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1 Introduction

From the beginning of the 20th century, we have had at our disposal three alternative
models of reality—newtonian, einstenian and quantum—each of which appears log-
ically consistent. These theories, though, are not independent: there are inclusion
relations between them. Indeed, note that the framework needed to describe physical
systems in classical physics can be recovered as a low energy limit of the frame-
work used in general relativity. Likewise, quantum theory allows recovering classi-
cal dynamics when measurements are sufficiently coarse-grained [1], or in the limit
� → 0. Moreover, the fact that both quantum mechanics and general relativity pro-
vide accurate descriptions of reality in their respective domains implies that these
two models emerge as limits of a third (yet unknown) physical theory.

This third theory is expected to reveal its nature in particle experiments dealing
with energies of the order of the Planck mass m P ≈ 1.2×1019 GeV/c2, inaccessible
with current technology. In order to infer properties of this mysterious model that
contains Quantum Physics and General Relativity as particular cases, we are thus
bound to rely on logical reasoning and physical intuition rather than experimental
feedback.

One approach to the problem, initiated by Hardy [2] and further developed in
[3–7], is to find new formulations of Quantum Mechanics in terms of physically
compelling axioms. The idea stems from the fact that while it is fairly easy to propose
extensions of General Relativity, any small modification of Quantum Mechanics
will most likely lead to inconsistencies. The hope here is that reducing Quantum
Mechanics to a set of physical properties should point out new ways to generalize it.
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Up to now, this line of research has proven very fruitful, allowing to recover finite
dimensional Quantum Mechanics from first principles [3–7].

Another, more operational, approach was introduced in [8], where Rohrlich and
Popescu proposed to classify physical theories regarding their ability to generate
correlations between distant points in space.

For the sake of clarity, suppose, for instance, that two space-like separated parties
(call them Alice and Bob) share a given bipartite physical system. Alice and Bob are
allowed to measure certain observables X and Y (out of a finite set) on their subsys-
tems, and these measurements will report them some outcomes a and b, respectively.
Assuming a complete ignorance about the Physics involved in these processes, Alice
and Bob could regard their system as a black box where they input a pair of symbols
X, Y and obtain a pair of outputs a, b.

Popescu and Rorlich proposed that the choice of Alice’s interaction should not
affect Bob’s statistics and viceversa. This principle, known as the no-signaling con-
dition, translates at the level of probabilities as

∑

a

P(a, b|X, Y ) =
∑

a

P(a, b|X ′, Y ) ≡ P(b|Y )

∑

b

P(a, b|X, Y ) =
∑

b

P(a, b|X, Y ′) ≡ P(a|X), (1)

for whatever interactions X, X ′ (Y, Y ′) available to Alice (Bob).
Despite its simplicity, the no-signaling condition imposes a strong constraint on

the set of possible correlations present in a given physical theory. When represented
in a real space, the set of all no-signaling distributions forms a polytope, i.e., a convex
set defined by a finite number of linear inequalities.

Unfortunately, the no-signaling constraint is not strong enough. Indeed, the no-
signaling polytope contains probability distributions that are so weird that soon
people started to think that they could not be present in any reasonable physical
theory. This motivated different works that ruled out some of the correlations of
the no-signaling polytope on the grounds that they would make communication or
computation trivial [9, 10], or violate the principle of information causality [11], see
the corresponding chapter in this volume.

In [12], the authors proposed reduction to Classical Physics in the macroscopic
limit as a fundamental axiom to be satisfied by any reasonable physical theory.
Note that the theory that describes our universe has to recover Quantum Theory
and General Relativity in some limits, and both these theories allow recovering the
framework of Classical Physics. It thus seems inevitable that any reasonable physical
theory must reduce to Classical Physics in suitable limits.

Notice also that a connection with Classical Physics may come together with a
Correspondence Principle to derive the dynamics of the theory from classical models
of the physical system at stake. A classical macroscopic limit is thus desirable from a
practical point of view: since Classical Physics is the only known theory that relates
Quantum Mechanics and General Relativity, it seems natural to resort to it in order
to find a consistent dynamics for a deeper theory.
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Finally, the notion that any theory has to recover Classical Physics is somehow
implicit in Rorlich and Popescu’s formalism. Expressions like P(a, b|X, Y ) assume
that Alice is bound to apply only one out of the set of possible interactions, and not,
for example, a linear combination of interactions X1, X2. The observer itself is thus
regarded as classical in this scenario, and so the world in which it lives should also
have some notion of classicality.

In this chapter we will show that the existence of a classical limit bounds the
strength of the correlations measured by space-like separated observers in a non-
trivialway. In a nutshell, the fact that there exists a classical limit implies that ‘natural’
macroscopic experiments involving distant partiesmeasuringmanymicroscopic sys-
tems in a coarse-grained way admit a local hidden variable model. This property,
which we will call macroscopic locality [12], in turn imposes strong restrictions
on the correlations generated by such microscopic systems. The main goal of this
chapter is to characterize such restrictions.

The structure of this chapter is as follows: first, we will illustrate the meaning of
macroscopic locality (ML) by means of a specific example. Later, in Sects. 2.2, 2.3,
we will define and characterize Macroscopic Locality in a more general framework
where experimentalists are allowed to apply sequential interactions. In Sect. 2.4, we
will attain one of the main goals of this chapter, that is, to characterize the set Qml of
all multipartite correlations compatible with ML. We will next prove that quantum
correlations are contained in Qml, and, in Sect. 4, we will study the differences and
similarities between the two sets. Finally, we will present our conclusions.

2 Macroscopic Locality

2.1 Some Preliminary Thoughts

Think of the following bipartite scenario (Fig. 1): a particle pair is produced and two
experimentalists, call themAlice andBob, receive one particle each.Within the given
setup, Alice (Bob) can interact with her/his particle in two different ways X = 0, 1
(Y = 0, 1). As a result of each interaction, Alice’s (Bob’s) particle will follow one
of two possible paths, the upper or the lower, and eventually will impinge on one
of Alice’s (Bob’s) two detectors, as shown in Fig. 1. If Alice and Bob repeat the
experiment many times, they will be able to estimate the probabilities P(a, b|X, Y ),
i.e., the probability that Alice’s and Bob’s particles impinge on detectors a, b = 0, 1
when they apply the interactions X, Y .

This is the schema of a bipartite experiment of non-locality. We say that P(a, b|
X, Y ) is local (sometimes called classical) if it can be expressed as

P(a, b|X, Y ) =
∑

λ

P(λ)PA(a|X,λ)PB(b|Y,λ), (2)
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Fig. 1 A microscopic experiment of non-locality. A particle pair is produced. The interaction that
Alice (Bob) subjects her (his) particle will make it take the path a = 0 or a = 1 (b = 0 or b = 1).
Clicks on the detectors at the end of each path are associated to measurement outcomes. In the
figure, the outcomes are a = 0, b = 1

for some probability distributions P(λ), PA, PB . Equivalently, a distribution is local
if there exists a global probability distribution for the variables {aX , bY : X, Y } with
marginals P(aX , bY ) = P(a, b|X, Y ). Otherwise, we say that P(a, b|X, Y ) is non-
local. There is plenty of evidence that our world is non-local (or non-classical) at
the microscopic level, so it should not surprise us that an experiment like the one
described above produces a non-local distribution.

