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Introduction

Giulio Chiribella and Robert W. Spekkens

The foundations of QuantumMechanics are experiencing a golden age. In a timespan
of less than twodecades, an astonishing number of new results, ideas, and frameworks
have revolutionized the way we think about the subject. A new research community
is emerging worldwide, attracting scientists from a diverse spectrum of disciplines
including physics, computer science, and mathematics. The keyword “foundations”
is now included in the strategic priorities of many research institutions and funding
agencies, and it regularly features as one of the hot topics in international conferences.

The abundance of ideas, approaches, and resources that have emerged poses some
challenges however. For one, having a global vision of the field and reflecting on
its high level goals is becoming increasingly difficult. For another, the sheer number
of different frameworks that have been put forward risks creating a tower of Babel
effect, fragmenting the community into smaller cliques that are unable to talk to
one another. In addition, researchers who are joining the field have to cope with a
fast-moving landscape where it can be hard to identify stable reference points.

These considerations led us to the project of this book, which aims to showcase
the state of the art in quantum foundations. The book provides a collection of articles
that deal with influential ideas in the field today, revealing the diversity of approaches
on the one hand, and highlighting the common threads among them on the other.

G. Chiribella (B)
Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong,
People’s Republic of China
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2 G. Chiribella and R.W. Spekkens

1 Characteristics of the New Wave of Quantum
Foundations

We start by outlining what is distinctive about the foundational research that this
book aims to portray.

1.1 A Pragmatic Perspective

It is useful to distinguish between what one might call dynamicist and pragmatist
traditions in physics.Within the dynamicist tradition, the physicist’s job is to describe
the natural dynamical behaviour of a system, without reference to human agents or
their purposes. In the pragmatic approach, on the other hand, the laws of physics are
characterized in terms of the extent to which we can learn and control the behaviour
of physical systems. The distinction between the dynamicist and pragmatist points
of view is nicely represented in competing formulations of the second law of ther-
modynamics. One that is clearly in the dynamicist tradition is Clausius’s original
statement:

Heat can never pass from a colder to a warmer body without some other change, connected
therewith, occurring at the same time [1].

On the other hand, the version of the Kelvin-Planck statement that is found in most
textbooks is clearly pragmatic:

It is impossible to devise a cyclically operating device, the sole effect of which is to absorb
energy in the form of heat from a single thermal reservoir and to deliver an equivalent amount
of work [2].

Quantum theory has always partaken in both traditions. Indeed, Schrödinger’s
wave mechanics and Heisenberg’s matrix mechanics were distinguished in part by
the fact that Schrödinger, following de Broglie’s lead, sought to provide a descrip-
tion of the motion of particles, while Heisenberg, following Bohr’s lead, espoused
an operational philosophy and took his formalism to merely describe what would be
observed in certain experimental circumstances. The new foundational work repre-
sents a renewed interest in exploring quantum theory within the pragmatic tradition.

1.2 Quantum Foundations in the Light of Quantum
Information

The newfound popularity of the pragmatic tradition is tightly connected with the
rise of quantum information theory. The real innovation of the recent foundational
work is in theway researchers conceive the difference between quantum and classical
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theories [3]. Historically, quantum theory was taken to consist entirely of restrictions
on our information-gathering ability; think for instance of the restriction imposed
by the uncertainty principle. The quantum information revolution overturned this
notion: a quantum world in fact holds new possibilities for information-processing
tasks—in particular, communication tasks, cryptographic tasks and computational
tasks—that could not be accomplished in classical physics.

Milestone applications of quantum information, such as secure quantum key dis-
tribution [4, 5], ultrafast quantum algorithms [6, 7], teleportation [8], and dense
coding [9], stimulated the imagination of quantum theorists, and led them to ask
questions that moved beyond the usual topics of foundational discussions: Which
principles of quantum theory can account for its information-processing advantages?
Does the possibility of achieving one kind of information-processing advantage imply
the possibility of achieving others? Is quantum theory the only theory where these
advantages arise? These questions were at the center of an influential research pro-
gramme, launched by Fuchs [10, 11] and Brassard [12], that aimed to understand
quantum theory in the light of quantum information. More specifically, the idea was
to take certain facts about the information-processing features of a quantum world,
for instance, the possibility of secure key distribution and the impossibility of secure
bit commitment, and derive the quantum formalism from these. This line of inquiry
gave birth to a new breed of foundational research with more pragmatic ambitions,
with practitioners that split their time between developing novel practical applica-
tions of quantum information and achieving a deeper foundational understanding of
quantum theory, with each activity informing the other.

1.3 The Shift from Interpretation to Reconstruction

Traditionally, the focus of many quantum foundations researchers was the interpre-
tation of quantum theory. In most such works, the formalism of quantum theory was
taken as given, and the goal was to infer from this formalism the correct story to
tell about the nature of reality—typically, a story of dynamicist flavour. The Everett
interpretation [13] and the deBroglie-Bohm interpretation [14] are examples.Models
incorporating physical collapses [15, 16] are also proposed in an effort to secure a
dynamicist story about quantum theory.

By contrast, the focus of the new wave is the reconstruction of quantum theory
from physical principles. Contemporary researchers are looking for an answer to
Wheeler’s famous question “Why the quantum?” [17] and are driven to understand
the origin of the formalism itself. Textbook postulates such as “a physical system is
described by a complex Hilbert space”, “pure states are described by unit vectors”,
“outcome probabilities are given by the Born rule”, and “systems combine by the
tensor product rule” are now regarded as abstract mathematical statements in need
of a more fundamental explanation. Such an explanation would be akin in spirit to
Einstein’s derivation of the Lorentz transformations from the light postulate and the
principle of relativity.
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The goal is to find a compelling set of axioms that singles out quantum theory
from among all possible theories. Finding an appealing axiomatization is a problem
that has a long tradition, starting with the work of Birkhoff and von Neumann [18]
and continuing through the works of Mackey [19], Ludwig [20], and Piron [21]
and the tradition of quantum logic [22, 23]. What distinguishes the axiomatic work
being pursued today is the use of notions inspired by quantum information theory,
the emphasis on composite systems, the focus on finite-dimensional Hilbert spaces,
and an insistence on axioms that are operationally meaningful.

1.4 The Operational Framework

Any question of the form “why this?” is implicitly asking “why not that?”. Therefore,
to tackle Wheeler’s question, one first of all needs to be able to conceive of alterna-
tives to quantum theory, ways the world might have been. In short, one requires a
framework for describing a broad range of physical theories, including quantum and
classical theories, but allowing more exotic alternatives as well.

One way to achieve such a framework is to focus on a strictly operational formu-
lation of physical theories. An operational formulation is one wherein the primitive
concepts are preparation procedures, transformation procedures, and measurement
procedures, each understood as a specification of a list of instructions for an exper-
imentalist, spelled out in sufficient detail that they could be implemented by any
technician, as with a good recipe. The theory specifies a mathematical algorithm
that fixes the probability distribution over outcomes for every possible measurement
given every possible preparation and intervening transformation. When phyical the-
ories are operationally formulated, therefore, the only relevant differences between
them are differences in the sorts of experimental statistics that they allow.

The operational approach encourages one to focus on a characterization of quan-
tum theory in terms of experimental facts, and to consequently avoid, as much as is
possible, making claims that go beyond what is strictly required to describe these
facts. This sort of exercise can be very useful for freeing themind fromall the baggage
of classical preconceptions and previous attempts to interpret the quantum formalism.
For many researchers, adopting this approach is not a rejection of the need for pro-
viding a dynamicist account of quantum theory, nor is it necessarily an endorsement
of the notion that a physical theory is nothing more than an algorithm for predicting
experimental statistics. Rather, it is considered an effective methodological tool for
making progress on questions about the origin of the quantum formalism.

1.5 Foil Theories

A distinctive characteristic of contemporary foundations is the exploration of alter-
natives to quantum theory, that is, foil theories. A foil to X is something that helps to
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highlight the distinctive characteristics of X by contrasting with it.1 Given a frame-
work of possible theories that includes quantum theory, every nonquantum point in
the landscape is a foil theory. Each such theory specifies a way the world might have
been had it not been quantum.

We use the term ‘foil’ to highlight the attitude that is taken towards these theories:
they are not being proposed as empirical competitors to quantum theory, with grand
ambitions of usurping its throne. Rather, they serve to clarify what is distinctive about
quantum theory. For instance, if one can identify a foil theory that shares some set of
features with quantum theory, then that set of features cannot possibly be a complete
set of axioms for quantum theory. Likewise, constructing foil theories is an essential
step for proving the independence of a set of axioms: if one axiom is independent
from another, then one should be able to devise a foil theory that satisfies the former
but violates the latter.

1.6 Goals

One of the ambitions of researchers in quantum foundations is that the insights
coming from their work will help with some of the big challenges of contemporary
physics, such as the formulation of a quantum theory of gravity. Another ambition
is to find alternatives to quantum theory that could eventually become empirical
competitors. Given an axiomatic derivation of quantum theory, it suffices to modify
a single axiom in order to get a consistent alternative. Furthermore, this approach
can be used to avoid an important pitfall of more ad hoc approaches to developing
alternatives to quantum theory, namely, that the latter may inadvertently violate
fundamental principles that one would prefer not to abandon. A good example is the
nonlinear modification of quantum theory proposed by Weinberg [24] which was
subsequently shown to allow for superluminal signalling [25] and also to violate
the second law of thermodynamics for the normal definition of entropy [26]. In the
axiomatic approach, the fundamental principles that one wants to uphold can be built
in from the outset.

A more practical application of this foundational work is to advance quantum
technologies. Indeed, such work is beginning to clarify how information-processing
capabilities can arise from foundational principles. For instance, cryptography based
on Bell-inequality violations [5, 27] can be shown to be secure even if the devices
used in the protocol are supplied by the adversary, as long as it is presumed that
the adversary cannot signal superluminally [28, 29]. This idea, which originated
from foundational works, led to an entire field of device-independent cryptography
[28–32].

1“Whenever I marry,” she continued after a pause which none interrupted, “I am resolved my
husband shall not be a rival, but a foil to me.”—from Jane Eyre, by Charlotte Brontë.
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2 Frameworks for Operational Theories

It is worth spending a fewwords on the specific frameworks that have been developed
in an attempt to achieve the aims described above. Because existing frameworkswere
found insufficient, many researchers opted to construct a new canvas for their portrait
of quantum theory, with quantum information processing serving as their muse. The
emphasis posed on the development of such frameworks is itself a distinctive trait of
the new wave of foundational research.

To the outsider, it is hard to appreciate the importance of constructing the frame-
work. But it is in fact a highly non-trivial task, where one is forced to make fun-
damental choices as to what is considered “general” (i.e. part of the notion of a
physical theory) and what is considered “specific” (and hence a possible candidate
for an axiom that identifies quantum theory). In a sense, what is a stake in the choice
of a framework is the very definition of a physical theory.

Note that having a framework for operational theories is not only useful as an
instrument for axiomatizations, but also as a playground for experimentingwith alter-
native models of information processing. Such frameworks are increasingly being
used to attempt to describe nonclassical phenomena in a language that does not pre-
sume the correctness of quantum theory. Not only is this pursued for the question of
Bell inequality violations [33–36], but also for a number of applications to computer
science and physics, including the study of communication complexity [37, 38], non-
local computation [39], measurement-based computation [40–44], games and inter-
active proof systems [45–50], randomness amplification [51–54], causal networks
[55–57], computability [58], complexity [59], key distribution [60], bit commitment
[61–63], complementarity [64, 65], no cloning [63, 66, 67], teleportation [63, 68,
69], state discrimination [70–72], entropy [73–75], thermodynamics [76–78], gen-
eral resource theories [79], and spacetime physics [80, 81]. This long list provides
a good illustration of how fertile the development of new frameworks has been. In
the following we identify the main directions along which the framework-building
activity has developed so far.

2.1 The Framework of Convex Operational Theories

Aparticularly popular framework is that of convex operational theories, where prepa-
rations, transformations, and measurements are represented by elements of suitable
convex sets, the dimension of which is fixed by the nature of the physical systems
involved in the experiment.

The framework of convex operational theories is the contemporary descendant
of the frameworks used in the tradition of operational quantum logic, in particular
those introduced byMackey [19], Ludwig [20], and Davis and Lewis [82]. In the new
wave of quantum foundations, the first elaboration of this framework appeared in
Hardy’s 2001 axiomatization of quantum theory [83]. With respect to earlier works
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in quantum logic, Hardy’s framework distinguishes itself by being more manageable
and intuitive, partly because of its focus on finite-dimensional systems. This approach
was brought to completion through a series of works by a number of other authors
[66, 69, 84, 85].

2.2 The Category-Theoretic Framework

Due to the long tradition of using convex sets to represent the state spaces of physical
systems, there is a strong temptation to identify the operational approach with the
framework of convex operational theories.However, a substantial part ofwhat defines
a physical theory has nothing to do with convex sets, or even with probabilities. For
example, operational notions such as composing two systems in parallel (this and
that) and composing two physical processes in a sequence (do this and then do that)
are more primitive than the notion of probability. Such notions of composition are the
focus of the category-theoretic framework initiated by Abramsky and Coecke [68,
86–88]. In this framework, the mathematical structure describing a general physical
theory, in particular the two notions of composition and how they interact, is that
of a strict symmetric monoidal category. One of the characteristic features of the
category-theoretic framework is that all the relations of interest can be encoded in
diagrams, similar to those used in the representation of quantum circuits.

2.3 The Framework of Operational-Probabilistic Theories

The lesson of the category-theoretic framework is that the composition of systems
and processes is fundamental to the operational structure of a theory and that one
can talk about information processing without even having to mention probabilities.
On the other hand, the precise probabilistic predictions of an operational theory are
sometimes a feature of interest. If one is interested in both the compositional and the
probabilistic features of a theory, then the framework of operational-probabilistic
theories, recently developed by Chiribella et al. [63, 89, 90] and Hardy [91, 92],
provides a supplementation of the category-theoretic framework with probabilistic
structure.

In this framework, the category-theoretic notions are used to define circuits of
physical processes. An experiment is represented by a closed circuit, starting from the
preparation of a system and ending with a measurement having a particular outcome.
The probabilistic structure is added on top of the circuit framework by introducing a
rule that assigns probabilities to these closed circuits. The result of this construction
is that states, transformations, and measurements are represented by elements of
suitable vector spaces, as they are in the framework of convex-operational theories.
However, the framework of operational-probabilistic theories allows one to describe
also theories where the state space is not convex, such as Spekkens’ toy theory [93].
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In addition, it allows one to treat causality as an emergent feature in a broader class
of physical theories where causality is not assumed as part of the framework [63].

When we wish to refer to a framework that can describe features of experimental
probabilities,while remaining noncommital aboutwhether it is the framework of con-
vex operational theories or the more general framework of operational-probabilistic
theories,we shall speak simply of the framework of generalized probabilistic theories
(GPTs).

2.4 The Device-Independent Framework

Another popular framework is the device-independent framework [28, 29, 94, 95].
Here an experiment is not parsed into preparations, transformations and measure-
ments, with a physical system of a particular dimension acting as a causal mediary
between these. Rather, the experiment is treated as a black box, characterized com-
pletely by how it maps classical inputs to classical outputs. The roots of this approach
can also be traced back to the quantum information revolution: considering input-
output black boxes is a natural approach to the design of cryptographic protocols
that are secure even if the functioning of the devices is not trusted. In this context,
proving the security of a protocol independently of the inner workings of its black
box components is desirable because the components may have been designed by
one’s adversary.

The device-independent framework is apt to capture the device-independent fea-
tures of quantum theory. The paradigmatic example of a device-independent quantum
feature is the Tsirelson bound [96], which can be viewed as an upper bound on the
probability that two cooperating players win a game, known as the CHSH game
after the seminal work of Clauser et al. [97]. In the CHSH game, the inputs are the
questions asked by a referee to the two players, and the outputs are their answers.
While playing the game, the players are allowed to share arbitrary entangled states
and are allowed to perform arbitrary local measurements on their systems. Still, their
winning probability is upper bounded, independently of the states they prepare and of
the measurements they perform. The bound is device-independent, in that it depends
only on the validity of quantum theory.

The CHSH game is the problem that got the device-independent approach started,
when Popescu and Rohrlich [94] and Rastall [98] came up with a foil theory that is
more nonlocal than quantum theory, i.e., it guarantees to the players a higher winning
probability in the CHSH game. Nevertheless, any other game would define a device-
independent feature of quantum theory. The ultimate device-independent feature is
the specification of the full set of correlations (i.e. the conditional probability of the
outputs given the inputs) that are achievable by local quantum measurements on a
bipartite quantum state. This is known as the quantum set.

A particularly active line of research in recent years has been the problem of
deriving device-independent features of quantum theory from information-theoretic
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principles. The ultimate dream of researchers working in this area is to derive the
specific shape of the quantum set by using only device-independent axioms, that
is, axioms that refer only to the conditional input-output probabilities. Although the
study of information processing in generalized probabilistic theories and the study of
device-independent features have developed on separate tracks until now, the time is
ripe for uncovering connections between them. On the one hand, the tools developed
in the study of axioms for generalized probabilistic theories may help to achieve a
characterization of the quantum set, a project that is notoriously difficult. On the
other hand, device-independent features may provide candidates for new axioms. A
detailed discussion of the connections between the device-independent framework
and the framework of general probabilistic theory can be found in Ref. [99].

3 Book Synopsis

The information-theoretic characterization of quantum theory is a general direction
that unites the efforts of the new quantum foundationalists, although below this
umbrella there is an exceptional variety of different approaches and goals. The book
aims to provide a panoramic view of the field, including some of the most promising
directions that have emerged in the past decade. It is divided into four sections,
corresponding to the following themes:

1. Foil theories (Chaps. 1–3)
2. Axiomatizations (Chaps. 4–8)
3. Categories and convex sets (Chaps. 9–10)
4. Quantum versus super-quantum correlations (Chaps. 11–15)

This subdivision is meant as an aid for readers who are approaching the field for
the first time and want to have an idea of the big picture. Many other organizational
schemes would have worked just as well, and we therefore encourage readers to
explore other paths through the various contributions. In the following, we provide
a synopsis of the book through its four sections.

3.1 Foil Theories

We open the book with three examples of foil theories.
Wootters (Chap.1) considers real quantum theory [100–102], which is the foil

theory that results from replacing the complex field with the real field in the standard
formalism of quantum theory. He considers the information transfer from a prepa-
ration to a measurement and shows that for certain natural ways of quantifying this
transfer—for instance, the mutual information between the angle of a polarizer that
prepares a photon’s polarization and the relative frequency of outcomes in ameasure-
ment of polarization—the information transfer is optimized for real quantum theory

http://dx.doi.org/10.1007/978-94-017-7303-4_1
http://dx.doi.org/10.1007/978-94-017-7303-4_3
http://dx.doi.org/10.1007/978-94-017-7303-4_4
http://dx.doi.org/10.1007/978-94-017-7303-4_8
http://dx.doi.org/10.1007/978-94-017-7303-4_9
http://dx.doi.org/10.1007/978-94-017-7303-4_10
http://dx.doi.org/10.1007/978-94-017-7303-4_11
http://dx.doi.org/10.1007/978-94-017-7303-4_15
http://dx.doi.org/10.1007/978-94-017-7303-4_1
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and not for complex quantum theory. He further considers the question of whether
some other notion of information transfer might pick out complex quantum theory
rather than its real counterpart.

Schumacher and Westmoreland (Chap. 2) present and develop modal quantum
theory [103], which replaces the complex field with a finite field. This necessitates a
more dramatic modification of the quantum formalism than is required to replace the
complex field with the real field. The foil theory that they construct is possibilistic
rather than probabilistic: it does not specify the probabilities of different measure-
ment outcomes, but only which outcomes are possible and which are impossible.
Despite the fact that modal quantum theory is rather minimalist in the scope of states
and measurements that it permits, it nonetheless reproduces a surprising number of
qualitative features of quantum theory.

Spekkens (Chap.3) considers a family of foil theories that arise from taking a
classical statistical theory and imposing an epistemic restriction, that is, a restriction
on the amount of knowledge any observer can have about the physical state of a
classical system [93]. Depending on the type of degree of freedom being considered,
the resulting foil theory either describes a subset of the preparations, transforma-
tions and measurements allowed in the full quantum theory for that type of degree
of freedom, or it describes a distortion of such a subset that is inequivalent in its
predictions to quantum theory. Both types are shown to reproduce a large number
of phenomena that are usually taken to be distinctively quantum, but to lack others,
thereby suggesting a distinction between weak and strong notions of nonclassicality.

3.2 Axiomatizations

This part of the book presents three different axiomatizations of quantum theory
(Chaps. 4–6) along with two contributions on themes that are closely related to the
axiomatic endeavour (Chaps. 7–8). For reasons of space, all of the axiomatization
chapters confine themselves to presenting an outline of the main ideas behind the
derivation of the Hilbert space formalism, while omitting the technicalities that go
into the mathematical derivations (these can be found, of course, by referring to the
original research articles).

Masanes and Müller (Chap. 4) present their 2011 axiomatization of quantum the-
ory [104]. We start our lineup of axiomatization here because this work is a direct
descendant of Hardy’s seminal 2001 axiomatization, from which it inherits some of
its axioms. With respect to Hardy 2001, the main progress here is in the elimina-
tion of one axiom, called the “Simplicity Axiom”, which, compared to the others,
seemed to be less motivated. Within both the Hardy 2001 and the Masanes-Müller
2011 axiomatizations, the feature that distinguishes quantum from classical theory is
the fact that every two pure states are connected by a continuous path of pure states.

Chiribella, D’Ariano and Perinotti (Chap.5) present their axiomatization [89]
next. The central axiom here is the Purification Postulate, stating that every mixed

http://dx.doi.org/10.1007/978-94-017-7303-4_2
http://dx.doi.org/10.1007/978-94-017-7303-4_3
http://dx.doi.org/10.1007/978-94-017-7303-4_4
http://dx.doi.org/10.1007/978-94-017-7303-4_6
http://dx.doi.org/10.1007/978-94-017-7303-4_7
http://dx.doi.org/10.1007/978-94-017-7303-4_8
http://dx.doi.org/10.1007/978-94-017-7303-4_4
http://dx.doi.org/10.1007/978-94-017-7303-4_5
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state of a given physical system can be modelled as the marginal of a pure state of a
larger composite system. This requirement directly implies many quantum features,
such as no-cloning, teleportation, and the fact that every irreversible process can
be modelled as the result of a reversible interaction between the system and an
environment that is subsequently discarded [63]. A slogan for this axiomatization is
that quantum theory is the only pure and reversible theory of information.

We conclude our lineup of axiomatizations with Hardy (Chap.6) who presents
his 2011 axiomatization [92]. In this axiomatic scheme, the emphasis is on the per-
fect distinguishability of states and on the possibility of performing computations
reversibly. Hardy proves that there are only two theories compatible with his new
set of axioms: classical and quantum. Once this result is established, therefore, one
can identify quantum theory by choosing any feature that distinguishes it from clas-
sical theory. Insofar as this work constitutes a significant development of Hardy’s
influential 2001 axiomatization and incorporates tools and ideas introduced by other
authors working on axiomatization, it is a good illustration of the progress of the
field in the last decade.

Chapters7 and 8 do not present new axiomatizations, but nonetheless concern
themselves with the axiomatization project.

Dakić and Brukner (Chap. 7) note that within generalized probabilistic theories,
experimental operations are described abstractly and do not make direct contact with
more traditional concepts of physics, such as position in space, direction, and energy.
Their work aims to bridge this gap to some extent. They show that, within a suitable
class of theories, quantum theory embedded in a three-dimensional space is the only
theory satisfying the consistency requirement that every possible transformation of
a single elementary system can be generated by a symmetric interaction between the
system and a macroscopic system which acts as a program for the desired transfor-
mation. Their work provides an example of the trend of applying the formalism of
generalized probabilistic theories to a broader spectrum of topics in physics.

Fuchs and Stacey (Chap. 8) provide some critical remarks on existing axiomatiza-
tions of quantum theory and express some desiderata for future work. In addition to
motivating the search for a more compelling picture, they review the QBist approach
to the foundations of quantum theory [105–108], which aims to understand quantum
theory within a subjective Bayesian approach to probability theory, in particular, as
a modification to the manner in which experimental probabilities in different coun-
terfactual scenarios are related to one another.2

3.3 Categories and Convex Sets

Chapters9 and 10 expound the foundations of the category-theoretic framework and
of the framework of convex operational theories, respectively. As we have noted,

2This chapter is a transcript of the talk given by Fuchs at the conference Conceptual Foundations
and Foils for Quantum Information Processing, May 9–13, 2011

http://dx.doi.org/10.1007/978-94-017-7303-4_6
http://dx.doi.org/10.1007/978-94-017-7303-4_7
http://dx.doi.org/10.1007/978-94-017-7303-4_8
http://dx.doi.org/10.1007/978-94-017-7303-4_7
http://dx.doi.org/10.1007/978-94-017-7303-4_8
http://dx.doi.org/10.1007/978-94-017-7303-4_9
http://dx.doi.org/10.1007/978-94-017-7303-4_10
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developing suitable frameworks is an essential step in the axiomatization of quantum
theory and a subject of active research in its own right. The reader may well wonder
whywechose to put the framework chaptersafter the axiomatizations chapters, rather
than before. There are several reasons for our choice. First of all, the mainmessage of
the axiomatizations can be easily grasped without entering into the specific details of
the framework. In fact, given the richness of nuances contained in the axiomatization
works, too much attention to details could even hinder the first reading. On top of
that, the frameworks used in the axiomatization chapters are often different from
those presented in Chaps. 9 and 10. Finally, giving first a taste of what the study of
operational theories can achieve is probably the best way to motivate the reader to a
deeper excursion into the structural aspects of the framework.

Our excursion starts with Coecke, Duncan, Kissinger, and Wang (Chap. 9),
who review the category-theoretic framework for describing operational theories
[68, 86–88]. This chapter will take the reader through the quantum structures that
are central to this approach, such as the tensor product structure, the compact structure
associated to quantum teleportation, the dagger structure associated to the adjoint, and
the Frobenius structure associated to orthonormal bases. These notions are expressed
in terms of a diagrammatic calculus that allowsmathematical proofs to be carried out
entirely through the manipulation of diagrams. Using this framework, the authors
provide a purely graphical treatment of complementarity and of the Greenberger-
Horne-Zeilinger paradox at the end of the chapter.

Barnum and Wilce (Chap. 10) present the framework of convex operational the-
ories [66, 69, 83–85]. Here, the structures of ordered vector spaces, geometry, and
symmetry are the main protagonists. States of a given system are represented by
points in a finite dimensional convex set, measurements by positive linear function-
als, and physical transformations by positive linear maps. To illustrate some of these
notions, the chapter presents many concrete examples of convex operational theories
that are nonclassical but distinct from quantum theory. The treatment of tensor prod-
ucts and entanglement in convex operational theories is reviewed, as is the question
of which information processing advantages of quantum theory are generic to convex
operational theories that are nonclassical. Finally, the chapter discusses axioms for
quantum theory based on considerations of symmetry and composition.

3.4 Quantum Versus Super-Quantum Correlations

In the final part of this book we present a number of important features of the set
of quantum correlations, in particular, features that serve to distinguish it within a
larger, hence “super-quantum”, set of correlations compatible with the no-signalling
principle.

Pawlowski and Scarani (Chap. 11) discuss the principle of Information Causality
[109]. This is a device-independent principle that concerns the possibilities for com-
munication within an operational theory, in particular, for a communication protocol

http://dx.doi.org/10.1007/978-94-017-7303-4_9
http://dx.doi.org/10.1007/978-94-017-7303-4_10
http://dx.doi.org/10.1007/978-94-017-7303-4_9
http://dx.doi.org/10.1007/978-94-017-7303-4_10
http://dx.doi.org/10.1007/978-94-017-7303-4_11
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known as a random access code, wherein the receiver only gets part of the data
encoded by the sender, but is allowed to choose which part. An operational theory
is said to be information causal if assisting a random access code with an arbitrary
shared nonsignalling resource of correlations provides no advantage. They show that
Information Causality implies the Tsirelson bound and many other features of the
set of quantum correlations.

Navascués (Chap. 12) discusses the principle ofMacroscopic Locality [110]. This
approach makes use of the fact that the strength of nonsignalling correlations among
microscopic systems has consequences for the strength of such correlations among
macroscopic systems, that is, among collections of microscopic systems wherein
one cannot address the constituents individually. To insist that an operational theory
satisfy macroscopic locality is to insist that in the macroscopic limit it must look
classical, in particular, it must look local in the sense of not violating aBell inequality.
This principle implies that the microscopic correlations must satisfy the Tsirelson
bound and reproduces other features of the quantum set.

Acín, Almeida, Augusiak, and Brunner (Chap. 13) describe the foundational
implications of a multipartite game called Guess Your Neighbor’s Input (GYNI)
[111]. The game of GYNI is one for which quantum does not provide an advantage
over classical, but for which nonsignalling alternatives to quantum theory do pro-
vide an advantage. Thus, the game provides a natural separation between quantum
correlations and super-quantum correlations. Various consequences for the project
of deriving the quantum set are discussed: GYNI can be used to show that in the
multipartite scenario, the no-signalling principle and the assumption that systems
locally look quantum is not enough to recover the quantum set, unlike the bipartite
case; and to derive Bell inequalities that do not admit of any quantum violation.

Finally, Colbeck and Renner (Chap. 14) consider the question of whether there
might exist an extension of quantum theory, that is, an alternative theory that enables
predictions that have less uncertainty than those of quantum theory, but which repro-
duces the quantum predictions when one averages over certain variables [112]. Using
an assumption that seeks to formalize the notion that observers are free to choose the
settings of their measurements, they prove a result that rules out such extensions.

4 Concluding Remarks

The goal of understanding what physical principles might underlie the formalism of
quantum theory is an ambitious one. Nonetheless, this monograph testifies to the fact
that real and sustained progress on the question has been achieved in recent years.
We hope that readers will come away with a sense of the excitement and promise
of contemporary research in the field of quantum foundations and that some may be
inspired to contribute to the endeavour themselves in the years to come.
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Foil Theories



Optimal Information Transfer
and Real-Vector-Space Quantum Theory

William K. Wootters

1 Introduction

In 1936 Birkhoff and von Neumann initiated an axiomatic approach to the foun-
dations of quantum mechanics, taking as their starting point postulates inspired by
classical logic but adapted to the peculiar features of quantum theory [1]. Though they
showed that many characteristics of quantum theory could be captured in this way,
they could also see that their logical approach would not lead uniquely to standard
quantum theory. In particular they noted that along with standard complex-vector-
space quantum theory, the postulates could just as well be satisfied by a theory based
on a real or quaternionic Hilbert space.1

Over the years other authors have taken other approaches to axiomatization and
have found reasonable assumptions that favor the complex theory over the real and
quaternionic models. One successful strategy along these lines has been to insist on
the existence of an uncertainty principle of a specific form [5–7]. Another approach
put forward by several authors relies on the fact that in standard quantum theory, it is
possible to carry out a complete tomographic reconstruction of the state of amultipar-
tite system entirely by means of local measurements on the individual components
(taking into account correlations), with no need for global measurements on pairs of
subsystems [8–14]. The real-vector-space theory does not have this property; so by
adopting local tomography as an axiom, one rules out the real case. Surely, though,
much of the appeal of these arguments comes from the fact that they succeed in lead-
ing us to what we believe to be the correct answer. If we had found ourselves living

1 In fact, from this logical starting point, it has turned out to be difficult even to narrow the set of
possibilities to just these three theories—real, complex, and quaternionic. Major theorems along
these lines can be found in Refs. [2, 3]; see also Ref. [4]. Still, nothing in these papers favors the
complex theory over the real or quaternionic theory.
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in a world that seemed to be well described by real-vector-space quantum theory,
we would not have regarded it as a logical problem that tomography requires global
measurements. It would simply be another peculiar feature of quantum theory, like
entanglement.2 (I admit, though, that the local tomographic property of the complex
theory does feel as if it could be a clue to something deeper.)

In this paper I would like to point out a particular property of real-vector-space
quantum theory that I find especially intriguing: the transfer of information from a
preparation to a measurement is optimal (in a sense to be explained below). Standard
quantum theory does not have this property. So if we were trying to find a simple
set of axioms that would generate real-vector-space quantum theory, we might well
find ourselves adopting optimal information transfer as one of our axioms. This
property of the real theory has been known for years—it appears in my 1980 doctoral
dissertation [16]—but I would like to give a somewhat simpler and more intuitive
presentation of it here.

One motivation for studying real-vector-space quantum theory is simply to shed
light on the standard theory by comparison. But I would also like to keep open the
possibility that the real-vector-space theory might turn out to be of value in its own
right for describing our world. Several authors have given us reasons for not dis-
counting this possibility. In a series of papers published around 1960, Stueckelberg
and his collaborators developed an alternative formulation of quantum field theory
based on a real Hilbert space [6, 17, 18]. In order to allow the existence of an uncer-
tainty principle, Stueckelberg imposes a specific restriction on all the observables of
the real-vector-space theory: every observable is required to commute with a certain

operator that we can write as I ⊗ J , where J is the 2 × 2 matrix

(
0 −1
1 0

)
and I is

the identity operator. (In the context of Stueckelberg’s papers I is the identity on an
infinite-dimensional real Hilbert space.) In effect, this restriction forces the matrix

representing any observable to be composed of 2 × 2 blocks of the form

(
a −b
b a

)
.

Such 2 × 2 blocks add and multiply like complex numbers; so the theory becomes
equivalent to the usual complex theory. One of the points Stueckelberg and his col-
laborators make in these papers is that in this formulation the time-reversal operator
becomes linear, rather than antilinear as in the complex formulation. Around the
same time, Dyson made the same point and argued that by bringing the time-reversal
operator into our formalism, we are in effect basing our quantum theory on the field
of real numbers [19].

Recently Gibbons has argued that the complex structure in quantum theory is
intimately related to the existence of an arrow of time, and that in spacetimes in
which such an arrow cannot be defined, one must fall back on a real-vector-space
version of quantum theory [20]. In other work, Myrheim has pointed out that if
one wants a version of the canonical commutation relation [x, p] = i� in a discrete
systemwith finitelymany values of position andmomentum, one cannot use standard

2At least in real-vector-space quantum theory, one never needs tomake globalmeasurements involv-
ing more than two subsystems [15].
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complex quantum theory: the trace of any commutator is zero in a finite-dimensional
space, but the trace of i� is not zero. On the other hand, if we replace i� with J� (the
same J as above), both sides of the equation have zero trace and there is no problem
[21]. In the present paper I do not particularly build on any of these observations
except insofar as they suggest that a real-vector-space version of quantum theory
might be used to describe our actual world, and that the theory is worth studying for
this reason as well as for whatever insights it might provide about standard quantum
mechanics.

I begin in Sect. 2 by saying what I mean by “real-vector-space quantum theory.”
Then in Sects. 3 and 4 I present the property of optimal information transfer, first for
a two-dimensional state space and then in d dimensions. As I have said, standard
complex quantum theory does not have this property, and it is interesting to ask
whether a revised statement of the problem might yield a positive answer even in the
complex case. This is the subject of Sect. 5. Section6 then summarizes our findings.

2 Real-Vector-Space Quantum Theory

One can summarize the basic structure of standard quantum theory in the following
four statements:

1. A pure state is represented by a unit vector in a Hilbert space over the complex
numbers.

2. An ideal repeatable measurement is represented by a set of orthogonal projection
operators whose supports span the vector space. When a state |s〉 is subjected to
the measurement {P1, · · · , Pm}, the probability of the i th outcome is 〈s|Pi |s〉.
When the i th outcome occurs, the system is left in a state proportional to Pi |s〉.

3. A reversible transformation is represented by a unitary operator U . That is, for
any initial state |s〉, the operation takes |s〉 to U |s〉.

4. A composite system has as its state space the tensor product of the state spaces
of its components.

Of course other states, measurements and transformations are possible. Mixed
states are averages of projection operators on pure states, and there also exist non-
orthogonal measurements and irreversible transformations. But all such generaliza-
tions can be obtained from the cases listed above by applying them to a larger system
and possibly discarding part of the system. I have chosen the above formulation partly
to keep the discussion simple, but also because I do tend to think of orthogonal mea-
surements and pure states as being more fundamental than their generalizations.

The real-vector-space theory has essentially the same structure, except that all
vectors and matrices are limited to real components. The only changes in the above
list are that “complex” is to be replaced by “real” in item 1, and “unitary” is to be
replaced by “orthogonal” in item 3.

One might wonder what the analogue of the Schrödinger equation is in the real-
vector-space theory. The Schrödinger equation generates a unitary transformation
through a Hermitian operator, the Hamiltonian:
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i�
d

dt
|s〉 = H |s〉. (1)

If H is time independent, the unitary operator it generates over a time t is U (t) =
e−i Ht/�, since |s(t)〉 = U (t)|s(0)〉 solves the differential equation. The analogous
equation in the real-vector-space case should have an antisymmetric real matrix in
place of −i H , since such a matrix generates orthogonal transformations. We can
write the differential equation as

d

dt
|s〉 = S|s〉, (2)

where S is an antisymmetric real operator. I like to call S the “Stueckelbergian”
in honor of Ernst Stueckelberg (who of course did not use this term). If S is time
independent, then the general solution of Eq. (2) is |s(t)〉 = eSt |s(0)〉.

Another reasonable question is whether, for example, in a two-dimensional real
space the operator

R =
(
1 0
0 −1

)
(3)

should be allowed to count as a possible transformation [22]. It is an orthogonal
matrix, so according to the above rules it does count. But there is no 2 × 2 Stueck-
elbergian that can generate this operator. This is because the operator R represents
a reflection, not a rotation, and there is no continuous set of orthogonal transforma-
tions on a two-dimensional real space that takes us from the identity operator to a
reflection operator.

Nevertheless, in a real-vector-space world it would still be possible to realize the
operation R continuously by bringing in an ancillary two-dimensional system (that
is, an ancillary “rebit”). To effect the transformation

(
s1
s2

)
→

(
s1

−s2

)
, (4)

we can perform a controlled rotation on our ancillary rebit, conditioned on the state
of the original rebit. By rotating the ancillary rebit by half a complete cycle, we can
pick up the desired factor of−1. So it seems reasonable to allow orthogonal matrices
with negative determinant to count as possible transformations.

3 Optimal Transfer of Information: The Two-Dimensional
Case

Consider the following simple scenario. A stream of photons emerges from a linearly
polarizing filter with its preferred axis oriented at an angle θ from the horizontal.
Somewhere further along the photons’ path there is a polarizing beam splitter and
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a pair of single-photon detectors, which together force each photon to yield either
the horizontal outcome or the vertical outcome. The probability of “horizontal” is
p0(θ) = cos2 θ. (The subscript “0” distinguishes this function from other hypotheti-
cal functions to be considered shortly.) This function allows someone observing the
measurement results to gain information about the angle θ.

This scenario illustrates a typical feature of a quantum measurement: a measure-
ment on a single instance of a system (in this case a single photon) cannot convey
complete information about the system’s preparation. But a large statistical sample
of measurements on identically prepared copies can eventually home in on the val-
ues of the preparation parameters (in this case the single parameter θ). One does not
encounter this limitation in classical physics, at least not for pure states: if a particle
is placed at position x with momentum p, a measurement can directly reveal those
values. This difference between classical and quantum physics reflects the fact that
quantum theory is inherently probabilistic.

In our specific example, one can ask howwell the information about θ is conveyed
through the observed results. Specifically, one can quantify the mutual information
between the measurement results and the value of θ. As we will see shortly, given
the limitation imposed by the probabilistic nature of the polarization measurement,
the transfer of information is optimal in the limit of a large number of trials. That is,
in this example anyway, quantum mechanics orchestrates the optimal conveyance of
information from the preparation to the measurement outcome.

Before justifying this statement, I want to note that it works only because we
are in effect working in the real-vector-space theory. By limiting the possibilities
to linear polarizations, we are ruling out all the polarization states one would nor-
mally represent with vectors having a nonzero imaginary part (circular and elliptical
polarizations). We will return to this point toward the end of this section.

Now let us make the statement precise. We do so by comparing our actual world,
in which the probability of “horizontal” is p0(θ) = cos2 θ, to a fictitious world in
which the probability is given by some arbitrary function p(θ). In such a world, let N
photons, each prepared with linear polarization angle θ, be subjected to a horizontal-
vs-vertical polarizationmeasurement. Let n be the number of these photons that yield
the outcome “horizontal.” The mutual information between the measurement results
and the value of θ is based on the Shannon entropy H and is defined to be

I (n : θ) = H(n) − H(n|θ) = −
N∑

n=0

P(n) ln P(n) + 1

2π

∫ 2π

0

⎛
⎝ N∑

n=0

P(n|θ) ln P(n|θ)
⎞
⎠ dθ.

(5)

Here we have assumed a uniform a priori distribution of θ over the interval [0, 2π].
(This is a crucial assumption that we discuss further below.) P(n|θ) is the probability
of getting the horizontal outcome exactly n times if the photons are prepared in the
state θ, and P(n) is the probability of getting the horizontal outcome exactly n times
in the absence of any information about θ (that is, when θ is uniformly distributed).
Both P(n|θ) and P(n) depend on the function p(θ). Note that in Eq. (5) we have
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written the mutual information as the average amount of information gained about
the integer n upon learning the value of θ. It does have this interpretation, but it can
alternatively be interpreted as the average amount of information one gains about
the value of θ upon learning the value of n. (Mutual information is symmetric in
its two arguments.) This latter interpretation is more descriptive of the scenario we
are imagining, in which an observer at the polarizing beam splitter is trying to learn
about the value of θ.

It turns out that for large N , I (n : θ) grows as (1/2) ln N . We therefore consider
the following limit, which has a finite upper bound:

Ĩ = lim
N→∞

[
I (n : θ) − 1

2
ln N

]
. (6)

We want to show that of all conceivable probability functions p(θ), the quantum
mechanical function p0(θ) = cos2 θ gives Ĩ its largest possible value.

At this point we could proceed to compute Ĩ starting from Eq. (5), but the calcu-
lation will be simpler, and I hope clearer, if we abstract the problem away from its
quantum mechanical setting. The important point to notice is that I (n : θ) depends
on the probability function p(θ) only through the measure it induces on the binary
probability space. That is, before we have any knowledge of θ, we can use p(θ) and
the assumed uniform distribution of θ to figure out how likely it is that the probability
of “horizontal” lies in any given interval, and it is this weighting function that figures
into I (n : θ).

Themore abstract problem, then, can be stated as follows.Consider a two-outcome
probabilistic experiment, and let (p1, p2) denote a point in the binary probability
space with p1 corresponding to outcome #1. The experiment is run N times, and
outcome #1 is observed to occur n times. This observation gives the experimenter
information about (p1, p2).3 The mutual information I between the value of n and
the value of (p1, p2) depends on the experimenter’s a priori measure on probability
space. Our problem is to find the a priori measure that maximizes the limit

Ĩ = lim
N→∞

[
I − 1

2
ln N

]
. (7)

(The optimal measure will turn out to be unique.) We want to show that this optimal
measure is the one induced by the quantum probability function p0(θ) = cos2 θ
when θ is uniformly distributed.

3The experimenter is trying to determine the value of an unknown probability. It may seem that
this problem cannot be framed except in the context of an objective interpretation of the concept of
probability, but this is not the case. The representation theorem of de Finetti shows how to express
this kind of question within a subjective interpretation [23]. We note that the quantum de Finetti
theorem does not hold in real-vector-space quantum theory [24], but this fact does not preclude a
subjective interpretation of probability in our problem. In our problem the experimenter is trying
to refine a distribution over ordinary probability space, to which the classical de Finetti theorem
applies.
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Fig. 1 The relation between
(p1, p2) and α

√ p1

√ p2

In order to tackle this problem we need to choose a parameterization of the binary
probability space. We could use p1 or p2 as our parameter, but it turns out to be more
convenient to use a different parameter α defined by (p1, p2) = (cos2 α, sin2 α),
where 0 ≤ α ≤ π/2. The relation between α and (p1, p2) is illustrated in Fig. 1.
(One might object that we seem to be smuggling some quantum mechanics into the
calculation here, but we are not. The results will be entirely independent of our choice
of parameter. Our choice merely simplifies the calculation.) Let K (α)dα be the a
priori measure on the set of values of α, normalized so that

∫ π/2
0 K (α)dα = 1. The

mutual information between α and n can be written as

I (α : n) = h(α) − h(α|n) = −
∫ π/2

0
K (α) ln K (α)dα +

N∑
n=0

P(n)

∫ π/2

0
P(α|n) ln P(α|n)dα,

(8)

where h(α) and h(α|n) are differential entropies.4 Here P(α|n) is the probability
distribution the experimenter assigns to α after seeing the value n, and P(n) is the a
priori probability of the value n as computed from the distribution K (α). (Note that
if K (α) is derived from the probability function p(θ) under the assumption that θ is
uniformly distributed, then I (α : n) is exactly equal to the quantity I (n : θ) given in
Eq. (5)). The point of the next paragraph is to show that under modest assumptions
about the function K (α), in the limit of very large N the second term on the right-
hand side of Eq. (8) becomes independent of K (α). So we will only have to think
about maximizing the first term.

To evaluate this second term, we need to write down expressions for P(n) and
P(α|n). We have

P(n) =
∫ π/2

0
P(n|α)K (α)dα (9)

and

P(α|n) = P(n|α)K (α)

P(n)
, (10)

4The differential entropy is not the limit of the entropy of a discretized version of the continu-
ous variable. However, a mutual information involving a continuous variable, being the difference
between two differential entropies, is indeed the limit of the discretized mutual information [25].
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where P(n|α) is given by the binomial distribution:

P(n|α) = N !
n!(N − n)! pn

1 pN−n
2 (11)

with p1 = cos2 α and p2 = sin2 α. For any value of p1 strictly between 0 and 1, it is
possible to choose N large enough that the binomial distribution iswell approximated
by a Gaussian:

P(n|α) ≈ 1√
2πN p1 p2

exp

[
− N

2p1 p2
(n/N − p1)

2

]
. (12)

As N gets very large this distribution, regarded as a function of n/N , becomes
arbitrarily highly peaked around n/N = p1. Let α(n) be defined so that n/N =
cos2 α(n). That is, α(n) is the value of α corresponding to the observed outcome n.
Then in the above exponent, we can approximate the quantity (n/N − p1) as

(n/N − p1) = cos2 α(n) − cos2 α ≈ d
(
cos2 α

)
dα

�α = (−2 cosα sinα)�α = −2
√

p1 p2 �α,

(13)
where �α = α(n) − α. This gives us

P(n|α) ≈ 1√
2πN p1 p2

exp
[−2N (�α)2

]
. (14)

Inserting this expression into Eq. (9), we again use the fact that the Gaussian is very
highly peaked so that we can (i) extend the integral from−∞ to∞without changing
its value appreciably and (ii) evaluate everything outside the exponential atα = α(n).
Then we get

P(n) ≈ K
(
α(n)

)
2N cosα(n) sinα(n)

. (15)

We now use Eqs. (10), (14) and (15) to approximate P(α|n):

P(α|n) ≈
√
2N

π
exp

[−2N (�α)2
]
. (16)

Using this expression and again relying on the narrowness of the Gaussian, we get

∫ π/2

0
P(α|n) ln P(α|n)dα ≈ 1

2
ln

(
2N

πe

)
. (17)

Since this expression does not depend at all on n, it factors out of the sum in Eq. (8),
so that the only sum we have to do is

∑
n P(n), which is unity by definition. Putting

the pieces together, we arrive at
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I (α : n) ≈ −
∫ π/2

0
K (α) ln K (α)dα + 1

2
ln

(
2N

πe

)
. (18)

And then subtracting (1/2) ln N as in Eq. (7) gives us

Ĩ = −
∫ π/2

0
K (α) ln K (α)dα + 1

2
ln

(
2

πe

)
. (19)

The equality holds as long as our approximations become arbitrarily good as N gets
larger. This will indeed be the case if the function K (α) is reasonably well behaved.
A sufficient set of conditions on K (α) is that it be positive and differentiable on
the interval [0,π/2]. Then when many trials are run, the range of likely values
of α narrows to such a degree that the final distribution P(α|n) does not depend
appreciably on the a priori distribution K (α).

The problemhas nowbeen reduced to finding outwhat distribution or distributions
K (α)maximize the quantity− ∫ π/2

0 K (α) ln K (α)dα. The answer to this question is
well known: the unique maximizing distribution is the uniform distribution K (α) =
2/π. This result follows from the fact that the function φ(x) = −x ln x is a strictly
concave function of x for all positive values of x . Jensen’s inequality then tells us that

(2/π)

∫ π/2

0
φ[K (α)]dα ≤ φ

[
(2/π)

∫ π/2

0
K (α)dα

]
= φ (2/π) , (20)

with equality holding only for the constant function K (α) = 2/π.5

Now we compare our result to quantum mechanics. Is this uniform distribution
over α the one induced by the quantum probability law p0(θ) = cos2 θ, when θ is
uniformly distributed? First consider the values of θ from 0 to π/2. In that range the
law p0(θ) = cos2 θ mirrors the definition of α and we have α = θ (I am taking p1

to correspond to the horizontal outcome.). So a uniform distribution of θ over this
range would induce the uniform distribution of α. In the other three quadrants of the
circle, that is, in the rest of the range of θ, the parameter α is not equal to θ but we
still have |dα/dθ| = 1 (except at a finite number of points where α “bounces” off
one of the endpoints of its range). Thus when θ is uniformly distributed, so is α. This
completes our demonstration that the quantum probability function p0(θ) = cos2 θ
is optimal.

Is the function p0(θ) = cos2 θ unique in this respect? The answer is no. Any
function p(θ) that yields the same a priori measure on the binary probability space
will be equally good. For example, any function of the form p(θ) = cos2(mθ/2)
where m is a positive integer yields the same distribution K (α) = 2/π. And there

5Alternatively, instead of using differential entropies as in Eq. (8), we could have expressed the
mutual information I (α : n) in terms of the Kullback-Leibler distances of both K (α) and P(α|n)

from the uniform distribution over α. The calculation in Sect. 3 then tells us that Ĩ is maximized
when the Kullback-Leibler distance between K (α) and the uniform distribution is minimized, that
is, when K (α) is itself the uniform distribution.
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are many other, less physically interesting examples. Still, a typical function p(θ)
will not have this optimization property.

Looking back over the above argument, one can see that the crucial feature is
the exponent in Eq. (14): the coefficient of (�α)2 depends only on N and not on α
itself. In other words, the spread in the value of α(n) depends only on the number of
trials (when this number is large), and not on the probabilities (p1, p2). This is what
is special about parameterizing probability space with the parameter α: it makes
the statistical spread uniform. Once we have this fact, it is guaranteed that the final
differential entropy h(α|n) will not depend on K (α). Therefore to maximize the
mutual information, we want to maximize the initial differential entropy h(α) and
we are thereby led to the uniform distribution.

There is perhaps a more direct way of seeing what is special about the function
p0(θ) = cos2 θ. First note that the spread in n itself is not uniform over probability
space. If one performs the binary experiment N times, the standard deviation in n/N
is given by

�(n/N ) =
√

p1 p2

N
, (21)

which is smaller near the ends of probability space than near the middle. One can
see this dependence in the exponent in Eq. (12). In our polarization experiment, an
observer recording the frequency of occurrence of “horizontal” will therefore be
more certain of the probability of “horizontal” when that probability is close to
zero or one. (Again I am assuming that the experimenter’s a priori distribution over
probability space is reasonably smooth and that the number of trials is large). On
the other hand, upon translating the uncertainty in probability to an uncertainty in θ,
the observer must use the function p(θ). For the special case of p0(θ) = cos2 θ, the
slope of this function exactly compensates for the varying size of �(n/N ), so that
the size of the resulting “region of uncertainty” of θ is independent of the value of
n/N . Specifically,

∣∣∣∣ d

dθ
cos2 θ

∣∣∣∣ = 2 |cos θ sin θ| = 2
√

p0(θ)[1 − p0(θ)], (22)

which perfectly matches the dependence seen in Eq. (21). This compensation is illus-
trated in Fig. 2. Equalizing the uncertainties in θ also equalizes the uncertainties in
α, which, as we have just seen, maximizes the mutual information in the limit of a
large number of trials.

We now consider the case in which all pure polarization states are possible. The
full set of pure states is the Bloch sphere—it includes the circular and elliptical
polarizations—and the natural a priorimeasure is the uniformmeasure on the sphere,
since this is the only probability measure invariant under all unitary transformations.
We imagine a device that prepares a beam of photons in one of these polarization
states, and further along the photons’ pathwe imagine a personmaking the horizontal-
vs-vertical measurement on each photon. The polarization is now determined by
two parameters; for definiteness let us take them to be the polar angle β and the



Optimal Information Transfer and Real-Vector-Space Quantum Theory 31

1 

0 
0 

1 

0 
0 

n/N

n/N

Fig. 2 The uncertainty in θ for two different values of n/N . Notice that the slope of the cosine-
squared curve exactly compensates for the varying size of �(n/N ), so that the “region of uncer-
tainty” in θ has the same size for all values of n/N . (Here θ is plotted only up to π to make the
diagram simpler)

azimuthal angle φ, and let the north and south poles of the sphere correspond to
horizontal and vertical polarization. It is still possible to define themutual information
between the photons’ preparation and the measurement outcomes; it could be written
as I (n : β,φ). Again this mutual information is the same as the quantity I (α : n)

given in Eq. (8) and it is maximized only if the a priori distribution of α is the
uniform distribution K (α) = 2/π. But now the quantum mechanical law does not
yield this distribution over the values of α. With the uniform distribution over the
Bloch sphere, the parameter cosβ is uniformly distributed over the interval [−1, 1],
and the quantum mechanical probability of “horizontal,” p(θ) = (1/2)(1 + cosβ),
is therefore uniformly distributed over the interval [0, 1]. To get the corresponding
distribution of α, we use the relation p1 = cos2 α and the assumption that p1 is
uniformly distributed:

K (α) =
∣∣∣∣dp1

dα

∣∣∣∣ = 2 cosα sinα. (23)

Thus, rather than giving us the uniform distribution of α, the full Bloch sphere gives
us a distribution that has a maximum in the middle of α’s range.

We can see directly that this distribution does not allow as much information
transfer as the optimal distribution. The relevant quantity is the integral in Eq. (19):
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−
∫ π/2

0
K (α) ln K (α)dα. (24)

For the uniform distribution over α, this quantity has the value ln(π/2) = 0.452,
whereas for the distribution K (α) = 2 cosα sinα, we get 1 − ln 2 = ln(e/2) =
0.307.

Just as the uniformmeasure over the surface of the Bloch sphere is natural because
it is invariant under all unitaries, in the real-vector-space theory where the set of
pure states in two dimensions traces out a circle rather than a sphere, the uniform
distribution over the circle is natural because it is invariant under all orthogonal
transformations (rotations and reflections). That is, in the real-vector-space theory,
we can use this invariance to justify our original assumption that the angle θ is
uniformly distributed over the interval [0, 2π].

4 Optimal Transfer of Information: The d-Dimensional
Case

The above argument extends to a d-dimensional real vector space. Let a “redit”
be a hypothetical quantum object whose pure states are vectors in a d-dimensional
vector space over the real numbers. We now imagine an experiment in which a beam
of N redits is prepared in a specific pure state |s〉. At some point further along
the beam, an observer makes a fixed complete orthogonal measurement on each
redit. The observer records the integers n1, . . . , nd , where ni is the number of times
the i th measurement outcome occurs. We ask how much information the observer
learns on average about the preparation |s〉, assuming (crucially) that the vector |s〉
is initially distributed uniformly over the unit sphere in the d-dimensional space.
Again this average information gain is given by the mutual information, which we
will write down shortly. The mutual information depends on the law that specifies
the probability of the i th outcome given the preparation |s〉. In real-vector-space
quantum theory, this law can be expressed as

pi (|s〉) = s2i , i = 1, . . . , d, (25)

where s1, . . . , sd are the components of |s〉 in the basis defined by the measurement.
As before, what really matters in computing the mutual information is the a

priori measure on probability space. The uniform measure over the unit sphere in
d dimensions, together with Eq. (25), defines some specific a priori measure on
probability space. We also want to consider other a priori measures, in order to show
that the one induced by Eq. (25) is optimal. The probability space is now a (d − 1)-
dimensional set, since the probabilities must add to one. We could parameterize
this set by the probabilities p1, . . . , pd−1 of the first d − 1 outcomes, but we instead
choose to label the points of probability space by a unit vector 
γ = (

√
p1, . . . ,

√
pd).
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(Note that each
√

pi is non-negative; so 
γ is confined to the positive part of the unit
sphere). We could go further and choose d − 1 specific angular coordinates to locate
this vector on the sphere (like the α of the preceding section), but we will not need
to do so. Let K (
γ)d 
γ be a generic a priori probability measure on the set of vectors

γ, where d 
γ is an infinitesimal (d − 1)-dimensional surface element on the positive
section of the unit sphere. Our goal is to find the distribution K (
γ) that maximizes
the mutual information.

That mutual information can be written as follows:

I (
γ : 
n) = h(
γ) − h(
γ|
n) = −
∫

K (
γ) ln K (
γ)d 
γ +
∑

P(
n)

∫
P(
γ|
n) ln P(
γ|
n)d 
γ,

(26)

where 
n = (n1, . . . , nd) specifies the number of times each outcome occurs. The sum
is over all vectors 
n for which each ni is a non-negative integer and n1+· · ·+nd = N .
The mutual information is now based on the multinomial distribution:

P(
n|
γ) = N !
n1! · · · nd ! pn1

1 · · · pnd
d . (27)

(Here p j = γ2
j .) The functions appearing in Eq. (26) can be obtained from P(
n|
γ)

as follows:

P(
n) =
∫

P(
n|
γ)K (
γ)d 
γ (28)

and

P(
γ|
n) = P(
n|
γ)K (
γ)

P(
n)
. (29)

As N gets large, it will turn out that I (
γ : 
n) grows as [(d − 1)/2] ln N . So we will
compute the limiting value

Ĩ = lim
n→∞

[
I (
γ : 
n) −

(
d − 1

2

)
ln N

]
. (30)

At this point the calculation is very similar to the one in the preceding section. As we
did for the analagous equation in that case, we now show that the second term on the
right-hand side of Eq. (26) becomes independent of K (
γ) as N approaches infinity.

For any fixed positive values of p1, . . . , pd and for large enough N , Eq. (27) can
be approximated arbitrarily well by a Gaussian function:

P(
n|
γ) ≈ [
(2πN )d−1 p1 p2 · · · pd

]−1/2
exp

[
− N

2

d∑
i=1

(ni/N − pi )
2

pi

]
. (31)

It will be helpful to define the vectors



34 W.K. Wootters


γ(n) =
(√

n1

N
, . . . ,

√
nd

N

)
and 
�γ = 
γ(n) − 
γ. (32)

That is, 
γ(n) is the vector of square roots of the observed frequencies of occurrence,
whereas 
γ is the vector of square roots of the probabilities. Thedifference 
�γ between
these two vectors is likely to be small when N is large; sowewill keep just the lowest-
order term in this quantity. We can then rewrite the sum in the exponent of Eq. (31)
as follows:

d∑
i=1

(ni/N − pi )
2

pi
=

d∑
i=1

(�pi )
2

pi
≈ 4

∣∣∣ 
�γ
∣∣∣2 , (33)

where �pi is defined to be (ni/N ) − pi and the last step comes from

�γi = �
(

p1/2
i

)
≈ 1

2
p−1/2

i �pi . (34)

We can therefore approximate Eq. (31) as

P(
n|
γ) ≈ (2πN )−( d−1
2 ) 1

γ1γ2 · · · γd
exp

(
−2N

∣∣∣ 
�γ
∣∣∣2

)
. (35)

That is, P(
n|
γ), regarded as function of 
γ, falls off as a Gaussian around the point

γ(n), with a spread that is isotropic and independent of the value of 
γ(n). (This function
is not, however, a normalized distribution of 
γ; rather, it is normalized with respect
to a sum over 
n.)

In approximating the integral in Eq. (28), we rely on the narrowness of the
Gaussian: the integral is over a section of a sphere, but we can treat it as being
over an infinite flat space having d − 1 dimensions—the “plane” tangent to the
sphere at the point 
γ(n). We also evaluate everything outside the exponential at the
point 
γ(n). These approximations give us

P(
n) ≈ (2N )−(d−1) K (
γ(n))

γ(n)
1 γ(n)

2 · · · γ(n)
d

. (36)

Inserting this expression and Eq. (35) into Eq. (29), we get

P(
γ|
n) ≈
(
2N

π

) d−1
2

exp

(
−2N

∣∣∣ 
�γ
∣∣∣2

)
. (37)

We can now do the second integral in Eq. (26), again treating the integral as if it were
over an infinite (d − 1)-dimensional flat space. The result is

I (
γ : 
n) ≈ −
∫

K (
γ) ln K (
γ)d 
γ +
(

d − 1

2

)
ln

(
2N

πe

)
. (38)
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Finally we subtract [(d − 1)/2] ln N as in Eq. (30) to get

Ĩ = −
∫

K (
γ) ln K (
γ)d 
γ +
(

d − 1

2

)
ln

(
2

πe

)
. (39)

Note that Eq. (19) is a special case of this equation, with d = 2. As in that case, the
expression ismaximized by choosing K (
γ) to correspond to the uniform distribution:

Kopt (
γ) = 2d �
(

d
2 + 1

)
d πd/2

. (40)

The constant on the right-hand side of Eq. (40) is the reciprocal of the “surface area”
of the positive section of the unit sphere.

The question now is whether the probability rule in real-vector-space quantum
theory, pi = s2i , induces the measure on probability space given by Kopt (
γ). The
answer is yes, as is easily seen. The state vector |s〉 ranges over the full unit sphere in
R

d , but consider for now just the section of the sphere in which each si is positive. In
that section the vector 
γ is equal to the vector |s〉, since pi = γ2

i = s2i . So the uniform
distribution of |s〉 over this section of the sphere induces the uniform distribution of

γ. The whole unit sphere inR

d consists, in effect, of 2d copies of the positive section.
So indeed, the uniform distribution of |s〉 over the whole sphere does correspond to
the uniform distribution of 
γ expressed in Eq. (40). That is, the transfer of information
from preparation to measurement is optimized in this d-dimensional case, just as it
was in the two-dimensional case.

The complications involved in the information-theoretic calculation may obscure
what is really a simple underlying fact. Imagine probability space as a (d − 1)-
dimensional flat “surface” in a d-dimensional space with orthogonal axes labeled
p1, . . . , pd . The surface consists of all points (p1, . . . , pd) such that each pi is
non-negative and the sum p1 + · · · + pd is equal to 1. Around each point on this
surface one can imagine a small “region of uncertainty,” representing the spread in
the actual frequencies of occurrence of the d possible outcomes in N trials. These
regions of uncertainty can be derived from the multinomial distribution, Eq. (27),
and for large N their sizes and shapes can be read off the exponent in Eq. (31).
(We could, for example, define “region of uncertainty” to be the range of values of
(n1/N , . . . , nd/N ) for which the exponent has magnitude less than 1.) One can see
that these regions of uncertainty will have different sizes and shapes, depending on
the location in probability space. For example, the largest is at the exact center, as
shown in Fig. 3. But if we change the axes of probability space from pi to γi = √

pi ,
probability space then looks like a section of a sphere. Again one can speak of a
region of uncertainty around each point on this spherical surface, but now it happens
that all the regions of uncertainty have the same size and shape—in fact they are all
spherical—as we can see in the exponent of Eq. (35) and as is illustrated in Fig. 4.
(The issue gets tricky near the edges. The closer one gets to the edge, the higher the
value of N must be in order to see this uniformity. But no matter how close one is
to the edge—as long as one is not at the edge—there is always such a value of N .)
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Fig. 3 Regions of
uncertainty at different
locations in the flat
probability space. As one
approaches an edge, the
uncertainty shrinks along the
direction perpendicular to
the edge

p1

p2

p3

Fig. 4 Regions of
uncertainty at different
locations in the spherical
probability space, with axes
corresponding to the square
roots of probability. Now all
regions of uncertainty are
isotropic and of the same size

In this sense, there is something special about representing probability space as a
section of a sphere: it captures geometrically the statistical fluctuations in a large
sample. What is special about real-vector-space quantum theory is that its set of pure
states mirrors this representation of probability space.

As onewould expect, themathematical fact illustrated in Fig. 4 has beenwell noted
in the statistics literature. Bhattacharyya in the 1940s proposed a distance measure
between two probability distributions based on the angle between their 
γ vectors [26].
The square-root construction has been particularly explicit in the genetics literature.
One can see diagrams of the positive section of the unit sphere in papers by Cavalli-
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Sforza and collaborators from the 1960s, and these authors give credit for the idea to
R.A. Fisher [27, 28] (as do Mosteller and Tukey [29]). In the present paper, I have
used the square-root construction only to identify a special measure on probability
space—the uniform measure on the spherical surface traced out by 
γ. But one can
also use it to define a special metric on the space, and this is what Bhattacharyya,
Cavalli-Sforza and others have done. (One can find in Ref. [30] a review a various
“genetic distances,” some of which are based on the square-root construction.) Such
a metric has also been used in work on quantum foundations [16, 31–33]. However, I
want to emphasize that this special feature of the representation of probability space
in terms of square roots of probability ariseswithout any reference to quantum theory.
It is simply a matter of statistics.

What about ordinary complex-vector-space quantum theory? In that theory each
pure state is represented by a vector |s〉 in C

d . The natural a priori distribution
over pure states is the uniform distribution over the unit sphere in C

d , that is, the
unique distribution invariant under all unitary transformations. (We could just as
well speak of a distribution over projection operators |s〉〈s| so as not to have to
worry about the irrelevant overall phase factor in the vector |s〉, but for our purposes
either picture leads to the same result.). For a complete orthogonal measurement,
the probabilities of the outcomes are given by pi = |si |2, where the si ’s are the
components of |s〉 in the basis defined by themeasurement.We can askwhat measure
this probability rule, togetherwith the a priori distribution of state vectors |s〉, induces
on probability space. That question was answered by Sykora in 1974: it induces the
uniform distribution, not on the spherical surface defined by 
γ, but on the flat surface
defined by (p1, . . . , pd) [34]. This is a remarkably simple and intriguing result,
but this distribution is not the one that optimizes the transfer of information from
preparation to measurement.

5 Optimal Information Transfer in Standard Quantum
Mechanics?

The real-vector-space theory thus has a certain elegance to it, in that there is anoptimal
correspondence between the set of pure states and the set of probability distributions
over the outcomes of a complete orthogonal measurement. The complex theory does
not have this property, but one might wonder whether this is because we are not
asking the question in the right way. That is, by somehow reframing the problem,
might it be possible to see that the usual complex theory does exhibit the property of
optimal information transfer in some altered sense?

For example, perhaps we are making a mistake to consider a complete orthogonal
measurement. Such a measurement will never reveal the relative phases between the
components of the state vectorwhen it iswritten in themeasurement basis. Insteadwe
could consider a special case of a non-orthogonal measurement, namely, a symmetric
informationally-complete measurement (a SIC) [35–37]. In d complex dimensions,
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such a measurement has d2 possible outcomes. Each outcome corresponds to a pure
state |mi 〉〈mi |, and the inner product between any two of these pure states has the
same magnitude: |〈mi |m j 〉|2 = 1/(d + 1). Numerical evidence strongly indicates
that such symmetric measurements exist for all values of d up to 67 [38], and it
would be reasonable to guess that they exist for all d. Such symmetric measurements
figure prominently in the quantum Bayesian approach to understanding quantum
mechanics [39, 40]. Is there a kindof optimal transfer of information frompreparation
to measurement that occurs when the measurement is a SIC?

With d2 possible outcomes, one can estimate d2 − 1 independent parameters
by repeating the measurement on many identically prepared copies. This is exactly
the number of parameters needed to specify a d × d density matrix, and indeed,
any density matrix can be reconstructed with arbitrary precision from a fixed SIC
applied tomany copies. (This is themeaning of “informationally complete”.). To state
the question of optimal information transfer, we would need to specify an a priori
measure on the set of all d × d density matrices. The measure should be unitarily
invariant, but there are many unitarily invariant measures on this set. Is there at least
one such measure for which the mutual information between the preparation (of a
general mixed state) and the measurement outcomes is optimal?

One can see quickly that there is no such measure. The optimal a priori measure
on probability space has already been determined in the preceding section. For d2

possible outcomes, the optimal measure is the uniform measure over the (d2 − 1)-
dimensional spherical surface of probability space, when the axes correspond to the
square roots of the probabilities. This measure clearly assigns nonzero weight to
every nonzero volume of probability space. But if one performs a SIC on any state,
the largest possible value of any probability is 1/d . Thus the SIC does not make use
of the whole probability space; so it is not providing information optimally in our
sense, no matter what weighting function we place on the set of density matrices.

Let us try another version of the problem. Suppose we are given a specific entan-
gled state of a pair of qubits, namely, the state

|�+〉 = 1√
2

(|00〉 + |11〉) . (41)

We imagine the first qubit is held by Alice and the second by Bob. NowAlice applies
a unit-determinant unitary transformationU to her qubit—an element of SU (2). She
then sends her qubit to Bob, who performs a Bell measurement on the two qubits.
That is, he distinguishes the four orthogonal states

|�+〉 = 1√
2

(|00〉 + |11〉) |�−〉 = 1√
2

(|00〉 − |11〉)

|�+〉 = 1√
2

(|01〉 + |10〉) |�−〉 = 1√
2

(|01〉 − |10〉)
(42)

We imagine this whole procedure is repeated over and over—always with the same
initial state, the same U , and the same Bell measurement—so that Bob can try to
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gain information about U from the outcomes of his measurements. We assume he
already knows the initial state |�+〉. (This scenario is like superdense coding [41],
except that we are not restrictingU to a discrete set. Really what Bob is doing here is
a restricted kind of process tomography [42, 43]—trying to infer the process U from
the outcomes of measurements.). We can ask whether the transfer of information is
optimal between Alice’s choice of unitary transformation and the outcomes of Bob’s
measurements.

A general element of SU (2) can be represented as

U = exp
[
i(θ/2)n̂ · 
σ]

, (43)

where n̂ is the unit vector defining the axis of the Bloch sphere around which Alice
is rotating her qubit, θ is the angle of rotation—it runs from zero to 2π—and 
σ is the
vector of Pauli matrices. The transformations U are in one-to-one correspondence
with the points of a three-dimensional spherical surface, which we can imagine
embedded in four dimensions. Specifically, we can label the point corresponding to
the above U by the unit vector

vU = (cos(θ/2), nx sin(θ/2), ny sin(θ/2), nz sin(θ/2)). (44)

The natural measure on SU (2) is the uniform measure over this sphere—it is the
unique measure that is invariant under left-multiplication (or right-multiplication)
by any group element.

To determine whether the information is transferred optimally from Alice to Bob,
we need to compute the probabilities of Bob’s outcomes. It is straightforward to do
so, and one finds that the probabilities are, in an arrangement parallel to that given
in Eq. (42),

cos2(θ/2) n2
z sin

2(θ/2)

n2
x sin

2(θ/2) n2
y sin

2(θ/2)
(45)

These probabilities are the squared components of the unit vector vU given inEq. (44).
Thus the problem is equivalent to the case of real-vector-space quantum mechanics
in four dimensions. So indeed, the information is transmitted optimally from Alice
to Bob!

Does this example generalize to higher dimensions? The answer is no, at least
not in any way that I can see. For example, in three dimensions, we would probably
want Alice and Bob to start with the state |�〉 = (|00〉 + |11〉 + |22〉)/√3. Alice
will perform a general unit-determinant unitary transformation U , and then Bob will
measure both particles in the generalized Bell basis, which consists of the nine states

|00〉 + |11〉 + |22〉 |00〉 + ω|11〉 + ω2|22〉 |00〉 + ω2|11〉 + ω|22〉
|01〉 + |12〉 + |20〉 |01〉 + ω|12〉 + ω2|20〉 |01〉 + ω2|12〉 + ω|20〉
|02〉 + |10〉 + |21〉 |02〉 + ω|10〉 + ω2|21〉 |02〉 + ω2|10〉 + ω|21〉.

(46)
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Here ω = e2πi/3 and I have suppressed the normalization factor 1/
√
3. A counting of

parameters is initially encouraging: it takes eight real numbers to specify an element
of SU (3), and Bob’s measurement yields eight independent probabilities. However,
one quickly discovers that, as in the case of the SIC, the measurement does not make
use of the whole probability space.

Consider specifically the probabilities of the second and third outcomes listed on
the first row of Eq. (46); let us call these probabilities p2 and p3 (we imagine a list
of nine probabilities p1, . . . , p9, of which these are the second and third). In terms
of the components ui j of Alice’s unitary matrix U , we have

p2 = 1

9

∣∣u00 + ω2u11 + ωu22

∣∣2 and p3 = 1

9

∣∣u00 + ωu11 + ω2u22

∣∣2 ,

(47)

so that the product has the value

p2 p3 = 1

81

∣∣u2
00 + u2

11 + u2
22 − u00u11 − u00u22 − u11u22

∣∣2 . (48)

Now, in thewhole probability space themaximumvalue of p2 p3 is 1/4, attainedwhen
p2 = p3 = 1/2. But given that each ui j can have a magnitude no larger than 1, one
can show that the expression in Eq. (48) cannot exceed the value 16/81 < 1/4.6 Thus
a certain region of probability space is inaccessible in the scenario we are imagining.
It follows that the information about U is not conveyed optimally to Bob through his
measurement outcomes.

Thus, as far as I can tell, the property of optimal information transfer does not
easily carry over from the real-vector-space theory to ordinary quantum mechanics.

6In proving this inequality, we are free to set u00 equal to 1. Then let u11 = −a and u22 = −b and
the desired inequality becomes

|1 + a + b + a2 + b2 − ab| ≤ 4

under the assumption that |a| ≤ 1 and |b| ≤ 1. (One can see that equality is achieved when
a = b = 1.) This inequality is equivalent to

∣∣∣A2 + B2 + (A − B)2
∣∣∣ ≤ 8,

where A = 1 + a and B = 1 + b. This last inequality can be proved by first noting that
∣∣∣A2 + B2 + (A − B)2

∣∣∣ ≤ |A2 + B2| + |A − B|2

and then writing out the absolute values explicitly. One has to use the fact that A and B are both
confined to a circle of unit radius in the complex plane, centered at the value 1.
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6 Conclusions

In real-vector-space quantum theory, the number of parameters needed to specify a
pure state is equal to the number of independent probabilities in a complete orthogonal
measurement: both are equal to d − 1 for a state in d dimensions. So by measuring
many copies prepared in an unknown pure state, one can hope to pin the state down
to a finite number of small regions in state space. In this paper we have seen that
this pinning down is in fact optimal, in the sense that the observer gains as much
information about the state as could possibly be gained in any probabilistic theory,
at least when the number of trials is very large.

Standard quantum theory, based on a complex vector space, does not have this
property, andwe have not been able to find a restatement of the problem for which the
complex theory does achieve such an optimization (except for the case of a unitary
transformation applied to a qubit). For our original statement of the problem, one can
say that this lack of optimization comes from the fact that for any specific orthogonal
measurement, a complete specification of a pure state includes phase factors that
have no effect on the probabilities of the outcomes. The presence of these phase
factors changes the natural a priori measure on probability space, and the mutual
information is no longer maximized.

Note that in the complex theory the number of real parameters needed to specify
a pure state in d dimensions is 2d − 2 if we do not count an irrelevant overall phase
factor. This number is exactly twice the number of independent probabilities an
orthogonal measurement can access, and it seems that this doubling of the number
of parameters is what spoils the optimization. It is reasonable to ask whether there
can be some deeper understanding of this factor of two, but at this point it is hard to
have confidence in any particular answer.

In a sense, any axiomatization of quantum mechanics offers a potential answer to
this question: whatever assumptions give rise to the structure of quantum theory also
give rise to the factor of two. In his axiomatization, Goyal addresses the factor of
two directly, formalizing it in his principle of complementarity: for a measurement
that at some level generates 2d possible events, only d distinguishable outcomes can
be observed, each corresponding to a pair of fundamental events. This principle,
together with a principle of global gauge invariance, leads him to the basic structure
of quantummechanics [33]. One achieves a similar result by assuming that the under-
lying theory is real-vector-space quantum theory, but that because our knowledge is
limited in some fundamental way we do not see the real-vector-space structure; we
have access only to those observables that satisfy Stueckelberg’s rule. (Goyal in fact
relates his work to Stueckelberg’s.) Imposing Stueckelberg’s rule on a real vector
space of 2d dimensions reduces the maximum number of orthogonal states from 2d
to d, and it cuts in half the number of parameters required to specify a maximally
pure state.7

7When standard quantummechanics is expressed in real-vector-space terms, what we normally call
a pure state is represented by a density matrix of rank 2.
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While such an interpretation would give an important role to the real-vector-space
theory, it raises a difficult question about the status of the main result in this paper. If
the limitation on our knowledge is fundamental, thenwho are the observers for whom
the transfer of information from preparation to measurement is optimal? Evidently
it is not optimal for us, because whatever the underlying theory may be, the effective
theory within which we live seems to be complex-vector-space quantum theory.
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Almost Quantum Theory

Benjamin Schumacher and Michael D. Westmoreland

1 Introductory Remarks

1.1 Motivation

The remarkable features of quantum theory are best appreciated by comparing the
theory to other possible theories—what Spekkens calls “foil” theories [1]. The most
celebrated example of this approachwasBell’s analysis [2], which showed that entan-
gled quantum systems have statistical properties unlike any hypothetical local hidden
variable model.More recently, there have been several efforts to give quantum theory
an operational axiomatic foundation [3–5]. In these efforts, a general abstract frame-
work is posited to describe system preparations, choices of measurement, observed
results of measurement, and probabilities. Many possible theories can be expressed
in the framework. The axioms embody fundamental aspects of quantum theory that
uniquely identify it among them. A striking lesson of this work is that familiar quan-
tum theory can be characterized by axioms that seem to have little to do with the
traditional quantummachinery of states and observables inHilbert space. TheHilbert
space structure is “derived” from the operational axioms.

These approaches are based on two distinct concepts of generalization. First,
we generalize within quantum theory to give the theory its most general form. For
example, we generalize state vectors to density operators as a description of the
quantum state of a system. Second, we generalize beyond quantum theory so that
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we can embed it within a wider universe of possible theories. To be clear, we refer
to these two processes as development within a theoretical framework and extension
beyond that framework.

In this paper, we undertake these processes of development and extension, not for
actual quantum theory (AQT), but for a close mathematical cousin of that theory.
Modal quantum theory (MQT) [6] is a simplified toy model that reproduces many of
the structural features of actual quantum theory. The underlying state space of MQT
is a vector space V over an arbitrary field F , which may be finite. MQT predicts, not
the probabilities of the results of a measurement, but only which of those results are
possible. This motivates the use of the term “modal”, which in formal logic refers to
operators asserting the possibility or necessity of a proposition [7]. Modal theories
themselves can therefore be viewed as generalizations (extensions) of probabilistic
theories.

1.2 Generalization

What is “generalization”? We begin our answer to this question with a simple exam-
ple. Suppose we are devising simple substitution ciphers for English text. Each letter
in the alphabetA = {A, B, . . . , Z} is to be represented by some letter inA. To begin
with, we consider only extremely simple “transposition ciphers” in which exactly
two letters are exchanged. For instance, we might exchange E and R, leaving all
other letters alone.1 An enciphered message can be decoded by applying the same
transposition a second time.

To generalize this and make better ciphers, we now form compound ciphers by
applying two or more transposition ciphers successively. Enciphered messages are
decoded by applying the same transpositions in reverse order. Any cipher constructed
out of transpositions can be described by a permutation of A, an element of SA.
Furthermore, any “permutation cipher” in SA can be constructed in exactly this way,
as a compound of pairwise transpositions. Thus, the concept of a permutation cipher
is really a development of the original idea of a transposition.

Is further development possible? Consider the essential requirements for a “rea-
sonable” cipher. A general substitution cipher c is a function c : A → A. Since
we need to be able to recover our plaintext correctly, it is appropriate to require as
an axiom that c be a one-to-one function, so that each letter in the ciphertext can
be decoded in only one way. Since A is finite, all one-to-one functions on A are
permutations. This means that the generalization from transpositions to permuta-
tions already encompasses all reasonable substitution ciphers (as characterized by
our axiom).

To generalize further, we must extend the idea of a cipher beyond simple let-
ter substitutions. We might apply different substitution maps to different letters, or

1Such a cipher is not very hard to read.
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encipher messages word-by-word. These more general ciphers will have some char-
acteristics in common with substitution ciphers (such as the unique decipherability
of an enciphered message), but will constitute a larger universe within which the
substitution ciphers form a special class.

In the cipher story we can identify some general features. We begin with a basic
theory based on a concept X . The process of development can involve several stages:

• Construction. In this stage, we devise a situation within the existing theory—
that is, a situation that can be described using X—and show how this situation
can be given a simpler or more natural description using X ′. (Compositions of
transposition ciphers can be described as permutation ciphers.)

• Feasibility. Often we are able to show that, if a situation is described by X ′, then
it can always be given a more cumbersome description in terms of X. Informally,
every instance of X ′ is feasible to construct from X. (Every permutation cipher
can be described as a composition of transposition ciphers.)

• Axiomatic characterization. We may be led to impose one or more reasonable
axioms that any situation ought to satisfy. Our development is most successful if
we can establish that any “reasonable” situation (according to our axioms) can be
encompassed by our generalized concept X ′. (Any uniquely decodable substitution
cipher must be a permutation cipher.)

IfX ′ is feasible, then every instance ofX ′ could be given amore cumbersome descrip-
tion in terms of X. In this case, the theory including X ′ is simply a development of the
original one based on X . An axiomatic characterization tells us that the development
is complete—that no further reasonable generalization of X is possible within the
basic theory.

Once we have a complete development from X to X ′, further generalization must
be an extension of the original theory.

• Extension.We can devise a broader framework Y within which the theory based on
X is a special case. (We can consider ciphers that are not based on letter-by-letter
substitutions.)

Once we have an extended framework Y , it is useful to ask what special properties
the original theory may possess. Thus, we might investigate what distinguishing
characteristics quantum theory haswithin thewider universe of probabilistic theories.

1.3 Scope of the Present Paper

The elementary features of modal quantum theory have been presented elsewhere
[6, 8]. In the next section, we will briefly discuss the axioms for MQT, drawing the
analogies between this theory and AQT. We will also discuss some of the properties
of entangled states of simple systems in MQT.

Following this, we turn to a development of MQT analogous to the standard
generalizations of states, measurements and dynamical evolution in AQT. Systems
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whose preparations are incompletely known, or which are entangled with other sys-
tems, require a more general description of their states. Measurement procedures
and dynamical evolution for open systems require additional generalizations, which
we will also explore. As in AQT, we can give axiomatic characterizations for these
new concepts within the theory, showing that our development is, in the sense given
above, complete.

To generalize further,wemust embedMQTwithin a larger class ofmodal theories.
We do this by analogy to the general probabilistic theories that have been used to
analyzeAQT.As in those theories, ourmodal theories are assumed to satisfy a version
of the no-signalling principle [9], which states that the choice of measurement on
one system cannot have a observable effect on the measurement results of a distinct
system.

Finally, we note that any probabilistic theory can be viewed through “modal
glasses”, simply interpreting probabilities p > 0 as “possible” and p = 0 as “impos-
sible”. Thus, modal theories are generalizations of probabilistic theories. This gen-
eralization is actually an extension, since we will find modal theories that cannot be
“resolved’ to probabilistic ones. For situations that arise from systems inMQT, how-
ever, the situation is more complex. In the bipartite case we will show that a weak
probabilistic resolution (which may assign p = 0 for a “possible” measurement
result) can always be found.

2 Modal Quantum Theory

2.1 A Modal World

The world of modal quantum theory is a world without probabilities. Probabilities
are so familiar that it is worthwhile to consider more carefully what their absence
entails.

In a probabilistic world, an event x is assigned a numerical probability p(x) such
that 0 ≤ p(x) ≤ 1. The probabilities are normalized, so that

∑
x

p(x) = 1 (1)

where the sum extends over a set of mutually exclusive and exhaustive events. Proba-
bilities are related to statistical frequencies. Supposewe performN independent trials
of an experiment and observe event x to occur Nx times. Then with high probability,2

p(x) ≈ Nx

N
. (2)

2Note that the connection between probabilities and statistical frequencies is itself probabilistic!
This highlights the difficulty in giving a non-circular operational interpretation of probability.
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The possible results of an experiment may be labeled by numerical values v. The
mean of such a random variable is given by

〈v〉 =
∑

v

p(v) v. (3)

In a possibilistic or modal world, we can only distinguish between possible and
impossible events, but we do not assign any measure of likelihood to them. That is,
we can identify a possible set

P = {x, x′, . . .}. (4)

The only “normalization” condition is the requirement that P �= ∅. If we perform
an experiment many times, the set R of results that we see satisfies R ⊆ P . That
is, every result we have actually seen is surely possible, but we can draw no definite
conclusions about the possibility or impossibility of other results. Also, without any
assignment of “weights” to the numerical results v of an experiment, we cannot
compute a mean value 〈v〉.

The naive connection between probabilistic and modal pictures is that x ∈ P
if and only if p(x) �= 0. There are, however, some subtleties to be recognized. If
we are assigning probabilities based on observed statistical frequencies, we cannot
distinguish between a very rare event x (whichmay not have happened yet in our large
but finite set of trials) and an impossible one. That is, we may be able to conclude
that p(x) ≈ 0 but not that x is impossible.

2.2 Basic Axioms

The axioms for modal quantum theory are closely related to those of actual quantum
theory, as we can see in Table1. The axioms presented are for the most elementary
versions of each theory; wewill develop them further below. Evenwithout this devel-
opment, however, we can identify some interesting features of MQT. Consider, for
instance, the case where F is a finite field. A system with finite-dimensional V has
only a finite set of possible state vectors. There are only finitely many distinct mea-
surements or time evolution maps for the system, and time evolution must proceed
in discrete steps.

