even if they are never seen. Their presence or absence would affect the
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resulting state space that we actually observe. The following “subspace postulate”,
first introduced by Hardy [8], formalizes this idea. It is actually somewhat stronger
than our discussion motivates: it also implies that, for every N , there is a unique type
of N -level system SN .

The notions of complete measurements and equivalent state spaces were defined
in Sects. 3.1 and 3.4.

Postulate 2 (Equivalence of subspaces) LetSN andSN−1 be systems with capacities
N and N − 1, respectively. If E1, . . . , EN is a complete measurement on SN , then
the set of states ω ∈ SN with EN (ω) = 0 is equivalent to SN−1.

The notion of equivalence needs some discussion. Postulate 2 states the equiva-
lence of SN−1 and

S ′
N−1 := {ω ∈ SN | EN (ω) = 0}. (5)

Denote the real linear space which contains SN by VN ; define VN−1 analogously, and
set V ′

N−1 := span(S ′
N−1). Equivalence means first of all that there is an invertible

linear map L : VN−1 → V ′
N−1 such that L(SN−1) = S ′

N−1. But it also means that
transformations and measurements on one of them can be implemented on the other.
We now describe in more detail what this means.

Every effect E on SN defines an effect on S ′
N−1 by restricting it to the correspond-

ing linear space, resulting in E � V ′
N−1. Equivalence implies that the resulting set of

effects is in one-to-one correspondence with the set of effects on SN−1, as described
in Sect. 3.4.

The transformations on S ′
N−1 are defined analogously. To be more specific, define

Ḡ ′
N−1 as the set of transformations in SN that preserve S ′

N−1 (or, equivalently, V ′
N−1):

Ḡ ′
N−1 := {T ∈ GN | TS ′

N−1 = S ′
N−1}.

The set of reversible transformations G ′
N−1 is defined as the restriction of all these

transformations to S ′
N−1 (or rather, as linear maps, to V ′

N−1):

G ′
N−1 = {

T � V ′
N−1 | T ∈ Ḡ ′

N−1

}
.

Equivalence means that
G ′

N−1 = L ◦ GN−1 ◦ L−1.

Concretely, ifU ∈ GN−1 is any reversible transformation on a state space of capacity
N − 1, then the transformation Ũ := L ◦ U ◦ L−1 is a reversible transformation on
S ′

N−1, i.e. Ũ ∈ G ′
N−1. As such, it can be written Ũ = T � S ′

N−1 for some reversible
transformation T ∈ GN .

It is important to note that we don’t have full information on T—that is, our
postulate does not specify T uniquely, given Ũ . By definition, T preserves S ′

N−1 and
therefore the subspace V ′

N−1, but we do not know how it acts on the complement
of that subspace—it might act as the identity there, or it might have a non-trivial
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action. Postulate 2 does not specify this. In general, there may (and will) be different
T which implement the same Ũ on the subspace.

Using Postulate 2 iteratively, we see that state spaces of smaller capacity are
included (in the sense described above) in those of larger capacity; symbolically,

S1 � S2 � S3 � . . .

Our next postulate describes the idea that any actual physical theory of probabili-
tiesmust allow for ample possibilities of reversible time evolution. In situationswhere
“no information is lost”—assuming that this situation applies to closed systems—,
these systems A must evolve reversibly, that is, according to some subgroup of the
group of reversible transformation GA. Clearly, if this group is trivial (contains only
the identity), physics becomes “frozen”: no reversible time evolution is possible at all.

Postulate 3proclaims aminimal amount of transformational richness for reversible
time evolution: as a minimal requirement, it states that the group of reversible trans-
formations should act transitively on the pure states. That is, if we prepare a pure
state ω, and ϕ is another (desired) pure state on the same state space, then there
should be a reversible transformation T which maps ω to ϕ:

Postulate 3 (Symmetry)For every pair of pure statesω,ϕ ∈ SA, there is a reversible
transformation T ∈ GA such that T ω = ϕ.

It is easy to see that Postulate 3 is true for quantum theory: every pure state can be
mapped to every other by some unitary. This example also shows that Postulate 3 is
rather weak: in quantum theory, even tuples of perfectly distinguishable pure states
ω1, . . . ,ωn can be mapped to other tuples ϕ1, . . . ,ϕn by suitable unitaries. This is a
much higher degree of symmetry than what is demanded by Postulate 3.

There is one postulate remaining. As we discussed in Sect. 3.1, given some state
space SA, not all effects (i.e. linear functionals on A which are non-negative on SA)
may be physically allowed. Similarly as for superselection rules, it might be true that
some effects are impossible to implement (an example would be a state space that
allows only noisymeasurements, and no outcomewhatsoever occurswith probability
zero).