Suppose now that P(a, b|X, Y ) is of the form:

P(a, b|X, Y ) = ε

2
δa⊕b,XY + 1 − ε

4
, (3)

where 0 ≤ ε ≤ 1. Such a probability distribution is known as an isotropic Popescu-
Rorlich (PR) box [13]. It is local for ε ≤ 1

2 , and quantum for ε ≤ 1√
2
.

If there existed a microscopic event producing a particle pair following a distri-
bution of the form (3), one would expect to find natural ‘macroscopic’ sources of
N 	 1 independent identical pairs. According to our guiding principle, namely, the
existence of a classical limit, the observations performed by two classical experimen-
talists situated at a distance from this source should admit a classical description.

And what would two classical observers see in the vicinity of such sources? That
will depend on Alice and Bob’s ‘classical’ measurement devices, which we will
model through their microscopic counterparts. Correspondingly, we will assume that
Alice’s (Bob’s) interactions over her (his) beamwill affect each particle individually,
and so the net effect of such interactionswill be to split the incident beam into two sub-
beams of lower intensity, see Fig. 2. Also, since N 	 1, Alice and Bob’s detectors
will measure sums of clicks or intensities rather than individual clicks. That is, as
opposed to noticing a click in detector a, Alice will measure the intensity I a

A|X .
Now, it is very unlikely to recover Classical Physics in a macroscopic experiment

if we allow Alice’s and Bob’s detectors to have an arbitrary (microscopic) precision.
For instance, if Alice and Bob realized that all their intensities are multiples of a
smaller quantity, they could postulate that their beams are composed of pairs of
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Fig. 2 A macroscopic experiment of non-locality. N independent particle pairs are produced.
Alice’s andBob’s interactions apply to all particles on each beam.This time, the intensitiesmeasured
at each detector (with precision O(

√
N )) are the outcomes of the experiment

correlated elementary particles, and derive the (in general, non-local) microscopic
distribution P(a, b|X, Y ) from their classical data. This consideration leads to the
extra assumption that the resolution of such detectors should just be able to detect
intensity fluctuations of order O(

√
N ). According to the Central Limit Theorem,

such will be the expected size of the intensity fluctuations every time they repeat the
experiment, so the assumption seems quite natural.1

We thus conclude that, under the above conditions (where two parties are conduct-
ing coarse-grained extensive measurements over a natural source of particle pairs),
any macroscopic experiment should be describable in terms of a classical physical
model. A necessary condition for this is the existence of a local hidden variable
model (LHVM) for the distributions2

P(I 0A, I 0B |X, Y ). (4)

That is actually the original definition of Macroscopic locality [12]: namely, the
requirement that coarse-grained (O(

√
N )) extensive observations of macroscopic

sources of N independent particle pairs admit a LHVM in the limit N → ∞.
By the central limit theorem, when N → ∞, P(I 0A, I 0B |X, Y ) become bivariate

gaussian distributions with covariance matrix3 proportional to

γXY =
( 1

4
ε
2δX ·Y,0 − ε

4
ε
2δX ·Y,0 − ε

4
1
4

)
, (5)

1A similar coarse-graining was required in [1] to prove the emergence of macroscopic realism from
quantum mechanical systems. Note, however, that the resolution �m considered there satisfies
�m 	 O(

√
N ).

2Note that, more generally, we could have demanded the existence of a LHVM for
P(I 0A, I 1A, I 0B , I 1B |X, Y ). However, in this class of experiments, it can be observed experimentally
that I 0A + I 1A = I 0B + I 1B = N , and so the locality condition reduces to (4).
3The covariance matrix of a set of random variables ξ1, ξ2, . . . is defined as γi j ≡ 〈ξi ξ j 〉−〈ξi 〉〈ξ j 〉.
It can be verified that any covariance matrix must be positive semidefinite, see Appendix 1.
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see Appendix 2.
Now, suppose that there exists a global measure dρ (or LVHM) for the intensities

{I 0A|X , I 0B|Y : X, Y = 0, 1}. Then one could use such a measure to define a global
covariance matrix of the form

� =

⎛

⎜⎜⎝

1
4 λ1

ε
4

ε
4

λ1
1
4

ε
4 − ε

4
ε
4

ε
4

1
4 λ2

ε
4 − ε

4 λ2
1
4

⎞

⎟⎟⎠ . (6)

Here the rows and columns of the matrix correspond to the intensities I 0A|X=0,
I 0A|X=1, I 0B|Y=0, I 0B|Y=1, and λ1,λ2 ∈ R resp. represent the values 〈I 0A|X=0 I 0A|X=1〉 −
〈I 0A|X=0〉〈I 0A|X=1〉, 〈I 0B|Y=0 I 0B|Y=1〉 − 〈I 0B|Y=0〉〈I 0B|Y=1〉 as calculated via the measure
dρ. Note that λ1,λ2 are not observable, and thus can only be computed with the extra
knowledge dρ.

At this moment there comes a crucial observation: in order for �(λ1,λ2) to be a
covariance matrix, it must be positive semidefinite. This implies that there must exist
a choice of λ1,λ2 such that �(λ1,λ2) ≥ 0.

By symmetry under the exchange of Alice and Bob, it is easy to see that we
can take λ1 = λ2 = λ. Since the minimum eigenvalue of �(λ,λ) is 1/4 −
(1/4)

√
2ε2 + 8ε|λ| + 16λ2, the condition for positivity is thus equivalent to the exis-

tence of λ ∈ R such that

2ε2 + 8ε|λ| + 16λ2 ≤ 1. (7)

It is easy to see that the above equation can only hold if ε ≤ 1√
2
, i.e., if the isotropic

box belongs to the quantum region.
We have just shown that post-quantum isotropic PR boxes are incompatible with

the principle of Macroscopic Locality (ML).

2.2 The Macroscopic Scenario

In this section, we will consider the transition from microscopic to macroscopic
experiments in complexmultipartite scenarios where each party is allowed to interact
sequentially with its particle beam. Before starting, though, some comments about
basic notation are in order. Despite its popularity in nonlocality research, denoting
probabilities by P(a, b|X, Y ) and intensities by I a

A|X soon becomes messy when we
have to deal with macroscopically local models. For this reason, along this article
we will adopt the representation introduced by Tsirelson [14]. In this notation, any
possible outcome we may measure after the application of an interaction X is to
be denoted by a symbol a that allows identifying X . That way, interactions X can
be regarded as disjoint sets of possible outcomes a. For any pair of interactions
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X, Y , available at Alice’s and Bob’s lab, respectively, and any pair of outcomes
a ∈ X, b ∈ Y , the expression P(a, b|X, Y ) thus becomes redundant, and can be
substituted by P(a, b).

In a generic multipartite microscopic experiment, each of the space-like separated
sites has access to a set of local interactions X, Y, Z , . . .. Given a possible outcome
a, the mappings X (a) = X, O(a) = i will return, respectively, the measurement
setting and site i where such a measurement is performed.