The simplest possible system in MQT is a “modal bit” or mobit [6], for which
dim V = 2. If we also choose the smallest field F = Z2, then there are just three
non-zero vectors in V , which we can denote |0), |1) and |σ) = |0) + |1). The dual
space V∗ also has three vectors, so that

(a |0 ) = 1 (a |1 ) = 0 (a |σ ) = 1
(b |0 ) = 0 (b |1 ) = 1 (b |σ ) = 1.
(c |0 ) = 1 (c |1 ) = 1 (c |σ ) = 0

(5)
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Table 1 Elementary axioms for AQT and MQT

Actual quantum theory Modal quantum theory

States. A system is described by a Hilbert space
H over the field C of complex numbers. A state
is a normalized |ψ〉 ∈ H

States. A system is described by a vector space
V over a field F . A state is a non-zero |ψ) ∈ V

Measurements. A measurement is an
orthonormal basis {|k)} for H. Each basis
element represents a measurement outcome.
For state |ψ〉, the probability outcome k is

p(k) = |〈k |ψ 〉|2

Measurements. A measurement is a basis {(k|}
for V∗. Each basis element represents a
measurement outcome. For state |ψ), outcome
k is possible if and only if

(k |ψ ) �= 0

Evolution. Over a given time interval, an
isolated system evolves via a unitary
operator U:

|ψ〉 → U |ψ〉

Evolution. Over a given time interval, an
isolated system evolves via an invertible
operator T :

|ψ) → T |ψ)

Composite systems. The state space for a
composite system is the tensor product of
subsystem spaces:

H (AB) = H (A) ⊗ H (B)

Composite systems. The state space for a
composite system is the tensor product of
subsystem spaces:

V (AB) = V (A) ⊗ V (B)

Any pair of these dual vectors yields a basic measurement. There are thus three basic
mobit measurements corresponding to the bases X = {(c| , (a|}, Y = {(b| , (c|} and
Z = {(a| , (b|}. The individual dual vectors in ameasurement basis,which correspond
to the results of the measurement, are called effects. It will sometimes be convenient
to label the measurement results by + and −, so we may write (a| = (+z| = (−x|,
etc. If a mobit is in the state |σ) and a Z-measurement is made, both outcomes +z

and −z are possible.
As in AQT, we can compare MQT to a hypothetical hidden variable theory. Such

a theory supposes that the system possesses some unknown variable λ such that, for
a given value of λ, the result of any measurement is determined. As in AQT, we
cannot completely exclude all hidden variable theories, though we can show that
some kinds of are inconsistent with MQT. For instance, consider a non-contextual
hidden variable theory [10], in which (given λ) the question of whether a given effect
(e| will occur is independent of which other effects are present in the measurement
basis. For a given value of λ, the theory would have to assign “yes” or “no” values to
each of the dual vectors (a|, (b| and (c|, such that any pair of them includes exactly
one “yes”. This is plainly impossible.We conclude that the pattern of possibilities for
a mobit system inMQT cannot be reproduced by any non-contextual hidden variable
theory.

This is essentially an MQT version of the famous Kochen-Specker theorem of
AQT [10]. TheMQT argument has a similar structure to the original (both can be cast
as graph-coloring problems) but is radically simpler. Furthermore, the AQT version
of the Kochen-Specker theorem only applies for dimH ≥ 3, while the MQT version
applies to any system of any dimension [11].
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2.3 Entanglement

Composite systems inMQTmaybe in either product or entangled states. For instance,
a pair of Z2-mobits has 15 possible states, of which 9 are product states and 6 are
entangled. (For more complicated systems, the entangled states greatly outnumber
the product states.)

Entangled states are marked by correlated measurement results. For example,
consider the modal “singlet” state of two mobits:

|S) = |0, 1) − |1, 0) . (6)

(The minus sign here allows us to generalize the state for any field F . For F = Z2,
−1 = +1 and so |S) = |0, 1) + |1, 0).) Note that, for any effect (e|,

(e, e |S ) = (e |0 ) (e |1 ) − (e |1 ) (e |0 ) = 0. (7)

Therefore, if we make the same measurement on both mobit subsystems, it is impos-
sible that we obtain identical results.

The mobit measurements X , Y and Z yield nine possible joint measurements of
a pair of mobits.3 Let (u, v|U, V ) denote the situation in which measurements of U
and V on two systems yield respective results u and v. Then we can summarize the
measurement results for |S) as follows:

• If the same measurement is made on each mobit, the results must disagree. Thus
(+,+|X, X) is impossible, and so on.

• If differentmeasurements aremade on the twomobits, all but one of the joint results
are possible. Thus, (+,−|X, Y) is impossible, but (+,+|X, Y), (−,+|X, Y) and
(−,−|X, Y) are all possible.

For AQT, Bell showed that the correlations between entangled quantum systems
were incompatible with any local hidden variable theory [2]. He did this by devising
a statistical inequality that holds for any local hidden variable theory, but which can
be violated by entangled quantum systems. Unfortunately, a similar approach based
on probabilities and expectation values is not available in MQT.

Hardy devised an alternate argument forAQTbased only on possibility and impos-
sibility [3]. He constructed a non-maximally entangled state |�〉 for a pair of qubits
together with a set of measurements having the following properties:

• (+,+|A, D) and (+,+|B, C) are both impossible—that is, they have quantum
probability p = 0.

• (+,+|B, D) is possible (p > 0).
• (−,−|A, C) is impossible (p = 0).

How might a local hidden variable theory account for this situation? Since (+,+|B,

D) is possible, we restrict our attention to the set H of hidden variable values that

3There are also many measurements involving entangled effects.
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yield this result. The result of a measurement on one qubit is unaffected by the choice
of measurement on the other (locality). Furthermore, no allowed values of the hidden
variables can lead to (+,+|A, D) or (+,+|B, C). Thus, for values in H, we must
obtain the results (−,+|A, D) and (+,−|B, C). These jointly imply that the result
(−,−|A, C) would be obtained for values in H. But this contradicts AQT, in which
(−,−|A, C) is impossible.

The very same argument applies to the state |S) in MQT, if we identify A = X,
B = Y , C = Z̄ (the negation of Z) and D = Ȳ . Thus we can conclude that no local
hidden variable theory can account for the pattern of possiblemeasurement outcomes
generated by the entangled state |S).

However, this argument has a weakness, because it only applies to those situations
in which the joint outcome (+,+|B, D) = (+,−|Y , Y) actually occurs. In AQT, we
can assign a finite probability p > 0 to this result, so we can confidently expect it
to arise in a large enough sample. But in MQT, the statement that the joint result is
possible does not allow us to draw any such conclusion. The MQT version of the
Hardy argument therefore applies only to a situation that may not, in fact, ever occur.

A stronger argumentmay be constructed along the following lines [6].We imagine
that theMQT state |S) corresponds to a setHS of possible values of a hidden variable.
The variable controls the outcomes of possible measurements in a completely local
way. For any particular value h ∈ HS , the set of possible results of a measurement on
one mobit depends only on the measurement choice for that mobit, not on the choice
for the other mobit. Let Ph(E) be the set of possible results of a measurement of E
for the hidden variable value h. Our locality assumption means that, given V (1) and
W (2) measurements for the two mobits,

Ph
(
V (A), W (B)

) = Ph
(
V (A)

)× Ph
(
W (B)

)
, (8)

the simple Cartesian product of separate sets Ph(V (1)) and Ph(W (2)). The MQT set
of possible results arising from |S) should therefore be

P
(
V (1), W (2)|S) =

⋃
h∈HS

Ph
(
V (1)

)× Ph
(
W (2)

)
. (9)

The individual sets Ph(V (1)), etc., are simultaneously defined for all of the measure-
ments that can be made on either mobit. Therefore, we may consider the set

J =
⋃

h∈HS

Ph
(
X (1)

)× Ph
(
Y (1)

)× Ph
(
Z (1)

)

× Ph
(
X (2)

)× Ph
(
Y (2)

)× Ph
(
Z (2)

)
. (10)

There might be up to 26 = 64 elements in J . However, since J can only con-
tain elements that agree with the properties of |S), we can eliminate many ele-
ments. For instance, the fact that corresponding measurements on the two mobits
must give opposite results tells us that (+,+,+,+,+,+) cannot be in J , though
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(+,+,+,−,−,−) might be. However, when we apply all of the properties of |S)

in this way, we find the surprising result that all of the elements of J are eliminated.
No assignment of definite results to all six possible measurements can possibly agree
with the correspondences obtained from the entangled MQT state |S). We therefore
conclude that these correspondences are incompatible with any local hidden variable
theory.

This argument can be recast in terms of a pseudo-telepathy game [12]. Two play-
ers, Alice and Bob, are separately asked questions drawn from a finite set. Their goal
is to give answers that satisfy some joint criterion. The game is a pseudo-telepathy
game if the goal could only be satisfied by classical players if they could communi-
cate with each other. However, Alice and Bob may have a winning strategy if they
share quantum entanglement. In our pseudo-telepathy game, Alice and Bob are each
asked one of three questions (X, Y or Z), and their goal is to provide a joint answer
consistent with the possible measurement outcomes of the entangled mobit state
|S) described above. If Alice and Bob answer separately based on shared classical
information, they cannot always win the game. If they share a mobit pair in |S), they
can. (However, as we will see below in Sect. 5.3, this game has no perfect strategy
in AQT.)

3 States and Measurements

3.1 Generalized States and Measurements in AQT

The axioms for MQT presented in Table1 describe a “basic” version of the theory.
In this section and the next, we will develop the theory to include more general kinds
of states, measurements, and time evolution. Our development parallels the standard
one in AQT [13], but also has many important differences.

In AQT, there are situations in which we cannot ascribe a definite state vector |ψ〉
to a system, either because its preparation is not completely known or because we
have a subsystem of a larger composite system in an entangled state. In either case,
we can construct a description of the situation fromwhich we can make probabilistic
predictions about the behavior of the system.We describe suchmixed states bymeans
of density operators.

Suppose, for instance that the system is prepared in one of several possible pure
states, so that |ψα〉 occurs with probability pα. This mixture of states is described by
the density operator

ρ =
∑

α

pα |ψα〉〈ψα| . (11)

If we make a measurement on the system corresponding to an orthonormal basis
{|k〉}, then the overall probability of the result k is
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p(k) =
∑

α

pα |〈k |ψα 〉|2 = 〈k| ρ |k〉 . (12)

Thus, the density operator ρ is sufficient to predict the probability of any basic
measurement result, given the probabilistic mixture of states.

Differentmixtures of states can yield the same ρ, and thus yield the same statistical
predictions.We therefore say that the differentmixtures correspond to the samemixed
state. Conversely, different density operators ρ and ρ′ will lead to different statistical
predictions for at least some measurements.

Density operators can also be used to describe a system that is part of a composite
system. Given a joint state |�〉 of RQ, we can construct a density operator for Q via
the partial trace operation:

ρ = Tr (R) |�〉〈�| . (13)

Again, this density operator predicts the probabilities for any basic measurement on
subsystem Q itself, according to the rule in Eq.12.

Every density operator arising from a mixture or a partial trace is a positive
semidefinite operator of trace 1, and any such operator could arise in these ways.
The set of positive semidefinite operators of trace 1 therefore constitutes our set of
generalized states for a system.

We can also develop the concept of measurement in AQT. As a first step, we
can “coarse-grain” a basic measurement, so that each outcome a corresponds to a
projection operator �a (associated with the subspace of H spanned by the basis
vectors |k〉 included in a). We can generalize further by supposing that we apply our
measurement to a composite system and an ancilla system, which is regarded as part
of the experimental apparatus. Then we find that each outcome a is associated with
a positive semidefinite operator Ea, and that the probability of this outcome is

p(a) = Tr ρEa. (14)

The outcome operators Ea, sometimes called effect operators, sum to the identity:

∑
a

Ea = 1. (15)

Our generalized model of measurement is thus a set {Ea} of positive operators that
satisfy Eq. 15. It can be further shown that any such set can be realized as a coarse-
grained basic measurement on an extended system (i.e., they are feasible).

Finally, it is possible to give an axiomatic characterization of this development.
The probability p(a) of measurement result a is a functional of ρ, more completely
written as p(a) = p(a|ρ). The state ρ may arise as a mixture of two other states:
ρ = p1ρ1+p2ρ2.We infer that the probability of a for ρ should itself be a probabilistic
combination:

p(a|ρ) = p1p(a|ρ1) + p2p(a|ρ2). (16)
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This motivates the axiom that p(a|ρ) is a linear functional of ρ. Every such linear
functional has the form of Eq.14 for some operator Ea. Since the probability of a
must be real and non-negative for any state ρ, the operator Ea is positive semidefinite;
and since the probabilities must always sum to 1, Eq.15 must also hold.

The developments of mixed states and generalized measurements in AQT thus
illustrate the ideas of construction, feasibility and axiomatic characterization outlined
in Sect. 1.2 above.Wemay regard this as a “complete” developmentwithin the theory.
We are now ready to sketch the corresponding development in MQT.

3.2 Annihilators and Mixed States

Modal quantum theory is based on a vector spaceV of states and its dualV∗ containing
effects. It is convenient to summarize here a few definitions and elementary results
about the subspaces of V and V∗ [14].

Subspaces of V form a lattice under the “meet” and “join” operations ∧ and ∨,
where A ∧ B = A ∩ B and A ∨ B = 〈A ∪ B〉. (Here 〈X〉 is the linear span of a set X.)
The minimal subspace in this lattice is 〈0〉, the 0-dimensional null subspace of V .

Given a set A of vectors in V , the annihilator A◦ is the set of dual vectors in V∗
that “annihilate” vectors in A. That is,

A◦ = {
(e| ∈ V∗ : (e |a ) = 0 for all |a) ∈ A

}
. (17)

This can be easily turned around to define the annihilator of a subset of the dual space
V∗. In this case, the annihilator would be a subset of V .

Within modal quantum theory, if A is a set of states, then A◦ includes all effects
that are impossible for every state in A. Dually, ifA is a set of effects, thenA◦ includes
all states for which every one of the effects in A is impossible. In spaces of finite
dimension, the annihilator of a set has several straightforward properties.

• The annihilator A◦ is a subspace.
• If A ⊆ B, then B◦ ⊆ A◦.
• The set A and its span 〈A〉 have the same annihilator: A◦ = 〈A〉◦.
• A and B have the same annihilator if and only if 〈A〉 = 〈B〉.
• (A ∪ B)◦ = A◦ ∧ B◦.

Finally, we note that the annihilator of the annihilator is a subspace of the original
space, and in fact A◦◦ = 〈A〉. If A is a subspace, then A◦◦ = A.

3.3 Mixed States in MQT

In modal quantum theory, a pure state of a system is represented by a state vector
|ψ) in V . How should we represent a mixed state? We approach this question first
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by considering mixtures of pure states. Since MQT does not involve probabilities, a
mixture is merely a set of possible state vectors: M = {|ψ1) , |ψ2) , . . .}. A particular
measurement outcome is possible provided it is possible for at least one of the states
in the mixture. That is, effect (e| is possible provided it is not in the annihilator M◦.

Two different mixtures M1 and M2 will thus predict exactly the same possible
effects if and only if M◦

1 = M◦
2 , so that 〈M1〉 = 〈M2〉. We say that two such mixtures

yield the same mixed state, and we identify that state with the subspace M ⊆ V
spanned by the elements of the mixture.4

We can also consider mixtures of two or more mixed states. If M1 and M2 are two
subspaces of V associated with two states, then M1 ∨ M2 is the subspace associated
with a mixture of the two. Since any non-null subspace of V can be written as the
span of a set of state vectors, it is an allowed mixed state.

As in AQT, mixed states in MQT can also arise when a composite system is in
an entangled pure state. Suppose that the composite system RQ is in a state |� (RQ)),
and consider the joint effect (r (R), q (Q)| = (r (R)| ⊗ (q (Q)|, which is possible provided
(r (R), q (Q) |� (RQ) ) �= 0. We can make sense of this by defining

∣∣ψ (Q)
r

) = (r (R) |� (RQ) ).
That is, if we expand |� (RQ)) in a product basis {|a (R), b (Q))} we can write

∣∣ψ (Q)
r

) = (
r (R)
∣∣
⎛
⎝∑

a,b

�ab

∣∣a (R), b (Q)
)⎞⎠ =

∑
b

(∑
a

�ab
(
r (R)

∣∣a (R)
)) ∣∣b (Q)

)
. (18)

(The vector
∣∣ψ (RQ)

r

)
is independent of the choice of the {|a (R), b (Q))} basis chosen for

this computation.) The joint effect (r (R), q (Q)| is possible provided (q (Q)
∣∣ψ (Q)

r

) �= 0.
Thus, it makes sense to interpret

∣∣ψ (Q)
r

)
as the conditional state of Q given the R-effect

(r (R)| for the overall state |� (RQ)).5

To define the unconditional subsystem state for Q, we just define the Q-subspace
of conditional states for all conceivable R-effects:

M (Q) = {(
r (R)

∣∣� (RQ)
) : (r (R)

∣∣ ∈ V (R)∗} . (19)

An R-measurement is a basis {(k (R)|} of R-effects. Since these span V (R)∗, we can see
that

M (Q) = 〈{∣∣ψ (Q)

k

)}〉
, (20)

where
∣∣ψ (Q)

k

) = (k (R) |� (RQ) ).
This has the following important consequence. Whatever measurement is made

on subsystem R, the mixture of conditional Q-states is exactly M (Q) from Eq.19.

4This clarifies a point about pure states, that |ψ) and c |ψ) are operationally equivalent for any
c �= 0. The two vectors span the same one-dimensional subspace of V .
5Of course, if

∣∣ψ (Q)
r

) = 0, then it is not a legitimate state vector; but in this case, the R-effect |r)
is impossible. The formal inclusion of such phantom conditional states makes no difference to our
analysis.
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Thus, the choice of R-measurement by itself makes no observable difference in the
observable properties of Q.

This analysis can be extended to the case where the composite system itself is in
a mixed state. However, it is more convenient to delay that discussion until we have
also generalized the concept of measurement in MQT.

3.4 Effects and Measurements

To generalize effects and measurements in modal quantum theory, it is instructive to
begin with an axiomatic characterization.

In the abstract, an effect is simply a map E that assigns each subspace M of V an
element of {possible, impossible}. But suppose M = M1 ∨ M2, the mixture of states
M1 and M2. Then E(M) should be possible if E is possible for either M1 or M2. We
therefore adopt this requirement as an axiom for any reasonable effect map E. To
make this a consistent rule, we will have to adopt the sensible convention that E(〈0〉)
is always impossible.

Our axiom is equivalent to the statement that E(M) is impossible if and only if
both E(M1) and E(M2) are impossible. Therefore, for a given E we can consider the
subspace ZE ⊆ V

ZE =
∨

{M : E(M) is impossible}. (21)

We see that E(M) is impossible if and only if M is a subspace of ZE . The map E can
therefore be completely characterized by the annihilator subspace Z◦

E ⊆ V∗.
A generalized effect in MQT is thus defined to be a subspace E ⊆ V∗. For a

generalized mixed state M, we say that E(M) is impossible if M ⊆ E◦ and possible
otherwise. That is,

E(M) =
{
possible (e |m ) �= 0 for some (e| ∈ E, |m) ∈ M
impossible (e |m ) = 0 for all (e| ∈ E, |m) ∈ M

(22)

This subspace characterization of generalized effects in MQT is exactly what we
expect from a constructive approach. Beginning with an ordinarymeasurement given
by the basis {(k|} for V∗, we can construct a coarse-grained effect E from a subset of
the (k| dual vectors. This effect is associated with a subspace of V∗ (the one spanned
by the relevant basis vectors). Both axiomatic and constructive approaches yield the
same mathematical representation for generalized effects.

A generalized measurement will be a collection {Ea} of generalized effects (sub-
spaces of V∗) associated with the potential results of the measurement process. Some
result must always occur, so we impose the requirement that, for any state M, at least
one effect must be possible—that is, M cannot lie in the annihilator of all the gener-
alized effects. Thus,
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⋂
a

E◦
a = 〈0〉 , (23)

and so the generalized effects must satisfy

∨
a

Ea = V∗. (24)

This is our “normalization” condition for a generalized measurement in MQT.
In actual quantum theory, a theorem due to Neumark [15] guarantees that any

generalized positive operator measurement on a system Q can be realized by a basic
measurement on a larger system. It is not difficult to confirm that an exactly analogous
result holds inMQT.Thus, our generalizedmeasurements are all feasible, in the sense
discussed in Sect. 1.2. The constructive and axiomatic approaches coincide, and so
our development is once again “complete”.

3.5 Conditional States

In AQT, any pure entangled state |�〉 of system RQ can be written in a special form,
the Schmidt decomposition [13], as follows:

|�〉 =
∑

k

√
λk

∣∣k (R)
〉⊗ ∣∣k (Q)

〉
(25)

where {|k (R)〉} and {|k (Q)〉} are orthonormal bases for the two systems. It is easy to
see that these are the eigenbases for the subsystem states ρ (R) and ρ (Q), and that the
coefficients λk are the eigenvalues. The Schmidt decomposition is unique except for
degeneracy among the λk values and some choices of relative phases among the two
bases.

The MQT analogue of the Schmidt decomposition can be found as follows. Sup-
pose |� (RQ)) is a joint state for RQ with subsystem mixed states M (R) and M (Q). Let
d (R) = dimM (R) and d (Q) = dimM (Q). We introduce an R-basis {|k (R))} for which the
first d (R) elements form a basis for M (R). This means we can write

∣∣� (RQ)
) =

∑
k

∣∣k (R)
)⊗ ∣∣ψ (Q)

k

)
, (26)

where the sumonly requires thefirstd (R) terms. The state ofQ is thusM (Q) = 〈{∣∣ψ (Q)

k

)}〉.
Since M (Q) is spanned by d (R) vectors, we conclude that d (R) ≥ d (Q). A symmetric
argument establishes that d (Q) ≥ d (R), so the dimensions are equal. We therefore
identify that s = d (R) = d (Q) as the Schmidt number of the state |� (RQ)).

The s vectors {∣∣ψ (Q)

k

)} span a space of dimension s, so they must be linearly
independent. We can thus construct a Q-basis {|k) (Q)} in which |k (Q)) = ∣∣ψ (Q)

k

)
for

k ≤ s. Then
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∣∣� (RQ)
) =

∑
k

∣∣k (R)
)⊗ ∣∣k (Q)

)
, (27)

where the sum only includes s terms. This is a Schmidt decomposition for |� (RQ)).
It is not unique, since we had the freedom to choose any basis for the mixed state
(subspace) of one of the systems.

This has a useful consequence. Given a mixed state M (Q) of Q, an entangled
state |� (RQ)) of RQ that leads to this mixed state is called a purification of M (Q) in
RQ. Now consider two different purifications

∣∣� (RQ)

1

)
and

∣∣� (RQ)

2

)
for the same M (Q).

Fixing a common Q-basis {|k (Q))}, we can write Schmidt decompositions for both
purifications:

∣∣� (RQ)

1,2

) =
∑

k

∣∣k (R)
)⊗ ∣∣k (Q)

1,2

)
. (28)

The two R-bases are connected by an invertible operator on V (R): T
∣∣k (R)

1

) = ∣∣k (R)

2

)
.

Thus, two purifications of M (Q) in RQ are connected via

∣∣� (RQ)

2

) = (
T (R) ⊗ 1 (Q)

) ∣∣� (RQ)

1

) ; (29)

that is, by an invertible transformation on R alone.
A theorem of Hughston et al. [16] (though earlier discussed by Schrödinger [17]

and also by Jaynes [18]) relatesmixtures to entangled states inAQT and characterizes
those mixtures that can give rise to a given density operator ρ. An exactly analogous
result holds in MQT. First, any mixture for M (Q) can be realized as a mixture of
conditional states arising from a purification of M (Q). (The ability to realize differ-
ent mixtures by a choice of measurement on the purifying subsystem is the MQT
analogue of the familiar “steering” property of actual quantum theory [19].) Second,
the elements of any two mixtures for a given mixed state are linear combinations
of each other, with coefficients given by an invertible matrix of scalars. That is, if
M = 〈{∣∣ψk,1

)}〉 = 〈{∣∣ψk,2
)}〉, then

∣∣ψl,2
) =

∑
k

Tlk

∣∣ψk,1
)
, (30)

where the Tlk form an invertible matrix.
We now return to the question of conditional states and subsystem states for

composite systems inMQT.Howdo these ideaswork out in the context of generalized
states and effects?

Suppose the composite systemRQ is in the joint stateM (RQ), and the effect subspace
E (R) is part of some measurement on R. The conditional state of Q given this effect,
which we can denote M (Q)

E , is defined via a map C(·|·):
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M (Q)

E = C
(
M (RQ)|E (R)

)

=
〈{ (

e (R)
∣∣m (RQ)

) : (e (R)
∣∣ ∈ E (R),

∣∣m (RQ)
) ∈ M (RQ)

}〉
(31)

If M (Q)

E = 〈0〉, then the effect E (R) is impossible.
The map C(·|·) respects mixtures in both the joint state and the effect. That is,

C
(
M (RQ)

1 ∨ M (RQ)

2 |E (R)
) = C

(
M (RQ)

1 |E (R)
) ∨ C

(
M (RQ)

2 |E (R)
)

(32)

C
(
M (RQ)|E (R)

1 ∨ E (R)

2

) = C
(
M (RQ)|E (R)

1

) ∨ C
(
M (RQ)|E (R)

2

)
(33)

Equation31 generalizes the expression in Eq.18 for conditional states of a composite
system. It can also be used to define the unconditional subsystem state M (Q), which
we denote like so:

M (Q) = R (R)

(
M (RQ)

) = C
(
M (RQ)|V (R)∗) . (34)

Since we take the linear span in Eq. 31, we only need to consider spanning sets for
M (RQ) and E (R). That is, if M (RQ) = 〈{|μ (RQ))}〉 and E (R) = 〈{(η (R)|}〉, then M (Q)

E =
〈{(η (R) |μ (RQ) )}〉. This is useful in calculations.

4 Open System Evolution

4.1 Type M Maps

According to the evolution postulates given in Table1, the time evolution of state
vectors in either actual or modal quantum theory can be described by a linear
operator—unitary in the case of AQT (|ψ〉 → U |ψ〉), invertible in the case of
MQT (|φ) → T |φ)). In either case it is straightforward to generalize this to mixed
states. The density operator in AQT evolves via ρ → UρU†, and in MQT a subspace
evolves according to

M → TM = {T |φ) : |φ) ∈ M} . (35)

These postulates apply when the system in question is isolated. When a system is
subject to noise or interaction with its environment, a more general description of
time evolution is needed. In this section we trace this development.

Generalized operations can be of two types. Conditional operations do not take
place with certainty but only happen when some objective condition (e.g., a mea-
surement result) is observed. Unconditional operations are those that take place with
certainty.

In actual quantum theory, a general operation is a map on density operators:
ρ → E(ρ). For an input density operator ρ, the output E(ρ) of an unconditional
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operation must also be a density operator—that is, a positive semidefinite operator
of trace 1. For conditional operations, the output is subnormalized so that p = Tr E(ρ)

is the probability that the operation occurs. The map E must respect mixtures; that is,

E (p1ρ1 + p2ρ2) = p1E(ρ1) + p2E(ρ2). (36)

Thus E is a linear map on density operators. This is a powerful condition, since it
allows us to extend E to a linear map on the space of all operators—that is, to a
superoperator.

In MQT, a general operation E on a system is a map on the subspaces of V:
M → M′ = E (M). For an unconditional operation, the output of the map must
always be a legitimate state, a non-null subspace. This means that E(M) �= 〈0〉
for M �= 〈0〉. This requirement is relaxed for conditional operations. In that case,
E(M) = 〈0〉 merely signifies that the condition of the operation cannot arise for the
input state M.

General operations in MQT must also respect mixtures, meaning that

E (M1 ∨ M2) = E(M1) ∨ E(M2). (37)

(To maintain consistency, we adopt the convention that E(〈0〉) = 〈0〉.) The map E is
not simply a linear superoperator, so we cannot easily extend it to inputs other than
subspaces. However, Eq.37 is still an important requirement. We will call subspace
maps that respect mixtures in this way Type M maps.

Throughout the rest of this section, wewill only consider unconditional operations
in both AQT and MQT. The generalization to conditional operations is not difficult
and is left as an exercise.

4.2 Constructive Approach

Consider a situation in which the system of interest S interacts with an external “envi-
ronment” system E, where E is initially in some fixed state. In AQT, the dynamics
of just such an open system S is described by a map E on density operators:

ρ → E(ρ) = Tr (E)U (ρ ⊗ |0〉〈0|) U† (38)

where |0〉 is the initial standard state ofE andU is a unitary operator on the composite
system SE.

By analogy, in MQT the evolution of an open system that interacts with an envi-
ronment (initial state M (E)

0 ) can be described by the map E (S) such that

E (S)(M (S)) = R (E)(T
(SE)(M (S) ⊗ M0

(E)
)) (39)

where R (E) is the subsystem state reduction defined by Eq.34. Without loss of gen-
erality, we may suppose that M (E)

0 is one-dimensional, since any mixed environment
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state can have a purification in a larger environment. We refer to these maps defined
by invertible linear evolution on a larger system as Type I maps.

In AQT there is a way of representing the map E without the explicit involvement
of the environment E in Eq.38. Consider a particular basis {|ek〉} for the Hilbert space
of the environment E. For each k define the operator Ak by

Ak |φ〉 = 〈ek| U |φ, 0〉 (40)

for any |φ〉 inH (S). Even though we have used the environment E and the interaction
U in this definition, the Ak operators act on H (S) alone. We may use the {|ek〉} basis
to do the partial trace in Eq.38. Given a pure state input |φ〉,

E(|φ〉〈φ|) =
∑

k

〈ek| U (|φ〉〈φ| ⊗ |0〉〈0|) U† |ek〉

=
∑

k

Ak |φ〉〈φ| A†
k . (41)

And in general,

E(ρ) =
∑

k

AkρA†
k . (42)

This is called an operator-sum representation or Kraus representation of the map E ,
and the operators Ak are called Kraus operators [13].

For an unconditional operation, the Kraus operators satisfy a normalization con-
dition. If ρ′ = E(|φ〉〈φ|) for a normalized pure state |φ〉, then

Tr ρ′ =
∑

k

〈φ| A†
kAk |φ〉

= 〈φ|
(∑

k

A†
kAk

)
|φ〉 . (43)

Since Tr ρ′ = 1 for every normalized input state |φ〉,
∑

k

A†
kAk = 1. (44)

We can describe themap E entirely in terms of Kraus operators. It is oftenmuchmore
convenient to describe E in this way without considering the actual environment E,
whichmight be very large and complex. An operator-sum representation is a compact
description of how E affects the evolution of the state of S.

We can make the analogous construction in MQT. The system S interacts with an
environment E, initially in the state M (E)

0 = 〈|0 (E))〉, via the invertible operator T (SE).
Let {(e (E)

k

∣∣} be a basis for V (E)∗ and define the operator Ak on V (S) by
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Ak

∣∣φ (S)
) = (

e (E)

k

∣∣T (SE)
∣∣φ (S), 0 (E)

)
. (45)

Given an initial S-state M (S) spanned by state vectors |m (S)), we have

E (S)
(
M (S)

) = R (E)(T
(SE)(M (S) ⊗ M0

(E)
))

= 〈(
e (E)

k

∣∣T (SE)
∣∣m (S), 0 (E)

)〉
= 〈

Ak

∣∣m (S)
)〉

E (S)
(
M (S)

) =
∨

k

AkM (E). (46)

The output of E (S) acting on M (S) is a mixture of images of M (S) under the linear
operators Ak . Equation46 is theMQT analogue of the Kraus representation in Eq.42.
If a map E (S) has a representation of this type, we say that it is a Type L map. (Note
that we have shown that all Type I maps are also Type L.)

The individual operatorsAk are not necessarily invertible. However, ifE represents
an unconditional operation on theMQT systemS, then any non-null subspaceMmust
evolve to a non-null subspace E(M). Thus, the Ak operators must satisfy

⋂
k

ker Ak = 〈0〉, (47)

the MQT analogue of the normalization condition in Eq.44.

4.3 Axiomatic Characterization

In AQT, every “physically reasonable” dynamical evolution map for an open system
has both a unitary and a Kraus representation. Similarly, every “physically reason-
able” evolution map in MQT is both Type I and Type L. To make sense of this claim,
we must explain what is meant by a “physically reasonable” map.

Let us begin by reviewing the argument in AQT. A physically reasonable map E
must be linear in the input density operator, making it a superoperator (an element
of B(B(H))). Furthermore, the output of E must be a valid density operator for any
valid input state. This immediately implies two properties:

• E must be a positive map, in the sense that it maps positive operators to positive
operators.

• E must be a trace-preserving map, so that Tr E(A) = TrA for all operators A.

(Both properties are easy to prove in general, since any operator can be written as a
linear combination of density operators.)

These two conditions are not sufficient to characterize “physically reasonable”
linearmaps, because there are positive, trace-preservingmaps that cannot correspond
to the time evolution of an quantum system. The easiest example arises for a simple
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qubit system. The Pauli operators X , Y and Z , together with the identity 1, form an
operator basis. The following map T is positive:

T (1) = 1 T (X) = X
T (Y) = Y T (Z) = −Z

. (48)

However, T does not describe the possible evolution of the state of an open qubit
system. The reason is that the qubit is not necessarily alone in the universe. We may
consider a second independent qubit whose state evolves according to the identity
map I. The composite system evolves according to the map T ⊗ I. However, this
extended map is not positive: entangled input states may map to operators having
some negative eigenvalues. (See [13] for details.)

We need stronger property to characterize “physically reasonable” evolutionmaps
for an open quantum system. The structure of the example just described provides a
clue to what this stronger property looks like.

The map E for a system is said to be completely positive if E ⊗I is positive when-
ever we append an independent quantum system. This means that, for any initial pure
state |�〉 of the composite system, the operator E ⊗I(|�〉〈�|) is positive. Since any
system may be part of a composite system, we require that every “physically rea-
sonable” map describing open system evolution must be linear, trace-preserving and
completely positive. The importance of this requirement is shown by the following
theorem.

Representation theorem for generalized dynamics in AQT. Let Q be a quantum system
and E be a map on Q-operators. The following conditions are equivalent.

(a) E is a linear, trace-preserving, completely positive map.

(b) E has a “unitary representation”. That is, we can introduce an environment system E,
an initial environment state |0〉 and a joint unitary evolution U on QE so that

E(G) = Tr (E)U (G ⊗ |0〉〈0|) U†. (49)

(c) E has a Kraus representation. That is, we can find operators Ak such that

E(G) =
∑

k

Ak GA†
k . (50)

The Kraus operators satisfy the normalization condition of Eq. 44.

Once again, the constructive approach (unitary dynamics on a larger system) and
the axiomatic characterization (linear, trace-preserving, completely positive maps)
lead us to the same generalized unconditional operations in AQT. The representation
theorem is a powerful and fundamental result in AQT. Details of its proof are given
in Appendix D of [13].

So much for AQT. Can we find an analogous axiomatic characterization for “rea-
sonable” state evolution in MQT? This is a tricky question, and not just because we
lack access to an actual MQT world. A proposed evolution map E will map sub-
spaces to subspaces, rather than operators to operators. Furthermore, the underlying
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field F may not include the notion of “positive elements”. In a field of non-zero
characteristic, any element added to itself sufficiently many times yields 0. Thus, in
MQT there may be no analogue to the notion of a “positive map”.

Nevertheless, there is a close analogue to the property of complete positivity that
does make sense in MQT. As in AQT, this condition governs how a map E extends
to one that applies to a larger composite system. Briefly, we require that an extension
exists that commutes with the conditioning operation described in Sect. 3.5. Here
is a more precise definition: We say that the subspace map E (S) for modal quantum
system S is Type E if for any other system R there exists a joint subspace map E (RS)

such that
E (S)

(
C
(
M (RS)|E (R)

)) = C
(
E (RS)(M (RS))|E (R)

)
(51)

for any RQ-state M (RQ) and R-effect E (R). In other words, for a Type E map E (S) and a
system R, we can find a map E (RS) so that the following diagram always commutes:

M (RS)
C(·|E (R))−−−−−−→ M (S)

E (RS)

⏐⏐� ⏐⏐�E (S)

E (RS)(M (RS))
C(·|E (R))−−−−−−→ E (S)(M (S))

(52)

Wewill require that any “reasonable” state evolution inMQTmust beTypeE.What is
the motivation for such a condition? Suppose the state of system S evolves according
to E (S). It is always reasonable to suppose that another system R exists in the MQT
universe.We imagine that R and S can be “independent” of one another—theymight,
for instance, be very far apart in space. The joint system RS is initially in the state
M (RS). The evolution of RS is described by some joint map E (RS) that reflects the
independence of the subsystems. We now imagine two experimental procedures.

• A measurement is made on system R, with the objective result corresponding to
effect E (R). Under this condition, S is in the state C(M (RS)|E (R)). Now the dynamical
evolution acts, so that the final state of S is E (S) (C(M (RS)|E (R))).

• The dynamical evolution acts, leading to the joint final state E (RS)(M (RS)). Now the
measurement is made on system R, with the objective result corresponding to the
effect E (R). The conditional state of S is C(E (RS)(M (RS))|E (R)).

Intuitively, if R and S are completely independent (and perhaps widely separated),
the final S state should be independent ofwhether themeasurement onR is performed
before or after the evolution of S. This is exactly the requirement for a Type E map.

4.4 Representation Theorem for MQT

We now prove a result analogous to the representation theorem for AQT. Formally,
we will show that
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Representation theorem for generalized dynamics in MQT. Let S be a modal quantum
system and E be a Type M map on subspaces for F. Then the following conditions are
equivalent.

(a) E is Type E; that is, it can be extended in a way that commutes with the conditional
operation.

(b) E is Type I; that is, it can be expressed as invertible linear evolution on a larger system.

(c) E is Type L; that is, it can be expressed as a mixture of linear maps satisfying Eq. 47.

As with the AQT result, this theorem is a strong characterization of the “reasonable”
evolution maps in modal quantum theory. We have argued that all reasonable maps
are Type E, and anyType Imap is realizable by familiar linear evolution. Constructive
and axiomatic approaches coincide.

We will prove the equivalence of the three conditions by establishing the cyclic
implication L ⇒ I ⇒ E ⇒ L. The first two implications are straightforward; the
last requires a bit more work. Throughout, we take E (S) to be a Type M map on S.

L ⇒ I: First, assume that E (S) is Type L. This means that there is a set of linear
operators {Ak} that yield E (S) according to Eq.46, and that these operators satisfy
the normalization requirement (Eq. 47). Now we introduce an environment system
E whose dimension is equal to the number of Ak operators. We fix an initial E-state
|0 (E)) and a basis {|k (E))}.

The set of SE states of the form |φ (S), 0 (E)) constitute a subspace. Define the
operator T (SE) on this subspace by

T (SE)
∣∣φ (S), 0 (E)

) =
∑

k

Ak

∣∣φ (E)
)⊗ ∣∣k (E)

)
. (53)

Because of the normalization requirement on the Ak operators, the right-hand side
is never zero. Thus, the operator T (SE) is one-to-one on the subspace, and so we may
extend it to an invertible operator on the whole of V (SE). Given a mixed state M (S), it
is straightforward to show that

R (E)

(
T (SE)(M (S) ⊗ M (E)

0 )
) = 〈{AkM (S)}〉 = E (S)(M (S)), (54)

where M (E)

0 = 〈|0 (E))〉. The map E (S) is therefore Type I.

I ⇒ E: Now assume that E (S) is Type I, so that it is given by invertible evolution
on the extended system SE as above. For any additional system R we define the map

E (RS)(M (RS)) = R (E)

[
(1 (R) ⊗ T (SE))(M (RS) ⊗ M (E)

0 )
]
. (55)

As we have already remarked, the reduction operation R (E) is an “unconditional”
conditioning operation. A direct application of the definition in Eq. 31 shows that
iterated reduction with respect to independent subsystems (in our case, R and E) can
be done in any order. This establishes that every Type I map must also be Type E.
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E ⇒ L: It only remains to prove that Type E implies Type L. Let E (S) be a Type E
map for a modal quantum system S, which is represented by a vector space of finite
dimension dim V (S) = d. We append an identical quantum system R and consider
the maximally entangled state

∣∣� (RS)
) =

∑
k

∣∣k (R), k (S)
)
. (56)

Any initial state |ψ (S)) of S could arise in the following way. The system RS is
initially in the entangled state |� (RS)), and then a measurement is performed in R.
The resulting state of S, conditional on the particular measurement outcome for R,
happens to be |ψ (S)).

We can do this more explicitly. Given |ψ (S)) = ∑
k gk |k (S)), we can construct the

R-effect
(
ψ̃ (R)

∣∣∣ =
∑

k

gk
(
k (R)
∣∣ . (57)

If
(
ψ̃ (R)

∣∣∣ corresponds to one outcomeof a basicmeasurement onR, then the associated

conditional state of Q is |ψ (Q)).
This reasoning can be generalized to mixed states. First, note that M (RS) =

〈|� (RS))〉 is the one-dimensional mixed state that corresponds to the “fully entan-
gled” state |� (RS)). Now consider a general mixed Q-state

G (Q) =
〈{∣∣g (Q)

) =
∑

k

gk

∣∣k (S)
) : (gk) ∈ G

}〉
, (58)

where G is a set of d-tuples (gk) of elements of F . Now define the R-effect

� (R) =
〈{(

g (R)
∣∣ =

∑
k

gk
(
k (R)
∣∣ : (gk) ∈ G

}〉
. (59)

Then
G (Q) = C

(
M (RS)|� (R)

)
, (60)

since |g (Q)) = (g (R) |� (RS) ).
We use this machinery to construct a Type L representation the Type E map

E (S). Let E (RS) be an extension of E (S). Let
{∣∣m (RS)

λ

)}
be a set of RS states such that

E (RS)(M (RS)) = 〈{∣∣m (RS)

λ

)}〉
(where λ runs over some index set �). Given states |g (S))

and associated effects (g (R)| as described above, we define Aλ as follows:

A (S)

λ

∣∣g (S)
) = (

g (R)
∣∣m (RS)

λ

)
. (61)
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We now have

E (S)(G (S)) = E (S)
(
C
(
M (RS)|� (R)

))
= C

(
E (RS)(M (RS))|� (R)

)
= C

(〈{
m (RS)

λ

}〉 |� (R)
)

= 〈{(
g (R)

∣∣m (RS)

λ

)}〉
= 〈{

Aλ
(S)
∣∣g (S)

)}〉
E (S)(G (S)) =

∨
λ

Aλ
(S)(G (S)). (62)

Thus, any Type E map is also Type L.

We see that Type Emaps inMQTplay a role parallel to CPmaps in actual quantum
theory. In fact, the connection is stronger than this. We can adapt the definition of
Type Emaps to AQT: A linear map E (Q) on density operators for Q is Type E provided
there exists an extended map E (RQ) on density operators of RQ that commutes with
the formation of conditional Q states from effects on R. It is not hard to show that this
condition is equivalent to complete positivity of E (Q) and thus implies the existence
of unitary (“Type L”) and Kraus (“Type L”) representations in AQT.

With the (now finished) proof of the representation theorem, we have completed
our development of modal quantum theory to include generalized states, measure-
ments, and dynamical evolution. This development has included both constructive
approaches (based on the basic axioms in Table1) and axiomatic characterizations.
The two routes lead to the same place, a fact that gives us confidence that we have
arrived at a “complete” development of the theory. Further generalization will nec-
essarily involve an extension of MQT to a more general type of theory.

5 Generalized Modal Theories

5.1 Possibility Tables for Two Systems

In the study of the conceptual foundations of actual quantum theory, it is useful
to consider AQT as an example of a more general class of probabilistic theories.
Consider a system comprising two subsystems, designated 1 and 2. We can choose
to make any of several possible measurements on each system and obtain various
joint results with various probabilities. That is, our theory allows us to compute
probabilities of the form p(x, y|X (1), Y (2)), the probability of the joint outcome (x, y)
given the choice of measurement X (1) on system 1 and Y (2) on system 2.

The state of the composite system can thus be described by a collection of joint
probability distributions. Thesemay be organized as a table. The rows and columns of
the table correspond to the possible measurements on systems 1 and 2, respectively,
like so:
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U (2) V (2) · · ·

U (1) · · ·

V (1) · · ·

...
...

...

(63)

The theory is characterized by the set of possible states—that is, the possible collec-
tions of distributions in the table.6

All of the tables we consider satisfy the no-signalling principle which can be
stated as follows [9]. For any choice of measurements A (1), B (1), C (2) and D (2),

p (a|A (1)) = ∑
c p (a, c|A (1), C (2)) = ∑

d p (a, d|A (1), D (2))

p (c|C (1)) = ∑
a p (a, c|A (1), C (2)) = ∑

b p (b, c|B (1), C (2)) .
(64)

That is, the choice of system 2 measurement does not affect the overall probability
of a system 1 outcome, and vice versa. In the table of joint distributions in Eq.63,
this means that any two distributions in the same row are connected, in that their
sub-rows sum to the same values. A similar connection exists within each column
as well.

Collections of distributions arising from a composite system in AQT satisfy the
no-signalling principle. However, there are tables satisfying this principle that could
not arise in AQT. These include examples of “states” of a composite system that are
“more entangled” than quantum mechanics allows [20].

We can adapt this approach to construct generalized modal theories that extend
MQT. The state of a composite system in a general modal theory would be a table
similar to the one in Eq. 63, except that the individual “distributions” only indicate
which joint outcomes are possible. We use the symbol X to denote a possible out-
come, and a blank space for an impossible outcome. For instance, the table for a
pair of mobits in Z2-MQT has just three rows and columns, corresponding to the
three possible basic measurements for each mobit. For the entangled modal state
|S) = |0, 1) − |1, 0), we have

6AQT also allows “entangled” measurements on composite systems, measurements which cannot
be reduced to separate measurements on the subsystems. Probabilities for non-entangled measure-
ments, however, are sufficient to characterize the joint state of the system, sowe restrict our attention
to those.
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S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X (2) Y (2) Z (2)

X (1) X
X

X
X X

X X
X

Y (1) X X
X

X
X

X
X X

Z (1) X
X X

X X
X

X
X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(65)

This table, like all tables arising from MQT systems, satisfies a modal version of
the no-signalling principle. The question of whether a particular subsystem result is
possible does not depend on what measurement is chosen for the other subsystem.
Thus, if an X occurs in the table, at least one X must occur in the corresponding sub-
rows to the right and left, and in the corresponding sub-columns above and below.
We will only consider general modal theories satisfying the modal no-signalling
principle.

In a general probabilistic theory, we can take the convex combination of two states
and derive a “mixed” state. The set of allowed states is therefore a convex set. In a
general modal theory, the mixture of two tablesR and T is simplyR∨T , the table in
which a joint outcome is possible if it is possible in eitherR or T . (This corresponds
to the usual mixture of states in MQT.) Finally, there is a natural partial ordering on
states in a general modal theory. We say that R � T provided every possible result
inR is also possible in T .

5.2 Popescu-Rohrlich Boxes

Every generalized probabilistic table can be converted into a generalized modal table
by replacing non-zero probabilities withX and zero probabilities with blanks. A table
obeying the probabilistic no-signalling principle automatically yields one that obeys
the modal version.

We use this idea to create amodal version of an important example of a generalized
probabilistic model, the “nonlocal box” proposed by Popescu and Rohrlich [20].
This PR box satisfies the no-signalling principle but is in a sense more entangled
than allowed by AQT. The modal version P looks like this:
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P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C (2) D (2)

A (1) X
X

X
X

B (1) X
X

X
X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(66)

We can summarize this pattern of possibilities in a simple way: For the measurement
combinations (A, C), (A, D) and (B, C) the joint measurement results must always
agree, but for (B, D) they always disagree. (The probabilistic PR box replaces Xwith
probability 1/2 in Eq.66.)

The PR box table P is minimal. That is, if any table R of similar dimensions
satisfies the no-signalling principle, and ifR � P , then R = P .

Could the PR box table P in Eq.66 arise from a composite system described by
MQT? In fact, it cannot. Since P is minimal, it suffices to consider only pure states
for system 12 together with measurements having non-overlapping effects. That is,
the measurement A (1) consists of two effects (subspaces of V (1)∗) A+ and A− such
that A+ ∩ A− = 〈0〉, and so on.

Suppose |�) is a modal quantum state that leads to the PR box table P in Eq.66.
As shown in the Appendix, the upper-left quarter of the table tells us that

|�) = |�+) + |�−) , (67)

where these two non-zero parts of |�) satisfy

|�+) ∈ A◦
− ⊗ C◦

− and |�−) ∈ A◦
+ ⊗ C◦

+. (68)

The same state vector |�) gives rise to the possibilities in the upper-right quarter of
P also. From this we can conclude that

|�+) ∈ A◦
− ⊗ D◦

− and |�−) ∈ A◦
+ ⊗ D◦

+. (69)

We can continue around the table P , arriving at the following facts:

|�+) ∈ B◦
+ ⊗ D◦

− and |�−) ∈ B◦
− ⊗ D◦

+. (70)

|�+) ∈ B◦
+ ⊗ C◦

+ and |�−) ∈ B◦
− ⊗ C◦

−. (71)

This last pair of statements allows us to return to the upper-left corner, concluding
that

|�+) ∈ A◦
+ ⊗ C◦

+ and |�−) ∈ A◦
− ⊗ C◦

−. (72)

Since the annihilator subspaces are non-overlapping, this contradicts Eq. 68. Thus,
no such |�) exists for which the set of possible measurement results is described by
the PR box pattern P .
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5.3 Probabilistic Resolutions

We have already noted that we can derive a generalized modal table from a general-
ized probability table, while respecting the no-signalling principle. Is it possible to
do the reverse? That is, if we have a table of possibilities for a modal system, can we
find a corresponding table of probabilities? We call this a probabilistic resolution of
the modal table, and distinguish two different types.

• A strong probabilistic resolution assigns zero probability to every impossible result
and non-zero probability to every possible result (X).

• Aweak probabilistic resolution assigns zero probability to every impossible result.
However, a “possible” result (X)may be assigned any probability, zero or non-zero.
(See the discussion in Sect. 2.1.)

In either case, we require that the resulting table of distributions must satisfy the
probabilistic no-signalling principle.

As an example, consider the PR box table P of Eq.66. It is not difficult to show
that this table has only one allowed probabilistic resolution, which is of the strong
type:

A (2) B (2)

A (1) 1/2 0
0 1/2

1/2 0
0 1/2

B (1) 1/2 0
0 1/2

0 1/2
1/2 0

(73)

Not all general modal tables actually have probabilistic resolutions of either type.
Consider the following table (of which we have only shown the relevant parts):

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U (2) V (2) W (2)

U (1)

X
X

X

X
X

X

V (1)

X
X

X

X
X

X

X
X
X

W (1)

X X
X

X
X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(74)

By inspection, N satisfies the modal no-signalling principle. When we attempt
a probabilistic resolution, we quickly discover that all of the possibilities in the
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(U (1), U (2)), (U (1), V (2)), (V (1), U (2)) and (V (1), V (2)) sub-tablesmust be assigned prob-
ability 1/3. We obtain

U (2) V (2) W (2)

U (1)

1/3
1/3

1/3

1/3
1/3

1/3

V (1)

1/3
1/3

1/3

1/3
1/3

1/3

1/3
1/3
1/3

W (1)

1/3 1/3
1/3

p
q

(75)

where we have for clarity omitted zero entries. The trouble arises in the lower-right
corner (W (1), W (2)). The probabilistic no-signalling principle imposes two sets of
constraints on the probabilities p and q. Comparing to the (W (1), V (2)) sub-table, we
require p = 2/3 and q = 1/3. Comparing to the (V (1), W (2)) sub-table, we require
p = 1/3 and q = 2/3. We therefore conclude that no probabilistic resolution exists
for modal table N .

Under some circumstances, we can guarantee that a probabilistic resolution must
exist. Suppose that a generalmodal tableR arises from a local hidden variable theory.
For each particular value h of the hidden variables, the outcomes of all joint mea-
surements are determined. The resulting tableDh is thus deterministic—that is, each
sub-table contains only a single X. The overall tableR is thus a mixture of different
Dh tables. Locality of the hidden variable theory means that each deterministic table
Dh individually satisfies the no-signalling principle.

Suppose there are N distinct deterministic tables Dh. Each deterministic table
has an obvious probabilistic resolution in which each X entry is given probability
1. Now we assign each distinct Dh a probability of 1/N , and take a mixture of
their probabilistic resolutions with these weights. That is, if a particular outcome
of a particular joint measurement is possible in M of the deterministic tables, it is
assigned an overall probability M/N . The resulting table satisfies the probabilistic
no-signalling principle, since it is a convex combination of no-signalling tables.
Furthermore, it is a strong probabilistic resolution ofR, since it assigns a probability
at least 1/N to each possible measurement outcome. Therefore, every general modal
table arising from a local hidden variable theory has a strong probabilistic resolution.

The converse is certainly false. The PR box table P of Eq.66 has a strong prob-
abilistic resolution (Eq.73). However, P is a minimal table, which means it cannot
arise as a mixture of deterministic tables that satisfy the no-signalling principle.
Therefore P cannot arise from any local hidden variable theory.
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Now consider the modal table S arising from the Z2-MQT singlet state, as shown
in Eq.65. This has a unique probabilistic resolution, which we display below. Note
that some of the possible outcomes have to be assigned probability zero—that is,
only a weak probabilistic resolution can be given for this table:

X (2) Y (2) Z (2)

X (1) 1/2
1/2

1/2
0 1/2

1/2 0
1/2

Y (1) 1/2 0
1/2

1/2
1/2

1/2
0 1/2

Z (1) 1/2
0 1/2

1/2 0
1/2

1/2
1/2

(76)

There are a number of things to remark about the probabilistic resolution in Eq.76.
The MQT singlet state |S) gives us an example of a table with a weak probabilistic
resolution but not a strong probabilistic resolution. This gives us another proof that
the modal properties of |S) (represented in table S) cannot be derived from any local
hidden variable theory: if such a theory existed, the table would certainly have a
strong probabilistic resolution.

As we have seen, the modal PR box table P of Eq.66 cannot arise from an
entangled composite system inMQT. Nevertheless, the weak probabilistic resolution
of Eq.76 does contain a probabilistic PR box! Consider the following section of the
table:

Z (2) Y (2)

X (1) 1/2 0
0 1/2

1/2 0
0 1/2

Y (1) 1/2 0
0 1/2

0 1/2
1/2 0

(77)

This apparent paradox arises because a weak probabilistic resolution allows proba-
bility zero to be assigned to a possible measurement outcome.

A probabilistic PR box cannot arise in actual quantum theory. It follows that the
behavior of an entangled composite system in MQT cannot be “simulated” by an
entangled composite system in AQT. (This is why the pseudo-telepathy game for |S)

described in Sect. 2.3 has no winning strategy if the players can only share entangled
states from AQT.)
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5.4 A Hierarchy of Modal Theories

We have considered several distinct types of two-system modal tables.

• NSP is the set of tables satisfying the no-signalling principle. (This is our “uni-
verse” of tables.)

• SPR is the set of tables that have a strong probabilistic resolution.
• WPR is the set of tables that have a weak probabilistic resolution.
• LHV is the set of tables that have a local hidden variable model.
• MQT is the set of tables that can arise from a bipartite system in modal quantum
theory.

As we have seen there are several relations between these classes:

LHV ⊂ SPR ⊂ WPR ⊂ NSP. (78)

The inclusion relation is strict in each case. The PR box table P in Eq.66 is in SPR
but not LHV; the Z2 modal singlet table S in Eq.65 is in WPR but not SPR; and the
table N in Eq.74 is in NSP but not WPR.

What about the set MQT? It is not hard to see that every table in LHV is also
in MQT. We also know there are tables that are in MQT but not in LHV or SPR.
Conversely, the PR boxP (Eq. 66) is in SPR andWPR but notMQT. It remains to pin
down the relation between MQT and WPR. We will prove that MQT ⊂ WPR—that
is, that every table that arises from the state of a bipartite system in MQT must have
a weak probabilistic resolution.

To establish this, we will take advantage of several simplifications. Since a weak
probabilistic resolution allows us to assign p = 0 for some possible outcomes,
the addition of possibilities (X entries) to a modal table can never frustrate a weak
probabilistic resolution. Therefore, we need only consider minimal modal tables in
MQT, those that arise from pure bipartite states.

Every pure bipartite state |�) has a Schmidt decomposition (as in Eq.27) with
an integer Schmidt number s. The state vector therefore lies in a subspace we may
denote V ⊗ V , with dim V = s. The space V is a subspace of the state spaces for
the two systems; but we can regard it as the effective state space for the particular
situation described by |�). Any measurement on either subsystem can hence be
regarded as a generalized measurement on V . Therefore, we can suppose that |�) is
a state of maximum Schmidt number for a pair of identical systems with state spaces
V of dimension s. (The case where s = 1 is trivial, so we will assume that s ≥ 2 and
|�) is entangled.)

Generalized measurements whose effect subspaces have dimEa > 1 can be
viewed as “coarse-grained” versions of measurements with one-dimensional (“fine-
grained”) effects. If we can construct a weak probabilistic resolution for the fine-
grainedmeasurements, thiswill automatically give a resolution for the coarse-grained
version. Therefore, we need only consider fine-grainedmeasurements—that is, those
whose effect subspaces are one-dimensional.
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A fine-grained measurement can be viewed as a spanning set for V∗. Every such
spanning set contains a basis, and at least one of these basis effects must be possible
for a given state. The “extra” effects can always be assigned probability zero. There-
fore, we need only consider basic measurements, those that correspond to basis sets
for V∗.

Armed with all of these simplifications, let us consider a pair of identical systems
in a pure entangled state |� (12)) of maximum Schmidt number. For each pair of
basic measurements, we arrive at an s × s sub-table of possibilities. Let us focus

our attention on one such sub-table, with measurement bases {
(

e (1)

j

∣∣∣} (the rows) and
{(f (2)

k

∣∣} (the columns).

For each
(

e (1)

j

∣∣∣, define the set

Fj = {(f (2)

k

∣∣ :
(

e (1)

j f (2)

k

∣∣� (12)
)

�= 0}. (79)

That is, for each system 1 effect, we consider the set of system 2 effects that are jointly

possible given state |� (12)). Consider next a set E containing d system 1 effects
(

e (1)

j

∣∣∣.
Each

(
e (1)

j

∣∣∣ corresponds to a conditional state
∣∣∣ψ (2)

j

)
=
(

e (1)

j |� (12)

)
. Since |� (12)) is

maximally entangled, these are non-zero and linearly independent. Hence, the effects
in E correspond to a set of system 2 states that span a subspace M (2)

E of dimension d.
A basic system 2 measurement on ME must have at least d possible outcomes.

These correspond to the system 2 effects in the set
⋃

E

Fj. We have shown that the

collection F = {Fj} of sets has the property that, for any set E of basic system 1
effects,

#

(⋃
E

Fj

)
≥ # (E) , (80)

where #(K) is the number of elements in finite set K . By Hall’s Marriage Theorem
[21], we can conclude that the collection F has a set of distinct representatives. That

is, for each
(

e (1)

j

∣∣∣ we can identify a corresponding
(

f (2)

j

∣∣∣ such that
•
(

e (1)

j f (2)

j |� (12)

)
�= 0 for all j, and

• (
f (2)

i

∣∣ �=
(

f (2)

j

∣∣∣ when i �= j.

In our sub-table, this means we can identify a set of the possible joint outcomes (the
X’s) such that each row and each column contains exactly one of them.

We therefore make the following probability assignment. Each impossible joint
outcome, of course, is assigned p = 0. We also assign p = 0 to all of the possible
joint outcomes except for those we have identified above, one in each row and
column. These are assigned p = 1/s.
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Fig. 1 The hierarchy of
bipartite states in modal
theories

The same procedure can be applied for each sub-table independently. In every
case, the total probability for each row and for each column is 1/s. Therefore, the
probabilistic no-signalling principle is automatically satisfied. Our construction (via
Hall’s Marriage Theorem) yields a weak probabilistic resolution for the modal table
associated with the entangled state |� (12)). Every table that arises from a bipartite
state in MQT has a weak probabilistic resolution.

In terms of our hierarchy of modal theories, we have shown that MQT ⊂ WPR.
Our conclusions are summarized in Fig. 1. It is worth noting that all of the six distinct
regions in this diagram are non-empty. Thus, for example, tableS of Eq.65 is inMQT
but not SPR; tableP of Eq.66 is in SPR but notMQT; and tableN of Eq.74 is within
NSP but not WPR. Other examples are easy to construct.

6 Concluding Remarks

6.1 What MQT Has, and What It Does not Have

As diverting an exercise asMQT is, its real purpose is to shed light on the structure of
actual quantum theory. It is remarkable howmany of the features ofAQTare retained,
at least in some form, even in such a primitive theory. An incomplete summary can
be found in Fig. 2. In the left-hand column we have listed aspects of AQT that are not
found in MQT; in the right-hand column, we have listed aspects of AQT that do have
analogies in MQT. The key point is that nothing in the right-hand column logically
depends on anything in the left-hand column.

Furthermore, as we have seen, the process of generalization is very similar in
AQT and MQT. In both theories we can develop more general concepts of state,
measurement and time evolution, and these generalizations can be characterized in
both constructive and axiomatic ways. Both theories can also be extended to more
general (probabilistic ormodal) theories.Within thesemore general types of theories,
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MQT does not have:

• Probabilities, expectations

• (F finite) Continuous sets
of states and observables, or
continuous time evolution

• Inner product, outer product,
orthogonality

• Convexity

• Hermitian conjugation (†)

• Density operators

• Effect operators

• CP maps

• Unextendable product bases

MQT does have:

• “Classical” versus “quantum”
theories

• Superposition, interference

• Complementary measure-
ments

• Entanglement

• No local hidden variables

• Kochen-Specker theorem,
“free will” theorem

• Superdense coding, teleporta-
tion, “steering” of mixtures

• Mixed states, generalized ef-
fects, generalized evolution
maps

• No cloning theorem

• Nonclassical models of com-
putation

Fig. 2 Properties and structures of actual quantum theory that either are or are not present in MQT

the quantum theories have special properties—e.g., PR boxes are excluded in either
theory, and every bipartite state in MQT has a weak probabilistic resolution.

This last point deserves further comment. We have imagined a modal world, one
which supports the distinction between “possible” and “impossible” events without
necessarily imposing any probability measure. As we have seen, it is not always
possible tomake a reasonable probability assignment in such amodalworld.The table
N of Eq.74 provides an example that respects the modal no-signalling principle,
but within which we cannot assign probabilities respecting the probabilistic NSP.

Underwhat circumstances, then, canwemake reasonable probability assignments
to a set of possibilities? In the bipartite case, we have shown that this can always be
done for joint measurements on a modal quantum system. That is, the underlying
structure of MQT somehow “makes room” for probabilities. It remains to be seen
whether this sheds any light on the way in which probabilities arise in the real world.
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6.2 Open Problems

Modal quantum theory is an exceptionally rich “toy model” of physics. Despite the
known features of the theory summarized inFig. 2, there remainmanyopenquestions.

• Althoughwe have shown that bipartite systems inMQT support weak probabilistic
resolutions, we do not know whether this is true for entangled states of three or
more systems.

• We have established many properties of pure entangled states for MQT systems,
but we know much less about mixed entangled states. For example, we do not
know whether there are “bound” entangled states in MQT [22]. (The usual AQT
construction cannot be adapted to MQT, since there are no unextendable product
bases in MQT.)

• Many results and ideas of quantum information and quantum computation have
direct analogues in MQT. For instance, MQT supports both superdense coding
and teleportation [6]. It is straightforward to show that the Deutsch-Jozsa oracle
algorithm (distinguishing constant and balanced functions with a single query)
can be implemented without change on a modal quantum computer with F = Z3

[23]. However, a great deal of work remains to be done along these lines.7

• It is possible to regard actual quantum theory as a special type of modal quantum
theory in which F = C and we have special restrictions on the allowed measure-
ments and time evolution operators.What (if anything) can be gained by analyzing
AQT in this way?

We believe that in the investigation of these and other open problemsMQTwill shed
further light on the mathematical structure of quantum theory.
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Appendix

Here we fill in the details of the argument in Sect. 5.2. For convenience, we will
suppose that modal quantum systems 1 and 2 are both described by the state space

7Some observations are obvious. In a world without probabilities, we are interested in the zero-error
capacities of communication channels and computer algorithms that reach deterministic results.
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V , and that the same two-outcome measurement is performed on each. The effect
subspaces E and F in V∗ are non-overlapping, so that E ∩ F = 〈0〉. Finally, we
assume that the joint possibility table for the state |�) is as follows:

E F

E
F

X
X

(81)

(Each sub-table of Eq.66 is of this form.)
We can find a basis for V∗ of the form {(ei| , (fm|}, where the {(ei|} spans E and

{(fm|} spans F. The dual basis {|ei) , |fm)} of V therefore has the property that |ei) is
annihilated by every (fm| and |fm) is annihilated by every (ei|. In fact, {|ei)} spans the
annihilator F◦ and {|fm)} spans E◦. We can expand the composite state |�) in this
way:

|�) =
∑

ij

αij

∣∣eiej
)+

∑
in

βin |eifn) +
∑

mj

γmj

∣∣fmej
)+

∑
mn

δmn |fmfn) . (82)

From Eq.81, we can see that the effect E ⊗ F is impossible, which implies that
(eifn |� ) = βin = 0 for every i, n. In the same way, because F ⊗ E is impossible,
γmj = 0 for every m, j. Therefore,

|�) = |�ee) + ∣∣�ff
)
, (83)

where |�ee) ∈ F◦ ⊗ F◦ and
∣∣�ff

) ∈ E◦ ⊗ E◦.
Though we have supposed that the two systems are of the same type and that the

same measurement is made on each, it is easy to adapt this argument to more general
situations, provided the effect subspaces are non-overlapping.
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Quasi-Quantization: Classical Statistical
Theories with an Epistemic Restriction

Robert W. Spekkens

1 Introduction

1.1 Epistricted Theories

Start with a classical theory for some degree of freedom and consider the statistical
theory associated with it. This is the theory that describes the statistical distributions
over the space of physical states and how they change over time. If one then postu-
lates, as a fundamental principle, that there is a restriction on what kinds of statistical
distributions can be prepared, then the resulting theory reproduces a large part of
quantum theory, in the sense of reproducing its operational predictions. This article
reviews recent work on such theories and their relevance for notions of nonclassical-
ity, for the interpretation of the quantum state, and for the program of deriving the
formalism of quantum theory from axioms.

Some clarifications are in order regarding statistical theories. Given a system
whose physical state is drawn from some ensemble of possibilities, the statistical
distribution associated to this ensemble can be taken either to describe relative fre-
quencies of physical properties within the virtual ensemble or it can be taken to
describe the knowledge that an agent has about an individual systemwhen she knows
that it was drawn from that ensemble. The latter sort of language is preferred by those
who take a Bayesian approach to statistics, and we shall adopt it here. The distinc-
tion between the physical state of a system and an agent’s state of knowledge of that
physical state will be critical in what follows. As such, we will make use of some
jargon to clearly distinguish the two sorts of states. Recalling the Greek terms for
reality and for knowledge, ontos and epistēmē, we will henceforth refer to physical
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Table 1 Theories arising from imposing certain epistemic restrictions on statistical theories for
various classical theories, and the subtheories of quantum theory that they correspond to

Classical ontological theory Statistical theory for the
classical ontological theory

Epistemically-restricted
statistical theory for the
classical ontological theory

Mechanics Liouville mechanics Gaussian epistricted
mechanics
= Gaussian subtheory of
quantum mechanics

Quadrature epistricted
mechanics
= Quadrature subtheory of
quantum mechanics

Trits Statistical theory of trits Quadrature epistricted theory
of trits
= Quadrature/Stabilizer
subtheory for qutrits

Bits Statistical theory of bits Quadrature epistricted theory
of bits
� Quadrature/Stabilizer
subtheory for qubits

Optics Statistical optics Gaussian epistricted optics
= Gaussian subtheory of
quantum optics

Quadrature epistricted optics
= quadrature subtheory of
quantum optics

states as ontic states and states of knowledge as epistemic states [1]. The theory that
governs the evolution of ontic states is an ontological theory, while the statistical
theory describes the evolution of epistemic states. A restriction on knowledge is an
epistemic restriction. The theories we are considering, therefore, are epistemically-
restricted statistical theories of classical systems. Given that this is a rather unwieldy
descriptor, we introduce the term epistricted theory as an abbreviation to it.

It is worth considering in a bit more detail the scheme by which one infers from
a given classical theory the epistricted version thereof. One starts with a particular
classical ontological theory (first column of Table1). We are here considering the
usual notion of an ontological theory: one which provides a kinematics and a dynam-
ics, that is, a hypothesis about the possible physical states that a system can occupy
at a given time and a law describing how each state can evolve over time.

One then constructs the statistical theory for the classical ontological theory under
consideration (second column of Table1). The fundamental object here is a statistical
distribution over the physical state space rather than a point in the physical state
space, that is, an epistemic state rather than an ontic state. The statistical theory
answers questions such as: If the physical state of the system undergoes deterministic
dynamics, how does the statistical distribution change over time? Or, more precisely,
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if an agent assigns a statistical distribution over physical states at one time and she
knows the dynamics, what statistical distribution should she assign at a later time?
If an agent implements a measurement on the system and takes note of the outcome,
how should she update her statistical distribution?

In the final and most significant step of the theory-construction scheme, one
postulates a fundamental restriction on the sorts of statistical distributions that can
describe an agent’s knowledge of the system (third column of Table1).

As a first example, consider the classical ontological theory of particle mechanics.
The associated statistical theory is what is sometimes called Liouville mechanics. If
one then postulates a classical version of the uncertainty principle as the epistemic
restriction [2], then one obtains a theory which we shall refer to here as Gaussian
epistricted mechanics (it was called epistemically-restricted Liouville mechanics in
Ref. [2]). This theory is equivalent to a subtheory of quantummechanics, theGaussian
subtheory, which is defined in Ref. [2].

The case of optics is a straightforward extension of the case of mechanics because
each optical mode is a scalar field and the phase spaces of a field mode and of a
particle are both Euclidean. The canonically conjugate variables, which are position
and momentum in the mechanical case, are field quadratures in the optical case.
The statistical theory of optics is well-known [3]. Upon postulating an epistemic
restriction in the form of an uncertainty principle, one obtains the optical analogue
of the Gaussian subtheory of quantum mechanics, namely, the Gaussian subtheory
of quantum optics, which is sometimes referred to as linear quantum optics. The
latter theory includes a wide variety of quantum optical experiments.

One can apply the same strategy for a classical ontological theory wherein the
fundamental degrees of freedom are discrete, so that every system has an integer
number d of ontic states. It is unusual for physicists to discuss discrete degrees
of freedom in a classical context. Nonetheless, this is done when considering the
possibility of models that are cellular automata. It is also common when describing
the physics of digital computers. The language of computation, therefore, is a natural
one for describing such a theory.

The simplest case to consider is d = 2, in which case the fundamental degree of
freedom is a bit. A collection of such fundamental degrees of freedom corresponds
to a string of bits. An interaction between two distinct degrees of freedom can be
understood as a gate acting on two bits. Similarly for interactions between n systems.
General dynamics, which corresponds to an arbitrary sequence of interactions, can be
understood as a circuit. The statistical theory of bits is just a theory of the statistical
distributions over the possible bit-strings, how these evolve under gates, and how
these are updated as a result of registering the outcome of measurements performed
on the bits. One then imposes a restriction on what kinds of statistical distributions
can characterize an agent’s knowledge of the value of the bit-string.

This is the arena in which the first epistricted theory was constructed [1]. The
restriction on knowledge was implemented through a principle that asserted that any
agent could have the answers to at most half of a set of questions that would specify
the ontic state of the system. Consequently, when one has maximal knowledge, then
the number of independent questions that are answered is equal to the number of
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independent questions that are unanswered; in this case, one’s measure of knowl-
edge is equal to one’s measure of ignorance. This epistemic restriction was dubbed
the knowledge-balance principle, and the epistricted theory of bits that resulted was
called a toy theory in Ref. [1]. This theory mirrors very closely a subtheory of the
quantum theory of qubits, namely, the one which is known to quantum information
theorists as the stabilizer formalism and which we will term the stabilizer subtheory
of qubits. It will be presented in Sect. 3. Stabilizer states are defined to be the eigen-
states of products of Pauli operators, stabilizer measurements are measurements of
commuting sets of products of Pauli operators, and stabilizer transformations are
unitary transformations which take stabilizer states to stabilizer states. Although the
toy theory is not operationally equivalent to the stabilizer subtheory, it reproduces
qualitatively the same phenomenology. Also, the toy theory can be cast in the same
sort of language as the stabilizer theory, as noted in Ref. [4].

Subsequent work sought to develop an epistricted theory for discrete systemswith
d ontic states, where d > 2. There were two natural avenues to pursue: generalize
the knowledge-balance principle used in Ref. [1] or devise a discrete version of the
classical uncertainty principle used in Ref. [2]. The former approach was pursued
by van Enk [5].1 However, some important work by Gross [6] established that it is
possible to define a discrete phase space for a d-level systemswhere d is an odd prime
and it is possible to define aWigner representation based on this phase space such that
the stabilizer theory for these qudits admits of a nonnegative Wigner representation.
Gross’s Wigner representation can be understood as a hidden variable model for
the stabilizer subtheory. This suggests that one should be able to define a classical
theory of d-level systems using this discrete phase space and then to find an epistemic
restriction that yields precisely this hidden variable model. In other words, Gross’s
work strongly suggests that one should look for an epistemic restriction that appeals
to the phase-space structure, analogously to the epistemic restriction that was used
in the Gaussian epistricted mechanics [2].

Such an epistemic restriction was subsequently identified [7]. Using the phase-
space structure, one can define quadrature variables for the classical system. The
epistemic restriction then asserts that one can have joint knowledge of a set of quadra-
ture variables if and only if they commute relative to a discrete analogue of thePoisson
bracket. The epistemic restriction is dubbed classical complementarity and the theory
that results is called the quadrature epistricted theory of d-level classical systems.

If we apply the complementarity-based epistemic restriction in the case of d = 2,
the resulting theory—the quadrature epistricted theory of bits—turns out to be equiv-
alent to the toy theory of Ref. [1], and as mentioned previously, this is operationally
a close phenomenological cousin of the stabilizer theory of qubits.

On the other hand, for d an odd prime, i.e., any prime besides 2, the quadrature
epistricted theory reproduces precisely the stabilizer theory for qudits. For such

1We are here refering to the first part of Ref. [5]. In the second part, the author proposes a theory
wherein there is a restriction on what can be known about the outcome of measurements, rather than
a restriction on what can be known about some underlying ontic state. As such, the latter theory is
not an epistricted theory.
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values of d, the epistemic restriction of classical complementarity turns out to be
inequivalent to the knowledge-balance principle. The latter specifies only that at most
half of the full set of variables can be known, whereas the former picks out particular
halves of the full set of variables, namely, the halveswherein all the variables Poisson-
commute. Because the restriction of classical complementarity actually reproduces
the stabilizer theory for qudits while the knowledge-balance principle does not [7],
epistemic restrictions based on the symplectic structure seem to be preferable to
those based on a principle of knowledge balance.

We will also show that on the quantum side, one can define the notion of a
quadrature observable, a quantum analogue of a classical quadrature variable. In
d = 2, the Pauli operators are both unitary andHermitian; as unitaries, they constitute
the quantum analogue of classical phase-space displacements, while as observables,
they correspond to our quadrature observables. In d > 2, on the other hand, the
generalized Pauli operators are unitary but not alwaysHermitian and therefore cannot
always be interpreted as observables. Consequently, the stabilizer of a state in d > 2
specifies the unitaries that leave the state invariant, not the observables for which the
state is an eigenstate. Ind > 2, the quadrature observables are theones that are defined
in terms of the eigenbases of the generalized Pauli operators. They provide a means
for acheiving a characterization of stabilizer states for any d as joint eigenstates of a
commuting set of quadrature observables. This characterization is more analogous
to our characterization, in epistricted theories, of the valid epistemic states as states
wherein one has joint knowledge of a Poisson-commuting set of quadrature variables.

Finally, the epistemic restriction of classical complementarity can also be applied
to particle mechanics, where it is different from the restriction based on the uncer-
tainty principle that is used in Ref. [2]. In particular, a smaller set of statistical
distributions are considered valid epistemic states. Using the principle of classical
complementarity, one obtains a different theory at the end, which we call quadrature
epistricted mechanics. We prove that this is equivalent to a subtheory of quantum
mechanics that we will call the quadrature subtheory of quantum mechanics and
which we will describe in detail in Sect. 3. The latter stands to the Gaussian subthe-
ory of quantum mechanics as the quadrature epistricted theory of mechanics stands
to the Gaussian epistricted theory of mechanics. One can similarly define analogous
theories for optics.

It follows that the epistemic restriction of classical complementarity provides the
beginning of a unification of all known epistricted theories. It can be applied for both
continuous and discrete degrees of freedom, and the formalism can be made to look
precisely the same in each case.

It remains an open questionwhether one canfind a formof the epistemic restriction
that is applicable to an arbitrary degree of freedom and that when applied in the case
of a d-level system yields the Stabilizer/quadrature subtheory of qudits while when
applied in the case of continuous variable systems yields the Gaussian subtheory of
quantum mechanics/optics rather than merely the quadrature subtheory.

Guided by the bridge between the epistricted theories and the quantum subthe-
ories, we present the formalism of the associated quantum subtheories in a unified
manner for continuous and discrete degrees of freedom.This presentation focusses on
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quadrature observables rather than stabilizer groups and helps to reveal the analogies
between the subtheories for the different degrees of freedom.

For any epistemic restriction that is applicable to many different degrees of free-
dom, such as the principle of classical complementarity described here, one can think
of the process of applying this restriction to the corresponding classical statistical
theories as a kind of quantization scheme, or more precisely, a quasi-quantization
scheme. It is “quasi” because it does not succeed at obtaining the full quantum theory
from its classical counterpart and because in certain cases, such as binary variables,
it does not even yield a subtheory of quantum theory.2 Unlike normal quantization
schemes, which are mathematically inspired, the quasi-quantization scheme of this
approach is conceptually inspired. There is no ambiguity about how to interpret the
formalism that results.

Although our quasi-quantization scheme has already been applied to a few dif-
ferent sorts of degrees of freedom, it is clear that one could apply it to others. Vector
fields are a good example, one which promises the possibility of a quasi-quantization
of classical electrodynamics. By finding the appropriate epistemic restriction on a
statistical theory of electrodynamics, one can imagine deriving a theory that might
be equivalent to—or perhaps, as for the case of bits, merely analogous to—some
subtheory of quantum electrodynamics.3 At present, it is not obvious how to do this
because the epistemic restrictions that have worked best for the degrees of freedom
considered thus far have made reference to canonically conjugate degrees of free-
dom. One therefore expects to encounter precisely the same difficulties that were
faced by those who attempted a canonical quantization of classical electrodynamics.
Presumably, therefore, it would be useful to develop a Lagrangian, or least-action
quasi-quantization scheme in addition to the canonical one. If one could succeed at
devising an epistricted theory of electrodynamics, then it would of course be very
interesting to attempt to apply quasi-quantization to classical theories of gravity.
This would not yield a full quantum theory of gravity, but it might reconstruct some
subtheory, or a distorted version of such a subtheory.

The rest of the introduction makes explicit what can and cannot be explained in
epistricted theories, together with their significance for interpretation and axioma-
tization. We have put this material up front rather than at the end of the paper for

2Note that for the purposes of this article, the term “quantum theory” refers to a theory schema that
can be applied to many different degrees of freedom: particles, fields and discrete systems.
3Note that the theory of stochastic electrodynamics has some significant similarities to an epistricted
theory of electrodynamics, but there are also significant differences. Many authors who describe
themselves as working on stochastic electrodynamics posit a nondeterministic dynamical law for
the fields, whereas an epistricted theory of electrodynamics is one wherein agents merely lack
knowledge of the electrodynamic fields, which continue to evolve deterministically. That being said,
Boyer’s version of stochastic electrodynamics [8] does not posit any modification of the dynamical
law and so is closer to what we are imagining here. A second difference is that in stochastic
electrodynamics, there is no epistemic restriction on the matter degrees of freedom. However, if
one degree of freedom can interact with another, then to enforce an epistemic restriction on one, it
is necessary to enforce a similar epistemic restriction on the other. In other words, the assumptions
of stochastic electrodynamics were inconsistent. The sort of epistricted theory of electrodynamics
we propose here is one that would apply the epistemic restriction to the matter and to the fields.
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the benefit of those readers who are reluctant to engage with the detailed develop-
ment until they have had certain questions answered, in particular, questions about
the precise explanatory scope of these epistricted theories, and the question of why
one should care about a quantization scheme that does not recover the full quantum
theory.

1.2 Explanatory Scope

We return now to the claim that epistricted theories reproduce a “large part” of
quantum theory. At this stage, a sceptic might be unconvinced on the grounds that for
each classical ontological theory, the subtheory of the corresponding quantum theory
that has been derived via this quantization scheme is far from the full quantum theory.
For instance, Gaussian epistricted mechanics yields a part of quantum mechanics
wherein the dynamics include only those Hamiltonians that are at most quadratic
in position and momentum observables [2]. Clearly, this is a small subset of all
possible Hamiltonians. Nonetheless, we argue that the relative size of the space of
Hamiltonians is not the correct metric by which to assess this project. The primary
object of the exercise is to achieve conceptual clarity on the principles that might
underly quantum theory. As such, it is better to ask: howmany distinctively quantum
phenomena are reproduced within these subtheories? In particular, how many of
the phenomena that are usually taken to defy classical explanation? In terms of
the phenomena they include, the subtheories of quantum theory one obtains by an
epistemic restriction do subsume a large part of the full theory. In support of this
claim, Table2 provides a categorization of some prominent quantum phenomena
into those that arise in epistricted theories (on the left), and those that do not (on the
right). As one can easily see, for this particular list, the lion’s share are found on the
left, and this set includes many of the phenomena that are typically taken to provide
the greatest challenge to the classical worldview.4

Note that it is typically the case that if one looks hard enough at a given quantum
phenomenon that appears on the left list, one can usually find some feature of it that
cannot be explainedwithin an epistricted theory.Whenwe place a given phenomenon
on the left, therefore, what we are claiming is that an epistricted theory can reproduce
the features of this phenomenon that are most frequently cited as making it difficult to
understand classically. Consider the example of quantum teleportation.What ismost
frequently taken to be mysterious about teleportation from a classical perspective is
that the amount of information that is required to describe the quantum state exceeds
the amount of information that is communicated in the protocol. This is just as true,
however, if one seeks to teleport a quantum statewithin the stabilizer theory of qubits:
for a single qubit, this subtheory includes only six distinct quantum states (rather than
an infinite number), but the teleportation protocol still succeedswhile communicating

4It should be noted that many researchers had previously recognized the possibility of recovering
many of these quantum phenomena if one compared quantum states to probability distributions in
a classical statistical theory [9–12].
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Table 2 Categorization of quantum phenomena

Phenomena arising in epistricted theories Phenomena not arising in epistricted theories

Noncommutativity Bell inequality violations

Coherent superposition Noncontextuality inequality violations

Collapse Computational speed-up (if it exists)

Complementarity Certain aspects of items on the left

No-cloning

No-broadcasting

Interference

Teleportation

Remote steering

Key distribution

Dense coding

Entanglement

Monogamy of entanglement

Choi-Jamiolkowski isomorphism

Naimark extension

Stinespring dilation

Ambiguity of mixtures

Locally immeasurable product bases

Unextendible product bases

Pre and post-selection effects

Quantum eraser

And many others...

only two bits of classical information, which is less than log2 6 and hence not enough
to describe a state drawn from this set. As such, we judge the teleportation protocol in
the stabilizer formalism to include the essentialmystery of teleportation, and, because
an epistricted theory can reproduce this notion of teleportation, we put teleportation
on the left-hand list. One can always point to features of the teleportation protocol
in the full quantum theory that do not arise in the stabilizer theory of qubits, for
instance, the fact that it works for an infinite number of quantum states rather than
just six. However, this is not the feature of teleportation that is typically cited as “the
mystery”. Such incidental features are the sorts of things that we mean to include on
the right-hand side of our classification under “certain aspects of items on the left”.
Of course, one of the lessons of this categorization exercise is that the usual story
about what is mysterious about a given quantum phenomenon should be supplanted
by one that highlights these more subtle features, and these should henceforth be our
focus when puzzling about quantum theory.

The left-hand list includes basic quantum phenomena, such as non-commutativity
of observables, interference, coherent superposition, collapse of the wave function,
the existence of complementary bases, and a no-cloning theorem [13]. It also includes
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many quantum information processing tasks, such as teleportation [14] and key dis-
tribution [15]. A large part of entanglement theory [16] is there, as are more exotic
phenomena, such as locally indistinguishable product bases [17] and unextendible
product bases [18]. One also gets many of the distinctive relations that hold between
(and within) the sets of quantum states, quantum measurements, and quantum trans-
formations, such as the Choi-Jamiołkowski isomorphism between bipartite states
and unipartite operations [19, 20], the Naimark extension of positive-operator valued
measures into projector-valuedmeasures [21], the Stinespring dilation of irreversible
operations into reversible (unitary) operations [22], and the fact that there are many
convex decompositions and many purifications of a mixed state.

On the right-hand side, we find Bell-inequality violations [23] and non-
contextuality-inequality violations [24–26]. This is expected, as these phenomena
are the operational signatures of the impossiblity of locally causal and noncontex-
tual ontological models respectively, whereas the particular sorts of epistemic restric-
tions that have been considered to date yield theories that satisfy local causality and
noncontextuality (even the generalized sense of noncontextuality of Ref. [25]). The
right-hand side also includes quantum computational speedup, with the caveat that
the claim of an exponential speed-up is predicated on certain unproven conjectures,
such as the factoring problem being outside the complexity class P.

There are also some phenomena that have not yet been conclusively categorized.
Two examples are: the quantization of quantities such as energy and angular momen-
tum and the statistics of indistinguishable particles.

There is always some satisfaction in adding a quantum phenomenon to the left-
hand list: it suggests that the idea of an epistemic restriction captures much of the
innovation of quantum theory, that the phenomena in question is not so mysterious
after all. However, the right-hand list is the one that we would most like to see grow,
because the phenomena that appear there are the ones that still seem surprising, and
it is by focusing on these that one can best develop the research program wherein
quantum states are understood as states of knowledge.

Our quasi-quantization scheme sheds light on the old question “what is the con-
ceptual innovation of quantum theory relative to classical theories?” In particular,
it implies that the frontier between what can and what cannot be explained classi-
cally extends much deeper into quantum territory than previously thought. This is
because in order to pronounce a phenomenon nonclassical, one should be maximally
permissive in how a classical theory manages to reproduce the phenomenon. For
instance, when considering whether certain operational statistics admit of a local or
a noncontextual hidden variable model, one must allow an arbitrary space of ontic
states, i.e., arbitrary hidden variables. With the benefit of hindsight, one sees that
previous assessments of the scope of classical explanations were overly pessimistic
because they did not consider the possibility that some phenomenon exhibited by
quantum states was reproduced by classical epistemic states rather than by classical
ontic states.

Phenomena arising in an epistricted theory might still be considered to exhibit
a type of nonclassicality insofar as an epistemic restriction is, strictly speaking, an
assumption that goes beyond classical physics. But it is aweak type of nonclassicality,
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as it ultimately can be understood via a relatively modest addendum to the classical
worldview. By contrast, quantum phenomena that do not arise in epistricted theories
constitute a strong type of nonclassicality, one which marks a significant departure
from the classicalworldview.Table2may therefore be understood as sorting quantum
phenomena into categories of weak and strong nonclassicality.