In order for our axiomatization to work, we need to exclude this possibility: we
postulate that all mathematically well-defined effects correspond to allowed mea-
surement outcomes. As it turns out, it is sufficient to postulate this for a 2-level
system S2 (i.e. a generalized bit). In combination with the other postulates, it follows
for all other state spaces.

Postulate 4 (All measurements allowed) All effects onS2 are outcome probabilities
of possible measurements.

From a mathematical point of view, this postulate could also be regarded as a
background assumption: structurally, it says that the class of considered theories
is the class of models where the effects are automatically taken as the dual of the
states. In other words, it means that whenever we refer to “measurements” in the
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other postulates, we actually refer to collections of effects without considering the
possibility that additional physical conditions might prevent their implementation.

It is interesting to note that Postulate 4 can be replaced by a different formulation,
which has first been suggested in the axiomatization by G. Chiribella et al. [11]. It
refers to “completely mixed states”, which are states that are in the relative interior
of the convex set of states:

Postulate 4’ [11] If a state is not completely mixed, then there exists at least one
state that can be perfectly distinguished from it.

5 How Quantum Theory Follows from the Postulates

We are now ready to carry out the reconstruction of quantum theory (QT) from the
postulates. As it turns out, there will be another solution to Postulates1–4, which is
classical probability theory (CPT). By this we mean the theory where the states are
finite probability distributions, and the reversible transformations are the permuta-
tions. Figure2a–c shows what classical probability distributions look like in terms
of convex sets: they are simplices.

Therefore, we will now prove the following theorem:

Theorem 1 (Main Result) The only general probabilistic theories, satisfying Pos-
tulates1–4 above, are equivalent to one of the following two theories:

• Classical probability theory (CPT): The state space is the set of probability dis-
tributions,

SN = {(p1, . . . , pN ) | pi ≥ 0,
∑

i

pi = 1},

and the reversible transformations GN are the permutations on {1, . . . , N }.
• Quantum theory (QT): The state space SN is the set of density matrices on N-

dimensional complex Hilbert space,

SN = {
ρ ∈ C

N×N | ρ ≥ 0, Trρ = 1
}
,

and the group of reversible transformations GN is the projective unitary group,
that is, the set of maps ρ �→ UρU † with U †U = 1.

In both cases, all effects must be allowed. Working out the set of effects (that is,
linear functionals on states yielding values between 0 and 1), one easily recovers the
usual measurements of CPT and QT.

In this paper, wewill not give the full reconstruction in all details; the full proof can
be found in ourmore technical paper [10]. Instead, wewill try to give a self-contained
summary of the reconstruction, its main ideas, and some interesting observations in
the course of the argument.
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Before starting to do this, let us discuss a simple observation regarding Theorem 1.
In order to rule out CPT—and hence to single out QT uniquely—we can tighten
Postulate 3 by replacing it with the following modification:

Postulate 3C (Continuous symmetry) For every pair of pure states ω,ϕ ∈ SA, there
is a continuous family of reversible transformations {Gt }t∈[0,1] such that G0ω = ω
and G1ω = ϕ.

In other words, every pure state can be “continuously moved” into every other
pure state. A statement like this is expected to be true in physical systems with
continuous reversible time evolution—which is the case that seems to be true, to
good approximation, in our universe. The consequence is:

T he only general probabilistic theory that satis f ies

Postulates 1, 2, 3C, and 4, is quantum theory (QT ).

5.1 Why Bits are Balls

In QT, the state space of a 2-level system (that is, a generalized bit, or qubit, S2)
is a three-dimensional ball, the Bloch ball. In CPT, the (classical) bit instead is a
line segment, as shown in Fig. 2. In fact, this is a ball, too: it is a one-dimensional
unit ball. However, quantum N -level systems with N ≥ 3 are not balls: they contain
mixed states in their topological boundary [46].

We will now show that all theories satisfying our postulates must have Euclidean
ball states spaces as generalized bits. The dimension of this ballwill not be determined
yet; this will be done later on.

Our argument proceeds in two steps: first, we show that the state space S2 cannot
have lines in its boundary; that is, we exclude the fact that S2 has proper faces as
in the left picture of Fig. 3. Using convex geometry language, we prove that S2 is
strictly convex.

As a second step, we show that the symmetry property, Postulate 3, enforces S2

to be a Euclidean ball. The reason for this comes from group representation theory:
since the group of transformations acts linearly, there is an inner product such that
all transformations are orthogonal with respect to it.

Lemma 2 The state space of the generalized bit S2 is strictly convex.