An experimental setting S is any arrangement of interactions that an experimental-
ist at lab i can prepare in order tomeasure intensities in amacroscopic experiment. For
example, in Fig. 3, the experimental setting on site 1 consists on applying interaction
X over the main beam and then interactions Z and Z ′ to the particles following a tra-
jectory a or a′, respectively. Given an experimental setting at site i , we will call arc to
the trajectory followedby aparticle since its arrival at lab i until it impinges on adetec-
tor. Any arc s can thus be completely specified by an ordered sequence of outcomes
s ≡ a1 → a2 → a3 → · · · → am , with O(a j ) = i , and therefore any experimental
setting can be identified with the set of all arcs it generates. Interactions applied in
different arcs will be regarded as different, i.e., the specification of each interaction
must make reference to all prior interactions. Coming back to Alice’s experimental
setting S in Fig. 3, we hence have that S = {a → c, a → c′, a′ → d, a′ → d ′}.

We say that two different arcs s, s ′ are locally orthogonal if they both appear in
the same experimental setting, that is, if s = s1 → a → s2 and s ′ = s1 → a′ → s ′

2,
with X (a) = X (a′), a �= a′. Also, two arcs s, s ′ are space-like separated if they cor-
respond to experimental settings on different sites, i.e., iff O(s) �= O(s ′). Given two
space-like separated arcs s ≡ a1 → · · · → am , t ≡ b1 → · · · → bm ′ , P(s, t) will
represent the probability that the first particle of a pair returns the sequence of out-
comes (a1, . . . , am) when interactions X (a1), . . . , X (am) are sequentially applied,
and the second particle outputs (b1, . . . , bm ′) when X (b1), . . . , X (bm ′) are effected.

In this scenario, the no-signaling condition translates as

Fig. 3 A microscopic experiment with sequential measurements
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Definition 1 No-signaling condition
Let {s j }K

j=1 be a collection of space-like separated arcs. Then, for any k ∈ {1, 2, . . . ,
K } and any interaction X , with O(X) = k,

∑

a∈X

P(s1, . . . , sk → a, . . . sK ) = P(s1, . . . sk, . . . sK ). (8)

When we bring a microscopic experiment of non-locality to the macroscopic
scale, we end up in the scenario depicted in Fig. 4. Here the experimental outcomes
are coarse-grained intensity measurements conducted at the end of each arc. The
intensity measured at site i at the end of the arc s will be denoted by I s , and by Ī s

we will refer to the measured intensity fluctuation, i.e., Ī s = I s − 〈I s〉. Notice that
intensities corresponding to the same arc s, but belonging to different experimental
settings, are identified with this notation. The reason is that the different interactions
effected on each measurement setting can be space-like separated from arc s. For
example, in the scenario depicted in Fig. 4 the regions where interactions Z , Z ′ are
applied can be arbitrarily far away from each other, and so the intensities I a→c, I a→c′

(I a′→d , I a′→d ′
) would be regarded as independent of Z ′ (Z ) by classical observers.

In a realistic situation, we cannot expect the K parties to be able to realize any
possible experimental setting. Any experimentalist at site i will have to work under
space and budget constraints. Consequently, the length of the available arcs will have
to be limited, and so will be the (finite) set of accessible experimental settings Sacc.

For any particular choice of experimental settings {Si }K
i=1 ⊂ Sacc, the K parties

performing a macroscopic experiment can estimate the marginal probability distrib-
utions

P
({I s : s ∈ ∪K

i=1Si }
)
, (9)

corresponding to all the intensities measured in a single experiment with space-like
separated measurement settings S1, S2, . . . with precision O(

√
N ).

Fig. 4 A macroscopic experiment with sequential measurements
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Following Sect. 2.1, the experiments performed by the K parties will satisfy ML
iff there exists a joint measure P({I s : s ∈ S ∈ Sacc}) for all the intensities
I s accessible in the family of experiments denoted by Sacc, compatible with the
marginal distributions (9) in the limit N → ∞.

2.3 Characterization of Macroscopic Locality

By Appendices 1, 2, a necessary and sufficient condition for ML in a given set
of accessible experimental settings Sacc is the existence of a positive semidefinite
matrix γ, with rows and columns labeled by arcs, and satisfying

γss = P(s) − P(s)2, (10)

γss ′ = P(s, s ′) − P(s)P(s ′) for s, s ′ space-like separated. (11)

γss ′ = −P(s)P(s ′) for s, s ′ locally orthogonal. (12)

for all s ∈ S, s ′ ∈ S′, with S, S′ ∈ Sacc.
Of course, if there is a LHVM behind all possible experiments that the K parties

can perform without any limitation on the size of the settings, then there will exist a
LHVM for all experiments involving a finite set of experimental settings Sacc. How-
ever, in principle there could be weird K -partite microscopic correlations such that,
for any finite set of available experimental settings Sacc there is a Sacc-dependent
LHVM that describes the observed intensity fluctuations, but nevertheless there is not
a single classical model independent of Sacc that is compatible with all experimental
data!
This possibility is ruled out by the next result.

Lemma 2 Let P be a set of K -partite microscopic correlations. If for any finite set
of available experimental settings S there exists a LHVM PS({ Ī s, s ∈ S ∈ S}), then
there exists a setting-independent LHVM compatible with all possible macroscopic
experimental observations. That is, for any finite set of arcs �o there exists a measure
P�o for the intensity fluctuations { Ī s : s ∈ �o} in agreement with experimental data,
such that, for any two finite sets �o, �o′,

P�o
({ Ī s : s ∈ �o ∩ �o′}) = P�o′

({ Ī s : s ∈ �o ∩ �o′}) . (13)

Proof Let (Sn) be a sequence of finite sets of experimental settings such that, for all
n, Sn ⊂ Sn+1 and such that, for any possible setting S, there exists an n such that
S ∈ Sn . According to the previous remarks, this implies that there exists a sequence
of positive semidefinite matrices (γn) of increasing size that satisfy conditions (10),
(11) and (12) for all s, s ′ ∈ Sn . Note as well that all the entries of γn are bounded
by 1/4. If we extend to the infinity all the rows and columns of these matrices by
adding zeros, we will end up with a sequence of vectors γn in the ball l∞. It is not
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difficult to see that there exists an entry-wise convergent subsequence (γnk )nk , call γ̄
its limit. The infinite dimensional matrix γ̄ hence satisfies

1. Any finite submatrix of γ̄ is positive semidefinite.
2. γ̄ satisfies conditions (10), (11) and (12) for all s, s ′ ∈ �O .