1.3 Interpretational Significance

Epistricted theories serve to highlight the existence (and the appeal) of a type of onto-
logical model that has previously received almost no attention. With the exception
of a model of a qubit proposed by Kochen and Specker in 1967, previous ontological
models have been such that the ontic state included a description of the quantum
state, and therefore any two distinct pure quantum states necessarily described dif-
ferent ontic states. This was true whether the model considered the space of ontic
states to be precisely the space of pure quantum states, or whether the quantum state
was supplemented by additional variables, such as occurs, for instance, in Bohmian
mechanics. By contrast, in epistricted theories, two distinct pure quantum states that
are nonorthogonal correspond to two probability distributions that overlap on one or
more ontic states. Indeed, it was the work on epistricted theories that led to the artic-
ulation of the distinction between a ψ-ontic model, wherein the ontic state encodes
the quantum state, and a ψ-epistemic model, wherein it does not [1, 25, 27].

For the subtheories of quantum theory described above (Gaussian and quadra-
ture quantum mechanics and the stabilizer theory of qudits for d an odd prime),
ψ-epistemic models exist and provide a compelling causal explanation of the opera-
tional predictions of those theories. The breadth of quantum phenomenology that is
reproduced within epistricted theories suggests that something about the principles
underlying these theoriesmust be correct. The assumption that quantum states should
be interpreted as epistemic states rather than ontic states seems a good candidate.

This in noway implies, however, that the innovation of quantum theory ismerely to
impose an epistemic restriction on some underlying classical physics. This is clearly
not the only innovation of quantum theory. As we have noted, epistricted theories,
considered as ontological models, are by construction both local and noncontextual,
and because of Bell’s theorem and the Kochen-Specker theorem, we know that the
full quantum theory cannot be explained by such models. If quantum computers
really do allow an exponential speed-up over their classical counterparts, then this
too cannot be reproduced by such models. What the success of epistricted theories
suggests, rather, is that pure quantum states and statistical distributions over classical
ontic states are the same category of thing, namely, an epistemic thing. This is a point
of view that has been central also to the “QBist” research program [28–30].

A question that naturally arises is whether one can construct a ψ-epistemic model
of the full quantum theory, or whether one can find natural assumptions under which
such models are ruled out, This question was first posed by Lucien Hardy and
was formalized in Ref. [27]. It has become the subject of much debate in recent
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years [31–33]. It is worth noting, however, that the standard framework for ontolog-
ical models contains many implicit assumptions, including the idea that the correct
formalism for describing epistemic states is classical probability theory. This assump-
tion can be questioned, and indeed, the nonlocality and contextuality of quantum
theory already suggest that it should be abandoned, as argued in [34, 35].

The investigation of epistricted theories, therefore, need not—and indeed should
not—be considered as the first step in a research program that seeks to find a ψ-
epistemic ontological model of the full quantum theory. Even though such a model
could always circumvent any no-go theorems by violating their assumptions, it would
be just as unsatisfying as a ψ-ontic ontological model insofar as it would need to be
explicitly nonlocal and contextual. Rather, the investigation of epistricted theories is
best considered as a first step in a larger research program wherein the framework of
ontological models—in particular the use of classical probability theory for describ-
ing an agent’s incomplete knowledge—is ultimately rejected, but where one holds
fast to the notion that a quantum state is epistemic.

1.4 Significance for the Axiomatic Program

Most reconstruction efforts are focussed on recovering the formalism of the full
quantum theory. However, it may be that there are particularly elegant axiomatic
schemes that are not currently in our reach and that the road to progress involves
temporarily setting one’s sights a bit lower. The quasi-quantization scheme described
here only recovers certain subtheories of the full quantum theory,which includeonly a
subset of the preparations, transformations and measurements that the latter allows.
However, such derivations may provide clues for more ambitious axiomatization
schemes. In particular, it provides further evidence for the usefulness of foundational
principles asserting a fundamental restriction on what can be known [28, 36, 37]. It
also seems to highlight the importance of symplectic structure, which is not currently
a feature of any reconstruction program.

Furthermore, epistricted theories constitute a foil to the full quantum theory in two
senses. When they are operationally equivalent to a subtheory of the full quantum
theory, they are still a foil in the sense that the universe might have been governed
by this subtheory rather than the full theory. Why did nature choose the full theory
rather than the subtheory?When the epistricted theory is not operationally equivalent
to the corresponding quantum subtheory, as in the case of bits, it is a foil not only
to the full quantum theory, but to the quantum subtheory as well. In this case, the
epistricted theory describes a set of operational predictions that are not instantiated in
our universe and again the question is: why did nature not avail itself of this option?

Because epistricted theories share so much of the operational phenomenology
of quantum theory, they constitute points in the landscape of possible operational
theories that are particularly close to quantum theory. They are therefore particularly
helpful in the project of determining what is unique about quantum theory. For any
purported attempt to derive the formalism of quantum theory from axioms, it is
useful to ask which of the axioms rule out epistricted theories. Axiom sets that may
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seem promising at first can often be ruled out immediately if they fail to pass this
simple test.

Finally, epistricted theories have significance for the problem of developingmath-
ematical frameworks for describing the landscape of operational theories. In partic-
ular, they provide a test of the scope of any given framework. Broadness of scope is
the key virtue of any framework because an axiomatic derivation of quantum theory
is only as impressive as the size of the landscape within which it is derived. For
instance, the formalism of C∗-algebras essentially includes only operational theories
that are fully quantum or fully classical, or that are quantum within each of a set of
superselection sectors and classical between these. This is a rather limited scope, and
consequently axiomatizations within this framework are less impressive than those
formulated within broader frameworks.

On this front, epistricted theories serve to highlight two deficiencies in the pre-
vailing framework of convex operational theories.

First, quadrature epistemic theories are an example of a possibilistic or modal
theory, wherein one does not specify the probabilities of measurement outcomes, but
only which outcomes are possible and which are impossible. This perspective on the
toy theory of Ref. [1], for instance, is emphasized in Ref. [38]. Possibilistic theories
have recently been receiving renewed attention [39–41] because in the context of
discussions of Bell’s theorem they highlight the fact that quantum theory cannot
merely imply an innovation to probability theory but must also imply an innovation
to logic.

Second, these epistricted theories have operational state spaces that are not con-
vex. They only allow certain mixtures of operational states. As such, they cannot be
captured by the prevailing framework of convex operational theories [42, 43] because
these assume from the outset a convex state space. On the other hand, epistricted the-
ories can be captured by the category-theoretic framework for process theories [44],
as shown in [45], or by the framework of operational-probabilistic theories described
in Ref. [46]. Epistricted theories therefore provide a concrete example of how the
category-theoretic framework necessarily describes some real estate in the landscape
of foil theories that is not on the map of the convex operational framework.

2 Quadrature Epistricted Theories

2.1 Classical Complementarity as an Epistemic Restriction

The criterion on the joint knowability of classical variables that is used here is inspired
by the criterion on the joint measurability of quantum observables.

Guiding analogy:
A set of observables is jointly measurable if and only if it is commuting relative to the matrix
commutator.
A set of variables is jointly knowable if and only if it is commuting relative to the Poisson
bracket.
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The full epistemic restriction that we adopt is a combination of this notion of joint
knowability together with the restriction that the only variables that can be known by
the agent are linear combinations of the position and momentum variables. We refer
to such variables as quadrature variables.5 We term the full epistemic restriction
classical complementarity.

Classical complementarity: The valid epistemic states are those wherein an agent knows
the values of a set of quadrature variables that commute relative to the Poisson bracket and
is maximally ignorant otherwise.

It is presumed that maximal ignorance corresponds to a probability distribution
that is uniform over the region of phase-space consistent with the known values of
the quadrature variables. In the case of a phase-space associated to a continuous field,
uniformity is evaluated relative to the measure that is invariant under phase-space
displacements. Hence a valid epistemic state is a uniform distribution over the ontic
states that is consistent with a given valuation of some Poisson-commuting set of
quadrature variables. It is because of the uniformity of these distributions that they
can be understood as merely specifying, for the given constraints, which ontic states
are possible and which are impossible. Consequently, the epistemic state in this case
is aptly described as a possibilistic state.

There is a subtlety here. The epistemic restriction is assumed to apply only towhat
an agent can know about a set of variables based on information acquired entirely
to the past or entirely to the future of those variables. It is not assumed to apply to
what an agent can know about a set of variables based on pre- and post-selection.
The same caveats on applicability hold for the quantum uncertainty principle, so this
constraint on applicability is not unexpected.

To describe the epistemic restriction inmore detail, we introduce some formalism.
The continuous and discrete cases are considered in turn.

Continuous degrees of freedom. Assume n classical continuous degrees of free-
dom. The configuration space is R

n and a particular configuration is denoted

(q1,q2, . . . ,qn) ∈ R
n. (1)

These could describe the positions of n particles in a 1-dimensional space, or the
positions of n/3 particles in a 3-dimensional space, or the amplitudes of n scalar
fields, etcetera. The associated phase space is

� ≡ R
2n (2)

and we denote a point in this space by

m ≡ (q1,p1,q2,p2, . . . ,qn,pn) ∈ �. (3)

5This terminology comes from optics, where it was originally used to describe a pair of variables
that are canonically conjugate to one another. It was inherited from the use of the expression in
astronomy, where it applies to a pair of celestial bodies and describes the configuration in which
they have an angular separation of 90◦ as seen from the earth.
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We consider real-valued functionals over this phase space

f : � → R. (4)

In particular, the functionals associated with the position and momentum of the i th
degree of freedom are defined respectively by

qi (m) = qi , pi (m) = pi . (5)

The Poisson bracket is a binary operation on a pair of functionals, defined by

[ f, g]PB (m) ≡
n∑

i=1

(
∂ f

∂qi

∂g

∂ pi
− ∂ f

∂ pi

∂g

∂qi

)
(m) . (6)

In particular, we have

[
qi , p j

]
PB (m) = δi, j . (7)

The assumption of classical complementarity incorporates a restriction on the
sorts of functionals that an agent can know. Specifically, an agent can only know the
value of a functional that is linear in the position and momentum functionals, that
is, those of the form

f = a1q1 + b1 p1 + · · · + anqn + bn pn + c, (8)

where a1,b1, . . . ,an,bn,c ∈ R. (Note that functionals that differ only by addition
of a scalar or by amultiplicative factor ultimately describe the sameproperty.)Wewill
call these quadrature functionals or quadrature variables. The vector of coefficients
of the position and momentum functionals for a given quadrature functional will be
denoted by the boldface of the notation used for the functional itself. The vector f
specifying the position and momentum dependence of the quadrature functional f
defined in Eq. (8) is

f ≡ (a1,b1, . . . ,an,bn), (9)

such that if we define the vector of position and momentum functionals

z ≡ (q1, p1, . . . , qn, pn), (10)

we can express f as
f = fT z + c. (11)

Similarly, the action of the functional f on a phase space vector m is given by

f (m) = fT m + c. (12)
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In other words, the space of quadrature functionals is the dual of the phase space
�, but each functional f is associated with a vector in the phase space, f ∈ �.
Note that the vectors associated with the position and momentum functionals qi and
pi are qi ≡ (0, 0, . . . , 1, 0, . . . , 0, 0) where the only nonzero component is ai and
pi ≡ (0, 0, . . . , 0, 1, . . . , 0, 0), where the only nonzero component is bi .

It is not difficult to see that the Poisson bracket of two quadrature functionals
always evaluates to a functional that is uniform over the phase space. Its value is
equal to the symplectic inner product of the associated vectors,

[ f, g]P B (m) = 〈f, g〉, (13)

where
〈f, g〉 ≡ fT Jg, (14)

with T denoting transpose and J denoting the skew-symmetric 2n × 2n matrix with
components Ji j ≡ δi, j+1 − δi+1, j , that is,

J ≡

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 . . .

−1 0 0 0
0 0 0 1
0 0 −1 0
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

. (15)

(Note that J squares to the negative of the 2n × 2n identity matrix, J 2 = −I , it is an
orthogonal matrix, J T J = I , it has determinant +1, and it has an inverse given by
J−1 = J T = −J .) For instance, for � = R

2, if f = (a,b) and g = (
a′,b′), then

〈f, g〉 = ab′ − ba′.
The symplectic inner product on a phase space� is a bilinear form 〈·, ·〉 : �×� →

R that is skew-symmetric (〈f, g〉 = −〈g, f〉 for all f, g ∈ �) and non-degenerate (if
〈f, g〉 = 0 for all g ∈ �, then f = 0). By equipping the vector space � with the
symplectic inner product, it becomes a symplectic vector space. This connection
to symplectic geometry allows us to provide a simple geometric interpretation of
the Poisson-commuting sets of quadrature functionals, which we will present in
Sect. 2.2.1.

Discrete degrees of freedom. For discrete degrees of freedom, the formalism is
precisely the same, except that variables are no longer valued in the real field R,
but a finite field instead. Recall that all finite fields have order equal to the power
of a prime. We shall consider here only the case where the order is itself a prime,
denoted d, in which case the field is isomorphic to the integers modulo d, which we
will denote by Zd . Therefore, the configuration space is (Zd)

n , the associated phase
space is

� ≡ (Zd)
2n ,
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the functionals have the form
f : � → Zd ,

and the linear functionals are of the form of Eq. (8),

f = a1q1 + b1 p1 + · · · + anqn + bn pn + c, (16)

but where a1,b1, . . . ,an,bn,c ∈ Zd and the sum denotes addition modulo d. It
follows that the vector f ≡ (a1,b1, . . . ,an,bn) associated with the functional f
lives in the phase space � ≡ (Zd)

n as well.
The Poisson bracket, however, cannot be defined in the conventional way, because

without continuous variables we do not have a notion of derivative. Nonetheless,
one can define a discrete version of the Poisson bracket in terms of finite differences.
For any functionals f : � → Zd and g : � → Zd , their Poisson bracket, denoted
[ f, g]P B , is also such a functional, the one defined by

[ f, g]P B (m) ≡
n∑

i=1

[
( f (m + qi ) − f (m)) (g (m + pi ) − g (m))

− ( f (m + pi ) − f (m)) (g (m + qi ) − g (m))

]
, (17)

where the differences in this expression are evaluated with modular arithmetic. The
requirement that [

qi , p j
]
PB (m) = δi, j , (18)

is clearly satisfied. Furthermore, it is straightforward to verify that Eq. (13) also holds
under this definition, so that one can relate the Poisson bracket in the discrete setting
to the symplectic inner product on the discrete phase space, 〈·, ·〉 : � × � → Zd .

Simple examples. It is useful to consider some simple examples of commuting
pairs of quadrature variables, that is, some examples of 2-element sets { f, g} such
that [ f, g]P B = 0. Any quadrature variable defined for system 1 commutes with any
quadrature variable for system 2, e.g., the pair

a1q1 + b1 p1, a2q2 + b2 p2 (19)

is a commuting pair for any values of a1,b1,a2,b2 ∈ R (or a1,b1,a2,b2 ∈ Zd ).
Additionally, there are commuting pairs of quadrature variables describing joint
properties of the two systems, for instance

q1 − q2, p1 + p2 (20)

(when the field is Zd , the coefficient −1 is equivalent to d − 1, so that q1 − q2 =
q1 + (d − 1)q2).

Another useful concept in the following will be that of canonically conjugate
variables. A pair of variables are said to be canonically conjugate if [ f, g]P B = 1.
On a single system, the pair of quadrature variables
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aq + bp, −bq + ap (21)

are canonically conjugate for any values a,b ∈ R (or a,b ∈ Zd ) such that a2+b2 =
1; in particular {q, p} is such a pair.

Note that we were able to present these examples without specifying the nature
of the field. We will follow this convention of presenting results in a unified field-
independent manner for the next few sections.

2.2 Characterization of Quadrature Epistricted Theories

2.2.1 The Set of Valid Epistemic States

Using the connection between the Poisson bracket for quadrature functionals and
the symplectic inner product, one obtains a geometric interpretation of the epistemic
restriction and the valid epistemic states.

To specify an epistemic state one must specify: (i) the set of quadrature variables
that are known and (ii) the values of these variables. We will consider each aspect in
turn.

The epistemic restriction asserts that the only sets of variables that are jointly
knowable are those that are Poisson-commuting (which is to say that every pair of
elements in the set Poisson-commutes). Note, however, that if every variable in a set
has a known value, then any function of those variables also has a known value, in
particular any linear combinations of those variables has a known value. It follows
that for any Poisson-commuting set of variables, we can close the set under linear
combination and preserve the property of being Poisson-commuting. In terms of
the vectors representing these variables, this implies that we can take their linear
span while preserving the property of having vanishing symplectic inner product
for every pair of vectors. In terms of the symplectic geometry, a subspace all of
whose vectors have vanishing symplectic inner product with one another is called an
isotropic subspace of the phase space. Formally, a subspace V ⊆ � is isotropic if

∀f, g ∈ V : 〈f, g〉 = 0. (22)

It follows that we can parametrize the different possible sets of known variables in
terms of the isotropic subspaces of the phase space �.

For a 2n-dimensional phase space, the maximum possible dimension of an
isotropic subspace is n. These are called maximally isotropic or Lagrangian sub-
spaces. This case corresponds to the maximal possible knowledge an agent can
have according to the epistemic restriction. The agent then knows a complete set of
Poisson-commuting variables, which is the analogue of measuring a complete set of
commuting observables in quantum theory.

For a given Poisson-commuting set of variables, define a basis of that set to be any
subset containing linearly independent elements and from which the entire set can
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be obtained by linear combinations. In the symplectic geometry, this corresponds
to a vector basis for the associated isotropic subspace. There are, of course, many
choices of bases for a given isotropic subspace or Poisson-commuting set.

Next,wemust characterize thepossible value assignments to aPoisson-commuting
set of quadrature variables. That is, we must specify a linear functional v acting on
a quadrature functional f and taking values in the appropriate field (continuous or
discrete) such that v( f ) is the value assigned to f . Denote the isotropic subspace of
� that is associated to this Poisson-commuting set by V , such that f ∈ V is the vector
associated with the quadrature function f . The set of value assignments corresponds
precisely to the set of vectors in V . In other words, for every vector v ∈ V , which
we call a valuation vector, we obtain a distinct value assignment v, via

v( f ) = fT v.

To see this, it suffices to note that the ontic state of the system determines the values
of all functionals and therefore the set of possible value assignments is given by the
set of possible ontic states. Specifically, each ontic state m ∈ � defines the value
assignment

vm( f ) = fT m.

However, many different ontic states yield the same value assignment. Denoting the
projector onto V by PV , we can express the relevant equivalence relation thus: the
ontic states m and m′ yield the same value assignment to the quadrature functionals
associated to V if and only if PV m = PV m′. It follows that the set of possible value
assignments to the functionals associated to V can be parametrized by the set of
projections of all ontic states m ∈ � into V , which is simply the set of ontic states
in V . This establishes what we set out to prove.

As an example, consider the case where we have two degrees of freedom, so that
� is 4-dimensional, and suppose that the set of quadrature variables that are jointly
known are the position variables, {q1, q2}, and that these are known to each take the
value 1. In this case, the associated isotropic subspace V ⊆ �, and the valuation
vector v ∈ V are, respectively,

V = span{q1, q2} (23)

= span{(1, 0, 0, 0), (0, 0, 1, 0)} (24)

= {(s, 0,t, 0) : s,t ∈ R/Zd} (25)

v = (1, 0, 1, 0). (26)

These are depicted in green in Fig. 1.
Next, we consider a given epistemic state, where the known quadrature variables

are specified by an isotropic subspaceV ⊆ �, and their values are specified by v ∈ V ,
and ask: what probability distribution over the phase space � does it correspond
to? Recalling that this probability distribution should be maximally uninformative
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Fig. 1 A schematic of the
4-dimensional phase space of
ontic states, �, the isotropic
subspace V ⊆ � associated
with the known quadrature
variables, the valuation
vector v ∈ V specifying the
values of the known
variables and the manifold
V ⊥ + v corresponding to the
ontic support of the
associated epistemic state

V

relative to the given constraint, the answer is simply a uniform distribution on the set
of all ontic states that yield this value assignment, that is, on the set

{m ∈ � : fT m = fT v ∀f ∈ V }
= {m ∈ � : PV m = v} . (27)

If we denote the subspace of � that is orthogonal to V (relative to the Euclidean
inner product) by V ⊥, and we denote the translation of a subspace W by a vector v
as W + v ≡ {m : m = w + v, w ∈ W } , then it is clear that the set of ontic states of
(27) is simply

V ⊥ + v.

For instance, in the example described above,

V ⊥ = {(0,s, 0,t) : s,t ∈ R/Zd}, (28)

and consequently the set of ontic states consistent with the agent’s knowledge is

V ⊥ + v ≡ {(1,s, 1,t) : s,t ∈ R/Zd} , (29)

which is depicted in blue in Fig. 1.
As a probability distribution over �, the epistemic state associated to (V, v) has

the following form

μV,v (m) = 1

NV
δV ⊥+v(m) (30)

where we have introduced the notation

δV ⊥+v(m) ≡
∏

f (i):span{f (i)}=V

δ(f (i)T m − f (i)T v), (31)

where in the discrete case δ(c) = 1 if c = 0 and δ(c) = 0 otherwise, while in the
continuous case δ denotes a Dirac delta function. In this expression, {f (i)} can be
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any basis of V . Geometrically, μV,v is simply the uniform distribution over the ontic
states in V ⊥ + v.

Some epistemic states are seen to bemixtures of others in this theory. A valid epis-
temic state is termed pure if it is convexly extremal among valid epistemic states,
that is, if it cannot be formed as a convex combination of other valid epistemic
states. Non-extremal epistemic states are termed mixed. Note that we are judging
extremality relative to the set of valid epistemic states, not relative to the set of all epis-
temic states. In our approach, the pure epistemic states are those corresponding to
maximal knowledge, that is, knowledge associated to a complete set of Poisson-
commuting quadrature variables.Note, however, that because of the epistemic restric-
tion, maximal knowledge is always incomplete knowledge.

2.2.2 The Set of Valid Transformations

In addition to specifying the valid epistemic states, we must also specify what trans-
formations of the epistemic states are allowed in our theory. To begin with, we
consider the reversible transformations on an isolated system.

Suppose an agent knows the precise ontological dynamics of a system over some
period of time. This transformation is represented by a bijective map on the ontic
state space, and this induces a bijective map on the space of epistemic states.

Because we assume that the underlying ontological theory has symplectic struc-
ture, it follows that the allowed transformations must be within the set of symplectic
transformations (sometimes called symplectomorphisms). The requirement that the
epistemic restriction must be preserved under the transformation implies that the
valid transformations are a subset of the symplectic transformations, namely, those
that map the set of quadrature variables to itself. Each such transformation can be
represented in terms of its action on the phase space vector m ∈ � as

m �→ Sm + a (32)

wherea ∈ � is a phase-space displacement vector andwhere S is a 2n×2n symplectic
matrix, that is, one which preserves the symplectic form J defined in Eq. (15),

ST JS = J, (33)

or equivalently, one which preserves symplectic inner products, i.e., (Sm)T J
(
Sm′)

= mT Jm′ ∀m, m′ ∈ �. These are combinations of phase-space rotations and phase-
space displacements.

Equation (32) describes an affine transformation, but it does not include all such
transformations because S is not a general linear matrix. Following [6], we call
transformations of the form of Eq. (32) symplectic affine transformations. Two such
transformations, S · +a and S′ · +a′ compose as
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S
(
S′ · +b′) + b = SS′ · +(Sb′ + b). (34)

The inverse of a symplectic matrix S is S−1 = J T ST J , and the inverse of the phase-
space displacement a is of course −a. We call the resulting group of transformations
the symplectic affine group.

If the epistemic state is described by a probability distribution/density over ontic
states, μ : � → R+, then under the ontological transformation m �→ Sm + a, the
transformation induced on the epistemic state is

μ(m) �→ μ′(m) = μ(S−1m − a), (35)

We can equivalently represent this transformation by a conditional probability dis-
tribution �S,a : � × � → R+, that is,

μ′(m) =
∫

dm′�S,a(m|m′)μ(m′), (36)

where

�S,a(m|m′) = δ(m − (Sm′ + a)). (37)

There is a subtlety worth noting at this point. The map μ �→ μ′ on the space of
probability distributions, which is induced by the map m �→ Sm + a on the space of
ontic states, has the following property: it maps the set of valid epistemic states (those
satisfying the classical complementarity principle) to itself. However, not every map
from the set of valid epistemic states to itself can be induced by some map on the
space of ontic states. A simple counterexample is provided by themap corresponding
to time reversal. For a single degree of freedom, time reversal is represented by the
map m = (q,p) �→ m′ = (q,−p), which obviously fails to preserve the symplectic
form. In terms of symplectic geometry, it is a reflection rather than a rotation in the
phase space. Nonetheless, it maps isotropic subspaces to isotropic subspaces and
therefore it also maps valid epistemic states to valid epistemic states. Therefore, in
considering a given map on the space of distributions over phase space, it is not
sufficient to ensure that it takes valid epistemic states to valid epistemic states, one
must also ensure that it arises from a possible ontological dynamics. We say that the
map must supervene upon a valid ontological transformation [2].

Note that if the phase space is over a discrete field, then the transformations must
be discrete in time. Only in the case of continuous variables can the transformations
be continuous in time and only in this case can they be generated by a Hamiltonian.

In addition to transformations corresponding to reversiblemaps over the epistemic
states, there are also transformations corresponding to irreversible maps. These cor-
respond to the casewhere information about the system is lost. Themost general such
transformation corresponds to adjoining the system to an ancilla that is prepared in a
valid epistemic state, evolving the pair by some symplectic affine transformation that
involves a nontrivial coupling of the two, and finally marginalizing over the ancilla.
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The reason this leads to a loss of information about the ontic state of the system is
that the transformation of the system depends on the initial ontic state of the ancilla,
and the latter is never completely known, by virtue of the epistemic restriction.

2.2.3 The Set of Valid Measurements

We must finally address the question of which measurements are consistent with
our epistemic restriction. We will distinguish sharp and unsharp measurements. The
sharp measurements are the analogues of those associated with projector-valued
measures in quantum theory and can be defined as those for which the outcome is
deterministic given the ontic state. The unsharp measurements are the analogues of
those in quantum theory that cannot be represented by a projector-valued measure
but instead require a positive operator-valued measure; they can be defined as those
for which the outcome is not deterministic given the ontic state.

We begin by considering the valid sharp measurements. Without the epistemic
restriction, one could imagine the possibility of a sharp measurement that would
determine the values of all quadrature variables, and hence also determine what the
ontic state of the system was prior to the measurement. Given classical comple-
mentarity, however, one can only jointly retrodict the values of a set of quadrature
variables if these are a Poisson-commuting set, and therefore the only sets of quadra-
ture variables that can be jointly measured are the Poisson-commuting sets.

Given that every Poisson-commuting set of quadrature variables defines an isotr-
opic subspace, the valid sharp measurements are parametrized by the isotropic sub-
spaces. Furthermore, the possible joint value-assignments to a Poisson-commuting
set of variables associated with isotropic subspace V are parametrized by the vectors
in V , so that the outcomes of the measurement associated with V are indexed by
v ∈ V .

Such measurements can be represented as a conditional probability, specifying
the probability of each outcome v given the ontic state m, namely,

ξV (v|m) = δV ⊥+v(m), (38)

where δV ⊥+v(m) is defined in Eq. (31).We refer to the set {ξV (v|m) : v ∈ V }, consid-
ered as functions over�, as the response functions associated with the measurement.

The set of all valid unsharp measurements can then be defined in terms of the
valid sharp measurements as follows. An unsharp measurement on a system is valid
if it can be implemented by adjoining to the system an ancilla that is described by
a valid epistemic state, coupling the two by a symplectic affine transformation, and
finally implementing a valid sharpmeasurement on the system+ancilla. Note that this
construction of unsharp measurements from sharp measurements on a larger system
is the analogue of the Naimark dilation in quantum theory.

A full treatment ofmeasurements would include a discussion of how the epistemic
state is updated when the system survives the measurement procedure, but we will
not discuss the transformative aspect of measurements in this article.
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2.2.4 Operational Statistics

Suppose that one prepares a systemwith phase space� in the epistemic stateμV,v(m)

associated with isotropic subspace V and valuation vector v, and one subsequently
implements the sharp measurement associated with the isotropic subspace V ′. What
is the probability of obtaining a given outcome v′ ∈ V ′? The answer follows from
an application of the law of total probability. The probability is simply

∑
m∈�

ξV ′(v′|m)μV,v(m).

(39)

If a symplectic affine transformation m �→ Sm + a is applied between the prepara-
tion and the measurement, the probability of outcome v′ becomes

∑
m∈�

ξV ′(v′|m)
∑
m′∈�

�S,a(m|m′)μV,v(m′).

(40)

These statistics constitute the operational content of the quadrature epistricted
theory.

2.3 Quadrature Epistricted Theory of Continuous Variables

We now turn to concrete examples of quadrature epistricted theories for particular
choices of the field. In this section, we consider the case of a phase space of n real
degrees of freedom, � = R

2n. We begin by discussing the valid epistemic states for
a single degree of freedom, n = 1. In this case, the phase space is 2-dimensional and
the isotropic subspaces are the set of 1-dimensional subspaces. We have depicted
a few examples in Fig. 2. The isotropic subspace V is depicted in light green, the
valuation vector v is depicted as a dark green arrow, and the set V ⊥ +v of ontic states
in the support of the associated epistemic state is depicted in blue. Figure2a depicts
a state of knowledge wherein position is known (and hence momentum is unknown).
Figure2b depicts the vice-versa. Figure2c corresponds to knowing the value of a
quadrature (cos θ) q + (sin θ) p (and hence having no knowledge of the canonically
conjugate quadrature − (sin θ) q + (cos θ) p). Finally, an agent could know nothing
at all, in which case the epistemic state is just the uniform distribution over the whole
phase space, as depicted in Fig. 2d.

If one considers a pair of continuous degrees of freedom, then it becomes harder to
visualize the epistemic states because the phase space is 4-dimensional. Nonetheless,
we present 3-dimensional projections as a visualization tool. We know that for every
pair of isotropic subspace and valuation vector, (V, v), there is a distinct epistemic
state. In Fig. 3a, we depict the example where q1 and q2 are the known variables and
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V

V

V

(a) (c) (d)(b)

Fig. 2 Examples of valid epistemic states for a single continuous variable system

V

V(a) (b) (c)

V

Fig. 3 Examples of valid epistemic states for a pair of continuous variable systems

both take the value 1, so that V = span {q1, q2} = span {(1, 0, 0, 0), (0, 0, 1, 0)}
and v = (1, 0, 1, 0), while in Fig. 3b, it is q1 − q2 and p1 + p2 that are the
known variables and both take the value 1, so that V = span {q1 − q2, p1 + p2} =
span {(1, 0,−1, 0), (0, 1, 0, 1)} and v = (

1
2 ,

1
2 ,− 1

2 ,
1
2

)
. In the example of Fig. 3c,

only a single variable, q1, is known and takes the value 1, so that V = span{q1} =
span {(1, 0, 0, 0)} and v = (1, 0, 0, 0).

2.4 Quadrature Epistricted Theory of Trits

We turn now to discrete systems. We begin with the case where the configuration
space of every degree of freedom is three-valued, i.e., a trit, and represented therefore
by Z3, the integers modulo 3. The configuration space of n degrees of freedom is Z

n
3

and the phase space is � = (Z3)
2n .

For a single system (n = 1), we can depict � as a 3 × 3 grid. Consider all of
the quadrature functionals that can be defined on such a system. They are of the
form f = aq + bp + c where a,b,c ∈ Z3. Some of these functionals partition
the phase-space in equivalent ways. It suffices to look at the inequivalent quadrature
functionals. There are four of these:

q, p, q + p, q + 2p. (41)
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Fig. 4 All the valid epistemic states for a single trit. There are twelve states of maximal knowledge
(one variable known) and a single state of nonmaximal knowledge (no variable known)

Note that because addition is modulo 3, q + 2p could equally well be written q − p.

Because no two of these functionals Poisson-commute, the principle of classical
complementarity implies that an agent can know the value of at most one of these
variables. It follows that there are twelve pure epistemic states, depicted in Fig. 4.
The only mixed state is the state of complete ignorance. Here we depict in blue the
ontic states in the support of the epistemic state. We have not explicitly depicted the
isotropic subspace and valuation vector, but these are analogous to what we had in
the continuous variable case.

Next, we can consider pairs of trits (n = 2). The quadrature variables are linear
combinations of the positions and momentum of each, with coefficients drawn from
Z3. Just as in the continuous case, one nowhas quadrature variables that describe joint
properties of the pair of systems. The complete sets of Poisson-commuting variables
now contain a pair of variables. Rather than attempting to portray the 4-dimensional
phase space, as we did in the continuous case, we can depict each 2-dimensional
symplectic subspace along a line, as in Fig. 5. This is the “Sudoku puzzle” depiction
of the two-trit phase space.

89
Figures6a, b, and 7a, b each depict a mixed epistemic state, wherein the value of

a single quadrature variable is known. Figures6c and 7c depict pure epistemic states,
wherein the values of a pair of Poisson-commuting variables are known. If one of
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Fig. 5 Embedding a 4-dimensional discrete phase space in a 2-dimensional grid resembling a
Sudoku puzzle

Fig. 6 Examples of epistemic states for two trits. a and b are examples where one variable is
known. c is an example where two variables are known, corresponding to a product quantum state

the pair of known variables refers to the first subsystem and the other refers to the
second subsystem, as in Fig. 6c, the epistemic state corresponds to a product state in
quantum theory. If both of the known variables describe joint properties of the pair
of trits, as in Fig. 7c, the epistemic state corresponds to an entangled state.

The valid reversible transformations are the affine symplectic maps on the phase-
space. These correspond to a particular subset of the permutations. Some examples
are depicted in Fig. 8.



Quasi-Quantization: Classical Statistical Theories with an Epistemic Restriction 109

Fig. 7 Examples of epistemic states for two trits. a and b are exampleswhere one variable is known.
c is an example where two variables are known, corresponding to an entangled quantum state

Just as in the continuous case, the valid measurements are those that determine
the values of a set of Poisson-commuting quadrature variables. For instance, for a
single trit, there are only four inequivalent measurements: of q, of p, of q + p and

(a) (b)

Fig. 8 Examples of valid reversible transformations for a one trit, and b two trits
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Fig. 9 a The set of valid sharp measurements on a single trit. b Examples of valid sharp measure-
ments on a pair of trits. The support of the response function corresponding to a particular outcome
is coloured uniformly

of q + 2p, depicted in Fig. 9a, with different colours denoting different outcomes.
Figure9b depicts some valid measurements on a pair of trits. The left depicts a joint
measurement of q1 and q2, which corresponds to a product basis in quantum theory.
The right depicts a joint measurement of q1 − q2 and p1 + p2, which corresponds to
a basis of entangled states.

2.5 Quadrature Epistricted Theory of Bits

The epistricted theory of bits is very similar to that of trits, except with Z2 rather
thanZ3 describing the configuration space of a single degree of freedom. For a single
system (n = 1), we can depict the phase space � as a 2×2 grid. There are only three
inequivalent linear functionals:

q, p, q + p. (42)

Unlike the case of trits, q− p is not a distinct functional because in arithmeticmodulo
2, q − p = q + p.

It follows that the valid epistemic states for a single system are those depicted in
Fig. 10. There are six pure states and one mixed state. We adopt a similar graphical
convention to depict the 4-dimensional phase space of a pair of bits as we did for
a pair of trits, presented in Fig. 11. Because the combinatorics are not so bad for
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Fig. 10 All the valid epistemic states for a single bit. There are six states of maximal knowledge
(one variable known) and a single state of nonmaximal knowledge (no variable known)

Fig. 11 Embedding a 4-dimensional discrete phase space in a 2-dimensional grid

the case of bits, we depict all of the valid epistemic states for a pair of bits in
Fig. 12. We categorize these into those for which two variables are known (the pure
states) and those for which only one or no variable is known (the mixed states). We
also categorize these according to whether they exhibit correlation between the two
subsystems or not. The pure correlated states correspond to the entangled states.

The reversible transformations for the case of a single system (n = 1) are particu-

larly simple. In this case,� = (Zd)
2, and the symplectic form is simply J =

(
0 1
1 0

)
.

because −1 = 1 in arithmetic modulo 2. As such, the symplectic matrices in this

case are those with elements in Z2 and satisfying ST

(
0 1
1 0

)
S =

(
0 1
1 0

)
. These are
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Fig. 12 All the valid epistemic states for a pair of bits

all the 2 × 2 matrices having at least one column containing a 0, that is,

(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
, (43)

corresponding respectively to the transformations

q �→ q
p �→ p

,
q �→ p
p �→ q

,
q �→ q

p �→ q+ p
,
q �→ q+ p
p �→ p

,
q �→ p

p �→ q+ p
,
q �→ q+ p
p �→ q

.

(44)

Each of these symplectic transformations can be composed with the four possible
phase-space displacements,

q �→ q
p �→ p

,
q �→ q+ 1
p �→ p

,
q �→ q

p �→ p+ 1
,
q �→ q+ 1
p �→ p+ 1

. (45)

In all, this leads to 24 reversible symplectic affine transformations,which are depicted
in Fig. 13. Given that there are only 24 permutations on the discrete phase space, we
see that every reversible ontic transformation is physically allowed in this case.

On the other hand, for a pair of systems (n = 2), only a subset of the permutations
of the ontic states correspond to valid sympectic affine transformations.
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Fig. 13 All the valid transformations for a single bit

Fig. 14 a The set of valid
measurements on a single
bit. b Examples of valid
measurements on a pair of
bits

(a)

(b)

In Fig. 14a, we present the valid reproducible measurements on a single bit, and
in Fig. 14b we present some examples of such measurements on a pair of bits, one
corresponding to a product basis and the other an entangled basis.

3 Quadrature Quantum Subtheories

We now shift our attention to quantum theory, and build up to a definition of the
subtheories of quantum theory that our epistricted theories will ultimately be shown
to reproduce.
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3.1 Quadrature Observables

We are interested in describing collections of elementary systems that each describe
some continuous or discrete degree of freedom. If the elementary system is a contin-
uous degree of freedom, it is associated with the Hilbert space L2(R), the space of
square-integrable functions on R. For the case of n such systems, the Hilbert space
is L2(R)⊗n = L2(Rn). The sorts of discrete degrees of freedom we consider are
those wherein all the elementary systems have d levels where d is a prime. These
are described by the Hilbert space C

d . For n such systems, the Hilbert space is
(Cd)⊗n = C

dn .
We seek to describe both discrete and continuous systems in the language of

symplectic structure. For a scalar field, for instance, we describe each mode of the
field in terms of a pair of field quadratures. In the example of a 2-level system,
even though the physical degree of freedom in question may be spin or polarization,
we seek to understand it in terms of a configuration variable and its canonically
conjugate momentum. In all of these cases, we will conventionally refer to the pair of
conjugate variables, regardless of the degrees of freedom they describe, as ‘position’
and ‘momentum’.

Wewish to present the quadrature subtheories for the continuous anddiscrete cases
in a unified manner. Towards this end, we will avoid using a Hermitian operator to
represent the quantum measurement associated to a quadrature variable. The reason
is that although this works well for the continuous case, it fails to make sense in the
discrete case. Recall that in the continuous case, we can define Hermitian operators
on L2(R), denoted q̂ and p̂, and satisfying the commutation relation [q̂, p̂] = 1̂1,
where [·, ·] denotes the matrix commutator and 1̂1is the identity operator on L2(R).
In the discrete setting, however, we would expect the operators associated to the
discrete position and momentum variables to have eigenvalues in the finite field
Zd , whereas the eigenvalues of Hermitian operators are necessarily real. Even if we
did pick a pair of Hermitian operators to serve as discrete position and momentum
observables, these would necessarily fail to provide an analogue of the commutation
relation [q̂, p̂] = 1̂1, because in a finite-dimensional Hilbert space, the commutator of
any twoHermitian operators has vanishing trace and therefore cannot be proportional
to the identity operator on that space.

In any case, within the fields of quantum foundations and quantum information,
there has been amove away from representingmeasurements byHermitian operators
because the eigenvalues of these operators are merely arbitrary labels of the mea-
surement outcomes and have no operational significance. It is only the projectors in
the spectral resolution of such a Hermitian operator that appear in the Born rule and
hence only these that are relevant to the operational statistics. Therefore, a measure-
ment with outcome set K is associated with a set of projectors {�k : k ∈ K } such
that �2

k = �k, ∀k ∈ K and
∑

k∈K �k = 11(integral in the case of a continuum of
outcomes). Such a set is called a projector-valued measure (PVM).

In the continuous variable case, we define the position observable, denoted Oq ,
to be the PVM consisting of projectors onto position eigenstates,
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Oq ≡ {�̂q(q) : q ∈ R},

where
�̂q(q) ≡ |q〉q〈q|.

The momentum observable, denotedOp, is defined to be the PVM of projectors onto
momentum eigenstates

Op ≡ {�̂p(p) : p ∈ R},

where
�̂p(p) ≡ |p〉p〈p|,

and the momentum eigenstates are related to the position eigenstates by a Fourier
transform,

|p〉p ≡ 1

2π�

∫
R

dqei qp
� |q〉q . (46)

Strictly speaking, one needs tomake use of riggedHilbert space to define position and
momentum eigenstates rigorously but we will adopt the standard informal treatment
of such states here.

In the discrete case, we can also define position andmomentum observables in this
way. A discrete position basis for C

d (which one can think of as the computational
basis in a quantum information setting) can be chosen arbitrarily. Denoting this basis
by {|q〉q : q ∈ Zd}, the PVM defining the position observable, denoted Oq , is

Oq ≡ {�̂q(q) : q ∈ Zd},

where �̂q(q) ≡ |q〉q〈q|. We can define a discrete momentum basis, denoted {|p〉p :
p ∈ Zd}, via a discrete Fourier transform,

|p〉p ≡ 1√
d

∑
q∈Zd

ei2π qp
d |q〉. (47)

and in terms of it, the PVM defining the momentum observable,

Op ≡ {�̂p(p) : p ∈ Zd},

where �̂p(p) ≡ |p〉p〈p|. If one does not associate a Hermitian operator to each
observable, then joint measurability of two observables can no longer be decided by
the commutation of the associated Hermitian operators. Rather, it is determined by
whether the associated PVMs commute or not, where two PVMs are said to commute
if every projector in one commutes with every projector in the other.

To define the rest of the quadrature observables (and the commuting sets of these),
wemust first define a unitary representation of the symplectic affine transformations.
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We begin by specifying the unitaries that correspond to phase-space displacements.
To do this in a uniform manner for discrete and continuous degrees of freedom, we
define functions χ : R → C and χ : Zd → C as

χ(c) = ei c
� for c ∈ R

χ(c) = ei 2π
d c for c ∈ Zd , when d is an odd prime

χ(c) = ei π
2 c for c ∈ Zd , when d = 2. (48)

In the continuous case, this is the standard exponential function; in the discrete case
where d is an odd prime, χ(a) is the ath power of the dth root of unity; in the discrete
case where d = 2, χ(a) is the ath power of the fourth (not the second) root of unity.
In terms of this function, we can define a unitary that shifts the position by q, where
q ∈ R in the continuous case and q ∈ Zd in the discrete case, as

Ŝ(q) =
∑

p∈R/Zd

χ(qp)|p〉p〈p|

=
∑

q′∈R/Zd

|q′ − q〉q〈q′| (49)

and a unitary that boosts the momentum by p, where p ∈ R in the continuous case
and p ∈ Zd in the discrete case, as

B̂(p) =
∑

q∈R/Zd

χ(qp)|q〉q〈q|

=
∑

p′∈R/Zd

|p′ − p〉p〈p′| (50)

Note that the shift unitaries do not commute with the boost unitaries. The unitaries
corresponding to phase-space displacements—typically called the Weyl operators—
are proportional to products of these. In particular, theWeyl operator associated with
the phase-space displacement vector a = (q,p) ∈ R

2/(Zd)
2 is defined to be

Ŵ (a) = χ(2pq)Ŝ(q)B̂(p). (51)

This is easily generalized to the case of a phase-space displacement for n degrees of
freedom, a = (q1,p1, . . . ,qn,pn) ∈ R

2n/(Zd)
2n via the tensor product,

Ŵ (a) =
n⊗

i=1

χ(2piqi )Ŝ(qi )B̂(pi ). (52)

For a, a′ ∈ �, the product of the corresponding Weyl operators is

Ŵ (a)Ŵ (a′) = χ(2〈a, a′〉)Ŵ (a + a′). (53)
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Thus it is clear that the Weyl operators constitute a projective unitary representation
of the group of phase-space displacements m → m + a, where the composition
law is

(· + a) + a′ = · + (a + a′). (54)

Next, we define a projective unitary representation V̂ of the symplectic group
acting on a 2n-dimensional phase space �. For every 2n × 2n symplectic matrix
S : � → �, there is a unitary V̂ (S) acting on the Hilbert space L(Rn)/C

dn , such
that

V̂ (S)V̂ (S′) = eiφV̂ (SS′) (55)

for some phase factor eiφ. These can be defined via their action on theWeyl operators.
Specifically, ∀a ∈ �,

V̂ (S)Ŵ (a)V̂ †(S) ∝ Ŵ (Sa). (56)

In the following,wewill often consider the action of these unitaries under conjuga-
tion, therefore, we define the superoperators associated to phase-space displacement
a and symplectic matrix S,

W(a)(·) ≡ Ŵ (a) · Ŵ (a)†,

V(S)(·) ≡ V̂ (S) · V̂ (S)†. (57)

Note that Eq. (56) implies that

W(a) ◦ V(S)(·) = V(S) ◦ W(S−1a)(·). (58)

In the classical theory, every Poisson-commuting set of quadrature functionals
{ f (1), f (2), . . . , f (k)} can be obtained from every other such set by a symplectic
linear transformation (here, k ≤ n). The proof is as follows. If f (i) = f (i)T z is a
quadrature functional, then so is f̃ (i) = (Sf (i))T z for all i ∈ {1, . . . , k} when S
is a symplectic matrix. Furthermore, if the initial set is Poisson-commuting, then
〈f (i), f ( j)〉 = 0 for all i �= j ∈ {1, . . . , k}, and then because

〈f̃ (i), f̃ ( j)〉 = 〈Sf (i), Sf ( j)〉
= 〈f (i), f ( j)〉, (59)

it follows that 〈f̃ (i), f̃ ( j)〉 = 0 for all i �= j ∈ {1, . . . , k} so the final set is Poisson-
commuting as well. Here, we have used the fact that the symplectic inner product is
invariant under the action of a symplectic matrix.

We can define commuting sets of quantum quadrature observables similarly. Con-
sider a single degree of freedom, � = R

2/Z
2
d . Denote by S f the symplectic matrix

that takes the position functional q to a quadrature functional f , so that S f q = f .
(Given that q ≡ (1, 0), we see that f is the first column of S f .) We define the quadra-
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ture observable associated with f , denoted O f , to be the image under the action of
the unitary V̂ (S f ) of the position observable, that is,

O f ≡ {�̂ f (f) : f ∈ Zd},

where

�̂ f (f) ≡ V(S f )(�̂q(f)). (60)

It is useful to note how these projectors transform under phase-space displace-
ments and symplectic matrices. By definition of the quadrature observables, we infer
that for a symplectic matrix S,

V(S)(�̂ f (f)) = �̂S f (f), (61)

where S f denotes the quadrature functional associated to the vector Sf ∈ �. Now
consider the action of aWeyl superoperator. First note that the projectors onto position
eigenstates transform as

W(a)(�̂q(q)) = �̂q(q+ q(a)).

It follows that if f = S f q , then

W(a)(�̂ f (f)) = W(a)(�̂S f q(f)),

= W(a)V(S f )(�̂q(f)),

= V(S)W(S−1
f a)(�̂q(f)),

= V(S)(�̂q(f+ q(S−1
f a))),

= �̂ f (f+ f (a)). (62)

In all,

V(S)W(a)(�̂ f (f)) = �̂S f (f+ f (a)). (63)

The case of n degrees of freedom, � = R
2/Z

2
d , is treated similarly. In this case,

our quadrature observables need not be rank-1. Our fiducial quadrature can be taken
to be q1, the position functional for system 1. The associated quadrature observable is

Oq1 ≡ {�̂q1(q1) ⊗ 112 ⊗ · · · ⊗ 11n : q1 ∈ R/Zd}.

For an arbitrary functional on the n systems, f : � → R/Zd , we find the symplectic
matrix S f such that S f q1 = f , and we define the quadrature observable associated
with f to be
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O f ≡ {�̂ f (f) : f ∈ R/Zd}.

where
�̂ f (f) ≡ V̂ (S f )

(
�̂q1(f) ⊗ 112 ⊗ · · · ⊗ 11n

)
V̂ (S f )

†.

It follows that for every classical quadrature functional f , there is a corresponding
quadrature observable O f , which stands in relation to the position and momentum
observables as f stands to the position and momentum functionals.

As an aside, one may note that in the continuous variable case, the quadrature
observables are simply the spectral resolutions of those Hermitian operators that
are linear combinations of position and momentum operators. In particular, for a
quadrature observable O f associated to a vector f ∈ �, the associated Hermitian
operator is simply

f̂ = fT ẑ,

where
ẑ ≡ (q̂1, p̂1, . . . , q̂n, p̂n), (64)

is the vector of position and momentum operators. Hence for every classical quadra-
ture variable f = fT z, as defined in Eq. (11), there is a corresponding quadrature
operator f̂ = fT ẑ, where we have simply replaced the position and momentum
functionals with their corresponding Hermitian operators.

We are now in a position to describe the commuting sets of quadrature observables.
A set of quadrature observables {O f (1) , . . . ,O f (k)} is a commuting set if and only if
the corresponding quadrature functionals { f (1), . . . , f (k)} are Poisson-commuting.
The proof is as follows. The functionals { f (1), . . . , f (k)} are Poisson-commuting
if and only if they can be obtained by some symplectic transformation from any
other such set, in particular, the set of position functionals for the first k systems,
{q1, . . . , qk}. In other words, { f (1), . . . , f (k)} are Poisson-commuting if and only if
there is a sympectic matrix S such that f (i) = Sqi for all i ∈ {1, . . . , k} (which
implies that the vectors f (i) are the first k columns of S). Given the definition of
quadrature observables, this condition is equivalent to the statement that there exists
a symplectic matrix S such that O f (i) = V̂ (S)Oqi V̂ (S)† for all i ∈ {1, . . . , k}. But
given that the elements of the set {Oq1 , . . . ,Oqk } (the position observables for the
first k systems) commute, and commutation relations are preserved under a unitary,
it follows that the elements of the set {O f (1) , . . . ,O f (k)} commute if and only if there
exists such an S, hence they commute if and only if the corresponding quadrature
functionals { f (1), . . . , f (k)} Poisson-commute.

Again, this has a simple interpretation in the continuous variable case. There, it
is easy to verify that the matrix commutator of two quadratures operators is equal to
the symplectic inner product of the corresponding vectors, that is, [ f̂ , ĝ] = 〈f, g〉. In
particular, it follows that [ f̂ , ĝ] = 0 if and only if 〈f, g〉 = 0, which provides another
proof of the fact that a commuting set of quadrature observables is associated with
an isotropic subspace of the phase space.
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As described in Sect. 2.2.1, every set of Poisson-commuting quadrature func-
tionals defines an isotropic subspace V ⊆ � and therefore the sets of commuting
quadrature observables are also parameterized by the isotropic subspaces of �. If a
commuting set of quadrature observables is such that the corresponding quadrature
functionals are associated with an isotropic subspace V , then this set defines a single
quadrature observable, denoted OV , by

OV = {�̂V (v) : v ∈ V }

where

�̂V (v) ≡
∏

f (i):span(f (i))=V

�̂ f (i)

(
f (i)(v)

)
. (65)

For instance, the quadrature functionals f = q1 − q2 and g = p1 + p2 are Poisson-
commuting and therefore the associated quadrature observables, O f and Og , com-
mute, which is to say that the projectors {�̂ f (f) : f ∈ R/Zd} all commute with the
projectors {�̂g(g) : g ∈ R/Zd}. If V = span{f, g}, then the possible pairs of values
for the two observables can be expressed as the possible components of a vector
v ∈ V along the basis vectors f and g respectively. These are the pairs {(f,g)} such
that f = fT v = f (v) and g = gT v = g(v) for some v ∈ V . It follows that we can
parametrize the possible values of this commuting set by vectors v ∈ V .

In the continuous variable case, �̂ f (f) is the projector onto the eigenspace of
q̂1 − q̂2 with eigenvalue f, �̂g(g) is the projector onto the eigenspace of p̂1 + p̂2

with eigenvalue g, and �̂V (v) is the projector onto the joint eigenspace of q̂1−q̂2 and
p̂1 + p̂2 with eigenvalues (f,g), which corresponds to an Einstein-Podolsky-Rosen
entangled state.

With this background established, we are in a position to define the quadrature
quantum subtheories.

3.2 Characterization of Quadrature Quantum Subtheories

In this section, we define a quadrature subtheory of the quantum theory for a given
system (discrete or continuous). In the discrete case, this subtheory is closely con-
nected to the stabilizer formalism, a connection that wemake precise in the appendix.

3.2.1 The Set of Valid Quantum States

In order to define the valid quantum states in the quadrature quantum subtheory,
we use the guiding analogy of Sect. 2.1, together with the isomorphism between
quadrature functionals and quadrature observables noted above.
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Aswe have just seen, for both the discrete and continuous cases, every commuting
set of quadrature observables is associated to an isotropic subspace V ⊂ �. Further-
more, every set of values that these observables can jointly take is associated to a
vector v ∈ V . We have denoted the projector that yields these values by �̂V (v). The
quantum states that are part of the quadrature subtheory, termed quadrature states,
are simply the density operators that are proportional to such projectors. It follows
that the quadrature states are parameterized by pairs consisting of an isotropic sub-
space V and a valuation vector v ∈ V (in precisely the same way as one parametrizes
the set of valid epistemic states in the epistricted classical theory). Specifically, it is
the set of states of the form

ρV,v = 1

NV
�̂V (v), (66)

where V ⊆ � is isotropic, v ∈ V , andNV is a normalization factor. Equivalently, if
{f (i)} is a basis of V , then

ρV,v ≡ 1

NV

∏
{f (i):span{f (i)}=V }

�̂ f (i)

(
f (i)(v)

)
. (67)

3.2.2 The Set of Valid Transformations

Because the overall phase of a Hilbert space vector is physically irrelevant, physical
states are properly represented by density operators, and consequently a reversible
physical transformation is not represented by a unitary operator but rather by the
superoperator corresponding to conjugation by that unitary.

When a Weyl operator Ŵ (a) acts by conjugation, it defines what we will call the
Weyl superoperator,

W(a)(·) ≡ Ŵ (a)(·)Ŵ (a)†.

Unlike the Weyl operators of two phase-space displacements, which, by Eq. (53),
commute if and only if the corresponding phase-space displacement vectors have
vanishing symplectic inner product,

[Ŵ (a), Ŵ (a′)] = 0 if and only if 〈a, a′〉 = 0,

theWeyl superoperators of any two phase-space displacements necessarily commute,

[W(a),W(a′)] = 0 ∀a, a′ ∈ �.

This follows from Eq. (53) and the skew-symmetry of the symplectic inner product.
It follows that

W(a)W(a′) = W(a + a′) ∀a, a′ ∈ �.
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As such, the Weyl superoperators constitute a nonprojective representation of the
group of phase-space displacements, Eq. (54).

Next, we consider the projective unitary representation V̂ of the symplectic group
acting by conjugation. This defines a superoperator representation of the symplectic
group which is nonprojective, that is, for

V(S)(·) ≡ V̂ (S)(·)V̂ (S)†,

we have
V(S)V(S′) = V(SS′).

The Clifford group of unitaries is defined as those which, when acting by conju-
gation, take the set of Weyl operators to itself. That is, a unitary Û is in the Clifford
group if ∀b ∈ �,

Û Ŵ (b)Û † = c(b)Ŵ (Sb), (68)

for some maps c : � → C and S : � → �.
It turns out that every such unitary can be written as a product of a Weyl operator

and an element of the unitary projective representationof the symplectic group, that is,

Û (S, a) = Ŵ (a)V̂ (S),

for some symplectic matrix S : � → � and phase-space vector a ∈ �. From
Eqs. (53) and (55) we infer that a product of such unitaries is

Û (S, a)Û (S′, a′) = eiφÛ (SS′, Sa′ + a). (69)

for some phase factor φ. Recalling Eq. (34), it is clear that the Clifford group of
unitaries Û (S, a) constitutes a projective representation of the symplectic affine
group.

When a Clifford unitary Û (S, a) acts by conjugation, it defines what we will call
a Clifford superoperator U(S, a)(·) ≡ Û (S, a)(·)Û (S, a)†. It follows that

U(S, b)U(S′, b′) = U(SS′, b + Sb′),

and therefore, recalling Eq. (34), these form a nonprojective representation of the
symplectic affine group.

The reversible transformations that are included in quadrature quantum mechan-
ics are precisely those associated with Clifford superoperators. These map every
quadrature state to another quadrature state.

The valid irreversible transformations in the quadrature subtheory are those that
admit of a Stinespring dilation of the following form: the system is coupled to an
ancilla of arbitrary dimension that is prepared in a quadrature state, the system and
ancilla undergo a reversible transformation associated with a Clifford superoperator,
and a partial trace operation is performed on the ancilla.
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3.2.3 The Set of Valid Measurements

Finally, the reproducible measurements included in quadrature quantum subtheories
are simply those associated with a commuting set of quadrature observables. Recall
that these are parametrized by the isotropic subspaces V ⊂ �, and correspond to
PVMs of the form {�̂V (v) : v ∈ V }, as defined in Eq. (65).

The most general measurement allowed is one whose Naimark extension can
be achieved by preparing an ancilla in a quadrature state, coupling to the system
via a Clifford superoperator, and finally measuring a commuting set of quadrature
observables on system+ancilla.

4 Comparing Quantum Subtheories to Epistricted Theories

4.1 Equivalence for Continuous and Odd-Prime Discrete
Cases

The operational equivalence result is proven using the Wigner representation. The
latter is a quasi-probability representation of quantummechanics, whereinHermitian
operators on the Hilbert space are represented by real-valued functions on the cor-
responding classical phase space.

For the case of n continuous degrees of freedom,where theHilbert space isL2(Rn)

and the phase space is R
2n , the Wigner representation is a well-known formulation

of quantum theory, particularly in the field of quantum optics [47, 48]. For the case
of discrete degrees of freedom, there are many proposals for how to define a quasi-
probability representation that is analogous toWigner’s but for a discrete phase space.
We here make use of a proposal due to Gross [6], which is built on (but distinct from)
a proposal by Wootters [49]. For n d-level systems (qudits), where d is a prime, the
phase space is taken to be (Zd)

2n .
We shall attempt to present the proof for the continuous case and for the odd-prime

discrete case in a unified notation. Towards this end, we will provide a definition of
the Wigner representation that is independent of the nature of the phase space. In
the case of � = R

2n and � = (Zd)
2n for d an odd prime, our definition will

reduce, respectively, to the standard Wigner representation and the discrete Wigner
representation proposed by Gross [6]. Marginalizing over the entire phase space �

will be denoted by a sum over � in all of our expressions, which will be taken
to represent a discrete sum in the discrete case and an integral with a phase-space
invariant measure in the continuous case.
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4.1.1 Wigner Representation of Quantum Theory

The Wigner representation of an operator Ô , denoted ŴÔ(m), can be understood as
the components of that operator in a particular basis for the vector space of Hermitian
operators where the inner product is the Hilbert-Schmidt inner product, 〈Ô, Ô ′〉 ≡
tr(Ô Ô ′). The elements of this operator basis are indexed by the elements of the phase
space and termed the phase-space point operators. Denoting this operator basis by
{ Â(m) : m ∈ �}, we have

ŴÔ(m) = Tr[Ô Â(m)] . (70)

The phase-space point operators can be defined as the symplectic Fourier trans-
form of theWeyl operators (which in turn are defined for both continuous and discrete
degrees of freedom in Eq. (52)),

Â(m) ≡ 1

N�

∑
m′∈�

χ(〈m, m′〉)Ŵ (m′). (71)

where N� is a normalization factor chosen to ensure that

Tr[ Â(m)] = 1.

The key property of the phase-space point operators is that they transform covariantly
under symplectic affine transformations,

U(S, a)
[

Â(m)
]

∝ Â(Sm + a), (72)

which can be inferred from Eq. (71) and the manner in which the Weyl operators
transform under the action of the Clifford superoperators, Eq. (56). This in turn
implies that the Wigner representation of an operator also transforms covariantly
under symmplectic affine transformations,

ŴU(S,a)(Ô)(m) = tr
(
U(S, a)(Ô) Â(m)

)

= tr
(

Ô U(S−1,−a)( Â(m))
)

= ŴÔ(S−1m − a). (73)

In both the discrete and continuous cases, we have

1

N�

∑
m∈�

χ(〈m, m′〉) = δ0(m′),
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where δ0(m′) = ∏n
i=1 δ(q′

i )δ(p
′
i ) form′ ≡ (q′

1,p
′
1, . . . ,q

′
n,p

′
n) andwhere δ denotes

the Dirac-delta function in the continuous case and a Kronecker-delta in the discrete
case. It then follows from Eq. (71) that

∑
m∈�

Â(m) =
∑
m′∈�

δ(m′)Ŵ (m′),

= Ŵ (0),

= 11. (74)

Consequently the trace of an arbitrary operator is given by the normalization of the
corresponding Wigner representation on the phase-space,

Tr(Ô) =
∑
m∈�

WÔ(m).

The phase-space point operators are Hermitian, and therefore the Wigner repre-
sentation of any Hermitian operator is real-valued. They are orthogonal,

Tr
(

Â(m) Â(m′)
)

∝ δ(m − m′), (75)

and form a complete basis for the operator space relative to the Hilbert-Schmidt inner
product, that is, for arbitrary Ô ,

∑
m∈�

Â(m)Tr
(

Â(m)Ô
)

= Ô.

It follows from this completeness that for any pair of Hermitian operators Ô
and Ô ′,

Tr
(

Ô Ô ′
)

=
∑
m∈�

WÔ(m)WÔ ′(m) . (76)

The Wigner representation of a quantum state ρ is the function Wρ : � → R

defined by

Wρ(m) = Tr[ρ Â(m)], (77)

where the fact that Tr(ρ) = 1 implies

∑
m∈�

Wρ(m) = 1. (78)

A superoperatorE corresponding to the transformationρ �→ E(ρ) can bemodelled
in the Wigner representation by a conditional quasiprobability function WE(m′|m)
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such that
Wρ(m) �→

∑
m′∈�

WE(m|m′)Wρ(m′).

Specifically, the function WE : � × � → R is defined as

WE(m|m′) = Tr
[

Â(m)E
(

Â(m′)
)]

(79)

If E is trace-preserving, then

∑
m∈�

WE(m|m′) = 1. (80)

A sharp measurement with outcome set K , associated with a projector-valued
measure O ≡ {�̂k : k ∈ K } is represented by a conditional quasi-probability
function WO : K × � → R defined by

WO(k|m) = W�̂k
(m),

= Tr[�̂k Â(m)], (81)

where the fact that
∑

k∈K �̂k = 1̂1implies that

∑
k∈K

WO(k|m) = 1. (82)

Finally, we can infer from Eq. (76) that the probability of obtaining outcome
k in a measurement of {�̂k : k ∈ K } on the state ρ is expressed in the Wigner
representation as

Tr
(
�̂kρ

)
=

∑
m∈�

WO(k|m)Wρ(m). (83)

Similarly, if a transformation associatedwith the completely-positive trace-preserving
map E acts between the preparation and the measurement, then the probability of
obtaining outcome k is expressed in the Wigner representation as

Tr
(
�̂kE(ρ)

)
=

∑
m∈�

WO(k|m)
∑
m′∈�

WE(m|m′)Wρ(m′). (84)

Note that ifWρ(m) is nonnegative, it can be interpreted as a probability distribution
on phase-space. Similarly, if WO(k|m) and WE(m|m′) are nonnegative, then can be
interpreted as conditional probability distributions. In this case, Eqs. (83) and (84) for
the probability of a measurement outcome can be understood as an application of the
law of total probability, in analogy with Eqs. (39) and (40). This sort of interpretation
is indeed possible for the quadrature quantum subtheories and yields precisely the
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operational predictions of the quadrature epistricted theory. To show this, it remains
only to show that the Wigner representation of the preparations, transformations and
measurements of the quadrature subtheory are precisely equal to the epistemic states,
transition probabilities and response functions of the quadrature epistricted theory.

4.1.2 Wigner Representation of the Quadrature Quantum Subtheory

Our proof of equivalence relies on two of the defining features of the Wigner repre-
sentation. First, the fact that the Wigner representation transforms covariantly under
the symplectic affine transformations, Second, the fact that theWigner representation
of the projectors defining the position and momentum observables are the response
functions associated to the position andmomentum functionals in the classical theory,
that is,

W�̂qi (qi )
(m) = δ(qi (m) − qi ),

W�̂p j (p j )
(m) = δ(p j (m) − p j ). (85)

It follows from these facts that the Wigner representation of the projectors in the
quadrature observable O f are equal to the response functions associated with the
corresponding quadrature functional f in the classical theory,

W�̂ f (f)(m) = W�̂S f q1 (f)(m),

= WV(S f )(�̂q1 (f))(m),

= W�̂q1 (f)(S−1
f m),

= δ(q1(S−1
f m) − f),

= δ((S f q1)(m) − f),

= δ( f (m) − f)

= δ(fT m − f). (86)

As noted previously, the sharp measurements that are included in the quadra-
ture quantum subtheory are those associated to a set of commuting quadrature
observables, {O f (i)} which in turn is associated with a PVM OV ′ ≡ {�V ′,v′ :
v′ ∈ V ′} where V ′ = span{f (i)}. Given that �̂V (v) ≡ ∏

{f (i):span(f (i))=V } �̂ f (i)

(
f (i)T v

)
(Eq. (92)), and using Eq. (86), we conclude that

W�̂V ′ (v′)(m) =
∏

{f (i):span(f (i))=V }
δ(f (i)T m − f (i)T v). (87)

Recalling Eq. (38), we see that the Wigner representation of the projector valued
measure associated with (V ′, v′) is the set of response functions associated with
(V ′, v′) in the quadrature epistricted theory, that is,
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WOV ′ (v′|m) = ξV ′(v′|m).

The Wigner representation of the quadrature state associated with (V, v) is

WρV,v(m) = Tr
(
ρV,v Â(m)

)

= 1

NV

∏
f (i):span{f (i)}=V

δ(f (i)T m − f (i)T v) (88)

where we have used Eqs. (66) and (87). Recalling Eqs. (30) and (31), we conclude
that the Wigner representation of the quadrature state associated with (V, v) is the
epistemic state associated with (V, v) in the quadrature epistricted theory, that is,

WρV,v(m) = μV,v(m).

The Wigner representation of the Clifford superoperator U(S, a) is

WU(S,a)(m|m′) = Tr
[

Â(m)U(S, a)
(

Â(m′)
)]

= Tr
[

Â(m) Â(Sm′ + a)
]

= δ(m − (Sm′ + a)). (89)

Here, the first equality follows from the form of the Wigner representation of super-
operators, Eq. (79). The second equality follows from the fact that the phase-space
point operators transform covariantly under the action of the Clifford superopera-
tors, Eq. (72). The third equality in Eq. (90) follows from the orthogonality of the
phase-space point operators, Eq. (75).

RecallingEq. (37),we see that this is precisely the transition probability associated
with the symplectic affine transformation, �S,a(m|m′), in the quadrature epistricted
theory,

WU(S,a)(m|m′) = �S,a(m|m′). (90)

This concludes the proof of equivalence.

4.2 Inequivalence for Bits/Qubits

In the case where d = 2, the only even prime, the situation is more complicated. We
have shown that in both the quadrature epistricted theory of bits and in the quadrature
subtheory of qubits, we have: (i) the set of possible operational states is isomorphic to
the set of pairs (V, v)whereV is an isotropic subspace of the phase-space� = (Z2)

2n

and v ∈ V ; (ii) the set of possible sharp measurements is isomorphic to the set
of isotropic subspaces V ′ (with the different outcomes associated to the elements
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v′ ∈ V ′); (iii) the set of possible reversible transformations is isomorphic to the
elements (S, a) of the symplectic affine group acting on � = (Z2)

2n . It follows
that the operational states, measurements and transformations of one theory are
respectively isomorphic to those of the other. The valid unsharp measurements and
irreversible transformations are defined in terms of the sharp and reversible ones
respectively, and they are defined in the same way in the quadrature epistricted
theory and the quadrature quantum subtheory. It follows thatwe also have the unsharp
measurements and irreversible transformations of one theory isomorphic to those of
the other.

Despite this strong structural similiarly, the two theories nonetheless make differ-
ent predictions. The particular algorithm that takes as input a triple of preparation,
measurement and transformation and yields as output a probability distribution over
measurement outcomes, is not equivalent in the two theories. More precisely,

Tr
(
�̂V ′(v′)US,a(ρV,v)

)
�=

∑
m∈�

ξV ′(v′|m)
∑
m′∈�

�S,a(m|m′)μV,v(m′).

Gross’s Wigner representation for discrete systems only works for systems of
dimension d for d a power of an odd prime. It therefore does not work for d = 2.
Nonetheless, aWigner representation can be constructed for the quadrature subtheory
of qubits. One can define it in terms of tensor products of the phase-space point
operators for a single qubit as proposed by Gibbons, Hoffman and Wootters [49]. In
this representation, we have

Tr
(
�̂V ′(v′) U(S, a)

(
ρV,v

)) =
∑
m∈�

WOV ′ (v′|m)
∑
m′∈�

WU(S,a)(m|m′)WρV,v(m
′).

So why can’t we identify the Wigner representations with the corresponding
objects in the epistricted theory, just as we did for d an odd prime and in the contin-
uous case? The problem is that in the qubit case, the Wigner functions representing
quadrature states sometimes go negative. It follows that these cannot be interpreted as
probability distributions over the phase space. Similarly, the Wigner representations
of quadrature observables and Clifford superoperators also sometimes go negative
and hence cannot always be interpreted as conditional probability distributions.

It is also straightforward to prove that no alternative definition of the Wigner
representation can achieve positivity. First, we make use of a fact shown in Ref. [50],
that if a set of preparations and measurements supports a proof of contextuality in
the sense of Ref. [25], then all quasiprobability representations must necessarily
involve negativity. It then suffices to note that the quadrature subtheory is contextual.
There are many ways of seeing this. For instance, Mermin’s magic square proof of
contextuality using two qubits [51] uses only the resources of the stabilizer theory
of qubits. The same is true of the Greenberger-Horne-Zeilinger proof of nonlocality
using three qubits [52], which is also a proof of contextuality.

The quadrature subtheory of qubits simply makes different operational predic-
tions than the quadrature epistricted theory of bits. It admits of contextuality and
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nonlocality proofs while the quadrature epistricted theory is local and noncontextual
by construction.6

By contrast, the quadrature subtheory of odd-prime qudits and the quadrature
subtheory of mechanics make precisely the same predictions as the corresponding
epistricted theories. They are consequently devoid of any contextuality or nonlocality
because they admit of hidden variablemodels that are both local and noncontextual—
the quadrature epistricted theory is the hidden variable model. Other differences
between the two theories are discussed in Ref. [1].

The conceptual significance of the difference between the quadrature subthe-
ory of qubits and the epistricted theory of bits remains a puzzle, despite various
formalizations of the difference [4, 38]. This puzzle is perhaps the most interesting
product of these investigations.

It shows in particular thatwhatever conceptual innovation over the classicalworld-
view is required to achieve the phenomenology of contextuality and nonlocality, it
must be possible to make sense of this innovation even in the thin air of the quadra-
ture subtheory of qubits. This is an advantage because the latter theory uses a more
meager palette of concepts than full quantum theory. For instance, we can conclude
that it must be possible to describe the innovation of quantum over classical in terms
of possibilistic inferences rather than probabilistic inferences.

Acknowledgments I acknowledge Stephen Bartlett and Terry Rudolph for discussions on the
quadrature subtheory of quantum mechanics, Jonathan Barrett for suggesting to define the Poisson
bracket in the discrete case in terms of finite differences, and Giulio Chiribella, Joel Wallman and
Blake Stacey for comments on a draft of this article. Much of the work presented here summarizes
unpublished results obtained in collaboration with Olaf Schreiber. Research at Perimeter Institute
is supported by the Government of Canada through Industry Canada and by the Province of Ontario
through the Ministry of Research and Innovation.

Appendix A: Quadrature Quantum Subtheories
and the Stabilizer Formalism

In quantum information theory, there has been a great deal of work on a particular
quantum subtheory for discrete systems of prime dimension (qubits and qutrits in
particular) which is known as the stabilizer formalism [6, 53].

A stabilizer state is defined as a joint eigenstate of a set of commuting Weyl
operators. By Eq. (53), twoWeyl operators commute if and only if the corresponding
phase-space displacement vectors have vanishing symplectic inner product,

[Ŵ (a), Ŵ (a′)] = 0 if and only if 〈a, a′〉 = 0.

6It seems that the quadrature epistricted theory of bits is about as close as one can get to the stabilizer
theory for qubits while still being local and noncontextual.
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Consequently, the sets of commuting Weyl operators, and therefore the stabilizer
states, are parametrized by the isotropic subspaces of �. Specifically, for each
isotropic subspace M of � and each vector v ∈ JM ≡ {Ju : u ∈ M}, we can define
a stabilizer state ρ(stab)

M,v as the projector onto the joint eigenspace of {Ŵ (a) : a ∈ M}
where Ŵ (a) has eigenvalue χ(〈v, a〉).

We will show here that the set of stabilizer states is precisely equivalent to the set
of quadrature states.

To describe the connection, it is convenient to introduce some additional notions
from symplectic geometry. The symplectic complement of a subspace V , which we
will denote as V C , is the set of vectors that have vanishing symplectic inner product
with every vector in V ,

V C ≡ {m′ ∈ � : m′T Jm = 0, ∀m ∈ V },

where J is the symplectic form, defined in Eq. (15). This is not equivalent to the
Euclidean complement of a subspaceV , which is the set of vectors that have vanishing
Euclidean inner product with every vector in V ,

V ⊥ ≡ {m′ ∈ � : m′T m = 0, ∀m ∈ V },

The composition of the two complements will be relevant in what follows. It turns
out that the latter is related to V by an isomorphism; it is simply the image of V
under left-multiplication by the symplectic form J ,

(V ⊥)C ≡ JV = {Ju : u ∈ V }.

Note that if V is isotropic, then (V ⊥)C is as well.

Proposition 1 Consider the quadrature state ρV,v, with V an isotropic subspace of
� and v ∈ V a valuation vector, which is the joint eigenstate of the commuting set of
quadrature observables {O f : f ∈ V }, where the eigenvalue of O f is f (v). This is
equivalent to the stabilizer state ρ(stab)

M,v , which is the joint eigenstate of the commuting

set of Weyl operators {Ŵ (a) : a ∈ M} where M ≡ (V ⊥)C is the isotropic subspace
that is the symplectic complement of the Euclidean complement of V , and where the
eigenvalue of Ŵ (a) is χ(〈v, a〉).
Proof Consider first a single degree of freedom. Every quadrature observableO f can
be expressed in terms of the position observableOq as follows: if S f is the symplectic
matrix such that f = S f q, then O f = V̂ (S f )Oq V̂ (S f )

†. Now note that the position
basis can equally well be characterized as the eigenstates of the boost operators.
Specifically, B̂(p)|q〉q = χ(qp)|q〉q , that is, an element |q〉q of the position basis is
an eigenstate of the set of operators {B̂(p) : p ∈ R/Zd}where the eigenvalue of B̂(p)

is χ(qp). The element |f〉 f of the basis associated to the quadrature operator O f is
defined as |f〉 f ≡ V̂ (S f )|f〉q and consequently can be characterized as an eigenstate
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of the set of operators {V̂ (S f )B̂(g)V̂ (S f )
† : g ∈ R/Zd} where the eigenvalue of

V̂ (S f )B̂(g)V̂ (S f )
† is χ(fg). This can be stated equivalently as follows: the element

|f〉 f of the basis associated to the quadrature operator O f is the eigenstate of the
set of Weyl operators {Ŵ (a) : a ∈ span(S f p)} where the eigenvalue of Ŵ (a) is
χ(f〈f, a〉). Noting that

span(S f p) = span(S f Jq),

= span(JS f q),

= span(J f), (91)

we can just as well characterize �̂ f (f) as the projector onto the joint eigenspace of
the Weyl operators {Ŵ (a) : a ∈ span(J f)}.

Now consider n degrees of freedom. The quadrature state associated with (V, v)

has the form

ρV,v = 1

N
∏

f (i):span(f (i))=V

�̂ f (i)

(
f (i)(v)

)
. (92)

By an argument similar to that used for a single degree of freedom, this is an eigen-
state of the Weyl operators {Ŵ (a) : a ∈ span(J f (i))} where the eigenvalue of
Ŵ (a) is χ(〈v, a〉). Noting that span(J f (i)) = JV = (V ⊥)C , we have our desired
isomorphism. �

The stabilizer formalism allows all and only the Clifford superoperators as
reversible transformations. The sharpmeasurements that are included in the stabilizer
formalism are the ones associated with PVMs corresponding to the joint eigenspaces
of a set of commuting Weyl operators, which, by Proposition1, are precisely those
corresponding to the joint eigenspaces of a set of commuting quadrature observ-
ables. It follows that the stabilizer formalism coincides precisely with the quadrature
subtheory.

Gross has argued that the discrete analogue of the Gaussian quantum subtheory
for continuous variable systems is the stabilizer formalism [6]. Our results show that
the connection between the discrete and continuous variable cases is a bit more subtle
than this. In the continuous variable case, there is a distinction between the Gaussian
subtheory and the quadrature subtheory, with the latter being contained within the
former. In the discrete case, there is no distinction, so the stabilizer formalism can
be usefully viewed as either the discrete analogue of the Gaussian subtheory or as
the discrete analogue of the quadrature subtheory. While Gross’s work showed that
the stabilizer formalism for discrete systems could be defined similarly to how one
defines Gaussian quantummechanics, our work has shown that it can also be defined
in the same way that one defines quadrature quantum mechanics.

To our knowledge, quadrature quantum mechanics has not previously received
much attention. However, given that it is a natural continuous variable analogue of
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the stabilizer formalism for discrete systems, it may provide an interesting paradigm
for exploring quantum information processing with continuous variable systems.

References

1. R.W. Spekkens, Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A
75(3), 032110 (2007)

2. S.D. Bartlett, T. Rudolph, R.W. Spekkens, Reconstruction of Gaussian quantum mechanics
from Liouville mechanics with an epistemic restriction. Phys. Rev. A 86(1), 012103 (2012)

3. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference
and Diffraction of Light (Cambridge University Press, Cambridge, 1999)

4. M.F. Pusey, Stabilizer notation for Spekkens’ toy theory. Found. Phys. 42(5), 688–708 (2012)
5. S.J. Van Enk, A toy model for quantum mechanics. Found. Phys. 37(10), 1447–1460 (2007)
6. D.Gross, Hudson’s theorem for finite-dimensional quantum systems. J.Math. Phys. 47, 122107

(2006)
7. O. Schreiber, R.W. Spekkens, The power of epistemic restrictions in reconstructing quantum

theory: from trits to qutrits, unpublished, 2008. R.W. Spekkens, The power of epistemic restric-
tions in reconstructing quantum theory, Talk, Perimeter Institute, http://pirsa.org/09080009/,
10 August 2008

8. T.H. Boyer, Foundations of Radiation Theory and Quantum Electrodynamics, Chapter A Brief
Survey of Stochastic Electrodynamics (Plenum, New York, 1980)

9. C.M. Caves, C.A. Fuchs, Quantum information: how much Information in a state vector?
(1996). arXiv:quant-ph/9601025

10. J.V. Emerson, Quantum chaos and quantum-classical correspondence. Ph.D. thesis, Simon
Fraser University, Vancouver, Canada (2001)

11. L. Hardy, Disentangling nonlocality and teleportation (1999). arXiv:quant-ph/9906123
12. K.A. Kirkpatrick, Quantal behavior in classical probability. Found. Phys. Lett. 16(3), 199–224

(2003)
13. W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299(5886), 802–803

(1982)
14. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev.
Lett. 70(13), 1895 (1993)

15. C.H. Bennett, G. Brassard et al., Quantum cryptography: public key distribution and coin
tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal
Processing, vol. 175, (New York 1984)

16. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod.
Phys. 81(2), 865 (2009)

17. C.H. Bennett, D.P. DiVincenzo, C.A. Fuchs, T. Mor, E. Rains, P.W. Shor, J.A. Smolin, W.K.
Wootters, Quantum nonlocality without entanglement. Phys. Rev. A 59(2), 1070 (1999)

18. C.H. Bennett, D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, B.M. Terhal, Unextendible
product bases and bound entanglement. Phys. Rev. Lett. 82(26), 5385 (1999)

19. M.D. Choi, Completely positive linear maps on complex matrices. Linear Algebra Appl. 10,
285–290 (1975)

20. A. Jamiołkowski, Linear transformations which preserve trace and positive semidefiniteness
of operators. Rep. Math. Phys. 3, 275–278 (1972)

21. M.A. Naimark. Izv. Akad. Nauk SSSR, Ser. Mat. 4:277–318 (1940)
22. W.F. Stinespring, Positive functions on C*-algebras. Proc. Am. Math. Soc. 6(2), 211–216

(1955)
23. J.S. Bell, On the Einstein Podolsky Rosen paradox. Physics 1(3), 195–200 (1964)

http://pirsa.org/09080009/
http://arxiv.org/abs/quant-ph/9601025
http://arxiv.org/abs/quant-ph/9906123


134 R.W. Spekkens

24. S. Kochen, E.P. Specker, The problem of hidden variables in quantum mechanics. J. Math.
Mech. 17, 59 (1967)

25. R.W. Spekkens, Contextuality for preparations, transformations, and unsharp measurements.
Phys. Rev. A 71(5), 052108 (2005)

26. Y.C. Liang, R.W. Spekkens, H.M. Wiseman, Specker’s parable of the overprotective seer: a
road to contextuality, nonlocality and complementarity. Phys. Rep. 506(1), 1–39 (2011)

27. N. Harrigan, R.W. Spekkens, Einstein, incompleteness, and the epistemic view of quantum
states. Found. Phys. 40, 125 (2010)

28. C.M. Caves, C.A. Fuchs, R. Schack, Quantum probabilities as Bayesian probabilities. Phys.
Rev. A 65(2), 022305 (2002)

29. C.A. Fuchs, Quantum mechanics as quantum information, mostly. J. Mod. Opt. 50(6–7), 987–
1023 (2003)

30. C.A. Fuchs, R. Schack, Quantum-Bayesian coherence. Rev. Mod. Phys. 85(4), 1693 (2013)
31. M.F. Pusey, J. Barrett, T. Rudolph, On the reality of the quantum state. Nat. Phys. 8(6), 475–478

(2012)
32. P.G. Lewis, D. Jennings, J. Barrett, T. Rudolph, Distinct quantum states can be compatible with

a single state of reality. Phys. Rev. Lett. 109(15), 150404 (2012)
33. R. Colbeck, R. Renner, Is a system’s wave function in one-to-one correspondence with its

elements of reality? Phys. Rev. Lett. 108(15), 150402 (2012)
34. M.S. Leifer, R.W. Spekkens, Towards a formulation of quantum theory as a causally neutral

theory of Bayesian inference. Phys. Rev. A 88(5), 052130 (2013)
35. C.J.Wood,R.W. Spekkens, The lesson of causal discovery algorithms for quantumcorrelations:

causal explanations of bell-inequality violations require fine-tuning (2012). arXiv:1208.4119
36. A. Zeilinger, A foundational principle for quantum mechanics. Found. Phys. 29(4), 631–643

(1999)
37. T. Paterek, B. Dakić, Č. Brukner, Theories of systems with limited information content. New

J. Phys. 12(5), 053037 (2010)
38. B. Coecke, B. Edwards, R.W. Spekkens, Phase groups and the origin of non-locality for qubits.

Electron. Notes Theor. Comput. Sci. 270(2), 15–36 (2011)
39. S.Mansfield,T. Fritz,Hardy’s non-locality paradox andpossibilistic conditions for non-locality.

Found. Phys. 42(5), 709–719 (2012)
40. S. Abramsky, L. Hardy, Logical bell inequalities. Phys. Rev. A 85(6), 062114 (2012)
41. B. Schumacher, M.D. Westmoreland, Modal quantum theory. Found. Phys. 42(7), 918–925

(2012)
42. J. Barrett, Information processing in generalized probabilistic theories. Phys. Rev. A 75(3),

032304 (2007)
43. L. Hardy, Quantum theory from five reasonable axioms (2001). arXiv:quant-ph/0101012
44. B. Coecke, E.O. Paquette, Categories for the practising physicist, inNew Structures for Physics.

Lecture Notes in Physics, ed. by B. Coecke (Springer, Berlin, 2009), pp. 173–286
45. B. Coecke, B. Edwards, Toy quantum categories. Electron. Notes Theor. Comput. Sci. 270(1),

29–40 (2011)
46. G. Chiribella, G.M. DAriano, P. Perinotti, Probabilistic theories with purification. Phys. Rev.

A 81(6), 062348 (2010)
47. E. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40(5), 749

(1932)
48. C. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quan-

tum Stochastic Methods with Applications to Quantum Optics, vol. 56 (Springer, New York,
2004)

49. K.S. Gibbons, M.J. Hoffman, W.K.Wootters, Discrete phase space based on finite fields. Phys.
Rev. A 70(6), 062101 (2004)

50. R.W. Spekkens, Negativity and contextuality are equivalent notions of nonclassicality. Phys.
Rev. Lett. 101(2), 20401 (2008)

51. N.D. Mermin, Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65(3),
803 (1993)

http://arxiv.org/abs/1208.4119
http://arxiv.org/abs/quant-ph/0101012


Quasi-Quantization: Classical Statistical Theories with an Epistemic Restriction 135

52. D.M. Greenberger, M.A. Horne, A. Zeilinger, Going beyond Bell’s theorem, Bell’s Theorem,
Quantum Theory and Conceptions of the Universe (Springer, New York, 1989), pp. 69–72

53. D. Gottesman, The Heisenberg representation of quantum computers (1998).
arXiv:quant-ph/9807006

http://arxiv.org/abs/quant-ph/9807006


Part II
Axiomatizations



Information-Theoretic Postulates
for Quantum Theory

Markus P. Müller and Lluís Masanes

1 Introduction

By all standards, quantum theory is one of the most successful theories of physics.
It provides the basis of particle physics, chemistry, solid state physics, and it is of
paramount importance for many technological achievements. So far, all experiments
have confirmed its universal validity in all parts of our physical world. Unfortunately,
quantum theory is also one of the most mysterious theories of physics.

In the text books, quantum theory is usually introduced by stating several abstract
mathematical postulates: States are unit vectors in a complex Hilbert space; probabil-
ities are given by the Born rule; the Schrödinger equation describes time evolution
in closed systems, to name just some of them. As many students recognize—and
experienced researchers over the years sometimes tend to forget—these postulates
seem arbitrary and do not have a clear meaning. It is true that they work very well and
are in accordance with experiments, but why are they true? Why is nature described
by these counterintuitive laws of complex Hilbert spaces?