Proof Consider any effect E with 0 ≤ E(ω) ≤ 1 for all states ω ∈ S2. Then this
effect belongs to a two-outcome measurement (as defined in Sect. 3.1), consisting
of the two effects E and 1 − E . It is important to understand that the level sets
{x | E(x) = c} are hyperplanes of codimension 1, due to linearity of E . This is true
for all state spaces S. On the other hand, given some hyperplane, we can construct
a corresponding effect E (with some freedom of offset and scaling) that has this
hyperplane as its level set.
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Fig. 3 Like every compact convex set, the bit state space S2 contains pure states ωe that are
exposed—that is, there is an effect Ee such that ωe is the unique state where this effects attains
value 1. Due to Postulate 2, this proves thatS1 contains a single state only. Now supposeS2 had lines
in its boundary, as in the left picture. Then we would analogously find another effect E that attains
value 1 on a non-trivial face. Consequently, Postulate 2 would tell us that S1 contains infinitely
many states—a contradiction. Thus, S2 must be strictly convex as in the right picture. Euclidean
ballness follows from group representation theory

Like every compact convex set, S2 has at least one pure state ωe which is
exposed [26]—that is, there is a hyperplane which touches the convex set only in ωe

and in no other point. Thus, we can construct an effect Ee such that the corresponding
hyperplane is {x | Ee(x) = 1}, i.e. Ee(ωe) = 1, and minω∈S2 Ee(ω) = 0. But then,
(Ee, 1 − Ee) distinguishes two states perfectly, which is the maximal number for a
bit – in other words, this is a complete measurement.

Now Postulate 2 says that

{ω ∈ S2 | (1 − Ee)(ω) = 0} = {ω ∈ S2 | Ee(ω) = 1}
= {ωe} � S1.

In other words, S1 is a trivial state space which contains only a single state. Now
suppose that S2 has lines in its boundary, and therefore non-trivial faces, as depicted
on the left-hand side of Fig. 3. Then we find a supporting hyperplane that touches S2

in infinitely many states. Constructing a corresponding effect E and repeating the
argument from above, we analogously argue that S1 must contain infinitely many
states. This is a contradiction. �

Balls do not have lines in their boundary, but there are many other strictly convex
sets—for example, imagine a droplet-like figure. However, Postulate 3 says that there
is lots of symmetry in the state space S2: all pure states (which we now know means
all states in the topological boundary due to Lemma 2) are connected by reversible
transformations.

From this, one can prove that.

Lemma 3 The state space S2 is equivalent to a Euclidean ball (of some dimension
d2 := K2 − 1).

Recall that we denote the dimension of the set of unnormalized states by KN ;
therefore, the set of normalized states SN has dimension KN − 1. We will not prove
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Lemma 3 here, but only sketch where it comes from. An important notion turns out
to be the maximally mixed state. On any state space SN , define μN as a mixture over
the group of transformations,

μN :=
∫
GN

Gω dG,

where ω ∈ SN is any pure state. This is an integral over the invariant measure of the
group; see [32, 33] for details of its definition. It follows from the connectedness of
all pure states (Postulate 3) that μN does not depend on the choice of the pure state
ω. Moreover, μN turns out to be the unique state which is invariant with respect to
all reversible transformations,

GμN = μN for all G ∈ GN .

All states ω ∈ SN span an affine space of dimension KN − 1. We can now consider
μN to be the origin of that affine space, turning it into a linear space. Then reversible
transformations G ∈ GN act linearly; they preserve the origin. States ω are repre-
sented by their difference vectors ω̂ := ω − μN that live in this linear space. If a
reversible transformation T maps ω to ϕ, then it also maps ω̂ to ϕ̂. By group repre-
sentation theory, there is an inner product on this linear space which is invariant with
respect to all reversible transformations. As a consequence, if ω and ϕ are arbitrary
pure states, then there is a reversible transformation T such that T ω̂ = ϕ̂ due to Pos-
tulate 3, and so ‖ω̂‖ = ‖ϕ̂‖ for the norm corresponding to this inner product. In the
case of a bit, i.e. N = 2, strict convexity implies that we obtain the full Euclidean ball,
with the pure states on the surface and the maximally mixed state μN in the center.

5.2 The Multiplicativity of Capacity

So far, we know that if we combine two state space A and B, the joint state space
has dimension K AB = K A K B – this is due to Postulate 1, local tomography, as
discussed in Sect. 3.3. However, we do not yet know whether the same equality is
true for capacity N . An important step in the derivation of quantum theory is to
prove this. As it turns out, a key insight is that the maximally mixed state must be
multiplicative: if we have two state spaces A and B, then the maximally mixed state
on the composite system AB (assuming our postulates) is

μAB = μA ⊗ μB .

This is easily proved from the fact thatμAB must in particular be invariantwith respect
to all local reversible transformations, leaving μA ⊗ μB as the only possibility. A
further key lemma is the following:
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Lemma 4 If there are n perfectly distinguishable pure states ω1, . . . ,ωn ∈ SN that
average to the maximally mixed state, i.e.