Let P�o be the gaussian probability distribution for the variables { Ī s : s ∈ �o} with
covariancematrix {〈 Ī s Ī s ′ 〉 = γ̄s,s ′ } and zero displacement vector. Clearly, P�o satisfies
the conditions of the lemma. �

Remark 3 The proof of the previous lemma shows that a microscopic distribution
is macroscopically local iff there exists a matrix γ̄ satisfying points 1 and 2. Now,
consider the (infinite)matrix�, whose rows are columns are numbered by the symbol
I
4 and any arc s ∈ �O , and is defined by the following relation

� =
(
1 �pT

�p γ̃

)
. (14)

Here �p is a vectorwhose components are numberedby arcs s and such that ps = P(s),
and γ̃ss ′ = γ̄ss ′ + ps ps ′ . Given P(s), we can easily switch fromonematrix to the other.
Note also that, for whatever finite set of arcs �o, the submatrix {�αβ : α,β ∈ �o ∪ {I}}
is positive semidefinite iff {γ̄αβ : α,β ∈ �o} is positive semidefinite. Indeed, by
Schur’s theorem [15], ��o∪{I} is positive semidefinite iff γ̃�o − �p�o �pT

�o = γ̄�o is positive
semidefinite.

Conditions (10), (11) and (12), together with the definition of �, translate into the
following rules

1. �II = 1.
2. �Is = P(s).
3. �ss = P(s).
4. �ss ′ = P(s, s ′), for s, s ′ space-like separated.
5. �ss ′ = 0, for s, s ′ locally orthogonal.

The remark above shows that the existence of a LHVM for all possible macro-
scopic experiments is equivalent to the existence of an object � satisfying conditions
1–5 and such that any finite submatrix of it is positive semidefinite. The advantage
with respect to the previous formulation is that � only depends linearly on the orig-
inal microscopic probabilities. In Sect. 4, this will allow us to compute maximal
violations of linear Bell inequalities in general macroscopically local theories via
semidefinite programming [16].

Remark 4 Remark 3, in combination with Lemma 2, suggests an operational hier-
archy of constraints to be satisfied by any K -partite distribution P(s1, s2, . . . , sK ) in
order to be macroscopically local (in the line of [17]). Given an increasing sequence
of sets of experimental settings (Si ) such that no setting is left out, it is thus enough

4Intuitively, if � were a quantum moment matrix, “I” would correspond to the identity operator.
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to check that, for each i , there exists a positive semidefinite matrix � satisfying con-
ditions 1–5 in Remark 3 for any s, s ′ ∈ S ∈ Si . From Lemma 2, it follows that such
a hierarchy is complete.

2.4 The Set of Correlations Compatible with ML

Let P1, P2 be two independent distributions held by K parties. In principle, an
experimentalist at site i conducting a microscopic experiment on the composed
distribution P1 ⊗ P2 could measure X1 on P1 and, depending on the outcome,
measure Y or Y ′ on P2. In this sort of experiments, a generic arc s12 at site i
is thus decomposed as the interlacing of two arcs s1, s2 associated to measure-
ments on the boxes 1, 2, respectively.5 Since systems P and P ′ are independent,
the probability that the K particles follow the arcs {si

12}K
i=1 is therefore given by

P(s112, . . . , sK
12) = P(s11 , . . . , sK

1 )P(s12 , . . . , sK
2 ).

The joint use of two or more independent distributions to generate new statistics
is known as “wiring” [18], and in some circumstances it can be used to distill Bell
inequality violations [13]. This observation raises the possibility of the existence
of macroscopically local distribution P with the property that P⊗n or some other
allocation of many copies of the distribution P allows generating non-local macro-
scopic intensities. Such a distribution P , though macroscopically local, would not
be compatible with the principle of macroscopic locality.

If such were the case, we would be in a conundrum. On one hand, it may be
that distributions like P ′ never appear naturally at the macroscopic scale, and so
such non-local intensities are never observed. This would not contradict the fact that
Nature seems to be local at big scales, but would lead to a restriction on the dynamics
of this Universe, that allows for the existence of macroscopic sources of P , but not
of P ′. On the other hand, we could simply postulate that any physical system can
be brought to the macroscopic scale, and so we could ban the existence of P on the
grounds that it allows to engineer P ′, which, in turn, generates non-localmacroscopic
correlations. This is the approach we will stick to along this chapter.

Once this point has been clarified, the next question to address is how to determine
if a given probability distribution P is compatible with ML. In general, one would
expect the answer to depend on the rest of available correlations {P ′}, since it could
well be that P and P ′ alone only lead to macroscopically local experiments, but
nonetheless allow to distill macroscopic non-locality when they belong to the same
space of physical states.

In this section we will show that such is not the case: any set of physical systems
unable to produce non-local intensities by themselves cannot be wired into a macro-

5For instance, if a1, a2 are outcomes corresponding to P1; and b, to P2, the arc s12 = a1 → b → a2
corresponds to the event of measuring X (a1) on the first box, then X (b) on the second and then
X (a2) on the first, and obtaining the sequence of outcomes (a1, b, a2). In this case, the arc s12
corresponds to the interlacing of s1 = a1 → a2 and s2 = b.
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scopically non-local system when they are brought together. Ergo, there exists a
maximal set of correlations Qml compatible with macroscopic locality that is closed
under wirings. We will characterize this set at the end of the section.

2.4.1 A Closure Result

We will begin by showing that K -partite macroscopically local distributions are
closed under local wirings. That is, once a number of such correlations has been dis-
tributed between the parties and those are not allowed to communicate classically,
any wiring theymay perform on their systems will not allow them to generate macro-
scopically non-local correlations. That ⊗i Pi cannot be used to distill macroscopic
non-locality when each Pi is macroscopically local follows by induction from the
next theorem.

Theorem 5 Let P1, P2 be K -partite macroscopically local distributions. Then, P1⊗
P2 is also macroscopically local.

Proof Call �O1 ( �O2) the set of all arcs s (s ′) pertaining to system P1 (P2); �O12 will
denote the set of all arcs generated by interlacing arcs from boxes P1 and P2. If P1 and
P2 are ML, then from the last remark, there must exist two infinite matrices �1, �2

that satisfy conditions 1–5 for all s, s ′ ∈ �O1 and �O2, respectively, and such that any
finite submatrix of them is positive semidefinite. Following the lines of [17], we have
that there must exist two sets of vectors V1 = {|s〉1 : s ∈ �O1 ∪{I1}}, V2 = {|s〉2 : s ∈
�O2 ∪ {I2}}, with 〈s|s ′〉1 = �1

ss ′ (〈s|s ′〉2 = �2
ss ′ ) for all s, s ′ ∈ �O1 ∪ {I1}( �O2 ∪ {I2}).

Now, define the vectors6

|I〉12 ≡ |I〉1 ⊗ |I〉2,
|s12〉12 ≡ |s1〉1 ⊗ |s2〉2, (15)

where the arc s12 ∈ �O12 is understood to arise by interlacing the arcs s1 ∈ �O1, s2 ∈
�O2 (without altering the order in which the outcomes of �O1 and �O2 appear).
Then we can construct the matrix �12 as

�12
ss ′ = 〈s|s ′〉, (16)

for s, s ′ ∈ �O12 ∪ {I}. Clearly, any finite submatrix of � will be positive semidefinite.
We will now see that �12 satisfies conditions 1–5 of Remark 3 for the new set of

correlations P1 ⊗ P2.