What at first sight seems to be a physically vacuous, philosophical question is in
fact of high relevance to theoretical physics, in particular for attempts to generalize
quantum theory. There have been several attempts in the past to construct natural
modifications of quantum theory—either to set up experimental tests of quantum
physics, or to adapt it in a way which allows for easier unification with general
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relativity. However, modification of quantum theory turned out to be a surprisingly
difficult task.

A historical example is given by Weinberg’s [1] non-linear modification of quan-
tum theory. Only a few months after his proposal was published, Gisin [2] demon-
strated that the resulting theory has an unexpected poisonous property: it allows
for superluminal signalling. It can be shown in general that other proposals of this
kind must face a similar fate [3]. It seems as if the usual postulates of quantum
theory are intricately intertwined, in a way such that modification of one postulate
makes the combination of the others collapse into a physically meaningless–or at
least problematic–theory.

One possible way to overcome this difficulty is to find alternative postulates for
quantum theory that have a clear physical interpretation and do not refer to themathe-
matical structure of complexHilbert spaces. The search for simple operational axioms
dates back to Birkhoff and vonNeumann [4], and includes work byMackey [5], Lud-
wig [6], Alfsen and Shultz [7] and many others. The advent of quantum information
theory initiated new ideas and methods to approach this problem, resulting in the
pioneering work by Hardy [8], and a recent wave of axiomatizations of quantum
theory, including Dakić and Brukner’s work [9], our result [10], the reconstruction
by the Pavia group [11], alternative formulations by Hardy [12, 13] and Zaopo [14].

In this paper, we give a self-contained summary of our results in [10], where
we derive the formalism of quantum theory from four natural information-theoretic
postulates. They can loosely be stated as follows:

1. The state of a composite system is characterized by the statistics of measurements
on the individual components.

2. All systems that effectively carry the same amount of information have equivalent
state spaces.

3. Every pure state of a system can be transformed into every other by continuous
reversible time evolution.

4. In systems that carry one bit of information, all measurements which give non-
negative probabilities are allowed by the theory.

Below,we showhow to derive the usual formalism of quantum theory from these pos-
tulates. Surprisingly, the complex numbers and Hilbert spaces pop out even though
they are not mentioned in the postulates. This is true for all the axiomatization
approaches mentioned above, starting with Hardy’s work [8]: these results allow us
to gain a better understanding of the usual quantum formalism, and resolve some of
the mystery around ad hoc postulates like the Born rule.

Every axiomatization has its own benefits.We think that themain advantage of our
work [10]—as described in this paper—is its parsimony: our postulates are close to a
minimal set of postulates for quantum theory. Accomplishing the goal of minimality
would mean to have a set of axioms such that dropping or weakening any one of
the axioms will always yield new solutions in addition to quantum theory. Currently,
we do not know if we have actually achieved this goal, though we think that we are
pretty close to it (this will be discussed in more detail in Sect. 6). Our attempt to have
as few assumptions as possible is also reflected in the background assumptions: for
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example, we do not assume apriori that the composition of three systems into a joint
system is associative, or that pairs of generalized bits admit an analogue of a “swap”
operation.

Our result suggests an obvious method to obtain natural modifications of quantum
theory: drop or weaken one of the postulates, and work out mathematically what the
resulting set of theories looks like. It is clear that minimality of the axioms (in the
sense just described) is crucial for this method. In contrast to the usual formulation of
quantum theory, we know for sure that the corresponding alternative “post-quantum”
theories are consistent and do not allow for superluminal signalling as in Weinberg’s
approach. This is due to the fact that the no-signalling principle is built in as a
background assumption. In a way, those theories will be “quantum theory’s closest
cousins”: they are not formulated in terms of Hilbert spaces, but share as many
characteristic features with quantum theory as possible.

As the simplest possible modification, suppose we drop the word “continuous”
from Postulate 3—that is, we allow for discrete reversible time evolution. Then
another solution in addition to quantum theory appears: in this theory, states are
probability distributions, and reversible time evolution is given by permutations of
outcomes. This is exactly classical probability theory on discrete sample spaces. It
turns out to be the unique additional solution in this case.

2 What Do We Mean by “Quantum Theory”?

When talking about axiomatizing quantum theory, there is sometimes confusion
about what we actually mean by it. The term “quantum theory” arouses association
with many different aspects of physics that are usually treated in quantummechanics
text books, such as particles, the hydrogen atom, three-dimensional position and
momentum space and many more.

However, a more careful definition should apply here. As an analogy, consider the
theory of statistical mechanics. This theory consists of an application of probability
theory to mechanics, which means in particular that abstract probability theory can
be studied detached from statistical physics—and this has been done in mathematics
for a long time.

Similarly, we can consider quantummechanics to be a combination of an abstract
probabilistic theory—quantum theory—and classical mechanics. Abstract quantum
theory can be studied detached from its mechanical realization; the main difference
to the previous example lies in the historical fact that the development of quan-
tum mechanics preceded that of abstract quantum theory. In this terminology, we
understand by “quantum theory” the statement that

• states are vectors (resp. density matrices) in a complex Hilbert space,
• probabilities are computed by the Born rule resp. trace rule,
• the possible reversible transformations are the unitaries,
• measurements are described by projection operators, and thus observables are
given by self-adjoint matrices.



142 M.P. Müller and L. Masanes

The “classical mechanics” part, on the other hand, determines the type of Hilbert
space to consider (such as L2(R3)), the choice of “Hamiltonians” H which generate
the time evolution,U (t) = exp(i Ht), and the choice of initial states of that time evo-
lution. This conceptual distinction has proven particularly useful in the development
of quantum information theory. It seems that this distinction was always implicit
when expressing the desire to “quantize” any classical physical theory, that is, to
combine it with abstract quantum theory.

Thus, since we are aiming for a reconstruction of abstract quantum theory, we
will not refer to position, momentum, or Hamiltonians in this paper. Instead, we
only use the notions of abstract probability theory: of events, happening with certain
probabilities, and of transformations modifying the probabilities. Furthermore, we
restrict our analysis to finite-dimensional systems: we argue that the main mystery is
why to have a complex Hilbert space at all. If this is understood in finite dimensions,
it seems only a small conceptual (though possibly mathematically challenging) step
to guess the correct infinite-dimensional generalizations.

Since we presuppose probabilities as given, we also do not address the ques-
tion where these probabilities come from. Hence we also ignore the question about
what happens in a quantum measurement, and all other interpretational mysteries
encompassing the formulation of quantum theory. Instead, we restrict ourselves to
ask how the mathematical formalism of quantum theory can be derived from simpler
postulates, and what possible modifications of it we might hope to find in nature.

Questions that we would like to address:

• Howcanwe understand (that is, derive) the complexHilbert space formalism
from simple operational assumptions on probabilities?

• What other probabilistic theories are operationally closest to quantum
theory?

Questions/problems that we do not address:

• How should we interpret “probability”, and where does it come from?
• The measurement problem.
• Interpretation of quantum mechanics.

In order to formulate our postulates, weworkwith a simple and general framework
encompassing all conceivable ways to formulate physical theories of probability: this
is the framework of generalized probabilistic theories.

3 Generalized Probabilistic Theories

Classical probability theory (abbreviated CPT henceforth) is used to describe
processes which are not deterministic. This is achieved by assuming a particu-
lar mathematical structure: a probability space with a unique fixed probability
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ω

release button

physical system

T

outcomes x and x̄

x

Fig. 1 General experimental set up. From left to right there are the preparation, transformation
and measurement devices. As soon as the release button is pressed, the preparation device outputs
a physical system in the state specified by the knobs. The next device performs the transformation
specified by its knobs (which in particular can be “do nothing”). The device on the right performs
the measurement specified by its knobs, and the outcome (x or x̄) is indicated by the corresponding
light

measure, which is used to assign probabilities to all randomvariables. The framework
of generalized probabilistic theories [4, 5, 8, 15–18] generalizes this approach in a
simple way. We will now give a brief introduction to this framework, built on gen-
eral considerations of what constitutes an experiment in physics. For more detailed
introductions, we refer the reader to [16, 17], and for nice presentations of the main
ideas to [21, 22].

In order to set up a common picture, we consider Fig. 1 as the model for what
constitutes a physical experiment. This is just an illustration: the events that we
describemay aswell be natural processes that happenwithout humanor technological
intervention.

The main idea (cf. Fig. 1) is that physical systems can cause objective events
which we call “measurement outcomes”—for example clicks of detectors. We say
that two systems are in the same state ω if all outcome probabilities of all possible
measurements are the same. In order to test this empirically, we always assume that
we can prepare a physical system in a given state as often as wewant. That is, wemay
think of a preparation device which produces a physical system in a particular state.

3.1 States and Measurements

Single outcomes of measurements are called effects, and are denoted by uppercase
letters such as E . The probability of obtaining outcome E , ifmeasured on stateω, will
be denoted E(ω). Thisway, effects becomemaps from states to probabilities in [0, 1].

What can we say about the set of all possible states ω in which a given system can
be prepared? Suppose we have two preparation devices; one of them prepares the
system in some state ω, the other one prepares it in some state ϕ. Then we can use
these devices to construct a new device, which tosses a coin, and then prepares either
state ω with probability p ∈ [0, 1], or state ϕ with probability 1− p. We denote this
new state by
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ω′ := pω + (1 − p)ϕ.

Clearly, if we apply a measurement on ω′, we get outcome E with probability

E(ω′) = pE(ω) + (1 − p)E(ϕ).

Thus, by this construction, we see that states ω become elements of an affine space,
and effects E are affine maps. The set of all possible states—called the state space
S— will be a subset of this affine space. We have just seen that ω ∈ S and ϕ ∈ S
imply pω + (1− p)ϕ ∈ S if 0 ≤ p ≤ 1; that is, state spaces are convex sets (similar
reasoning is given in [8, 17, 19]).

In principle, state spaces can be infinite-dimensional (and in fact, inmany physical
situations, they are). However, in this paper, we will only consider finite-dimensional
state spaces. Then, states ω are determined by finitely many coordinates, and wemay
use this to construct amore concrete representation of states. Denote the dimension of
a state spaceS by d. Then, by choosing d affinely independent effects E1, . . . , Ed , the
probabilities E1(ω), . . . , Ed(ω)determineω uniquely.Wenowuse the representation

ω =

⎡
⎢⎢⎢⎢⎢⎣

1
E1(ω)
E2(ω)

...

Ed(ω)

⎤
⎥⎥⎥⎥⎥⎦

=:

⎡
⎢⎢⎢⎢⎢⎣

1
ω1

ω2
...

ωd

⎤
⎥⎥⎥⎥⎥⎦

∈ S ⊂ R
d+1. (1)

The choice of E1, . . . , Ed is arbitrary, subject only to the restriction that they are
affinely independent. We call a set of effects with this property fiducial, and we refer
to E1(ω), . . . , Ed(ω) as fiducial outcome probabilities [8]. The component ω0 := 1
has been introduced for calculational convenience: it allows us to write the affine
effects E as linear functionals on the larger space R

d+1. It will also turn out to be
particularly useful in calculations involving composite state spaces.

In the following, we will assume that state spaces S are topologically closed and
bounded, i.e. compact (for a physical motivation see [10]). The extremal points of
the convex set S will be called pure states; these are states ω which cannot be written
as mixtures pϕ + (1− p)ϕ′ of other states ϕ �= ϕ′ with 0 < p < 1. It follows from
the compactness of S that every state can be written as a convex combination of at
most d + 1 pure states [20].

Measurements with n outcomes are described by a collection of n effects
E1, E2, . . . , En with the property E1(ω) + E2(ω) + . . . + En(ω) = 1 for all states
ω. This expresses the fact that outcome i happens with probability Ei (ω), and the
total probability is one. Note that two effects E and F can only be part of the same
measurement if E(ω) + F(ω) ≤ 1 for all states ω. Sets of fiducial effects (as intro-
duced above) do not necessarily have this property. A single effect E is always part
of a measurement with two outcomes E and Ē , where Ē(ω) := 1 − E(ω).
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Fig. 2 Examples of convex
state spaces: a is a classical
bit, b and c are classical
3- and 4-level systems, d is a
quantum bit, e is the
projection of a qubit, f and
g are neither classical nor
quantum. Note that quantum
n-level systems for n ≥ 3 are
not balls

(a) (b) (c)

(d) (e) (f) (g)

Figure2 gives some examples of convex state spaces. First, consider a classical
bit, which is described within CPT. We can think of a coin which shows either heads
or tails; in general, it can be in one of those configurations with some probability.
The probability p of showing heads determines the state uniquely, since the tails
probability must be 1− p. Thus, p ∈ [0, 1] is a fiducial probability; recalling (1), we
can represent states as ω = [1, p]T. This yields a one-dimensional state space, with
two pure states [1, 0]T and [1, 1]T, corresponding to coins which deterministically
show heads or tails. It is depicted in Fig. 2a.

Similarly, classical n-level systems have states which correspond to probability
distributions p1, . . . , pn . Since pn = 1− (p1 + · · · + pn−1), the numbers p1, . . . ,

pn−1 are fiducial outcome probabilities, yielding states ω = [1, p1, . . . , pn−1]T.
Geometrically, the resulting state spaces are simplices. They are depicted in Fig. 2b,
c for n = 2 and n = 3.

Quantum systems look very different: as it is well-known, states of quantum 2-
level systems, i.e. qubits, can be parametrized by a vector �r ∈ R

3 with |�r | ≤ 1, such
that every density matrix can be written ρ = (1 + �r · �σ)/2, with �σ = (σx ,σy,σz) the
Pauli matrices. Thus, we can use the vector [1, r ′

x , r ′
y, r ′

z]T to represent states, where
r ′

i := (1 + ri )/2 is the probability to measure “spin up” in i-direction. This state
space is the famous (slightly reparametrized) Bloch ball, cf. Fig. 2d.

Figure2e shows a state spacewhich is a projection of theBloch ball: it corresponds
to the effective state space that we obtain if, for some reason, spin measurements in
z-direction are physically impossible to implement, with states ω = [1, r ′

x , r ′
y]T. The

square state space in Fig. 2f describes a system for which there exist two independent
effects, say X and Y , that can yield probabilities X (ω) and Y (ω) in [0, 1] arbitrarily
and independently from each other. States will be of the form ω = [1,ωx ,ωy]T, with
ωx = X (ω) and ωy = Y (ω).

Consider the two yes-no-measurements which correspond to the effects X and
Y ; we can interpret these as spin measurements in two orthogonal directions, with
“yes”-outcome X or Y for “spin up”, and “no”-outcome X̄ or Ȳ for “spin down”. If
we perform either one of these measurements on the state ω = (1, 1, 1), then we will
get the “yes”-outcome with unit probability – and this is true for both measurements.
If we consider the analogous measurements on the circle state space, we see that the
corresponding behavior becomes impossible: if one of the spin measurements yields
outcome “yes” with certainty, then the other spin measurement must give outcome
“yes” with probability 1/2. This follows from r2x + r2y ≤ 1.
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Thus, the circle state space shows a form of complementarity, which is not present
in the square state space. As this example illustrates, the state space of a physical
system determines many of its information-theoretic properties. Given a description
of the state space S, we can also determine the set of all linear functionals which map
states to the unit interval [0, 1], that is, the candidates for possible effects. However,
not all of them may be possible to implement in physics: maybe some of them are
“forbidden”, similarly as superselection rules forbid some superpositions in quantum
mechanics. Therefore, to every given state spaceSA, there is a set of “allowed effects”
which are interpreted as those that can actually be physically performed.

We introduce some notions which will be useful later: A set of states ω1, . . . ,ωn

is called distinguishable if there is a measurement with outcomes represented by
effects E1, . . . , En , such that Ei (ω j ) = δi j , which is 1 if i = j and 0 otherwise. The
interpretation is that we can build a device which perfectly distinguishes the different
states ω j . Given a physical system A, we define the capacity NA as the maximal size
of any set of distinguishable states ω1, . . . ,ωn ∈ SA. A measurement which is able
to distinguish NA states (that is, as much as possible) will be called complete. For
a quantum state space, NA equals the dimension of the underlying complex Hilbert
space.

We denote the real vector space which carries SA by VA. Then effects are elements
of the dual space V ∗

A . For a quantum N -level system, VA is the real vector space of
Hermitian N × N -matrices with complex entries. Following Wootters and Hardy
[8, 23], we also use the notation K A := dim VA = dim(SA)+1, that is the number of
degrees of freedom that is necessary to describe an unnormalized state. For a qubit,
for example, we have NA = 2, but K A = 4. In quantum theory, K A = N 2

A equals the
number of independent real parameters in a density matrix (dropping normalization).
In classical probability theory, we always have K A = NA.

3.2 Transformations

A transformation is a map T which takes a state to another state. Which transfor-
mations are actually possible is a question of physics. However, there are certain
minimal assumptions that every transformation must necessarily satisfy in order to
be physically meaningful in the context of convex state spaces. First, transformations
must respect probabilistic mixtures—that is,

T (pω + (1 − p)ϕ) = pT (ω) + (1 − p)T (ϕ).

This is because both sides of the equation can be interpreted as the result of randomly
preparingω orϕ (with probabilities p resp. 1− p) and applying the transformation T .
Thus, transformations (from one system to itself) are affine maps which map a state
space SA into itself; we can always assume that they are linear maps T : VA → VA.

If both T and T −1 are physically allowed transformations, we call T reversible.
The set of reversible transformations on a physical system A is a group GA. For phys-
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ical reasons, we assume that GA is topologically closed, hence a compact group [24]
(it may be a finite group).

Reversible transformations map a state space bijectively onto itself —hence they
are symmetries of the state space. For example, in quantum theory, reversible trans-
formations are the unitary conjugations, ρ �→ UρU †. In the Bloch ball representation
of the qubit (as in Fig. 2d), thesemaps are represented as rotations, such that the group
of reversible transformations is isomorphic to SO(3).

However, as this example also shows, not all symmetries are automatically allowed
reversible transformations: a reflection in the Bloch ball is a symmetry, but it is not
an allowed transformation (in the density matrix picture, it would correspond to an
anti-unitary map).

In summary, for what follows, a physical system A is specified by threemathemat-
ical objects: the state space SA, the group of reversible transformations GA (which
is a compact subgroup of all symmetries of SA), and a set of physically allowed
effects. The latter will not be given a particular notation, but we assume that the
set of allowed effects is topologically closed. For obvious physical reasons, if E is
an allowed effect and T ∈ GA, then E ◦ T is an allowed effect; similarly, convex
combinations of allowed effects are allowed.

3.3 Composite Systems

If we are given two physical systems A and B, we would like to define a composite
system AB which is also a physical system in the sense described above, with its
own state space SAB , group of reversible transformations GAB , and set of allowed
effects.

In contrast to quantum theory, the framework of general probabilistic theories
allows many different possible composites for two given systems A and B. Every
possible composite AB has a set ofminimal physical assumptions that it must satisfy:

• If ωA ∈ SA and ωB ∈ SB are two local states, then there is a distinguished
state ωAωB ∈ SAB which is interpreted as the result of preparing ωA and ωB

independently on the subsystems A and B.
• If E A and EB are local allowed effects on A and B, then there is a distinguished
allowed effect E A EB on AB which is interpreted as measuring E A on A and EB

on B independently, yielding the total probability that outcome E A happens on
system A, and outcome EB happens on system B.

• This intuition is mathematically expressed by demanding that

E A EB(ωAωB) = E A(ωA)EB(ωB)

where both E A EB and ωAωB are affine in both arguments. This also formalizes
the physical assumption that the temporal order of the local preparations resp.
measurements is irrelevant.
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From the previous point, we can infer that we can represent independent local prepa-
rations ωAωB and measurement outcomes E A EB by tensor products:

E A EB ≡ E A ⊗ EB, ωAωB ≡ ωA ⊗ ωB .

The vector space VAB that carries the composite state space must thus satisfy

VA ⊗ VB ⊆ VAB . (2)

For the dimensions of these spaces, we obtain

K A K B ≤ K AB . (3)

Now consider two different measurements (for simplicity with two outcomes)
EB, ĒB := 1B − EB and FB, F̄B := 1B − FB , where 1B denotes the trivial effect
on system B which yields unit probability on every normalized state. We can think
of an agent Bob, holding system B, who may decide freely (say, according to some
local random variable) whether to perform measurement EB, ĒB or FB, F̄B .

Suppose that Alice (holding system A) performs some measurement after Bob
has chosen and performed his measurement on a bipartite state ωAB . The marginal
probability that she obtains (not knowing Bob’s outcome) is the same in both cases:

E A ⊗ 1B(ωAB) = E A ⊗ EB(ωAB) + E A ⊗ ĒB(ωAB)

= E A ⊗ FB(ωAB) + E A ⊗ F̄B(ωAB).

The same holds with the roles of A and B reversed. This equation follows from our
assumptions above on how to represent local measurements.We have proven that our
assumptions imply the no-signalling property: Bob cannot send information to Alice
merely by his choice of local measurement (and vice versa). Moreover, the previous
equation shows that the outcome probabilities of all of Alice’s measurements are
described by the reduced state ωA := IdA ⊗ 1B(ωAB) (note that IdA is the identity
transformation,while 1B is a linear functional). This state corresponds to themarginal
of ωAB on A, and is uniquely characterized by the equation

E A(ωA) = E A ⊗ 1B(ωAB)

for all functionals (in particular, all allowed effects) E A.
For physically meaningful composites AB, we should demand that reduced states

ωA, ωB of all bipartite states ωAB ∈ SAB are valid local states themselves. In fact, we
will demand something which is stronger and contains this as a special case. Suppose
that Alice and Bob shareωAB and Bob performs a measurement and obtains outcome
EB . Knowing this outcome leaves a conditional state ωEB

A at Alice’s side, which by
elementary probability theory satisfies



Information-Theoretic Postulates for Quantum Theory 149

E A(ω
EB
A ) = E A ⊗ EB(ωAB)

1A ⊗ EB(ωAB)
. (4)

We demand that ωEB
A ∈ SA for all allowed effects EB and all ωAB ∈ SAB . The

reduced state ωA can be written

ωA = λωEB
A + (1 − λ)ω ĒB

A

with λ = 1A ⊗ EB(ωAB); thus, ωA ∈ SA by convexity.
In some situations, this condition is automatically satisfied, namely if all effects

on A and B are allowed (recall that not all effects need to be physically possible to
implement; above, we have discussed that only a subset of effectsmight be physically
allowed). The proof will also illustrate that the cone of unnormalized states is a useful
concept.

Lemma 1 Suppose that A and B are state spaces such that all effects are allowed.
Then, the inclusion of conditional states in the local state spaces follows directly from
the fact that the composite state space AB contains all product states and effects.

Proof Define the cone of unnormalized states A+ on A by

A+ := {λωA | ωA ∈ SA,λ ≥ 0}.

Since 1A(λω) = λ for ω ∈ SA, a vector ω ∈ A+ is a normalized state, i.e. ω ∈ SA,
if and only if 1A(ωA) = 1.

The cone of unnormalized effects is

A+ := {λE A | E A(ωA) ∈ [0, 1] for all ωA ∈ SA,λ ≥ 0}.

Since we have said that all effects are allowed, every linear map E A : VA → R with
E A(ω) ∈ [0, 1] is an allowed effect. The set A+ contains all non-negative multiples
of those. Both sets A+ and A+ are closed convex cones [25], where “cones” refers
to the fact that if x is in the set, then λx is also in the set for all λ ≥ 0.

It is now easy to see that A+ is the “dual cone” (A+)∗ of A+, where

(A+)∗ ≡ {E : VA → R | E(ω) ≥ 0 for all ω ∈ A+}.

Since (A+)∗∗ = A+, we get also that A+ is the dual cone of A+; in other words,

A+ = {ω ∈ VA | E(ω) ≥ 0 for all E ∈ A+}.

Recall the definition of the conditional state in (4). It follows directly from this
definition that E A(ω

EB
A ) ≥ 0 for all allowed effects E A, hence for all E A ∈ A+. But

then, we must have ωEB
A ∈ A+. Since 1A(ω

EB
A ) = 1, we get ωEB

A ∈ SA. The same
reasoning holds for B instead of A. �
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Our state spaces also carry a group of reversible transformations. If G A ∈ GA is
a reversible transformation on A, and G B ∈ GB one on B, it is physically clear that
we should be able to accomplish both transformations locally independently; i.e.,
G A ⊗ G B ∈ GAB . We will assume that composite state spaces satisfy this condition.

One of our postulates below will be the postulate of local tomography. This is an
additional condition on composites AB which is sometimes, but not always imposed
in the framework of general probabilistic theories: It states that

global states are uniquely determined by the statistics o f

local measurement outcomes.

Local measurement outcomes correspond to effects of the form E A ⊗ EB . Thus, the
postulate of local tomography states that E A ⊗ EB(ωAB) = E A ⊗ EB(ϕAB) for all
E A, EB implies that ωAB = ϕAB .

Since the E A span the dual space V ∗
A , and the EB span V ∗

B , the local measurement
outcomes span a (K A K B)-dimensional subspace of V ∗

AB :

dim span{E A ⊗ EB} = (dim V ∗
A)(dim V ∗

B ) = K A K B .

Any state ωAB ∈ SAB can thus be uniquely specified by K A K B linear coordinates

E (i)
A ⊗ E ( j)

B (ωAB), i = 1, . . . , K A; j = 1, . . . , K B;

in fact, one of these coordinates is redundant, since 1A ⊗1B(ωAB) = 1, so K A K B −1
coordinates are sufficient. Thus,we obtain an injective affinemap from the (K AB−1)-
dimensional convex set SAB into R

K A K B−1, which proves that

K AB − 1 = dim SAB ≤ K A K B − 1.

Due to Eq. (3), we obtain
K AB = K A K B .

Reading the argumentation backwards shows that this equation is in fact equivalent
to local tomography, as pointed out by Hardy [8]. It also follows from Eq. (2) that

VAB = VA ⊗ VB .

Thus, we get a certain type of tensor product rule for composite state spaces,
including 1AB = 1A ⊗ 1B . Note that this is not as strong as the tensor product rule
of quantum theory, which in addition uniquely specifies the set of global states on
composite systems. In contrast, our tensor product rule only says that the surrounding
vector spaces satisfy VAB = VA ⊗ VB , but does not uniquely specify SAB in terms
of SA and SB . In particular, classical probability theory satisfies this tensor product
rule as well. Suppose that A is a classical bit, and B is a classical 3-level system.
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Then the composite AB is classical 6-level system, i.e. K AB = 6, while K A = 2 and
K B = 3. We get K AB = K A K B , which is equivalent to local tomography.

To see that this framework allows for state spaces that are physically very different
from quantum theory, suppose that A and B are both the square state space from
Fig. 2f. Then, define the global state space SAB as the set of all vectors x ∈ AB with
E A ⊗ EB(x) ∈ [0, 1] for all effects E A and EB , and 1A ⊗1B(x) = 1 (normalization).
It turns out that this state space contains so-called PR-box states that violate the Bell-
CHSH inequality by more than any quantum states [17]. The set of states SAB itself
turns out to be the eight-dimensional no-signalling polytope for two parties with
two measurements and two outcomes each. The fact that these state spaces can have
stronger non-locality than quantum theory has been extensively studied [16, 17,
27–31] and is a main reason for the popularity of general probabilistic theories in
quantum information.

It is important to keep in mind that the conditions above do not determine the
composite state space SAB uniquely, even if SA and SB are given. For example, if SA

and SB are quantum state spaces, then the usual quantum tensor product is a possible
composite SAB , but there are infinitely many other possibilities: one of them is to
defineSAB as the set of unentangled global states. It satisfies all conditionsmentioned
above.

3.4 Equivalent State Spaces

In classical physics, choosing a different inertial coordinate system does not alter the
physical predictions of Newtonian mechanics. A similar statement is true for convex
states spaces.

Consider a system A, given by a state space SA, a group of transformations GA,
and some allowed effects. Suppose that B is another system, and suppose that there
is an invertible linear map L : VA → VB such that

• SB = L(SA),
• E A is an allowed effect on A if and only if E A ◦ L−1 is an allowed effect on B,
• GB = L ◦ GA ◦ L−1.

We will then call A and B equivalent. Physically, this means that the systems A
and B are of the same type in the following sense. Suppose that we prepare a state
ωA, perform a transformation TA, and finally ask for the occurrence of an effect E A.
The total probability of this is then the same as if we prepare the state ωB = LωA,
perform a transformation TB = L ◦ TA ◦ L−1, and ask for the occurrence of the effect
EB := E A ◦ L−1. In this sense, all physical scenarios on A can be “translated” into
physical scenarios on B, and vice versa. One may then argue that the linear map
L just mediates between two different ways of describing exactly the same type of
physical system. As an example, we may describe the state space of a qubit either
as a set of 2 × 2 density matrices, or as a set of three-dimensional real vectors, i.e.
Bloch vectors. These are two different descriptions for exactly the same physics.
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Thus, in our endeavor to derive quantum theory, we have to prove that all state
spaces satisfying our postulates are equivalent to quantum state spaces.

4 The Postulates

In this section, we describe our postulates and explain their physical meaning. We
start with an axiom on composite state spaces that has already been mentioned in
Sect. 3.3 above:

Postulate 1 (Local tomography) The state of a composite system AB is completely
characterized by the statistics of measurements on the subsystems A, B.

Thename“local tomography” comes from the interpretation that state tomography
on composite systems can be done by performing local measurements and subse-
quently comparing the outcomes to uncover correlations. As already mentioned, this
postulate is equivalent to K AB = K A K B , where K A denotes the number of degrees
of freedom needed to specify an unnormalized state on A.

Our second postulate formalizes a property of physics that physicists intuitively
take for granted, and that is in fact used very often in performing real experiments.
Imagine some physical three-level system (that is, with three perfectly distinguish-
able states and no more: N = 3) that we can access in the lab (it might be quantum,
classical, or describable within another theory). Now suppose that, for some rea-
son, we have a situation where we never find the system in the third of the three
distinguishable configurations on performing a measurement.

To have a concrete example, consider a quantum system that consists of three
energy levels which can be occupied by a single particle. Suppose the system is
constructed such that the third energy level is actually never occupied (maybe because
the corresponding energy is too high).

The consequence that we expect is the following: We effectively have a two-
level system. This is definitely true for quantum theory, and classical probability
theory, but it is not necessarily true for other generalized probabilistic theories. In
general, for any number of levels (perfectly distinguishable states) N , we expect to
have a corresponding state space SN . And the collection of states ω ∈ SN which has
probability zero to be found in the N th level uponmeasurement should be equivalent
to SN−1.

In actual physics, this property is used all the time: We apply “effective descrip-
tions” of physical systems, by ignoring impossible configurations. Qubits manufac-
tured in the lab usually actually correspond to two levels of a systemwith manymore
energy levels, set up in a way such that the additional energy levels have probability
close to zero to be occupied.

One may argue that practicing physics would be very difficult if this property did
not hold: we would then possibly have to take into account unobservable potential
configurations even if they are never seen. Their presence or absence would affect the



Information-Theoretic Postulates for Quantum Theory 153

resulting state space that we actually observe. The following “subspace postulate”,
first introduced by Hardy [8], formalizes this idea. It is actually somewhat stronger
than our discussion motivates: it also implies that, for every N , there is a unique type
of N -level system SN .

The notions of complete measurements and equivalent state spaces were defined
in Sects. 3.1 and 3.4.

Postulate 2 (Equivalence of subspaces) LetSN andSN−1 be systems with capacities
N and N − 1, respectively. If E1, . . . , EN is a complete measurement on SN , then
the set of states ω ∈ SN with EN (ω) = 0 is equivalent to SN−1.

The notion of equivalence needs some discussion. Postulate 2 states the equiva-
lence of SN−1 and

S ′
N−1 := {ω ∈ SN | EN (ω) = 0}. (5)

Denote the real linear space which contains SN by VN ; define VN−1 analogously, and
set V ′

N−1 := span(S ′
N−1). Equivalence means first of all that there is an invertible

linear map L : VN−1 → V ′
N−1 such that L(SN−1) = S ′

N−1. But it also means that
transformations and measurements on one of them can be implemented on the other.
We now describe in more detail what this means.

Every effect E on SN defines an effect on S ′
N−1 by restricting it to the correspond-

ing linear space, resulting in E � V ′
N−1. Equivalence implies that the resulting set of

effects is in one-to-one correspondence with the set of effects on SN−1, as described
in Sect. 3.4.

The transformations on S ′
N−1 are defined analogously. To be more specific, define

Ḡ ′
N−1 as the set of transformations in SN that preserve S ′

N−1 (or, equivalently, V ′
N−1):

Ḡ ′
N−1 := {T ∈ GN | TS ′

N−1 = S ′
N−1}.

The set of reversible transformations G ′
N−1 is defined as the restriction of all these

transformations to S ′
N−1 (or rather, as linear maps, to V ′

N−1):

G ′
N−1 = {

T � V ′
N−1 | T ∈ Ḡ ′

N−1

}
.

Equivalence means that
G ′

N−1 = L ◦ GN−1 ◦ L−1.

Concretely, ifU ∈ GN−1 is any reversible transformation on a state space of capacity
N − 1, then the transformation Ũ := L ◦ U ◦ L−1 is a reversible transformation on
S ′

N−1, i.e. Ũ ∈ G ′
N−1. As such, it can be written Ũ = T � S ′

N−1 for some reversible
transformation T ∈ GN .

It is important to note that we don’t have full information on T—that is, our
postulate does not specify T uniquely, given Ũ . By definition, T preserves S ′

N−1 and
therefore the subspace V ′

N−1, but we do not know how it acts on the complement
of that subspace—it might act as the identity there, or it might have a non-trivial
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action. Postulate 2 does not specify this. In general, there may (and will) be different
T which implement the same Ũ on the subspace.

Using Postulate 2 iteratively, we see that state spaces of smaller capacity are
included (in the sense described above) in those of larger capacity; symbolically,

S1 � S2 � S3 � . . .

Our next postulate describes the idea that any actual physical theory of probabili-
tiesmust allow for ample possibilities of reversible time evolution. In situationswhere
“no information is lost”—assuming that this situation applies to closed systems—,
these systems A must evolve reversibly, that is, according to some subgroup of the
group of reversible transformation GA. Clearly, if this group is trivial (contains only
the identity), physics becomes “frozen”: no reversible time evolution is possible at all.

Postulate 3proclaims aminimal amount of transformational richness for reversible
time evolution: as a minimal requirement, it states that the group of reversible trans-
formations should act transitively on the pure states. That is, if we prepare a pure
state ω, and ϕ is another (desired) pure state on the same state space, then there
should be a reversible transformation T which maps ω to ϕ:

Postulate 3 (Symmetry)For every pair of pure statesω,ϕ ∈ SA, there is a reversible
transformation T ∈ GA such that T ω = ϕ.

It is easy to see that Postulate 3 is true for quantum theory: every pure state can be
mapped to every other by some unitary. This example also shows that Postulate 3 is
rather weak: in quantum theory, even tuples of perfectly distinguishable pure states
ω1, . . . ,ωn can be mapped to other tuples ϕ1, . . . ,ϕn by suitable unitaries. This is a
much higher degree of symmetry than what is demanded by Postulate 3.

There is one postulate remaining. As we discussed in Sect. 3.1, given some state
space SA, not all effects (i.e. linear functionals on A which are non-negative on SA)
may be physically allowed. Similarly as for superselection rules, it might be true that
some effects are impossible to implement (an example would be a state space that
allows only noisymeasurements, and no outcomewhatsoever occurswith probability
zero).

In order for our axiomatization to work, we need to exclude this possibility: we
postulate that all mathematically well-defined effects correspond to allowed mea-
surement outcomes. As it turns out, it is sufficient to postulate this for a 2-level
system S2 (i.e. a generalized bit). In combination with the other postulates, it follows
for all other state spaces.

Postulate 4 (All measurements allowed) All effects onS2 are outcome probabilities
of possible measurements.

From a mathematical point of view, this postulate could also be regarded as a
background assumption: structurally, it says that the class of considered theories
is the class of models where the effects are automatically taken as the dual of the
states. In other words, it means that whenever we refer to “measurements” in the
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other postulates, we actually refer to collections of effects without considering the
possibility that additional physical conditions might prevent their implementation.

It is interesting to note that Postulate 4 can be replaced by a different formulation,
which has first been suggested in the axiomatization by G. Chiribella et al. [11]. It
refers to “completely mixed states”, which are states that are in the relative interior
of the convex set of states:

Postulate 4’ [11] If a state is not completely mixed, then there exists at least one
state that can be perfectly distinguished from it.

5 How Quantum Theory Follows from the Postulates

We are now ready to carry out the reconstruction of quantum theory (QT) from the
postulates. As it turns out, there will be another solution to Postulates 1–4, which is
classical probability theory (CPT). By this we mean the theory where the states are
finite probability distributions, and the reversible transformations are the permuta-
tions. Figure2a–c shows what classical probability distributions look like in terms
of convex sets: they are simplices.

Therefore, we will now prove the following theorem:

Theorem 1 (Main Result) The only general probabilistic theories, satisfying Pos-
tulates1–4 above, are equivalent to one of the following two theories:

• Classical probability theory (CPT): The state space is the set of probability dis-
tributions,

SN = {(p1, . . . , pN ) | pi ≥ 0,
∑

i

pi = 1},

and the reversible transformations GN are the permutations on {1, . . . , N }.
• Quantum theory (QT): The state space SN is the set of density matrices on N-

dimensional complex Hilbert space,

SN = {
ρ ∈ C

N×N | ρ ≥ 0, Trρ = 1
}
,

and the group of reversible transformations GN is the projective unitary group,
that is, the set of maps ρ �→ UρU † with U †U = 1.

In both cases, all effects must be allowed. Working out the set of effects (that is,
linear functionals on states yielding values between 0 and 1), one easily recovers the
usual measurements of CPT and QT.

In this paper, wewill not give the full reconstruction in all details; the full proof can
be found in ourmore technical paper [10]. Instead, wewill try to give a self-contained
summary of the reconstruction, its main ideas, and some interesting observations in
the course of the argument.
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Before starting to do this, let us discuss a simple observation regarding Theorem 1.
In order to rule out CPT—and hence to single out QT uniquely—we can tighten
Postulate 3 by replacing it with the following modification:

Postulate 3C (Continuous symmetry) For every pair of pure states ω,ϕ ∈ SA, there
is a continuous family of reversible transformations {Gt }t∈[0,1] such that G0ω = ω
and G1ω = ϕ.

In other words, every pure state can be “continuously moved” into every other
pure state. A statement like this is expected to be true in physical systems with
continuous reversible time evolution—which is the case that seems to be true, to
good approximation, in our universe. The consequence is:

T he only general probabilistic theory that satis f ies

Postulates 1, 2, 3C, and 4, is quantum theory (QT ).

5.1 Why Bits are Balls

In QT, the state space of a 2-level system (that is, a generalized bit, or qubit, S2)
is a three-dimensional ball, the Bloch ball. In CPT, the (classical) bit instead is a
line segment, as shown in Fig. 2. In fact, this is a ball, too: it is a one-dimensional
unit ball. However, quantum N -level systems with N ≥ 3 are not balls: they contain
mixed states in their topological boundary [46].

We will now show that all theories satisfying our postulates must have Euclidean
ball states spaces as generalized bits. The dimension of this ballwill not be determined
yet; this will be done later on.

Our argument proceeds in two steps: first, we show that the state space S2 cannot
have lines in its boundary; that is, we exclude the fact that S2 has proper faces as
in the left picture of Fig. 3. Using convex geometry language, we prove that S2 is
strictly convex.

As a second step, we show that the symmetry property, Postulate 3, enforces S2

to be a Euclidean ball. The reason for this comes from group representation theory:
since the group of transformations acts linearly, there is an inner product such that
all transformations are orthogonal with respect to it.

Lemma 2 The state space of the generalized bit S2 is strictly convex.

Proof Consider any effect E with 0 ≤ E(ω) ≤ 1 for all states ω ∈ S2. Then this
effect belongs to a two-outcome measurement (as defined in Sect. 3.1), consisting
of the two effects E and 1 − E . It is important to understand that the level sets
{x | E(x) = c} are hyperplanes of codimension 1, due to linearity of E . This is true
for all state spaces S. On the other hand, given some hyperplane, we can construct
a corresponding effect E (with some freedom of offset and scaling) that has this
hyperplane as its level set.
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Fig. 3 Like every compact convex set, the bit state space S2 contains pure states ωe that are
exposed—that is, there is an effect Ee such that ωe is the unique state where this effects attains
value 1. Due to Postulate 2, this proves thatS1 contains a single state only. Now supposeS2 had lines
in its boundary, as in the left picture. Then we would analogously find another effect E that attains
value 1 on a non-trivial face. Consequently, Postulate 2 would tell us that S1 contains infinitely
many states—a contradiction. Thus, S2 must be strictly convex as in the right picture. Euclidean
ballness follows from group representation theory

Like every compact convex set, S2 has at least one pure state ωe which is
exposed [26]—that is, there is a hyperplane which touches the convex set only in ωe

and in no other point. Thus, we can construct an effect Ee such that the corresponding
hyperplane is {x | Ee(x) = 1}, i.e. Ee(ωe) = 1, and minω∈S2 Ee(ω) = 0. But then,
(Ee, 1 − Ee) distinguishes two states perfectly, which is the maximal number for a
bit – in other words, this is a complete measurement.

Now Postulate 2 says that

{ω ∈ S2 | (1 − Ee)(ω) = 0} = {ω ∈ S2 | Ee(ω) = 1}
= {ωe} � S1.

In other words, S1 is a trivial state space which contains only a single state. Now
suppose that S2 has lines in its boundary, and therefore non-trivial faces, as depicted
on the left-hand side of Fig. 3. Then we find a supporting hyperplane that touches S2

in infinitely many states. Constructing a corresponding effect E and repeating the
argument from above, we analogously argue that S1 must contain infinitely many
states. This is a contradiction. �

Balls do not have lines in their boundary, but there are many other strictly convex
sets—for example, imagine a droplet-like figure. However, Postulate 3 says that there
is lots of symmetry in the state space S2: all pure states (which we now know means
all states in the topological boundary due to Lemma 2) are connected by reversible
transformations.

From this, one can prove that.

Lemma 3 The state space S2 is equivalent to a Euclidean ball (of some dimension
d2 := K2 − 1).

Recall that we denote the dimension of the set of unnormalized states by KN ;
therefore, the set of normalized states SN has dimension KN − 1. We will not prove
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Lemma 3 here, but only sketch where it comes from. An important notion turns out
to be the maximally mixed state. On any state space SN , define μN as a mixture over
the group of transformations,

μN :=
∫
GN

Gω dG,

where ω ∈ SN is any pure state. This is an integral over the invariant measure of the
group; see [32, 33] for details of its definition. It follows from the connectedness of
all pure states (Postulate 3) that μN does not depend on the choice of the pure state
ω. Moreover, μN turns out to be the unique state which is invariant with respect to
all reversible transformations,

GμN = μN for all G ∈ GN .

All states ω ∈ SN span an affine space of dimension KN − 1. We can now consider
μN to be the origin of that affine space, turning it into a linear space. Then reversible
transformations G ∈ GN act linearly; they preserve the origin. States ω are repre-
sented by their difference vectors ω̂ := ω − μN that live in this linear space. If a
reversible transformation T maps ω to ϕ, then it also maps ω̂ to ϕ̂. By group repre-
sentation theory, there is an inner product on this linear space which is invariant with
respect to all reversible transformations. As a consequence, if ω and ϕ are arbitrary
pure states, then there is a reversible transformation T such that T ω̂ = ϕ̂ due to Pos-
tulate 3, and so ‖ω̂‖ = ‖ϕ̂‖ for the norm corresponding to this inner product. In the
case of a bit, i.e. N = 2, strict convexity implies that we obtain the full Euclidean ball,
with the pure states on the surface and the maximally mixed state μN in the center.

5.2 The Multiplicativity of Capacity

So far, we know that if we combine two state space A and B, the joint state space
has dimension K AB = K A K B – this is due to Postulate 1, local tomography, as
discussed in Sect. 3.3. However, we do not yet know whether the same equality is
true for capacity N . An important step in the derivation of quantum theory is to
prove this. As it turns out, a key insight is that the maximally mixed state must be
multiplicative: if we have two state spaces A and B, then the maximally mixed state
on the composite system AB (assuming our postulates) is

μAB = μA ⊗ μB .

This is easily proved from the fact thatμAB must in particular be invariantwith respect
to all local reversible transformations, leaving μA ⊗ μB as the only possibility. A
further key lemma is the following:
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Lemma 4 If there are n perfectly distinguishable pure states ω1, . . . ,ωn ∈ SN that
average to the maximally mixed state, i.e.

μN = 1

n

n∑
i=1

ωi ,

then n = N.

Proof Clearly, N ≥ n, since N is the maximal number of perfectly distinguishable
states. On the other hand, let ϕ1, . . . ,ϕN be a set of perfectly distinguishable pure
states on SN , and E1, . . . , EN the corresponding effects, i.e. Ei (ϕ j ) = δi j . Since
1 = ∑N

i=1 Ei (μN ), there must be some k such that Ek(μN ) ≤ 1/N . By Postulate 3,
there is a reversible transformation G ∈ GN with Gω1 = ϕk . Thus

1

N
≥ Ek(μN ) = Ek ◦ G(μN ) = 1

n

n∑
i=1

Ek ◦ G(ωi )

≥ 1

n
Ek ◦ G(ω1) = 1

n
.

Thus, we also have N ≤ n, proving the claim. �

In quantum theory, the maximally mixed state on an N -dimensional Hilbert space
is the density matrix

μN = 1N

N
= 1

N

N∑
i=1

|ψi 〉〈ψi |,

if |ψ1〉, . . . , |ψN 〉 denotes an orthonormal basis of C
N—that is, if these are pure

states that are perfectly distinguishable. This is in agreement with Lemma 4. More-
over, we can prove that an analogous formula holds for every theory satisfying our
Postulates1–4:

Lemma 5 For every N, there are N pure perfectly distinguishable states ω1, . . . ,ωN

∈ SN such that

μN = 1

N

N∑
i=1

ωi .

We only sketch the proof here: For N = 1, the statement is trivially true, since S1

contains only a single state. For N = 2, we know that SN is a Euclidean ball, with
the maximally mixed state in the center. Thus, taking ω1 and ω2 as two antipodal
points on the ball (say, north and south pole), we get

μ2 = 1

2
(ω1 + ω2),
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and these states are perfectly distinguishable by an analogue of a quantum spin
measurement. Now consider a generalized bit A, and k copies of this physical
system denoted A1, . . . , Ak . We can form a joint system A(k) := A1A2 . . . Ak ; since
we do not yet know that we have associativity of composition, we mean by this
((A1A2)A3)A4 . . .. Then the maximally mixed state on the resulting state space is

μA(k) = μ2 ⊗ . . . ⊗ μ2 = 1

2k

∑
i1,...,ik=1,2

ωi1 ⊗ . . . ⊗ ωik .

Since in locally tomographic composites, products of pure states are pure, the
ωi1 ⊗ . . . ⊗ ωik are all pure states, and they are perfectly distinguishable by product
measurements. Thus, Lemma 4 shows that the capacity of A(k) must be NA(k) = 2k .
This proves Lemma 5 for all N which are a power of two. For all other N , the lemma
is proved by using the fact that SN is embedded in some A(k) for some k large enough
due to Postulate 2, and then constructing the maximally mixed state on SN in a clever
way from that on A(k).

Now we can form the tensor product of the equations

μNA = 1

NA

NA∑
i=1

ωA
i and μNB = 1

NB

NB∑
j=1

ωB
j ,

and we obtain

μNAB = μNA ⊗ μNB = 1

NA NB

NA∑
i=1

NB∑
j=1

ωA
i ⊗ ωB

j ,

and Lemma 4 tells us that capacity must be multiplicative:

Lemma 6 NAB = NA NB.

Why is this equation so important? As noticed by Hardy [8], it allows us to draw a
surprising conclusion. Every state space SN has unnormalized dimension KN . Since
K AB = K A K B and NAB = NA NB for all state spaces A and B due to our postulates,
we get the following facts:

• The function N �→ KN maps natural numbers to natural numbers, and is strictly
increasing due to Postulate 2.

• It satisfies KN1N2 = KN1 KN2 , and K1 = 1.

As shown in [8], these simple conditions imply that there must be an integer r ≥ 1
such that

KN = Nr . (6)

Now recall that the dimension of the bit state space (which is a Euclidean ball) is
d2 := K2 − 1. It follows that
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d2 ∈ {1, 3, 7, 15, 31, . . .}

since K2 = 2r for some r ∈ N. Thus, we see in particular that the bit state space
is an odd-dimensional Euclidean ball. The next subsection will deal with the case
d2 = 1; as we will see, this case corresponds to classical probability theory.

5.3 How to Get Classical Probability Theory (CPT)

Suppose that d2 = K2 − 1 = 1; that is, the generalized bit is a one-dimensional
ball, as shown in Fig. 2. A line segment like this describes a classical bit. What can
we say about N -level systems for N ≥ 3 in this case? Equation (6) tells us that the
parameter r must be r = 1, and thus

KN = N

for all N , not only for N = 2.
Choose N perfectly distinguishable pure states ω1, . . . ,ωN ∈SN , and E1, . . . , EN

the corresponding effects with Ei (ω j ) = δi j as well as
∑

i Ei = 1. It is easy to
see that the states must be linearly independent; since K = N , they span the full
unnormalized state space.

Thus, every state ω can be written ω = ∑N
i=1 αiωi , with αi ∈ R and

∑
i αi =

1(ω) = 1. But then, E j (ω) = α j ≥ 0, and so this decomposition of ω is in fact a
convex decomposition.

In other words, the full state space SN is a convex combination of ω1, . . . ,ωN—
that is, a classical simplex as in Fig. 2a–c. These are exactly the state spaces of CPT.
Moreover, since for N = 2, we can permute the two pure states due to Postulate 3,
we can use the subspace postulate to conclude that every pair of pure states on SN

can be interchanged. These transpositions generate the full permutation group, which
must thus be the group of reversible transformations GN . We have therefore proven
the following:

I n the case d2 = 1, we get classical probabili t y theory as

the unique solution of Postulates 1–4.

5.4 The Curious 7-Dimensional Case

Let us now consider the remaining cases, i.e. the cases where the dimension of the
Euclidean bit ball is d2 = K2 − 1 ∈ {3, 7, 15, 31 . . .}. The generalized bit carries a
group of reversible transformations G2; by our background assumptions mentioned
in Sect. 3.2, this must be a topologically closed matrix group. Since it maps the unit
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ball into itself, it must be a subgroup of the orthogonal group. Closed subgroups of
Lie groups are Lie groups; therefore, G2 is itself a Lie group.

Denote by G0
2 the connected component of G2 containing the identity matrix. We

have
G0
2 ⊆ SO(d2).

We know from Postulate 3 that for every pair of pure states ω,ϕ ∈ S2, there is a
reversible transformation T ∈ G2 with T ω = ϕ. In other words, G2 acts transitively
on the unit sphere, that is, the surface of the unit ball. It can be shown that this implies
that G0

2 is itself transitive on the unit sphere.
At first sight, it seems that this enforces G0

2 to be the full special orthogonal group
SO(d2), but this intuition is wrong. For example, the group of 4 × 4-matrices

{(
reU imU

−imU reU

) ∣∣∣∣ U ∈ SU (2)

}

acts transitively on the surface of the 4-dimensional unit ball, even though it is a
proper subgroup of SO(4). The set of all compact connected Lie matrix groups
which act transitively on the unit sphere has been classified in [34–37]. In general,
there are many possibilities. Fortunately, however, we have additional information:
we know that the bit ball has odd dimension d2 := K2 − 1. It turns out that there
remain only two possibilities:

• If d2 �= 7, then G0
2 = SO(d2).

• If d2 = 7, then G0
2 is either SO(7) or of the form MG2M−1, where M is a fixed

orthogonal matrix, and G2 is the fundamental representation of the exceptional Lie
group G2.

In fact, d2 = 7 appears in our list of possible dimensions of the bit ball, because
7 = 23 − 1. In our endeavor to derive quantum theory from Postulates1–4, we will
have to show that all the cases d2 ∈ {7, 15, 31, . . .} violate at least one postulate.
Thus, we see that the case d2 = 7 has to be (and is) treated separately.

The appearance of d2 = 7 as a special case seems like an almost unbelievable
coincidence. Is there some deeper significance to this case? Might there be some
interesting unknown theory waiting to be discovered which has 7-dimensional balls
as bits and the exceptional Lie group G2 as the analogue of local unitaries? We do
not know.

5.5 Subspace Structure and 3-Dimensionality

Having discussed the case of classical probability theory with bit ball dimension
d2 = 1, the remaining cases are

d2 ∈ {3, 7, 15, 31, . . .}.
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We will now show that all dimensions d2 ≥ 7 are incompatible with the postulates,
leaving only the case d2 = 3—that is, the Bloch ball of quantum theory. For the rest
of this chapter, we ignore the special case d2 = 7 with G0

2 = MG2M−1 and G2 the
exceptional Lie group; it can be ruled out by an analogous argument.

In the following, we will parametrize the single bit state space as

S2 =
{(

1
ω̂

)
| ω̂ ∈ R

d2 , ‖ω̂‖ ≤ 1

}
.

The maximally mixed state becomes μ = (1, 0)T , where 0 ∈ R
d2 denotes the zero

vector. Let n := (1, 0, . . . , 0)T ∈ R
d2 , then we have two pure states ω1 := (1, n)T ∈

S2 and ω2 := (1,−n)T ∈ S2, corresponding to the north and south pole of the
ball. These states are pure, and they are perfectly distinguished by the measurement
consisting of the two effects (for ω ∈ S2)

E1(ω) := (1 + 〈ω̂, n〉)/2,
E2(ω) := (1 − 〈ω̂, n〉)/2.

We know that if we combine two bits into a joint state space, we obtain a state
space of capacity four that we call S2,2. It is equivalent to S4. Thus, the product
states ωi ⊗ω j with i, j = 1, 2 represent four perfectly distinguishable states in S2,2,
and the corresponding product effects Ei ⊗ E j constitute a complete measurement.
Recall, however, that the joint state space S2,2 is not fully known so far—all we know
is that the surrounding linear space is the tensor product of the local spaces. At this
stage, we do not yet have a complete description of the set of all states in S2,2 or S4.

Using the subspace postulate twice, i.e. Postulate 2, we obtain that the set of states
ω with (E1⊗ E1+ E2 ⊗ E2)(ω) = 1 is again equivalent to a single bit. This turns out
to be a surprisingly restrictive requirement that we are now going to exploit. Denote
this set of states by F (it is a face of the state space S2,2), then

F = {ω ∈ S2,2 | (E1 ⊗ E1 + E2 ⊗ E2)(ω) = 1} � S2.

In the following, we will label the two bits by indices A and B for convenience. The
group G2 = SO(d2) contains a subgroup Gs

2 which leaves the axis containing north
and south pole invariant, i.e.

Gs
2 := {G ∈ G2 | Gω1 = ω1 and Gω2 = ω2} � SO(d2 − 1).

If R ∈ SO(d2 − 1), then its action as an element of Gs
2 is

(
1,ω(1), . . . ,ω(d2)

)T �→ (
1,ω(1), R(ω(2), . . . ,ω(d2))

)T
.

Suppose we apply one transformation of this kind on each part of a bipartite state
ω locally; that is, a transformation G A ⊗ G B with G A,G B ∈ Gs

2. Then we have
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(E1⊗ E1+ E2⊗ E2)(ω) = 1 if and only if (E1⊗ E1+ E2⊗ E2)(G A ⊗G B(ω)) = 1.
Thus, this transformation leaves the face F invariant:

(G A ⊗ G B)F = F.

We know that the dimension of the linear span of F is d2 + 1, since it is equivalent
to S2. We will now explore in more detail how the transformations G A ⊗ G B act on
the face F . In particular, we are interested in the structure of invariant subspaces.

First, consider a single bit. Its unnormalized states are carried by a real vector
space VA = R

d2+1 that we can decompose in the following way:

VA = R ·

⎛
⎜⎜⎜⎝
1
0
...

0

⎞
⎟⎟⎟⎠ ⊕ R ·

⎛
⎜⎜⎜⎝
0
1
...

0

⎞
⎟⎟⎟⎠ ⊕ A′,

where A′ denotes the set of all vectors with first two components zero. Since μ =
(1, 0, . . . , 0)T and Gμ = μ, as well as ω1 = (1, 1, 0, . . . , 0)T and Gω1 = ω1 for all
G ∈ Gs

2, these three subspaces are all invariant.
Consequently, the vector space which carries two bits, VAB ≡ VA ⊗ VB , contains

the subspace A′ ⊗ B ′ which is invariant with respect to all transformations G A ⊗ G B

for G A,G B ∈ Gs
2. This defines an action of SO(d2−1)×SO(d2−1) on the subspace

A′ ⊗ B ′.
With a bit of work, one can show that the face F contains at least one state ω

which has non-zero overlap with A′ ⊗ B ′. Denote the projection of that vector onto
this subspace byωA′⊗B ′ . We know that every (G A ⊗G B)(ω) is a valid state in the face
F , and its component in the aforementioned subspace is (G A ⊗ G B)(ωA′⊗B ′). Now
imagine we apply all the local transformations G A ⊗ G B to the vector ωA′⊗B ′ , and
we are interested in the orbit—that is, in the set of all vectors that we can generate
this way.

If d2 ≥ 4, then the group SO(d2 − 1) has a nice property in terms of group
representation theory [32]: it is irreducible. That is, its action onC

d2−1 does not leave
any non-trivial subspaces invariant. This allows us to draw an important conclusion:
it implies [32] that the product group SO(d2 − 1)× SO(d2 − 1) is also irreducible.
But then, the orbit (G A ⊗ G B)(ωA′⊗B ′) must span the full space A′ ⊗ B ′, which has
dimension (d2 − 1)2—this is a very large orbit.

In fact, it is too large for the subspace postulate: above, we have concluded from
Postulate 2 that the span of the face F (which is preserved by those local trans-
formations) must have dimension d2 + 1, which is less than (d2 − 1)2 if d2 > 3.
Thus, we obtain a contradiction: if the bit ball has dimension d2 ∈ {7, 15, 31, . . .},
it is impossible to combine two bits into a joint state space which satisfies all our
postulates.

As it turns out, this is not true if d2 = 3: the group SO(d2 − 1) = SO(2) leaves
the span of (1, i)T invariant; that is, SO(2) is reducible. Thus, this case is not ruled
out by the reasoning above. In group-theoretic terms, this reducibility is related to
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the fact that SO(2) is Abelian. In other words, the fact that rotations commute in
3–1 dimensions can be seen as a possible reason of the fact that the Bloch ball is
3-dimensional.

Lemma 7 The dimension of the bit ball must be d2 = 3.

We have thus uncovered a group-theoretic explanation why the smallest non-
trivial quantum systems have three mutually incompatible, independent components
and not more. Due to Postulate 4, we can find all possible measurements on this state
space: all effects (that is, linear functionals) which yield probabilities in the interval
[0, 1] correspond to outcome probabilities of possible measurements. It is easy to see
that these effects are in one-to-one correspondence with the quantum measurements
(POVMs) on a single qubit.

Furthermore, we know that the group of reversible transformations contains
SO(3), the rotations of the Bloch ball, which correspond to the unitary transfor-
mations on a qubit. At this point, however, we do not yet know whether G2 = SO(3)
or G2 = O(3).

5.6 Quantum Theory on N-level Systems for N ≥ 3

In the previous section, we have derived quantum theory for single bits. It remains
to show that our postulates also predict quantum theory for all N -level systems with
N ≥ 3. As before, we only sketch the main proof ideas, and refer the reader to [10]
for proof details.

For a single bit in state ω = (1, ω̂)T , we can obtain the usual representation as a
density matrix by applying a linear map L : R

4 → C
2×2
sa , where the latter symbol

denotes the real vector space of self-adjoint complex 2 × 2-matrices. This map L is
defined by linear extension of

L(ω) := (1 + ω̂ · �σ)/2,

where �σ = (σx ,σy,σz) denotes the Pauli matrices. The representation that we obtain
(applying L in a suitable way to effects and transformations as well) is equivalent in
the sense of Sect. 3.4 to the Bloch ball representation.

If we have the state space S2,2 of two bits, we can use the map L ⊗ L to repre-
sent states ω ∈ S2,2 by self-adjoint 4 × 4-matrices L ⊗ L(ω). Recall that we have
constructed a face F of S2,2 in the previous subsection. Analyzing F in a bit more
detail, one can show that it contains a family of pure states ωu , where u ∈ [0,π),
which are mapped by L ⊗ L onto

L ⊗ L(ωu) = |ψu〉〈ψu |,
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where

|ψu〉 = cos
u

2
|0〉 ⊗ |0〉 + sin

u

2
|1〉 ⊗ |1〉

for some orthonormal basis {|0〉, |1〉}. This is an entangled quantum state with
Schmidt coefficients cos(u/2) and sin(u/2). Choosing u appropriately, it can attain
any value between 0 and 1. Thus, by applying local unitaries (which corresponds to
the SO(3)-rotations of the local balls), we can generate all pure quantum states.

Denoting S ′
2,2 := L ⊗ L(S2,2), we have proven the following:

Lemma 8 S ′
2,2 contains all pure 2-qubit quantum states as pure states.

The next step is somewhat tricky: we have to show that there are no further (non-
quantum) states in S ′

2,2. The idea is to show that all quantum effects are allowed
effects on S ′

2,2. Then, if there were additional non-quantum states in S ′
2,2, some of

these effects would give negative probabilities, which is impossible.
We know that the product effects are allowed onS2,2. Applying the transformation

L ⊗ L , some of the corresponding effects in S ′
2,2 are the maps

ρ �→ Tr (P1 ⊗ P2ρ) ,

where P1 and P2 are one-dimensional projectors. If T ∈ G2,2 � G4 is any reversible
transformation onS2,2, denote the corresponding transformation onS ′

2,2 by T ′ ∈ G ′
2,2.

It maps states ρ to T ′(ρ). Suppose we could show the equation

Tr(P1 ⊗ P2T ′(ρ)) = Tr((T ′)−1(P1 ⊗ P2)ρ). (7)

Then we would be done: due to Postulate 3, transformations T ′ ∈ G ′
2,2 can map every

pure product state to every other pure state, in particular, to every pure entangled
quantum state. This way, (T ′)−1 in the equation above would generate all entangled
quantum effects from the product effect P1 ⊗ P2. This is exactly what we want.

Why does Eq. (7) hold? Up to a factor 1/4, the map L⊗2 is an isometry: for all
x, y ∈ R

4 ⊗ R
4, we have

Tr
(
L⊗2(x)L⊗2(y)

) = 1

4
〈x, y〉.

Thus, translating Eq. (7) from S ′
2,2 back to S2,2, we have to prove that

〈E1 ⊗ E2, T ω〉 = 〈T −1(E1 ⊗ E2),ω〉.

This is satisfied if T T = T −1 for all T ∈ G2,2. In fact, we have

Lemma 9 All reversible transformations T ∈ G2,2 act as orthogonal matrices on
R

4 ⊗ R
4.
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The proof of this lemma is non-trivial and somewhat surprising: it uses Schur’s
Lemma from group representation theory, together with the fact that there exist
certain kinds of SWAP and CNOT operations on two bits. These operations are
constructed by using Postulate 2.

Due to Lemma 9, all the above argumentation becomes solid: Eq. (7) is valid, and
we get

Lemma 10 S ′
2,2 is the set of 2-qubit quantum states, and the allowed effects are the

quantum effects.

So what about the transformations? First of all, we know that that the transforma-
tion group of a single bitmust be SO(3)—it cannot be O(3), because local reflections
would correspond to partial transpositions which generate negative eigenvalues on
entangled states. Furthermore, every transformation T ∈ G2,2 is a linear isometry on
the set of self-adjoint 4× 4-matrices that maps the set of density matrices into itself.

According to Wigner’s Theorem [38, 39], only unitary and anti-unitary maps
satisfy this. However, due to Wigner’s normal form, anti-unitary maps generate
reflections in some Bloch ball faces of the state space, which is impossible due
to Postulate 2.

So G2,2 is a subgroup of the unitary group. Due to Postulate 3, it maps some pure
product state to an entangled state. In otherwords,G2,2 contains an entangling unitary,
and also all local unitaries. It is a well-known fact from quantum computation [40]
that these transformations generate the full unitary group.

We have thus shown

Lemma 11 The group of reversible transformations G ′
2,2 on two bits corresponds to

the unitary conjugations, i.e. the maps ρ �→ UρU † with U ∈ SU (4).

It is now clear that what we did for two bits can also be done for n bits. Since every
SN is contained in some S2n for n large enough, we can use the subspace postulate to
conclude that every state space SN is equivalent to the quantum N -level state space.

6 Conclusions and Outlook

We have shown that the Hilbert space formalism of quantum theory can be
reconstructed from four natural, information-theoretic postulates. We hope that
this reconstruction—together with other recent axiomatizations [8, 9, 11–14]—
contributes to a better understanding of quantum theory, and sheds light on some
of the mysterious aspects of its formalism, such as the appearance of complex num-
bers or unitaries.

One of the main motivations for this work, as mentioned in the introduction, was
to find a “minimal” set of postulates, in the sense that removing or weakening any
one of the postulates yields new solutions in addition to quantum theory. Classifying
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these additional solutionsmeans to analyze “quantum theory’s closest cousins”: these
are theories that are operationally close to quantum theory, but not described by the
Hilbert space (or C∗-algebra) formalism. These theories make physical predictions
that differ from quantum theory [41] and that can be tested experimentally [42].

Have we achieved the goal of minimality? The postulate which seems to be the
strongest is Postulate 2, which was called “Subspace Axiom” by Hardy [8]. In fact,
in follow-up work [43, 44], we show that Postulate 2 can be significantly weakened:
it can be replaced by the requirements that generalized bits carry exactly one bit of
information and not more, and that the state of any system can be reversibly encoded
in a sufficiently large number of generalized bits. As a further benefit, quantum theory
with superselection rules appears as an additional solution. In particular, continuous
reversible interaction is sufficient to single out d2 = 3 as the dimensionality of the
Bloch ball [43]. On the other hand, Postulate 1 seems crucial: removing it yields at
least quantum theory over the real numbers as an additional solution.

It is currently an open problem whether classical probability theory and quantum
theory are the unique theories satisfying Postulates 1, 3 and 4. It seems unlikely
that Postulate 4 can be dropped: adding restrictions to the possible measurements in
quantum theory may allow to construct a counterexample. Furthermore, all current
axiomatizations seem to indicate that some assumption on the group of reversible
transformations, as in Postulate 3, is crucial, since this gives the power of group rep-
resentation theory and the Euclidean structure of the Bloch ball. Interesting progress
has been made recently by Hardy [12], where the corresponding axiom only postu-
lates the existence of suitable permutations.

Thus, we have not yet fully achieved the goal of minimality, but we think that
our set of postulates is very close to it. In particular, having as few background
assumptions as possible may yield interesting new state spaces that are overlooked if
the full pictorial background framework of quantumcircuits is assumed. For example,
one might consider the following weaker version of Postulate 1.

Postulate 1’ For every triple (but not necessarily for every pair) of state spaces A,
B and C , there is a tomographically-local composite ABC which satisfies all other
postulates.

It remains an interesting open problem to find a minimal set of axioms, prove
its minimality, and systematically characterize all theories which satisfy some of
these axioms, but not all of them. Besides being of interest in its own right, thorough
understanding of alternative routes that nature might have taken may be of crucial
importance for experimental tests of quantum theory, such as tests for higher-order
interference [47].
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Quantum from Principles

Giulio Chiribella, Giacomo Mauro D’Ariano and Paolo Perinotti

1 Introduction

Quantum foundations is an old field—as old as quantum mechanics itself. Among
the early works stand out the seminal papers by Einstein, Podolski, and Rosen [1] and
Schrödinger [2], who addressed quantum entanglement for the first time, exploring
quantum mechanics within the Hilbert space formulation. Almost at the same time,
Birkhoff and von Neumann [3] looked at the theory in a wider framework allowing
for alternative theories. From that angle, it was natural to ask what is special about
quantummechanics andwhyNature obeys its peculiar laws. The take of Birkhoff and
von Neumann was that quantum theory should be regarded as a new form of logic,
whose laws could be derived from physically motivated axioms. This programme
gave rise to the tradition of quantum logic [4–8], whose ramifications are still the
object of active research [9].

Researchers in quantum logic managed to derive a significant part of the quantum
framework from logical axioms. However, there is a general consensus that the
axioms put forward in this context are not as insightful as one would have hoped.
For both experts and non-experts, it is hard to figure out what is the moral of the
quantum-logic axiomatizations.What is special about quantum theory after all?Why
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should quantum theory be preferred to alternative theories? Not many answers can
be found in the popular accounts of quantum logic (see e.g. the Wikipedia entry
[10]) and even understanding what the axioms are requires delving into a highly
specialized literature.

The ambition to find a more insightful axiomatization reemerged with the rise
of quantum information. The new field showed that the mathematical axioms of
quantum theory imply striking operational consequences, such as quantum key dis-
tribution [11, 12], quantum algorithms [13, 14], no-cloning [15, 16], quantum tele-
portation [17] and dense coding [18]. A natural question is: Can we reverse the
implication and derive the mathematics of quantum theory from some of its opera-
tional consequences? This question is at the core of a research programme launched
by Fuchs [19] and Brassard [20], which can be synthesized by the motto “quantum
foundations in the light of quantum information” [21].1 The ultimate goal of the
programme is to reconstruct the whole structure of quantum theory from few simple
principles of information-theoretic nature.

One may wonder why quantum information theorists should be more successful
than their predecessors in the axiomatic endeavour. A good reason is the following: In
the pre-quantum information era, quantum theory was viewed like an impoverished
version of classical theory, lacking the ability to make deterministic predictions
about the outcomes of experiments. Clearly, this perspective offered no vantage point
for explaining why the world should be quantum. Contrarily, quantum information
provided plenty of positive reasons for preferring quantum theory to its classical
counterpart. Turning some of these reasons into axioms then appeared as a promising
route towards a compelling axiomatization. Pioneering works along this route are
those byHardy [23] andD’Ariano [24, 25].More recently, the programmeflourished,
leading to an explosion of new axiomatizations [26–33].

Here we review the axiomatization of Ref. [26]. In this work, quantum theory
is derived from six principles, formulated in a general framework of theories of
information. The first five principles—Causality, Purity of Composition, Local Dis-
criminability, Perfect State Discrimination, and Ideal Compression—express ordi-
nary properties that are shared by quantum and classical information theory: such
principles define what we call a standard theory of information. Among all standard
theories of information, the sixth principle—Purification—identifies quantum the-
ory uniquely. Purification states that every random preparation can be simulated via
non-random preparation procedure, in which the system is prepared together with an
environment. An agent that has access to both the system and the environment would
then have maximal control of the preparation—maximal in the sense that no other
agent could conceivably have higher control. The moral of our work is that Quan-
tum Theory is the theory that allows maximal control of randomness, giving us—at
least in principle—the power to control all possible preparations and all possible
dynamics.

1This was also the title of one influential conference, held inMay 2000 at the Université deMontréal
[22], which kickstarted the new wave of quantum axiomatizations.
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The chapter is structured as follows: in Sect. 2 we provide an introduction to the
framework of operational-probabilistic theories—general theories of information
arising from the combination of the circuit framework with probability theory. Then,
Sect. 3 presents the background to the reconstruction, discussing the main standing
assumptions—finite-dimensionality, non-determinism, and closure under limits—
and introducing a few basic operational tasks: signalling, collecting side information,
doing state tomography, distinguishing states, compressing information, and simu-
lating preparations. The principles are then analyzed in Sect. 4. Section5 provides a
guided tour through the main results in our reconstruction, showing how the main
features of quantum theory can be derived directly from the principles. Finally, the
conclusions are drawn in Sect. 6.

2 Operational-Probabilistic Theories

In order to reconstruct quantum theory and the features of quantum information, one
needs a framework capable to describe a variety of alternative theories. Different
frameworks have been proposed for this scope, under the broad name of general
probabilistic theories [23–27, 34–39]. Our reconstruction is based on a specific vari-
ant of general probabilistic theories, whichwe call operational-probabilistic theories
(OPTs) [26, 34]. OPTs are an extension of probability theory, in which events can
be connected into circuits. Technically, OPTs arise from the combination of the cate-
gorical framework of Abramsky and Coecke [40–42] with the toolbox of elementary
probability theory. We regard such a combination as the natural mathematical object
describing a “general theory of information”. In the following we present a concise
summary of the OPT framework.

2.1 Operational Structure

2.1.1 Systems

Systems are labels, which determine how different events can be connected to one
another. We denote systems by capital letters, such as A,B,C, and so on. The letter I
will be reserved for the trivial system, representing “nothing”.2 The set of all systems
under consideration will be denoted by Sys.

Every two systems A and B can be considered together as a composite system,
denoted by A ⊗ B. The composition of systems is associative, namely

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C ∀A,B,C (1)

2More precisely, “nothing that the theory cares to describe”.
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and has the trivial system as identity element, namely

A ⊗ I = I ⊗ A = A ∀A. (2)

The second condition means that considering system A together with “nothing” is
the same as considering system A alone.

2.1.2 Events

An event of type A → B represents the occurrence of a transformation that converts
the input system A into the output system B. An event E of type A → B will be
represented graphically as

A E B .

The set of all events of type A → B will be denoted by Transf(A → B), identifying
events with the corresponding transformations.

When the input and output systems are composite systems, we draw boxes with
multiple wires. For example, the box

A

E
B

C D
:= A⊗C E B⊗D

represents an event of type (A ⊗ C) → (B ⊗ D).
Some types of events are particularly important and deserve a name of their own.

An event of type I → A is a preparation-event (or simply, a preparation), that is, an
event that makes systemA available to further processing. An event of type A → I is
an observation-event (or simply, an observation), after which system A is no longer
available. Preparation- and observation-events will be represented as

ρ A := I ρ A

and

A m := A m I ,

respectively. We will often use the Dirac-like notation (a| and |ρ) for the observation
a and the preparation ρ, respectively.

Events of type I → I will be called scalars [40]. Scalars will be represented “out
of the box”, as

s := I s I .
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Later, scalars will be associated to probabilities. For the moment, however, they are
just a special type of events.

2.1.3 Composition of Events

Events can be connected into networks through the following operations

1. Sequential composition: an event of type A → B can be connected to an event of
type B → C, yielding an event of type A → C.

2. Parallel composition: an event of type A → A′ can be composed with an event
of type B → B′, yielding an event of type (A ⊗ B) → (A′ ⊗ B′).

Intuitively, the sequential composition represents two events happening at “sub-
sequent time steps”.3 The sequential composition of two events E andF of matching
types is denoted by F ◦ E and is represented graphically as

A E B F C := A F ◦ E C .

This graphical notation is justified by the requirement that sequential composition
be associative, namely

G ◦ (F ◦ E) = (G ◦ F) ◦ E, (3)

for arbitrary events E,F andG ofmatching types. In addition to associativity, sequen-
tial composition is required to have an identity element for every system. The identity
on system A, denoted by IA, is the special event of type A → A identified by the
conditions

A IA A E B = A E B (4)

and

B F A IA A = B F A , (5)

required to be valid for arbitrary systems A,B and arbitrary events E and F of types
A → B and B → A, respectively. The intuitive content of the above equations is
that IA represents the process that “does nothing on the system”. Consistently, we
use the graphical notation

A := A IA A .

3Per se, themathematical formalismdoes not force us to interpret the order of sequential composition
as an order in time. Nevertheless, composition in time is the reference situation that we will have
in mind when phrasing our axioms.
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Mathematically, conditions (3)–(5) impose that the events form a category [43, 44],
in which the systems are the objects and the events are the arrows. For the sequential
composition of a preparation and an observation we will often use the Dirac-like
notation,

(a|ρ) := ρ A a . (6)

Let us consider parallel composition. The parallel composition of two events E
and F is denoted as E ⊗ F and is represented graphically as

A E A′

B F B′ := A

E ⊗ F
A′

B B′ .

The graphical notation is justified by the requirement of the following condition

(E ⊗ F) ◦ (G ⊗ H) = (E ◦ G) ⊗ (F ◦ H), (7)

where E,F,G, and H are arbitrary events of matching types. Such condition is
necessary for the graphical notation to make sense, since in graphical notation the
two sides of Eq. (7) look exactly the same. In addition to Eq. (7), parallel composition
is required to satisfy the condition

IA⊗B = IA ⊗ IB. (8)

Mathematically, the presence of parallel composition turns the category of events
into a strict monoidal category, whose key properties are summarized by Eqs. (1),
(2), (7), and (8). We denote such category by Transf.

2.1.4 Reversible Events

An event E of type A → B is reversible iff there exists another event F , of type
B → A, such that

A E B F A = A , (9)

and

B F A E B = B . (10)

When this is the case, we write F = E−1 and we say that systems A and B are
operationally equivalent (or simply equivalent).

We denote by RevTransf(A → B) the set of reversible events of type A → B.
Such set (which may be empty) depends on the specific theory. In general, we require
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the existence of a reversible event that swaps pairs of systems. Given two systems
A and B, the swap of A with B—denoted by SA,B—is a reversible event of type
(A ⊗ B) → (B ⊗ A) satisfying the condition

A

SA,B

B F B′

SB′,A′
A′

B A E A′ B′ =
A E A′

B F B′ , (11)

for arbitrary systems A,B,A′,B′ and arbitrary events E,F , as well as the conditions

A
SA,B

B
SB,A

A

B A B
= A

B
(12)

and

A

SA,B⊗C

B

B C

C A

=
A

SA,B

B

B A
SA,C

C

C A

, (13)

The presence of the swap, with the related Eqs. (11)–(13), turns the strict monoidal
category into a strict symmetric monoidal category [45, 46] (strict SMC, for short).

2.1.5 Tests

A test represents a process, which can generally be non-deterministic—i.e. it can
result in multiple alternative events. Specifically, a test of type A → B is collection
of events of type A → B, labelled by outcomes in a suitable outcome set X. The test
E := {Ex }x∈X is represented graphically as

A E B = A {Ex }x∈X B .

When two events/transformations belong to the same test, we say that they are coex-
isting.

The set of tests of typeA → Bwith outcomes inXwill be denoted byTests(A →
B,X). We will restrict our attention to tests with a finite outcome set.

Tests with |X| = 1 are called deterministic, because only one event can take place.
We will often identify a deterministic test {Ex0} with the corresponding event Ex0 ,
saying that Ex0 is a deterministic event (or a deterministic transformation). The deter-
ministic transformations form a strict symmetric monoidal subcategory of Transf,
denoted by DetTransf.

Some types of tests are particularly important and deserve a name of their own.
A test of type I → A is a preparation-test (or an ensemble), which prepares system
A in a non-deterministic way, with the possible preparations labelled by different
outcomes. A test of type A → I is an observation-test, corresponding to a demolition
measurement that absorbs system A while producing an outcome.
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2.1.6 Composition of Tests

Not all collections of events are “tests”. Whether or not a specific collection is a test
is determined by the theory, compatibly with two basic requirements:

1. the set of tests must be closed under sequential and parallel composition
2. the set of tests must contain deterministic tests corresponding to reversible events.

Let us discuss these requirements in more detail:

1. The sequential composition of two tests E = {Ex }x∈X and F = {
Fy
}

y∈Y of
matching types is defined as

F ◦ E := {Fy ◦ Ex
}

(x,y)∈X×Y .

The test F ◦ E represents a cascade of two (generally non-deterministic) pro-
cesses, wherein each process can result in a number of alternative events. Simi-
larly, the parallel composition of two tests is defined as

E ⊗ F := {Ex ⊗ Fy
}

(x,y)∈X×Y

and represents two non-deterministic processes occurring in parallel. The com-
position of tests induces a composition of their outcome spaces via the Cartesian
product. As a consequence, the set of all outcome spaces must be closed under
this operation. We will denote such a set by Outcomes.

2. If U is a reversible event of type A → B, we require that there exists a determin-
istic test U := {U}. In particular, there must be a deterministic test IA := {IA}
corresponding to the identity on systemA and a deterministic testSA,B := {SA,B}
corresponding to the swap of systems A and B.

Note that all the basic equations valid for events can be lifted to tests: for example,
the identity test acts as identity element with respect to sequential composition, that
is, one has

A IA
A E B = A E B (14)

and

B F A IA
A = B F A , (15)

for arbitrary systems A,B and for arbitrary tests E and F of types A → B and
B → A, respectively. Since events form a strict SMC, also the tests form a strict
SMC, which we denote by Tests.
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2.1.7 Summary About the Operational Structure

Summarizing the ideas introduced so far, an operational structure consists of a triple

Op = (Transf, Outcomes, Tests),

where Transf is a strict symmetric monoidal category, Outcomes is a collection
of sets closed under Cartesian product, and Tests is a strict symmetric monoidal
category, related to Transf and Outcomes as described in the previous paragraph.
Intuitively, the operational structure describes

1. what can be done (connecting tests)
2. what can be observed (outcomes), and
3. what can happen (events).

2.2 Probabilistic Structure

The goal of a physical theory is not only to describe a class of experiments, but also
to make predictions about the outcomes of such experiments. In the following we
show how this can be accomplished by adding a probabilistic structure on top of the
operational structure.

2.2.1 Assigning Probabilities

An experiment consists in sequence of tests that starts from a preparation-test and
ends with an observation-test, leaving no open wires, as in the following example

ρ A T B m . (16)

If we compose all the tests involved in an experiment, we obtain a single test,
which transforms the trivial system into itself. In order to make predictions on the
outcomes of the experiment, we need a rule assigning a probability to the events of
such test. The rule is provided by the probabilistic structure of the theory:

Definition 1 (Probabilistic structure) Let Op be an operational structure. A proba-
bilistic structure for Op is a map Prob : Transf(I → I) → [0, 1], which associates
a given scalar s to a probability Prob(s), in accordance to the following two require-
ments:

1. Consistency:
∑

x∈X Prob(sx ) = 1 for every outcome set X ∈ Outcomes and for
every test s ∈ Tests(I → I,X)

2. Independence: Prob(s ⊗ t) = Prob(s) Prob(t) for every pair of scalars s and t .
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The consistency requirement guarantees that we can interpret Prob(sx ) as the
probability of the outcome x ∈ X. The independence requirement guarantees that
experiments that involve independent tests on two systems give rise to uncorrelated
outcomes. As observed by Hardy [27, 38], independence is equivalent to the require-
ment that probabilities can assigned to the outcomes of an experiment in a way that
is independent of the context in which the experiment is performed. Note that the
map Prob needs not be surjective: for example, in a deterministic theory the range
of Prob are only the values 0 and 1.

We are now ready to give the formal definition of OPT:

Definition 2 An operational-probabilistic theory � is a pair (Op, Prob) consisting
of an operational structure Op and of a probabilistic structure for Op.

2.2.2 Statistically Equivalent Events

Once probabilities are introduced, it is natural to identify events that give rise to the
same probabilities in all possible circuits. Precisely, we say that two events of type
A → B, say E and E ′, are statistically equivalent iff

Prob
(

ρ
A E B

m
R

)
= Prob

(

ρ
A E ′ B

m
R

)

for every system R, every preparation-event ρ ∈ Transf(I → A ⊗ R) and every
observation-event m ∈ Transf(B⊗R → I). We denote by [E] the equivalence class
of the event E .

Equivalence classes can be composed in sequence and parallel in the obvious way

[F ] ◦ [E] := [F ◦ E], [E] ⊗ [F] := [E ⊗ F]

and it is easily verified that both definitions are well-posed. Furthermore, [IA] and
[SA,B] behave like the identity on A and the swap between A and B, respectively. As
a result, the equivalence classes of events form a strict SMC, which we denote by[
Transf

]
.

Similar considerations apply to tests: the equivalence class of a test E = {Ex }x∈X
is defined as [E] := {[Ex ]}x∈X and the sequential/parallel composition of equivalence
classes of tests are induced by the sequential/parallel composition of events:

[F ] ◦ [E] := [F ◦ E], [E] ⊗ [F ] := [E ⊗ F ].

Again, the equivalence class of [IA] and [SA,B] behave like the identity and the swap.
As a result, the equivalence classes of tests form a strict SMC, which we denote by[
Tests

]
.
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2.2.3 The Quotient OPT

The notion of statistical equivalence allowed us to transform the original opera-
tional structure Op = (Transf, Outcomes, Tests) into a new operational structure[
Op
] := (

[
Transf

]
, Outcomes,

[
Tests

]
), which we call the quotient operational

structure. The operational structure [Op] comes with an obvious probabilistic struc-
ture [Prob], defined as

[
Prob

]
( [s] ) := Prob(s) ∀s ∈ Transf(I → I).

It is indeed immediate to verify that the consistency and independence conditions in
Definition 1 are satisfied. As a result, the original OPT � = (Op, Prob) has been
turned into a new OPT [�] := ([Op], [Prob]), which we call the quotient OPT.
Intuitively, the quotient OPT contains all the information that is statistically relevant,
disregarding those distinctions that have no consequences for the purpose of making
probabilistic predictions.

In the following we will focus on quotient OPTs: by default, an OPT will be a
quotient OPT. Accordingly, we will omit the symbol of equivalence class every-
where and write � = (Op, Prob), assuming that equivalence classes have been
already taken from the start. This is equivalent to requiring the following separation
property [47]:

Definition 3 An OPT satisfies the separation property iff for every pair of systems
A and B and every pair of events E and E ′ of type A → B the condition

Prob

(

ρ

A E B

m
R

)

= Prob

⎛

⎝ ρ

A E ′ B
m

R

⎞

⎠
∀R ∈ Sys
∀ρ ∈ Transf(I → A ⊗ R)

∀m ∈ Transf(B ⊗ R → I)

implies E = E ′.

In a quotient OPT preparation-events (respectively, observation-events) will be
called states (respectively, effects) andwewill use the notationSt(A) := Transf(I →
A) (respectively, Eff(A) := Transf(A → I)).

2.2.4 Vector Space Representation of an OPT

OPTs satisfying the separation property have a convenient representation in terms of
ordered vector spaces and positive maps. The construction proceeds in four steps:

1. The separation property guarantees that a scalar s can be identified with its prob-
ability Prob(s). Hence, from now on we will omit Prob and will identify the set
of scalars Transf(I → I) with a subset of the real interval [0, 1].

2. By the separation property, a state ρ ∈ St(A) can be identifiedwith the real-valued
function ρ̂ : Eff(A) → R defined by
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ρ̂(m) := ρ A m

(indeed, one has ρ = σ if and only if ρ̂ = σ̂). Since real-valued functions form a
vector space, we can define the vector (sub)space spanned by the states of system
A as

StR(A) := Span
R

{ρ | ρ ∈ St(A)} .

Limiting ourselves to linear combination with positive coefficients we obtain the
proper cone St+(A), which turns StR(A) into an ordered vector space.

3. Every effect m ∈ Eff(A) defines a linear function m̂ : StR(A) → R, via the
relation

m̂

(
∑

i

ci ρi

)

:=
∑

i

ci ρ A mi , ∀{ci } ⊂ R , ∀{ρi } ⊂ St(A).