μN = 1

n

n∑
i=1

ωi ,

then n = N.

Proof Clearly, N ≥ n, since N is the maximal number of perfectly distinguishable
states. On the other hand, let ϕ1, . . . ,ϕN be a set of perfectly distinguishable pure
states on SN , and E1, . . . , EN the corresponding effects, i.e. Ei (ϕ j ) = δi j . Since
1 = ∑N

i=1 Ei (μN ), there must be some k such that Ek(μN ) ≤ 1/N . By Postulate 3,
there is a reversible transformation G ∈ GN with Gω1 = ϕk . Thus

1

N
≥ Ek(μN ) = Ek ◦ G(μN ) = 1

n

n∑
i=1

Ek ◦ G(ωi )

≥ 1

n
Ek ◦ G(ω1) = 1

n
.

Thus, we also have N ≤ n, proving the claim. �

In quantum theory, the maximally mixed state on an N -dimensional Hilbert space
is the density matrix

μN = 1N

N
= 1

N

N∑
i=1

|ψi 〉〈ψi |,

if |ψ1〉, . . . , |ψN 〉 denotes an orthonormal basis of C
N—that is, if these are pure

states that are perfectly distinguishable. This is in agreement with Lemma 4. More-
over, we can prove that an analogous formula holds for every theory satisfying our
Postulates1–4:

Lemma 5 For every N, there are N pure perfectly distinguishable states ω1, . . . ,ωN

∈ SN such that

μN = 1

N

N∑
i=1

ωi .

We only sketch the proof here: For N = 1, the statement is trivially true, since S1

contains only a single state. For N = 2, we know that SN is a Euclidean ball, with
the maximally mixed state in the center. Thus, taking ω1 and ω2 as two antipodal
points on the ball (say, north and south pole), we get

μ2 = 1

2
(ω1 + ω2),
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and these states are perfectly distinguishable by an analogue of a quantum spin
measurement. Now consider a generalized bit A, and k copies of this physical
system denoted A1, . . . , Ak . We can form a joint system A(k) := A1A2 . . . Ak ; since
we do not yet know that we have associativity of composition, we mean by this
((A1A2)A3)A4 . . .. Then the maximally mixed state on the resulting state space is

μA(k) = μ2 ⊗ . . . ⊗ μ2 = 1

2k

∑
i1,...,ik=1,2

ωi1 ⊗ . . . ⊗ ωik .

Since in locally tomographic composites, products of pure states are pure, the
ωi1 ⊗ . . . ⊗ ωik are all pure states, and they are perfectly distinguishable by product
measurements. Thus, Lemma 4 shows that the capacity of A(k) must be NA(k) = 2k .
This proves Lemma 5 for all N which are a power of two. For all other N , the lemma
is proved by using the fact that SN is embedded in some A(k) for some k large enough
due to Postulate 2, and then constructing the maximally mixed state on SN in a clever
way from that on A(k).

Now we can form the tensor product of the equations

μNA = 1

NA

NA∑
i=1

ωA
i and μNB = 1

NB

NB∑
j=1

ωB
j ,

and we obtain

μNAB = μNA ⊗ μNB = 1

NA NB

NA∑
i=1

NB∑
j=1

ωA
i ⊗ ωB

j ,

and Lemma 4 tells us that capacity must be multiplicative:

Lemma 6 NAB = NA NB.

Why is this equation so important? As noticed by Hardy [8], it allows us to draw a
surprising conclusion. Every state space SN has unnormalized dimension KN . Since
K AB = K A K B and NAB = NA NB for all state spaces A and B due to our postulates,
we get the following facts:

• The function N �→ KN maps natural numbers to natural numbers, and is strictly
increasing due to Postulate 2.

• It satisfies KN1N2 = KN1 KN2 , and K1 = 1.

As shown in [8], these simple conditions imply that there must be an integer r ≥ 1
such that

KN = Nr . (6)

Now recall that the dimension of the bit state space (which is a Euclidean ball) is
d2 := K2 − 1. It follows that
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d2 ∈ {1, 3, 7, 15, 31, . . .}

since K2 = 2r for some r ∈ N. Thus, we see in particular that the bit state space
is an odd-dimensional Euclidean ball. The next subsection will deal with the case
d2 = 1; as we will see, this case corresponds to classical probability theory.

5.3 How to Get Classical Probability Theory (CPT)

Suppose that d2 = K2 − 1 = 1; that is, the generalized bit is a one-dimensional
ball, as shown in Fig. 2. A line segment like this describes a classical bit. What can
we say about N -level systems for N ≥ 3 in this case? Equation (6) tells us that the
parameter r must be r = 1, and thus

KN = N

for all N , not only for N = 2.
Choose N perfectly distinguishable pure states ω1, . . . ,ωN ∈SN , and E1, . . . , EN

the corresponding effects with Ei (ω j ) = δi j as well as
∑

i Ei = 1. It is easy to
see that the states must be linearly independent; since K = N , they span the full
unnormalized state space.