6In case and s1 = ∅ (s2 = ∅), take |s1〉1 = |I〉1 (|s2〉2 = |I〉2).
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1. �12
II

= 〈I|I〉12 = 〈I|I〉1〈I|I〉2 = 1.
2. �12

Is = 〈I|s〉12 = 〈I|s1〉1〈I|s2〉2 = P(s1)P(s2) = P(s).
3. �12

ss = 〈s|s〉12 = 〈s1|s1〉1〈s2|s2〉2 = P(s1)P(s2) = P(s).
4. If s, s ′ ∈ �O12 are space-like separated, then s1 and s ′

1 (s2 and s ′
2) are space-like sep-

arated. It follows that �12
s,s ′ = 〈s|s ′〉12 = 〈s1|s ′

1〉1〈s2|s ′
2〉2 = P(s1, s ′

1)P(s2, s ′
2) =

P(s, s ′).
5. Let s, s ′ be locally orthogonal. Then, s = t12 → a → t ′

12, s ′ = t12 → a′ → t ′′
12,

where a �= a′ but X (a) = X (a′). Suppose w.l.o.g. that a ∈ O1. Then, |s〉 =
|s1〉⊗|s2〉, and |s ′〉 = |s ′

1〉⊗|s ′
2〉, with s1 = t1 → a → t ′

1 and s ′
1 = t1 → a′ → t ′′

1 .
That is, s1 and s ′

1 are locally orthogonal. This implies that 〈s1|s ′
1〉 = 0, and so

�12
s,s ′ = 〈s|s ′〉12 = 〈s1|s ′

1〉1〈s2|s ′
2〉2 = 0.

Therefore, P1 ⊗ P2 is macroscopically local. �

We have just proven that ML cannot be activated by local wirings without com-
munication. The next section shows, however, that one can distill macroscopic non-
locality fromML boxes via a prior non-local engineering and/or local postselections.

2.4.2 Activation of ML

Consider a tripartite scenario where Alice, Bob and Charlie have each a pair of
measurement settings with two possible outcomes. For clarity, let us return momen-
tarily to the standard notation in non-locality, where probabilities are denoted as
P(a, b, c|X, Y, Z), and a, b, c, X, Y, Z take values in {0, 1}. Then one can check
that the tripartite set of correlations

P ≡ P(a, b, c|X, Y, Z) = 1

4
δa⊕b⊕c=XY Z (17)

generates local intensities. Moreover, if several copies of P were distributed to Alice,
Bob and Charlie, together with any amount of shared randomness, and the parties
were not allowed to communicate, any wiring they performed on their subsystems
would not allow them to distill macroscopic non-locality. The reason is that the
(gaussian) marginal distributions of the macroscopic intensity fluctuations observed
by the three parties are completely determined by the bipartite correlations between
different intensities. These, in turn, just depend on the bipartite probability distrib-
utions P(a, b|X, Y ), P(a, c|X, Z), P(b, c|Y, Z). Since such bipartite distributions
also arise from the local tripartite distribution L(a, b, c|X, Y, Z) = 1/8,∀a, b, c,
any wiring W of m copies of P will be macroscopically indistinguishable from
W(L⊗m), and thus macroscopically local.

However, if Charlie measures Z = 1 and announces his outcome, then Alice
and Bob would be sharing a perfect PR box [8], which, as we saw in Sect. 2, is
macroscopically non-local [12].

Also, suppose that Alice’s and Charlie’s separate degrees of freedom are inte-
grated into just one particle, call it AC , and imagine a macroscopic experiment
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Fig. 5 Activation of macroscopic non-locality. By summing pairs of intensities, Alice and Bob can
reproduce the macroscopic correlations generated by perfect PR boxes

where several independent pairs of AC/B particles are generated and sent to Alice
andBob. ThenAlice could apply two consecutive interactions over her particle beam,
as shown in Fig. 5. The first of such interactions, Z = 1, would address Charlie’s
degree of freedom, and split the particle beam into two different sub-beams. The
subsequent application of an arbitrary interaction X to Alice’s degree of freedom
in AC , would subsequently split each sub-beam, thus ending up with four intensi-
ties on Alice’s lab, each with mean value proportional to N P(a, c|X, Z). Defining
�IA ≡ (I c=0→a=0, I c=0→a=1, I c=1→a=0, I c=1→a=1) and �IB ≡ (I b=0, I b=1), it can be
verified that the observed macroscopic distributions P( �IA, �IB |X, Y ) do not admit a
LVHM, see Fig. 5.

P thus contains some hidden macroscopic non-locality, that can be activated
either with one bit of communication or by joining two separate degrees of freedom
into one.

2.4.3 The Set Qml

Theorem 5 shows that, once several macroscopically local systems have been dis-
tributed, the separated parties are not able to distill macroscopic non-locality. Now,
a general wiring of a finite set of distributions {Pi }m

i=1 will start (or not) with some
post-selectivemeasurements7 (e.g.: in the previous section, in order to activatemacro-
scopic non-locality, Charlie had to measure his subsystem and announce his mea-
surement outcome). Afterwards, the remaining separate degrees of freedom will be
distributed between the different parties, wirings will be made and a macroscopic

7Here, by a post-selective measurement, we understand the generation of a new state or set of
correlations by preparing a (non-local) experimental setting and conditioning the final state on a
specific arc.
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experiment will take place. Invoking Theorem 5, it follows that, if such post-selected
systems are already macroscopically local, then any wiring of them will be macro-
scopically local as well. On the other hand, any distribution P compatible with
macroscopic locality has to remain macroscopically local under postselection. These
considerations lead us to the following set:

Definition 6 A probability distribution P belongs to Qml iff, for any previous post-
selective measurement and subsequent distribution in space of its separate degrees
of freedom, the corresponding K -partite system is macroscopically local.

Following Remark 3, the necessary and sufficient conditions for a (conditional)
set of correlations to be macroscopically local amount to the possibility to complete
a sequence of growing matrices (whose determined entries are linear8 in the micro-
scopic probabilities and whose undetermined entries satisfy certain linear relations)
in such a way that all of them are positive semidefinite. It follows that Qml is a
convex set.

From the previous observations, it is clear that Qml is closed under wirings when
the postselection part is deterministic (i.e., when the state distributed to the parties
has the form⊗i Pi |ai , where Pi |ai is the distribution Pi conditioned on the outcome(s)

a). That Qml is closed under wirings in general is due to the fact that, after a generic
postselection phase, the parties will be distributed convex combinations of boxes of
the form ⊗i,a Pi |a . Any experimental setting Si (or wiring) on each side i will then
only produce a convex combination of that same setting applied to the boxes⊗i,a Pi |a .
Closure under wirings follows then from the convexity of the set Qml.

In sum, Qml is themaximal set ofmacroscopically local correlations that is closed
under wirings.

Note that, in order to determine if a given set of probabilities {P(s)}s belongs to
Qml, one would have to check for the existence of infinite dimensional covariance
matrices for any possible postselection {P(s|s ′) : s}. That amounts to look for an
infinite number of infinitely-sized matrices, not an easy task! In Sect. 4, however,
we will see that in standard scenarios one just has to consider a finite set of finite-
dimensional matrices.