It is immediate to see that the definition is well-posed, namely m̂
(∑

i ci ρi
) =

m̂
(∑

j c′
j ρ′

j

)
whenever

∑
i ci ρi = ∑

j c′
j ρ′

j . Again, the effect m can be iden-

tified with the linear function m̂ thanks to the separation property. Taking linear
combinations of effects we obtain the vector space

EffR(A) := Span
R

{m | m ∈ Eff(A)} ,

while restricting to positive linear combinations we obtain the proper cone
Eff+(A). As a result, also EffR(A) is an ordered vector space.

4. Every event E of type A → B induces a linear map Ê : StR(A) → StR(B), via
the definition

Ê
(
∑

i

ci ρi

)

:=
∑

i

ci (E ◦ ρi ) , ∀{ci } ⊂ R , ∀{ρi } ⊂ St(A).

Again, it is not hard to see that the definition is well-posed, namely that

Ê
(∑

i ci ρi
) = Ê

(∑
j c′

j ρ′
j

)
whenever

∑
i ci ρi = ∑ j c′

j ρ′
j . Note that the map

Ê is not only linear, but also positive: indeed, it sends elements of the coneSt+(A)

to elements of the cone St+(B). We call Ê the state change associated to E .
At this point, a few remarks are in order:

1. Linearity versus convexity. Traditionally, the linearity of state changes has been
argued from the assumption that the state space St(A) is convex. However, our
argument shows that such assumption is not needed: the probabilistic structure
alone suffices to define the linear map Ê .

2. Finite versus infinite dimensional systems. For a given system A, we define DA

to be the dimension of the vector space StR(A) and we say that system A is finite
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dimensional if DA is finite. For finite systems, one has the equality EffR(A) =
StR(A)∗, where StR(A)∗ is the vector space of all linear functionals on StR(A).
For infinite dimensional systems, such an equality may not hold.

3. The no-restriction hypothesis. Since effects are identified with positive linear
functions, one has the inclusion Eff+(A) ⊆ St+(A)∗, where St+(A)∗ denotes the
dual cone of St+(A)

St+(A)∗ := { m ∈ StR(A)∗ | m(ρ) ≥ 0 ∀ρ ∈ St+(A)}. (17)

Even for finite dimensional systems, the inclusion Eff+(A) ⊆ St+(A)∗ may not
be an equality. The assumption Eff+(A) = St+(A)∗ is known as No-Restriction
Hypothesis [34]. We stress that such an assumption is not made in our derivation.

4. Transformations versus linear maps. Unlike in the case of states and effects, the
correspondence between the transformation E and the linear map Ê may not be
one-to-one. The reason for this is that the difference between two transformations
E and E ′ may show up when one applies them locally on a part of a composite
system: one can have Ê ⊗ IR �= Ê ′ ⊗ IR for some R ∈ Sys even if Ê = Ê ′. This
problemdisappears if one assumes the axiomof Local Tomography, aswewill see
later in this chapter. In the lack of Local Tomography, however, the transformation
E can still be identified with a linear map: for this purpose, one can choose the
linear map Ê⊕ defined by [47]

Ê⊕ :=
⊕

R∈Sys

Ê ⊗ IR. (18)

The map Ê⊕ transforms elements of the (infinite-dimensional) vector space
StR,⊕(A) := ⊕

R∈Sys StR(A ⊗ R) into elements of the (infinite-dimensional)
vector space StR,⊕(B) := ⊕

R∈Sys StR(B ⊗ R). Then, the separation property

guarantees that the correspondence between E and Ê⊕ is one-to-one.
5. The vector space of transformations. So far we have defined the vector spaces

of states and effects. A vector space of transformations can be defined using the
one-to-one correspondence with the linear maps in Eq. (18) and setting

TransfR(A → B) := Span
R
{Transf(A → B)}. (19)

Again, a proper cone Transf+(A → B) can be defined by restricting the atten-
tion to linear combinations with positive coefficients. Note that, in general, the
vector space TransfR(A → B) and the cone Transf+(A → B) can be infinite-
dimensional even if both systems A and B are finite dimensional. However, this
is not the case when the theory satisfies the Local Tomography.
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2.2.5 Closure Under Coarse-Graining

A key notion that comes with the probabilistic structure is the notion of coarse-
graining: given a test T = {Tx }x∈X, one can decide to identify some outcomes, thus
obtaining another, coarse-grained test. Mathematically, a coarse-graining is defined
by partitioning the outcome set X into mutually disjoint subsets {Xy}y∈Y. Relative
to such partition, the coarse-graining of the test T is the test T ′ = {T ′

y }y∈Y defined
by4

T ′
y :=

∑

x∈Xy

Tx , (20)

setting T ′
y = 0 for Xy = ∅, where 0 is the zero element of the vector space

TransfR(A → B). Note that, by calling T ′ a test we have implicitly made two
assumptions, namely that

1. the set Y belongs to Outcomes
2. the collection {T ′

y }y∈Y ⊂ TransfR(A → B) belongs to Tests(A → B,Y).

From now on, wewill require that our OPT is closed under coarse-graining, meaning
that the above conditions are satisfied.

By coarse-graining over all outcomes of a test T ∈ Tests(A → B,X)

one obtains a deterministic test, identified with the deterministic transformation
T := ∑

x∈X Tx ∈ DetTransf(A → B). In particular, when a preparation test
ρ ∈ Tests(I → A,X) satisfies

∑
x∈X ρx = ρ we say that the test ρ is an ensemble

decomposition of ρ.

2.2.6 Summary of the OPT Framework

Let us sum up the main points discussed so far. We defined an OPT as a pair
� = (Op, Prob), consisting of an operational structure Op = (Transf, Outcomes,

Tests) and of a probabilistic structure Prob that assigns probabilities to scalars. We
restricted our attention to OPTs that satisfy the Separation Property (Definition 3),
which implies that one can identify scalars with probabilities, states with elements
of suitable vector spaces, and effects with linear functionals over them. Transforma-
tions with nontrivial input and output induce linear maps on the corresponding state
spaces. Finally, in agreement with the probabilistic interpretation, we demanded that
the theory � be closed under coarse-graining.

4Note that the summation is well-defined thanks to the vector space structure of TransfR(A → B).
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3 Background of the Quantum Reconstruction

In this section we provide some background that will be useful for our reconstruc-
tion of quantum theory. We start by reviewing three standing assumptions: finite-
dimensionality, non-determinism, and closure under operational limits. We will then
review the operational tasks that motivate our axioms.

3.1 Standing Assumptions

Here we introduce three standing assumptions that will be made in the rest of the
chapter. These assumptions are common to all recent axiomatizations of quantum
theory, and could be even incorporated in theOPT framework.We keep them separate
from the rest, both for clarity of presentation and for the sake of maintaining the OPT
framework as flexible as possible. The assumptions are the following:

1. Finite dimensionality. We restrict our attention to finite systems, i.e. systems with
finite dimensional state spaces. Operationally, this means that the state of every
system can be identified from the statistics of a finite number of finite-outcome
measurements. Of course, the implicit assumption here is that finite systems exist
and form a sub-theory of our theory, meaning that the operational structure Op
contains a non-trivial substructure FiniteOp, consisting of transformations, out-
come sets, and tests involving only finite systems.

2. Non-determinism.While theOPT framework accommodates a variety of theories,
herewe focus onOPTs that are non-deterministic,meaning that there exists at least
one experiment for which the outcome is not determined a priori. Mathematically,
this means that the range of the probability function Prob is not just {0, 1}. Note
that non-determinism is a weaker assumption than convexity of the state spaces:
there exist indeed examples of theories—such as Spekkens’ toy theory [48]—that
are non-deterministic and yet do not have convex state spaces.

3. Closure under operational limits. Suppose that (Tn)n∈N is a sequence of trans-
formations of type A → B and that T is an element of the vector space
TransfR(A → B) such that

lim
n→∞ ρ

A Tn
B

m
R

= ρ

A T B

m
R

∀R ∈ Sys
∀ρ ∈ Transf(I → A ⊗ R)

∀m ∈ Transf(B ⊗ R → I),

meaning that the probability of every experiment involving Tn converges to the
probability of an hypothetical experiment involving T . When this is the case, we
assume that T belongs to Transf(A → B). Operationally, one can think of the
sequence (Tn)n∈N as a limit procedure to implement the transformation T .
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3.2 Basic Operational Tasks

We now give a brief list of the operational notions on which our axioms are based.

3.2.1 Signalling

When a number of devices are connected into a network, it is natural to ask whether
one node of the network can signal to another. For example, given the experiment

ρ

A T B

E
C S D

m
R S

(21)

one can ask whether the choice of the test T can influence the outcome of the test S.
Precisely, the question is whether or not the marginal probability distribution for the
outcomes of S (obtained by summing over the outcomes of all the other tests in the
network) depends on T . Denoting the marginal probability distribution by p(x |T ),
x ∈ X, we say that the node occupied by the test T does not signal to the node
occupied by the test S iff

p(x |T 0) = p(x |T 1) ∀x ∈ X,

for every possible choice of tests T 1 and T 2. Similarly, one can ask whether the
node occupied by the testS can signal to the node occupied by the test T . Now, note
that the test S is performed after the test T : if the node occupied by S can signal
to the node occupied by T we say that the circuit of Eq. (21) allows for signalling
from the future to the past.

3.2.2 Collecting Side Information

Suppose that the test T = {Tx }x∈X is obtained from the test T ′ = {Tz}z∈Z via
coarse-graining, namely

Tx =
∑

z∈Zx

T ′
z ∀x ∈ X,

where {Zx }x∈X is a partition of Z into disjoint subsets. In this case we say that T ′
refines T . Now, it is convenient to relabel the outcomes of T ′ as z = (x, y), with
x ∈ X and y ∈ Zx , and to write T ′

x,y in place of T ′
z . In this way, we can think of

the random variable y as a side information, which is not accessible to the agent
Alice performing the test T , but may be accessible to some other agent Eve. This
picture is particularly relevant to cryptographic scenarios, wherein Eve could be
an eavesdropper attempting to collect as much information as possible. In all such
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scenarios, a special role is played by those transformations that do not leak any useful
side information. We call such transformations pure:

Definition 4 We say that a transformation E is pure5 iff for every test T containing
E and for every test T ′ refining T one has

T ′
x0,y = py Tx0 , (22)

where x0 is the outcome such that Tx0 = E and {py} is a probability distribution.

Informally, the purity condition (22) states that the side information possessed by
Eve is uncorrelated with the transformation E taking place in Alice’s laboratory. We
denote the set of pure transformations of type A → B by PurTransf(A → B). In the
special case of transformations with trivial input we will use the notation PurSt(A)

(respectively, PurEff(A)), referring to pure states (respectively, pure effects). An
pure test is a test consisting of pure transformations.

Transformations that are not necessarily pure will be called mixed. Among the
mixed transformations, the ones that are in the interior of the cone Transf+(A → B)

play an important role. They are defined as follows:

Definition 5 A transformation E ∈ Transf(A → B) is called internal iff for every
transformation F ∈ Transf(A → B) there exists a transformation G and a scaling
constant λ > 0 such that

1. E = λF + G
2. λF and G coexist in a test.6

Roughly speaking, an internal transformation is compatible with the occurrence
of any other transformation of the same type. Internal transformations with trivial
input (output) will be called internal states (internal effects).

5In previous works, we used different names for transformations that do not allow for side informa-
tion: in Refs. [26, 34] they were called atomic, while in the popularized version of Ref. [49] they
were called fine-grained. We apologize with our readers for the changes of terminology, due to an
ongoing search for the word that best captures this operational concept. In this chapter, we adopted
the word pure, because (i) this term is the standard one in the case of states and (ii) using the same
term for transformations should hopefully ease the reading. Still, a warning is in order: when the set
of transformations Transf(A → B) is convex, the pure transformations PurTransf(A → B) may
not coincidewith the extremepoints ofTransf(A → B). For example, in quantum theory the identity
effect IA is an extreme point of the set of effects, but is not pure in the sense of our definition because
it can be decomposed e.g. as IA = ∑dA

n=1 Pn , where the effects {Pn = |n〉〈n| | n = 1, . . . , dA}
represent a projective measurement on some orthonormal basis {|n〉 | n = 1, . . . , dA}.
6Note that, in principle, our definition of “internal transformations” may not include all the trans-
formations in the interior of the cone, because the λF and G may fail to coexist in a test. However,
this annoying discrepancy disappears under the mild assumption that the set of transformations is
convex. Later, we will justify this assumption on the basis of the Causality axiom.
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3.2.3 State Tomography

The task of state tomography consists in identifying the state of a system from the
statistics of a restricted set of observations. Suppose that an experimenter is able to
perform a set of observation-tests and let M be the set of all effects appearing in such
tests.

Definition 6 We say that the effects in M are tomographically complete for system
A iff, for every pair of states ρ and ρ′ of system A, one has the implication

ρ A m = ρ′ A m ∀m ∈ M

=⇒ ρ′ A = ρ A .

In the contrapositive: if two states are different, then the difference can be detected
from the statistics of some effect in M.

Let us consider state tomography for composite systems. Suppose that two experi-
menters Alice and Bob performmeasurements on two systemsA and B, respectively,
and that Alice (Bob) is able to perform the set of measurements with effects M (N).
Then, by coordinating their choices of measurements and by communicating the
outcomes to each other, Alice and Bob can observe the statistics of all product mea-
surements. Hence, their set of measurement effects will be

M ⊗ N := {m ⊗ n | m ∈ M , n ∈ N}.

Now the question is: is there a choice of measurement effects M and N such that the
set M ⊗ N tomographically complete? In the affirmative case, we say that system
A ⊗ B allows for local tomography:

Definition 7 System A⊗B allows for local tomography iff, for every pair of states
ρ, ρ′ ∈ St(A ⊗ B), one has the implication

ρ
A a
B b

= ρ′
A a
B b

∀a ∈ Eff(A),

∀b ∈ Eff(B)
(23)

=⇒ ρ
A

B
= ρ′ A

B
(24)

More generally, we have the following

Definition 8 An K -partite system A = ⊗K
k=1 Ak allows for local tomography iff

for every k ∈ {1, . . . , K } there exists a set of measurement effects Mk on system Ak

such that the set
⊗K

k=1 Mk is tomographically complete.
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For a given OPT, it is easy to see that the following conditions are equivalent:

1. every multipartite system allows for local tomography
2. every bipartite system allows for local tomography.

In other words, the possibility of local tomography for arbitrary composite systems
can be established by just checking bipartite systems.

3.2.4 State Discrimination

The task of state discrimination can be presented as a game featuring a player and a
referee. The referee prepares a physical system A in a state ρx , belonging to some
set {ρx | x ∈ X} known to the player. The player is asked to guess the label x . In
order to do that, she performs a measurement m with outcomes in X: upon finding
the outcome x ′, she will guess that the state was ρx ′ . If the player guesses right all
the times, we say that the states are perfectly distinguishable:

Definition 9 The states {ρx | x ∈ X} are perfectly distinguishable iff there exists a
measurement m such that

(mx |ρx ′) = δx,x ′ ∀x, x ′ ∈ X.

When this is the case, we say that m is a discriminating measurement.

Note that, in order to be perfectly distinguishable, the states must be

1. normalized, namely ‖ρx‖ = 1∀x ∈ X, where ‖ · ‖ is the operational norm [34]
given by ‖ρ‖ = supa∈Eff(A) (a|ρ)

2. non-internal: indeed, if a state ρx ′ is internal, then (mx |ρx ′) = 0 implies mx = 0,
in contradiction with the condition (mx |ρx ) = 1.

Note that a priori an OPT may not have any distinguishable states at all. However,
the existence of distinguishable states is essential if we want our theory to include
classical computation and classical information theory.

3.2.5 Ideal Compression

A preparation-test ρ ∈ Tests(I → A,X) can be thought as describing a source of
information. An interesting question is how well such information can be transferred
from the original system to another physical support, say system B. An encoding
of the preparation-test ρ is a deterministic transformation E ∈ DetTransf(A →
B), which transforms ρ into a new preparation-test ρ′ := {E ◦ ρx }x∈X. The states
{E ◦ ρx | x ∈ X} are called codewords.
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The ideal property of an encoding is to be lossless, in the following sense:

Definition 10 An encoding E ∈ DetTransf(A → B) is lossless for the preparation-
test ρ ∈ Tests(I → A,X) iff there exists a deterministic transformation D ∈
DetTransf(B → A), called the decoding, such that

ρx A E B D A = ρx A ∀x ∈ X. (25)

We say that

• E is a lossless encoding for the state ρ ∈ DetSt(A) iff E is a lossless encoding for
every ensemble decomposition of ρ.

• E a lossless encoding of system A into system B iff E is a lossless encoding for all
states ρ ∈ DetSt(A).

The notion of encoding offers an operational way to compare the size of different
systems: naturally, we can say that system A is no larger than system B iff there
exists a lossless encoding of A into B.

Among all possible encodings, we now consider the compressions:

Definition 11 A compression of system A into system B is an encoding E ∈
DetTransf(A → B) where B is no larger than A.

How much can we compress a given state? The ultimate limit to compression is
when every state of system B is proportional to a codeword, i.e. when every state
σ ∈ St(B) can be written as σ = λ Eρx0 , for some scaling constant λ ≥ 0 and
some state ρx0 belonging to some ensemble decomposition of ρ. When this is the
case, we say that the compression E is maximally efficient. Summing up, we have
the following

Definition 12 A transformation E ∈ DetTransf(A → B) is an ideal compression
of the state ρ ∈ DetSt(A) iff it is lossless and maximally efficient.

3.2.6 Simulating Preparations

A state can be prepared in many different ways. For example, a state ρA could be
prepared by a circuit that involves many auxiliary systems, which interact with A and
are finally discarded.We refer to these systems as the environment and describe them
collectively as a single system E. Assuming that the system and the environment are
initially uncorrelated, the fact that the circuit prepares the state ρA is expressed by
the diagram

ρ0 A

U
A = ρA A

η0 E E e
(26)
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where ρ0 and η0 are the initial states of system and environment, respectively, U
is a transformation representing all the system-environment interaction, and e is a
some effect. By defining the state ρAE := U(ρ0 ⊗ η0) the circuit of Eq. (26) can be
simplified to

ρAE
A

E e
= ρ A .

(27)

To capture the idea that the environment is discarded, we require the effect e to
be deterministic:

Definition 13 A simulation of the preparation ρA is a triple (E, ρAE, e) where E is a
system, ρAE is a state of A ⊗ E, and e is a deterministic effect satisfying Eq. (27). If
the state ρAE is pure, we say that (E, ρAE, e) is a pure simulation—or, more concisely,
a purification—of ρA.

Purifications arise, for example, whenwe start from a pure product stateα0⊗η0 ∈
PurSt(A ⊗ E) and evolve it through a reversible transformation U . A purification
gives the agent maximal control over the process of preparation: indeed, an agent
possessing systems A and E can be sure that no side information can hide outside
her laboratory.

Given the importance of purifications, it is important to ask howmany of them can
be found for a given state. From a purification there are two trivial ways to generate
new ones:

1. by transforming the environment with a reversible transformation UE such that
(e|U = (e|, and

2. by appending a dummy system D to the environment, prepared in a pure deter-
ministic state δD such that ρAE ⊗ δD is pure.

We say that a pure simulation is essentially unique if it is unique up to trivial trans-
formations:

Definition 14 A state ρA has an essentially unique purification iff for every two
purifications (E, �, e) and (E′, � ′, e′) with E = E′ one has

� ′
AE

A

E
= �AE

A

E UE
E

(28)

and7

E UE
E e′ = E e . (29)

for some reversible transformation UE.

7It turns out that the second condition is automatically satisfied if the theory satisfies the Causality
axiom—see the next section.
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4 The Principles

We are now ready to state our principles for quantum theory. We divide them into
five Axioms and one Postulate.8 The five axioms are

A1 Causality. No signal can be sent from the future to the past.
A2 Purity of Composition. No side information can hide in the composition of two

pure transformations.
A3 Local Tomography. State tomography can be performed with only local mea-

surements.
A4 Perfect State Discrimination. Every normalized non-internal state can be per-

fectly distinguished from some other state.
A5 Ideal Compression. Every state can be compressed in an ideal way.

The fiveAxioms express generic and rather unsurprising features, which are common
to classical and quantum theory. We regard the theories satisfying these axioms as
standard. The Postulate is

P6 Purification. Every preparation can be simulated via a pure preparation in an
essentially unique way.

Purification brings in a radically non-classical feature: the idea that randomness can
be simulated through the preparation of pure states. We will see that this feature
singles out quantum theory uniquely among all standard OPTs.

4.1 Causality

Causality states that signals cannot be sent from the future to the past. To check
this condition, it is sufficient to look at a special class of circuits, consisting of a
single preparation-test, followed by a single observation-test. Precisely, we have the
following

Proposition 1 An OPT satisfies Causality if and only if for every system A ∈ Sys,
every preparation-test ρ ∈ Tests(I → A,X) and every pair of observation-tests
m0 ∈ Tests(A → I,Y0) and m1 ∈ Tests(A → I,Y1) one has

p(x |m0) = p(x |m1) ∀x ∈ X,

with p(x |mi ) :=∑yi ∈Yi
(myi |ρx ).

An even simpler condition for causality is given by

8We differentiate the names in order to highlight the different roles of these principles in our
reconstruction. Mathematically, there is no difference between axioms, postulates, background
assumptions, and requirements in the OPT framework (all of them are “axioms”). The point of
using different names is just to provide a more intuitive picture.
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Proposition 2 A theory satisfies Causality if and only if every systemA has a unique
deterministic effect eA ∈ DetEff(A).

In categorical terms, the uniqueness of the deterministic effect can be phrased
as “terminality of the tensor unit” in the category of deterministic transformations
DetTransf. Categories where the tensor unit is terminal have been introduced by
Coecke and Lal [50, 51], who named them causal categories.

Recall that deterministic effects can be used to describe “discarding operations”,
whereby a physical system is eliminated from the description. Now, Causality is
equivalent to the statement that every physical system can be discarded in a unique
way.Thanks toCausality,we candefine themarginals of a bipartite state in a canonical
way.

Definition 15 Let ρAB be a state of system A ⊗ B. The marginal of ρAB on system
A is the state ρA defined as

ρA A :=
ρAB

A

B e

4.1.1 Causality and No-Signalling

An important consequence of Causality is the impossibility to signal without inter-
action: in the lack of any interaction between system A an system B, it is impossible
to influence the probability distribution of a test on system A by performing tests on
system B. The precise statement is the following

Proposition 3 For every pair of systems A and B, for every state ρAB, and every
triple of tests A ∈ Tests(A → A′,X), B0 ∈ Tests(B → B′

0,Y0) and B1 ∈
Tests(B → B′

1,Y1) one has

p (x |B0) = p (x |B1) ∀x ∈ X,

with p(x |Bi ) :=∑yi ∈Yi
(eBi |Ax ⊗ Bi,yi |ρAB), i ∈ {0, 1}.

4.1.2 Causality and Conditional Tests

We introduced Causality as a negative statement:

C: the choice of tests performed in the future cannot affect the outcome probabilities
of tests performed in the past.

The axiom can be reformulated in a positive, and slightly stronger way:

C′: the outcomes of tests performed in the past can affect the choice of tests per-
formed in the future.
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Technically, Condition C′ establishes the possibility of performing conditional
tests, defined as follows:

Definition 16 Given a test T ∈ Tests(A → B,X) and a collection of tests {Sx ∈
Tests(B → C,Yx ) | x ∈ X}, the conditional test associated to them is the collection
of transformations

{Sx } � T :=
{

A Tx
B Sx

yx
C

∣
∣
∣ x ∈ X , yx ∈ Yx

}
.

Condition C′ states that such collection is actually a test, meaning that

1. the set Z =⋃x∈X {x} × Yx belongs to Outcomes, and
2. the collection {Sx } � T belongs to Tests(A → C,Z).

The relation between C and C′ is the following:

1. C′ implies C,
2. C implies that the theory can be enlarged to another theory satisfying C′: thanks

to C, all conditional tests can be included without losing the consistency of the
probabilistic structure [34].

Since conditional tests can be included, we will always assume that they are
included, i.e. we will take the validity of C′ as part of the Causality package.

4.1.3 Convexity

The ability to perform conditional tests brings naturally to convexity of the sets of
physical transformations. This result can be obtained in two steps:

1. Under the standing assumptions that the theory is not deterministic and that the
set Transf(I → I) is closed, we obtain that Transf(I → I) is the whole interval
[0, 1]. In other words, every number in the interval [0, 1] can be interpreted as
the probability of some outcome in some test allowed by the theory.

2. Given two transformations T0, T1 ∈ Transf(A → B), the convex combination
p T + (1 − p) T ′ can be generated by

(a) performing a binary test with the outcomes 0 and 1 generated with probabil-
ities p0 = p and p1 = 1 − p

(b) conditionally on the occurrence of the outcome i , performing a test T i con-
taining the transformation Ti

(c) coarse-graining over the appropriate outcomes of the conditional test.

The above observations show that convexity needs not be assumed from the start,
but can be derived from non-determinism and Causality (in the positive formulation
C′), under the standard assumption that the set of probabilities generated by tests in
the theory is closed.
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4.1.4 Rescaling

In addition to convexity, conditional tests guarantee that every state is proportional
to a normalized state. Specifically, given a state ρ of a generic system A, one can
define the normalized state ρ̃ := ρ/(eA|ρ). An approximate way to prepare the state
ρ̃ is to

1. pick a binary test {ρ0, ρ1} such that ρ1 = ρ
2. perform it N times, generating a string of outcomes (x1, x2, . . . , xN )

3. perform a conditional test that discards N − 1 systems, keeping only a system
i such that xi = 1, if such a system exists, or otherwise keeping only the first
system

4. coarse-grain over all outcomes, thus obtaining the deterministic state

ρN := (1 − pN ) ρ̃ + pN ρ̃0 pN = (eA|ρ0)N .

Clearly, the state ρN converges to ρ̃ when N goes to infinity. Hence, the standard
assumption that the set of states is closed guarantees that ρ̃ is a state allowed by the
theory.

4.2 Purity of Composition

Purity of Composition is a very primitive rule about how information propagates in
time. Mathematically, the axiom consists of the implication

A ∈ PurTransf(A → B) , B ∈ PurTransf(B → C)

=⇒ B ◦ A ∈ PurTransf(A → C),

required to be valid for all systems A,B,C ∈ Sys and for all pure transformations
A and B.

Think of a world where this were not the case. In that world, an agent Alice
could perform a test A ∈ Tests(A → B ,X) with such degree of control that,
upon knowing the outcome, she could not possibly know better what happened
to her system. Immediately after, another agent Bob could perform another test
B ∈ Tests(B → C ,Y) also having maximal knowledge of the system’s conditional
evolution. Still, some of the resulting transformations ByAx may not be pure. This
means that ByAx can be simulated by a third party—Charlie—by performing one
test {Cz}z∈Z and joining together the outcomes in a suitable subset Sxy ⊂ Z

A Ax
A By

A =
∑

z∈Sxy

A Cz
A . (30)
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Although this scenario is logically conceivable, it rises a puzzling question: What is
the extra information about? Which physical parameters correspond to the outcome
z? Surely the information is not about what happened in the first step, because
Alice already had maximal knowledge about this. Nor it is about what happened in
the second step, because Bob has maximal information about that. The outcome z
has to specify a feature of how the two time steps interacted together—in a sense,
a kind of information that is non-local in time. Quantum theory is non-local, but
not in such an extreme way! Indeed, pure transformations in quantum theory are
described by completely positive maps with a single Kraus operator, i.e. of the form
Ax (·) = Ax · A†

x and By(·) = By · B†
y , and clearly the composition of two pure

transformations is still pure: ByAx (·) = (By Ax ) · (By Ax )
†. Purity of Composition

guarantees this property at the level of first principles.

4.3 Local Tomography

Local Tomography implies that even if a state is entangled, the information it con-
tains can be extracted by local measurements. This fact reconciles the holism of
entanglement and the reductionist idea that the full information about a composite
system can be obtained by studying its parts [25].

Mathematically, Local Tomography states that product effects form a separating
set for the vector space StR(A ⊗ B). Equivalently,9 they form a spanning set for the
dual space StR(A ⊗ B)∗ ≡ EffR(A ⊗ B). Hence, we must have the conditions

EffR(A ⊗ B) = EffR(A) ⊗ EffR(B) and StR(A ⊗ B) = StR(A) ⊗ StR(B), (31)

where ⊗ in the r.h.s. denote the tensor product of finite dimensional vector spaces.
Equation (31) implies that the dimensions of the vector spaces in question satisfy the
product relation [23]

DA⊗B = DA DB. (32)

Moreover, a generic state ρ ∈ St(A ⊗ B) and a generic effect m ∈ Eff(A ⊗ B)

can be expanded as

ρ =
∑

i, j

ρi j
(
vi ⊗ w j

)
and m =

∑

i, j

mi j
(
v∗

i ⊗ w∗
j

)
, (33)

where [ρi j ] and [mi j ] are real matrices, {vi }DA
i=1 and {w j }DB

j=1 are bases for the vector

spaces StR(A) and StR(B), respectively, and {v∗
i }DA

i=1 and {w∗
j }DB

j=1 are the dual bases,

9Recall that we are assuming that the state spaces are finite-dimensional.
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defined by the relations (v∗
i |vk) = δik and (w∗

j |wl) = δ jl , respectively. As a result,
the probability of the effect m on the state ρ can be expressed as

(m|ρ) = Tr[m ρ], (34)

having committed a little abuse of notation in using the letter m (respectively, ρ) both
for the effect (respectively, state) and for the correspondingmatrix [mi j ] (respectively,
[ρi j ]).

Finally, the decomposition in Eq. (33) implies the following

Theorem 1 In a theory satisfying Local Tomography, the correspondence between
a transformation E ∈ Transf(A → B) and the linear map Ê : StR(A) → StR(B) is
invertible.

In other words, Local Tomography guarantees that physical transformations can
be characterized in the simplest possible way: by preparing a set of input states and
performing a set of measurements on the output.

A remarkable example of a theory that does not satisfy Local Tomography is
quantum theory on real Hilbert spaces [52], RQT for short. In this theory, states
and effects are real symmetric matrices, and transformations are represented by
completely positivemapsmapping symmetricmatrices into symmetricmatrices. The
failure of the relation DA⊗B = DA DB was first noted by Araki [53]. More explicitly,
Wootters [54] noted that two different bipartite states can be locally indistinguishable,
as in the following extreme example:

ρ = 1

2
|�+〉〈�+| + 1

2
|�−〉〈�−| ρ′ = 1

2
|�−〉〈�−| + 1

2
|�+〉〈�+| (35)

with |�±〉 := (|0〉|0〉 ± |1〉|1〉)/√2 and |�±〉 = (|0〉|1〉 ± |1〉|0〉)/√2. Here the
states ρ and ρ′ have orthogonal support and therefore are perfectly distinguishable.
However, it is easy to check that one has

ρ − ρ′ = 1

2

(
0 −1
1 0

)
⊗
(
0 −1
1 0

)
,

and, therefore, Tr[(ρ − ρ′)(PA ⊗ PB)] = 0 for every pair of real symmetric matrices
PA and PB. In other words, ρ and ρ′ give exactly the same statistics for all possible
local measurements.

RQT has another, closely related quirk: two different transformations of systemA
can act in the same way on all states of A. For example, consider the qubit channels
C and C′, whose action on a generic 2 × 2 matrix is defined by

C(M) := 1

2
M + 1

2
Y MY and C ′(M) := 1

2
Z M Z + 1

2
X M X,
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X, Y, and Z being the Pauli matrices. When acting on symmetric matrices, the two
channels give exactly the same output: one has C(τ ) = C ′(τ ) = I/2 for every
symmetric matrix τ . On the other hand, one has

(C ⊗ I)(|�+〉〈�+) = ρ (C ′ ⊗ I)(|�+〉〈�+) = ρ′,

where ρ and ρ′ are the two perfectly distinguishable states defined in Eq. (35). This
means that, in fact, the two transformations C and C ′ are perfectly distinguishable
with the help of a reference system. For a more extensive discussion of tomography
in RQT we refer the reader to subsection V.A of Ref. [34] and to the work of Hardy
and Wootters [55].

4.4 Perfect State Discrimination

Perfect StateDiscrimination is an optimistic statement about the possibility to encode
bits without error. It guarantees that every state that could be part of a set of perfectly
distinguishable states is indeed perfectly distinguishable from some other state.

By virtue of Perfect State Discrimination, every normalized non-internal state ρ0
can be perfectly distinguished from some state ρ1. As a result, the two states ρ0 and ρ1
can be used to encode the value of a bit without errors. It is easy to see that Quantum
theory satisfies the axiom. Indeed, a density matrix is internal if and only if it has
full rank. Hence, a non-internal density matrix ρ0 must have a kernel, so that every
state ρ1 with support in the kernel of ρ0 will be perfectly distinguishable from ρ0.

4.5 Ideal Compression

Ideal Compression expresses the idea that information is fungible, i.e. independent of
the physical support in which it is encoded. The axiom implies non-trivial statements
about the state spaces arising in the theory. For example, suppose that the theory
contains a system whose space of deterministic states is a square. Then, the theory
should contain also a system whose space of deterministic states is a segment—
in other words, the theory should contain a classical bit. Indeed, only in this way
one could encode a side of the square in a lossless and maximally efficient way.
More generally, Ideal Compression imposes that the every face of the convex set of
deterministic states be in one-to-one correspondence with the set of deterministic
states of some smaller physical system.

Ideal Compression is clearly satisfied by quantum theory. Indeed, every density
matrix of rank r can be compressed ideally to a density matrix of an r -dimensional
quantum system. For example, the two-qubit density matrix
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ρ =

⎛

⎜
⎜
⎝

ρ00,00 0 0 ρ00,11
0 0 0 0
0 0 0 0

ρ11,00 0 0 ρ11,11

⎞

⎟
⎟
⎠ (36)

can be compressed ideally to the one-qubit density matrix

E(ρ) =
(

ρ00,00 ρ00,11
ρ11,00 ρ11,11

)
(37)

with encoding and decoding channels given by

E(·) := V † (·) V + Tr[(I − V V †) (·) ] |0〉〈0| V := |0〉|0〉〈0| + |1〉|1〉〈1|
D(·) := V (·) V †.

Note that Ideal Compression refers to a single-shot, zero error scenario, i.e. a
scenario where the source is used only once and no decoding errors are allowed.
Such a scenario is different from the asymptotic scenario considered in Shannon’s
[56] and Schumacher’s [57] compression,wherein small decoding errors are allowed,
under the condition that they vanish in the asymptotic limit of infinitely many uses
of the same source.

4.6 Purification

While our first five axioms expressed standard requirements for information-
processing, Purification brings in a radically new idea: at least in principle, every state
can be prepared by an agent who has maximal control over all the systems involved
in the preparation process. In short, Purification allows us to harness randomness by
controlling the environment. The idea does not apply only to preparations, but also to
arbitrary deterministic transformations: combining Purification with Causality and
Local Tomography, we can prove the following

Theorem 2 ([34]) For every deterministic transformation T ∈ DetTransf(A →
A′), there exist two systems E and E′, a pure state η ∈ PurSt(E), and a reversible
transformation U ∈ RevTransf(A ⊗ E → A′ ⊗ E′) such that

A T A′ = A

U
A′

η E E′
e

, (38)

where e is the unique deterministic effect of system E′.
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In other words, Purification implies that every irreversible process can be simu-
lated through reversible interactions between the system and its environment, with
the environment initialized in a pure state. This result is a necessary condition for
the formulation of physical theories in which elementary processes are reversible at
the fundamental level.

Purification is known to be satisfied by quantummechanics. For example, consider
a single-qubit mixed state, diagonalized as

ρ = p0|0〉〈0| + p1|1〉〈1|, (39)

for some suitable orthonormal basis {|0〉, |1〉}. A purification of the state ρ can be
obtained by adding a second qubit and by preparing the two qubits in the pure state

|�〉 := √
p0 |0〉|0〉 + √

p1 |1〉|1〉. (40)

Indeed, it is immediate to see that ρ is the marginal of the density matrix |�〉〈�|
on the first qubit. In addition, any other purification |� ′〉—using a single qubit as
the purifying system—must be of the form |�〉′ = (I ⊗ U ) |�〉 for some unitary
matrix U .

In the quantum information community, takingpurifications is a standard approach
to quantum communication, cryptography, and quantum error correction. The
approach is familiarly known with the nickname of “going to the Church of the
larger Hilbert space”.10 Purification is known amongmathematicians as theGelfand-
Naimark-Segal construction [59, 60].

Two important remarks are in order:

1. Purification, entanglement, and quantum information. Purification is intimately
linked with the phenomenon of entanglement [2], namely the existence of pure
bipartite states �AB that are not of the product form ψA ⊗ ψB. In the OPT frame-
work, the link is made precise by the following

Proposition 4 Let � be a theory satisfying Causality, Local Tomography, and
Purification. Then, there are only two alternatives: either � is deterministic, or
� exhibits entanglement.

Under our standing assumption that the theory is non-deterministic, entanglement
follows from Purification as a necessary consequence.
Entanglement is a very peculiar feature—far from what we experience in our
everyday life. How can we claim that we know A and B if we do not know A
alone? This puzzling feature had been noted already in the early days of quan-
tum theory, when Schrödinger famously wrote: “Another way of expressing the
peculiar situation is: the best possible knowledge of a whole does not necessarily
include the best possible knowledge of all its parts” [2]. And, in the same paper: “I
would not call that one but rather the characteristic trait of quantummechanics, the

10The expression is due to John Smolin, see e.g. the lecture notes [58].
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one that enforces its entire departure from classical lines of thought”. In a sense,
our reconstruction can be considered as a mathematical proof of Schrödinger’s
intuition11: on the background of five standard axioms satisfied by both classical
theory and quantum theory, Purification is the ingredient that allows to reconstruct
the Hilbert space framework and the distinctive information-theoretic features of
quantum theory. Combined with Causality and Local Tomography, Purification
already reproduces an impressive list of quantum-like features, like no-cloning,
no-programming, information-disturbance tradeoff, no bit commitment, conclu-
sive teleportation and entanglement swapping, the reversible dilation of channels,
the state-transformation isomorphism, the structure of error correction, and the
structure of no-signalling channels [34].

2. Purification and the Many Wolrd Interpretation. Pondering about the meaning
of Purification, one may tempted to conclude that it favours the Many Worlds
Interpretation (MWI) of quantum mechanics [61]. In fact, Purification is feature
of quantum theory, and, as such, it does not favour the MWI more than quantum
theory itself does.Whether or not quantum theory provides any evidence formany
worlds is a debatable point, but the validity of Purification is independent of such
interpretative issue. Furthermore, we stress that we did not phrase Purification
as an ontological statement about “how processes occur in nature”, but rather
an operational statement about the agent’s ability to simulate physical processes
with maximal control. Purification is compatible with the idea that processes are
reversible at the fundamental level, and its validity is a necessary condition for
building up a physical description of nature in terms of pure states and reversible
processes. Still, here we do not make any commitment as to how processes are
realized in nature, because this would unnecessarily limit the range of application
of our results.

5 The Reconstruction of Quantum Theory

Here we provide a summary of the reconstruction of Refs. [26, 34], highlighting
the key theorems and providing a guide to the original papers. The scope of the
reconstruction is not just to derive the Hilbert space framework, but also to rebuild
the key quantum features directly from first principles. Accordingly, we try to derive
as much as possible of quantum theory directly from the axioms, leaving Hilbert
spaces to the very end. We organize our results in six subsections:

1. Elementary facts.
2. Correlation structures.
3. Distinguishability structures.

11It is worth stressing that Schrödinger’s paper was not just about the existence of entangled states,
but also about how entanglement interacted with the reversible dynamics and with the process of
measurement (cf. the notion of steering, which made its first appearance in the very same paper).
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4. Interaction between correlation and distinguishability structures.
5. Qubit features.
6. The density matrix.

5.1 Elementary Facts

5.1.1 From Local Tomography

Local Tomography implies a few useful facts:

1. If α ∈ St(A) and β ∈ St(B) are pure, then also α ⊗ β is pure.
2. Let ρAB be a state of the composite system A ⊗ B and, assuming Causality, let

ρA be its marginal on system A. If ρA is pure, then ρAB is a product state.
3. If ρA ∈ St(A) and ρB ∈ St(B) are internal states, then also ρA ⊗ ρB is an internal

state.
4. Suppose that every system A has a unique invariant state χA, i.e. a unique state

satisfying the condition UχA = χA for every reversible transformation U . Then,
χA⊗B = χA ⊗ χB.

5.1.2 From Purification

Purification has a few immediate consequences. First, all pure states of a given system
are connected to one another through reversible transformations:

Proposition 5 For every system A ∈ Sys and every pair of pure states α,α′ ∈
PurSt(A) there exists a reversible transformation U such that α′ = U α.

To prove this fact, it is enough to pick a system B and pure state β ∈ PurSt(B),
consider the states � = α⊗β and � ′ = α′ ⊗β as purifications of β, and invoke the
essential uniqueness of purification [Eq. (28)].Mathematically, the above proposition
expresses the fact that the action of the reversible transformations is transitive on
the set of pure states—a requirement that played an important role in many recent
reconstructions, see e.g. [23, 28, 29]. A byproduct of transitivity is

Proposition 6 Every system A ∈ Sys has a unique invariant state χA.

Finally, combining Ideal Compression and Purification it is easy to see that every
state has a minimal purification, in the following sense

Definition 17 Let � ∈ PurSt(A ⊗ B) be a pure state with marginals ρA and ρB on
systems A and B, respectively. We say that � is a minimal purification of ρA iff ρB
is internal.

To construct a minimal purification, it is enough to take an arbitrary purification
and to compress the state of the purifying system.
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5.2 Correlation Structures

5.2.1 Pure Steering

One of the most important consequences of our axioms is that pure bipartite states
enable steering, namely the ability to remotely generate every desired ensemble
decomposition of a marginal state [2, 62]:

Proposition 7 (Pure Steering) Let � be a pure state of the composite system A⊗B,
let ρ be the marginal of � on system A, and let ρ = {ρx }x∈X be an ensemble
decomposition of ρ. Then there exists a measurement b = {bx }x∈X such that

�

A

B bx

= ρx A ∀x ∈ X. (41)

Pure steering is the essential ingredient for a number of major results. The first
result is the existence of pure, tomographically faithful states. A state ρ ∈ St(A⊗B)

is called tomographically faithful for system A iff the implication

ρ
A T C

B
= ρ

A T ′ C

B
=⇒ T = T ′, (42)

holds for every system C and every pair of transformations T and T ′ of type A → C.
Thanks to Pure Steering and Local Tomography, we are able to construct tomograph-
ically faithful pure states:

Proposition 8 Let ρA be an internal state of system A and let � ∈ PurSt(A ⊗ B)

be a purification of ρA. Then, � is tomographically faithful for system A.

The result can be improved by choosing a minimal purification: in this way, the
pure state� is faithful on both systems A and B.We call such a state doubly faithful.

5.2.2 Conjugate Systems

A canonical choice of doubly faithful state is obtained by picking a minimal purifi-
cation of the invariant state χA. We denote such purification by � ∈ PurSt(A ⊗A)

and call systemA the conjugate of system A. The name is motivated by the following
facts:

1. system A is uniquely defined, up to operational equivalence
2. the marginal of � on system A is the invariant state χA (cf. Corollary 46 of [34]),

meaning that we have A = A, up to operational equivalence.
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Summarizing, the state � satisfies the relations

�

A

A e
= χ A

and �

A e
A = χ A

. (43)

By analogy with quantum theory, we call � a Bell state.

5.2.3 The State-Transformation Isomorphism

For a given transformation T , we define the (generally unnormalized) state

�T
C

A
:= �

A T C

A
. (44)

and call the correspondence T �→ �T the state-transformation isomorphism. Since
the Bell state � is doubly faithful, the correspondence is one-to-one. In quantum
theory, the state-transformation isomorphism coincides with the Choi isomorphism
[63]. By analogy, we call the state �T the Choi state.

A powerful byproduct of the state-transformation isomorphism is that the nor-
malized states completely identify the theory:

Theorem 3 Let � and �′ be two theories with the same set of systems. If the sets
of normalized states of � and �′ coincide for all systems, then the two theories
coincide.

Thanks to this result, deriving the density matrix representation of normalized
states is sufficient to derive the whole of quantum theory.

5.2.4 Conclusive Entanglement Swapping

An important consequence of Pure Steering is the possibility of entanglement swap-
ping, namely the possibility to generate entanglement remotely by performing a joint
measurement. Consider, as a prototype of entangled state, the Bell state �. Then, it
is possible to show that there exists a pure effect E ∈ PurEff(A⊗A) and a non-zero
probability pA > 0 such that

�

A

B1

E
�

B2

C

= pA �

A

A ≡ B2 ,

B1 ≡ C ≡ A.
C

(45)

This diagram represents an instance of conclusive entanglement swapping: condi-
tionally on the occurrence of the effect E , the two systems A and C are prepared in
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the Bell state, consuming the initial entanglement present in the composite systems
A ⊗ B1 and B2 ⊗ C.

The possibility of entanglement swapping follows easily from Pure Steering:
Since the states χA and χA are internal, Local Tomography implies that their product
χA ⊗χA is internal. Hence, there must exist a non-zero probability pA > 0 such that

χA ⊗ χA = pA � + (1 − pA) τ , (46)

for some state τ . Applying Pure Steering (Proposition 7) to the pure state �⊗� and
to the ensemble {pA �, (1 − pA) τ } one can find a binary measurement {E, eB1 ⊗
eB2 − E} such that the entanglement swapping condition (45) holds. Using the fact
that the state�⊗� is doubly faithful, it is easy to see that the effect E must be pure.

5.2.5 Conclusive Teleportation

By the state-transformation isomorphism, conclusive entanglement swapping is
equivalent to conclusive teleportation [17], expressed by the diagram

�
A

A

EA

= pA
A . (47)

Indeed, the entanglement swapping diagram (45) is equivalent to the condition�T =
�T ′ , with

A T A := �
A

A

EA

and A T ′ A := A pA IA A . (48)

By the state-transformation isomorphism, �T = �T ′ implies T = T ′, which is
nothing but the teleportation condition.

5.2.6 The Teleportation Upper Bound

Combined with Local Tomography, the teleportation diagram allows us to upper
bound the dimension of the state space. The idea is to write the teleportation diagram
in matrix elements, by expanding � and E as

� =
∑

ik

�ik (vi ⊗ wk) and E =
∑

jl

E jl
(
w∗

j ⊗ v∗
l

)
, (49)
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with suitable bases {vi }DA
i=1 and {w j }DA

j=1. In this representation, Eq. (47) becomes

[ � E ]il = pA δil , (50)

and, taking the trace,

Tr[�E] = pA DA. (51)

On the other hand, we have

Tr[�E] = (E |SA,A |�) ≤ 1, (52)

which combined with Eq. (51) leads to bound

DA ≤ 1

pA
. (53)

Clearly, in order to have the best bound we need to find the maximum probability of
teleportation. To discover what the maximum is, we need to move our attention to
the distinguishability structures implied by our axioms.

5.3 Distinguishability Structures

5.3.1 No Disturbance Without Information

Our first move is to derive a simple result about the structure of measurements:
a measurement that extracts no information from a face of the state space can be
implemented without disturbing that face. By face of the state space we mean a
face of the convex set of deterministic states.12 We say that the measurement m ∈
Tests(A → I,X) does not extract information from the face F iff there exists a set
of probabilities {px }x∈X such that

(mx |τ ) = px ∀x ∈ X, ∀τ ∈ F.

Also, we say that a test T ∈ Tests(A → A,X) does not disturb the face F iff∑
x∈X Tx |τ ) = |τ ) for every state τ ∈ F .

12We recall that a face of a convex set C is a convex subset F ⊆ C satisfying the condition that,
for every x ∈ F , if x is a non-trivial convex combination of x1 and x2 with x1, x2 ∈ C , then x1 and
x2 belong to F .
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With this terminology, our result is the following:

Proposition 9 If a measurement m does not extract information from the face F,
then there exists a test T that realizes the measurement—namely (eA|Tx = (mx |,
∀x ∈ X—and does not disturb F.

This result has two important consequences. First, it allows us to establishwhether
or not a set of perfectly distinguishable set can be extended:

Proposition 10 Let S = {ρx | x ∈ X} be a set of perfectly distinguishable states
and let ωS be its barycenter, defined as

ωS := 1

|X|
∑

x∈X
ρx .

Then, the following are equivalent:

1. the set S is maximal, i.e. no other set S′ ⊃ S can consist of perfectly distinguish-
able states

2. the barycenter of S is internal.

Another important consequence is that only the pure maximal sets can have max-
imum cardinality:

Proposition 11 Let S be a maximal set of perfectly distinguishable states of sys-
tem A. If one of the states in S is not pure, then there exists another maximal set
S′ ⊂ St(A), consisting only of pure states and having strictly larger cardinality
|S′| > |S|.

Combining the above points we have that every pure state belongs to some max-
imal set of perfectly distinguishable pure states. For short, we call such sets pure
maximal sets.

5.3.2 Duality Between Pure States and Pure Effects

For a pure maximal set S, we observe that the measurement that distinguishes the
states in S must consist of pure effects. Hence, for every pure state α ∈ PurSt(A)

there exists an pure effect a such that (a|α) = 1. Expanding on this observation,
we establish a one-to-one correspondence between pure normalized states and pure
normalized effects,13 denoted by PurSt1(A) and PurEff1(A), respectively.

Theorem 4 For every systemA ∈ Sys, there exists a one-to-one map † : PurSt1(A)

→ PurEff1(A), sending pure normalized states to pure normalized effects and sat-
isfying the condition

(α†|α) = 1 ∀α ∈ PurSt1(A).

13We call an effect of system A normalized iff there exists an effect a state ρ such that (a|ρ) = 1.
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The proof is rather elaborate. The two main steps are

1. proving that every pure normalized effect a identifies a pure state α, meaning that
(a|ρ) = 1 if and only if ρ = α.

2. proving that, if two pure effects identify the same state, then they must coincide.

The second step uses Pure Steering in an essential way, suggesting that the distin-
guishability features of quantum theory are deeply connected with its correlation
features.

5.3.3 The Informational Dimension

An easy consequence of the state-effect duality is that every two pure normalized
effects are connected by a reversible transformation, just like the pure states. In turn,
this leads to a useful result.

Proposition 12 For a given system A ∈ Sys, all pure maximal sets have the same
cardinality.

The proof idea is simple: let a = {ax }x∈X be the measurement that distinguishes
among the states in a pure maximal set S = {αx | x ∈ X}. As we already observed, all
the effects in a must be pure. Since every two pure normalized effects are connected
by a reversible transformation, we must have ax = a ◦ Ux ∀x ∈ X, where a is fixed
(but otherwise arbitrary) effect in PurEff1(A) and Ux is a reversible transformation.
Applying the effects to the invariant state χ we then obtain

(ax |χ) = (a|χ) ∀x ∈ X,

and summing over x we get the equality 1 = |X| (a|χ). Hence, the cardinality of the
maximal set S is |S| ≡ |X| = 1/(a|χ). Since S is a generic pure maximal set, we
proved the desired result.

In the following, the cardinality of the pure maximal sets in A will be denoted
by dA. We call it the informational dimension, because it is the number of distinct
classical messages that can be encoded in system A and decoded without error. In
Quantum Theory, dA is the dimension of the Hilbert space associated to system A.

For composite systems, the informational dimension has the product form:

Proposition 13 For every pair of systems A and B one has dA⊗B = dA dB.

The reason is simply that the product of two pure maximal sets for systems A
and B is a pure maximal set for A ⊗ B: it is pure, because the product of two pure
states is pure (by Local Tomography) and it is maximal because the product of two
internal states is internal (again, by Local Tomography)—hence, maximality follows
by Proposition 10.
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5.3.4 The Spectral Theorem

An important consequence of the state-effect duality is the ability to decompose
every state as a mixture of perfectly distinguishable pure states. The crucial step is
to prove such a decomposition for the invariant state:

Lemma 1 For every pure maximal set {αx }dA
x=1 ⊂ PurSt(A) one has χ = 1

dA∑dA
x=1 αx .

This result is extremely important, because it helps us to cope with the existence
of different maximal sets of pure states. To begin with, it allows us to prove the
analogue of the spectral theorem:

Theorem 5 (Spectral Decomposition) For every vector v ∈ StR(A) there exists a
pure maximal set {αx }dA

x=1 ⊂ PurSt(A) and a set of real coefficients {cx }dA
x=1 such

that

v =
dA∑

x=1

cx αx . (54)

Similarly, for every vector w ∈ EffR(A) there exists a pure discriminating measure-
ment {ax }dA

x=1 and a set of real coefficients {dx }dA
x=1 such that

w =
dA∑

x=1

dx ax . (55)

5.3.5 Orthogonal Faces

Thanks to the spectral theorem, it is easy to retrieve the basic structures of quantum
logic. In general, the faces of a convex setC form a bounded lattice, with partial order
� corresponding to set-theoretic inclusion and with meet and join operations defined
as F ∧ G := F ∩ G and F ∨ G := ⋂{H | F ⊆ H , G ⊆ H}, respectively. The
lattice is bounded, with the convex set C being the top element and the empty set ∅
being the bottom element. Hence, the set of deterministic states CA := DetSt(A) in
a convex theory can be seen as a lattice in the above way. However, our axioms imply
much more: according to them, the faces of the state space form an orthomodular
lattice, i.e. a lattice with an operation of orthogonal complement ⊥ satisfying the
orthomodularity condition F � G =⇒ G = F ∨ (G ∧ F⊥).

Let us see why this is the case. For a given face F ⊆ CA we can pick a set
of perfectly distinguishable pure states SF = {αx }dF

x=1 ⊂ F that is maximal in F ,
meaning that no other state in F can be distinguished perfectly from the states in SF .
Then, we can define the barycenter of F as
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ωF := 1

dF

dF∑

x=1

αx . (56)

Since the face F can be compressed into the state space of a smaller system, Lemma 1
guarantees that the definition of the state ωF depends only on F , and not on the max-
imal set SF . In other words, Eq. (56) sets up a one-to-one correspondence between
faces and their barycenters.

Now,we can extend the set SF to a puremaximal set for systemA, say {αx }dA
x=1. Let

us define the set SF⊥ := {αx }dA
x=dF +1 and denote by F⊥ the smallest face containing

SF⊥ . By construction, it is easy to verify that the set SF⊥ is maximal in F⊥ and
therefore

ωF⊥ = 1

dA − dF

dA∑

x=dF +1

αx .

F⊥ can be equivalently characterized as the face containing all the states that are
perfectly distinguishable from F . Moreover, it is not hard to show that

1. F ∨ F⊥ = CA

2. F ∧ F⊥ = ∅
3.
(
F⊥)⊥ ≡ F

4. F � G =⇒ G⊥ � F⊥
5. F � G =⇒ G = F ∨ (G ∧ F⊥),

where the last two properties are proven by picking a pure maximal set for F , extend-
ing it to a pure maximal set for G, and extending the latter to a pure maximal set for
the whole convex set CA. Properties 1–4 show that the operation ⊥ is an orthogonal
complement, while property 5 is the orthomodularity condition. Hence, we obtained
that the set of faces must be an orthomodular lattice.

5.3.6 Orthogonal Effects

By the state-effect duality, we can associate every face F with an effect aF , defined
as

aF :=
dF∑

x=1

α†
x , (57)

where SF = {αx }dF
x=1 is a pure maximal set in F . Again, it is easy to see that the

definition of aF is independent of the choice of maximal set SF . Indeed, by definition
one has aF +aF⊥ = eA for every pure maximal set SF⊥ . Varying SF without varying
SF⊥ shows that the definition of aF depends only on F .

Thanks to the spectral theorem, aF can be operationally characterized the only
effect that happens with unit probability on F and with zero probability on F⊥:
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Proposition 14 aF is the unique effect a ∈ Eff(A) satisfying the conditions

(a|ρ) = 1 ∀ρ ∈ F

(a|σ) = 0 ∀σ ∈ F⊥.

For this reason,we callaF the identifying effect of the face F . The set of identifying
effects inherits the structure of orthomodular lattice from the set of faces, via the
following definitions

1. aF � aG iff F � G,
2. aF ∧ aG := aF∧G ,
3. aF ∨ aG := aF∨G , and
4. a⊥

F := aF⊥ .

In quantum theory, the lattice of identifying effects is the lattice of projectors on
subspaces of the Hilbert space. It is easy to see that the partial order � coincides
with the partial order ≤ induced by the probabilities, namely aF � aG if and only if
(aF |ρ) ≤ (aG |ρ) for every state ρ.

5.3.7 Orthogonal Projections

Faces of the state space can also be associated with physical transformations, in the
following way:

Definition 18 A transformation �F ∈ Transf(A → A) is an orthogonal projection
on the face F ⊆ CA iff the following conditions are satisfied14

ρ A �F
A = ρ A ∀ρ ∈ F (59)

σ A �F
A = 0 ∀σ ∈ F⊥. (60)

14In the original work [26], we also required that projections be pure. However, in the context of our
axioms, purity is implied by the two conditions in the present definition. This follows from the fact
that i) one can construct a pure projection, and ii) it is possible to prove that projections are unique.
A sketch of proof is the following: First, one can prove that for every pure state α ∈ F one must
have (α†| �F = (α†| (this follows from the definition and from Proposition 14). As a consequence,
one also has (aF | �F = (aF |. This implies that, for every state ρ ∈ St(A), the unnormalized state
�F |ρ) is proportional to a state in F . Now, for two projections �F and �′

F one must have

(α†| �F |ρ) = (α†|ρ) = (α†| �′
F |ρ), (58)

for every pure state α ∈ F . Since the states �F |ρ) and �′
F |ρ) are proportional to states in F

and α ∈ F is a generic pure state, Ideal Compression implies �F |ρ) = �′
F |ρ), or equivalently,

�F = �′
F , because the state ρ is generic.
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The definition is non-empty: thanks to Purification and Purity of Composition,
we are able to construct a pure projection �F for every face F . Moreover, it follows
from the definition that the projection �F is unique.

In addition to purity, projections have a number of properties, including

1. (a⊥
F | �F = 0

2. (aG | �F = (aG | whenever G � F
3. for every input state ρ, the normalized output state τ := �F |ρ)/(eA| �F |ρ)

belongs to F
4. �G �F = �F�G = �G whenever G � F .

5.4 Interaction Between Correlation and Distinguishability
Structures

We have seen that our axioms imply peculiar features, both in the way systems
correlate and in the way states can be distinguished. It is time to combine these two
types of features and to explore the consequences.

5.4.1 The Schmidt Bases

Combining Pure Steering and Spectral Decomposition, we are now in position to
give the operational version of the Schmidt bases in quantum theory. The result can
be summarized as follows:

Proposition 15 Let � be a pure state of A ⊗ B and let ρA and ρB be its marginals
on systems A and B, respectively. Then, for every spectral decomposition

ρA =
r∑

x=1

px αx ,

there exists a set of perfectly distinguishable pure states {βx }r
x=1 ⊂ PurSt(B) such

that

ρB =
r∑

x=1

px βx . (61)

Moreover, one has

�

A ax

B by

=
⎧
⎨

⎩

px δxy x, y ∈ {1, . . . , r}

0 x, y /∈ {1, . . . , r}
(62)
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for every two measurements a = {ax }kA
x=1 and b = {by}kB

y=1 satisfying ax = α†
x and

by = β†
y for every x ≤ r and for every y ≤ r .

In particular, applying the result to the Bell state �, we obtain that the invariant
state χA can be decomposed as χA = 1

dA

∑dA
x=1 αx , for a suitable set of perfectly

distinguishable pure states {αx }dA
x=1. In particular, this implies that conjugate systems

have the same informational dimension:

Corollary 1 For every system A, one has dA = dA.

Combined with the fact that the informational dimension is multiplicative (Propo-
sition 13), the above result implies that the composite systemA⊗A has informational
dimension

dA⊗A = d2
A.

5.4.2 The Maximum Probability of Conclusive Teleportation

In our construction of conclusive teleportation, the teleportation probability was
equal to the probability of the state � in an ensemble decomposition of the invariant
state χA ⊗ χA, cf. Eq. (46). Now, since χA ⊗ χA is the invariant state, it can be
decomposed as

χA ⊗ χA = 1

d2
A

d2
A∑

x=1

�x ,

for every pure maximal set {�x }d2
A

x=1. The maximum probability of the Bell state in a
convex decomposition of χA ⊗ χA is then given by

pmax
A = 1

d2
A

. (63)

Inserting the above equality into the teleportation upper bound (53) we obtain the
relation

DA ≤ d2
A. (64)

In the next paragraph we will see how to obtain the converse inequality.

5.4.3 The Teleportation Lower Bound

Thanks to the state-effect duality, it is possible to establish a lower bound on the state
space dimension. The proof is a little bit laborious and consists of two steps:
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1. show that the effect �† that identifies the Bell state is of the form

A

�†
A

=
A U A

SA,A

A

E
A A

where E is the effect achieving maximum teleportation probability, SA,A is the
swap, and U is some reversible transformation.

2. show that, with a suitable choice of basis for the vector space StR(A), every
reversible transformation U is represented by an orthogonal matrix MU .

Once these two results are established, we can expand the Bell state � and the
teleportation effect E as in Eq. (49), thus obtaining

1 = (�†|�) = Tr[� E MU ] = pmax
A Tr[MU ] ≤ pmax

A DA, (65)

having used the teleportation equality � E = pmax
A IDA and the fact that the trace

of an orthogonal matrix cannot be larger than the trace of the identity. Hence, we
obtained the teleportation lower bound

DA ≥ 1

pmax
A

. (66)

Combining the teleportation lower bound with Eqs. (63) and (64), we obtain the
equality

DA = d2
A. (67)

5.5 Qubit Structures

So far, we avoided giving a concrete representation of our state spaces: all the quan-
tum features that we have shown followed directly from the principles. We now
proceed to analyze some features that are more closely related to the concrete geo-
metrical shape of the quantum state spaces. We will first see that all two-dimensional
systems in our theory have qubit state spaces. Leveraging on this fact, we will then
derive two features of higher-dimensional systems: (i) an operational version of the
superposition principle, and (ii) the fact that all systems of the same dimension are
operationally equivalent.

5.5.1 Derivation of the Qubit

Showing that the states of a two-dimensional system can be described by density
matrices is quite easy. This can be done geometrically, by showing that the deter-
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ministic states form a 3-dimensional Euclidean ball. The 3-dimensionality is obvi-
ous from the equality DA = d2

A, which for dA = 2 implies that the convex set
CA = DetSt(A) is a three-dimensional manifold.15 Then, we can make a simple
geometrical reasoning:

1. all the pure states are generated from a fixed pure state by application of reversible
transformations, and, by choosing a suitable basis for the state space, such trans-
formations act in the 3-dimensional space as orthogonal matrices.

2. all states on the border of CA are pure—otherwise, Perfect State Discrimination
and Proposition 11 would imply dA > 2. This means that, if we move away from
the invariant state χA in an arbitrary direction, at some point we will hit a pure
state.

In the ordinary 3-dimensional space, the sphere is the only (closed) 3-dimensional
convex set generated by orthogonal matrices and with only pure states on the border.

Once we established that the convex set CA is a sphere, we can represent every
normalized state ρ ∈ CA with a density matrix Sρ. In particular, the pure states will
be of the form

Sα =
(

p
√

p(1 − p) e−iθ√
p(1 − p) eiθ 1 − p

)
= |α〉〈α| (68)

|α〉 := √
p |0〉 + eiθ

√
1 − p |1〉,

for some probability p ∈ [0, 1] and some phase θ ∈ [0, 2π). Once we have chosen
this representation, it is obvious that every effect a ∈ Eff(A) must be described by a
positive semidefinite matrix Ea upper bounded by the identity and that probabilities
are given by the Born rule

(a|ρ) = Tr[Ea Sρ]. (69)

Moreover, the state-effect duality imposes that all such matrices represent valid
effects.

5.5.2 The Superposition Principle

Pure states in quantum theory satisfy the so-called “superposition principle”, which
just means that they are in one-to-one correspondence with the rays of the underlying
Hilbert space. Per se, this statement has hardly any operational meaning. However,
one can formulate an operational version in general OPTs:

15In general, the dimension of the convex set CA is given by DA − 1.
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Definition 19 (Superposition Principle) We say that system A satisfies the super-
position principle iff for every pure maximal set S = {αx | x ∈ X} ⊂ PurSt(A) and
for every probability distribution {px }x∈X there exists one pure state ψ such that

ψ A ax = px ∀x ∈ X, (70)

for every measurement a = {ax }x∈X that perfectly distinguishes among the states in
the maximal set S.

Now, in a theory satisfying our principles we know that the two-dimensional sys-
tems are quantum—and therefore satisfy the superposition principle. Thanks to Ideal
Compression, it is then easy to generalize the result to systems of arbitrary dimen-
sion: given two perfectly distinguishable pure states, one can encode them into a
two-dimensional system, use the Bloch sphere representation to find the superposi-
tion state, and come back with the decoding operation. Iterating this procedure, we
can superpose any number of perfectly distinguishable pure states.

As a simple application of the superposition principle, we obtain the following

Proposition 16 A state ρA with spectral decomposition ρA = ∑r
x=1 px αx has a

purification with purifying system B if and only if dB ≥ r .

The “only if” part was already clear from the Schmidt decomposition. For the “if”
part, it is enough to pick r perfectly distinguishable pure states of B, say {βx }r

x=1,
and to superpose the product states {αx ⊗ βx }r

x=1 with probabilities {px }r
x=1. The

resulting pure state � ∈ PurSt(A ⊗ B) is the desired purification.

5.5.3 The Superposition Principle for Transformations

The superposition principle allows us to glue distinguishable states in any way we
like. Thanks to the state-transformation isomorphism, we can extend this idea to
transformations. For example, consider a set of pure transformations {Ax | x ∈
X} ⊂ PurTransf(A → B) and suppose that they have orthogonal support, that is,
that there exists a set of orthogonal faces {Fx | x ∈ X} such that

Ax = Ax �Fx ∀x ∈ X. (71)

Then, it is possible to find a pure transformationA ∈ PurTransf(A → B) such that

A�Fx = Ax ∀x ∈ X. (72)

The result follows by noticing that the Choi states {�Ax | x ∈ X} are proportional to
pure and perfectly distinguishable states and by applying the superposition principle
to corresponding the normalized states.
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5.5.4 Equivalence of Pure Maximal Sets up to Reversible
Transformations

Using the superposition principle for transformations we can prove that all pure
maximal sets of the same cardinality are equivalent:

Proposition 17 Let {αx }dA
x=1 and {βy}dB

y=1be pure maximal sets for systems A and
B, respectively. If dA = dB, then there exists a reversible transformation U ∈
Transf(A → B) such that

αx A U B = βx
B ∀x ∈ X.

The result follows immediately from the application of the superposition principle
to the pure transformations Ax = |βx )(α

†
x |. As a corollary, we have that all systems

of the same dimension are operationally equivalent.

5.6 The Density Matrix

We finally reached to the end of the reconstruction. It is now time to enter into the
specific details of the Hilbert space formalism of quantum theory. Our strategy to
reconstruct the Hilbert space formalism is to show that, for every system A, there
exists a one-to-one linear map from the vector space StR(A) to the space of dA × dA
Hermitian matrices, with the property that the convex set of deterministic states is
mapped to the convex set of density matrices (non-negative matrices with unit trace).

Let us see how this can be proven. Since the dimension of the state space satisfies
the relation DA = d2

A, every vector v ∈ StR(A) can be represented as square dA×dA
real matrix Mv . In turn, the matrix Mv can be turned into a complex Hermitian matrix
Sv , applying the linear transformation

Sv: = (Mv + MT
v

)+ i
(
Mv − MT

v

)
, (73)

where MT denotes the transpose of M . The problem is now to find a suitable repre-
sentation in which normalized states ρ ∈ CA correspond to density matrices, that is
Sρ ≥ 0 and Tr [Sρ]. To find such a representation, we follow Hardy’s method [23]:
we pick a pure maximal set {αm}dA

m=1 and define the diagonal elements of the matrix
Sρ as

[Sρ]mm := (α†
m |ρ),

In this way, we guarantee the unit-trace condition Tr[Sρ] = 1. To define the off-
diagonal elements, we consider the two-dimensional faces Fmn := {αm} ∨ {αn},
n > m. Projecting the state inside these faces, we obtain the states
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∣
∣ρmn

) = �Fmn |ρ)

(eA| �Fmn |ρ)
n > m.

Since every state ρmn is belongs to a two-dimensional face, it can be encoded into
a qubit system and can be associated with a density matrix τmn . The off-diagonal
elements [Sρ]mn and [Sρ]nm are defined in term of the qubit density matrix τmn , as

[Sρ]mn := [τmn]01 and [Sρ]nm := [τmn]10.

The matrix Sρ defined in this way is clearly Hermitian and, with a little bit of work,
one can see that the linear map ρ �→ Sρ is one-to-one.

At this point the problem is to guarantee that thematrix Sρ is positive.We consider
first the case of pure states α ∈ PurSt(A), for which one has

[Sα]mn = √
pm pn eiθmn

where {pm}dA
m=1 is a suitable probability distribution and {θmn} are phases satisfying

the conditions θmm = 0 for every m and θnm = −θmn for every n > m. This
expression follows from the fact that each state |αmn) = �Fmn |α)/(eA|�Fmn |α) is
pure and, once encoded into a qubit, it has a density matrix of the form (68). In order
to prove positivity, we need to show that the phases θmn are of the form θmn = γm −γn ,
for some phases {γm}. The strategy is to prove the result first in dimension dA = 3
and then to extend it to arbitrary dimensions.

Oncewe have proven that pure states correspond to rank-one projectors, it remains
to show that all such projectors correspond to pure states. This can be done by
using the superposition principle (both for states and for reversible transformations).
Having proven that the set of pure states is in one-to-one correspondence with the
set of rank-one projectors, it follows by convexity that the set of states is in one-
to-one correspondence with the set of density matrices. In short, all state spaces are
quantum.

To complete our reconstruction, we invoke Theorem 3, which guarantees that
the tests in our theory are in one-to-one correspondence with the tests allowed by
quantum theory.

6 Conclusions

Quantum theory can be rebuilt from bottom to top starting from six basic princi-
ples. The principles do not refer to specific physical systems such as particles or
waves: instead, they are the rules that dictate how information can be processed. The
first five principles—Causality, Purity of Composition, Local Tomography, Perfect
State Discrimination, and Ideal Compression—can be thought of as requirements
for a standard theory of information. On the background of these five principles, the
sixth—Purification—stands out as the quantum principle, which brings in counter-
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intuitive features like entanglement, no cloning, and teleportation. Purification gives
the agent the power to harness randomness, by simulating the preparation of every
state through the preparation of a pure bipartite state. When this is done, the agent
has an intrinsic guarantee that no side information can hide outside her control. The
moral of our reconstruction is quantum theory is the standard theory of information
that allows for maximal control of randomness.
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Reconstructing Quantum Theory

Lucien Hardy

1 Motivation

The standard axioms of QT are rather ad hoc. Where does this structure come from?
Can we write down natural axioms, principles, laws, or postulates from which can
derive this structure? Compare with the Lorentz transformations and Einstein’s two
postulates for special relativity. Or compare with Kepler’s Laws and Newton’s Laws.
The standard axioms of quantum theory look rather ad hoc like the Lorentz transfor-
mations or Kepler’s laws. Can we find a natural set of postulates for quantum theory
that are akin to Einstein’s or Newton’s laws?

The real motivation for finding deeper postulates for quantum theory is that it
may help us go beyond quantum theory to a theory of quantum gravity (just as
Einstein’s work helped him go beyond special relativity to his theory of General
Relativity). It is in the finding of new physics that we can expect a real payoff of this
program.

In [28] I showed how classical probability theory and quantum theory are the only
two theories consistent with the set of postulates given above in the abstract. In this
chapter I will explain the meaning of these postulates and indicate how the main
steps of the proof work. The reconstruction takes place in the context of the circuit
framework which I will describe.
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2 A Personal History of Reconstruction

Adozen years or so years ago Christopher Fuchs implored the community to “find an
information theoretic reason” for axioms of QT (in multiple talks and a few papers
[15, 17]). Further, Chris Fuchs and Gilles Brassard invited me to a workshop in
Montreal in 2000 on this issue amongst others (see notes in [16]). I accepted their
invitation but was, in the event, unable to attend. However, I was already hooked. The
work I began preparing for that workshop led to my paper “Quantum theory from
five reasonable axioms” [27]. In modern form (see [23]), the axioms given there can
be stated in the following way:

Information Systems having, or constrained to have, a given information carrying
capacity have the same properties.

Information locality Same as P2 above.
Tomographic locality Same as P3 above.
Continuous reversibility There exists a continuous reversible transformation

between any pair of pure states.
Simplicity States are specified by the smallest number of probabilities consistent

with the other axioms.

The simplicity axiom stands out as being less reasonable than the others. If we drop
it then wemay get a hierarchy of theories. This leads to two possibilities. Either there
do exist higher theories in this hierarchy or there do not. For many years I tried to find
such theories, and I tried to prove that such theories do not exist. I also tried to find
other reasonable axioms that rule out higher theories in this hierarchy. It was not until
2009 that progress was made by others. In 2010 Chiribella, D’Ariano, and Perinotti
(CDP) [6] showed how considerations concerning teleportation can be used to get
rid of the need for a simplicity axiom in certain contexts. In 2010 [7] they found a
set of postulates for quantum theory which, by virtue of the techniques developed
in [6], did not require a simplicity axiom. Independently Dakić and Brukner [10]
showed how one can replace the simplicity axiom with the assumption that any
state for a two level system can be written as a mixture of perfectly distinguishable
states (modulo some technical problems in their proof arising from the unfortunate
existence of a subgroup of SO(7) that is transitive on the 6-sphere). In 2010Masanes
and Müller [34] showed how to replace the simplicity axiom with a different axiom
saying that all mathematically well defined measurements for a two-level system
are allowed. The axiom sets of Dakić and Brukner, and of Masanes and Müller are
slight modifications on my original axiom set from 2001. The axioms of CDP are
quite different (except for the assumption of tomographic locality). Masanes, Müller,
Augusiak, and Pérez-García provide another set of axioms employing tomographic
locality, continuous reversibility, and another axiom concerning the existence of an
informational unit. Another set of axioms using tomographic locality was given by
Marco Zaopo [45].

There has beenmuchwork recently bymany people along less related lines (Fuchs
[18], Goyal [19], Wilce [42], Rau [38, 39], Fivel [12], …). Further, there is, in fact, a
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long history of attempts to reconstruct QT (von Neumann [41], Mackey [33], Birkoff
and von Neumann [4], Zierler [46], Piron [37] Ludwig [32], Rovelli [40], and many
others).

Many of these reconstruction attempts employ the so called “convex probabilities
framework”. This goes back to originally to Mackey and has been worked on (and
sometimes rediscovered) by many others since including Ludwig [32], Davies and
Lewis [11], Gunson [21], Mielnik [36], Araki [2], Gudder et al. [20], Foulis and
Randall [14], Fivel [13] as well as more recent incarnations [3, 27].

The circuit framework used here [22, 28] (see also [23, 24]) might be regarded as
a marriage of the convex probabilities framework and the pictorial (or categorical)
approach of Abramsky and Coecke [1, 9]. A similar framework has been developed
by Chiribella, D’Ariano, and Perinotti [6]. The pictorial approach of Abramsky and
Coecke is important because of its emphasis on composition as a basic primitive.

In 2003 Clifton, Bub, and Halvorson [8] were inspired by a suggestion of
Fuchs and Brassard to take a different approach to reconstructing quantum theory.
They showed that some features of quantum theory follow if one imposes no-bit-
commitment, no-broadcasting, and no-signalling within the C∗ algebraic framework
(rather than the convex probabilities framework).

3 The Circuit Framework

In this section we will present the circuit framework. The basic idea is that circuits
can be built from operations. An operation corresponds to one use of an apparatus
with some particular outcome, or subset of possible outcomes specified. Operations
have some number of systems as inputs and some number of systems as outputs. We
can wire together operations. If we have no open inputs or outputs left over then we
have a circuit. We employ three background assumptions for this framework. The
main one is that we can associate a probability with a circuit (the joint probability
that the outcomes are in the associated outcome sets on each operation).

3.1 Operations

We can notate an operation diagrammatically or symbolically as follows.

A

a b b

b c

⇐⇒ Ab4c5
a1b2b3
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The integer subscripts in the symbolic representation will be used to show where the
wires go and have no significance beyond this. An operation, A, corresponds to one
use of an apparatus and has the following features.

• Inputs and outputs. Come in various types, a, b, …. The inputs correspond to
wires going in the bottom of the box in the diagrammatic notation, or subscripts
in the symbolic notation. The outputs correspond to wires coming out the top and
to superscripts.

• A setting, s(A). We can think of this as corresponding to certain positions for
knobs, buttons, and dials that may be on the apparatus.

• An outcome set, o(A). This is a subset of all the possible outcomes for this use of
the apparatus.

If xA ∈ o(A) then we say operation A “happened”. If we have a different setting, or a
different outcome set, then we have a different operation and should notate this with
a different letter (e.g. B rather than A).

3.2 Wires

Outputs can be connected to inputs by wires.

A

B

a a b

b ca

d c

⇐⇒ Ab4c5
a1a2b3B

d7c8
a6b4

Note how the wire linking the two boxes corresponds to the repeated integer (the
4 on b4). These diagrams are interpreted graphically. In particular, vertical position
has no meaning. We can distort the graph in any way we wish without changing the
physical meaning so long as the wires remain attached to the same positions on the
boxes and the boxes maintain their orientations.

There are certain wiring rules.

• One wire: At most one wire can be connected to any given input or output.
• Type matching: Wires can connect inputs and outputs of the same type.
• No closed loops: Ifwe trace fromoutput to input alongwires through the operations
then we cannot get back to the operation we started at.

The last rule is to rule out closed time like loops.
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3.3 Fragments

The most general object we can consider is a collection of operations wired together.
For example,

A

B

C

B

b c

c a c

b d

b a
b

a c dc

b a Fragment E

⇐⇒ Ac1b2d3
b15c16 B

b6a7
c4a5c1C

a9c10d11
a7b2d3b8B

b13a14
c12a9c10

Such objects are called fragments (as they are fragments of circuits). In general
fragments may have open inputs and outputs. Fragments have

• A setting, s(E), given by specifying the setting on each operation.
• An outcome set, o(E), (equals o(A) × o(B) × o(C) × o(A) in this case). We say
the fragment “happened” if the outcome is in the outcome set.

• A wiring, w(E), given by specifying the input/output pairs which are wired
together.

3.4 Circuits

Circuits have no open inputs or outputs. For example,

A
B

C
D

E

a

a

b a

c

c
d

Circuit H

⇐⇒ Aa1a2b3Ba4c7Cd5
a1D

c6
b3a4Ed5a2c6c7

Circuits are special cases of fragments. Circuits have

• A setting, s(H), given by specifying the setting on each operation.
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• An outcome set,o(H), givenby specifying the outcome set at eachoperation (equals
o(A) × o(B) × o(C) × o(D) × oE in this case).We say the fragment “happened”
if the outcome is in the outcome set.

• A wiring, w(E), given by specifying which input/output pairs are wired together.

3.5 Preparations, Results, and Transformations

A preparation is a fragment having only outputs. Here are some examples:

A

a b a

A

B

C

a c d
a b

We will associate states with preparations.
A result is a fragment having only inputs. Here are some examples:

D

a c c A

B

C

a

b

b

a

we will associate effects with results. A measurement is a collection of results
corresponding to the same setup with disjoint outcome sets whose union is the set
of all outcomes for this setup.

A transformation is a fragment that has inputs and outputs that is used in trans-
formation mode. Here are some examples

B

a c

b b a

A

C

a

a

A fragment is used in transformation mode if we do not feed outputs into inputs on
this fragment (either directly or indirectly).

A transformation, Ba2
a1 , is reversible if there exists another transformation, B̃a3

a2 ,
such that Ba2

a1 B̃
a3
a2 is the identity transformation. Note that the identity transformation

is defined to have the property that, if it inserted on any wire in any circuit, then the
probability for that circuit remains unchanged.
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3.6 The First Background Assumption

We need three background assumptions in setting up the circuit framework. The first
is the following.

Assump 1. We can associate a probability with any given circuit (the probability that the
circuit “happens”), and this probability depends only on the specification of the given circuit
(the knob settings and outcome sets at the operations, and the wiring).

For example,

Prob

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A

C

B

D

a
c

a

a

d

b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is well conditioned

Note that we make this assumption for circuits, not for fragments generally. Indeed,
a fragment with open inputs and/or outputs cannot be expected to satisfy this since
the probability may depend on what is done with these open ports.

3.7 The State

Want to associate a state with a preparation

L

B

C

a c d
a b

There exist many results which complete this into a circuit. Here are a few examples:

A

B

C

a c d

E

a b

A

B

C

a c d

F

G
a

a
b

A

B

C

a c d

D

H

c

a b . . .
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The state associated with a preparation should enable us to predict the probability
for every circuit containing this preparation.

We could specify the state associated with a preparation by giving a list of proba-
bilities for every circuit madewith this preparation. This would be a very long list and
rather cumbersome to work with. However, physical theories typically relate differ-
ent quantities. Consequently it should be possible to pick out a subset of results such
that specifying the probabilities for just the circuits containing the given preparation
and results from this subset is sufficient to allow us to calculate the probability for
any other circuit containing this preparation. For example, in Quantum Theory we
can calculate all the probabilities for a spin-half particle from just the probabilities

⎛
⎜⎜⎝

px+
py+
pz+
pz−

⎞
⎟⎟⎠

as these suffice to determine the density matrix for this system. In fact, these prob-
abilities suffice to determine the elements of the density matrix by linear equations.
We will insist on linearity in what follows. This is well justified when one considers
taking mixtures of states (see Appendix B of [28] for example). We call the choice of
results used to specify the state fiducial results. In general this choice is not unique.

3.8 Using Fiducial Results to Define States

It is worth paying attention to the font used in the notation below. Consider prepara-
tions of the form Aa1 . We choose a fiducial set of results

Xa1
a1

for a1 = 1 to Ka

The state associated with preparation Aa1 is given by

Aa1 := Prob(Aa1Xa1
a1
)

A fiducial set is a minimal set such that, for any result, Ba1 there exists an effect Ba1
such that

Prob(Aa1Ba1) = Aa1 Ba1 (summation over a1 implied)

This is linear. If we allow arbitrary mixtures then must have linearity here [28].
However, even if we do not allow arbitrary mixtures, we are free to consider only
linear relations of this type even though there may be a more efficient non-linear
expression. Associated with preparation Aa1 is the state, Aa1 . This is a list of Ka

fiducial probabilities fromwhich all other probabilities can be calculated. Associated
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with the result Ba1 is the effect Ba1 . This is a list of Ka real coefficients (which can
be negative).

3.9 Pure States

A mixed state is one that can be simulated by a mixture of preparations. i.e.

Aa1 = λBa1 + (1 − λ)Ca1

where 0 < λ < 1 and Ba1 �= Ca1 . A pure state is one that cannot be simulated by a
mixture of preparations. A transformation is non-mixing if it preserves purity (up to
normalization).

3.10 Maximal Sets

A very important notion is that of a maximal set.

A maximal set of distinguishable states is any set containing the maximum number, Na,
of states for which there exists some measurement, called a maximal measurement, which
can identify which state from the set we have in a single shot.

We also need the following notion.

A maximal effect is associated with each outcome of a maximal measurement.

We can notate these notions diagrammatically as

Prob

⎛
⎜⎜⎜⎜⎝

A[n]

B[m]

a

⎞
⎟⎟⎟⎟⎠

= δnm

or symbolically as

Aa1 [n]Ba1[m] = δnm

where m, n = 1 to Na.
In quantum theory maximal sets of distinguishable states are associated with an

orthonormal basis. Then Na is the dimension of the Hilbert space, maximal measure-
ments correspond to non-degenerate observables, and maximal effects correspond
to rank-one projectors.

In classical probability theory there is a unique maximal set of distinguishable
states and it is usually understood to correspond to the underlying states of reality.
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3.11 Two More Assumptions for Framework

We need two more background assumptions for the circuit framework.

Assump 2. There exists at least one type of system having Na > 1 and Ka finite.

Recall that Na is the maximum number of states in a distinguishable set and Ka is
the number of probabilities that must be provided to specify the state. In quantum
theory we note that systems having finite Na also have finite Ka.

We will give the third assumption without defining all the terms.

Assump 3. If, for any accuracy δ > 0, there exists a fragment A[δ] that is operationally
indiscernible from a given hypothetical fragment, Q, then there actually exists a fragment
with the probabilistic properties of Q.

This assumption is used to obtain the property that the space of fragments is compact
in an appropriate sense. The reader is referred to [28] for more details.

3.12 Permutation Transformations

We can define permutation transformations with respect to a given maximal set of
distinguishable states

A[n]

Pπ

a

a

≡ A[π(n)]

a

for some permutation π. That is, a permutation transformation permutes the elements
of a maximal set of distinguishable states.

3.13 P1

For the purpose of clarity, it is worth discussing the first postulate at this stage.

P1 Logical Sharpness. There is a one-to-one map between pure states and maximal
effects such that we get unit probability.

This means that for any given pure state there is a unique maximal effect giving
unit probability, and that for any given maximal effect there is a unique pure state
giving unit probability. In pictures, there is a one-to-one map between pure states
and maximal effects:
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U

a

↔ U

a

such that Prob

⎛
⎜⎝

U

U
a

⎞
⎟⎠ = 1

Interestingly, causality follows from this postulate. This is the property that choices
in the future do not influence probabilities the past. The causality property was
introduced by CDP as corresponding to the existence of a unique deterministic effect
[6] and used as a postulate in their reconstruction [7].

3.14 Informational Faces and Non-flat Sets of States

An informational face, S, is the full set of states having support only on some subset,
OS , of the outcomes of some maximal measurement, {Ba1[m]}. Basically, these are
sets of states constrained to have a certain information carrying capacity. The states
in S̄ have support on the complement subset of outcomes, ŌS , for the same maximal
measurement. In convex geometry a face is given by the intersection of the convex
set in question and a supporting hyperplane. A supporting hyperplane is one which
has no elements of the convex set on one side. The supporting hyperplane defining
S is given by the equation

⎛
⎝ ∑

m∈ŌS

Ba1[m]
⎞
⎠ Aa1 = 0 (1)

Faces are, themselves, convex sets. In quantum theory all faces are, in fact, informa-
tional faces by virtue of the spectrality property (any state can be written as a convex
combination of states in a maximal distinguishable set). However, this need not be
the case and we do not assume this here.

A set of states is non-flat if it is a spanning subset of some informational face. It
could be an over-complete spanning subset and consequently the informational face
is, itself, non-flat. If P1 holds then we can think of a non-flat set of states as a kind
of generalization of the notion of a pure state. In fact it follows from P1 that any
single member non-flat set of states consists of a state proportional to a pure state.
Thus, we can think of a set containing a single pure state as being the simplest type
of non-flat set in a hierarchy of bigger and bigger non-flat sets.