Thus, every state ω can be written ω = ∑N
i=1 αiωi , with αi ∈ R and

∑
i αi =

1(ω) = 1. But then, E j (ω) = α j ≥ 0, and so this decomposition of ω is in fact a
convex decomposition.

In other words, the full state space SN is a convex combination of ω1, . . . ,ωN—
that is, a classical simplex as in Fig. 2a–c. These are exactly the state spaces of CPT.
Moreover, since for N = 2, we can permute the two pure states due to Postulate 3,
we can use the subspace postulate to conclude that every pair of pure states on SN

can be interchanged. These transpositions generate the full permutation group, which
must thus be the group of reversible transformations GN . We have therefore proven
the following:

I n the case d2 = 1, we get classical probabili t y theory as

the unique solution of Postulates 1–4.

5.4 The Curious 7-Dimensional Case

Let us now consider the remaining cases, i.e. the cases where the dimension of the
Euclidean bit ball is d2 = K2 − 1 ∈ {3, 7, 15, 31 . . .}. The generalized bit carries a
group of reversible transformations G2; by our background assumptions mentioned
in Sect. 3.2, this must be a topologically closed matrix group. Since it maps the unit
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ball into itself, it must be a subgroup of the orthogonal group. Closed subgroups of
Lie groups are Lie groups; therefore, G2 is itself a Lie group.

Denote by G0
2 the connected component of G2 containing the identity matrix. We

have
G0
2 ⊆ SO(d2).

We know from Postulate 3 that for every pair of pure states ω,ϕ ∈ S2, there is a
reversible transformation T ∈ G2 with T ω = ϕ. In other words, G2 acts transitively
on the unit sphere, that is, the surface of the unit ball. It can be shown that this implies
that G0

2 is itself transitive on the unit sphere.
At first sight, it seems that this enforces G0

2 to be the full special orthogonal group
SO(d2), but this intuition is wrong. For example, the group of 4 × 4-matrices

{(
reU imU

−imU reU

) ∣∣∣∣ U ∈ SU (2)

}

acts transitively on the surface of the 4-dimensional unit ball, even though it is a
proper subgroup of SO(4). The set of all compact connected Lie matrix groups
which act transitively on the unit sphere has been classified in [34–37]. In general,
there are many possibilities. Fortunately, however, we have additional information:
we know that the bit ball has odd dimension d2 := K2 − 1. It turns out that there
remain only two possibilities:

• If d2 �= 7, then G0
2 = SO(d2).

• If d2 = 7, then G0
2 is either SO(7) or of the form MG2M−1, where M is a fixed

orthogonal matrix, and G2 is the fundamental representation of the exceptional Lie
group G2.

In fact, d2 = 7 appears in our list of possible dimensions of the bit ball, because
7 = 23 − 1. In our endeavor to derive quantum theory from Postulates1–4, we will
have to show that all the cases d2 ∈ {7, 15, 31, . . .} violate at least one postulate.
Thus, we see that the case d2 = 7 has to be (and is) treated separately.

The appearance of d2 = 7 as a special case seems like an almost unbelievable
coincidence. Is there some deeper significance to this case? Might there be some
interesting unknown theory waiting to be discovered which has 7-dimensional balls
as bits and the exceptional Lie group G2 as the analogue of local unitaries? We do
not know.

5.5 Subspace Structure and 3-Dimensionality

Having discussed the case of classical probability theory with bit ball dimension
d2 = 1, the remaining cases are

d2 ∈ {3, 7, 15, 31, . . .}.
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We will now show that all dimensions d2 ≥ 7 are incompatible with the postulates,
leaving only the case d2 = 3—that is, the Bloch ball of quantum theory. For the rest
of this chapter, we ignore the special case d2 = 7 with G0

2 = MG2M−1 and G2 the
exceptional Lie group; it can be ruled out by an analogous argument.

In the following, we will parametrize the single bit state space as

S2 =
{(

1
ω̂

)
| ω̂ ∈ R

d2 , ‖ω̂‖ ≤ 1

}
.

The maximally mixed state becomes μ = (1, 0)T , where 0 ∈ R
d2 denotes the zero

vector. Let n := (1, 0, . . . , 0)T ∈ R
d2 , then we have two pure states ω1 := (1, n)T ∈

S2 and ω2 := (1,−n)T ∈ S2, corresponding to the north and south pole of the
ball. These states are pure, and they are perfectly distinguished by the measurement
consisting of the two effects (for ω ∈ S2)

E1(ω) := (1 + 〈ω̂, n〉)/2,
E2(ω) := (1 − 〈ω̂, n〉)/2.