3 Quantum Mechanics Satisfies Macroscopic Locality

In the last sections, we have defined ML and provided a semidefinite programming
characterization of the set of microscopic correlations compatible with this principle.
It is now time to prove that Quantum Mechanics satisfies ML.

8In principle, according toRemark 3, for a set of correlations conditioned on s̃ the determined entries
of � should be of the form P(s|s̃) = P(s, s̃)/P(s̃) and thus highly non-linear in P . Note, though,
that we can always redefine such a matrix � as �′ = P(s̃)�. Obviously, as long as P(s̃) �= 0, the
positivity of �′ is equivalent to that of �, but �′ depends linearly on P .
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Let Sacc be any set of experimentally accessible settings, and let |ψ〉 ∈ H be
the joint state of the corresponding quantum microscopic experiment (w.l.o.g., we
can assume it to be pure). For any interaction X , call Ea the projector operator
corresponding to outcome a ∈ X . Clearly, Ea Ea′ = δaa′ Ea , for a, a′ ∈ X and∑

a∈X Ea = I. Also, if O(a) �= O(b), [Ea, Eb] = 0, i.e., observables corresponding
to different parties commute. One can argue that during the course of the experiment
the quantum system could experience some evolution U , perhaps depending on the
sequence of past interactions effected on the particle. We will solve this issue by
switching to the Heisenberg picture and redefining the measurement operators at
each point of each arc via E → U EU †. Since the experiment is assumed to be
performed under space-like separation, operators belonging to different parties will
still commute.

Associate to each measurement X an auxiliary Hilbert space C
|X |. We will call

such systems registers, and use Hr = ⊗
X C

|X | to denote the space of all of them.
Intuitively, the registers are going to hold a record of the outcomes we observe when
we interact with particle pk sequentially. Let {| j〉}|X |−1

j=0 be an orthonormal basis of
C

|X |; and φ, a function which maps any outcome a ∈ X to a natural number between
0 and |X | − 1 in such a way that φ(a) �= φ(a′), for a �= a′, a, a′ ∈ X . Now, consider
the unitary UX ∈ B(Hr ⊗ H) given by

UX =
∑

a∈X

V φ(a)

X ⊗ Ea, (18)

where VX is a unitary which acts non-trivially only over the register X as V | j〉 =
| j + 1 (mod |X |)〉. For any measurement outcome a ∈ X , call �̄a ∈ B(Hr ⊗H) the
projector that acts non-trivially over register X as |φ(a)〉〈φ(a)|. For any fragment of
an arc s = a1 → a2 → . . . → am , �̄s will denote the projector

�̄s = �̄am �̄am−1 . . . �̄a1 . (19)

Analogously, Us and Es will represent the unitary operator UX (am )UX (am−1) . . . UX (a1)

and the non-hermitian operator Eam . . . Ea1 , respectively. Now, define the projector

�s = U †
s �̄sUs, (20)

for s �= I and IHr ⊗ IH otherwise, and denote the state
⊗

X |0〉X ∈ Hr by |�0〉. We
claim that the positive semidefinite matrix

�ss ′ = 〈�0|〈ψ|�s�s ′ |�0〉|ψ〉. (21)

satisfies the conditions (3).
Indeed:

1. �II = 〈�0|�0〉〈ψ|ψ〉 = 1
2. �Is = �Is = �ss = 〈�0|〈ψ|�s |�0〉|ψ〉 = 〈ψ|E†

s Es |ψ〉 = P(s).
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3. Let s, s ′ be space-like separated. Then, the operators �̄s, Us commute with
�̄s ′ , Us ′ . It follows that

�ss ′ = 〈�0|〈ψ|�s�s ′ |�0〉|ψ〉 = 〈�0|〈ψ|U †
s U †

s ′�̄s�̄s ′UsUs ′ |�0〉|ψ〉 =
= 〈ψ|E†

s ′ E†
s Es Es ′ |ψ〉 = P(s, s ′). (22)

4. Let s, s ′ be locally orthogonal. Then, s = s1 → a → s2, s ′ = s1 → a′ → s ′
2,

with a, a′ ∈ X (a), a �= a′, and so,

�s = U †
s1→aU †

s2�̄s1→a�̄s2Us2Us1→a,

�s ′ = U †
s1→a′U

†
s ′
2
�̄s1→a′�̄s ′

2
Us ′

2
Us1→a′ . (23)

Note that Us1→a = Us1→a′ . Also, �̄s1→a , �̄s1→a′ commute with Us2 , Us ′
2
(because

they act over different subsystems).This, togetherwith the relation �̄s1→a�̄s1→a′ =
0, implies that �s�s ′ = 0, and, consequently, �ss ′ = 〈�0|〈ψ|�s�s ′ |�0〉|ψ〉 = 0.

4 Predictions of ML

Note that up to now we have not discussed the dynamics of theories respecting ML.
This is so because the formalism of black boxes only allows to speak about corre-
lations between distant parties, independently of how those correlations originated.
Consequently, the only predictions we can expect from the ML axiom are limits to
the non-locality exhibited by the physical theories subject to them. We already saw,
in Sect. 2, that supra-quantum isotropic PR boxes are not compatible with ML. In
this section, we will explore further how ML constrains bipartite and tripartite cor-
relations. We will see how these results compare to the no-signaling, quantum and
classical cases. But first we have to point out a practical observation.

Currently, the state of the art in non-locality research is to consider scenarioswhere
each party interacts with its subsystem only once, i.e., the length of all accessible
arcs is 1. We will call this kind of scenario the standard picture. In the standard
picture only probabilities of the type P(a1, . . . , aK ) are considered. To determine
if such distributions are ML, we just have to check the existence of LHVMs for a
finite set of intensities {I a} in a finite set of experiments, i.e., ML can be certified in
a finite number of steps. Along this Section we will always consider standard picture
scenarios.
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4.1 The Bipartite Case

In order to find out if a set of probabilities P(a, b) is compatible with ML, it is
enough to check for the existence of a LHVM for the intensity fluctuations { Ī a, Ī b :
a ∈ X, b ∈ Y,∀X, Y }. By Remark 3, we can therefore identify Qml as Q1 [12], a
set of correlations proposed in [17] as a first approximation to the set Q of quantum
correlations. Q1 is defined as the set of bipartite distributions P(a, b) such that there
exists a positive semidefinite matrix �, whose columns and rows are numbered by
the symbol I, Alice’s outcomes a and Bob’s outcomes b with the structure

� =
⎛

⎝
1 �P(a)T �P(b)T

�P(a) A P(a, b)
�P(a) P(b, a) B

⎞

⎠ (24)

with Aa,a = P(a), Bb,b = P(b).
From Sect. 3, we know that Q ⊂ Q1. Moreover, this inclusion is strict [12, 17].
However, in a sense, the two sets are quite close.