We need the following notion to understand P5.

A transformation is said to be non-flattening if, for any non-flat set of states we send in, we
get a non-flat set of states out.
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It follows from P1 that all non-flattening transformations are also non-mixing. Inter-
estingly, in quantum theory the converse is true also: all non-mixing transformations
are non-flattening.

3.15 Filters

A filter, F, is defined with respect to a given informational face, S.

A filter is a transformation that

• passes unchanged states in S

• blocks states in S̄

For a filter defined with respect to an informational face S given by maximal mea-
surement {B[m]} and outcome set OS we have

A

F
a

a

≡ A

a

if Prob

⎛
⎜⎝

A

B[m]
a

⎞
⎟⎠ = 0 for all m ∈ ŌS

A

F
a

a

≡ 0

a

if Prob

⎛
⎜⎝

A

B[m]
a

⎞
⎟⎠ = 0 for all m ∈ OS

Here

0

a

is the preparation corresponding to the null state. The null state is the state that gives
probability zero for any circuit it is part of. The components of the null state are,
therefore, all equal to zero.

4 The Postulates

Classical probability theory and quantum theory are only two theories consistent
with the following postulates.
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P1 Logical sharpness. There is a one-to-one map between pure states and maximal
effects such that we get unit probability.

P2 Information locality.Amaximal measurement on a composite system is effected
if we perform maximal measurements on each of the components. Equivalently
Nab = Na Nb.

P3 Tomographic locality. The state of a composite system can be determined from
the statistics collected by making measurements on the components. Equiva-
lently Kab = Ka Kb.

P4′ Permutability. There exists a reversible transformation on any system effecting
any given permutation of any given maximal set of distinguishable states for that
system.

P5 Sturdiness. Filters non-flattening.

4.1 Ruling Out the Classical Case

To single out quantum theory it suffices to add anything that is inconsistent with
classical probability and consistent with quantum theory. The key property of non-
classical theories is that Ka > Na for non-trivial systems (i.e. systems having Na >

1). One way to ensure this is to replace P4′ with

P4 Compound permutability. There exists a compound reversible transformation
on any system effecting any given permutation of any given maximal set of
distinguishable states for that system.

A compound transformation is one that can be made from two sequential transfor-
mations (neither equal to the identity). The advantage of this is that it requires only
adding a single word (the word “compound”) to one of the existing postulates. How-
ever, as we just mentioned, we could add any property inconsistent with classical
probability theory so long as it is consistent with quantum theory. For example, we
could simply demand that there are more pure states than there are states in any
maximal distinguishable set of states for non-trivial systems.

4.2 P2

Our second postulate is the following.

P2 Information locality.Amaximal measurement on a composite system is effected
if we perform maximal measurements on each of the components.

This means the set of results (with m = 1 to Na and n = 1 to Nb)
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A[m]

a

B[n]

b

is a maximal measurement.
If Na is the maximum number of distinguishable states then P2 is equivalent to

statement that
Nab = Na Nb

This is very natural. For example, if we have a die (Na = 6) and a coin (Nb = 2) then
we have Nab = 12. We call this “information locality” since the total information
capacity is given by adding together the local information capacities:

log Nab = log Na + log Nb

This postulate is looks innocent but it is actually very powerful. Certainly we can
imagine situations in which this postulate is not true (see [30]).

4.3 P3

Our third postulate is used in many of the recent reconstructions of quantum theory.
It can be stated in the following way.

P3 Tomographic locality. The state of a composite system can be determined from
the statistics collected by making measurements on the components.

Pictorially this means we can determine the state associated with the preparation,
Aa1b2 , by determining the probabilities for circuits of the form

A

X Y

a b

It follows from this that we can write the state as Aa1b2 where this is a list of joint
probabilities determined by putting separate fiducial results on system a1 and b2.
In fact, more generally, it follows from tomographic locality that we can represent
an arbitrary operation such as Bd4e5

a1b2c3
by a tensor Bd4e5

a1b2c3
. Actually, this fact is an

equivalent statement of tomographic locality. In words the equivalent statement is
that an arbitrary operation can be fully characterized by local process tomography.
Then the probability for a circuit is given the scalar obtained by contracting over
indices where there are wires in the circuit. For example,

Prob
(
Aa1b2c3f6Bd4e5

a1b2c3
Cd4De5f6

)
= Aa1b2c3 f6 Bd4e5

a1b2c3
Cd4 De5 f6 (2)
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In [22, 28] a tensor such as Bd4e5
a1b2c3

correspond to putting a more general object
called a duotensor into standard form. Duotensors play an important role in the full
reconstruction. However, we will not discuss them further here.

Another equivalent statement of tomographic locality is that

Kab = Ka Kb

(where Ka is number of probabilities required to specify state). Hence we see that
information locality and tomographic locality are very similar postulates (they were
grouped together in [27]).

There exist other equivalent statements of the tomographic locality assumption
(see [28] for some of them).

4.4 P4′

The forth postulate concerns the ability to permute the states in a maximal set of
distinguishable states by means of a reversible transformation.

P4′ Permutability. There exists a reversible transformation on any system effecting
any given permutation of any given maximal set of distinguishable states for that
system.

In pictures we can say that exists reversible Pπ

A[n]

Pπ

a

a

≡ A[π(n)]

a

for anymaximal set of distinguishable states, Aa1 [n] andpermutation,π. Reversibility
means that this transformation is reversible when applied to any state (not just the
members of the maximal set of distinguishable states).

This postulate implies we can perform lossless arbitrary translation of a message
encoded with respect to any alphabet to one encoded with respect to any permutation
of this same alphabet.

4.5 P5

The last postulate concerns filters.

P5 Sturdiness. Filters are non-flattening.
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Recall that a set of states is said to be non-flat if it is a spanning subset some
informational face. One way to think of this property is that sets of states resist
being squashed (hence the name “sturdiness”). Quantum states are not as sensitive
as we might have imagined. A filter is a pretty dramatic transformation. However,
according to this postulates, sets of states remain as intact as they can under the
circumstances.

5 Outline of Reconstruction

The full reconstruction, while only using elementary mathematics, is rather lengthy.
Here we will only give an outline of some of the main steps.

First, using P1, P2, P3, and P4′ we

• show that there exists a reversible transformation between any pair of pure states,
• construct arbitrary filters,
• show there exist types with N = 1, 2, 3, . . . ,
• show that systems having same N are equivalent,
• show that Ka = Nr

a where r = 1, 2, 3, . . . (the Wootters hierarchy [43, 44].

Using P5 as well we

• show that gebits (generalized bits, i.e. systems having Na = 2) correspond to
hyperspheres,

• show that all points on the hypersphere correspond to pure states,
• show how to do teleportation,
• prove that Ka = Na or Ka = N 2

a .

This gives us the bit or the qubit. Interestingly, getting the qubit is the most difficult
part of this reconstruction as well as many others. Having got the qubit we get the
appropriate constraints on quantum theory in general (not just the Na = 2 case)
by showing that a certain “magic operation” can implement any complete set of
superoperators (superoperators corresponding to a set of operations associated with
a given apparatus with disjoint outcome sets where the union of these outcome
sets is the full set of outcomes). To complete this last step and get quantum theory in
general we employ the duotensor framework [22] and the operator tensor formulation
of quantum theory [28, 29]. We will provide an outline of how some aspects of the
reconstruction work in the following subsections. For the full details of the proofs
(which are mostly omitted here) the reader is referred to [28].

5.1 Reversible Transformation Between Pure States

Let
{Ua1[n] : n = 1 to Na} and {Va1[n] : n = 1 to Na}
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be maximal sets of distinguishable preparations for a. Let

{Wb2[m] : m = 1 to Nb}

be a maximal set of distinguishable preparations for b. We will denote the maxi-
mal measurement that distinguishes these maximal sets of distinguishable states by
{Ua1[n]}, {Va1 [n]}, and {Wb2[m]}.

It follows from P2 that

{Ua1[n]Wb2 [m] : nm = 11, 12, . . . Na Nb}

is a maximal set for ab. Similarly,

{Va1[n]Wb2 [m] : nm = 11, 12, . . . Na Nb}

is another maximal set for ab.
Let P be the reversible transformation that permutes Ua1 [n]Wb2[m] according to

πP = (nm ↔ mn)

Let Q be the reversible transformation that permutes Va1 [n]Wb2[m] according to

πQ = (nm ↔ mn)

Note we choose b such that Nb = Na. Then a little thought shows that

P

Q

a W[1]
b

U[1]

a

b

V[1]

a

W[1]
b

a
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does the job. We can prove that this is a reversible transformation and it clearly takes
Ua1[1] to Va3[1]. In fact it actually does a bit more. It takes Ua1[n] to Va3 [n] for
n = 1 to Na.

5.2 Arbitrary Filters are Possible

It can be shown that the transformation

P

P̃

a V[n1]
b

U[n1]

a

b

U[n1]

a

T
b

a

(3)

effects an arbitrary filter where Na = Nb and n1 is any integer chosen from OS . Here
the transformation P is a permutation transformation with permutation

π =
(

nm ↔ mn if n and m ∈ O(S)
nm ↔ nm otherwise

)
(4)

and P̃ is the transformation that reverses P. The result Tb is a deterministic result (its
outcome set is equal to the set of all outcomes).

5.3 Systems with Same are N Equivalent

These substitutions prove equivalence when Na = Nb.
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a −→

P

P̃

a V[1]
b

U[1]

a

b

U[1]

a

T
b

a

b −→

P

P̃

bU[1]

a

V[1]
b

a
V[1]
b

T
a

b

(5)

where
π = (nm ↔ mn) (6)

With these substitutions we can replace any wire of type a by one of type b (and vice
versa) without changing the probability for the given circuit.

5.4 Proof that Ka = N r
a

It follows from the first four postulates that

• Ka = K (Na) (since systems having the same Na are equivalent).
• K (N + 1) > K (N ) (since we can filter systems down).
• K (Na Nb) = K (Na)K (Nb) (by P2).

It can be shown that
Ka = Nr

a where r = 1, 2, 3, . . .

follows (the proof of this uses the decomposition of Na and Nb into prime numbers).
This relationship was first suggested by Wootters [43, 44] and hence we term it the
Wootters hierarchy. It was first proven that this relationship follows from the above
more basic premises in [27]

5.5 All Points on Hypersphere Correspond to Pure States

It can be shown to follow from fact that there exists a reversible group of transforma-
tions between pure states that all pure states must live on surface of a hypersphere.



242 L. Hardy

We then need to show that all points on this hypersphere correspond to pure states for
the gebit. The proof of this starts with a getrit (a system having Na = 3). We prepare
a system constrained to an Na = 2 informational face of this getrit (i.e. we consider
states constrained to a gebit space). Next we filter on the getrit space but with respect
to a maximal measurement that has one maximal result having full support on the
afore mentioned gebit and one maximal result having only partial support on this
gebit. What happens is that the states emerging out of this filter are also gebit states
but they move closer to one of the poles of the gebit (the one associated with the
maximal result having full support). If we keep filtering like this then an initially
non-flat set of states will, by P5 remain non-flat but will move closer to this pole. We
can produce a spanning set of states that are as close to the pole as we like. It then
follows that within an infinitesimal region of the pole there must be points lying in
any direction. Since any state could serve as the pole, this proves that all points on
the hypersphere are populated.

5.6 Getting the Qubit and Ka = N2
a

The classical case corresponds to the 1-spherewith just twopure states. Ifwe are in the
non-classical case then we want to prove that this hypersphere must be the 2-sphere
corresponding to the qubit of quantum theory. Consequently, we want to prove that
for Na = 2 we have Ka = 4 (in the non-classical case). This means that we get the
Bloch ball (since one parameter counted in Ka corresponds to normalization). This
proof is adopted from a beautiful proof due to Chiribella, D’Ariano, and Perinotti
[6, 7] using teleportation.

We start by assuming that we are in the non-classical case. Consider the gebit
preparation

M

EB (7)

where Ba1 is a gebit preparation, Ea2a3 is an entangled pure state in S{11,22} and Ma1a2
is a certain maximal entangled effect (these do not exist in the classical case but
must exist in the non-classical case). We can show that the transformation on Ba1

is non-flattening using P5. The pure states for preparation Ba1 lie on the surface
of a hypersphere. Under the transformation in (7) this hypersphere is transformed
to an hyper-ellipsoid. Hence we can use the preparation in (7) to prepare a state
proportional to any pure state by making an appropriate choice of preparation B. The
state that is prepared is not necessarily equal to Ba1 so we do not necessarily have
faithful teleportation. However, we can use this result to obtain the following result.
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M 1

B P̃cnot

A M

≡ 1
8

A

(8)

for any state Aa1 for the gebit. Now we do have faithful (probabilistic) teleportation.
We work in a computational basis for the gebit denoted by 0 and 1. Here Ba2 is
a special choice of state. In fact it must be an equatorial state—a pure state on
the equator of the hypersphere between the two poles (these exist only in the non-
classical case). Also, Pcnot is a reversible permutation transformation effecting the
permutation associated with the C N OT gate in the computational basis.

Since we now have faithful (albeit probabilistic) teleportation, we have

M 1

B P̃cnot

M

≡ 1
8

We can also prove that

Prob

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M 1

B P̃cnot

M

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≤ 1
2

(9)

using the fact that Ba2 is equatorial. For convenience we put

N :=

M 1

B P̃cnot
(10)

Then

Na1a2 Ma2a3 = 1

8
I a3
a1 (11)
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where I a3
a1 is the identity. Hence,

Na1a2 Ma2a1 = 1

8
I a1
a1 = 1

8
Ka (12)

since the trace of the identity is equal to the dimension of the space on which it acts.
But we also have

Na1a2 Ma2a1 ≤ 1

2
(13)

It follows that, for a gebit, Ka ≤ 4. Hence, K = N 2 in general.

5.7 The Magic Operation

The last part of the proof shows how to use the fact that the gebit is equal to the qubit
along with the postulates to get quantum theory in general. The key part of this is
showing that the following set of operations (for different outcomes l of a maximal
measurement)

1 0 0

P

U[1]

φ[1] φ[2] φ[Na]

V[1]

l T

Q

1 0 0

a

b

a

b c d

c d

. . .

. . .

. . .

(14)

can generate any complete set of operations in quantum theory. Here P and Q are
appropriately chosen reversible permutation transformations, {φ[n] : n = 1 to Na}
are appropriately chosen phases, c and d are ancillary systems having appropriate Nc

and Nd, and Vb2c3d4[1] is an appropriately chosen preparation (for a pure state). The
unlabeled wires represent qubits. T is the deterministic effect. This proof employs
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the duotensor and operator tensor frameworks and the reader is referred to [28] for
details.

6 Conclusions

I have provided a set of operational postulates from which quantum theory can be
reconstructed. This does not require a simplicity assumption as did my earlier work
[27] from over a decade ago. This is one of a number of recent reconstructions [7, 10,
34, 35, 45] along similar lineswhich use the assumption of tomographic locality (like
[27]) and do not need a simplicity assumption. There are strong connections between
these different approaches andmanyof the proof techniques are similar.What appears
as a postulate in one approach appears as a low level theorem in another and vice
versa. One might think of a set of postulates as being a little akin to a choice of
coordinate system used to represent some shape. If we find a good coordinate system
then the shape appears simple. The fact that there are a number of good postulate
sets that are fairly simply related to each other is similar to the fact that there are
often a number of good choices of simply related coordinate system for viewing a
shape. While one may have preferences for one or the other set of postulates, there
is not really much to distinguish them.

However, I am left with the sense that some much deeper insights are still left to
be had. One reason for this sense is that in the operator tensor formulation [28, 29]
of quantum theory (and, similarly, in the quantum combs approach [5]) preparations,
transformations, and results are all treated on a fairly equal footing. However, this is
not true of the postulate set presented here or the others I have mentioned. Surely the
postulates should also treat all kinds of operations on an equal footing (so far as this
is possible). Further motivation for this comes from quantum gravity. We do not yet
have a theory of quantum gravity. However, when we do, it seems likely that we will
have to contend with indefinite causal structure. We will not be able to say whether
some particular interval is space-like, time-like, or null, but rather can expect to have
something like a quantum superposition of these different cases. Then we cannot be
sure that some ports on an operation are inputs and others are outputs (since these
notions assume definite causal structure). In this case we cannot distinguish prepa-
rations, transformations, and results. Quantum theory might reasonably be expected
to be obtained as a limit of quantum gravity (in the limit as we have definite causal
structure). In this limit distinct notions of preparations, transformations, and results
might emerge. However, fundamentally (before the limit is taken), they are not dis-
tinct. It would, then, be great if a set of postulates for quantum theory treated them
more-or-less on an equal footing. Some of these postulates may then go over to a
theory of quantum gravity. In [25, 26, 31] I developed the “causaloid framework”
for general probabilistic theories that can accommodate indefinite causal structure.
One can put quantum theory into this framework and it does, indeed, have the feature
that preparations, transformations, and results are then treated on a (more-or-less)
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equal footing (indeed, the causaloid formulation of quantum theory is the origin of
the operator tensor formulation).

I think that the real test of this research program will be the progress that is made
towards a theory of quantum gravity using these newly developed techniques. It is in
constructing new physical theories that we can really test whether we are on the right
path since then we have to make new predictions and account for new experimental
data. Furthermore, the more fundamental our physical theory, the more natural we
can expect our postulates to be.
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The Classical Limit of a Physical Theory
and the Dimensionality of Space

Borivoje Dakić and Časlav Brukner

1 Introduction

“Physical space is not a space of states” writes Bengtsson in his article entitled
“Why is space three dimensional?” [1]. Indeed, although the state space dimen-
sion for a macroscopic object is exponentially large (in the number of object’s con-
stituents), we still find ourselves organizing data into a three-dimensional manifold
called “space”. Why is this discrepancy? Can there be more dimensions? In past
different approaches have been taken to show that the three-dimensional space is
special, such as bio-topological argument [2], stability of planet orbits [2], stability
of atoms [3] or elementary particle properties [4]. The existence of extra dimensions
has been proposed as a possibility for physics beyond the standard model [5–10].

In this work we will address the questions given above within the operational
approach to general probabilistic theories [11–13]. There the basic ingredients of the
theory are primitive laboratory procedures by which physical systems are prepared,
transformed and measured by laboratory devices, but the systems are not necessarily
described by quantum theory. General probabilistic theories are shown to share many
features that one previously have expected to be uniquely quantum, such as proba-
bilistic predictions for individual outcomes, the impossibility of copying unknown
states (no cloning) [14], or violation of Bell’s inequalities [15, 16]. Why then nature
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obeys quantum mechanics rather than other probabilistic theory? Recently, there
have been several approaches, answering this question by reconstructing quantum
theory from a plausible set of axioms that demarcate phenomena that are exclusively
quantum from those that are common to more general probabilistic theories [13,
17–31].

In probabilistic theories the macroscopic laboratory devices are standardly
assumed to be classically describable, but are not further analyzed. The “position” of
the switch at the transformation device or the record on the observation screen have
only an abstract meaning and are not linked to the concepts of position, time, direc-
tion, or energy of “traditional” physics (or to use Barnum’s words “the full, meaty
physical theory” is still missing [32]). As a result of the reconstructions of quantum
theory, one derives a finite-dimensional, or countable infinite-dimensional, Hilbert
space as an operationally testable, abstract formalism concerned with predictions of
frequency counts in future experiments with no appointment of concrete physical
labels to physical states or measurement outcomes. In standard textbook approach
to quantum mechanics this appointment is “inherited” from classical mechanics and
is formalized through the first quantization—the set of explicit rules that relate clas-
sical phase variables with quantum-mechanical operators. However, these rules lack
an immediate operational justification. This calls for a “completion” of operational
approaches to quantummechanics with the “meaty physics”. Our work can be under-
stood as a step in this direction.

In an operational approach one interprets parameters that describe physical states,
transformations, andmeasurements, as the parameters that specify the configurations
of macroscopic instruments in physical space by which the state is prepared, trans-
formed, and measured. Within this approach it is natural to assume the state space
and the physical space to be isomorphic to each other. The isomorphism of the
two spaces is realized in quantum mechanics for the elementary directional degree
of freedom (spin-1/2). The state space of the spin is a three-dimensional unit ball
(the Bloch ball) and its dimension and the symmetry coincide with those of the
Euclidian (non-relativistic) three-dimensional space in which classical macroscopic
instruments are embedded. This was first pointed out by von Weizsäcker who writes
[33]: “It [quantum theory of the simple alternative] contains a two-dimensional com-
plex vector space with a unitary metric, a two-dimensional Hilbert space. This theory
has a group of transformations which is surprisingly near-isomorphic with a group
of rotations in the real three-dimensional Euclidian space. This has been known for a
very long time. I propose to take this isomorphism seriously as being the real reason
why ordinary space is three-dimensional.” In a different vein, Penrose demonstrated
that the angles of three-dimensional space can be modeled by spin networks in semi-
classical states of “large spins” [34] and Wootters showed a relation between the
statistical distinguishability in quantum mechanics and geometry [35].

Whereas von Weizsäcker based his proposal on a mathematical isomorphism
between the two spaces, there are very compelling physical evidences that they
indeed are related to each other. The Einstein-de Haas effect [36] as well as the
Barnett effect [37] demonstrate a deep relationship between magnetism, angular
momentum, and elementary quantum spin. In the Einstein-de Hass effect an external
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magnetic field, generated by electric current through the coil surrounding a ferromag-
net, leads to the mechanical rotation of the ferromagnet (or reversely, in the Barnett
effect, a spinning ferromagnet can change its magnetization). The two effects phe-
nomenologically demonstrate that the quantum spin is indeed of the same nature
as the angular momentum of macroscopic rotating bodies as perceived in classical
mechanics. One can therefore associate mathematical properties to the elementary
quantum spin that are typical for a vector (more precisely, pseudo-vector) in a three-
dimensional space, such as three coordinates, orientation in space, or building the
cross products with other vectors. For example, the precession of the spin in the
external magnetic field (the Larmor precession) is due to torque on the spin, which
is given by the cross product between the spin and the field.

If one assumes that quantum theory is universal [38], one should be able to arrive
at an explanation of macroscopic devices (such as those for preparation, transfor-
mation and measurement of elementary spins) in terms of classical physics and
three-dimensional space from within quantum theory. This would allow to invert
the logic from the previous paragraph and argue that the symmetry of the classical
angular momenta as embedded in the three-dimensional Euclidian space should fol-
low from the symmetry of the elementary quantum spin. One could offer such an
explanation in the “classical” or “macroscopic” limit of quantum theory. It is known
that the spin coherent states [39, 40]—which are the states of a large number of
identically prepared elementary spins—acquire an effective description of a classi-
cal spin embedded in the ordinary three-dimensional space under the restriction of
coarse-grainedmeasurements [41]. These (macroscopic) states are “robust”: they are
stable with respect to small perturbations, such as those caused by repeated obser-
vations, giving rise to “objective” properties in the classical limit. For example, if
one flips only a few spins of a ferromagnet, the system will turn into an orthogonal
state, but we will identify it as the very same magnet at the macroscopic level. The
macroscopic distinguishability can be reached only if a sufficiently large number of
spins (of the order of square-root of the total number of spins) are flipped in which
case we perceive it as a new state of magnetization.

The spin coherent states can serve as “reference states” with respect to which
one can define the notion of “direction”. Preparation, rotation or measurement of
the elementary quantum spin along some “direction” has then only relative meaning
with respect to such quantum reference frames [42–46] which become classical ones
in the limit of a large number of spins constituting the coherent state. In the limit the
spin coherent states can be understood as representing the classical magnetic field in
which other quantum spins may evolve. Importantly, the group of transformations
of an individual quantum spin is then generated by a rotationally invariant interac-
tion between the spin and the coherent state, i.e. by a pairwise invariant interaction
between the spin and each of the constituting spins of the coherent state [45]. The
invariance is required as there is no external reference frame. The spin coherent states
define directions in terms of two (polar) angles in the three-dimensional Euclidian
space, and thus give rise, through the relative angle, to the notion of “neighboring”
orientations, without having such a notion from the very beginning.
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We have seen that there are phenomenological andmathematical evidences for the
isomorphism between the state space of elementary quantum spin and the physical
space. Central for the argument are coherent states, which can be understood as
representing macroscopic fields in the physical space, on one hand, are described in
quantum theory as states in Hilbert space for which all the spins are prepared in the
same quantum state, on the other hand.

The notion of coherent states is not exclusive for quantum theory but can be
straightforwardly extended to general probabilistic theories as well, as a state of
the collection of a large number of equally prepared elementary systems. It is legit-
imate to think that starting with the theory that differs from quantum theory and
going into the limit of states with a large number of elementary systems and coarse-
grained measurements one might arrive at “classical physics” embedded in a space
of dimensions different than the one of our everyday life [47]. For example, quater-
nionic quantum theory describing non-relativistic spin requires the physical space
to have five dimensions, and the octavic quantum theory requires the space of nine
dimensions [48].

Here we investigate the possibility of having higher-dimensional physical spaces
in the macroscopic (“classical”) limit. Our analysis is restricted to non-relativistic
geometry of space (not space-time and not curved spaces) and directional degrees of
freedom (spin). It is clear that one can imagine a vast variety of manifolds as possible
candidates for the space (for example, as odd as the donut shape). Our focus here
is onto the most natural generalization of the experienced (three-dimensional) non-
relativistic space: the Euclidean d-dimensional isotropic space.We have seen that the
symmetry of the state space of the elementary quantumspin (three-dimensionalBloch
sphere) has the symmetry of the three-dimensional physical space. This strongly sug-
gests that one needs to go outside of quantum framework to explore possibilities of
higher-dimensional physical spaces. The natural choice to start with are systems for
which the state space is d-dimensional Bloch sphere and we call them “generalized
spins”. They can be derived from an information-theoretic analysis [49] and come as
the most natural generalization of quantum spin. All such systems share fundamental
features with the quantum spin, such as quadratic uncertainty relations for mutually
unbiased (complementarity) observables, isotropic set of states, its rotational sym-
metry etc. They only differ in the dimension d of the state space.1

A large number of equally prepared generalized spins define a (generalized) spin
coherent state.Under the restriction of coarse-grainedmeasurements such spin coher-
ent state acquires an effective description of a classical vector embedded in the
d-dimensional space. One might think that the analogue with quantum theory can be
developed further in that a spin coherent state can define the “field of the magnet”

1The argument for choosing to consider the generalized spins canbemademore rigorous. In the spirit
of operational theories we assume that every continuous reversible transformation (e.g. rotation) of
macroscopic devices in the physical space generates a continuous reversible transformation of the
system in the state space between two pure states. This excludes the “box-world” [12, 16] systems
as they have discrete state spaces. The systems with relaxed uncertainty relations [50] are also
excluded since they require non-linear transformations.
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in which the elementary generalized spin can evolve, analogous to the Larmor pre-
cession but in a higher-dimensional physical space. With no preferred direction one
would require the pairwise interaction between the generalized spin and each of the
constituting spins of the coherent state to be invariant under the simultaneous group
action on both (the rotational invariance). Here we show that no such interaction
between the spin and the macroscopic field can generate the group of transforma-
tions of the spin unless its state space and the physical space inwhich the field acts are
both three-dimensional—as in quantum theory and in our three-dimensional world.

In more precise terms we impose the following requirements on theory:

• (Closeness) The dynamics of the elementary system of the theory can always be
generated through the invariant interaction of the system with the macroscopic
device that itself is obtained from within theory in the macroscopic limit.

• (Macroscopic states) The macroscopic transformation device (“magnetic field”)
is in a coherent state in which the constituting elementary systems are all equally
prepared.

The precondition for considering the two requirements is that the symmetry of the
elementary system and of the macroscopic device by which the system is trans-
formed are both those of the Euclidean d-dimensional space. We show that if
the elementary interactions between the elementary systems are pairwise, the two
requirements can only be fulfilled if the underlying theory is quantum theory and
d = 3.

An important restriction under which our result is obtained is that the generalized
spin interacts pairwisewith each single spin constituting the large spin in the coherent
state. We show that if we relax this assumption, there are group invariant interactions
between three ormore generalized spins. Thismeans that the spin under consideration
could interact with several other spins, each one belonging to a different coherent
state, and that such interaction could generate the group of transformation of the
spin. The notion of the “field of the magnet” would then be extended such that it is
represented not by a single but several coherent states. This opens up a possibility
of having higher-dimensional Euclidian physical spaces compatible with underlying
generalized probabilistic theory different from quantum theory. Nonetheless, we
leave the question open of whether such a theory can be fully constructed in a
mathematically consistent way.

In a recent work [51], Müller and Masanes gave an information-theoretic analy-
sis of the relationship between the geometry of the state space of an elementary
system (directional degree of freedom) and the classical space in which the macro-
scopic devices are embedded. In their work, they consider “spin” as an elementary
directional degree of freedom to be measured by a macroscopic measurement device
(“generalized Stern-Gerlach magnet”) that can be oriented along arbitrary direction
in d-dimensional physical space. Assuming that any spatial direction can be encoded
in a physical state of the spin and no further information is encoded in the state, they
derive that the state space is the d-dimensional Bloch sphere. In the next step, they
show that such systems can exhibit continuous non-trivial dynamics only in three
dimensions with the constraint to the locally-tomographic theories [52–54].
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In the present approach, we take a different route. From the very beginning we
consider the systems that have d-dimensional Bloch sphere as the state space and
obtain the dimensionality of the physical space by the requirement that the theory is
“closed”. In a probabilistic theory the dynamics of a single system is assumed to be
generated by an external field ofmacroscopic devices. In a closed probabilistic theory
the fields are not notions from “outside” of the theory, but are obtained fromwithin it
in the macroscopic limit. Furthermore, we extend the study to the more general class
of theories that are not in general locally tomographical [55]. The assumption of so
called local-tomography states that the global state of a composite system can be
learned trough local statistics. We allow for more general situations where the state
of a composite system may include a set of global parameters that cannot be learned
trough local statistics but trough the global (entangling) measurements on a whole
system [56]. The prototype of the theory that involves global parameters is quantum
mechanics based on real amplitudes [57]. This theory can be reconstructed within
an information-theoretic approach [56]. Most of the previous information-theoretic
reconstructions of quantum theory [13, 26, 29, 31], as well as the work of Ref.
[51] adopt local tomography (e.g. directly eliminating real quantum mechanics), in
contrast to our work here.

In conclusion, we reconstruct, the three-dimensional space and quantummechan-
ics trough the macroscopic limit under the constraint of pairwise elementary inter-
actions. Interestingly, higher-dimensional space may arise in the limit if one allows
for multipartite elementary interactions, i.e. ternary and more.

2 The Classical Limit of Quantum Theory
and Three-Dimensionality of Space

In the operational approach to quantummechanics the notion of quantum state refers
to a well-defined configuration of the macroscopic instrument by which prepara-
tion of the state is defined. For example, the “horizontal” polarization of photon
is specified by the “reference direction” of a classical object relative by which the
polarization is prepared, such as the plane of the polarizing filter. On the other hand,
if quantum mechanical laws are universal, then macroscopic, classical objects, such
as polarizing filters, themselves should allow a description from within quantum
mechanics.

One can consider a macroscopic object as a collection of large number of ele-
mentary quantum systems, which are in one of “macroscopically distinct states”.
The latter are defined as quantum states that can still be differentiated even if the
measurement precision is poor and one performs coarse-grained measurements. The
states can be repeatedly measured by different observers or copied with negligible
disturbance. They are “robust” under disturbance or losses of a sufficiently small
number of constituent quantum systems. These properties give rise to a level of
“objectivity” of the macroscopically distinct states among the observers. A good
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example of such “classical” states are large spin-coherent states [39, 40] under the
restriction of coarse-grained measurements. For the spin-J system the spin coherent
states are defined as the eigenstates with the largest eigenvalue of spin projection
along direction �n:

Ĵ�n|�n〉 = J |�n〉, (1)

where Ĵ�n = �n �̂J and �n = sin θ cosφ�ex + sin θ sin φ�ey + cos θ�ez (with no external
reference frameassumed, �n shouldbeunderstood as a parametrizationof the spin state
with no further immediate physical interpretation). Their expansion in the eigenbasis
of Ĵz reads:

|�n〉 =
J∑

m=−J

(
2J

J + m

) 1
2
(
cos

θ

2

)J+m (
sin

θ

2

)J−m

e−imφ|m〉. (2)

The spin-J particle can be considered as a composite system consisting of N
spin-1/2 particles. The spin-J coherent state is then the product state of N equally
prepared spin-1/2 particles (J = N/2)

|�n〉 = |�n〉1|�n〉2 . . . |�n〉N (3)

In the limit of large J (or large N ) the spin coherent states acquire the properties
of “classical” states. The probability of obtaining outcome m of Jz is given by the
binomial distribution pm = |〈m|�n〉|2. In the limit it reduces to the normal distribution:

pm = 1√
2πσ

e
(m−μ)2

2σ2 , (4)

where σ = √
N sin θ is the width of distribution and μ = N/2 cos θ is the mean

value. The overlap between two spin-coherent states

|〈�n1|�n2〉|2 =
(
1 + �n1�n2

2

)N

−→ δ�n1,�n2 , (5)

becomes exponentially small in the limit of large N .
The uncertainty of measuring Jz is given by the standard deviation σ. Under

the restriction of coarse-grained measurements where the outcomes are merged into
“slots” of size much larger than the standard deviation, the Gaussian cannot be
distinguished anymore from the delta function [41] and the spin-coherent states
become effectively “classical vectors” in three-dimensional space.

There are two independent ways in which large spin-coherent states can be said
to induce the properties of the physical space. Firstly, they can be used to define the
“reference direction” in a three-dimensional space, though one lacks this notion in the
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abstract Hilbert space formulation of quantum theory to start with. With no external
reference frame only rotationally invariant observables can be measured, such as the
total spin length. Consider a “large” spin of length J in a spin-coherent state |�n〉 and
a “small” spin of length 1/2. It can be shown that the probability distribution for the
outcomes J + 1/2 (“aligned”) and J − 1/2 (“anti-aligned”) of the total spin length
approaches the probability distribution for the outcomes of spin projection of the
spin-1/2 along the direction �n in the classical limit (N → +∞) [42, 45]. In that way,
the spin-coherent states define the complete set of measurements for the elementary
spin. The set has the same dimensionality and the symmetry as the three-dimensional
Euclidian physical space. We call these static properties of the space.

Secondly, spin-coherent states can generate non-trivial dynamics in three-
dimensional space. A macroscopic spin in a coherent state can serve as an “external
magnetic field” around which another spin can precess, i.e. it serves as a transforma-
tion device for the elementary spins [45]. Since there is no preferred direction beside
the one defined by the large spin one requires the interaction between the elementary
spin and the large spin to be rotationally invariant. To illustrate it consider the situa-
tion as given in Fig. 2 (left). A single spin-1/2 particle interacts with N spins prepared
in a coherent state along direction �n. Total interaction Hamiltonian is the sum of all
pairwise interactions H = ∑N

n=1 H (0n) where H (0n) labels the interaction between
the single spin and nth spin of the macroscopic system. There is only one rotationally
invariant Hamiltonian, that is the Heisenberg spin-spin interaction H (0n) = Jn �σ0�σn ,
where Jn is the coupling constant. It can be shown that in the macroscopic limit the
elementary spin only negligibly affects the state of a large spin and the dynamics of
the elementary spin becomes unitary [45]:

eitH|ψ〉|�n〉 ≈ (eitHef f |ψ〉)|�n〉, (6)

where Heff = �B �σ is the effective Hamiltonian and �B represents the strength of
“macroscopic field” around which the “small spin” precesses (see Appendix 1 for
details).

3 Generalized Spins and Higher-Dimensional Space

3.1 Single System

Is there a microscopic theory that in its macroscopic limit leads to classical physics
embedded in a physical space of dimension higher than three? Following previ-
ous discussions one can expect that the elementary (two-level) system with the d-
dimensional sphere S(d−1) as state space gives rise to coherent states and “magnetic
fields” embedded in a d-dimensional Euclidean space in the macroscopic limit. Such
an elementary system is non-quantum because it represents a two-level system with
more than three degrees of freedom. Within the information-theoretic framework of
generalized theories, such generalized bit (here called “generalized spin”) is derived
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as the most natural generalization of qubit—the system that is fundamentally lim-
ited to the content of one bit of information [26, 49]. Other information-theoretic
approaches lead to the derivation of the same class of systems, e.g. by adopting
information causality [58] or continuous reversible dynamics [27, 29].

The state of generalized spin is represented by a vector in a d-dimensional real
space, x = (x1, . . . , xd). The probability P1(x, y) to obtain the spin along direction
y when the state is prepared along direction x is expressed trough the generalized
Born rule [26]:

P1(x, y) = 1

2
(1 + xTy). (7)

The set of pure states satisfy P(x, x) = 1 and is represented by a unit sphere Sd−1

in d-dimensions (see Fig. 1). The characteristic feature differentiating between the
theories is the number d of parameters required to describe the state completely. For
example, classical probability has one parameter, real quantum mechanics has two,
complex (standard) quantum mechanics has three and the one based on quaternions
has five parameters. A lower-order theory of the single system can always be embed-
ded in a higher-order ones in the same way in which classical theory of a bit can be
embedded in qubit theory.

Following the operational approach we assume that the continuous reversible
transformations of macroscopic devices acting upon the system generates the con-
tinuous reversible transformation of the state of the system. Therefore, the set of
physical transformations is a continuous (Lie) group. Furthermore, if an arbitrary
reversible transformation of the states can be realized manipulating the macroscopic
device, then the group of physical transformations is transitive on a sphere [59, 60],
i.e. any pure state can be transformed to any other in a continuous fashion. We will

Fig. 1 Figure taken from Ref. [26]. State spaces of a generalized spin or generalized bit (two-level
system). Theminimal number of real parameters d is needed to specify the (mixed) state completely.
From left to right A classical bit with one parameter (the weight p in the mixture of two bit values),
a real bit with two real parameters (state ρ ∈ D(R2) is represented by 2 × 2 real density matrix), a
qubit (quantum bit) with three real parameters (state ρ ∈ D(C2) is represented by 2 × 2 complex
density matrix) and a and a generalized bit for which d real parameters are needed to specify the
state. In the classical limit, a theory of elementary system with d parameters gives rise to physics
of macroscopic, classical “fields” embedded in d-dimensional physical space (see main text)
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consider minimal group transitive onSd−1, which is thus necessarily within the set of
physical transformations (see Appendix 2). The existence of such “reversible trans-
formations of macroscopic devices” is usually assumed ad hoc. The aim of this work
is exactly to show that they do not always exist, if the macroscopic devices are not
considered “outside” of the theory, but are required to be obtained from within it in
the classical limit.

3.2 Generalized Spin-Coherent States

Generalized spin-coherent states can be straightforwardly introduced in generalized
probabilistic theories. For every dimension d , they are collections of N equally
prepared generalized spins. The preparation can be parameterized by a direction �n
in a d-dimensional space. Equations (4) and (5), derived in quantum theory, remain
valid here as well. In the macroscopic limit of large N , the effective description of
the coherent states is that of classical vectors embedded in a d-dimensional Euclidian
space. We address here the question of whether generalized spin coherent states can
generate non-trivial dynamics of individual spins in the space, similarly as the one
given by Eq. (6). We will next show that with pairwise invariant interaction between
elementary spins this is not possible except when d = 3. We then discuss possible
generalizations of our approach to multi-spin invariant interactions that might give
rise to non-trivial dynamics in higher-dimensional spaces.

4 Dynamics and Macroscopic Limit

4.1 The Composite System

In order to describe interactions between two or more generalized spins we need to
introduce a representation of the composite system. One of the characteristics of both
classical and quantum probabilistic theory is the local tomography [52–54], namely
the property that the global state of a composite system is completely determined
by the statistics of local measurements. For example, a state of two classical bits
�p = (p00, p01, p10, p11), where e.g. p01 denotes the probability to obtain “spin up”
on the first spin and “spin down” on the second one, can be equivalently represented
by three numbers (x, y, t):

x = p00 + p01 − p10 − p11, (8)

y = p00 − p01 + p10 − p11, (9)

t = p00 − p01 − p10 + p11. (10)
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The local statistics is given by mean values x and y of probabilities measured on
the first and the second spin, respectively, whereas t is the mean value of correlation
(difference between the probabilities that the two spins are the same and that they
are different). Similarly, the density matrix ρ of two qubits can be decomposed as

ρ = 1

4

⎛
⎝11 ⊗ 11 +

3∑
i=1

xiσi ⊗ 11 +
3∑

j=1

y j11 ⊗ σ j +
3∑

i, j=1

Ti jσi ⊗ σ j

⎞
⎠ , (11)

where σi , i = 1, 2, 3, are Pauli operators. Vectors x = (x1, x2, x3) and y =
(y1, y2, y3) are called local Bloch vectors and are the mean values of the Pauli oper-
ators and T is the 3 × 3 correlation matrix with elements Ti j = 〈σiσ j 〉.

Not all generalized probabilistic theories fulfill local tomography; an example
is quantum mechanics based on real amplitudes. For the real bit only two Pauli
matrices σ1 and σ3 correspond to physical observables, because σ2 is a complex
matrix. However, σ2 ⊗ σ2 is a real matrix, and thus it corresponds to a physical
observable, although it cannot be measured locally. In general, a real density matrix
ρ can be represented in a form

ρ = 1

4

⎛
⎝11 ⊗ 11 +

3∑
i=1

xiσi ⊗ 11 +
3∑

j=1

y j11 ⊗ σ j +
3∑

i, j=1

Ti jσi ⊗ σ j + λσ2 ⊗ σ2

⎞
⎠ ,

(12)

where λ is a global parameter. Therefore, we can represent the state of a composite
system by 4-tuple (x, y, T,λ).

We now introduce a representation of the composite system of two generalized
spins. Firstly, we assume that localmeasurements on individual spins arewell defined
(i.e. probabilities for local measurements are non-negative and they sum up to one).
Secondly, if the subsystems of a composite system are emitted from two indepen-
dent sources, we assume that the joint probability distribution is factorizable. Conse-
quently, one can define properly the set of product states as triples (x, y, Tp), where
Tp = xyT. However, for general non-product states there might be some global
parameters missing in the state description. Therefore, in the general case we asso-
ciate a 4-tuple �ψ12 = (x, y, T,�) to the state of a composite system, where x, y are
the local Bloch vectors, T is a d × d real matrix that represents correlations and
� = (λ1,λ2, . . . ) is a collection of global parameters that can be present in the state
description but are not accessible trough statistics of local measurements.

We define the probability distribution for obtaining the two local local spins “up”
along measurement directions a, b to be

P12( �ψ | a, b) = 1

4
(1 + xa + yb + aT b), (13)
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where �ψ = (x, y, T,�) is the state of the composite system. The formula can also be
interpreted as the overlap between the state �ψ and product state �φp = (a, b, abT, 0):

P12( �ψ, �φp) = 1

4
(1 + �ψT �φp). (14)

A general state of N spins is represented by �ψN = (x1, . . . , xN , T12, . . . , T123, . . . ,

T1...N ,�), where xi is the local Bloch vector of the i th spin, tensors Ti1i2... represents
correlations (two-spin, three-spin etc.) and � = (�12,�13, . . . , �123, . . . ) is the set
of all global parameters, where, for example, �123 is the global parameter related to
subsystems 1, 2 and 3.

4.2 Dynamics in Macroscopic Limit

Dynamics of an individual generalized spin as generated by a transformation device
is given by:

dxi

dt
= gijx j , (15)

where [G]ij = gij is the generator of evolution and t is the parameter of the transfor-
mation, usually taken to be time. Here and in the rest of the article the summation
over repeated indices is always assumed. The integral version of the formula reads

x(t) = U (t)x(0), (16)

where U (t) = exp(tG) is the reversible transformation that belongs to the group
of transformation G of the generalized spin. Our main objective is to investigate if
such a dynamics can be obtained as a mean field approximation of the theory. Note
that in quantum mechanics this is the case and Eq. (16) is equivalent to Eq. (6). More
precisely, we want to find out whether formula (16) for the dynamical evolution of
an individual generalized spin can be seen as a consequence of its interaction with a
system composed of a large number of generalized spins (e.g. in coherent state). A
negative answer to this question would indicate that the theory is not closed.

We represent a single spin by its local Bloch vector x and the “large” system by
a state �ψN . In the limit of large N , the following holds

WN (t) �ψN ⊗ x = �ψN ⊗ U (t)x + �O(N , t), (17)

where WN represents the joint evolution of the system and of the field after duration
t of the interaction. The state �ψN ⊗ x represents the product state of a joint system
(large + small system), in a sense that all the correlation tensors are factorized.
If the dynamics of the small spin can be reproduced from the interaction, one has
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�O(N , t) → 0 in the limit when the number of spins N goes to infinity. Consequently,
one recovers the Eqs. (15) and (16) exactly, the initial state �ψN of the large system
remains almost unchanged, and the dynamics factorizes.

4.3 Pairwise Interaction

Here we assume that all the interactions are pairwise at the elementary level. In
Sect. 7 we will relax this assumption. The state of the composite system of two
elementary generalized spins is represented by �ψ12 = (x, y, T,�). The dynamical
law reads �ψ12(t) = W12(t) �ψ12(0), where t is the duration of interaction. One has
W12(t) = exp(tH), where H is the generator of the interaction W12. The differential
version of the dynamical law reads:

dxi

dt
= aijx j + bij y j + μijkTjk + Linλn, (18)

where aij, bij,μijk, Lin are the components of the generator H . Similarly, one can

write the differential equation for dyi
dt ,

dTij

dt and dλn
dt .

The small spin in the state x(t) is assumed to interact via pairwise interaction with
each of N spins constituting the large spin. The dynamical equation for the small
spin is given by:

dxi

dt
= aijx j +

N∑
s=1

(
b(s)

ij y(s)
j + μ(s)

ijk T (s)
jk + L(s)

in λ(s)
n

)
, (19)

where y(s) is the Bloch vector of the sth spin of the large system, T (s) is the correlation
tensor of the small spin and the sth spin and�(s) = (. . . ,λ(s)

n , . . . ) is the set of global
parameters of the small spin and all spins of the large one.

We assume that each of the N constituents of the large system interacts with the
small spin in a “same way”, the only difference being in the strength of interaction
(for example, because one spin is physically closer to the small spin than the other
one). Thus, one has

b(s)
ij = βsbij μ(s)

ijk = Jsμijk, (20)

where βs and Js are the coupling constants defining the strength of interaction (they
can be different due to the spatial distribution of particles that constitute the large sys-
tem). Here bij and μijk are constants that are characteristic of the pairwise interaction
and they are assumed to be the same for all particles.

If we assume that in the macroscopic limit, the state of the large system changes
negligibly during the interaction time, we obtain
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T (s)
ij (t) = xi (t)y(s)

j (0), λ(s)
n (t) = λ(s)

n (0) = 0, y(s)
j (t) = y(s)

j (0). (21)

The Eq. (19) becomes:

dxi (t)

dt
=

(
aij + μijk

N∑
s=1

Js y(s)
k (0)

)
x j (t) + bij

N∑
s=1

βs y(s)
j (0).

If bij = 0 (otherwise, the equation above does not represent unitary dynamics), this
equation becomes equivalent to Eq. (15) in the limit of very large N , in which case
one obtains:

gij = aij + μijk Bk . (22)

Here B = ∑N
s=1 Jsy(s)(0) can be understood as an analog of macroscopic field

or magnetization, resembling the field produced by a ferromagntic in quantum
mechanics. Assuming that the large system is in a spin-coherent state �n, one obtains
the same expression as in the case of quantum mechanics: �B = N 〈J 〉�n, where
〈J 〉 = 1

N

∑N
i=1 Jn .

5 Covariant Interaction

The dynamical equation that follows from (22) reads

dxi

dt
= (aij + μijk Bk)x j , (23)

where Bk is the component of the macroscopic field. Since we want the dynamics to
be reversible (and therefore to transform pure states into pure states), the equation
above should preserve the norm of x. Therefore one has:

aij = −aji and μijk = −μjik. (24)

The dynamics is solely generated by the field Bk , since aij and μijk are constants
that arise from the pairwise dynamics (18).

Let G be the group of transformations of a single spin (see Sect. 3.1). Since there
is no external reference direction we assume that the dynamical law (23) is covariant,
i.e. it has the same form in all frames of reference. More precisely, for any reversible
transformation R ∈ G (note that R is a transformation on a sphere S(d−1), therefore
it is real and orthogonal RRT = 11) that maps old coordinates of the spin and field
into the new ones, x ′

i = Rii1 xi1 and B ′
i = Rii1 Bi1 , we assume that the dynamical law

keeps the same form in new coordinates:

dx′
i

dt
= (aij + μijk B ′

k)x ′
j . (25)
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The tensors aij and μijk do not change because they are constants of interaction. After
the substitution one obtains:

Rii1
dxi1

dt
= (aij + μijk Rkk1 Bk1)Rjj1 x j1 . (26)

If we multiply the last equation with R−1 = RT we obtain

dxi1

dt
= (aij Rii1 Rjj1)x j1 + (μijk Rii1 Rjj1 Rkk1)Bk1 x j1 . (27)

Therefore, for all R ∈ G we require:

Rii1 Rjj1ai1 j1 = aij, (28)

Rii1 Rjj1 Rkk1μi1 j1k1 = μijk. (29)

Under these conditions, the pairwise interaction (18) is invariant under simultaneous
change of the local reference frames.

If μijk = 0, then the dynamics given by (23) becomes trivial as it does not depend
on the internal state of the transformation device but only on the interaction constant
aij (i.e. the set of transformations becomes one-parameter Lie group). We require
that Eq. (29) has non-trivial solution μijk �= 0.

6 Main Proofs

Here we show that only d = 3 gives non-trivial solution of the Eqs. (28) and (29).
Recall that the group of physical transformations G contains the minimal group
transitive on the sphere S(d−1). All such groups are summarized in the Appendix 2.

6.1 Hint to Representation Theory

Our result is based on the group representation theory. We therefore first introduce
some basic notions of the representation theory. For an abstract group G and element
g ∈ G we say that a matrix D(g) ∈ Mat(H), whereH is a vector space, defines a rep-
resentation of G if D(g1g2) = D(g1)D(g2) for every two group elements g1 and g2.
In this work we consider only unitary (orthogonal) representations. Representation
is called reducible if there exists a nontrivial invariant subspace for all the matrices
D(g). Otherwise it is irreducible (IR) representation. Therefore, the group induces a
decomposition of the vector spaceH = ⊕μH(μ) into irreducible subspacesH(μ) and

D(g) = ⊕μaμ�
(μ)(g), (30)
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where�(μ)(g) is an IR representation that appears with the frequency aμ. The dimen-
sion of the IR subspace is |H(μ)| = |μ|aμ, where |μ| is the dimension of the IR
representation �(μ). The frequency of some IR representation can be computed as

aμ = (χ(μ),χ) = 1

|G|
∑
g∈G

χ(μ)(g−1)χ(g), (31)

where χ(g) = Tr(D(g)) and χ(μ)(g) = Tr(�(μ)(g)) are the characters of the repre-
sentations.

For two representations D1(G) and D2(G) one can define the tensor product (D1⊗
D2)(G) that is representation of G itself. If D1 and D2 are IR, then the decomposition
of D1⊗ D2 is called Clebsch–Gordan (CG) series. In this work, it will be of particular
interest to compute the frequency of the trivial representation �(1)(g) = 1. The
following lemma will be used (see Appendix for the proof):

Lemma 1 CG series of the product �(μ) ⊗ �(ν), where �(μ), �(ν) are real and
irreducible, contains the trivial representation if and only if μ = ν and then the
trivial representation appears once, only.

The main purpose of introducing the tools of representation theory is to solve
Eqs. (28) and (29). The left hand side of Eqs. (28) and (29) can be seen as an action
of the Kronecker products D(G) ⊗ D(G) and D(G) ⊗ D(G) ⊗ D(G), respectively,
with D(G) being the representation of the group of transformation G and D(R) =
R ∈ G. The solutions aij and μijk are invariant under the action of the group of
transformationsG, hence they lie within the totally invariant IR subspace that belongs
to the trivial representation. Therefore, we will need the CG decomposition of D⊗ D
and D ⊗ D ⊗ D in order to solve Eqs. (28) and (29).

6.2 d Odd Case and d �= 7

If we assume d odd, d > 1 and d �= 7, the set of physical transformations contains
the special orthogonal group SO(d) � G (see Appendix 2).

The easiest way to solve Eq. (28) is as follows. We rewrite it into a matrix form:
RART = A for all R ∈ SO(d). This is possible only if A is a scalar matrix A = a11.
Taking into account Eq. (24) we conclude A = 0. Although this gives the solution
in the particular case considered, we will proceed with full group-representation
analysis of Eqs. (28) and (29) as we will need it later on.

The set of d × d orthogonal matrices of the unit determinant define a d-
dimensional, real IR representation of SO(d) and we label it as�d with�d(R) = R.
The left-hand side of Eqs. (28) and (29) can be seen as the action of product repre-
sentation �d(R) ⊗ �d(R) and �d(R) ⊗ �d(R) ⊗ �d(R). The solutions aij and μijk

lie within the IR subspace that belongs to the trivial representation in CG series of
�d ⊗ �d and �d ⊗ �d ⊗ �d , respectively.
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Let us analyze the product�d ⊗�d . Note that this representation commutes with
the permutation group S2 (of two elements). Therefore �d ⊗�d can be decomposed
on invariant subspaces that are irreducible under the action of S2. There are two
of them and they define symmetric and antisymmetric subspace of the dimensions
1
2d(d + 1) and 1

2d(d − 1) spanned by Hermitian and skew-Hermitian matrices,
respectively. Furthermore, the symmetric subspace can be decomposed into one-
dimensional subspace H(1) spanned by the identity matrix 11 (invariant under �d ⊗
�d , hence belongs to the trivial subspace) and its orthogonal complement H(S) of
dimension 1

2d(d + 1) − 1 = 1
2 (d − 1)(d + 2). This induces the decomposition

R
d ⊗ R

d = H(1) ⊕ H(S) ⊕ H(AS). Each subspace is irreducible for �d ⊗ �d (see
Appendix 4). Therefore, the CG series is given by:

�d ⊗ �d = �1 ⊕ �S ⊕ �AS, (32)

where �S and �AS are the corresponding IR representations of SO(d) of the dimen-
sions AS = 1

2d(d − 1) and S = 1
2 (d − 1)(d + 2), respectively. Since the trivial rep-

resentation appears once only, the solution to (28) is one-dimensional and spanned
by identity matrix aij = aδij. By applying condition (24) we get aij = 0.

The degeneracy of the solution of Eq. (29) can be found from the decomposition

�d ⊗ �d ⊗ �d = �d ⊗ (�d ⊗ �d) (33)

= �d ⊗ (
�1 ⊕ �S ⊕ �AS

)
= �d ⊗ �1 ⊕ �d ⊗ �S ⊕ �d ⊗ �AS.

Let us apply Lemma1. The decomposition of the first term �d ⊗ �1 in last
equation does not contain the trivial representation because d > 1. The second term
�d ⊗ �S contains the trivial representation, if �d and �S are equivalent, which is
possible only if d = S = 1

2 (d − 1)(d + 2). There is no solution to this equation
among d odd numbers. Similarly, the last term contains the trivial representation,
only if d = 1

2d(d −1), that has solution d = 3. Furthermore for d = 3 the solution is
one-dimensional and is represented by the completely antisymmetric (Levi-Civita)
tensor μijk = εijk, where εijk = +1 for (ijk) being an even permutation. The solution
d = 3 is worked out in details in Appendix 5.

6.3 d = 7 Case

Here the minimal transitive group on S6 is the exceptional Lie group G2. The gen-
erators span a 14-dimensional Lie algebra:
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H(x) =

⎛
⎜⎜⎝

0 x1 −x2 x3 −x4 −x5 x9−x7−x1 0 x6 x7 x8−x5 x4−x11 x3+x10
x2 −x6 0 −x8 x9 x10 x11−x3 −x7 x8 0 x13−x6 x14−x2 x12−x1
x4 x5−x8 −x9 x6−x13 0 x12 −x14
x5 x11−x4 −x10 x2−x14 −x12 0 x13

x7−x9 −x3−x10 −x11 x1−x12 x14 −x13 0

⎞
⎟⎟⎠ . (34)

We will next show that this generator, in general is not of the form (22), i.e.
Hij = ai j + μijk Bk . This means that the dynamics generated by macroscopic field
Bk exceeds the group G2. On the other hand, there is no group transitive on S6 other
than G2 and SO(7) (see Appendix 2). Since the group of transformations exceeds
G2, it has to be SO(7). But the case of SO(7) has been studied in the previous section,
where it was shown that no nontrivial solution to Eq. (29) exists in this case.

We apply the analysis from the last section in the present case. We label 7-
dimensional IR representation of G2 as �7. According to Behrends et al. [61] CG
series is given by

�7 ⊗ �7 = �1 ⊕ �7 ⊕ �14 ⊕ �27, (35)

hence the trivial representation appears once only. Consequently the solution to (28)
is spanned by the identity matrix aij = aδij. Constraint (24) gives aij = 0. Next, in
the decomposition

�7 ⊗ �7 ⊗ �7 = �7 ⊗ (�7 ⊗ �7) (36)

= �7 ⊗ (
�1 ⊕ �7 ⊕ �14 ⊕ �27

)
= �7 ⊗ �1 ⊕ �7 ⊗ �7 ⊕ �7 ⊗ �14 ⊕ �7 ⊗ �27,

the trivial representation appears once only due to the term �7 ⊗ �7. Therefore,
the solution of Eq. (29) is unique (up to a constant) and is given by completely
antisymmetric tensor ψijk taking the non-zero value of +1 for ijk = 123, 145, 176,
246, 257, 347, 365. Incidentally, note that ψijk is the tensor involved in the definition
of the multiplication rule of octonions and seven-dimensional cross product [62]:

(a × b)i = ψijka j bk, (37)

where a and b are two octonions.
Let us set the macroscopic field of (22) to B(1)

k = Bδ1k . The corresponding
generator gij = ψijk B(1)

k = Bψi j1 has six nonzero elements g23 = g45 = g76 =
−g32 = −g54 = −g67 = +1:

G = B

⎛
⎜⎝

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 1 0

⎞
⎟⎠ . (38)
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This generator is not of the form (34); therefore the dynamics generated by B(1)
k

goes beyond the G2 group. Since the only transitive groups on S6 are G2 and SO(7),
and sincewe already excluded SO(7) in previous section, the Eq. (29) has no solution.

6.4 d = 4k Case (k = 1
2, 1, 2, . . . )

In this case the minimal group transitive on Sd−1 contains total inversion Ex = −x.
Now, we set R = E in the Eq. (29), hence −μijk = μijk. This gives only trivial
solution μijk = 0.

6.5 d = 4k + 2 Case (k = 1, 2, 3, . . . )

In this case the minimal transitive group is SU(2k + 1). For some complex unitary
u ∈ SU(2k + 1) its representation in (d = 4k + 2)-dimensional real space is given
by the following matrix:

D(u) =
(
Re u −Im u
Im u Re u

)
. (39)

Note that this representation commutes with the symplectic form J =
(

0 11
−11 0

)
, i.e.

[D(u), J ] = 0, (40)

for every u.
Let us analyze the case where u is a real matrix, that is u ∈ SO(2k+1) � SU(2k+

1). Then D(u) = 112 ⊗ u, where 112 is a 2 × 2 identity matrix. The Eq. (29) can be
written in a tensor form:

(112 ⊗ u) ⊗ (112 ⊗ u) ⊗ (112 ⊗ u)|μ〉 = |μ〉, (41)

or equivalently
(112 ⊗ 112 ⊗ 112) ⊗ (u ⊗ u ⊗ u)|μ̃〉 = |μ̃〉, (42)

where |μ̃〉 and |μ〉 are the ket vectors that correspond to the tensors μijk and μ̃ijk and
are connected by a suitable transformation. The solution to the last equation can be
found in a product form |μ̃〉 = |χ〉|φ〉, where

(u ⊗ u ⊗ u)|φ〉 = |φ〉, (43)

holds for every u ∈ SO(2k + 1). This equation has been analyzed earlier and it
has nontrivial solution only if 2k + 1 = 3 or d = 6. In that case, solution |φ〉 has
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components φijk that are the Levi-Civita tensor εijk, hence we write the solution as
|μ̃〉 = |χ〉|ε〉 .

We have found non-trivial solution for the case d = 6 and the corresponding group
is SU(3). Thegroupgenerators span8-dimensionalLie algebra and the corresponding
real representation reads:

H(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −x4 −x5 x7 x1 x2
x4 0 −x6 x1 x8 − x7 x3
x5 x6 0 x2 x3 −x8

−x7 −x1 −x2 0 −x4 −x5
−x1 x7 − x8 −x3 x4 0 −x6
−x2 −x3 x8 x5 x6 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (44)

We set the notation Hi = H(e(i)), where e(i)
k = δik is the kth component of e(i)

k .
Similarly to the previous section our goal is to show that aij + μijk Bk generate

transformations that go beyond the SU(3) group. In such a case, the group of trans-
formations exceeds the minimal transitive group. Since there is no group transitive
on S5 other than SU(3) that do not contain the total inversion, one concludes that
there is no nontrivial solution to Eq. (29).

Note that the solution to Eq. (28) is twofold aij = αδij + β Jij, where Jij is the
symplectic form.However, sinceaij = −a ji wehaveα = 0. Furthermore, symplectic
form Jij does not belong to the set of generators H(x) therefore β = 0 and finally
aij = 0.

Recall that the solution to (42) can be found in the product form |χ〉|ε〉 where |ε〉
is the tensor Levi-Civita. Let us set the macroscopic field of (22) to B(1)

k = Bδ1k . In
that case the generator becomes G = Bχ ⊗ E1, where χab is some symmetric 2× 2
matrix and [E1]ij = εi j1. One has

G = B

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 χ11 0 0 χ12

0 −χ11 0 0 −χ12 0
0 0 0 0 0 0
0 0 χ21 0 0 χ22

0 −χ21 0 0 −χ22 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (45)

This can be generator of the form (44) if χ12 = χ21 = 0 and χ11 = χ22 = χ0.
Therefore G = Bχ0H6. On the other hand, the dynamics generated by B(1)

k = δk1 is
invariant under all transformations that keep B(1)

k invariant. In this particular case, it
means that G has to commute with the generators H6 and H3. This gives only trivial
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solution χ0 = 0, hence G = 0. Similarly, one can draw the same conclusion for any
other B(s)

k = Bδks. Therefore, the dynamics generated by arbitrary Bk goes beyond
the SU(3) group.

7 Going Beyond Three Dimensions

In this section we shall argue that higher-dimensional macroscopic limit may arise as
a consequence of a multi-partite invariant interaction among elementary spins. We
construct an explicit model of dynamics in analogy to the quantum case and three
dimensions (see Appendix 5 for details). However, it remains as an open question if
such an ansatz leads to a proper probabilistic theory, in the sense that positivity of
probabilities is not guaranteed.

Note that it as an artefact of the three dimensions that the evolution Eq. (15) can
be written in the form

dx
dt

= B × x, (46)

where the vector B generates evolution with the generator matrix gij = εijk Bk . This
expression for d > 3 is no longer possible. The evolution cannot be generated by a
single vector, but a tensor.Wewill show that such a situation arises in themacroscopic
limit if elementary interactions were multi-particle.

Let us start with the dimension d = 4. We consider three generalized spins
described by a state

ψ = {x, y, z, T (12), T (13), T (23), T (123), �}. (47)

Let the spins interact via genuine three-particle, rotationally invariant interaction (see
Fig. 2, right). In analogy with the quantum case discussed above, we can consider
the dynamical equation for, say the first spin, as follows:

dxi

dt
= aεijkl T

(123)
jkl + L(1)

in λn. (48)

Here, a is a constant and εijkl is the completely antisymmetric tensor of four indices,
with ε1234 = +1. It is well know that this tensor is invariant under SO(4) rotations.
Analogously, one can write the equations for the other two local Bloch vectors yi and
zi , as well as for correlations, both bipartite and tripartite and the global parameter.

Next we consider an ensemble of a large number N of spins. Let a single spin
interact with each of the N spins via three-partite interaction defined above. In the
macroscopic limit the dynamics should factorize and the state of the large system
of N spins should not evolve in time. Therefore, all the correlations between single
spin and large system factorize:
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Fig. 2 Dynamics of the generalized spin as generated by its interaction with a single coherent state
in three-dimensional space (left) or with a pair of coherent states in four-dimensional space (right).
The coherent state is a collection of a large number of equally prepared constituent spins which
are distributed here on a regular lattice. With no pre-existing reference direction all interactions are
assumed to be rotationally invariant. In the macroscopic limit of an infinite large coherent states the
effect of the spin on the coherent state is negligible and the dynamics becomes separable (i.e. the
spin evolves according to the unitary evolution and the coherent state remains unchanged). (Left)
Rotation of the quantum spin in three dimensions. The spin �x interacts pairwisewith each constituent
spin of the coherent state �B. In the macroscopic limit this results in an effective precession of spin
�x around the classical macroscopic field generated by the spin coherent state �B. (Right) Rotation
of the generalized spin in four dimensions. The spin �x interacts via a three-particle interaction with
each spin-pair, where one spin (red) of the pair belongs to coherent state �B1 and the other one
(green) to coherent state �B2. In the macroscopic limit the effective dynamics of the generalized
spin is rotation in the plane orthogonal to two macroscopic fields which are represented by the two
coherent states �B1 and �B2. In the figure it is shown a projection of the dynamics in three dimensions

T (0nm)

ijk (t) = xi (t)T (nm)
jk (0), (49)

T (0m)
ij (t) = xi (t)y(m)

j (0),

�(t) = 0,

where index 0 labels the single spin, whereas n labels the nth spins of the large system
(n = 1 . . . N ). The � labels the set of all global parameters between the single spin
and the large system.

The equation of motion for the single spin reads:

dxi

dt
= aεijkl x j

N∑
n,m=1

JnmT (nm)

kl (0), (50)

where Jnm is the coupling constant between the single spin and spins n and m of the
large system. Taking Bij = a

∑N
n,m=1 JnmT (nm)

kl (0) one obtains a reversible dynamics
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of a single spin:

dxi

dt
= εijkl Bkl x j , (51)

The dynamics is then generated by a covariant tensor field Bij. We can further assume
the situation as described in Fig. 2, right. The spins of the large system are arranged in
a (regular) lattice such that each cell consist of two spins prepared along orthogonal
directions �n1 and �n2. The two arrays of spins define two spin-coherent states. If
we assume that the small spin interacts with two spins of a single cell, we obtain
Bij = N 〈J 〉n1i n2 j , where 〈J 〉 = 1

N

∑N
n=1 Jn . We can say that dynamics is generated

by two spin-coherent states defined by directions �n1 and �n2.
The present analysis for d = 4 can be generalized to higher-dimensions in a

straightforward way. The dynamics of a generalized spin in d dimensions can be
obtained from the SO(d) invariant dynamics that is generated by a genuine (d − 1)-
particle interaction. Of course, it is an open question if the set of Eq. (48) leads to a
proper physical solution, in the sense that positivity of probabilities is not violated.
We leave this question open for future investigation.

8 Conclusions

Physicist study models with extra dimensions. This research appears to be justified
as we do not know of convincing arguments why we should necessarily live in
three-dimensional space (or 3+1 space-time). In this paper we put a “closeness”
requirement on every physical theory, which restricts the possible dimensions. The
theory is closed if macroscopic field—which, via interaction with a microscopic
system generates its dynamics—itself is described by the theory in the classical
limit.

In the operational approach to a physical theory, one expects that the dimension
and the symmetry of the state space of the “elementary system” are the same as those
of the space inwhich “laboratory devices” are embedded. This is for the simple reason
that the parameters describing the state operationally have no other meaning than that
of the parameters that specify the configuration ofmacroscopic instruments bywhich
the states are prepared, transformed or measured. On the other hand, the states of
the macroscopic instruments can be obtained from within the theory in the classical
limit; for example, in quantum mechanics, the “magnetic field” is represented by the
coherent state of a very large number of equally prepared spins. Arbitrary unitary
transformation of the elementary quantum spin (spin-1/2) can be generated by a
(group invariant) bipartite interaction between the spin and the “magnetic field” (i.e.
between the spin and each of the spins constituting the coherent state that represents
the “field”). Therefore quantum theory is closed according to our requirement.

We showed that in no probabilistic theory of spin (where the spin has d compo-
nents), other than quantum mechanics (d = 3), an invariant pairwise interaction can
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generate the group of transformation of the spin. However, if one considers three- or
more-spin interactions this possibility might be realized. This opens up a possibility
of having higher-dimensional spaces (d > 3) and “laboratory devices” embedded
in it, which could generate the group of transformation of spin with the state space
dimension d > 3. We hope that our work will be useful for physicists considering
the existence of extra dimensions or other modifications of space-time.

Appendix 1: Dynamics of Spin in Presence
of Spin-Coherent State

Here we justify the approximation made in Sect. 4. Namely, we show that Eq. (22)
can be realized within quantum mechanics. We follow the idea given in the work
by Poulin [46]. Let the large system be a ferromagnet composed of N spin-1/2
particles with the Hamiltonian H0. We assume that H0 is rotationally invariant
U⊗N H0U †⊗N = H0 for all single particle rotations U ∈ SU(2). One particular
example of such a system is a Heisenberg ferromagnet with the Hamiltonian:

H0 = −
N∑

n,m=1

Jnm
�σ(n) �σ(m), (52)

with Jnm ≥ 0 are the coupling constants. The rotational invariance is an important
assumption because there is no external reference direction. The large system itself
can be used to definepreferred direction in space.Referring to thewell known result in
solid state physics [63] such a system, although rotationally invariant, can still exhibit
spontaneous magnetization bellow the critical temperature. At zero temperature all
the spins are aligned along some direction, that we choose to be the ez-direction.
Hence the ground state is |ψ0〉 = |0〉⊗N with the energy set to zero E0 = 0 (this is
always possible by changing the energy reference point). Let the small system be
prepared in a state |φ〉 = α|0〉 + β|1〉 and assume σ3|0〉 = |0〉. The system interacts
with the large system via Heisenberg interaction, therefore the total Hamiltonian
reads

H =
N∑

n=1

Jn
�σ(0) �σ(n) + H0, (53)

where Jn is the coupling constant for the interaction between the small spin and nth
spin of the large system. Our goal is to show that in macroscopic limit N → ∞, the
dynamics becomes separable:

eitH|φ〉|ψ0〉 = (eitHeff |φ〉)|ψ0〉, (54)

where Heff is an effective Hamiltonian.
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Firstly, let us compute the following

H |φ〉|ψ0〉 =
N∑

n=1

(Jn
�σ(0) �σ(n) + H0)|φ〉|0〉⊗N (55)

=
N∑

n=1

Jn
�σ(0) �σ(n)|φ〉|0〉⊗N

=
(

N∑
n=1

Jn

)
(σ3|φ〉)(σ(n)

3 |0〉⊗N )

+
N∑

n=1

Jn

2∑
i=1

σ(0)
i σ(n)

i |ψ〉|0〉⊗N

=
(

N∑
n=1

Jn

)
(σ3|φ〉)|0〉⊗N +

N∑
n=1

Jn

2∑
i=1

σ(0)
i σ(n)

i |ψ〉|0〉⊗N

= |χ〉 + |μ〉,

where

|χ〉 =
(

N∑
n=1

Jn

)
(σ3|φ〉)|0〉⊗N , (56)

|μ〉 =
N∑

n=1

Jn

2∑
i=1

σ(0)
i σ(n)

i |ψ〉|0〉⊗N . (57)

The norm of |χ〉 is easy to compute 〈χ|χ〉 = (
∑N

n=1 Jn)
2. On the other hand, we

have:

|μ〉 = (σ1|ψ〉)(J1|1〉|0〉|0〉 · · · + J2|0〉|1〉|0〉 . . . ) (58)

+ (iσ2|ψ〉)(J1|1〉|0〉|0〉 · · · + J2|0〉|1〉|0〉 . . . )

= ((σ1 + iσ2)|ψ〉) (J1|1〉|0〉|0〉 · · · + J2|0〉|1〉|0〉 . . . ).

The norm of |μ〉 is given by 〈μ|μ〉 = ∑N
n=1 J 2

n . Let us define the averages

〈J 〉N = 1

N

N∑
n=1

Jn, (59)

〈J 2〉N = 1

N

N∑
n=1

J 2
n . (60)
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We assume that 〈J 〉N and 〈J 2〉N have finite values inmacroscopic limit. Furthermore,
we assume that limN→∞〈J 〉N = 〈J 〉 �= 0. We can express the norms of |χ〉 and |μ〉
in terms of these quantities

〈χ|χ〉 = N 2〈J 〉N , (61)

〈μ|μ〉 = N 〈J 2〉N . (62)

Now, it is clear that |μ〉 is a vector of short length as compared to |χ〉 when N is
large. Furthermore, in the macroscopic limit, we have limN→∞ 〈μ|μ〉

〈χ|χ〉 = 0, therefore
one can safely remove |μ〉 from Eq. (55) when N → ∞:

H |φ〉|ψ0〉 = (Heff|φ〉)|ψ0〉, (63)

where Heff = N 〈J 〉σ3. Now we can prove (54):

eitH|φ〉|ψ0〉 =
+∞∑
k=0

t k

k! H k |φ〉|ψ0〉 (64)

=
+∞∑
k=0

t k

k! (H k
eff|φ〉)|ψ0〉

= (eitHeff |φ〉)|ψ0〉.

In general, if the large system exhibits the ground state |ψ0〉 = |�n〉⊗N (spin coher-
ent state) magnetized along the direction �n, it will generate an effective Hamiltonian
Heff(�n) = N 〈J 〉�n�σ.

Appendix 2: Groups Transitive on Spheres

The groups that are transitive on spheres are summarized in Table1.
For simplicity reasons, we shall study only the minimal group (therefore certainly

within the set of physical transformations) that is transitive on a sphere Sd−1. If d is
odd, theminimal transitive group is the special orthogonal groupSO(d) unless d = 7.
For d = 7 the minimal group is the exceptional Lie group G2. If d is even, there
are several options. We distinguish the cases whether the group contains the total
inversion Ex = −x or not. The groupsU(d/2),Sp(d/4),Sp(d/4)×U(1),Sp(d/4)×
SU(2),Spin(7) and Spin(9) contain E as well as the group SU(d/2), if d is multiple
of four d = 4k (Ref. [29], page 18). The only d-even groups that do not contain total
inversion are SU(d/2) for d = 4k + 2, where k = 1, 2, 3, . . .
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Table 1 Table taken from the Ref. [29]

Abstract group d

SO(d) 3, 4, 5, . . .

SU(d/2) 4, 6, 8, . . .

U(d/2) 2, 4, 6, 8, . . .

Sp(d/4) 8, 12, 16, . . .

Sp(d/4) × U(1) 8,12, 16, . . .

Sp(d/4) × SU(2) 4, 8, 12, . . .

G2 7

Spin(7) 8

Spin(9) 16

We assume d > 1 always. First column shows the abstract group transitive on sphere Sd−1, whereas
the second column shows the possible value of d. Here SO(2) ∼= U(1) and Sp(1) ∼= SU(2). For a
complex matrix U , the real representation is generated by following real matrix

(
ReU −ImU
ImU ReU

)

Appendix 3: Kronecker Product of Irreducible
Representations

Here we provide the proof of Lemma1:

Lemma 1 CG series of the product �(μ) ⊗ �(ν), where �(μ), �(ν) are real and
irreducible, contains the trivial representation if and only if μ = ν and then the
trivial representation appears once, only.

Proof Note that for a real, orthogonal representation D(g) we have D(g−1) =
DT(g), hence χ(g−1) = TrD(g−1) = TrDT(g) = χ(g). We set μ = 1 with
�(1)(g) = 1 (trivial representation) and D(g) = �(μ)(g) ⊗ �(ν)(g). We have the
charactersχ(1)(g) = 1 andχ(g) = χ(μ)(g)χ(ν)(g). The frequency is computed using
Eq. (31)

a1 = (χ(1),χ) (65)

= 1

|G|
∑
g∈G

χ(1)(g−1)χ(μ)(g)χ(ν)(g) (66)

= 1

|G|
∑
g∈G

χ(μ)(g)χ(ν)(g) (67)

= 1

|G|
∑
g∈G

χ(μ)(g−1)χ(ν)(g) (68)

= (χ(μ),χ(ν)) (69)

= δμν . (70)

QED
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Appendix 4: Irreducible Decomposition of the Two-Fold
Tensor Representation of SO(d)

Here we show that the decomposition (32)

�d ⊗ �d = �1 ⊕ �S ⊕ �AS, (71)

is irreducible unless d = 4.
Let the representation D(G) of G acts on a vector space V . By definition, D(G)

is irreducible on V if span{D(g)x | ∀g ∈ G} = V for every non-zero vector x ∈ V .
Firstly, let us analyze the symmetric subspace of all d × d symmetric, traceless

matrices

VS = {H | HT = H ∧ TrH = 0}. (72)

This is an invariant subspace under the action of SO(d), because (RHRT)T = RHRT

for every R ∈ SO(d) and H ∈ VS . Our goal is to show that the action of SO(d) is
irreducible on VS . Therefore, we have to prove that the set

W(H) = span{RHRT | R ∈ SO(d)} = VS, (73)

for every non-zero H ∈ VS . Let us write H in diagonal form H = ∑d
i=1 hi |i〉〈i |,

where H = ∑d
i=1 hi = 0. Since TrH = 0, the largest and lowest eigenvalue satisfy

hmax > 0 and hmin < 0. For convenience we set hmax = h1 and hmin = h2. Consider
the orthogonal matrix F12 ∈ SO(d) swapping the basis vectors |1〉 and |2〉 (swap-
rotation in 12-subspace):

F12 = diag

[(
0 −1
1 0

)
, 1, 1, 1, . . .

]
. (74)

We have H ′ = 1
h1−h2

(H − F12HFT
12) = |1〉〈1| − |2〉〈2|, where h1 − h2 > 0. If we

further rotate in 12-subspace for 45◦ we obtain

R45◦ H ′ RT
45◦ = |1〉〈2| + |2〉〈1| = E12. (75)

The matrix E12 is the element of a standard basis in VS . Other basis elements Eij can
be obtained from E12 by suitable rotations. Therefore we have completed the space
VS starting from an arbitrary element H , hence WS(H) = VS .

In the case of antisymmetric subspace we define

VAS = span{H | HT = −H}. (76)

Our goal is to showW(A) = VAS for arbitrary A ∈ VAS. Let Aij = |i〉〈 j |− | j〉〈i |, for
j > i be the standard basis in VAS. It is sufficient to show that A12 ∈ W(A), and the
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other basis elements can be obtained from A12 by suitable rotations. For an arbitrary
antisymmetric matrix A ∈ VAS we can find the canonical form by applying suitable
rotation T ∈ SO(d):

A′ = TATT = diag

[(
0 −a1

a1 0

)
,

(
0 −a2

a2 0

)
, . . . , 0, 0, . . .

]

= a1A12 + a2 A34 + . . . . (77)

If only a1 �= 0, than A = a1A12 and we can generate the full basis {Aij} in VAS by
applying suitable rotations. Otherwise, we assume that at least two elements ai are
non-zero, and for convenience we set a1 �= 0 and a2 �= 0. Let Rij be the rotation that
flips i th and j th coordinate only, i.e. Rij|k〉 = s|k〉, where s = −1 if k = i or k = j ,
otherwise s = 1. We get the following

A′′ = A′ − R13A′ RT
13 = 2a1A12 + 2a2 A34. (78)

Now if d > 4 we further apply R15 to A′′ and obtain the following

A′′ − R15A′′ RT
15 = 4a1 A12. (79)

From here we can generate the full basis Aij, henceW(H) = VAS. If d = 4 the con-
struction above is no longer possible (R15 does not exist). In this case the antisym-
metric space is reduced to two three-dimensional irreducible subspaces as follows

�4 ⊗ �4 = �1 ⊕ �9 ⊕ �3
+ ⊕ �3

−. (80)

We leave the proof to the curious reader.

Appendix 5: d = 3 Solution

We begin with analyzing the fourth tensor power of �d representation of SO(d)

group, as defined in the main text. We have

�d ⊗ �d ⊗ �d ⊗ �d = (�d ⊗ �d) ⊗ (�d ⊗ �d) (81)

= (
�1 ⊕ �AS ⊕ �S

) ⊗ (
�1 ⊕ �AS ⊕ �S

)
.

Since S �= AS for d > 1 and d �= 4 (see Appendix 4), according to Lemma1 the
only contributing terms to the trivial representation are �1 ⊗ �1, �AS ⊗ �AS and
�S ⊗ �S , each of which appears once. Therefore, the tensor Kijkl that is invariant
under SO(d) belongs to the three dimensional IR subspace. We can form a basis in it
by combining Kronecker delta tensors δij. There are three different ways to combine
them into a four-fold tensor, therefore:
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Kijkl = αδijδkl + βδikδ jl + γδilδ jk . (82)

From the analysis given in the main text, only d = 3 case exhibits non-
trivial invariant dynamics. The most general dynamical law for the global state
ψ = (x, y, T,�) is given by:

dxi

dt
= aεijkTjk + L(1)

in λn, (83)

dyi

dt
= bεijkTjk + L(2)

in λn, (84)

dTij

dt
= −aεijkxk − bεijk yk + L(12)

ijn λn + Kijkl Tkl, (85)

dλn

dt
= Qnmλm − L(1)

in xi − L(2)
in yi − L(12)

ijn Tij. (86)

Note that the reversibility requires Kijkl = −Kklij. If we apply this constraint to the
Eq. (82), we obtain K = 0.

Next wewill find the consistent values for the constants a, b, L (1)
in , L(2)

in , L(12)
ijn such

that the solutions to the dynamical Eqs. (83)–(86) above always lead to non-negative
probabilities in Eq. (13).We look at the simplest casewhere all the couplings to global
parameters are zero L(1)

in = L(2)
in = L(12)

ijn = 0. If our initial state is a product state, than
the global parameters remain zero during the evolution and we can safely neglect
them from the analysis. In other words, the solution to the dynamical equations
admits local tomography (� = 0) and it can be found by solving the following set
of equations:

dxi

dt
= aεijkTjk, (87)

dyi

dt
= bεijkTjk, (88)

dTij

dt
= −aεijkxk − bεijk yk . (89)

Let us find the solution for the initial conditions �ψ±(0) = {e3,±e3,±e3eT3 },
where e3 = (0, 0, 1)T. The only components that evolve in time are x3(t), y3(t) and
T12(t) = −T12(t), hence the solution has the form:

ψ±(t) =
⎧⎨
⎩

⎛
⎝ 0

0
x±(t)

⎞
⎠ ,

⎛
⎝ 0

0
y±(t)

⎞
⎠ ,

⎛
⎝ 0 τ (t) 0

−τ (t) 0 0
0 0 ±1

⎞
⎠

⎫⎬
⎭ , (90)

where x±(t), y±(t) and τ (t) are the solutions to:

dx±

dt
= 2aτ , (91)
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dy±

dt
= 2bτ , (92)

dτ

dt
= −ax± − by±. (93)

Note that the state �ψ±(t) has to be physical state, that is, probability of Eq. (13) is
non-negative P12( �ψ| a, b) ≥ 0 for arbitrary choice of local measurements a and b.
If we set a = e3 and b = −e3, the positivity condition reads 1

4 (x±(t) − y±(t)) ≥ 0.
Similarly for a = −e3 and b = e3 we have 1

4 (−x±(t)+ y±(t)) ≥ 0. This is possible
only if x±(t) = y±(t).

In order to eliminate τ (t) from the dynamical equations we find the second deriv-
atives in time of x± and y±. We obtain:

d2x±

dt2
= −2a2x± − 2aby±, (94)

d2y±

dt2
= −2abxi − 2b2y±. (95)

This set of equation leads to the symmetric solution x±(t) = y±(t) only if a2 = b2

or equivalently b = ±a. Note that a = −b case brings new symmetry to the set
of dynamical equations, the invariance under particle swap. If one requires such a
symmetry, the case a = b can be safely eliminated. However, we will use another
argument that has been used in the work of Ref. [26]. We distinguish two cases,
and label different solution as �ψ±

MQM(t) and �ψ±
QM(t), for a = b and a = −b respec-

tively. The label QM and MQM stands for quantum mechanics and mirror quantum
mechanics and the meaning of notation we explain shortly.

It is straightforward to evaluate the solution of dynamical equations:

ψ+
MQM(t) =

⎧⎨
⎩

⎛
⎝ 0

0
cos 2at

⎞
⎠ ,

⎛
⎝ 0

0
cos 2at

⎞
⎠ ,

⎛
⎝ 0 − sin 2at 0
sin 2at 0 0

0 0 1

⎞
⎠

⎫⎬
⎭ ,

ψ−
MQM(t) =

⎧⎨
⎩

⎛
⎝ 0
0
1

⎞
⎠ ,

⎛
⎝ 0

0
−1

⎞
⎠ ,

⎛
⎝ 0 0 0
0 0 0
0 0 −1

⎞
⎠

⎫⎬
⎭ , (96)

ψ−
QM(t) =

⎧⎨
⎩

⎛
⎝ 0

0
cos 2at

⎞
⎠ ,

⎛
⎝ 0

0
− cos 2at

⎞
⎠ ,

⎛
⎝ 0 sin 2at 0

− sin 2at 0 0
0 0 −1

⎞
⎠

⎫⎬
⎭ ,

ψ+
QM(t) =

⎧⎨
⎩

⎛
⎝ 0
0
1

⎞
⎠ ,

⎛
⎝ 0

0
−1

⎞
⎠ ,

⎛
⎝ 0 0 0
0 0 0
0 0 −1

⎞
⎠

⎫⎬
⎭ . (97)

Our goal is to show that ψQM and the associate dynamics corresponds to quan-
tum mechanics for two qubits, whereas ψMQM belongs to so called mirror quantum
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mechanics [26]. The later case has the set of states obtained by partial transpose of
two-qubit states. We introduce the matrix representation of �ψ = (x, y, T ):

ρ( �ψ) = 1

4
(11 ⊗ 11 + xiσi ⊗ 11 + yi11 ⊗ σi + Tijσi ⊗ σ j ), (98)

where σi , i = 1, 2, 3 are the Pauli matrices. Straightforward calculation shows that
ρ(ψ−

QM(t)) = |ψ(t)〉〈ψ(t)| is a densitymatrix, furthermore, it is a pure quantum state,
where |ψ(t)〉 = cos at|0〉|1〉 + i sin at|1〉|0〉. Similarly, one can show that the matrix
representation of mirror state ψ+

MQM(t) is a non-quantum state (unless ψ+
MQM(t) is

product state) that can be obtained from ψ−
QM(t) by applying total inversion y �→ −y

on the second spin. Note, that is a non-quantum operation. Mirror quantum mechan-
ics is shown to be mathematically inconsistent theory for the tripartite case [26].
Therefore we will adopt only quantum solution.