We know that if we combine two bits into a joint state space, we obtain a state
space of capacity four that we call S2,2. It is equivalent to S4. Thus, the product
states ωi ⊗ω j with i, j = 1, 2 represent four perfectly distinguishable states in S2,2,
and the corresponding product effects Ei ⊗ E j constitute a complete measurement.
Recall, however, that the joint state space S2,2 is not fully known so far—all we know
is that the surrounding linear space is the tensor product of the local spaces. At this
stage, we do not yet have a complete description of the set of all states in S2,2 or S4.

Using the subspace postulate twice, i.e. Postulate 2, we obtain that the set of states
ω with (E1⊗ E1+ E2 ⊗ E2)(ω) = 1 is again equivalent to a single bit. This turns out
to be a surprisingly restrictive requirement that we are now going to exploit. Denote
this set of states by F (it is a face of the state space S2,2), then

F = {ω ∈ S2,2 | (E1 ⊗ E1 + E2 ⊗ E2)(ω) = 1} � S2.

In the following, we will label the two bits by indices A and B for convenience. The
group G2 = SO(d2) contains a subgroup Gs

2 which leaves the axis containing north
and south pole invariant, i.e.

Gs
2 := {G ∈ G2 | Gω1 = ω1 and Gω2 = ω2} � SO(d2 − 1).

If R ∈ SO(d2 − 1), then its action as an element of Gs
2 is

(
1,ω(1), . . . ,ω(d2)

)T �→ (
1,ω(1), R(ω(2), . . . ,ω(d2))

)T
.

Suppose we apply one transformation of this kind on each part of a bipartite state
ω locally; that is, a transformation G A ⊗ G B with G A,G B ∈ Gs

2. Then we have
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(E1⊗ E1+ E2⊗ E2)(ω) = 1 if and only if (E1⊗ E1+ E2⊗ E2)(G A ⊗G B(ω)) = 1.
Thus, this transformation leaves the face F invariant:

(G A ⊗ G B)F = F.

We know that the dimension of the linear span of F is d2 + 1, since it is equivalent
to S2. We will now explore in more detail how the transformations G A ⊗ G B act on
the face F . In particular, we are interested in the structure of invariant subspaces.

First, consider a single bit. Its unnormalized states are carried by a real vector
space VA = R

d2+1 that we can decompose in the following way:

VA = R ·

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ ⊕ R ·

⎛
⎜⎜⎜⎝

0
1
...

0

⎞
⎟⎟⎟⎠ ⊕ A′,

where A′ denotes the set of all vectors with first two components zero. Since μ =
(1, 0, . . . , 0)T and Gμ = μ, as well as ω1 = (1, 1, 0, . . . , 0)T and Gω1 = ω1 for all
G ∈ Gs

2, these three subspaces are all invariant.
Consequently, the vector space which carries two bits, VAB ≡ VA ⊗ VB , contains

the subspace A′ ⊗ B ′ which is invariant with respect to all transformations G A ⊗ G B

for G A,G B ∈ Gs
2. This defines an action of SO(d2−1)×SO(d2−1) on the subspace

A′ ⊗ B ′.
With a bit of work, one can show that the face F contains at least one state ω

which has non-zero overlap with A′ ⊗ B ′. Denote the projection of that vector onto
this subspace byωA′⊗B ′ . We know that every (G A ⊗G B)(ω) is a valid state in the face
F , and its component in the aforementioned subspace is (G A ⊗ G B)(ωA′⊗B ′). Now
imagine we apply all the local transformations G A ⊗ G B to the vector ωA′⊗B ′ , and
we are interested in the orbit—that is, in the set of all vectors that we can generate
this way.

If d2 ≥ 4, then the group SO(d2 − 1) has a nice property in terms of group
representation theory [32]: it is irreducible. That is, its action onC

d2−1 does not leave
any non-trivial subspaces invariant. This allows us to draw an important conclusion:
it implies [32] that the product group SO(d2 − 1)× SO(d2 − 1) is also irreducible.
But then, the orbit (G A ⊗ G B)(ωA′⊗B ′) must span the full space A′ ⊗ B ′, which has
dimension (d2 − 1)2—this is a very large orbit.

In fact, it is too large for the subspace postulate: above, we have concluded from
Postulate 2 that the span of the face F (which is preserved by those local trans-
formations) must have dimension d2 + 1, which is less than (d2 − 1)2 if d2 > 3.
Thus, we obtain a contradiction: if the bit ball has dimension d2 ∈ {7, 15, 31, . . .},
it is impossible to combine two bits into a joint state space which satisfies all our
postulates.