Consider, for instance, a scenario where both Alice and Bob perform s dichotomic
measurements, and, for any pair of measurement settings Xi , Y j , define the two-point
correlators

Ei j ≡
∑

a∈Xi ,b∈Y j

P(a, b)(−1)φ(a)⊕φ(b), (25)

where φ is a function that assigns the values 0 and 1 to the two outcomes associated
with eachmeasurement. In [12] it was shown that themaximumof anyBell inequality
of the form

∑

i, j

ci, j Ei j (26)

among all possible sets of correlations P(a, b) compatible withML is the same as the
quantum optimum. This implies, as shown in Sect. 2.1, that the maximum violation
of the Clauser-Horn-Shimony-Holt (CHSH) inequality [19]

C H SH ≡ E00 + E10 + E01 − E11 ≤ 2. (27)

allowed in ML theories is the Tsirelson bound, 2
√
2 [20].

In this respect, amuchmore powerful and general result is derived in [21]: consider
a bipartite non-locality scenario involving dichotomic observables, and let

f (E A
i , E B

j , Ei j ) ≤ R, (28)
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with E A
i = ∑

a∈Xi
(−1)φ(a) P(a), E B

j = ∑
b∈Y j

(−1)φ(b) P(b), be a necessary condi-
tion for a microscopic distribution to be classical, i.e., let the former expression be a
Bell inequality. Then, the relation

f

⎛

⎜⎝0, 0,
2

π
arcsin

⎡

⎢⎣
Ei j − E A

i E B
j√

1 − (E A
i )2

√
1 − (E B

j )2

⎤

⎥⎦

⎞

⎟⎠ ≤ R (29)

holds for all distributions compatible with ML.
Given expression (28), inequality (29) is proven by considering the macroscopic

intensity fluctuations Ī i
A = ∑

a∈Xi
(−1)φ(a) Ī a, Ī j

B = ∑
b∈Y j

(−1)φ(b) Ī b generated
by many microscopic systems following a ML distribution P(a, b) with two-point
correlators {Ei j } and mean values {E A

i , E B
j }. By hypothesis, P( Ī i

A, Ī j
B) is a gaussian

local distribution. It follows that the dichotomic distribution P
(
sgn( Ī i

A), sgn( Ī j
B)

)
,

with two-point correlators

Ẽi j = 〈sgn( Ī i
A) · sgn( Ī j

B)〉 = 2

π
arcsin

⎛

⎜⎝
Ei j − E A

i E B
j√

1 − (E A
i )2

√
1 − (E B

j )2

⎞

⎟⎠ , (30)

and average values 〈sgn( Ī i
A)〉 = 〈sgn( Ī j

B)〉 = 0, is also local and thus subject to (28).
Applying the former result to the CHSH inequality (27), for example, we deduce

that any microscopic distribution compatible with ML must satisfy

2

π
arcsin

⎛

⎝ E11 − E A
1 E B

1√
1 − (E A

1 )2
√
1 − (E B

1 )2

⎞

⎠ + 2

π
arcsin

⎛

⎝ E12 − E A
1 E B

2√
1 − (E A

1 )2
√
1 − (E B

2 )2

⎞

⎠ −

2

π
arcsin

⎛

⎝ E21 − E A
2 E B

1√
1 − (E A

2 )2
√
1 − (E B

1 )2

⎞

⎠ − 2

π
arcsin

⎛

⎝ E22 − E A
2 E B

2√
1 − (E A

2 )2
√
1 − (E B

2 )2

⎞

⎠ ≤ 2.

(31)

This is a strengthening of the non-linear condition discovered by Landau [30], which
can be derived from Eq. (31) by taking E A

i = E B
j = 0 for all i, j . As shown in

[17, 21], for this particular scenario of two settings and two outputs, this condition
(and the ones derived by symmetry considerations) is also sufficient to single out all
no-signaling correlations compatible with ML.

It turns out that there exist microscopic distributions with biased outcomes (i.e.,
with some Ei �= 0) attaining the Tsirelson bound which are also compatible with this
condition. On the other hand, any set of quantum correlations maximizing the CHSH
violation can be shown to have unbiased outcomes [22]. We thus conclude that ML
alone is not sufficient to characterize the bipartite quantum set of correlations.
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How does ML compare with other physical axioms at the correlation level? Many
physical principles have been proposed to constrain the set of all bipartite distribu-
tions beyond the non-signalling set, like non-trivial communication complexity [9],
Non-local Computation [10] and Information Causality [11]. However, so far only
those correlations compatible with Information Causality (IC) have been thoroughly
studied [23, 24]. Although a concrete characterization of IC correlations is still miss-
ing, current literature suggests that IC imposes weaker constraints than ML when
applied to scenarios with a small number of measurement outcomes, like the CHSH
scenario. Note, indeed, that, when applied to single out the set of physical two-point
correlators, IC does not seem to recover the quantum set [23]. It has been shown,
nevertheless, that in setups with a large number of measurement outcomes, there
exist distributions compatible with ML which would allow two parties to violate IC
[24]. Both principles hence seem to be independent of one another.

4.2 The Tripartite Case

Here we will briefly analyze the scenario with three separate degrees of freedom
(i.e., three particles), two settings and two outcomes. The correlations will thus have
the form P(a, b, c).

The tripartite case is the simplest scenario where one can study the phenomenon
of monogamy of correlations [25]. Consider, for instance, how much Alice and Bob
can violate the bipartite CHSH Bell inequality [19], see Eq. (27), for a fixed value
C H SHAC of theCHSHparameterwith respect toAlice andCharlie. From arguments
of extensibility, we know that C H SHAB, C H SHAC cannot be both non-local (i.e.,
greater than 2) at the same time [25]. Moreover, as shown in [26], the no-signaling
condition alone implies that

|C H SHAB | + |C H SHAC | ≤ 4. (32)

Toner and Verstraete [27] found that, in quantum theories, this inequality can be
replaced by a stronger one, namely,

|C H SHAB |2 + |C H SHAC |2 ≤ 8, (33)

that, in particular, allows recovering the original Tsirelson bound [20]. Both inequali-
ties are tight in the no-signaling polytope and the set of quantum correlations, respec-
tively.

It is thus intriguinghow these inequalities evolvewhenwemove fromone theory to
another following the inclusion chain Classical Physics⊂Quantum Physics⊂ML⊂
NS.

To find the solution, we had to perform linear optimizations over the set of all
tripartite distributions compatible with ML. In order to prove that P(a, b, c) is com-
patible with ML, it is enough to check that the intensities generated in the three
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scenarios depicted in Fig. 6 (tripartite case, bipartite with recombination of separate
degrees of freedom and bipartite with post-selection) admit a LHVM. This implies
checking the positivity of 10 covariance matrices. We performed the corresponding
SDP calculations with the MATLAB package YALMIP [28] in combination with
SeDuMi [29].

The results can be seen in Fig. 7, that shows the trade-off between C H SHAB

and C H SHAC for different classes of theories. The predictions of ML are disap-
pointing for their simplicity: the no-signaling bound is just complemented with the
requirement that ML only allows violations of the CHSH inequality up to 2

√
2.