The set of dynamical Eq. (87) has the corresponding matrix form:

dρ( �ψ)

dt
= i[H12, ρ( �ψ)], (99)

where H12 is the Heisenberg spin-spin interaction H12 = a
2 �σ1 �σ2 = a

2

∑3
i=1 σi ⊗ σi .
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Some Negative Remarks on Operational
Approaches to Quantum Theory

Christopher A. Fuchs and Blake C. Stacey

I always like to start with a joke, but due to the Hollywood special effects of Charles
H. Bennett, I’ve got something to share with you. I’ll let Charles tell the joke. Many
years ago, Asher Peres and I wrote an article called “Quantum Theory Needs No
‘Interpretation’ ” [1], or as Charles would have it:

But the paper ended with these words!

All this said, we would be the last to claim that the foundations of quantum theory are not
worth further scrutiny. For instance, it is interesting to search for minimal sets of physical
assumptions that give rise to the theory.

So, some negative remarks on operational approaches! (I’m awfully loud, aren’t
I?) [Someone in the audience: “You always are!”] I’ve been happy to see that this old
slide of mine, with the traditional axioms of quantum theory, has gotten such airplay
this week.

C.A. Fuchs (B)

Raytheon BBN Technologies, 10 Moulton Street, Cambridge, MA 02138, USA
e-mail: qbism.fuchs@gmail.com

B.C. Stacey
Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA

© Springer Science+Business Media Dordrecht 2016
G. Chiribella and R.W. Spekkens (eds.), Quantum Theory:
Informational Foundations and Foils, Fundamental Theories of Physics 181,
DOI 10.1007/978-94-017-7303-4_9

283



284 C.A. Fuchs and B.C. Stacey

Axioms: Quantum

Systems exist.

When no measurement is performed,
states evolve by unitary maps

Systems combine by tensor producting
their vector spaces,

on .

.

.

States correspond to density
operators

Associated with each is a complex
vector space    .

Measurements correspond to
orthonormal bases        on    .

0)

1)

2)

3)

4)

5)

I pulled it out of the bin and I haven’t used it in quite a long time. In fact, I think it
was around 12 years ago, at some meeting in Maryland when I first put the thing up.
At the time, it was mostly as an excuse to make a joke at Max Tegmark’s expense,
who was going around to meetings taking polls of which interpretation was the most
popular at which meeting.

Tegmark Poll

Interpretation
Copenhagen 13

8

4

4

1

18

Many Worlds

Bohm

Consistent Histories

Modified Dynamics (GRW)

None of the above/undecided

Votes

And there was a hidden agenda … well it wasn’t so hidden … it was a pretty obvious
agenda that he wanted to see Many Worlds climb in numbers as time went by, so that
he could say that the Many Worlds Interpretation was the eminently reasonable one,
and that’s decided by democratic vote.

All that caused me to reflect upon what our mission … well, at the time I didn’t
call myself quantum foundations, and I probably won’t be calling myself quantum
foundations after this meeting … it caused me to reflect upon what exactly we needed
to do as a community to get in a position that we would disband. That there wouldn’t
be any more quantum foundational meetings—how could we make this sort of stale
debate on interpretation, where numbers fluctuated from year to year but otherwise
there was no great progress—how might we make that end? And the thing that struck
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me was that this slide actually said it all. This is one of our great physical theories,
one of the great theories of physics, one of the two or three great theories of physics,
and look how it’s posed!

Associated with each system is a complex vector space. Vectors, tensor products,
all of these things. Compare that to one of our other great physical theories, special
relativity. One could make the statement of it in terms of some very crisp and clear
physical principles: The speed of light is constant in all inertial frames, and the laws
of physics are the same in all inertial frames. And it struck me that if we couldn’t
take the structure of quantum theory and change it from this very overt mathematical
speak—something that didn’t look to have much physical content at all, in a way that
anyone could identify with some kind of physical principle—if we couldn’t turn that
into something like this, then the debate would go on forever and ever. And it seemed
like a worthwhile exercise to try to reduce the mathematical structure of quantum
mechanics to some crisp physical statements.

Now the reason I went in a direction like this, where I said, “What would be a
good methodology for doing that?,” and I landed upon going to each and every one
of the axioms and trying to give it an information-theoretic reason if possible, was
that by that time I had already become pretty convinced that most of the structure
of quantum theory was about information [2]. I had convinced myself that quantum
states represented information of some sort, or Bayesian degrees of belief, or some
might say knowledge… But the question on my mind was, “How much of quantum
theory is about information?” Just because some parts of it are about information, it
didn’t mean that all of it had to be about information. And I threw my money on the
idea that there would be something about quantum theory that was not information-
theoretic.

And so, when I wrote the paper [3] that I took this little image from, I wrote of
all these axioms, “Give an information-theoretic reason if possible!”

The distillate that remains—the piece of quantum theory with no information theoretic
significance—will be our first unadorned glimpse of “quantum reality.” Far from being the
end of the journey, placing this conception of nature in open view will be the start of a great
adventure.

So that was really what I was seeking: to try and tear away all the underbrush
that was about information, and find the one piece, or some small number of pieces,
of quantum theory that were actually statements about the world independent of
information-processing agents, independent of measuring observers and so forth.
What I was really after was, I wanted to know what made quantum systems go?
What made them interesting and behave in some peculiar way? Could we pinpoint
that one thing on a principle that wasn’t written in information-theoretic terms or
operational terms in any way?

So, some time has passed, and there’s been all of this fantastic work! And that’s
why I’m at this conference, because this has surprised me: the number of people
that really threw their hearts and souls and have made all this great progress that
we’ve seen here. We’ve seen some of these axiom systems—here’s the one of Chiri-
bella, D’Ariano and Perinotti [4, 5], their five axioms and one postulate, where they
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lay down principles of causality, perfect distinguishability, ideal compression, local
distinguishability, pure conditioning and purification. And out of that, all written in
English, no mathematical equations—I like that!—one pulls together the mathemati-
cal structure of quantum theory, after a lot of work. But they nail it. And, particularly,
one thing I like about this system is the way they distinguish the purification postulate
from the other axioms. This now approaches something that I think is along the lines
of trying to find a crisp physical principle.

I’ve put all you guys in alphabetical order, so not to offend anyone. Dakić and
Brukner’s axioms: information capacity, locality, continuity [6]. (They haven’t pre-
sented on this yet; I guess you will later in the conference.) Hardy’s new axioms—we
saw his old axioms [7, 8] before, ten years ago, and his new axioms this week—
definiteness, information locality, tomographic locality, compound permutability and
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preparability [9]. Masanes and Müller’s axioms, we’ve already seen this as well:
finiteness, local tomography, equivalence of subspaces, symmetry, all measurements
are allowed [10]. And we saw Alex Wilce’s this morning, written in a little bit more
mathematical language—there are some equations in there! [11].

Well, when this whole business—or at least my discussions with Gilles Brassard
and Charlie Bennett and many of you started up—I remember Charlie Bennett saying,
“How will you know when you get to this physical distillate of quantum theory?
How will you know that you’ve reached the end of the process?” And he sort of
jokingly said, “Will it be like pornography?” You know, “the only way you know it’s
pornography is if you see it.” And I think he was right! Not in the way he wanted to
be. But I think what I am having a difficulty with, and what I want to try to express
is that, of all the progress that’s been made, I haven’t been able to look at these
systems and see something that stands out at me as the essential core of quantum
mechanics. Something that’s written in physical, nonoperational, noninformation-
theoretic terms. So, there’s been great progress in putting everything in operational
terms, and making that very clear, and one can do that. Can one do the opposite
thing? Can one find some nonoperational terms and have most of it in operational or
information-theoretic terms but perhaps not all of it?

What is real about a system?

So, I look at these systems and I say, “What is the distillate that’s left behind?
That I can say this is the Zing, this is the thing that makes quantum systems go?”

And I don’t see it. So that’s my basic point.
How would I know it if I saw it? Back to Charlie’s question. I’m not completely

sure, but I think there’s a distinction between the two principles for relativity—which
of course are girded up by some mathematics, as Lucien Hardy made clear—and the
ones that we’ve seen in the present efforts. And it’s this: There’s a certain amount
of shock value in seeing the two things side-by-side. They’re not just sort of inert
principles that are lying there and are equivalent to the structure of the theory. But
instead, one of them says that the speed of light should be constant in all inertial
frames. And if you’re accustomed to thinking the speed of light is this measurable
quantity, how could it possibly be the same in all frames? Putting these two things
together caused a certain amount of shock. So, I wonder whether quantum theory
can be written in terms where the physical principle is identified as having a certain
amount of shock value.
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I guess another thing I’m trying to say is that of the existing axiomatic systems, it
doesn’t seem, to me at least, that any have quite gone for the jugular vein of quantum
theory. You know, when a werewolf attacks a person he’ll jump at this vein, and the
person will bleed to death, and it’ll all be over with. I would like to see an axiomatic
system that goes for the weirdest part of quantum theory of all. For instance, most of
the ones in the list above are built on the idea of local tomography. Is this a feature
of quantum theory that’s really weird? No, it doesn’t seem to me that it’s a feature
that’s really weird. And similarly with so many of the other ones. Can we find some
axiomatic system that really goes after the weird part of quantum theory?

Well, what is the weird part? What is the toy that one might want to go after for
axiomatizing?

Is it nonlocality? We hear this word all the time in quantum information and
quantum foundations. My own sympathy, however, lies with something that Albert
Einstein said I believe in the 40s [12]. It’s in small print, I’ll read it. “Einstein on
Locality”:

If one asks what is characteristic of the realm of physical ideas independently of the quantum-
theory, then above all the following attracts our attention: the concepts of physics refer to a
real external world.

I’m okay with that!

…i.e., ideas are posited of things that claim a “real existence” independent of the perceiving
subject (bodies, fields, etc.), …. Moreover, it is characteristic of these physical things that
they are conceived of as being arranged in a space-time continuum. Further, it appears to
be essential for this arrangement of the things introduced in physics that, at a specific time,
these things claim an existence independent of one another, insofar as these things “lie in
different parts of space.”

He puts scare quotes around “lie in different parts of space” I presume because he’s
meaning this is a tautology: we say things are in different parts of space if they can’t
directly influence each other.

Without such an assumption of the mutually independent existence …

This is the important part now.

Without such an assumption of the mutually independent existence (the “being-thus”) of
spatially distant things, an assumption which originates in everyday thought, physical thought
in the sense familiar to us would not be possible. Nor does one see how physical laws could
be formulated and tested without such a clean separation.

I think this is maybe a debatable point in terms of detail, but I think the idea
is fundamentally sound. If you first posit two systems, and then you say, “Oops!
Made a mistake, they were really one after all, because any one system can influence
any other one,” it would be hard to imagine how we come across the usual sort of
reasoning that we do. So, my money is not on taking nonlocality as the kind of
shock-value principle I’m looking for.

Instead, I’m much more sympathetic to something Asher Peres would have said,
or did say!, around 1978: “Unperformed experiments have no results” [13]. If I were
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looking for a shock-value principle to blame quantum mechanics on, my feeling is
that it’s something along these lines. What is really at issue here? It’s the question of
whether quantum measurements reveal some pre-existing value for something that’s
unknown, or whether in some sense they go toward creating that very value, from
the process of measurement. A good way to see how to pose this in more technical
terms comes from—I guess I could call it a version of the Free Will theorem [14],
but it’s much older than Conway and Kochen [15]—has to do with first looking at
the EPR criterion of reality [16]. (The bracketed part is my addition.)

If, without in any way disturbing a system one can [gather the information required to]
predict with certainty (i.e., with probability equal to unity) the value of a physical quantity,
then there exists an element of physical reality corresponding to this physical quantity.

So, what’s the content of that? Is it right?
You can consider a little variation of the EPR thought experiment. Let me take two

qutrits and ascribe to them a maximally entangled state, and let me assume locality,
the principle that Einstein used in the quote I took from him. And now, consider
making a measurement on the left-hand particle in some basis—let’s say this purple
basis, or alternatively this green basis. I’m going to choose either the green one or
the purple one. If I get, let’s say, outcome number 2 on the left side, then I can
predict that if I were to make the measurement on the right side, I would get outcome
number 2. (I’ve omitted a transpose in drawing this picture.) So, under the assumption
of locality, EPR would say, “Aha! It must be the case that there is an element of reality
on this side corresponding to outcome number 2 of that measurement. It’s something
inherent in that body.” But similarly, we could talk about the other measurement.
And if I were to get outcome 2 for that measurement on one particle, I would predict
with certainty that I would get outcome 2 for that measurement on the other particle.

So measurement is simple revelation after all?

If
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We’re talking about noncommuting variables here; by the EPR criterion and local-
ity, they would say it must be the case that there were elements of reality associated
with those noncommuting observables. But we could make this more extreme and
consider not just two observables but a whole set of them, quite a lot of them, cor-
responding to one of the Kochen–Specker constructions, for instance the one that
Asher Peres found [17–19]. By taking a sufficient number of orthogonal bases, and
interlocking them in some interesting way, we can construct a noncolorable set. For
each of these, we would have said, by making a measurement here, I draw an infer-
ence about the element of reality over here. I can do it for one, I can do it for another,
I can do it for another … I can’t do it for all of them without running into trouble!

Cannot be colored:

33  rays, Peres

(When completed into full triads, consists of  40 triads made
from 57 rays) 

I would say that the thing that this teaches me is that there’s something bankrupt
not in locality, but bankrupt in the EPR criterion of reality. There’s something wrong
about that. And that’s what I’m calling Peres’s principle that unperformed experi-
ments have no outcomes. Particularly, quantum probabilities are not probabilities for
some pre-existing reality that we’re finding when we perform a measurement, but
instead for something that’s produced in the process of measurement.

So, what would excite me in an axiomatic approach to quantum reconstruction?
I think it would be if someone could find a set of axioms that pulled this idea to the
forefront and really made it the core of things. Now I don’t know how to do that! At
all! But I have a little toy approach that I’ve been playing with for some time that
pleases me at least. And that is to recognize that these considerations of Kochen–
Specker, including this case where we have the locality assumption, rest on thinking
about different experiments in terms of each other. We think about what happens if we
perform one experiment, we think about what happens if we were to perform another
one—and it tells us that contextuality is at the core of our considerations. What I
would like as a goal is a way to push quantum theory’s specific form of contextuality
all into one corner. If I could show that all of the phenomena of Kochen–Specker and
Bell inequality violations and everything else, the whole formal structure, comes out
of one corner to do with something with contextuality, I think I would be pleased.

So, let me give you a progress report on that kind of idea [20–22].
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To give you the report, I have to make use of a little device I’ve told so many of
you about so many times: a particularly interesting measuring device that I would
like to elevate to a standard quantum measurement. It would be an informationally
complete measurement. In other words, if I knew the statistics of the outcomes of
this measurement, I would be able to reconstruct the quantum state that gave rise to
them. That is what I mean by this: I’m getting rid of this symbol ρ which represents
a quantum state and putting in its place a probability distribution. This probability
distribution refers to the probabilities of the outcomes of this measurement up in
the sky, and if this is an informationally complete measurement, we can completely
reconstruct the quantum state ρ from the probabilities. This means that we can really
cross out ρ completely and use the probabilities instead.

Particularly, to make everything that I say have a pretty form, this device should
have the following properties. Suppose you could find d2 rank-one projection oper-
ators, with this nice symmetry condition:

tr �i� j = 1

d + 1
, i �= j. (1)

Namely, the Hilbert–Schmidt inner product between any two of the projectors is
equal to a constant value determined by the dimension. If you can find d2 projec-
tion operators satisfying this symmetry, you can prove that they have to be linearly
independent—they don’t have a choice! Moreover, if you renormalize by 1/d, then
they’ll sum up to the identity. So, these form the elements of a POVM, and they can be
thought of as the outcomes of a quantum measurement. We call it a SIC measurement,
where the acronym stands for “Symmetric Informationally Complete” [22–31].

Since this measurement is informationally complete, one can completely deter-
mine the quantum state ρ in terms of the probabilities given by the Born Rule:

p(i) = 1

d
tr(ρ�i ). (2)

And because of this great symmetry, there’s a lovely reconstruction formula which
says that the initial quantum state is just a linear combination of the projection
operators, where the expansion coefficients are determined by the probabilities in a
really simple way:

ρ =
∑

i

[
(d + 1)p(i) − 1

d

]
�i . (3)

It’s just a nice little affine transformation.
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We can now explore what state space looks like in terms of probabilities. If we
were talking about density operators, we could say, “We know what state space looks
like: It’s the set of positive semidefinite matrices with trace one.” But what does the
state space look like in terms of the probabilities themselves?

If you put an arbitrary probability distribution into the reconstruction formula,
you have to get a Hermitian matrix, because this is a real combination of projection
operators. So you will always get a Hermitian matrix. But for certain choices of the
probabilities, you won’t get a positive semidefinite one. What this tells you is if you
want to specify the set of rank-one positive semidefinite operators, all you have to add
to the condition that you have a Hermitian operator is that the trace of the operator
squared and the trace of the operator cubed both equal 1:

ρ† = ρ, tr ρ2 = tr ρ3 = 1. (4)

And if you translate that into a condition on the probabilities, you get two equations.
One says that the probabilities should lie on the surface of a sphere of a certain radius:

∑
i

p(i)2 = 2

d(d + 1)
. (5)

And the other one says that they should satisfy a certain cubic condition which isn’t
necessarily very pretty:

∑
jkl

c jkl p( j)p(k)p(l) = d + 7

(d + 1)3
, (6)

where

c jkl = Re tr(� j�k�l). (7)

But what you can glean from this is that the extreme points form the intersection of
two sets, one of which is a sphere and one of which is some cubic curve. So, the pure
states can’t be the whole sphere, unless the latter condition is trivial: They’re going
to be some subset of a sphere.

What does all this have to do with contextuality, and maybe a reconstruction of
quantum theory by some means associated with contextuality? You can start to get
a sense of what that has to do with this from the following little thought experiment.
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Here’s what I’m going to do. I’ve got my quantum system, and I’m going to throw
it into some measuring device—I’ll call it “the measuring device on the ground.”
Let’s say it’s a von Neumann measuring device. So I’m going to throw this quantum
system into here, and when I do, it will generate an outcome. Let me call it D j . Here,
I’m using the letter D to evoke the idea of “data”. What I’d like to know is, what are
the probabilities for the outcomes D j ?

p(D j )—that’s what I would like to calculate. I’m going to throw the system
in here; that’s what I’m really going to do. Throw it in there and get an outcome.
But suppose I only know the probabilities for the outcomes of this very special
SIC measurement, and I know the conditional probabilities for the outcomes of
the measurement on the ground in terms of the measurement in the sky. In other
words, I have conditional probabilities p(D j |Hi ). Do I have enough information to
reconstruct the probability I really want?

Well, you might be able to reconstruct it, but you can’t use regular probability
theory. You can’t just say that the probabilities for the bottom path will be given by
the classical formula to do with the conditional probabilities for the upper path.

p(D j ) �=
∑

i

p(Hi )p(D j |Hi ), (8)

because in physics terms one of them is a coherent process, and the other one is an
incoherent process. If you speak like a probabilist (or like Leslie Ballentine, when
he was here and I made this slide for him) you might say there are extra conditions.
The probability on the left-hand side refers to one experiment, and the probabilities
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on the right-hand side refer to a different experiment. So there’s an extra conditional
in these expressions, and it’s no wonder that you don’t get equality in the classical
expression because there are extra conditions floating about:

p(D j ) is really p(D j |C1),

p(Hi ) is really p(Hi |C2), (9)

p(D j |Hi ) is really p(D j |Hi , C2).

What is so interesting in this case, however, is that though all of that is true—it’s
true you can’t just use the classical formula for the upper path to calculate the lower
path—quantum mechanics nonetheless provides the tools for making the calculation.
It’s just a different calculation.

In usual “physicist language,” what is going on is that the probability I really want
is one that I get by throwing my quantum system into the second measuring device
via a coherent path. There’s no measurement on it; there’s no decoherence. Yet, the
probabilities I am given are ones to do with this imaginary path. An incoherent path.

In any case, the calculation is this: You do the old classical calculation—first form
this, the usual Bayesian approach,

∑
i

p(Hi )p(D j |Hi ), (10)

and then you simply stretch the answer a little bit by a factor that depends on the
dimension, and renormalize:

p(D j ) = (d + 1)
∑

i

p(Hi )p(D j |Hi ) − 1. (11)

So whereas raw probabilistic considerations say there is an inequality, or at least that
there can be an inequality in this expression, quantum mechanics restores equality
by changing the formula a little bit. Quantum mechanics adds something, gives some
extra structure to probability theory that just raw, plain probability theory itself does
not have.

Again, just to emphasize. To get this answer: you just do the classical calculation,
and then to get the Born rule you simply modify the classical calculation ever so
little!

p(D j ) = tr(ρD̂ j )

= (d + 1)
∑

i

p(Hi )p(D j |Hi ) − 1 (12)

= (d + 1)[classical calculation] − 1.

This causes me to wonder whether this is the kind of corner where I can push
all of contextuality. The contextuality here is that I’ve got the calculation for the
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probabilities directly for the ground path in terms of the probabilities for the sky
path, and the formula is modified. Can we take this diagram and this addition to
probability theory as a fundamental postulate of quantum mechanics?

Well, what is one wanting to get out of it? The thing you’d like to get out of it is
a specification of this convex set that we were talking about earlier. Can it be that
this formula somehow implies the convex set that we were talking about, where we
had a sphere intersecting a cubic curve? It might imply some features, and you can
already see that it might because of the following: Suppose the term under the sum
here were a number near zero, or zero in fact. Well, if the number were zero, then
we would have 0 − 1, and that would lead to a negative number on the left-hand
side. So we wouldn’t actually have a probability on the left-hand side! We might
have something that you would call negative probability, but negative probability
isn’t probability. Alternatively, suppose the sum were close to 1, or in fact 1 itself,
then the right-hand side would be (d + 1) − 1. That would be d, and that would be
larger than 1. So again, this term under the sum can’t be too large; otherwise, we’ll
end up with something that is not a proper probability either. So it gives some hope
hope that making this formula hold will give us something like a convex structure,
and something along the right variety of one.

OK, so what I really want to do—that was all tricksterism, I don’t really want to
take this one statement (Eq. (12)) as a postulate of quantum mechanics. My starting
point should be to consider the most general case, not just where I have a von
Neumann measurement on the ground, but where I have any kind of measurement
whatsoever on the ground. You can prove that the rule gets a little modified when we
consider completely general positive operator valued measures on the ground: The
thing that changes is that there is an extra conditional term underneath the sum:

q( j) =
d2∑

i=1

[
(d + 1)p(i) − 1

d

]
r( j |i). (13)

So in the case where we have a von Neumann measurement, then all of the rightmost
terms under the sum—they sum up to 1 in fact. We thus get this little extra term that
is outside of the sum (in Eq. (12)).

I am going to change my notation slightly, because I have more equations to show
you. I’m calling the quantum probability, the thing the Born Rule calculates for us,
q( j); I’ll call the prior probabilities for the measurement in the sky p(i); and I’ll call
the conditional probabilities for the ground outcomes given the sky outcomes r( j |i).

Here’s what I want to show you. Nearly the consistency of this equation alone
(Eq. (13))—when I say “nearly,” you have to take that a little bit with a little grain
of salt, but for me, it’s nearly—nearly the consistency of this equation alone implies
a significant, nontrivial convex structure. You don’t just end up with a sphere, you
don’t end up with a cube, you don’t end up with any polytope—you end up with
something that you don’t see discussed much in these circles, at least as far as I’ve
seen.
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Here’s the “nearly.” Here’s a property I’m going to add to that axiom. It’s a
property that quantum mechanics has.

Suppose your initial state is the complete garbage state, ρ = 1
d I , and you actually

follow the path in the sky—so in our diagram, we throw the garbage state up into the
sky, it goes through the SIC-POVM, and it comes down to the ground for some new
POVM, which I’ll call {G j }. So those are the elements of it. Suppose I look at the
outcome j and try to make an inference to what happened up in the sky. Well, then
I’d just use the normal Bayes’ Rule to calculate the probability for the outcome i in
the sky given the outcome j on the ground. And it just works out to be this:

Prob(i | j) = p(i)r( j |i)∑
k p(k)r( j |k)

(14)

= tr(G j�i )

d · tr G j
. (15)

Now let me redefine this G j/tr G j and call it a density operator.
But then look at this probability. The probability for getting i in the sky given j

on the ground is just one of these SIC representations of the quantum state ρ j :

Prob(i | j) = 1

d
tr(ρ j�i ), ρ j = G j

tr G j
. (16)

So this is generated by a hidden quantum state ρ j . Moreover, any ρ j can be gotten in
this way by choosing the measurement on the ground to be an appropriate POVM,
because that is a property of quantum mechanics: That for any POVM we can generate
a quantum state this way, and vice versa.

Well, all that was really a statement of was the combination of using Bayes’ Rule
and using this operator representation. So, I’m going to promote it to an axiom:

Starting from a state of maximal uncertainty for the sky, one can use the posterior state
supplied by Bayes’ Rule,

Prob(i | j) = r( j |i)∑
k r( j |k)

, (17)

as a valid prior state. Moreover all valid priors can be generated in this way.

We do this all the time: Whenever you gather data, you take your prior, you turn that
into a posterior, and then you use that later on for your next prior. So that’s all that
this rule is telling you, and I have particularized it to having complete ignorance of
the sky.

That leads to an immediate consequence for our formula. Because if we just write
it out, now supposing the r( j |i) derive from one of these posteriors, the formula
becomes this

q( j) =
(∑

k

r( j |k)

)[
(d + 1)

∑
i

p(i)Prob(i | j) − 1

d

]
. (18)
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But we demand that the number on the left be nonnegative. So that tells us that the the
thing in the square brackets here has to be nonnegative, and by the postulate above,
this Prob(i | j) is just some other quantum state. And if we want this to be nonnegative,
then it says that the inner product of these two quantum states is bounded below.

Within the probability simplex, if I have a point that is a valid state and I have
another point that is a valid state—in other words one that doesn’t violate the con-
dition here—their inner product can’t be too small. For any two valid priors �p
and �s,

�p · �s =
∑

i

p(i)s(i) ≥ 1

d(d + 1)
. (19)

That’s a nontrivial condition, I would say.
Let me now point out another thing. If we’re going to be consistent—we have the

measurement in the sky and we have the measurement on the ground—then it has to
be the case that we can do the calculation for a measurement on the ground that is
exactly the same as the measurement in the sky. Then, self-consistency requires that
for any valid �p,

p( j) = (d + 1)
∑

i

p(i)r( j |i) − 1

d
. (20)

If this is going to hold, then the only conditional probabilities r( j |i) that can be
allowed are ones of this sort:

r( j |i) = 1

d + 1

(
δi j + 1

d

)
. (21)

Now we use the Reciprocity Axiom, the one about Bayes’ Rule, to turn these into
actual states: All �p of the form

�ek =
[

1

d(d + 1)
, . . .

1

d
, . . . ,

1

d(d + 1)

]
(22)

must be valid priors. It says that among our set of states, just because of the existence
of these two measuring devices, we have to have states which are flat except for one
point, with this particular normalization. We’ll call these basis distributions.

Something to notice about these states: If we take the inner product of any one of
them with itself,

�ek · �ek = 2

d(d + 1)
. (23)
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Since these correspond to our very special measuring device, let’s think of these
as being among the extreme points of the set of valid distributions. “Extreme,” in the
sense means that the norm takes its largest possible value.

This leads to the following notion. I’ll call a set S within the probability simplex
�d2 , which contains these points �ek it must contain, consistent if for any two points
�p, �q ∈ S, we have

1

d(d + 1)
≤ �p · �q ≤ 2

d(d + 1)
. (24)

And I will call S maximal if adding any further point �p ∈ �d2 makes it inconsistent.
So, if I have a set for which every pair of points satisfies Eq. (24) and I add just

one more point to it from the simplex, if all of a sudden Eq. (24) is violated, then I
say the set is maximal.

Here’s an example of a maximal consistent set: if S is the set of quantum states
itself, it is a consistent and maximal set. I’ll show you that momentarily. As a general
problem, it would be nice to characterize all such sets. We know that quantum state
spaces are among them, but what else is among them?

Let me show you that quantum state space is a maximal consistent set. Suppose
I use the SIC representation to turn two probability distributions into operators:

ρ =
∑

i

[
(d + 1)p(i) − 1

d

]
�i , (25)

σ =
∑

i

[
(d + 1)q(i) − 1

d

]
�i . (26)

It works out that the Hilbert–Schmidt inner product of these operators can be written
in terms of the normal Euclidean inner product of the probability distributions:

tr ρσ = d(d + 1) �p · �q − 1. (27)

Suppose �p does not correspond to a quantum state. Well,ρ is automatically Hermitian,
so if it’s not going to correspond to a quantum state, then it has to have a negative
eigenvalue. If ρ has a negative eigenvalue, let me choose σ to be the projection onto
the direction which gives that negative eigenvalue. I see that I generate a Hilbert–
Schmidt inner product that is less than zero:

tr ρσ < 0. (28)

Consequently, the inner product of probabilities has to be smaller than our bound:

�p · �q <
1

d(d + 1)
. (29)
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There’s nothing you can add to quantum state space and still satisfy the consistency
condition!

OK. So, quantum state space is in there. But what other properties do these maxi-
mal consistent sets have in general which are along the lines of quantum mechanics?

For starters, we can show that maximal consistent sets have to be convex. Let S
be a consistent set. If �p, �q ∈ S, then for any �r ∈ S and 0 ≤ x ≤ 1,

1

d(d + 1)
≤ [x �p + (1 − x)�q ] · �r ≤ 2

d(d + 1)
. (30)

Therefore, maximal consistent sets have to be convex sets.
Let �p belong to the closure of S. Then there must be a sequence �pt ∈ S converging

to �p. But for any �q ∈ S,

1

d(d + 1)
≤ �pt · �q ≤ 2

d(d + 1)
. (31)

Therefore, if S is a maximal consistent set, then �p belongs to S. So maximal consistent
sets are closed.

So we have closed and convex sets just from the two conditions for maximal
consistent sets. In what sense do we get nontrivial sets? There’s already a sense in
which we get a pretty nontrivial set, just from the lower bound of the consistency
condition. For any point that’s allowed in my set, there has to be some point on the
opposite side of the sphere, around the antipode, that can’t be allowed. There has to
be a nonincluded region. For any point, there’s an excluded spot on the opposite side
of the sphere, which is pretty strange.

Moreover, we’ve got this property: The sphere we’re talking about actually reaches
outside of the simplex for sufficiently high-dimensional faces. Whatever the object
is, not only does it have the property that antipodal regions are excluded, but also it
is larger than the simplex it’s sitting in. So, it has to be the intersection of a sphere
and a simplex.

Face of low
dimension 
not reached

Face of high
dimension cuts
off sphere 

face of dimension
Sphere touches

d(d+1)−11
2
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In more detail, the argument goes like this. Re-reference points to the center �c of
the probability simplex:

�p ′ = �p − �c. (32)

The consistency condition becomes

− 1

d2(d + 1)
≤ �p ′ · �q ′ ≤ d − 1

d2(d + 1)
. (33)

The sphere is too big for the simplex!
Here’s another interesting property. You might ask yourself, “Is there some bound

on the number of zeros which can be in a probability vector?” You can use the Schwarz
inequality to show that indeed there is. Suppose �p has n zero values, p(i) = 0. Then

1 =
⎛
⎝ ∑

p(i)�=0

p(i)

⎞
⎠

2

≤ (d2 − n)
∑

p(i)�=0

p(i)2 ≤ (d2 − n)
2

d(d + 1)
. (34)

So,

n ≤ 1

2
d(d − 1). (35)

This automatically implies that there are certain asymmetries to this set. So it started
off in a very symmetric way, but suppose you achieve this bound on the number of
zeros: We have some �p1 that has a lot of zeros and then some other values.

�p1 = (0, 0, 0, 0, p5, p6, . . . , pn). (36)

Let’s say that this is a good point. Alternatively, consider another one in which I’ve
rotated around and moved my zeros one spot to the right:

�p2 = (p1, 0, 0, 0, 0, p6, . . . , pn). (37)

That might still be a good point. But generally, it’ll be the case that if I take all of
my zeros and shuffle them to the other side of the vector,

�p3 = (p1, p2, . . . , pk, 0, 0, 0, 0), (38)

all of a sudden the inner product bound will be violated: �p1 · �p3 is too small. So it’s
not the case that all permutations of the vectors’ components lead to allowed points
within the set.

All of these things are picking up features that the cubic equation in the quantum
state space specification implies. It’s a nice, simple condition, but it has lots of
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consequences, and all these things are consequences of the cubic equation, not the
quadratic condition.

Here’s one last one. Suppose we have a set of vectors within one of these maximally
consistent sets, and they’re all of the largest length possible, and moreover, they all
have the smallest inner product allowed by the bound. That is, we have �pk

′ ∈ S, with
k = 1, . . . , m, that saturate both bounds:

�pk
′ · �pk

′ = d − 1

d2(d + 1)
∀k, (39)

�pk
′ · �pl

′ = − 1

d2(d + 1)
∀k �= l. (40)

Here is the question I would like to ask. For vectors of this variety, is there some
maximum number of vectors within this set. How many can be there? That is, how
large can we make m?

You can figure this out by forming this combination

�G =
∑

k

�pk
′, (41)

and observing that

0 ≤ �G · �G =
∑
k,l

�pk
′ · �pl

′ = m(d − m)

d2(d + 1)
. (42)

This expression can only be nonnegative if

m ≤ d. (43)

So it says we’ve started with a simplex of size d2, and if we demand that we have
a set of points which are maximally distant from one another, we can’t have more
than d of them. Again, this mimics quantum state space! We started with a set of
dimension d2 and found a kind of underlying set of size d.

Moreover, if

�G · �G = 0, (44)

then

d∑
k=1

1

d
�pk

′ = 0 ⇒
d∑

k=1

1

d
�pk = �c. (45)

This is also the same as in quantum mechanics.
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So, challenge: What further postulates must be made to recover quantum state
space precisely? That is, how do we recover the convex hull of

∑
i

p(i)2 = 2

d(d + 1)
, (46)

∑
i jk

ci jk p(i)p( j)p(k) = d + 7

(d + 1)3
, (47)

with the ci jk possessing the correct properties? I don’t know, maybe they’ll get really
horrible. Maybe it won’t be the pretty principle that I want at all. But I feel that at
least this is moving in the direction of focusing on contextuality as a primitive notion
within quantum theory, and the right particular flavor of contextuality. Of course,
what we really want is this thing John Wheeler said:

If one really understood the central point and its necessity in the construction of the world,
one ought to be able to state it in one clear, simple sentence.

I hope you guys keep trying to do that. Thank you!

During the Q&A, there was a comment from Lucien Hardy.

HARDY: Maybe first a comment, and then a more specific question. The way I see
it, in terms of this program of finding some postulates or axioms or whatever, is
that we’re looking at some strange object, and the original mathematical axioms of
quantum theory sort of give us a bunch (five or however many there are) of strange
vantage points on this strange object. Maybe we’re looking at it from odd directions.
And as we get better postulates, we’re finding better ways to look at it from. So,
rather than looking at it from some direction where it doesn’t make sense, perhaps
we can see it face-on, and we see it from several different directions. So we’re moving
towards some more reasonable set of vantage points on the given object, so then it
wouldn’t disturb us of course whether these axioms are unique or not—at least they
should somehow be a sensible way of looking at that object. Just sort a general
comment. But then the particular point was you said that you thought this equation
could be a possible postulate, but you also said that you liked it when postulates were
expressed in words. So do you have some words for that equation?

FUCHS: No, that’s my big failure at this point. But I liked your analogy at the
beginning, and I guess maybe it gives me the tool to express that: It seems that
the light has been shining in ways that it kind of takes the corners off of the edge
of quantum theory. So we’ve got this sharp, rather jagged object called quantum
theory, and the lights that have been shined on it have made it like a little distinction
from classical theory in usual ways. For instance in Giulio and Mauro and Paulo’s
postulates, they can pinpoint it to one spot, and you can as well. And some of the
other axiom systems. So it feels to me that it is kind of dulling … the projection of
it is smoother than the real object itself is.1

1David Mermin says it much better in the paper where he originated the phrase ‘shut up and
calculate’ [33]: “I would rather celebrate the strangeness of quantum theory than deny it, because
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But for your question, yeah it’s a shortcoming. I don’t have any explanation of
this equation that is giving some structure other than to know that it works. I’ve tried
to play games to do with Dutch book arguments and some kind of picture of the
world that … uh … You know I have these … Like Gilles, you see, Gilles was my
teacher. He has conversations with God. So I’ve had conversations with God where I
imagine that God says … You know, I ask him, “I want the ability to write messages
upon the world.” And God says,“You know … I can give you that but that means
that the world is going to have to have some loose play in it, because if it were a
rigid thing then you wouldn’t be able to write messages in it.” Then he says, “Ah
but the moment I give you some loose play in the world, then I may not be able to
predict all the floods and fires for you anymore, because it’s got all this loose play
in it.” So anyway I’ve played little games like that associated with Dutch book, and
I’ve gotten nowhere.

(Footnote 1 continued)
I believe it still has interesting things to teach us about how certain powerful but flawed verbal
and mental tools we once took for granted continue to infect our thinking in subtly hidden ways
…. [T]he problem with the second generation’s iron-fistedly soothing attitude is that by striving
to make quantum mechanics appear so ordinary, so sedately practical, so benignly humdrum, they
deprive us of the stimulus for exploring some very intriguing questions about the limitations in how
we think and how we are capable of apprehending the world.”
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Part III
Categories and Convex Sets



Generalised Compositional Theories
and Diagrammatic Reasoning

Bob Coecke, Ross Duncan, Aleks Kissinger and Quanlong Wang

This chapter provides an introduction to the use of diagrammatic language, or
perhaps more accurately, diagrammatic calculus, in quantum information and quan-
tum foundations. We illustrate the use of diagrammatic calculus in one particular
case, namely the study of complementarity and non-locality, two fundamental con-
cepts of quantum theory whose relationship we explore in later part of this chapter.

The diagrammatic calculus that we are concerned with here is not merely an
illustrative tool, but it has both (i) a conceptual physical backbone, which allows it
to act as a foundation for diverse physical theories, and (ii) a genuine mathematical
underpinning, permitting one to relate it to standard mathematical structures.

(i) The conceptual physical backbone concerns compositionality. Given two
systems, there is also a composite system. This notion of composition is a prim-
itive ingredient of the diagrammatic language. Moreover, the basic elements of
the diagrammatic language are processes, and states are identified with preparation
processes. This paves the way for a framework of generalised compositional theo-
ries (GCTs), named in analogy to generalised probabilistic theories [1]. The latter
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have recently received much attention because one can better understand a theory—
quantum theory in particular—by studying it as merely a member of a broader class
of theories. Notably, the study of non-locality within this framework has provided
important new insights [2, 3]. Whereas generalised probabilistic theories discard
everything except the convex probabilistic structure, in contrast, GCTs focus on
composition. This approach is informed by techniques used in computer science,
logic, and the branch of mathematics called category theory, however its roots can be
traced to Schrödinger’s conviction that the essential characteristic of quantum theory
is the manner in which systems compose [4].

(ii) On the other hand, the diagrammatic language has a well-defined mathemat-
ical meaning, which permits any diagram to be interpreted as a definite object in
various other concrete mathematical models, for example in Hilbert spaces. This
translation can be carried out in a formally precise manner, so that reasoning in the
diagrammatic calculus produces true equations in the chosen model. At the same
time, the relationship between what is provable in the calculus and what is provable
in concrete models can be described to a high degree of precision.

We won’t discuss this mathematical basis in detail here, however it may be sum-
marised as follows: the diagrammatic calculus is itself a GCT, and GCTs form a
certain class of monoidal categories, also known as tensor categories. The use of
diagrammatic languages for tensors traces back to Penrose in the early 1970s [5], but
was only placed on a formal mathematical basis in the late 1980s [6, 7]. Their use
in quantum foundations and quantum information began with an abstract (partial)
axiomatisation of Hilbert spaces in terms of these categories [8], eventually resulting
in so-called quantum picturalism [9]. Meanwhile, the diagrammatic compositional
language has been adopted by several researchers in quantum foundations [10, 11].
The particular developments related here been used to solve problems in quantum
foundations [12, 13] and quantum computation [14–16].

1 Introduction to Quantum Picturalism

1.1 Theories and Diagrams

A generalised compositional theory consists of systems, or more accurately types
of systems, and processes which transform systems. A process f which transforms
systems of type A into systems of type B is written f : A → B. At the highest level
of generality we do not need to give any details as to what A, B, or f are: it is enough
to know that that f accepts systems of type A as inputs and produces systems of
type B as outputs. The important thing is how systems and processes are combined.

Mathematically speaking, general compositional theories are strict symmetric
monoidal categories, and a full exposition of their properties would require a lengthy
detour into category theory. The interested reader can refer toMac Lane’s classic text
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[17] for a thorough treatment. However, we can avoid reading Mac Lane’s book1 by
adopting a diagrammatic notation, which absorbs all of the relevant equations into
the syntax. This notation is the subject of the first section of this paper.

We will represent processes by diagrams, consisting of boxes and wires. The
wires are labelled by systems, and the boxes by basic processes.2 Wires join boxes at
the top and bottom; the wires below correspond to the input systems of the process,
and those at the top correspond to the output systems. For example:

f

A

B

g

B

A

A

B

A A

A

δ

f : A → B g : A⊗B → B⊗A δ : A → A⊗A

The same is true for the diagram as a whole: the wires entering the bottom of the
diagram are its input systems, and those leaving from the top are its outputs.

Given processes f : A → B and g : B → C , it seems obvious that doing f then
g is again a process, and we write g ◦ f : A → C to denote this process. In other
words, processes admit sequential combination; we will usually call this operation
composition.

Similarly, a pair of systems, say A and B, can be taken together and viewed as a
single system, A⊗ B. Now, given a pair of processes f : A → B and g : A′ → B ′, a
new process is obtained by placing them in parallel. We denote the combined process
f ⊗ g : A ⊗ A′ → B ⊗ B ′. This operation of parallel combination is called tensor.
In the diagrammatic notation, composition is expressed by plugging the outputs

of one box into the inputs of another, and the tensor is given by juxtaposition.

A

B

B A A

C BBB

B

B

A

A

C

A

g

g ◦ f = f ⊗ g = f g

f

We require that both operations, composition and tensor, are associative and obey
the interchange law,

( f ⊗ g) ◦ (h ⊗ k) = ( f ◦ h) ⊗ (g ◦ k). (1)

In the graphical notation, all of these equations become trivial: they boil down the
statement that the three diagrams below are unambiguous.

1We jest; reading Mac Lane’s book is eventually unavoidable, however the paper [18] is an easy
introduction to the subject of monoidal categories.
2The term “basic” simply means a process whose internal structure is of no interest. Typically we
construct diagrams from some given set of basic processes.
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h

f

f

g g h

f

h

g

k

D

C

B

A

A B C

B C D

C

A A

Bv

C

While it is easy to translate these diagrams back into conventional notation, to do
so we must make a choice of where to put the brackets, even though the theory
tells us this choice does not matter. This highlights a key advantage of working with
diagrams, namely that the objects which are equal in the theory produce the same
diagram.

In addition to the two operations, composition and tensor, every generalised com-
positional theory is equipped with certain primitive processes. The simplest process
is the process which doesn’t do anything at all, simply returning unchanged the sys-
tem given to it. We assume that for every system A such a null process, called the
identity and written 1A : A → A, exists. The fact that it does nothing is expressed
by the equations

1B ◦ f = f = f ◦ 1A

for all processes f : A → B. The identity process 1A : A → A is drawn as a wire
without any box on it, while the identity for A ⊗ A′ is simply the tensor product
1A ⊗ 1A′ , i.e. two wires.

1A = A 1A⊗A = AAAA ⊗ =

Once again we see an equation absorbed into the notation: since the identity has no
effect on a process, the length of the wires attached to a box makes no difference.

A

B

A

B

A

B

A

B

A

B

A

B

C

D

C

D

C

D

f =
f

=
f

f

f

f

==g

g

g

In addition, for every pair of systems A and B there is a process σA,B : A ⊗ B →
B ⊗ A which exchanges the two systems. The class of theories we consider here are
symmetric: swapping two systems twice has no effect, hence the equation

σB,A ◦ σA,B = 1A⊗B
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holds for all systems A and B Graphically, the swap is just the crossing of two wires:

σA,B = A B=
A B

BA

BA

B A

In fact, the swap should satisfy some further coherence equations, the details of
which can be found in [17]. However, we can again make the graphical notation
do the work by allowing wires to cross freely in the diagrams, and saying that only
the connectivity of the wires matters, and not their configuration in the page. For
example, the following diagrams are equal:

f g = g f=

Note that we do not distinguish between wires crossing over and crossing under.
A processes may produce an output without having to consume an input first, or

vice versa. Therefore we introduce a null system, or empty system, which we denote
I . Hence a process that produces an A from nothing would be written p : I → A.
Like the identity process, the null system obeys some equations:

A ⊗ I = A = I ⊗ A and 1I ⊗ f = f = f ⊗ 1I ,

for all systems A and all processes f . As suggested by the preceding equations, I
is represented as empty space in the diagram, and its identity process 1I : I → I is
represented by the empty diagram.

A process of type s : I → I is called a scalar; this name will be justified later. It
is clear from the diagrammatic notation that given scalars s and s ′ we have s ◦ s =
s ⊗ s ′ = s ′ ⊗ s = s ′ ◦ s; i.e. the scalars form a commutative monoid.3

In the preceding text we have introduced various transformations of diagrams
which, we claim, do not change anything. It is reasonable to ask: when are two

3This is actually true even for non-symmetric monoidal categories; see [7].
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Fig. 1 Examples of
topologically equivalent
diagrams

gh

ψ

f s

=

g

h ψ

s
f

Fig. 2 Example: the
symmetric group S3
presented as diagrams

diagrams considered to be equal? We use a very intuitive notion here: Two dia-
grams are considered equal when, keeping the inputs and outputs fixed, one
may be transformed to the other by purely topological transformations. In other
words, if starting from one diagram we—by crossing or uncrossing wires, stretching
wires, moving boxes along wires, translating boxes in the plane (while maintaining
their connections), etc—arrive at the other, then they are equal. In particular, since
scalars are not connected to the inputs or outputs of the diagram, they may be placed
anywhere in the diagram without altering its meaning (Fig. 1).

Example 1 The simplest non-trivial example is the theorywith one primitive system,
denoted u, and whose processes are generated by the identity and swap. We call this
theory SymGrp. Since there is only one basic system, every other system is just
an n-fold tensor power of u, hence the systems of the theory can be identified with
the natural numbers. In this theory, a process p : n → n is nothing more than
a sequence of swaps; i.e. a permutation on the n-element set. Hence SymGrp is
exactly the theory of the symmetric groups (Fig. 2).

Example 2 (Finite-dimensional Hilbert spaces) The theory called FHilb has as its
systems all finite-dimensional complex Hilbert spaces. The processes of this theory
are all linear maps f : A → B. The sequential composition of processes is the usual
composition of linear maps, and the tensor is the usual Kronecker product of vector
spaces and maps. The identity process is the identity map, the swap is the evident
permutation map, and the null system is the base field,C. Since a linear mapC → C
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is totally determined by its value at 1, we see that the scalars of FHilb are nothing
more than the complex numbers themselves.

We write FHilbD to denote the subtheory FHilb restricted to Hilbert spaces of
dimension Dn and linear maps between them, for some fixed D. For convenience, we
refer toFHilb2 asQubit. Notice that the systems ofQubit are all tensor powers ofC2,
and its processes include all quantum circuits, state preparations, and post-selected
measurements, justifying the name.

Remark 1 Note that we must specify what the tensor product is to specify what
the theory is. For example, another equally valid theory is the collection of finite
dimensional Hilbert spaces and linear maps, but with the direct sum as the tensor.
This is again a general compositional theory, although since it lacks certain other
features we will require later, it will play no role in this presentation.

Example 3 (Sets and Relations) An example with very different flavour, but most of
the same structure is FRel. The systems of FRel are all finite sets (considered up to
isomorphism4), and the processes r : X → Y are relations between X and Y , that is
subsets of X × Y . The composition of relations is given by

s ◦ r = {(x, z) | ∃y s.t. (x, y) ∈ r and (y, z) ∈ s}.

The identity process is the diagonal relation,

1X = {(x, x) | x ∈ X}.

The tensor product in FRel is the cartesian product X ⊗ Y = X × Y , which takes
the form

r ⊗ r ′ = {((x, x ′), (y, y′)) | (x, y) ∈ r and (x ′, y′) ∈ r ′}

on processes. The null system is the singleton set {∗}, for whichwe have {∗}×X ∼= X
for all sets X . There are exactly two relations from {∗} to itself, namely the total
relation and the empty relation. Hence, the scalars of FRel are the Boolean monoid,
i.e. Z2 with the usual multiplication.

An important subtheory of FRel is FSet, obtained by restricting the to relations
which are functions: that is, relations r : X → Y where each x is related to exactly
one y. Just as in the case of FHilb, we can consider restrictions of FRel to systems
generated by a set of size D, which we call FRelD . For example, FRel2 contains all
the Boolean functions. The intersection of FRel2 and FSet consists of precisely the
Boolean functions; this theory we denote Bool. Many other interesting theories are
subtheories of FRel; we’ll meet some more later.

Since generalised compositional theories all share certain basic structure, it is
natural to consider maps between them. Given two such theories C and D, a map

4Since we identify sets of the same cardinality, we can equivalently say that the systems of FRel
are just the natural numbers.
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F : C → D consists of an assignment of each system A in C to a system FA in D,
and an assignment of each process f : A → B in C to a process Ff : FA → FB in
D, obeying the following equations:

F(A ⊗ B) = FA ⊗ FB F I = I

F(g ◦ f ) = Fg ◦ Ff F( f ⊗ g) = Ff ⊗ Fg

F1A = 1FA FσA,B = σFA,FB

In the mathematics literature, such a map is called a strict symmetric monoidal
functor; again, see Mac Lane [17] for the details. The important point to note is
that the mapping F sends wires to wires. Therefore, to specify such a mapping it is
enough to specify the image of the boxes in a diagram, ensuring that composition
and tensor are respected.

Example 4 We can define a map RD : SymGrp → FHilb by setting RD(u) = C
D

and then everything else is defined by the requirement that RD is a strict symmetric
monoidal functor. Thus we have a Dn dimensional representation of the symmetric
group Sn for every D.

In fact, this construction applies equally well to any generalised compositional
theory C: all that is required is an assignment of the unique primitive system u to
some system of C. Therefore every generalised compositional theory contains all the
symmetric groups.

Given a mapping between theories it is easy to calculate the image of a given
diagram. One must recursively partition the diagram into tensors and compositions
of smaller diagrams until each partition contains exactly one element—that is, either
a single wire, a crossing of wires, or a box. The interchange law (Eq.1) guarantees
that the result does not depend on the partition chosen.

f

gh

ψ

gh

ψ

f

We may now state:

Theorem 1 (Fundamental Theorem of Diagrams) Given any two generalised com-
positional theories C and D, and a map F : C → D, for any two diagrams d and d ′
in C, if d = d ′ as diagrams then Fd = Fd′ in D.

This theorem has many variations, and we refer the reader to Selinger’s survey article
[19] for the full details.

Remark 2 In the diagrams to come,wewill oftenuse horizontal separation to indicate
separation in space and vertical separation to indicate separation in time. For example,
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f g

Φ

depicts the creation of two systems by the process Φ, which then become spatially
separated over some time and are acted upon by processes f and g respectively. Since,
as we already know, topologically equivalent diagrams are equal, these separations
have no formal status and are purely illustrative.

1.2 Rewrites and Models

Since we wish to generalise over many concrete mathematical structures, we are
particularly interested in theories which can be specified axiomatically. That is,
to specify the theory we state (i) the list of basic systems—typically we’ll only
have one basic system, the rest being generated by the tensor product—and (ii) the
basic processes. The processes of the theory are then all the diagrams which can be
constructed from these processes and nothing else.

Example 5 (Boolean Circuits) A simple example of a compositional theory is
BoolCirc, the theory of boolean circuits. This theory has only one basic system,
the bit b, and the basic processes are the logic gates:

∧ : b⊗b → b ∨ : b⊗b → b ¬ : b → b FAN : b → b⊗b

A process in this theory is a circuit for computing some boolean function, built up
from these basic gates (Fig. 3).

It is tempting to assume thatBoolCirc is related to the theory ofBoolean functions,
and we can make this precise by specifying a mapping B : BoolCirc → Bool. We
assign B(b) = {0, 1} and define B on the basic processes as follows:

B(∧) = a :

⎧⎪⎪⎨
⎪⎪⎩

00 �→ 0
01 �→ 0
10 �→ 0
11 �→ 1

B(∨) = o :

⎧⎪⎪⎨
⎪⎪⎩

00 �→ 0
01 �→ 1
10 �→ 1
11 �→ 1

B(¬) = n :
{
0 �→ 1
1 �→ 0

B(FAN) = δ :
{
0 �→ 00
1 �→ 11
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Fig. 3 A Boolean circuit to
compute (x ∧¬y)∨¬(y ∧ z)

The mapping B assigns to each diagram the boolean function normally associated
with it. However this is not the only possibility. Consider the following mapping,
P : BoolCirc → Bool. Once again P(b) = {0, 1}, but now we have the following
assignment of processes:

P(∧) = a :

⎧⎪⎪⎨
⎪⎪⎩

00 �→ 0
01 �→ 0
10 �→ 0
11 �→ 1

P(∨) = p :

⎧⎪⎪⎨
⎪⎪⎩

00 �→ 0
01 �→ 1
10 �→ 1
11 �→ 0

P(¬) = i :
{
0 �→ 0
1 �→ 1

P(FAN) = δ :
{
0 �→ 00
1 �→ 11

The mapping P assigns to each d : bn → b in BoolCirc an n-variable polynomial
over the ring Z2. (More generally a circuit with multiple outputs produces a list of
polynomials, one for each output.)

In fact, as the example of P suggests, the diagrams of BoolCirc admit an inter-
pretation in any setting with two binary operations and one unary operation. This is
not entirely satisfactory. In order to capture more than the bare syntax of any given
theory we need to impose some additional equations on the class of diagrams. We
do this via rewrite rules.

A rewrite rule consists of a pair of diagrams of the same type, for example d :
A → B and d ′ : A → B. If this rule is called r then we write r : d ⇒ d ′, or
diagrammatically

r⇒

Whenever d occurs as a subdiagram of a larger diagram e then we can replace d with
d ′ in e, written e[d] r⇒ e[d ′], or in diagrams:
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r⇒

Rewrite rules allow us to define a notion of equality in addition to the basic equality

of diagrams. Given a collection of rewrite rules R we write d
R⇒ d ′ if there is

some rewrite in R taking d to d ′. Evidently R⇒ is a transitive relation; let
R= be its

symmetric, reflexive closure. Then we say that two processes are equal according

to R if their corresponding diagrams satisfy d
R= d ′. Typically we’ll exhibit this

equivalence as a sequence of rewrites.

Example 6 (Boolean circuits)Consider the following two rewrite rules forBoolCirc,
expressing respectively the distributivity of AND over OR, and (one half of) De
Morgan’s law.

(dist)=⇒ (DM)=⇒

Nowwe can show that a certainBoolean circuit can be transformed into its disjunctive
normal form:

(DM)=⇒ (dist)=⇒

Given a theory C, a set of rewrite rules R, and a mapping F : C → D, we can

ask the following question: if d
R= d ′ in C, is it the case that Fd = Fd′ in D?
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This property is called soundness. A sound mapping F : C → D is called an
interpretation of C in D, and the image of C in D is called a model. In the example
above, the mapping B is sound, hence it provides an interpretation of BoolCirc (and
R) in Bool; on the other hand P does not, due to the failure of De Morgan’s law.
Generally speaking we will always work with a given set of rewrite rules and a given
interpretation map, so we will usually say “the D interpretation of C”, although in
principle there could be many.

Remark 3 The converse property to soundness, Fd = Fd′ implies d = d ′, is called
completeness. An interpretation which is both sound and complete provides an iso-
morphism between the formally presented theory and its model. While checking
soundness is straightforward, showing completeness is often much more difficult.5

On the other hand, not having completeness means there are multiple models of a
given theory, and the study of the differences between such models is often informa-
tive.

Before moving on, we’ll introduce an important example, and its standard model.

Example 7 (Quantum Circuits) Similar to the example of Boolean circuits, we
can also view (post-selected) quantum circuits as generalised compositional the-
ory, called QuCirc. Again we have a single basic system, the qubit Q, and the basic
processes are a collection of unitary gates, state preparations, and projections from
which we construct the other quantum circuits.

|0 |1 0| 1|

|0 : I → Q |1 : I → Q 0| : Q → I 1| : Q → I

Zα Xβ

Zα : Q → Q Xβ : Q → Q ∧X : Q⊗Q → Q⊗Q

From these basic elements we can write down any quantum circuit. We now define
the standard interpretation of QuCirc into Qubit.

5To show completeness for a rewrite theory it is typically necessary, but rarely sufficient, to check
that the rewrite rules are confluent; that is, whenever two rewrites simultaneously apply to a given
diagram, then the choice between then (eventually) does not matter. Since this property must hold
for every diagram and every pair of rewrites, even a simple rewrite system can produce an extremely
large number of cases, necessitating a computer-assisted proof. For example see the work of Lafont
on Boolean circuits [20].
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Q = C
2

|0 = |0 |1 = |1 0| = 0| 1| = 1|

Zα =
1 0
0 eiα Xβ =

cos β
2 −isin β

2

−isin β
2 cos β

2

=

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

Thanks to the well-known universality result [21] this interpretation demonstrates
that QuCirc can represent all unitary maps between qubits. In fact, since we have the
projections 〈0| , 〈1|, all linear maps can be represented. Note, however, that although
all quantum circuits can be represented, without a set of rewrite rules QuCirc cannot
express any non-trivial equalities between them. We could propose various sound
equations here, but there is no known collection of rewrite ruleswhichmakesQuCirc
complete with respect to this interpretation into Qubit. If such a set of rewrites did
exist, it would constitute provide a presentation of the unitary group by generators
and relations.

1.3 The Dagger

Now we introduce the dagger. This is simply an operation on the processes of a
theory, sending every process f : A → B to another process f † : B → A. We call
f † the adjoint of f . In the graphical calculus, we represent the dagger by a flip in
the horizontal axis:

⎛
⎝ f

⎞
⎠

†

= f

Note that we have made the box asymmetric to make this flipping evident. For more
general diagrams, the dagger flips a diagram upside down, preserving all the internal
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structure. Taking this claim at face value, we can derive the key properties of the
dagger:

( f †)† = f

⎛
⎝ f

⎞
⎠

†

= f

(g◦ f )† = f † ◦g†

⎛
⎜⎜⎜⎜⎜⎜⎝

g

f

⎞
⎟⎟⎟⎟⎟⎟⎠

†

=
f

g

( f ⊗g)† = f † ⊗g†

⎛
⎝ f g

⎞
⎠

†

= f g

1†A = 1A A

†

= A

σ †
A,B =σB,A

⎛
⎜⎝

⎞
⎟⎠

†

=

The dagger allows two important concepts to be defined.

Definition 1 Aprocess f : A → B is called unitary if f ◦ f † = 1B and f †◦ f = 1A.
A process is called self-adjoint when f † = f .

Example 8 (Finite-dimensional Hilbert spaces) The theory FHilb admits a dagger:
it is the usual adjoint of a linearmap. In this theory, the abstract definitions of unitarity
and self-adjointness coincide with the usual one.

Example 9 In the theory FRel, the dagger of a relation r : X → Y is defined by the
converse relation, i.e.

r† = {(y, x) | (x, y) ∈ r}

Here, unitary processes are exactly those relations which encode permutations. A
relation is self-adjoint whenever it is symmetric. Hence the self-adjoint unitaries in
FRel are exactly the permutations of order 2.
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We extend the definition of mapping to demand that it also preserves the dagger.
That is, given two theories with dagger, we require that a map F : C → D satisfies

F( f †) = (Ff)†

Example 10 (Quantum Circuits) We define a dagger on QuCirc as follows:

|0
†

= 0| |1
†

= 1|

0|
†

= |0 1|
†

= |1

Xα

†

= X−α Zβ

†

= Z−β

⎛
⎝

⎞
⎠

†

=

It’s now easy to check that the interpretation map introduced earlier, �·� : QuCirc →
Qubit preserves the dagger as required.

Remark 4 The theory of Boolean circuits, BoolCirc, does not admit a dagger. How-
ever, we could formally add new basic processes corresponding to the adjoints
of the basic processes of BoolCirc and thus define a new theory, BoolCirc†.
Since the converse of a function is not in general a function, the interpretation
B : BoolCirc → Bool no longer makes sense. Instead we must interpret BoolCirc†

over FRel2, that is as Boolean relations rather than functions. In this case B again
defines a valid interpretation BoolCirc† → FRel2. The resulting theory is a model
of non-deterministic computation.

In any theory, a process of type p : I → A is called a point, or sometimes a state,
of A. Dually, a process of type e : A → I is called a co-point, or sometimes an effect
on A. For example, in FHilb the pointsψ : I → A are in one-to-one correspondence
with the vectors of A, while in FRel a point s : I → X is precisely a subset of X .

In a theory with a dagger the set of points is isomorphic to the set of copoints
(or in other language, for every state there is a corresponding effect and vice versa).
This allows us to define another important concept.

Definition 2 Given two points ψ, φ : I → A we define their inner product as
φ† ◦ ψ . Dually, the outer product is defined as φ ◦ ψ†.
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As one may expect, the inner product is always a scalar. The diagrammatic lan-
guage automatically allows the same tricks—and more—as Dirac notation does in
Hilbert spaces. Indeed one can view the diagrammatic language as a 2-dimensional
generalisation of Dirac notation.

Example 11 (Finite-dimensional Hilbert spaces) In FHilb the inner product defined
by the dagger, is exactly the usual inner product 〈φ|ψ〉.
Example 12 (Sets and Relations) In FRel the inner product r† ◦ s is 0 if the r and s
are disjoint as subsets, and 1 otherwise.

2 Pure State Quantum Mechanics

2.1 The Elements of an Operational Theory

It is remarkable that the the basic language of quantum mechanics—states, effects,
unitarity, self-adjointness, inner products, tensor products—can all be defined in the
abstract setting of generalised compositional theories. We now have enough material
to describe a formal operational framework for pure state quantum mechanics in
purely diagrammatic terms.

• A preparation is any process which produces a state; that is to say it is process of
type p : I → A.

A

p

Preparations are not restricted to producing single systems; a preparation process
of type I → A1⊗· · · An is calledmultipartite. Of course, multipartite preparations
need not be separable.

A1 An

p1 pn
. . . AnA1

p

. . .

When interpreted in FHilb each preparation process yields a ray in some Hilbert
space, which, ignoring global phase, we may identify with a specific quantum
state. It may happen, depending on the equations of the formal theory, that different
preparation processes produce the same state.

• A transformation is any process which acts on states and produces new states, and
which is unitary:
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U

Once again, transformations may act on one or many systems at the same time.

B1

An

Bm

A1

U

• Measurements are processes which accept quantum inputs and produce classical
information about the state which was input. Since, for now, our theory only has
pure states, we will work with non-degenerate post-selected measurements6; i.e.
we know that a definite outcome has occurred, and that outcome corresponds to
a definite quantum state. Therefore, measurements are one-dimensional effects,
represented as co-points:

A

v
AnA1

p
. . .

The classical information is implicit in the choice of copoint, and hence not repre-
sented. Since copoints do not have quantum outputs, these processes correspond
to demolition measurements, where the original system is consumed by the mea-
surement process. However, by combining an effect with the corresponding state
preparation we can also represent non-demolition measurements:

A

A

ψ

ψ

AnA1

AnA1

p
. . .

. . .

p

To properly represent the non-determinism of quantum measurements we need to
consider mixed states; this is dealt with in Sect. 4. More general measurements
can be represented within the theory, however they will not be described here.

This basic recipe—preparations, transformations, andmeasurements—allows any
experimental setup to be described in terms of the processes which realise it. More
precisely, since we use post-selected measurements, the diagram really represents
a run of the experiment where a certain outcome occurred. We call an experiment
closed when it has no external inputs or outputs. Any closed experiment is necessarily
described by a process of type x : I → I ; that is, a scalar. This scalar is the abstract

6In other words, rank 1 projectors.
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counterpart to the probability amplitude for performing the process and observing
the specified result. Indeed, when such a diagram is interpreted in FHilb, the result
is exactly the probability amplitude.

Example 13 The theory QuCirc has the structure described above, and we can use
it to define a simple experiment. For example, the diagram below corresponds to
preparing a qubit in the |0〉 state, applying a unitary gate to it, and, upon measuring
in the computational basis, finding that the qubit is in the state |1〉.

Xπ /2

1|

|0

Using the interpretation map �·� : QuCirc → Qubit we can calculate the amplitude
for this experimental result.

Xπ /2

1|

|0

1| ◦ 1√
2

1 −i
−i 1

◦ |0 =
−i√
2

To summarise the elements of the framework, a formal generalised compositional
theory consists of:

• A collection of basic systems and processes, corresponding to the available “lab
equipment”.

• The collection of all diagrams constructed from the basic processes, corresponding
to every possible experiment that could be built from the given equipment.We con-
sider diagrams modulo topological equivalence: equivalent diagrams correspond
to the same experiment.

• A (possibly empty) collection of axioms, presented as rewrite rules over diagrams,
which specify behavioural equivalence of processes. These rules tell us when a
piece of the experimental setup can safely be replaced by another without changing
the result of the experiment.

• Finally, given the above, we’ll usually consider (sound) interpretation maps of the
formal theory into some concrete mathematical structure, such as Hilbert spaces.

So far we have been operating at an extremely high level of generality. To focus our
attention on quantum systems we will now gradually introduce more structure to our
theories. We identify certain structural features of the Hilbert space presentation of
quantum mechanics, and provide an abstract realisation of those features in terms of
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basic processes and equations, whose behaviour reproduces various quantum phe-
nomena in the abstract setting of generalised compositional theories.

The rest of this section will layout which basic processes and equations we will
need to realise. As we do so, we’ll say goodbye to some of the models introduced
earlier, but the two most important ones, FHilb and FRel, will still be applicable.

2.2 Duals

The next piece of structure that will be required is the existence of duals.7

Definition 3 A system A has a dual if there exists a system A∗ and processes

eA : I → A∗ ⊗ A and dA : A ⊗ A∗ → I

such that we have the following equations:

(dA ⊗ 1A) ◦ (1A ⊗ eA) = 1A (1A∗ ⊗ dA) ◦ (eA ⊗ 1A∗) = 1A∗

Since this definition is rather hard to parse we will immediately move to its diagram-
matic form. We indicate the dual system A∗ by a wire labelled by A but directed
in the opposite direction. The maps dA and eA are represented by wires with half
turns, henceforth “caps” and “cups”. The equations above then take the form of
“straightening wires”:

eA :=
= =

dA :=

In general a system might have more than one dual, but they are all guaranteed to
be isomorphic. We’ll assume that every system has a given dual, and in particular
(A ⊗ B)∗ = B∗ ⊗ A∗, in which case dA⊗B and eA⊗B take the form of nested
caps and cups. Furthermore, we’ll assume that the double dual A∗∗ = A. These
simplifications automatically hold in any theory presented diagrammatically; taking
them as the general case saves a lot of bureaucracy.

Example 14 (Finite dimensional Hilbert spaces) Let A be a Hilbert space of dimen-
sion d, then A∗ is the usual dual space; that is, the space of linear functionals from
A to the complex numbers. Supposing that {|ai 〉} is a basis for the space A, then the
cup and cap are given by the linear maps

eA : 1 �→
∑

i

〈ai | ⊗ |ai 〉 , dA :
∑

i

|ai 〉 ⊗ 〈ai | �→ 1.

7For the experts in category theory, this additional structure can be summed up by saying we operate
in a dagger-compact category, rather than just a symmetric monoidal category.
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However since we are in a finite-dimensional setting we could also choose A∗ = A;
specialising to the case of qubits, we can now view the cup and cap as the preparation
and projection onto a Bell state:

eQ = |00〉 + |11〉 dQ = 〈00| + 〈11|

Recall the quantum teleportations protocol: Alice has some unknown state that she
wishes to send to Bob, but they do not share a quantum channel. However they have
a classical channel, and have previously shared a Bell pair. In order to send her qubit
to Bob, Alice measures her two qubits in the Bell basis, and transmits the result to
Bob. Now Bob simply applies some unitary map (depending on Alice’s outcome)
to his half of the Bell pair to recover the qubit that Alice wanted to send. Since,
for the moment, we are operating in a post-selected setting, we’ll assume that Alice
observes the outcome corresponding to the state Φ+ = (|00〉 + |11〉)/√2) at her
measurement. In this case Bob need do nothing to his qubit. The whole set up is
shown below:

Φ+

Φ+
Alice Bob

Knowing that the projection ontoΦ+ is just the effect dQ , we can rewrite the protocol
as shown and demonstrate the protocol purely diagrammatically:

Φ+

Φ+
= =

Example 15 (Sets and Relations) In FRel, the dual of a set X is just the same set X
again. The cup is given by the “name” of the identity:

eX = {(∗, (x, x)) | x ∈ X}

while the cap, dX is just the converse of eX .

Using caps and cups, we can turn any process f : A → B into a process on the
dual objects going in the opposite direction: f ∗ : B∗ → A∗.
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f ∗ = f

This is sometimes called the transpose of f , but this terminology can be misleading.
In FHilb, f ∗ is the map that takes a linear form 〈ξ | ∈ B∗ to 〈ξ | f ∈ A∗. We refer to
this map simply as the upper-star of f . Clearly, we have f ∗∗ = f .

It is also required that the dagger and the duals interact nicely. More precisely we
have the equations:

†

=
†

=

In any theory with both a dagger and duals, we can define a third operation, the
lower-star of f as f∗ := ( f †)∗ = ( f ∗)†. Again this is involutive, i.e. f∗∗ = f . We’ll
return to the uses of the upper and lower stars in Sect. 4.

Finally, the cup and cap can be used to define a trace in purely diagrammatic
terms:

Tr( f ) = f

Checking the Hilbert space interpretation, it is easy to see that this coincides with
the usual definition.

Tr( f ) = (∑
i

ii|)◦ (1A ⊗ f )◦ (∑
j

| j j ) = ∑
i

i| f |i = ∑
i

fii

In the diagrammatic form it is trivial to prove that trace is invariant under cyclic
permutation:

Tr

⎛
⎜⎜⎜⎜⎜⎜⎝

g

f

⎞
⎟⎟⎟⎟⎟⎟⎠

=

g

f
= fg =

f

g
= Tr

⎛
⎜⎜⎜⎜⎜⎜⎝

f

g

⎞
⎟⎟⎟⎟⎟⎟⎠

The partial trace can be defined analogously.



330 B. Coecke et al.

TrAB

⎛
⎜⎜⎝

A

B

B

A

U

⎞
⎟⎟⎠ =

A

B

B

A

U

By adding duals we have enlarged the class of possible diagrams, since wires
may now loop back from inputs to outputs and vice versa, but the basic principle of
diagram equality does not change: Two diagrams are considered equal if one can
be smoothly transformed to another, by bending, stretching, or crossing wires,
and moving boxes around. With this in mind we can update the key theorem.

Theorem 2 (Fundamental Theorem of Diagrams with Daggers and Duals) Given
any two generalised compositional theories C and D with daggers and duals, and a
map F : C → D, for any two diagrams d and d ′ in C, if d = d ′ as diagrams then
Fd = Fd ′ in D.

Once again, the full details are found in [19].

Remark 5 We need not demand any additional conditions on the class of mappings
to guarantee the preservation of duals; since they are defined in terms of processes,
the structure is automatically preserved.

2.3 Observable Structures

An observable yields classical data from a physical system [22]. The key distinction
between classical and quantum data is that classical data may be freely copied and
deleted, while this is impossible for quantum data, due to the no-cloning [23, 24]
and no-deleting [25] theorems.

In quantum mechanics, an observable is represented by a self-adjoint operator.
This (non-degenerate) operator encodes certain classical data as its orthonormal basis
of eigenstates, the possible outcomes of the corresponding measurement. Note that
if a quantum state is known to be a member of a given orthonormal basis, such as the
eigenbasis {|ai 〉} of some observable, then it can be copied and deleted via the maps

δ : |ai 〉 �→ |ai 〉 ⊗ |ai 〉 and ε : |ai 〉 �→ 1.

Hence we can view the classical content of a quantummeasurement as the possibility
to copy and delete its set of outcomes. We will axiomatise quantum observables
by describing the copying and deleting operations as algebraic structures inside a
general compositional theory.The relevant structure is called a †-special commutative
Frobenius algebra, and we will now build up its definition one piece at a time.
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Definition 4 A commutative monoid in C is a triple (X, μ, η), where μ and η are
maps

μ : X ⊗ X → X η : I → X

which we write graphically as μ = , η = . These operations satisfy the follow-
ing equations:

= , = = , = .

Remark 6 The process μ can be understood as a multiplication for systems of type
X ; the first and last equations assert that this operation is associative and commutative
respectively. The process η is the unit for this multiplication: the second equation
asserts that multiplication by the unit is simply the identity.

The dual to a monoid is a comonoid.

Definition 5 A comonoid in a theory C consists of a triple (X, δ, ε) where δ and ε

are processes
δ : X → X ⊗ X ε : X → I

satisfying the equations of Definition4 but in reverse, viz:

= = =

A comonoid is cocommutative if it satisfies:

= .

The processes δ and ε are called the comultiplication and counit respectively.

Example 16 We have already met the basic example of a comonoid: in FHilb, for
any orthonormal basis {xi }i of a space X we obtain a comonoid via ‘copying’ and
‘erasing’ processes mentioned above:

δ : xi �→ xi ⊗ xi ε : xi �→ 1

Remark 7 Thanks to the dagger, if (X, δ, ε) is a comonoid then (X, δ†, ε†) is auto-
matically a monoid, and vice versa.
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Generally speaking, a process is called a homomorphism if it preserves some
algebraic structure. In the context of GCTs, such preservation is usually expressed
by a process commuting with another which reifies that structure. For example:

Definition 6 Given two comonoids (X, δ, ε) and (X ′, δ′, ε′), a comonoid homomor-
phism is a process f : X → X ′ such that

δ′ ◦ f = ( f ⊗ f ) ◦ δ and ε′ ◦ f = ε.

f f

=

f

f =

Monoid homomorphisms are defined similarly.

Remark 8 The definition above is the most general, but we will frequently encounter
cases where f : X → X is homomorphism between two comonoids defined on the
same object, or from a single comonoid to itself.

The structures of greatest interest for this paper are algebras containing both
monoids and comonoids.

Definition 7 A commutative Frobenius algebra is a 5-tuple (X, δ, ε, μ, η) where

1. (X, δ, ε) is a cocommutative comonoid;
2. (X, μ, η) is a commutative monoid; and,
3. δ and μ satisfy the following equations:

= =

Finally, we can define:

Definition 8 A †-special Frobenius algebra (†-SCFA) is a commutative Frobenius
algebra

= (μ : X ⊗X → X , η : I → X ,

δ : X → X ⊗X , ε : X → I)

such that δ = (μ )†, ε = (η )† and
=

.
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The preceding definitions may seem rather opaque, and not fully justified by the
intuition that a quantum observable is somehow encoded by themapswhich copy and
delete its eigenstates. However complex it may appear (and we shall shortly simplify
it), the importance of Definition8 rests on the fact [26] that in FHilb every †-SCFA
arises from a comonoid defined by copying an orthonormal basis as described above.
Since orthonormal bases define non-degenerate quantum observables, †-SCFAs are
also called observable structures.

Concretely, given an orthonormal basis {|i〉}i then δ :: i ii defines an
observable, and all observables are of this form for some orthonormal basis. The
resulting intuition is that δ is an operation that ‘copies’ basis vectors, and that ε
‘erases’ them [22]. We will use the symbolic representation (μ ,η ,δ ,ε ) and the

pictorial one ( , , , ) interchangeably.

Example 17 (Sets and Relations) Perhaps surprisingly, FRel also has many distinct
observable structures, which have been classified by Pavlovic [27]. Even on the two
element set there are two, namely

δ : i (i, i)}

δ :
0 (0,0),(1,1)}
1 (0,1),(1,0)}

In fact, this pair is strongly complementary in the sense to be explained in Sect. 3.

Manipulating observable structures in the graphical language is extremely conve-
nient since they obey a remarkable normal form law. Let δn : X → X⊗n be defined
by the recursion

δ0 := ε δn+1 := (δn ⊗ 1A) ◦ δ

and define μm analogously. Now we have the following important theorem:

Theorem 3 Given an SCFA (X, δ, ε, μ, η) let f : X⊗m → X⊗n be a map con-
structed from δ,ε,μ and η whose graphical form is connected. Then f = δn ◦ μm.

Proposition 1 Given an observable structure on X, let ( )mn denote the ‘(n, m)-
legged spider’:

m

n

... ...

:=
... ...

;
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then any morphism X⊗n → X⊗m built from μ ,η ,δ and ε via †-SMC structure

which has a connected graph is equal to the ( )mn . Hence, spiders compose as
follows:

... ...
...

... :=
...

... ... (2)

Thanks to the spider rule (2), every observable structure on X makes X dual to
itself (in the sense of Definition3), via the cup and cap:

= =

The upper-star with respect to this cup and cap corresponds in FHilb to transposition
in the given basis. For that reason, we call this the -transpose f T. The lower star
corresponds to complex conjugation in the basis of , so we call it the -conjugate
f := ( f T)†.

Recall that a process k : I → X is called a point of X . In FHilb the points of X
are simply vectors in the Hilbert space X . The abstract analogue of the eigenvectors
of an observable in FHilb are the classical points of an observable structure.

Definition 9 A classical point for an observable structure is a state that is copied
by the comultiplication and deleted by the counit:

= = 1I
i i i

i
(3)

We will depict classical points as triangles of the same colour as their observable
structure.

Remark 9 Another way to say the same thing, is to define classical points as
comonoid homomorphisms from the trivial comonoid (I, 1I , 1I ) to (X, δ, ε).

In quantum computing, it is common to think of elements of a product basis as
strings of some kind. E.g. for qubits:

|010011〉 ↔ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉

Such product bases are precisely the classical points of products of observable struc-
tures. Given an observable structure on X , and another on Y , we form a new
observable structure on X ⊗ Y by taking their product:
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δ = ε =

Evidently any pair of classical points for the constituent observable structures will
be copied.

i j

=
ji ji

Generalising, the classical points of any n-ary product of observable structures are
nothing more than lists of classical points, one for each factor.

Working concretely in Hilbert space, one can use the linear structure to give
another set of equations for observable structures. Consider some basis vector |i〉,
then the map |i i〉〈i | has the diagrammatic form:

i i

i

But notice that the sum
∑

i |i i〉〈i | is nothing more than the the map δ : |i〉 → |i i〉.
A similar statement can be made for the counit ε. Hence given the complete set of
classical points for an observable structure we have the following equations:

=
i i

i i i
=

i

= ∑
i i = i∑

i

∑
i

∑
i

Indeed these can be generalised to arbitrary spiders:

= ∑
i

i

i i

...

...

i

...

...

Note that generalised compositional theories do not necessarily admit addition of
diagrams: we introduce these equations as way of generalising from concepts defined
in Hilbert space to the abstract setting where there need not be any linear structure.
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Linear maps have the property that if two maps are equal on every element of a
basis, the maps themselves are equal. In analogy to this we define the following:

Definition 10 Let be an observable structure on X , with classical points {ki }i ;
we say that has enough classical points if, for every system Y , and every pair of
processes f, g : X → Y , we have

(∀i : f ◦ ki = g ◦ ki ) ⇒ f = g.

This property does not necessarily hold in an arbitrary GCT (although obviously it
does in FHilb) however when it does hold certain statements can be made stronger.
For example, many implications described in the subsequent sections are equiva-
lences if the underlying object has enough classical points.

2.4 Phase Group for an Observable Structure

Let ψ and φ be two points of X . Given an observable structure on X , applying
the multiplication μ to ψ and φ yields another point of X :

ψ + φ := μ (ψ ⊗φ )

ψ + φ
ψ φ

:=

Since μ is commutative and associative, and it has a unit point (namely η ), the
operation + gives the points of X the structure of a commutative monoid.

If we restrict to those points ψ : I → X which satisfy

ψ + ψ =η

ψ ψ

=

we obtain an abelian group Φ , called the phase group of [28, 29]. The elements
of this group are called phases. Note the phase group is non-empty, since the unit
η satisfies the required equation. We let −α := α� for phases, and represent these
points as circles with one output, labelled by a phase.
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α -α

Example 18 In FHilb, let be defined by some orthonormal basis {|i〉}i . One can
verify by direct calculation that a vector |ψ〉 lies in the phase group Φ if and only if
we have |〈i |ψ〉|2 = 1/D, for all i , where D is the dimension of the underlying space.
Such vectors are called unbiased for the basis {|i〉}i . The multiplication is then the
convolution (pointwise) product.

Concretely, for a qubit observable given by μ = |0 00|+ |1 11|, the phases

are the unbiased states, which are all of the form:

|α〉 =
(

1
eiα

)
,

with the multiplication:

μ 1
eiα ⊗ 1

eiβ =
1

ei(α+β ) .

We therefore see that the phase group for a qubit observable is the circle group. It
is an easy exercise to check that for a D-dimensional Hilbert space the phase group
for any observable is isomorphic to the (D − 1)-dimensional torus.

The name ‘phase group’ comes from fact that the elements of the Φ correspond to
unitarymapswhich preserve the basis defining .We canmap any pointψ : I → X
onto an operation on X via the left action, Λ (ψ ) =μ ◦ (ψ ⊗1X ), or in pictures:

Λ :

ψ

ψ

Then we have the following facts:

Proposition 2 Let φ ,ψ ∈Φ ; then

1. Λ (φ ) is unitary;

2. Λ (φ )◦Λ (ψ ) =Λ (φ +ψ ) =Λ (ψ )◦Λ (φ )

3. If k is a classical point for then Λ (φ )◦ k = k⊗ s for some scalar s.
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Proof 1. We show that (ψ )† ◦Λ (ψ ) = 1:

=

ψ †

ψ ψ
ψ †

ψψ

= = =

The first equation is the spider rule while the second is the definition of ψ�. The
case Λ (ψ )◦ (Λ (ψ ))† = 1 is similar.

2. This follows immediately from the associativity and commutativity of μ :

φψ

= =

ψ

φ ψ + φ

φ

ψ

ψ φ

= =

3. This follow from the definition of classical points.

ψ i

ψ
i

= =
iψ i

=
iψ

i

The image Λ (Φ ) is therefore an abelian subgroup of the unitaries on X , which
is isomorphic to Φ . We refer to these as phase maps. If we reinterpret the third part
of the preceding proposition in terms of linear algebra, we see that every classical
point of is an eigenvector of every phase map in Λ (Φ ). This in turn “explains”
why they commute with each other.

Example 19 Let be defined by μ = |0 00|+ |1 11| as above. Now for α ∈Φ

we have

Λ (α ) =
1 0
0 eiα

Hence the phase group in Hilbert spaces is exactly the group of phase shifts relative
to the given basis.
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Generalising from the preceding discussion, we can now introduce ‘spiders dec-
orated with phases’:

... ...

α :=
α... ... (4)

which compose as follows:

... ... ...

α
... := α +β

β
... ... ... (5)

In the following sections wewill refer to this generalised composition rule for phased
spiders as the spider law.

2.5 Two Toy Models

In this section we’ll introduce two “toy” models of quantum mechanics. The first is
the restriction of quantum mechanics to stabilizer states; this theory we call Stab.
The second is the toy model due to Spekkens [30], which we refer to as Spek.
While the first of these is indeed a true subtheory of quantum mechanics, Spek is a
local hidden variable model. By casting both of these in the language of generalised
compositional theories we can see that the difference between is in fact very slight.

Before discussing these concrete models, we’ll introduce a formal precursor the-
ory. Let Toy be the general compositional theory built from the formal generators:

• one basic system, which we denote T ;
• six points z0, z1, x0, x1, y0, y1 : I → T and their corresponding copoints;
• 24 unitary maps T → T which form a group isomorphic to the symmetric group

S4;
• one observable structure , whose classical points are z0 and z1, and whose phase
group comprises the remaining four points.

Note that Toy is not fully specified: to do so we ought to say which group the phase
group is, and how the corresponding unitaries embed into the endomorphisms of T .
Since Φ is a four-element group we have only two choices here: Z4, or Z2 × Z2.
As we will see this choice will make the difference between stabilizer quantum
mechanics and the quantum-like local hidden variable theory.

Let Stab be the subtheory of FHilb generated by the following elements:

• One basic system C
2, which we call Q.

• Six points I → Q:
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z0 = |0〉 x0 = 1√
2
(|0〉 + |1〉) y0 = 1√

2
(|0〉 + i |1〉)

z1 = |1〉 x1 = 1√
2
(|0〉 − |1〉) y1 = 1√

2
(|0〉 − i |1〉)

• The group of unitaries generated by the matrices:

Zπ/2 =
(
1 0
0 i

)
Xπ/2 = 1√−2i

(
1 −i
−i 1

)

This group is known in the quantum computation literature as the Clifford group
for one qubit; it is isomorphic to S4. The other key property of this group is that
it acts as a permutation on the states defined above, so we cannot generate new
states via unitaries.

• An observable structure defined by the basis |0〉, |1〉.
Evidently the classical points of are indeed z0 and z1 and the remaining points
are unbiased for this basis, hence part of Φ . One can check that

Λ (y0) = Zπ /2

and which generates a four element cyclic subgroup, hence the phase group Φ
is Z4.

We now introduce Spekkens’ toy theory. The toy theory is a local hidden variable
theory, based on epistemic restrictions. There is a single basic system, the toy bit,
which can have one of four possible states. We formalise the state space simply as
a four-element set. However, we now impose the epistemic restriction that any state
preparation (and, dually, measurement) may only narrow down the state to two of the
possible four. Hence the “states” of the toy theory are two-element subsets. Although
Spekkens’ original presentation [30] was informal, the toy theory is ideally studied
as subtheory of FRel. Following [31], let Spek be the subtheory of FRel generated
by the following elements:

• One basic system, the four element set 4 = {0, 1, 2, 3}.
• Six points:

z0 = {0, 1} x0 = {0, 2} y0 = {0, 3}
z1 = {2, 3} x1 = {1, 3} y1 = {1, 2}

• The full group of permutations on 4;
• An observable structure defined by

μ :

{00,11} ∼ 0
{01,10} ∼ 1
{22,33} ∼ 2
{23,32} ∼ 3

η : ∗ ∼ {0,2}

where we write the tensor as juxtaposition, i.e. 00 = (0, 0).
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Once again we easily check that the classical points for are z0 and z1, and the
other four form the phase group Φ . The phase group in this case is generated by

the transpositions (0 1) and (2 3); hence Φ ∼= Z2 ×Z2.