As it turns out, this is not true if d2 = 3: the group SO(d2 − 1) = SO(2) leaves
the span of (1, i)T invariant; that is, SO(2) is reducible. Thus, this case is not ruled
out by the reasoning above. In group-theoretic terms, this reducibility is related to
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the fact that SO(2) is Abelian. In other words, the fact that rotations commute in
3–1 dimensions can be seen as a possible reason of the fact that the Bloch ball is
3-dimensional.

Lemma 7 The dimension of the bit ball must be d2 = 3.

We have thus uncovered a group-theoretic explanation why the smallest non-
trivial quantum systems have three mutually incompatible, independent components
and not more. Due to Postulate 4, we can find all possible measurements on this state
space: all effects (that is, linear functionals) which yield probabilities in the interval
[0, 1] correspond to outcome probabilities of possible measurements. It is easy to see
that these effects are in one-to-one correspondence with the quantum measurements
(POVMs) on a single qubit.

Furthermore, we know that the group of reversible transformations contains
SO(3), the rotations of the Bloch ball, which correspond to the unitary transfor-
mations on a qubit. At this point, however, we do not yet know whether G2 = SO(3)
or G2 = O(3).

5.6 Quantum Theory on N-level Systems for N ≥ 3

In the previous section, we have derived quantum theory for single bits. It remains
to show that our postulates also predict quantum theory for all N -level systems with
N ≥ 3. As before, we only sketch the main proof ideas, and refer the reader to [10]
for proof details.

For a single bit in state ω = (1, ω̂)T , we can obtain the usual representation as a
density matrix by applying a linear map L : R

4 → C
2×2
sa , where the latter symbol

denotes the real vector space of self-adjoint complex 2 × 2-matrices. This map L is
defined by linear extension of

L(ω) := (1 + ω̂ · �σ)/2,

where �σ = (σx ,σy,σz) denotes the Pauli matrices. The representation that we obtain
(applying L in a suitable way to effects and transformations as well) is equivalent in
the sense of Sect. 3.4 to the Bloch ball representation.

If we have the state space S2,2 of two bits, we can use the map L ⊗ L to repre-
sent states ω ∈ S2,2 by self-adjoint 4 × 4-matrices L ⊗ L(ω). Recall that we have
constructed a face F of S2,2 in the previous subsection. Analyzing F in a bit more
detail, one can show that it contains a family of pure states ωu , where u ∈ [0,π),
which are mapped by L ⊗ L onto

L ⊗ L(ωu) = |ψu〉〈ψu |,
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where

|ψu〉 = cos
u

2
|0〉 ⊗ |0〉 + sin

u

2
|1〉 ⊗ |1〉

for some orthonormal basis {|0〉, |1〉}. This is an entangled quantum state with
Schmidt coefficients cos(u/2) and sin(u/2). Choosing u appropriately, it can attain
any value between 0 and 1. Thus, by applying local unitaries (which corresponds to
the SO(3)-rotations of the local balls), we can generate all pure quantum states.

Denoting S ′
2,2 := L ⊗ L(S2,2), we have proven the following:

Lemma 8 S ′
2,2 contains all pure 2-qubit quantum states as pure states.

The next step is somewhat tricky: we have to show that there are no further (non-
quantum) states in S ′

2,2. The idea is to show that all quantum effects are allowed
effects on S ′

2,2. Then, if there were additional non-quantum states in S ′
2,2, some of

these effects would give negative probabilities, which is impossible.
We know that the product effects are allowed onS2,2. Applying the transformation

L ⊗ L , some of the corresponding effects in S ′
2,2 are the maps

ρ �→ Tr (P1 ⊗ P2ρ) ,

where P1 and P2 are one-dimensional projectors. If T ∈ G2,2 � G4 is any reversible
transformation onS2,2, denote the corresponding transformation onS ′

2,2 by T ′ ∈ G ′
2,2.

It maps states ρ to T ′(ρ). Suppose we could show the equation

Tr(P1 ⊗ P2T ′(ρ)) = Tr((T ′)−1(P1 ⊗ P2)ρ). (7)

Then we would be done: due to Postulate 3, transformations T ′ ∈ G ′
2,2 can map every

pure product state to every other pure state, in particular, to every pure entangled
quantum state. This way, (T ′)−1 in the equation above would generate all entangled
quantum effects from the product effect P1 ⊗ P2. This is exactly what we want.

Why does Eq. (7) hold? Up to a factor 1/4, the map L⊗2 is an isometry: for all
x, y ∈ R

4 ⊗ R
4, we have

Tr
(
L⊗2(x)L⊗2(y)

) = 1

4
〈x, y〉.

Thus, translating Eq. (7) from S ′
2,2 back to S2,2, we have to prove that

〈E1 ⊗ E2, T ω〉 = 〈T −1(E1 ⊗ E2),ω〉.