Fig. 6 The GHZ scenario. These are the only three non-trivial ways (modulo permutations of the
parties) in which three separate degrees of freedom can be distributed

Fig. 7 Monogamy of
bipartite correlations. The
plot shows the trade-off
between Alice and Bob’s and
Alice and Charlie’s CHSH
parameter in different
theories. The yellow regions
corresponds to the accessible
points exclusive to the
no-signaling polytope
(bound (32)). The green zone
shows the limits compatible
with ML. The predictions of
QM (Eq. (33)) and classical
physics are denoted in grey
and brown, respectively
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5 Conclusion

In this chapter we have introduced the axiom of Macroscopic Locality as a funda-
mental principle to be satisfied by future physical theories that aim at describing our
Universe. We derived a consistent set Qml of ML multipartite correlations, which
we showed to contain strictly the set Q of quantum correlations. In the process, we
noted the phenomenon of macroscopic non-locality activation, whereby K parties
sharing a macroscopically local multipartite distribution can generate macroscopic
non-locality via clustering or classical communication. We showed how to compute
the boundaries of ML in standard nonlocality scenarios and connected our results
with previous works on quantum correlations. Our analysis revealed that, in spite
of the similarities between Qml and Q, there exist bipartite correlations compati-
ble with ML which are impossible to approximate by means of quantum systems.
This offers some hope to the possibility that quantum mechanics is experimentally
falsified in the future via bipartite Bell-type experiments.

Appendix 1: Local Gaussian Distributions

In this appendix, we will show a simple criterion to decide when a set of gaussian
marginal distributions admits a local hidden variable model. Let, then, � be a set of
variables � = {ξ1, ξ2, . . . , ξM }, and let {�i }i be a collection of subsets of � such
that, for any i , there exists a gaussian probability distribution Pi (�i ) with zero mean
and covariance matrix γi for all ξ ∈ �i . We remind the reader that the covariance
matrix of a set of variables (x1, . . . , xn) is a matrix whose entries are labeled by the
variable indices and given by the expression γi j ≡ 〈xi x j 〉 − 〈xi 〉〈x j 〉. The following
theorem provides a characterization of all marginal probability distributions Pi (�i )

that arise from a global probability distribution P(�).

Theorem 7 Let �i be sets of continuous variables ξ1, ξ2, . . ., as defined above,
and let � = ⋃

i �i . Then, there exists a joint probability density P(�) such that
P(�i )d�i = d�i

∫
P(�)

∏
ξ∈�\�i

dξ holds for all i iff the following conditions are
satisfied.

1. For all ξ, ξ′ ∈ �i ∩� j , γi
ξξ′ = γ

j
ξξ′ , that is, covariance matrix entries correspond-

ing to the same two variables have the same value.
2. There exists a positive semidefinite matrix γ whose entries are labeled by the

elements of � and such that, for any i and ξ, ξ′ ∈ �i ,

γξξ′ = γi
ξξ′ . (34)

Notice that, in case ξ, ξ′ do not both belong to one of the sets �i , the coefficient
γξξ′ does not appear among the entries of {γ j } j .
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Proof We will first prove that, if P(�) exists, then conditions 1 and 2 are satisfied.
First of all, if there exists a joint probability distribution for the variables in �, then,
for any pair of variables ξ, ξ′ ∈ � the mean value 〈ξξ′〉 is uniquely defined, and so,
if ξ, ξ′ ∈ �i ∩ � j , then γi

ξξ′ = 〈ξξ′〉 = γ
j
ξξ′ . Condition 1 is thus satisfied. To see that

condition 2 is also respected define the symmetric real matrix

γξξ′ ≡
∫

ξξ′ P(�)d�. (35)

From previous considerations, it is clear that Eq. (34) applied to γ holds. To see
that γ is positive semidefinite, multiply γ on both sides by an arbitrary vector �v. We
have that

�vT γ�v =
∑

ξ,ξ′
vξvξ′γξξ′ =

∫ ⎛

⎝
∑

ξ

vξξ

⎞

⎠
2

P(�)d� ≥ 0. (36)

Since �v was an arbitrary vector, it follows that, indeed, γ ≥ 0.
Now we will prove the opposite implication: suppose that there exists a posi-

tive semidefinite matrix γ fulfilling Eq. (34). One can then check that the gaussian
distribution P(�) ∝ e−�ξT γ−1�ξ/2 admits Pi (�i ) as marginals, as long as γ is invertible.

In case γ is not invertible, let r = rank(γ), let {�ui }r
i=1 be a basis for its range; and{�vi }M

i=r+1, a basis for its kernel. Now, perform a change of variables ξ′
i = ∑

i ui
jξ j , for

i = 1, . . . , r and ξ′
i = ∑

i vi
jξ j , for i = r + 1, . . . , M . Since, for all �vi , (�vi )T γ�vi =

〈(ξ′
i )
2〉 = 0, it follows that ξ′

i = 0, for i = r + 1, . . . , M . The distribution of the

remaining {ξ′
i }r

i=1 is thus given by P({ξ′
1, . . . , ξ

′
r }) ∝ e−�ξ′T (γ′)M P �ξ′/2. Here the symbol

M P denotes the Moore-Penrose inverse. �

Appendix 2: Macroscopic Locality

Here we will study the conditions under which the intensity fluctuations generated
by independent sets of multipartite microscopic correlations admit a classical model.

As explained in the main text, a macroscopic experiment will involve a source of
N identical and independent K -tuples of particles, all parties are allowed to perform
identical microscopic interactions over the particle beams they receive, and their
detectors have a resolution that only allows measuring intensity fluctuations of the
order O(

√
N ).

Given a possible arc s ∈ S ⊂ �Oi , define the observable ds
l as equal to 1 if party

i’s particle from the lth K -tuple impinges on detector D(s) at the end of the arc s. If
we label by Ī s the intensity fluctuation measured by this party in detector D(s), it is
straightforward that
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Ī s ∝
N∑

l=1

[ds
l − P(s)]. (37)

Since the precision of the party’s detectors only allow it to detect fluctuations of
the order

√
N , the i th experimentalist will be measuring a truncation (in principle,

up to an arbitrary number of decimal places) of the variable

Ī s =
∑N

l=1[ds
l − P(s)]√

N
. (38)

Using the notation P(s, s) = P(s), and P(s, s ′) = 0 if s, s ′ are locally orthogonal
arcs, we have that, for any two space-like separated, locally orthogonal or identical
arcs s, s ′,

〈 Ī s Ī s ′ 〉 = P(s, s ′) − P(s)P(s ′). (39)

By virtue of the Central Limit Theorem [31], in the limit N → ∞, for any col-
lection of local settings S̄ = {Si }K

i=1, the distribution of the variables { Ī s : s ∈
Si , for some i} will converge to a multivariate gaussian distribution with zero mean
and covariance matrix given by

γ S̄
ss ′ = P(s, s ′) − P(s)P(s ′). (40)

According toAppendix 1, for anyfinite number of local settings, the set of intensity
fluctuations arising from a finite set of accessible local experimental settings Sacc
will admit a LHVM iff there exists a positive semidefinite covariance matrix γ that
has γ S̄ as a submatrix for all collections S̄ ∈ Sacc.
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