This is satisfied if T T = T −1 for all T ∈ G2,2. In fact, we have

Lemma 9 All reversible transformations T ∈ G2,2 act as orthogonal matrices on
R

4 ⊗ R
4.
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The proof of this lemma is non-trivial and somewhat surprising: it uses Schur’s
Lemma from group representation theory, together with the fact that there exist
certain kinds of SWAP and CNOT operations on two bits. These operations are
constructed by using Postulate 2.

Due to Lemma 9, all the above argumentation becomes solid: Eq. (7) is valid, and
we get

Lemma 10 S ′
2,2 is the set of 2-qubit quantum states, and the allowed effects are the

quantum effects.

So what about the transformations? First of all, we know that that the transforma-
tion group of a single bitmust be SO(3)—it cannot be O(3), because local reflections
would correspond to partial transpositions which generate negative eigenvalues on
entangled states. Furthermore, every transformation T ∈ G2,2 is a linear isometry on
the set of self-adjoint 4× 4-matrices that maps the set of density matrices into itself.

According to Wigner’s Theorem [38, 39], only unitary and anti-unitary maps
satisfy this. However, due to Wigner’s normal form, anti-unitary maps generate
reflections in some Bloch ball faces of the state space, which is impossible due
to Postulate 2.

So G2,2 is a subgroup of the unitary group. Due to Postulate 3, it maps some pure
product state to an entangled state. In otherwords,G2,2 contains an entangling unitary,
and also all local unitaries. It is a well-known fact from quantum computation [40]
that these transformations generate the full unitary group.

We have thus shown

Lemma 11 The group of reversible transformations G ′
2,2 on two bits corresponds to

the unitary conjugations, i.e. the maps ρ �→ UρU † with U ∈ SU (4).

It is now clear that what we did for two bits can also be done for n bits. Since every
SN is contained in some S2n for n large enough, we can use the subspace postulate to
conclude that every state space SN is equivalent to the quantum N -level state space.

6 Conclusions and Outlook

We have shown that the Hilbert space formalism of quantum theory can be
reconstructed from four natural, information-theoretic postulates. We hope that
this reconstruction—together with other recent axiomatizations [8, 9, 11–14]—
contributes to a better understanding of quantum theory, and sheds light on some
of the mysterious aspects of its formalism, such as the appearance of complex num-
bers or unitaries.

One of the main motivations for this work, as mentioned in the introduction, was
to find a “minimal” set of postulates, in the sense that removing or weakening any
one of the postulates yields new solutions in addition to quantum theory. Classifying
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these additional solutionsmeans to analyze “quantum theory’s closest cousins”: these
are theories that are operationally close to quantum theory, but not described by the
Hilbert space (or C∗-algebra) formalism. These theories make physical predictions
that differ from quantum theory [41] and that can be tested experimentally [42].

Have we achieved the goal of minimality? The postulate which seems to be the
strongest is Postulate 2, which was called “Subspace Axiom” by Hardy [8]. In fact,
in follow-up work [43, 44], we show that Postulate 2 can be significantly weakened:
it can be replaced by the requirements that generalized bits carry exactly one bit of
information and not more, and that the state of any system can be reversibly encoded
in a sufficiently large number of generalized bits. As a further benefit, quantum theory
with superselection rules appears as an additional solution. In particular, continuous
reversible interaction is sufficient to single out d2 = 3 as the dimensionality of the
Bloch ball [43]. On the other hand, Postulate 1 seems crucial: removing it yields at
least quantum theory over the real numbers as an additional solution.

It is currently an open problem whether classical probability theory and quantum
theory are the unique theories satisfying Postulates 1, 3 and 4. It seems unlikely
that Postulate 4 can be dropped: adding restrictions to the possible measurements in
quantum theory may allow to construct a counterexample. Furthermore, all current
axiomatizations seem to indicate that some assumption on the group of reversible
transformations, as in Postulate 3, is crucial, since this gives the power of group rep-
resentation theory and the Euclidean structure of the Bloch ball. Interesting progress
has been made recently by Hardy [12], where the corresponding axiom only postu-
lates the existence of suitable permutations.

Thus, we have not yet fully achieved the goal of minimality, but we think that
our set of postulates is very close to it. In particular, having as few background
assumptions as possible may yield interesting new state spaces that are overlooked if
the full pictorial background framework of quantumcircuits is assumed. For example,
one might consider the following weaker version of Postulate 1.

Postulate 1’ For every triple (but not necessarily for every pair) of state spaces A,
B and C , there is a tomographically-local composite ABC which satisfies all other
postulates.

It remains an interesting open problem to find a minimal set of axioms, prove
its minimality, and systematically characterize all theories which satisfy some of
these axioms, but not all of them. Besides being of interest in its own right, thorough
understanding of alternative routes that nature might have taken may be of crucial
importance for experimental tests of quantum theory, such as tests for higher-order
interference [47].
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