As should be evident by this point both Stab and Spek are realisations of the
incomplete theory Toy. The only notable difference between them is the group struc-
ture of Φ . This highlights the importance of the phase group for understanding
non-locality in generalised compositional theories.

Remark 10 In the description above the group of unitaries was given a priori. This
is not necessary. If we include a second observable structure , corresponding to
the classical points x0 and x1, the the union of the two phase groups Φ and yields
all unitaries described above. These two observables are complementary in the sense
described below. Hence these two theories are in a sense minimal.

3 Complementarity and Strong Complementarity

In the Hilbert space presentation of quantum mechanics, two observables are com-
plementary if their bases of eigenstates are mutually unbiased. That is, for any i, j ,
|〈vi |v′

j 〉|2 = 1/D. In the graphical notation:

i j
= 1

D

j i

A question posed by Coecke and Duncan [28, 29] was, “Can we represent com-
plementarity purely in terms of interacting observable structures?” It turns out that
complementarity is equivalent to a simple diagrammatic equation. First, we canmove
1/D in the above equation to the other side and express it as a circle, as the trace of
the identity always equals D. Then, replace 1 on the RHS with “deleted points”.

i j i
=

j i j

(6)

As we saw in Sect. 2.3, observable structures fix an isomorphism of a space with

its dual space, via the transpose. While it is not true in general that ψ T = ψ ,
the transpose does take classical points for a particular observable structure to their
adjoints:

vi
T = vi and v j

T = v j .
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Graphically:

i j
= =i j

(7)

Exercise Prove this.

We can rewrite the left hand side of Eq. (6) using this fact.

i i

i i
i j

= = =
j i

j j

jj

S (8)

The last equation follows by substituting the symbol S for its definition, viz:

S =
(9)

Unifying Eqs. (6) and (8) we have:

j

= S

i

i

j

(10)

Since this equation holds for all classical points i and j , if we now appeal to the
fact that FHilb has enough classical points (cf. Definition10), we can conclude that
identity holds without points:

S = (11)



Generalised Compositional Theories and Diagrammatic Reasoning 343

Remark 11 The above equation is (up to a scalar factor) one of the defining equations
a Hopf algebra, in which case the map S is called the antipode. For that reason, we
refer to (11) as the Hopf law. As we will see in the next section, subject to some
additional assumptions, pairs of complementarity observables do indeed form Hopf
algebras with the antipode defined as in Eq. (9).

Notice if we assume Eq. (11) we can derive Eq. (6) without any additional assump-
tions. In other words, if and satisfy the Hopf law their classical points are
mutually unbiased. Thus, we take the Hopf law to be the defining equation for our
abstract notion of complementarity.

Definition 11 Apair of observables on the sameobject X is complementary
iff:

S = where S = .

Since every observable in FHilb has enough classical points, Definition11 is
equivalent8 to saying that observables are complementary if their eigenbases are
mutually unbiased with respect to the other. (See [28] for more details). Hence, we
reclaim the usual notion of quantum complementarity, and extend it to amore general
setting.

Definition 12 A pair of observables on the same object X is coherent iff:

In other words, the unit point η ( ) is, modulo a scalar factor, a classical point for
, and vice versa.

We will assume that the scalar is always cancellable.

Example 20 Consider the two observables on the Hilbert space C
2 corresponding

to the Z and X spins:

8Indeed Eqs. (6) and (11) are equivalent in any theory wherever at least one of the observable
structures has enough classical points.
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δ :
0 00
1 11

δ :
+ ++
− −−

η :
0 1
1 1

η :
+ 1
− 1

Computing η we obtain:

η = (ε )† = 1 ( 0 + 1 ) =
√
2 +

which is indeed proportional to a classical point for δ . By a similar computation

we obtain η =
√
2 |0 , from which the value of their inner product =

√
2 follows.

The equations of Definition12 can easily be verified from here, demonstrating that
and are coherent.

Proposition 3 In FHilb if O and O are self-adjoint operators corresponding to
complementary observables, one can always choose a pair of coherent observable
structures whose classical points correspond to the eigenbases of O and

O .

Proof Let { |ai 〉 }n
i=1 and { ∣∣b j

〉 }n
j=1 be orthonormal eigenbases for O and O respec-

tively. Since the bases are mutually unbiased we have

∣∣b j
〉 = 1√

n

[
α1 j |a1〉 + · · · αnj |an〉

]

where the αi j are scalars satisfying
∣∣αi j

∣∣ = 1. Setting
∣∣a′

i

〉 = αi1 |ai 〉, we see that
{∣∣a′

i

〉}i is also an orthonormal eigenbasis for O , which is still mutually unbiased with
respect to {∣∣b j

〉} j . Now define:

δ : ai ai ⊗ ai

ε : ai 1

This choice yields η = (ε )† =∑ i ai = n b1 .
In a similar fashion we can choose an eigenbasis

∣∣b′
1

〉
, . . . ,

∣∣b′
n

〉
for O such that

the resulting δ and ε satisfy (ε )† =
√
n |a1 . It is straightforward to verify that

this can be done such that
∣∣b′

1

〉 = |b1〉, ensuring the coherence of and .
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For this reason we will from now on assume that pairs of complementary observ-
ables are always coherent.

3.1 Strongly Complementary Observables

Many familiar observables, when expressed in terms of algebras, turn out to have use-
ful additional properties. These are called strongly complementary; before describing
them we will require some preliminary definitions.

Definition 13 A (commutative) bialgebra on X is a 4-tuple (μ, η, δ, ε) of maps,

μ : X ⊗ X → X δ : X → X ⊗ X

η : I → X ε : X → I,

which we write graphically as ( , , , ) , such that:

• (X, μ, η) is a (commutative) monoid;
• (X, δ, ε) is (cocommutative) comonoid; and,
• the following additional equations are satisfied:

= (12)

= = (13)

= (14)

Remark 12 Note that Eqs. (13) and (14) are very similar to the equations required
for the coherence of two observables, per Definition12. The only difference there is
that the scalar is not assumed to be trivial.

Definition 14 A (commutative) Hopf algebra on X is a (commutative) bialgebra on
X , augmented with a map s : X → X , called the antipode, which satisfies:

s = = s . (15)

Again, note the similarity to Eq. (11): the difference is only by a scalar factor.
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Definition 15 A pair ( , ) of observables on the same object X is strongly
complementary iff they are coherent and:

=
(16)

To expand on this definition slightly, given a pair of strongly complementary
observables, if we consider just the monoid part of one and the comonoid part of the
other then the resulting structure is, up to a scalar factor, a bialgebra. Note that thanks
to the up-down symmetry induced by the † it doesn’t matter which is the monoid
and which the comonoid. For obvious reasons, the we say that a pair of strongly
complementary observables forms a scaled bialgebra, and we refer to Eq. (16) as the
bialgebra law. Notice that we have not, as yet, established any connection between
complementarity (Definition11) and strong complementarity. The following theorem
links the two definitions.

Theorem 4 Let and be strongly complementarity observables; then they are
complementary.

Proof Let s be defined by

S =

as per Eq. (9). Using the bialgebra law we reason:

S = = = =

The last equation relies on the fact that η is classical for (and η for ), and (7).

As a consequence, strongly complementary observables always form a scaled Hopf
algebra. Note that Theorem4 relies on the fact that and are Frobenius algebras;
it is certainly not the case that every bialgebra is a Hopf algebra.

The converse to Theorem4 does not hold: it is possible to find coherent comple-
mentary observables in FHilb which are not strongly complementary. See [29] for a
counterexample.

The following lemma about the antipode for a strongly complementary pair was
shown in [32].
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Lemma 1 If ( , ) are strongly complementary, and have enough classical
points then the antipode s is:

• self-adjoint;
• a monoid homomorphism from to itself, and similarly for ; and
• a comonoid homomorphism from to itself, and similarly for .

3.2 Strong Complementarity and Phase Groups

For complementary observables, classical points of one observable are always
included in the phase group of the other observable, up to a normalizing scalar.
Strong complementarity strengthens this property to inclusion as a subgroup. Let

be the set of classical points of multiplied by the scalar factor .

Theorem 5 Let ( , ) be strongly complementary observables and let have
finitely many classical points. Then forms a subgroup of the phase group Φ of

. The converse also holds when has ‘enough classical points’.

Proof By strong complementarity it straightforwardly follows that, up to a scalar,
μ applied to two classical points of yields again a classical point of :

(16)
=

i ji j

i j
(3)
= i j

The unit of Φ is, up to a scalar, also a classical point of by coherence. Hence,
is a submonoid of Φ and any finite submonoid is a subgroup. The converse follows
from:

(3)
=

j
ji

i

ji

(3)
= ji

together with the ‘enough classical points’ assumption.

Recall that the exponent of a group G is the maximum order of any element of
that group: exp(G) = max {|g| : g ∈ G}.
Corollary 1 For any pair of strongly complementary observables, let k= exp( ) .
Then, assuming has ‘enough classical points’:
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k

. . .
=

(17)

Proof In a finite abelian group, the order of any element divides exp( ). The result
then follows by:

k

k

. . .
(3)
= =i i . . . i

i

(3)
=

i

together with the ‘enough classical points’ assumption.

Proposition 4 For a pair of strongly complementary observables i is a -

homomorphism for all i ∈ . Conversely, this property defines strong comple-

mentarity provided δ has ‘enough classical points’.

Proof Similar to the proof of Theorem5.

3.3 Classification of Strong Complementarity in FHilb

Corollary 2 Every pair of strongly complementary observables in FHilb is of the
following form:

δ :: |g |g ⊗|g
ε :: |g 1

δ † :: |g ⊗|h 1√
D

|g+h

ε † :: 1
√
D |0

where (G = {g, h, . . .},+, 0) is a finite Abelian group. Conversely, each such pair
is always strongly complementary.

Proof By Theorem5 it follows that the classical points of one observable (here )

form a group for the multiplication of the other observable (here δ †), and in FHilb
this characterises strong complementarity.

One of the longest-standing open problems in quantum information is the charac-
terisation of the number of pairwise complementary observables in a Hilbert space
of dimension D. In all known cases this is D + 1, and the smallest unknown case
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is D = 6. We now show that in the case of strong complementarity this number is
always 2 for D ≥ 2.

Theorem 6 In a Hilbert space with D ≥ 2 the largest set of pairwise strongly
complementary observables has size at most 2.

Proof Assume that both ( , ) and ( , ) are strongly complementary pairs.
By coherence and must be proportional to classical points of . If ( , )
were to be strongly complementary observables, it is easily shown that so and

are proportional to the same classical point. Hence, up to a non-zero scalar:

= = =

i.e. the identity has rank 1, which fails for D ≥ 2. By Corollary2 a strongly comple-
mentary pair exists for any D ≥ 2.

4 Mixed States, Measurements, and “Abstract
Probabilities”

For some ket |ψ〉 in a Hilbert space, there are (at least) four distinct ways to represent
|ψ〉 as a linear map.

It is possible to represent a ket |ψ〉 ∈ H as a map |ψ〉 : C → H , sending 1 ∈ C to
|ψ〉. We call such a map a “point” of H , because it does nothing more than picking
out a specific element. The second map is the associated bra 〈ψ| : H → C. This
kind of map is called a “co-point”. We can also regard such a map as an element of
the dual space H∗. But then, H∗ is just another Hilbert space, so we could just as
well represent 〈ψ| as a point of H ∗. That is, a linear map 〈ψ|∗ : C → H∗. There is
yet a fourth way to represent |ψ〉, namely as a linear map |ψ〉∗ : H ∗ → C, sending
a bra 〈φ| ∈ H∗ to the inner product 〈φ|ψ〉 ∈ C.

So, for a given ket |ψ〉, there are four ways to write it as points or copoints.

ψ ψ

ψ ψ

:=

:=
ψ

ψ|ψ ⇒

ψ | ⇒

|ψ ∗ ⇒

ψ |∗ ⇒

The difference in these four pictures is largely notational: the data they represent is
the same. However, its a very useful piece of notation, especially when representing
functionals between spaces of maps. Firstly, we note that we can represent a map
M : A → B as a special kind of point, |ΨM 〉 ∈ A∗ ⊗ B.
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M =
∑

a j
i | j〉 〈i | �→ |ΦM〉 =

∑
a j

i 〈i | ⊗ | j〉

These two objects clearly represent the same data. In fact, this mapping is essen-
tially the Choi-Jamiołkowski isomorphism. However instead of fixing a basis, we
rely on the dual space A∗. Thus the value on the right does not depend on a choice
of orthonormal basis. By fixing a basis B = {|i〉}, we can define a transposition
map TB(|i〉) = 〈i |. Then the usual C-J isomorphism is recovered as (TB ⊗ 1) |ΦM〉.
However, this does depend on a choice of basis, since TB does.

In [8], the authors refer to |ψM 〉 as the “name” of a map. We shall often find this
representation more useful than the usual C-J representation, especially in instances
involving several distinct orthonormal bases. Using the caps and cups from before,
we can isomorphically relate maps and their associated names.

ρ:=ρ
ρ ↔

The benefit of working with names of maps, as opposed to the maps themselves
becomes clear when we start considering higher-order functionals. For a finite-
dimensional Hilbert space H , let L(H) be the space of linear maps from H to
itself. When operating on density matrices, we often want to consider maps of the
form Φ : L(H) → L(K ). We can either treat this as a genuine, higher-order map,
or we can treat it as a first-order map from names to names.

ρ ⇒
ρ

Φ

Since, in finite dimensions, we have an isomorphism L(H) ∼= H∗ ⊗ H , we know
that all maps Φ : L(H) → L(K ) can be represented this way.

In ordinary quantum theory, mixed quantum states are represented as positive
operators and operations as completely positive maps, or CPMs. These are maps that
take positive operators to positive operators. A general CPM can be written in terms
of a set of linear maps {Bi : H → K } called its Kraus maps.

Θ(ρ) =
∑

i

BiρB†
i

As before, we can collapse the higher-order map Θ to a first- order map by
translating the positive operator ρ to its associated name.
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:= ρ
ρ

Then, we can encode the Kraus vectors of Θ in a map B ′ = ∑ |i〉 ⊗ Bi and
represent Θ as:

B∗ B

(18)

When we take the elements in Eq. (19) to be morphisms in an arbitrary †-compact
category, this gives us an abstract definition of a completely positive map. This is
Selinger’s representation of CPMs [33].

B C B

f∗ f

A A (19)

Important special cases are states where A ∼= I , effects where B ∼= I , and ‘pure’
maps, where C ∼= I .

4.1 Measurements and Born Vectors

Returning to quantum mechanics, we can see how a quantum measurement would

look in this language. A (projective) quantum measurement M is a CPM that sends
trace 1 positive operators (in this case quantum states) to trace 1 positive operators
that are diagonal in some ONB (encoding a probability distribution of outcomes).
Suppose we wish to measure with respect to an observable , whose classical
points form an ONB {|xi 〉}. The probability of getting the i th measurement outcome
is computed using the Born rule.

Prob(i, ρ) = Tr(|xi 〉〈xi | ρ)

We can write this probability distribution as a vector in the basis {|xi 〉}. That is, a
vector whose i th entry is the probability of the i th outcome:

M (ρ ) =∑ Tr(|xi xi|ρ ) |xi
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So, M defines a linear map from density matrices to probability distributions.
Expanding this graphically, we have:

∑
i
Tr

⎛
⎜⎜⎜⎜⎜⎝

i

i

ρ

⎞
⎟⎟⎟⎟⎟⎠ i

=
i

ρ = =∑
i

∑
ii ρ

i

i

i

ρ=

i

ρ

We are now ready to make definitions for abstract measurements and abstract
probability distributions, which we shall call Born vector.

Definition 16 For an observable structure , a measurement is defined as the fol-
lowing map:

m :=

Any point |Λ ) : I → X of the following form is called a Born vector, with respect

to :

= where = 1IΛ Λψ∗ ψ

Theorem 7 In FHilb, Born vectors for an observable are precisely those vectors
whose entries are positive and sum to 1, when written in the basis of .

Proof Let |Λ) be a Born vector. Its i th coefficient in the -basis is given by:

i

=

ψ∗ ψ

i

ψψ∗

i

We can see that these coefficients sum to 1 by using the definition of the deleting
point:
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= 1C=
i

Λ
∑
i

Λ

This is a completely positive map from C to C. In other words, it is a positive scalar.
For the converse, assume |Λ) is a probability distribution whose i th coefficient in

the -basis is pi ∈ R+. Then, letting ψ = ∑
√

pi
i
:

=
Λ ψ∗ ψ

Post-composing with the deleting point yields
∑

(
√

pi )
2 = ∑

pi = 1.

Thus Born vectors in FHilb correspond precisely to probability distributions over
classical points.

We can naturally extend the definition above to points of the form
|Λ ) : I → X ⊗. . .⊗X by requiring that they be Born vectors with respect to the

product Frobenius algebra ⊗ . . .⊗ .

The adjoint of the measurement map m† is a preparation operation. In FHilb, it
takes a Born vector |Λ) with respect to and produces a probabilistic mixture of

the (pure) outcome states of with probabilities given by |Λ) .

This leads to a simple classical versus quantum diagrammatic paradigm that
applies in all of the models we consider [22]: classical systems are encoded as a
single wire and quantum systems as a double wire. The same applies to operations,

and m and m† allow passage between these types.
Note that the classical data will ‘remember’ to which observable it relates, cf. the

encoding
∑

i pi |xi 〉. This is physically meaningful since, for example, when one
measures position the resulting value will carry specification of the length unit in
which it is expressed. If one wishes to avoid interconversion of this ‘classical data
with memory’, one could fix one observable, and unitarily transform the quantum
data before measuring. Indeed, if
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U

=
U∗ U

then U∗ U

measures the -observable but produces -data. In FHilb, all observable struc-
tures are unitarily isomorphic, so any projective measurement can be obtained in this
way. A particularly relevant example is when these unitaries are phases with respect
the another observable structure .

mα := -α α (20)

When is induced by the Pauli spin-Z observable and by the Pauli spin-X

observable, then m =m0 is an X measurement and mπ /2 is a Y measurement. Note
however, that both produce Born vectors of outcome probabilities with respect to the

basis. This will be useful in the next section.

5 Example: Non-locality of QM

In 1989Greenburger, Horne, and Zeilinger provided an analysis [34] of quantum the-
orywhich improves onBell’s theorem in one crucialway.WhereasBell demonstrated
a probabilistic argument that quantum theory is incompatible with the assumption
of local realism (i.e. quantum theory generates correlations that are too high for a
classical local hidden variable model), the GHZ/Mermin theorem illustrates a situa-
tion that rules out a locally realistic model possibilistically. That is, they described a
series of experiments for which quantum theory predicts a single, definite outcome
that is impossible under the assumption of locality.

Here, we reproduce Mermin’s version of this argument [35] using diagrammatic
techniques. There are two key ingredients for this translation. The first is a graphical
notion of locality. For our purposes, it will suffice to treat locality as the fact that
global probability can be traced down to hidden states that determine allmeasurement
outcomes, since we shall show that no hidden state can ever be compatible with the
predictions of quantum theory. Hence, there is no point in even considering crafting
a local hidden variable representation.

The second key ingredient is parity. TheGHZ/Mermin trick for producing definite
outcomes is to look not at individual measurement outcomes, but the overall parity
of those outcomes, i.e. “Did the experiment produce and even or an odd number
of clicks?”. Considering a single outcome (click or no-click) as an element of the
abelian group Z2, the parity of a set of outcomes is given by their sum in the group.
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We already saw in Sect. 3.3 that strongly complementary observables are classified
by abelian groups. In two dimensions, there is only one such strongly complementary
pair, namely the one corresponding toZ2.When we prepare a GHZ state with respect
to a certain observable (e.g. spin-Z ) and conduct measurements using a strongly
complementary observable (e.g. spin-X ), we will see this Z2 structure arise.

By combining these two elements (the topological picture of locality and the
encoding of abelian groups as strongly complementary observables) we will derive a
contradiction. Furthermore in Sect. 5.4, we shall see how strong complementary was
embedded in the pre-conditions of a GHZ/Mermin-style argument in the first place.

5.1 A Local Hidden Variable Model

For a particular n-party state |ψ〉 in some theory, a local hidden variable (LHV)
model for that state consists of:

• a family of hidden states |λ〉, each of which assigns to any measurement on each
subsystem a definite outcome; and,

• a probability distribution on these hidden states,

which simulates the probabilities of that theory. We say that a theory is local if each
state admits a LHV model.

Consider three systems and four possible (compound)measurement settings,XXX,
XYY, YXY, and YYX. A hidden state of an underlying LHV model stores one mea-
surement outcome for each setting on each system:

∣∣λ′〉 = |
X︷︸︸︷+

Y︷︸︸︷−︸ ︷︷ ︸
system 1

X︷︸︸︷−
Y︷︸︸︷+︸ ︷︷ ︸

system 2

X︷︸︸︷−
Y︷︸︸︷+︸ ︷︷ ︸

system 3

〉

We can represent this diagrammatically as follows:

X1 Y1 X2 Y2 X3 Y3

XXX X X XY Y Y Y Y Y

that is, we simply copy those values to each of the four measurement settings.
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5.2 Encoding the GHZ State and Computing Correlations,
Diagrammatically

To present Mermin/GHZ style argument graphically, we first show how to compute
measurement outcomes for an n-partyGHZ state graphically. This computation relies
on a standard theorem about bialgebras, which relates a graph-theoretic property of
diagrams to equality of bialgebra expressions.

Definition 17 Let ( , , , ) be a commutative, cocommutative bialgebra,

and let D be a diagram consisting only of , , , , identity maps, and swaps.
Then, the characteristic matrix χ of D is a matrix of natural numbers where the
(i, j)th entry represents the number of forward-directed paths connecting the i th
input to the j th output.

Example 21 The following terms have characteristic matrix

0 1
0 0

:

The following terms have characteristic matrix

⎛
⎝
1 1
1 1
1 1

⎞
⎠ :

Theorem 8 If two diagrams generated by the same bialgebra have the same char-
acteristic matrix, they are equal as maps.

Proof (sketch) It is possible to show by case analysis that the three bialgebra equa-
tions can be used to move all of the gray dots to the top all the white dots to the
bottom.

⇒ ⇒ ⇒

We can furthermore show that all three of these transformations preserve the char-
acteristic matrix of D . Once this is done, we obtain a diagram in normal form:
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↔

⎛
⎜⎜⎜⎜⎝

1 0 0
0 0 0
1 2 0
0 0 1
0 0 3

⎞
⎟⎟⎟⎟⎠

Then, it is possible to show there is exactly one such normal form for each characteris-
tic matrix. In fact, it is straightforward to read off the matrix by counting edges in the
normal form. Since every diagram can be put into normal form using equations that
preserve the characteristic matrix, and normal forms are in 1-to-1 correspondence
with characteristic matrices, this completes the proof.9

We can now apply the theorem to prove the following corollary.

Corollary 3 The following equation holds for any connected bipartite graph with
directions as shown.

n n
. . .. . .

=
(21)

Proof For the theorem on bialgebras to apply, all of the edges need to be directed
upward. For a strongly complementary observable, the edge direction between two
different colours can be reversed by applying the antipode S. Then, we use the fact
that S is a Frobenius algebra endomorphism to move it down.

. . . . . .
. . .

= = = (∗)S S . . .
S S

We apply Theorem8 and the spider theorem to complete the proof.

. . . . . . . . .

(∗) = = =

9For a formal statement and proof of this theorem, in terms of factorisation systems see [36].
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We compute the classical probability distributions (= -data) for n measure-
ments against arbitrary phases α i ∈ Φ on n systems of any type in a generalised

GHZn-state:

mα1 ⊗ . . .⊗mαn

-α1 α1 -α2 α2 . . . -αn αn

GHZn := ( )n0

(5)
=

. . .

-∑α i ∑α i

= (∗)

Applying Corollary3, we note that this is a probability distribution followed by a
-copy.

(∗) =

. . .

-∑α i ∑α i

=:

. . .

∑α i

(22)

The following is an immediate consequence.

Theorem 9 When measuring each system of a GHZn
A-state against an arbitrary

angle then the resulting classical probability distribution over outcomes is symmetric.

Theorem 10 The classical probability distributions for α1 ⊗. . .⊗mαn-measure-

ments on a GHZn
A-state is:

• uncorrelated if |∑α i) is a classical point for and,

• parity-correlated if |∑α i) is a classical point i for (i.e. contains precisely those

outcomes i1 ⊗ . . . ⊗ in such that the sum of group elements
∑

ik is equal to i).

Example 22 We can compute the outcome distributions for XXX, XYY, YXY, and
YYX measurements on three qubits in a GHZ-state using the technique described
above. First, outcome distribution |A) for XXX:
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0 0 0 0 0 0
= = = =:

0 A

0 0 0 0

Next, we compute outcome distribution |B1) for XYY:

0 0 -π
2

π
2 -π

2
π
2 = = = =:

1

-π π 1 1

B1

Computing correlations as in Fig. (22) is symmetric in the choice of measurement
angle for each of the systems. Thus, for the other two cases (YXY and YYX), we get
the same result: |B1) = |B2) = |B3) .

5.3 Deriving the Contradiction

Consider the function:

(23)

We have already seen that strongly complementary observables correspond to group

algebras. That is, defines a group algebra over the classical points of . For
qubits there is only one choice: Z2. Thus, this function computes the parity (i.e. the
Z2-sum) of all outcomes.

Measuring the parity for any local hidden state we obtain:

Y3X2Y1X1 X3Y2
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that is, by (17):

Y3X2Y1X1 X3Y2

and hence:

and measuring the parity in quantum theory we obtain:

A B1 B3B2

that is, by the previous section:

πππ

and hence:

π

which yields a contradiction.

5.4 GHZ/Mermin Assumptions and the Necessity of Strong
Complementarity

We shall examine two assumptions that play a key role in a GHZ/Mermin style
non-locality argument, and show that the presence of a strongly complementary
observable arises as a consequence.
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The original argument due to Greenburger, Horne, and Zeilinger [34] and later
simplifications [35, 37] focus on a state defined in terms of correlated (or anti-
correlated) Z -spins and local spin measurements in the XY-plane. We generalise this
assumption as follows.

Assumption 1 (Coherence) We will use a GHZ state defined with respect to some
observable structure . Measurements are all conducted within a -phase of some
coherent observable .

InFHilb, all observables containing at least one unbiased classical point, w.r.t. ,
are within a -phase of a coherent observable, so we could weaken this assumption
further. That is, if contains an unbiased classical point, we might as well assume
it is coherent, since Assumption1 allows us to freely choose phases.

By Assumption1, the correlations associated with each experiment are computed
from this diagram:

-α1 α1 -α2 α2 -α3 α3
=

∑α i-∑α i

The second assumption is what [34] refers to as “super-classicality”. We shall
refer to it as sharpness.

Assumption 2 (Sharpness) After all subsystems except one are measured, the final
measurement outcome is fixed.

The map is called the decoherence map for . It projects from the space
of all quantum mixed states to the the space of classical mixtures of eigenstates of

. To assert sharpness, we require that, once two of the three systems are measured,
the third is invariant under this map:

=

-∑α i ∑α i -∑α i ∑α i

(24)

Plugging the unit of in the 2nd systemboth for LHS andRHS, and using coherence
we obtain:
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=

-∑α i ∑α i -∑α i ∑α i

(25)

and by exploiting symmetry we have:

=

-∑α i ∑α i -∑α i ∑α i

(26)

Hence we obtain:

(2)
=

(24)
=

-∑α i ∑α i -∑α i ∑α i -∑α i ∑α i

(26,2)
=

-∑α i ∑α i

Since δ † ◦ (1X ⊗ ∑iα i) is unitary it cancels. Thus our assumptions lead us to con-

clude the following equation for the observable structures ( , ) :

=
(27)
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Proposition 5 A pair ( , ) of coherent observables satisfying Eq. (27) are
strongly complementary.

Proof First, we show that Eq. (27) implies the following, for any pair of coherent
observables:

=
(28)

The proof goes as follows:

= = = =

...which implies:

== ====

Equation (28) is very nearly the required equation for strong complementarity, but
the directions are wrong. However, we can correct this by first showing the following
equations, using coherence and (28):

= ===

== ==

Then, we complete the proof by using the equations above to change the directions
of the arrows on the inside:
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= = = = ==

= ===

Thus any coherent pair of observable structures satisfying Eq. (27) is a strongly
complementary pair.

6 Summary and Further Reading

In this chapter, we developed the notion of a generalised compositional theory, a
new approach to studying quantum mechanics and constructing foil theories with
quantum-like properties. The main building blocks for a GCT are:

• a collection of systems A, B, C, . . . ,

• a collection of primitive processes, and
• a notion of horizontal composition ⊗ and vertical composition ◦.
From this sparse setting, we began to add extra pieces of structure.

• symmetry maps ⇒ “permutibility of systems”
• dagger ⇒ “time-reversed processes”
• duals ⇒ “map/state duality”

This structure and its diagrammatic presentation give a rich language for talking
about composed processes.We then went on to define various concepts in this frame-
work, often by analogy to their Hilbert space counterparts: pure states, reversible
dynamics, quantum observables, complementarity, mixed states, and measurements.
Using these ingredients,weworked through a complete example, followingMermin’s
illustration of a possibilistic locality violation, as predicted by quantum mechanics.

The interested reader can find many papers related to, or extending the formalism
introduced in this chapter. One example is the ZX-calculus, which is a graphical cal-
culus for the interaction of the Pauli-Z and Pauli-X observable structures. In addition
to the usual rules (complementarity, strong complementarity), several other rules are
added, which turn out to be complete for stabiliser quantummechanics [38]. This cal-
culus has been applied to the study of measurement-based quantum computing [15],
topological MBQC [16], and quantum protocols [39].
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The ideas developed in Sect. 4 originated in [22]. In [40], a simplified formalism
for interacting classical and quantum data was developed, and can be viewed as an
abstraction of the C*-algebraic approach to the study of quantum information.
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Post-Classical Probability Theory

Howard Barnum and Alexander Wilce

1 Introduction

This chapter offers a brief introduction to what is often called the convex-operational
approach to the foundations of quantum mechanics, and reviews selected results,
mostly by ourselves and collaborators, obtained using that approach. Broadly speak-
ing, the goal of research in this vein is to locate quantum mechanics (henceforth:
QM) within a very much more general, but conceptually very straightforward, gen-
eralization of classical probability theory. The hope is that, by regarding QM from
the outside, so to say, we shall be able to understand it more clearly. And, in fact,
this proves to be the case.

The phrase “convex-operational” deserves some comment. The approach dis-
cussed here is “convex” in that it takes the space of states of a physical system to be
a convex set (to accommodate the formation of probabilistic mixtures), and draws
conclusions from the geometry of this set. It is “operational” in its acceptance of
measurements and their outcomes as part of its primitive conceptual apparatus, and
in its identification of states with probability weights on measurement outcomes. In
this sense, it is conceptually very conservative, differing from classical probability
only in that it is not assumed that all measurements can be made simultaneously.
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From this starting point, one is led very naturally to a mathematical framework for
a post-classical probability theory, which, while varying idiomatically from author
to author [9, 29, 31, 34, 41, 42, 48, 51], is more or less canonical. About the first
third of what follows is devoted to a detailed discussion of the structure of individual
probabilistic models in this framework. Here we exhibit a range of simple non-
classical examples, many of them quite different from either classical or quantum
probabilistic models. At the same time, we try to bring some order to this diversity,
by showing that essentially any probabilistic model can be represented in a natural
way in terms of an ordered real vector space and its dual, and that processes operating
on and between models can be represented by positive linear maps between these
associated spaces.

Starting in Sect. 3, we focus on composites of probabilistic models, subject to a
natural non-signaling constraint. As we shall see, the phenomenon of entanglement,
often regarded as a hallmark of quantum mechanics, is actually a rather generic
feature of non-signaling composites of non-classical state spaces, and thus, more a
marker of non-classicality than of “quantumness” per se. Since quantum information
theory treats entanglement as a resource, the question then arises of which quantum-
information theoretic results can be made to work in a more general probabilistic
setting. Section4 reviews some work in this direction, particularly the generaliza-
tion of the no-cloning and no-broadcasting theorems of [9, 10], and an analysis of
teleportation and entanglement-swapping protocols in terms of conditional states,
following [11].

If many non-classical features of QM are not so much quantum as generically
non-classical, what does single out QM? The question of how to characterize QM in
operational or probabilistic terms is a very old one. After many decades of hard-won
partial results in this direction (e.g., [4, 5, 23, 39, 56, 65, 80]), the past decade has pro-
duced a slew of novel derivations of finite-dimensional QM from fairly simple, trans-
parent, and plausible assumptions [24, 28, 41, 50, 57] (to cite just a few). In Sect. 5,
we outline one of these, which recovers the Jordan structure of finite-dimensional
quantum theory from symmetry considerations; the specific C∗-algebraic machinery
of standard quantum mechanics is then singled out by considerations involving the
formation of composite systems. The key tools here are a classical representation the-
orem for homogeneous, self-dual cones, due to M. Koecher and E. Vinberg [44, 69],
and a theorem about tensor products of Jordan algebras due to H. Hanche Olsen [40].

Since the aim of this paper is to provide a brief and accessible introduction to
this material, we make some simplifying assumptions. The most important is that
we focus entirely on finite-dimensional models, even though large parts of the appa-
ratus developed here work perfectly well (and were first developed) in an infinite-
dimensional setting. Further assumptions will be spelled out as we go.

Notational conventions Real vector spaces are indicated generically by bold capitals
E, F, etc. The space of linear mappings E → F is denoted byL(E, F); E∗ denotes
the dual space of E. If H is a real or complex Hilbert space, Lh(H) stands for the
space of bounded Hermitian operators on H. If X is a set, RX denotes the vector
space of all real-valued functions on X . We write 〈x, y〉 for the inner product of two
vectors in a real or complex Hilbert space; in the complex case, we take this to be
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conjugate linear in the second argument. (Thus, our 〈x, y〉 would be 〈y|x〉, in Dirac
notation.)

2 Elementary Probability Theory, Classical and Otherwise

IfH is a Hilbert space, representing a quantum-mechanical system, then each state of
that system is represented by a density operator ρ. A possible measurement outcome
is represented by an effect, i.e., a positive hermitian operator a with 0 ≤ a ≤ 1;
Tr(ρa) gives the probability that a will occur (if measured) when the state ρ obtains.
This probabilistic apparatus generalizes that of classical probability theory, in that
if we fix an observable, that is, a set {a1, . . . , an} of effects summing to 1, we
can understand this as a model of a single, discrete, classical statistical experiment,
on which each state ρ defines a probability weight p(i) := Tr(ρai ). The novelty
here is that, in general, a pair of observables {a1, . . . , an} and {b1, . . . bk} is not co-
measurable. In classical probability theory, it is always assumed (if often tacitly) that
any pair of outcome-sets E1 and E2 admit a simultaneous refinement, that is, both
can be represented as partitions or “coarse-grainings” of some third outcome-set F .
In quantum probability theory, this is not the case. Unless the operators ai and b j

all commute, there will be no third observable of which E1 and E2 are both coarse-
grainings.

So, quantum probability theory foregoes the assumption of co-measurability,
which is a tenet of classical probability theory. And, indeed, in retrospect, the lat-
ter is surely a contingent matter, so it is not so very radical a step to renounce it.
On the other hand, quantum probability theory replaces the simple axiom of co-
measurability with the elaborate apparatus of the Hilbert spaceH and its associated
space of Hermitian operators. As a framework for an autonomous probability calcu-
lus, this seems less than perfectly well motivated, and one can wonder whether, and
why, it is necessary. A sensible way to approach this question is simply to drop the
co-measurability assumption, without making any special assumptions to replace it.
The resulting post-classical probability theory, while in some respects rather con-
servative (probabilities are still real numbers between 0 and 1, summing to unity
over complete sets of mutually exclusive possible outcomes), presents a vast, poorly
explored, and rather wild landscape, within which even quantum probability theory
seems rather tame.

2.1 Test Spaces and Probabilistic Models

There are manymore or less equivalent, but stylistically diverse, ways of formulating
a post-classical probability theory of the kind indicated above. The approach we take
here (due originally to C.H. Randall and D.J. Foulis [33, 34]) begins with a very
minimum of raw material.
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Definition 1 A test space is a pair (X,M) where X is a set of outcomes and M is
a covering of X by non-empty sets called tests. A probablity weight on (X,M) is a
function α : X → [0, 1] with

∑
x∈E

α(x) = 1

for every E ∈ M.

The intended interpretation is that each E ∈ M is the set of mutually exclusive
outcomes associated with some probabilistic experiment—anything from rolling a
die to asking a question to making a measurement (via some well-defined procedure)
of some physical quantity. It is permitted that distinct tests may overlap, that is, that
distinct experimentsmay share someoutcomes. The definition of a probabilityweight
requires that, when this is the case, the probability of a given outcome be independent
of the measurement used to secure it. In other words, probability weights are non-
contextual.1

Notation: It will often be convenient to let X stand for the pair (X,M), writing
M(X) for M. Also, we’ll write �(X,M) or simply �(X), for the set of all proba-
bility weights on a test space (X,M). This is a convex subset of [0, 1]X ⊆ R

X , i.e.,

α, β ∈ �(X) ⇒ tα + (1 − t)β ∈ �(X)

for all 0 ≤ t ≤ 1. Where X is locally finite, meaning that every test E ∈ M(X) is a
finite set, it is not hard to see that �(X) is closed, and hence compact, with respect
to the product topology on [0, 1]X . It follows that �(X) is the closed convex hull of
its extreme points.

Models In constructing a model for a probabilistic system, we may wish to single
out certain probability weights as corresponding to possible states of the system. It is
reasonable to form probability-weighted averages of such states, in order to represent
ensembles of systems in different states. It is also reasonable to idealize the situation
slightly by assuming that the limit of a sequence of possible states should again
count as a possible state. In the same spirit, we shall assume in what follows that
X carries a Hausdorff topology, with respect to which states are continuous. This is
harmless, since we can always use the discrete topology as a default.2 Indeed, given
that our focus here is exclusively on finite-dimensional models, it is not unreasonable
to assume that X is even compact.

1The formalism easily accommodates contextual probability assignments, however: simply define
X̃ to be the disjoint union of the test in M—say, to be concrete, X̃ = {(x, E)|x ∈ E ∈ M}. In
effect, each outcome of X̃ consists of an outcome of X , plus a record of which test was used to
secure it. For each test E ∈ M, let Ẽ = {(x, E)|x ∈ E}, and let M̃ = {Ẽ |E ∈ M}. Probability
weights on (X̃ ,M̃) are exactly what onemeans by contextual probability weights on (X,M). There
is a natural surjection X̃ → X that simply forgets these records; probability weights on (X,M)

pull back along this surjection to give us weights on (X̃ ,M̃).
2A more detailed discussion of test spaces with topological structure can be found in [72].
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To make all of this official:

Definition 2 Aprobabilistic model—or, for purposes of this paper, just amodel—isa
structure (X,M,�), where (X,M) is a test spacewith X a compact Hausdorff space
and � is a pointwise-closed (hence, compact), convex set of continuous probability
weights on �(X,M). The extreme points of � are the pure states of the model.

Notation: We henceforth use capital letters A, B, etc. to denote models, writing,
e.g., (X (A),M(A)) for the test space belonging to model A, and �(A) for A’s state
space.

Example 1 (Classical Models) (a) The simplest classical models have the structure
(E, {E},�(E)), where E is a single test (so that M = {E}), and where �(E)

is the simplex of all probability weights thereon. We might also deem “classical” a
broader set of models: those of the form (E, {E},�)where� ⊆ �(E) is any closed,
convex set of probability weights sufficiently large to statistically separate different
outcomes3 of the single test E .

(b) A more sophisticated classical model begins with a measurable space S, and
identifies statistical experiments with finite or countably infinite partitions of S by
measurable subsets. The collection of all such experiments is a test space: let X (S) be
the set of non-emptymeasurable subsets of S (say, with the discrete topology), and let
D(S) be the set of finite partitions of S intomeasurable subsets.We call (X (S),D(S))

the partition test space associated with S. Probability weights on (X (S),D(S)) cor-
respond exactly to finitely additive measures on S. By varyingD(S), we can change
the character of the probability weights that are allowed. For example, if Dσ (S) is
the set of countable partitions, probability weights on (X (S),Dσ (S)) correspond to
countably-additive probability measures on S.

Example 2 (Quantum Models) (a) The most basic quantum-mechanical model
begins with a complex Hilbert space H. The corresponding quantum test space
is (X (H),M(H)) where the outcome space X (H) is the unit sphere ofH (with its
usual topology) and where the spaceM(H) of tests is the set of unordered orthonor-
mal bases or frames ofH. Every unit vector v ∈ H determines a probability weight
αv on M(H), defined for all x ∈ X (H) by

αv(x) = |〈v, x〉|2 = Tr(Pv Px ),

where Pv and Px are the rank-one projection operators corresponding to v and x .
Accordingly, ifW is a density operator onH—apositive semidefinite hermitian oper-
ator of trace one, or, equivalently, a convex combination of rank-one projections—
then αW (x) := 〈W x, x〉 = Tr(W Px ) defines a probability weight on X (H). If
dim(H) ≥ 3, then Gleason’s theorem tells us that every probability weight on X (H)

is of this form, but for dim(H) = 2, there are many others, which one regards as

3That is, given any pair of distinct outcomes, there exists a state assigning them different probabil-
ities.
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non-physical. In either case, letting�(H) denote the convex set of density operators
onH, we obtain the quantum model A(H) = (X (H),M(H),�(H)).

(b) A slightly different model, which we’ll call the projective quantum model,
and which we denote by A(PH), replaces each outcome x ∈ X (PH) by the cor-
responding rank-one projection operator Px ; tests in M(PH) are maximal pairwise
orthogonal families of such projections. Again, states correspond to density opera-
tors via the recipe αW (Px ) = Tr(W Px ) where Px ∈ X (PH). For many purposes,
the choice between A(H) and A(PH) is one of convenience. However, notice that
in passing from A(H) to A(PH)we lose information about phase relations between
the unit vectors representing outcomes of X (H), which are important in describing
sequential experiments. We won’t pursue this here. The paper [79] contains some
relevant discussion.

(c) A more sophisticated quantum model might begin with a W ∗-algebra A, and
take forM, the collection of all (say, finite) sets of projections summing to the identity
in A. If M has no I2 summand, the Christensen-Yeadon extension of Gleason’s
theorem [30] identifies the probability weights on M with states on A. Again, if
there are I2 factors (copies of M2(C)), then one must explicitly limit the states to the
quantum-mechanical ones.

By the dimension of a model A, we mean the dimension of the span of �(A)

in R
X (A). Of course, this will generally be infinite. However, as mentioned in the

introduction, our focus in this paper is on finite-dimensional models. In this context,
it is also reasonable to concentrate on locally finite models. Indeed, making this
official, we make it a standing assumption that, from this point forward,

all models are locally finite and finite-dimensional.

In particular, all quantum models A(H) and A(PH) involve only finite-dimensional
Hilbert spacesH.

Dispersion-Free States and Distinguishability One very striking difference bet-
ween classical and quantum models has to do with the existence of (globally)
dispersion-free, that is, zero-or-one valued, states. In both of the classical models
considered above, all pure states are dispersion-free. Quantum models, in contrast,
have no dispersion-free states: a pure quantum state still makes only uncertain pre-
dictions about the results of most measurements.

Definition 3 A set � of probability weights on a test space X is unital iff, for every
x ∈ X , there exists at least one α ∈ � with α(x) = 1. If there is a unique such state,
we say that� is sharp. We say that a model A is unital or sharp if its state space�(A)

is a unital, respectively sharp, set of probability weights on the test space X (A).

Like the classical examples, the quantum quantum models A(H) and A(PH)

are sharp; indeed, the unique state α assigning probability one to a given outcome
x ∈ X (H), or to the corresponding outcome Px ∈ X (PH), is the one corresponding
to the density operator Px .
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Definition 4 A set � of probability weights on a test space X separates outcomes,
or is separating, iff, for all outcomes x, y ∈ X , α(x) = α(y) for all α ∈ � implies
x = y. A model A is separated iff �(A) separates outcomes of X (A).

The state space of a standard quantum model A(H) is not separating; that of
the corresponding projective quantum model A(PH) is separating. As this example
illustrates, given a non-separated model A, one can always replace X (A) by an
obvious quotient test space, in which probabilistically indistinguishable outcomes
are identified, to obtain a separated model having the same states. One may or may
not wish to do so.

A partition space is a test space that is isomorphic4 to a sub-test space of the
test space D(S) of finite partitions of some set S (see Example 1(b)). Any such
space supports a separating set of dispersion-free probability weights, namely, the
point-masses associated with the points of S. The following is straightforward:

Lemma 1 If test space has a unital, separating set of dispersion-free states, then it
is a partition test space. If it has a sharp separating set of, dispersion-free states,
then it is classical.

In anticipation of later results, we’ll write x ⊥ y to mean that outcomes x, y ∈
X (A) are distinguishable by means of some test E ∈ M(A)—that is, that x, y ∈ E
and x �= y. At present, there is no linear structure in view, let alone an inner product,
so the notation is only suggestive. Later, we’ll see that one can often embed X in an
inner product space in such a way that the notation can be taken literally.

It will also be useful to introduce the following notion of distinguishability for
states.

Definition 5 Two states, α, β ∈ �(A) are sharply distinguishable iff there exist
outcomes x, y ∈ X (A) with x ⊥ y such that α(x) = β(y) = 1. More generally,
states α1, . . . , αn are jointly sharply distinguishable iff there exists a test E ∈ M(A)

and outcomes x1, . . . , xn ∈ E with αi (x j ) = δi, j .

The idea is that, if the system is known to be in one of the states α1, . . . , αn , then
by performing the measurement E we will learn—with probability one—which of
these states was the actual one.5

4An isomorphism of test spaces is a bijection from outcomes to outcomes, preserving tests in both
directions.
5A weaker notion would require only that αi (xi ) > 0 = αi (x j ) for each i, j , so that with some
nonzero probability we learn which state is actual. Notice, too, that the condition of joint sharp
distinguishability is a priori much stronger than pairwise sharp distinguishability.
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2.2 Further Examples

Classical and quantum examples hardly exhaust the possibilities, of course: a major
point of the present framework is to provide us with a maximum of flexibility in
constructing ac hoc models.

Example 3 (The Square Bit) The very simplest non-classical model starts with a
test space X be a test space containing just two tests E = {x, x ′} and F = {y, y′},
each having two outcomes—as, say, two coins, or a stern-Gerlach apparatus with
two angular settings. The convex set�(X) of all probability weights on X is affinely
isomorphic to the unit square, under the mapping α �→ (α(x), α(y)). The model
(X,�) has, accordingly, been called the square bit or squit [12]. As �(X) is not a
simplex, this model is not entirely classical. On the other hand, as its pure states are
all dispersion-free, it is very far from being “quantum”.

Remark: A test space in which distinct tests are disjoint—as in the square bit—is
said to be semiclassical. Such a much test space clearly supports a separating set
of dispersion-free states, hence, by Lemma 1, can be represented as a partition test
space. However, as the square bit illustrates, such a test space will typically support
many more states than are permitted classically.

Greechie Diagrams A useful graphical device for representing small test spaces
(those involving only a few outcomes) is to represent each outcome as a dot, and to
join outcomes belonging to a test by a straight line or other smooth arc, with arcs
corresponding to distinct tetst intersecting, if at all, at a sharp angle, so as to be easily
distinguished. Such a representation (first used in the quantum-logical literature) is
called a Greechie diagram [38]. For example, we might represent a three-outcome
classical test by the diagram in Fig. 1a, and the square-bit test space by that in Fig. 1b.
The test space pictured in Fig. 1c with two three-outcome tests (the top and bottom
rows) and three two-outcome tests (the vertical lines), makes the point that a test
space need not have any states at all —in this case, because a state can not at the
same time sum to one across the two rows and across the three columns.

The following whimsical example (due to D.J. Foulis) is useful as an antidote to
several too-comfortable intuitions.

Example 4 (The Firefly Box) Suppose a sealed triangular box is divided into three
interior chambers, as in the top-down view in Fig. 2a, below. The walls of the box
are translucent, while the top, the bottom, and the interior partitions are opaque. In
the box is a firefly, free to move about between the chambers (for which purpose,
the interior partitions contain small tunnels). Viewed from one side, we might see

Fig. 1 Various Greechie
diagrams

• • •

• •

• •

• • •

• • •
(a)

(b) (c)
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Fig. 2 The firefly box
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the firefly flashing in chamber a or chamber b, or we might see nothing—the firefly
might not be flashing, or might be in chamber c. Thus, we have three experiments,
corresponding to the three walls of the box: {a, x, b}, {b, y, c} and {c, z, a}, where
x, y and z are the (distinct) “no-light” outcomes associated with each experiment.
The resulting test spaceA = {{a, x, b}, {b, y, c}, {c, z, a}} has the Greechie diagram
pictured in Fig. 2b.

We can identify several pure states on this test space with concrete situations
involving the location, and the internal state (lit or unlit) of the firefly. For example,

α(a) = α(y) = 1; α(b) = α(c) = α(x) = α(z) = 0

corresponds to the firefly’s flashing in chamber a. We can define similar states β

and γ corresponding to chambers b and c. All of these states are dispersion-free.
A fourth dispersion-free pure state, δ, assigns probability 1 to the outcomes x, y
and z. This corresponds to the firefly not flashing. These four dispersion-free states
separate the six outcomes, and thus allow us, by Lemma 1, to represent the firefly
box as a partition test space over a classical state space. However, there is also a fifth,
non-dispersion free pure state, ε, given by

ε(a) = ε(b) = ε(c) = 1/2; ε(x) = ε(y) = ε(z) = 0.

This last state is difficult to interpret in anyway but to imagine that the firefly responds
to being observed through a given window by entering (with equal probability) one
of the two corresponding chambers. Since any state on this test space is determined
by its values at the outcomes x , y and z, the convex set of all probabilty weights for
the firefly box is a non-simplicial set in R

3: the pure states α, β and γ correspond
to the standard basis vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1), δ corresponds to the
origin, and ε, to the vector 1

2 (1, 1, 1). Thus, � is affinely isomorpic to a triangular
diprism, as pictured in Fig. 2c.

Example 5 (Grids and Graphs) Let E be a finite set—for definiteness, say {0, 1,
. . . , n − 1}, with n ≥ 2. We define two test spaces associated with E :

(a) The grid test space, Gr i(E), consists of all rows and columns of the n × n array
E × E , that is, all sets of the form {x} × E or E × {y}.

(b) The graph test space, Gra(E) consists of the graphs of permutations f : E →
E , that is, subsets of E × E of the form {(i, f (i))|i ∈ E}.
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Both of these test spaces have outcome-set X = E × E , so a state on either test
space can be regarded as an n × n real matrix with non-negative entries. In the case
of Gr i(E), these entries must sum to unity along each row and column; that is, the
states on Gr i(E) are exactly the doubly stochastic matrices. By the Birkhoff-von
Neumann theorem, these all arise as convex combinations of permutation matrices—
that is, of the dispersion-free states corresponding to elements of Gra(E). Similarly,
one can show that, for n ≥ 3, every state of Gra(E) is an average of row states, αk ,
given by αk(i, j) = δi,k and column states αk , given by αk(i, j) = δk, j .

Every pair of pure states on either Gr i(E) or Gra(E) is distinguishable by a test
in that space. Nevertheless, neither state space is a simplex for n ≥ 3. The space of
doubly-stochastic matrices has n! pure states, which, for n ≥ 4, exceeds the n2 + 1
states permissible for a simplex in R

n2
. For n ≥ 3, Gr i(E) has only 2n pure states;

however, the maximally mixed state α(i, j) ≡ 1/n, can be represented as a uniform
average over just the row states, or over just the column states; similarly, on Gr i(E),
it can be represented as a uniform average over any set of permutations the graphs of
which partition E × E . By a curious coincidence, the test spaces Gr i(3) and Gra(3)
are isomorphic, so the state space of Gra(3) is isomorphic to that of Gr i(3), and
again, not a simplex.

Remark: We’ve seen that a variety of convex geometries can arise more or less
naturally as the (full) state spaces of test spaces. A natural question is whether every
possible convex geometry arises in this way. A theorem of F. Shultz [59] shows
that in fact, every compact convex set can be represented as the space of probability
measures on an orthomodular lattice. The set of decompositions of the unit element
in such a lattice is a test space, the probability weights on which correspond precisely
to the probability measures on the lattice. Thus, Shultz’ theorem implies that every
compact convex set can be realized as the full state space of a test space.

Models from SymmetryA symmetry of a test space X is a bijection g : X → X such
that both g and g−1 preserve tests—in other words, such that for all E ⊆ X , we have
gE ∈ M(X) iff E ∈ M(X). (In other words, it is an isomorphism from the test space
X to itself.) The set of all symmetries of X is evidently a group, which we’ll denote
by G(X). There is a natural dual action of G(X) on probability weights on X , given
by gα := α ◦ g−1; a symmetry of a model A = (X,�) is a symmetry of A that also
preserves �. Again, the symmetries of a model form a group, G(A) ≤ G(X (A)).

Both classical and quantum test spaces are marked by very strong symmetry
properties. In particular, the symmetry group of either kind of system acts transitively
on pure states, and also on the set of tests; moreover, any permutation of the outcomes
of any given test can be implemented by a symmetry of the entire system. (This is
more or less trivial in the case of a classical system; for a quantum system, it amounts
to the observation that any permutation of an orthonormal basis for a Hilbert space
H extends to a unitary operator onH.) In contrast, no symmetry of the “firefly box”
test space of Example 4 will exchange one of the outcomes a, b, c with one of x, y, z,
since each of the former belongs to two tests, while each of the latter belongs only
to one.
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An action of a group G on a test space (X,M) is an action of G on X , with
x �→ gx a symmetry of (X,M) for every g ∈ G. Recall that an action of G on X is
transitive iff it has only a single orbit, i.e., for every x, y ∈ X , there exists some g ∈ G
with y = gx . The action is doubly transitive iff, for any pairs (x, u), (y, v) ∈ X2,
there is some g ∈ G with gx = y and gu = v—i.e., the obvious action of G on X2

is transitive.

Definition 6 Let G be a group acting by symmetries on a test space X . We say X
is symmetric under G, or G-symmetric, iff G acts transitively on M(X), and the
stabilizer G E of a test E ∈ M(A) acts transitively on E . If X is G-symmetric and
G E acts doubly transitively on E , then X is 2-symmetric under G. If G E acts as the
full permutation group of E , we say that X is fully G-symmetric.

In fact, test spaces with these symmetry properties can be constructed very nat-
urally [76]. Suppose one has a simple measuring device, which can be applied to a
system of some sort to produce outcomes in a set E . One might be able to apply this
device in different ways—for example, by changing the orientation of the apparatus
with respect to the system, or by adjusting some controllable physical parameters
associated with the system. This suggests that we might be able to build a larger
family of experiments—a test space, in other words—starting with the basic mea-
surement E , and adding parameters that keep track of the various ways in which we
might deploy it. In many cases, there will be a group G of “physical symmetries”
acting on these parameters, andwe can often reconstruct the desired test space simply
from a knowledge of this group and its relationship to the test E . Specifically, there
will be some subgroup H of G that acts to permute the outcomes of E . Let us suppose
that H acts transitively on E , so that, for any reference outcome xo ∈ E , every other
outcome x ∈ E has the form hxo for some h ∈ H . Let K be any subgroup of G such
that K ∩ H = H0, where H0 is the stabilizer in H of a chosen reference outcome
xo ∈ E , and set X = G/K . Then there is a well-defined canonical H -equivariant
injection j : E → X given by j (x) = hK where x = hxo. Let us identify E with
its image under j , so that E ⊆ X . Let G be the orbit of E under G, i.e.,

G := {gE |g ∈ G}.

The test space (X,G) will automatically be symmetric, and will be 2-symmetric or
fully symmetric under G as H acts doubly or fully transitively on E . We obtain a
G-symmetric model by choosing any G-invariant, closed, convex set of probability
weights on X .

The choice of the group K extending the stabilizer Ho has a large effect on the
combinatorial structure of (X,G). For example, if K = Ho, thenM is a semiclassical
test space consisting of disjoint copies of E ; in general, a larger choice of K will
enforce non-trivial intersections among the tests gE with g ∈ G.

Example 6 As an illustration of this construction, let E = {0, 1, . . . , n − 1}, and let
U be the group of all unitary n × n matrices, acting in the usual way on H = C

E .
Let H ≤ U be the subgroup consisting of permutation matrices, and K , the group
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of unitaries fixing e0, the column vector corresponding to 0 ∈ E . Then K ∩ H is
exactly the set of permutation matrices corresponding to permutations fixing 0, i.e.,
K ∩ H = H0. Now X = G/K is the (projective) unit sphere of H, and M is the
set of (projective) frames of H. For another example, let H be the full permutation
group S(E) of E and set G = S(E) × S(E). Embedding H in G by h �→ (h, e),
the construction above produces the “grid” test space Gr i(E) of Example 6. Using
instead the diagonal embedding h �→ (h, h) yields the “graph” test space Gra(E).

2.3 Models Linearized

In many situations, the outcomes of a test space are naturally represented as elements
of a vector space. This is obviously the case for the quantum-mechanical examples
discussed above,where outcomes are directly identifiedwith unit vectors inH orwith
rank-one projections in L(H). One can also formulate classical probability theory
in this way, by considering the vector space of random variables associated with a
given measurable space, and identifying measurement outcomes (that is, measurable
sets) with the corresponding indicator random variables.

Subject to mild restrictions, such representations are always available. Attached
to every probabilistic model A there is a canonical ordered real vector space E(A),
generated by A’s outcomes, with every state of the model represented by a positive
linear functional on E(A). There is also a canonical ordered vector space V(A),
generated by A’s state-space, such that A’s measurement outcomes are represented
by elements of V(A)∗. In nice cases, we have V(A) � E(A)∗, whence, in finite-
dimensional cases (our focus here), V(A)∗ = E(A), and the two representations
coincide. Before discussing these constructions, we pause briefly to review basic
facts about ordered vector spaces. For further details, see [2, 32].

Ordered Linear SpacesBy a cone in a real vector space E, wemean a convex subset
closed under multiplication by non-negative scalars. K is pointed, if K ∩−K = {0},
and generating iff it spans E. it spans E. An ordered linear space is a real vector space
E, equipped with a closed, pointed, generating cone E+. Such a cone determines a
(partial) ordering, invariant under translation and under positive scalarmultiplication,
on E, namely a ≤ b iff b − a ∈ E+.6 Noticing that a ≥ 0 iff a ∈ E+, we refer to
E+ as the positive cone of E.

The basic example is the spaceRX of all real-valued functions on a set X , ordered
pointwise. Thus,

(RX )+ = { f ∈ R
X | f (x) ≥ 0 ∀x ∈ X}.

Another example, central to our concerns here, is the space Lh(H) of bounded
hermitian operators on a Hilbert space H (over either R or C). This space has a

6 Many authors define ordered linear spaces without requiring that the positive cone be either closed
or generating. For our purposes, the present definition is more useful.
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standard ordering, induced by the coneL+(H) of positive semi-definite operators—
that is, a ∈ L+(H) iff 〈ax, x〉 ≥ 0 for all vectors x ∈ H. More generally, the real
vector space of self-adjoint elements of a C∗-algebra A is ordered by the cone of
elements of the form aa∗, a ∈ A.

If E and F are ordered linear spaces, a linear mapping f : E → F is positive iff
f (E+) ⊆ F+, i.e., f (a) ≥ 0 whenever a ≥ 0. An order-isomorphism between E
and F is a positive, invertible linear mapping having a positive inverse. We’ll denote
the set of positive linear mappings E → F by L+(E, F). This is a cone in the
space L(E, F). As a special case, the dual space of an ordered vector space E has
a natural dual cone, E∗

+ = L+(E,R). In our present finite-dimensional setting, this
is generating, so E∗ becomes an ordered vector space in a natural way.

Order-unit spacesAn order-unit in an ordered vector space E is an element u ∈ E+
such that, for every a ∈ E, there exists some λ > 0 with a ≤ λu. When E is
finite-dimensional, this is equivalent to u’s belonging to the interior of E+, or to
the condition that α(u) > 0 for every non-zero α ∈ E∗

+. An order-unit space is an
ordered linear space equipped with a distinguished order-unit.7 The key example to
bear in mind is the space Lh(H), ordered as described above, and with the identity
operator as order-unit.

An order unit space already provides enough structure to support probabilistic
ideas. A state on an order-unit space E is a linear functional α ∈ E∗ with α(u) = 1.
We write �(E) for the set of all states on E. This is easily seen to be a compact
convex subset of E∗. An effect in E is an element a ∈ E with 0 ≤ a ≤ u, so
that 0 ≤ α(a) ≤ 1 for every state α. The set of all effects is denoted [0, u]. A
discrete observable on E is a finite set E = {a1, . . . , ak} of non-zero effects with
a1 + · · · + ak = u. Evidently, any state on E restricts to a probability weight on
every observable on E.

In the special case where E = Lh(H), the space of Hermitian operators on a
Hilbert space H, an effect is a positive operator a with 0 ≤ a ≤ 1; all states have
the form α(a) = Tr(Wa) where W is a density operator onH, and an observable is
essentially a (discrete) positive-operator valued measure.
Remark: We can regard the set O(E) of observables of E as forming a test space,
the outcomes of which are the non-zero effects. This gives us a probabilistic model

Amax(E) := ((0, u],O(E),�(E)),

which we call the maximal model associated with E.
As noted above, the state space �(E) of an order-unit space is a compact convex

set. Dually, let K be a compact convex subset of a finite-dimensional real vector space
W. Let V(K ) denote K ’s span in W, and let Aff(K ) denote the space of affine real-
valued functionals f : K → R. This last is an order-unit space, with order-unit given
by u(α) ≡ 1 for all α ∈ K . One can show that any affine mapping T : K → M+,

7In general, one must add the requirement that E’s ordering be archimedean, meaning that if
x, y ∈ E with 0 ≤ nx ≤ y for all n ∈ N, then x = 0. However, in our finite-dimensional setting,
any closed cone induces an archimedean ordering.
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where M is any ordered vector space, extends uniquely to a positive linear mapping
T : V(K ) → M. In particular, every element ofAff(K )+ extends uniquely to positive
linear functional onV(K ). This gives us a canonical isomorphismV(K )∗ � Aff(K ),
and hence (in our finite-dimensional setting), an isomorphism V(K ) � Aff(K )∗. In
fact, K is naturally embedded in Aff(K )∗ by evaluation, so we can treat K as a subset
of Aff(K )∗ (rather than W) and identify V(K ) with V(K )∗.

Linear representations of a model Let (X,M) be a test space and (E, u) an order-
unit space. A representation of (X,M) on E is a mapping φ : X → E+ such that∑

x∈E φ(x) = u for all tests E ∈ M. Evidently, any state α ∈ E∗ pulls back to a
probability weight α ◦φ on (X,M). The set of all probability weights arising in this
way is compact (since φ is linear, hence continuous) and convex, and thus, defines
a probabilistic model. By a representation of a probabilistic model A, we mean a
representation of (X (A),M(A)) such that every state of �(A) arises in this way
from a state on E.

In effect, a representation allows us to interpret the test space (X (A),M(A)) as
a collection of observables on E. As we’ll now see, every probabilistic model has a
canonical representation in this sense. Let V(A) = V(�(A)) be the span of �(A) in
R

X (A), ordered pointwise on X (A). Then, as discussed above, V(A)∗ � Aff(�(A))

is an order-unit space, with order-unit u A defined by u A(α) ≡ 1 for all states α ∈
�(A), andwe can identify�(A)with the state-space of (V∗(A), u A). Every outcome
x ∈ X (A) defines an effect x̂ ∈ V(A)∗ by evaluation, i.e., x̂(α) = α(x) for all
α ∈ V(A); moreover, if E ∈ M(A), we have (

∑
x∈E x̂)(α) = ∑

x∈E α(x) = 1, for
all α ∈ �(A), so

∑
x∈E x̂ = u A, so ·̂ : X (A) → V(A) is in fact a representation.

Given our standing assumption that models are locally finite, we can define a
smaller representing space. Let E(A) be the span of X (A) in V(A)∗ = Aff(�(A)),
orderedby the closure of the cone consistingof linear combinationswith non-negative
coefficients of evaluation functionals x̂ , x ∈ X (A):

E(A)+ := cl

({ ∑
i

ti x̂i |xi ∈ X, ti ≥ 0

})
.

Since A is locally finite, we see that u A = ∑
x∈E x̂ , where E is any test in M(A).

Hence, u A belongs to E+(A), where it continues to function as an order-unit. (To
see this, note that if α ∈ E(A)∗+ and α(u) = 0, then α(x̂) = 0 for every x ∈ X (A),
whence, α = 0.) The space E(A), together with the representation ·̂ : X (A) →
E(A), is called the linear hull of the model A.

Since E(A) ≤ V(A)∗ are both spanned by X (A), they have the same dimension,
hence, coincideas vector spaces. However, the cone of E(A) is generally smaller than
that of V(A)∗. Thus, we have canonical positive linear bijections E(A) → V(A)∗
and, dually, V(A) → E(A)∗.

Example 7 Let A = A(H) be a finite-dimensional quantum model, as discussed in
Example 2. Let us write V(A(H)) and E(A(H)) as V(H) and E(H), for short.
Remarkably, here all three of the ordered vector spaces V(H), V(H)∗, and E(H)
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coincide, all being isomorphic to Lh(H). Since every hermitian operator in H is
a difference of positive operators, each of which normalizes (in finite dimensions)
to a density operator, we have Lh(H) � V(H). The dual of Lh(H), as an ordered
vector space, is isomorphic toLh(H): every positive linear functional onLh(H) has
the form a �→ Tr(ba) for a unique positive hermitian operator b. Hence, V(A)∗ �
Lh(H) as well. Finally, the Spectral Theorem tells us that every positive hermitian
operator on H is a positive linear combination of rank-one projections. It follows
that the space E(H) can also be identified with Lh(H).

State-Completeness The state space of V(A)∗ is exactly �(A). However E(A),
having a smaller positive cone than V(A)∗, has a larger state space. Still, as noted
above, any state α ∈ E(A)∗ defines a probability weight on (X (A),M(A)). Letting
�̂(A) denote the set of such states, we have �(A) ⊆ �̂(A). We may regard �̂(A)

as the set of probability weights that are consistent with all of the linear relations
among outcomes that are satisfied by the given state space �(A). Call a model A
state-complete iff �(A) = �̂(A).

Lemma 2 Let A = (X,�) be a finite-dimensional probabilistic model. Then the
following are equivalent:

(a) A is state-complete
(b) E(A)+ = E(A) ∩ Aff+(�) � E(A) ∩ V(A)∗+;
(c) The canonical mapping V(A)+ → E(A)∗+ is surjective, so that V(A) and E(A)∗

are order-isomorphic.

Proof Clearly, (c) implies (a). To see that (a) implies (b), suppose f ∈ Aff(�)+ \
E(A)+. Then (by the finite-dimensional version of the Hahn-Banach separation
theorem) there exists some α ∈ E(A)∗ with α(a) ≥ 0 for all a ∈ E(A)+ but
α( f ) < 0. We can normalize α so that α(u) = 1, in which case α ∈ �̂. Since
f is non-negative on �, it follows that α /∈ �, whence, �̂ �= �, and A is not
state-complete. To see that (b) implies (c), suppose α ∈ �̂ \ �: then we can find
some f ∈ E(A)∗∗ = E(A) with f (α) < 0 but f (β) ≥ 0 for all β ∈ �. But
now f ∈ E ∩ Aff+(�), and yet—as a(α) ≥ 0 for all a ∈ E(A)+—we have f /∈
E(A)+. �

Standing Assumption: Henceforth, all models are state-complete.

Accordingly, we can, and shall, write E(A) for V(A)∗.
Remarks:The idea of treating order-unit spaces—or rather, their intervals of effects—
as a model for the set of events of an abstract probabilistic (or physical) system,
with normalized positive linear functionals playing the role of states, goes back at
least to the work of Ludwig and his school [48], and was also developed by Davies
and Lewis [29], Edwards [31], and many others. Evidently, this approach—often
referred to as operational or convex—is recovered in the present framework. Indeed,
it is possible to regard the additional test-space structure of a probabilistic model as
largely dispensible: a kind of builders’ scaffolding, to be discarded once the spaces
V(A) and V(A)∗ have been obtained. For many applications, this works perfectly
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well. However, this additional test-space structure turns out to be useful in many
ways, so we prefer to retain it.8

Direct Sums of Models A face of a convex set K is a convex subset J ⊆ K such
that, for all a, b ∈ K and all 0 ≤ t ≤ 1,

ta + (1 − t)b ∈ J ⇒ a ∈ J and b ∈ J.

If J and K are cones, then this is equivalent to the condition that a+b ∈ J ⇒ a ∈ J
and b ∈ J . A minimal face of a cone is in fact a ray; we more usually speak of an
extremal ray. An element of a cone is ray-extremal, or simply extremal, iff it generates
an extremal ray. In finite dimensions, every (closed) cone is the convex hull of its
extremal elements.

The direct sum of two ordered vector spaces E and F is their vector-space direct
sum, E ⊕ F, equipped with the cone E+ ⊕ F+ consisting of all sums of positive
elements from each. This is the smallest cone in E ⊕ F making the standard embed-
dings E, F → E ⊕ F given by a �→ (a, 0) and b �→ (0, b) (for a ∈ E and b ∈ F)
positive. In this case, E+ and F+ are both faces of E+ ⊕ F+. E is irreducible iff
not a direct sum.

If X and Y are sets, we write X ⊕ Y for their coproduct (or disjointified union),

X ⊕ Y = {1} × X ∪ {2} × Y.

If X and Y are test spaces, we make X ⊕ Y into a test space by letting M(X ⊕ Y )

equal the set {E ⊕ F |E ∈ M(X), F ∈ M(Y )}. We can understand a test of the form
E ⊕ F as a two-stage test: first, perform the classical two-outcome test {1, 2} (by
flipping a coin, say); if the result is 1, measure E , if the result is 2, measure F . A
probability weight ω on X × Y corresponds to an arbitrary choice of a probability
weight p on {1, 2} and probability weights α ∈ �(X) and β ∈ �(Y ), by

ω(1, x) = p(1)α(x) and ω(2, y) = p(2)β(y).

The weights p, α and β are uniquely determined by ω, so we can unambiguously
write

ω = pα + (1 − p)β

In other words, �(X ⊕ Y ) = �(X) ⊕ �(Y ), whence, E(X ⊕ Y ) = E(X) ⊕ E(Y ).
Every discrete classical probabilistic model (E,�(E)) is a direct convex sum of

trivial models ({x}, δx ) where x ∈ E and δx (x) = 1. In contrast, the basic quantum

8One of many uses for the test space structure is to privilege certain classes of observables on an
order-unit space having special order-theoretic properties—for example, the set of observables the
outcomes of which lie on extremal rays of E+ forms a test space, or those whose outcomes are
atomic effects, i.e., those that lie on extremal rays of E+ and are extreme points of [0, u].
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model (X (H),�(H)) is irreducible. More general quantummodels associated with
matrix algebras (representing quantum systems with superselection rules) arise as
direct sums of irreducible quantum models.

2.4 Processes and Categories

In very broad terms, a probabilistic theory might be nothing more than a class of
probabilistic models. But this usage is really much too broad. Part of the job of
a theory is to tell us, not only which models represent “actual” systems, but also
something about how such systems can change. In order to speak about systems
changing, we need to introduce into the preceding formalism a notion of process. A
natural place to start is with the idea of a mapping φ : α �→ φ(α) taking states α

of an initial (or input) system A to states of a final (output) system B. To allow for
“lossy” processes or processes conditioned on some event, we should permit φ(α)

be be a sub-normalized state of B when α is a normalized state of A. Finally, since
randomizing the input state should randomize the output state in the same way, we
should expect this φ be an affine mapping. Thus, we model a process from A to B
by an affine mapping φ : �(A) → V(B) with u B(φ(α)) ≤ 1; or, what is the same
thing, by a positive linear mapping φ : V(A) → V(B) with u B ◦ φ ≤ u A. We can
interpret uB(φ(α)) as the probability that φ occurs when the initial state is α—or,
perhaps more accurately, as the probability that the process occurs, if initiated.

To every process φ : V(A) → V(B), there corresponds a dual process τ =
φ∗ : E(B) → E(A), given by φ∗(b) = b ◦ φ for any b ∈ E(B). Operationally,
to measure φ∗(b) on a state α, one first subjects the state α to the process φ, and
then makes a measurement of the effect b. Note that φ∗(u B)(α) = u B(φ(α)) is the
probability that the process φ occurs if the initial state is α. In what follows, it will
often be more convenient mathematically to deal with these dual processes. In other
words, to use physicists’ lingo, we’ll often work with the “Heisenberg” rather than
the “Schrödinger” picture of processes.

Not every positive linear mapping V(A) → V(B) will generally count as a
process. As remarked above, it is part of the job of a probabilistic theory to specify
those that do. However, it seems reasonable to require that convex combinations
of processes and composites of (composable) processes also count as processes. It
will also be convenient to assume that, for every pair of systems A and B, there
is a null process that takes every state α ∈ �(A) to the zero state 0 ∈ E(B). It
seems reasonable, also, that there exist a canonical trivial system I , corresponding
to a test space with only a single outcome, 1, and a single test {1}. We then have
E(I ) = E(I )∗ = R. We can then require that, for every normalized state α ∈ V(A),
there exist a process R → V(A) of preparation, given by 1 �→ α, and, for every
outcome x ∈ X (A), a process V(A) → R of registration, sending α ∈ V(A) to
α(x). The dual process corresponding to the preparation of α is simply the state α

itself, while the process dual to the registration of x is the linear mappingR → E(A)

sending 1 to x . All of this suggests the following
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Definition 7 A (state-complete) probabilistic theory9 is a category C such that

(1) Every object A ∈ C is a probabilistic model;
(2) For all A, B ∈ C, the set C(A, B) of morphisms A → B is a closed, convex

subset ofL+(E(A), E(B)), containing the zero mapping, and with τ(u A) ≤ uB

for all τ ∈ C(A, B);
(3) There is a distinguished trivial system I with E(I ) = R and X = {1}, such that

for every A ∈ C, X (A) ⊆ C(I, A) and �(A) ⊆ C(A, I ).
(4) The order unit u A ∈ E(A) belongs to C(I, A).

From now on, we work in a fixed probabilistic theory C of this kind. We write C∗
for the category having the same objects, but with morphisms C∗(A, B) the set of
mappings φ = τ ∗ : V(A) → V(B) with τ ∈ C(B, A). In effect, C and C∗ offer,
respectively, the “Heisenberg” and the “Schrödinger” picture of the same theory.
Depending on context, we shall understand the word “process” to refer either to
a morphism τ ∈ C(A, B) for some A, B ∈ C, or to the dual mapping φ = τ ∗ :
V(B) → V(A).

Example 8 By a standard finite-dimensional quantum theory, we mean a cate-
gory C of quantum-probabilistic models associated with hermitian parts of finite-
dimensional complex matrix algebras (equivalently, direct sum of algebras of the
formL(H)), with trace-nonincreasing completely positive mappings as morphisms.
In this formulation, classical probabilistic theories arise as the degenerate case in
which all of the matrix algebras associated with systems in C are commutative.

Reversible and Probabilistically Reversible Processes A process τ ∈ C(A, B) is
reversible iff it is invertible as a morphism in C, i.e., there exists an inverse process
τ−1 ∈ C(B, A)with τ−1◦τ = idA and τ ◦τ−1 = idB . In this case, τ : E(A) → E(B)

is an order-automorphism and τ−1 : E(B) → E(A) is the inverse isomorphism.
Moreover, for such a process, we have τ(u A) = uB : by assumption, τ(u A) ≤ uB ,
and also τ−1(u B) ≤ u A, whence, as τ preserves order, uB ≤ τ(u A). Dually, a
process φ ∈ C∗(A, B) is reversible iff it has an inverse in C∗(B, A); equivalently,
φ is reversible iff the dual process τ = φ∗ is reversible. In this case, we have
u Bφ(α) = 1 for every normalized state α ∈ �(A).

There is a weaker but very useful notion, which we shall call probabilistic
reversibility. This is slightly easier to describe in terms of processes acting on states,
rather than effects:

Definition 8 A process φ ∈ C∗(A, B), is probabilistically reversible iff it is invert-
ible as a linear mapping V(A) → V(B), with a positive inverse and if the inverse
mapping φ−1 is a positive multiple of a process φo ∈ C∗(B, A)—say, φ−1 = cφo

with c > 0. (in which case, notice, c > 1!)

9This definition differs from that of [17], most obviously in that objects are associated with effect
spaces, rather than state spaces, but also in taking the test space X (A) to be part of the structure of
A ∈ C.
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Operationally, this means that there is some non-zero probability that φo ◦ φ will
return the system to its original state. Indeed,

u A(φo(φ(α))) = c−1u A(φ−1(φ(α))) = c−1u A(α) = c−1,

so this probability is exactly 1/c. In particular, φ is reversible with probability one iff
c = 1, so that φ−1 is a process in C∗(B, A)—in other words, φ is a reversible process.
Obviously, the set of probabilistically reversible processes, in either C(A, A) or
C∗(A, A), is a group, containing, but larger than, the group of all reversible processes
on A.
Historical remarks: The representation of what we are calling probabilistic models
in terms of an order-unit space and its dual goes back at least to the work of Davies
and Lewis [29] and Edwards [31]. A good survey of the relevant functional analysis
can be found in [2]. Test spaces—originally called “manuals”—were the basis for
a generalized probability theory (and an associated “empirical logic”) developed in
the 1970s and 1980s by C. H. Randall and D. J. Foulis and their students. See [75]
for a survey. Mathematically, of course, a test space is just a hypergraph; the current
terminology serves only to reinforce the intended probabilistic interpretation of the
nodes as outcomes and the hyper-edges as outcome-sets for various tests.

3 Composition and Entanglement

Consider two systems, A and B, which are not interacting in any obvious, causal
sense—for example, systems occupying space-like separated regions of space-time.
In this situation, it seems reasonable to assume that what that can be happen to
each system idividually—the preparation of a state, the making of a measurement,
etc.—can happen together, independently.

Another natural (albeit more contingent) requirement is a no-signaling condition,
forbidding the transmission of information from A to B, or vice versa, by the mere
decision to make one measurement rather than another on A, or on B. As we’ll see,
the phenomenon of entanglement, one of the supposed hallmarks of quantum theory,
is actually a rather generic feature of composite systems in non-classical probabilistic
theories, whether “quantum” or otherwise. (Indeed, the phenomenon even arises in
otherwise quite classical theories involving a restricted set of probability weights.)

3.1 Composites of Models

Suppose two parties—Alice and Bob, say—control, respectively, systems A and B,
which occur as components of some composite system AB, but are still sufficiently
isolated to beprepared andmeasured separately.At a veryminimum,wewould expect
Alice’s making a measurement, E , on here part of the composite system, and Bob’s
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making a measurement, F , on his part, constitutes the making of a measurement
on the combined system. We would also expect that states of the two component
systems can be prepared independently. Formalizing these requirements, we arrive
at the following:

Definition 9 A composite of two probabilistic models A and B is a model AB,
together with a mapping

X (A) × X (B) → X (AB) : (x, y) �→ xy

such that

(i) for all tests E ∈ M and F ∈ B, the product test E F := {xy|x ∈ E, y ∈ F}
belongs toM(AB); and

(ii) for all states α ∈ �(A) and β ∈ �(B), there exists a product state α ⊗ β ∈
�(AB) with (α ⊗ β)(xy) = α(x)β(y).

Remarks:There are several ways in whichwemight plausibly weaken this definition.
For instance, we might require only that the product outcome xy be an effect in
E(AB)+, and the set E F , an observable, but not necessarily a test, of AB.10 Such
possibilities are worth bearing in mind. However, for the purposes of this survey, it
seems reasonable to use the more restrictive, but therefore simpler, definition above.
Note in (ii) we require only the existence, but not the uniqueness of product states
(where a product state for α and β is defined as a state γ with γ (xy) = α(x)β(y).

The injectivity of the mapping x, y �→ xy in condition (i) allows us to identify
X (A) × X (B) with the set of product outcomes in Z . Let us write

X (A)X (B) := {xy|x ∈ X, y ∈ Y }.

With a slight abuse of notation, we may writeM(A)×M(B) for the test space con-
sisting of product tests E F . Condition (i) asserts that M(A) × M(B) is contained
inM(AB), so every state in �(AB) restricts to a state ωo on the former. Where the
restricted state ωo determines the global state ω—that is, where the set X (A)X (B)

of product outcomes is state-separating—we say that the composite is locally tomo-
graphic. In this setting, the joint probabilities of outcomes of measurements on the
component systems A and B, completely determine the state of the composite.11

This is a reasonable, but also a rather strong, restriction. Indeed, while composites
in standard complex QM are locally tomographic, this is not the case for real or
quaternionic QM. We’ll return to this matter below.

10More radically, one might consider models of systems interacting in such a way that the making
of a particular measurement, or the preparation of a particular state, on one component, precludes
the making of certain measurements, or the preparation of certain states, on the other component.
Mathematically, such situations are certainly possible.
11Barrett [19] calls this the global state hypothesis; the term locally tomographic seems to have
become more standard.
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Example 9 (Composite quantum models) If A(H) and A(K ) are two quantum-
mechanical models, associated with finite-dimensional Hilbert spaces H and K ,
respectively, let

A(H)A(K ) = A(H ⊗ K )

the model associated withH⊗ K . That is,M(H⊗ K ) consists of orthonormal bases
for H ⊗ K , while �(H ⊗ K ) consists of density operators on H ⊗ K . If x ∈ H

and y ∈ K are unit vectors, then x ⊗ y is a unit vector inH⊗ K . It is easy to check
that x, y �→ x ⊗ y makes A(H⊗ K ) into a composite in the sense of the preceding
definition.

3.2 Non-Signaling Composites and Entanglement

The very broad definition of a composite system given above leaves room for situa-
tions in which the probability of Bob’s obtaining an outcome y will depend on which
test E ∈ M(A) Alice chooses to measure. This is plausible only in scenarios in
which Alice’s measurements are able physically to disturb Bob’s system. If we wish
to model composites in which the two systems A and B are sufficiently isolated from
one another that this kind of remote disturbance is ruled out—the obvious situation
being one in which A and B are spacelike separated—then we must impose a further
constraint.

Definition 10 A probability weight ω onM(A) ×M(B) is non-signaling iff it has
well-defined marginal (or reduced) states, in the sense that

ω1(x) :=
∑
y∈F

ω(xy) and ω2(y) :=
∑
x∈E

ω(xy)

are independent of the choice of tests E ∈ M(A), F ∈ M(B).

If ω ∈ �(AB) is non-signaling, then for every y ∈ X (B) and x ∈ X (A), we can
define the conditional states ω1|y and ω2|x on A and B, respectively, by

ω1|y(x) := ω(xy)

ω2(y)
and ω2|x(y) := ω(xy)

ω1(x)
.

These are well-defined probability weights on M(A) and M(B), respectively. It
would seem reasonable to include them in the state spaces of A and B. Therefore,
we adopt the following language:

Definition 11 A non-signaling composite of A and B is a composite AB in which
all states are non-signaling, and all conditional states belong to the designated state
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spaces of A and B—that is, ω2|x ∈ �(B) and ω1|y ∈ �(A) for all x ∈ X (A) and
y ∈ X (B).

This has a strong consequence [71]:

Lemma 3 (Bi-Linearization) Let AB be a non-signaling composite of A and B.
Then every state ω ∈ �(AB) extends uniquely to a bilinear form on E(A) × E(B).

Proof For every x ∈ X (A), define ω̂(x) ∈ R
X (B) by ω̂(x)(y) = ω(x, y). Notice

that ω2|x = ω̂(x)/ω1(x). Since the conditional state ω2|x belongs to �(B), we have
ω̂(x) ∈ V(B) = E(B)∗, with

∑
x∈E ω̂(x) = ω2. Dualizing (and remembering

that E(A) is finite-dimensional), we have a linear mapping ω̂∗ : E(B) → R
X (A).

Now, ω̂∗(y) = ω2(y)ω1|y ; the latter belongs to �(A), so ω̂∗(y) ∈ V(A) = E(A)∗
for every y ∈ X (B). Since X (B) spans E(B), it follows that the range of ω̂∗ lies
in V(A), i.e., we can regard ω̂∗ as a linear mapping E(A) → V(B) = E(B)∗.
Equivalently, we have a bilinear formBω(a, b) = ω̂∗(b)(a), which evidently satisfies
Bω(x, y) = ω(xy) for all x ∈ X (A), y ∈ X (B). Since X (A) and X (B) span E(A)

and E(B), the form Bω is uniquely determined by this property. �

It follows that, for a non-signaling composite, the mapping X (A) × X (B) →
X (AB) : x, y �→ xy gives rise to a linear mapping ⊗ : E(A) ⊗ E(B) → E(AB),
with ω(x ⊗ y) = Bω(x, y) = ω(xy) for every ω ∈ E(AB)∗. The composite AB is
locally tomographic iff this mapping is surjective.

Corollary 1 A non-signaling composite AB of models A and B is locally tomogra-
phic iff E(AB) � E(A) ⊗ E(B), that is, dim(E(AB)) = dim(E(A)) dim(E(B)).

Lemma 3 allow us to extend the definition of conditional states to arbitrary effects,
setting

ω1|b(a) = ω(a ⊗ b)/ω(u ⊗ b) and ω2|a(b) = ω(a ⊗ b)/ω(a ⊗ u)

for arbitrary effects a ∈ E(A) and b ∈ E(B) (with the usual proviso about division
by zero). The following bipartite version of the law of total probability is easily
verified:

Lemma 4 (Law of Total Probability) Let AB be a non-signaling composite of A
and B; let ω be any state on AB, and let E and F be any two observables on E(A)

and E(B), respectively, then

ω2 =
∑
a∈E

ω1(a)ω2|a and ω1 =
∑
b∈F

ω2(b)ω1|b

Corollary 2 Let AB be a non-signaling composite of A and B, and let ω be a pure
state of AB. If the marginal state ω2 is pure, then ω1 is also pure, and ω = ω1 ⊗ ω2.
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Proof It is easy to see that, if a product state ω = ω1 ⊗ ω2 is pure, then both
marginals must be pure. Now suppose that one marginal state—say, ω2—is pure.
Since ω2 = ∑

x∈E ω1(x)ω2|x , and the conditional states ω2|x belong to V(B), it
follows that for every x ∈ E with ω1(x) > 0, we must have ω2|x = ω2, so that
ω(xy) = ω1(x)ω2(y) for every such x . The same result holds trivially if ω1(x) = 0,
so we have ω(xy) = ω1(x)ω2(y) for all choices of x and y. It follows that ω =
ω1 ⊗ ω2. �

Definition 12 A state ω on AB is separable iff it is a mixture of product states, that
is, ω = ∑

i tiαi ⊗ βi where ti ≥ 0 and
∑

i ti = 1 A state not of this form is said to
be entangled.

Using this language, the preceding Corollary gives us

Corollary 3 If AB is a non-signaling composite of models A and B, and ω is an
entangled state of AB, then both ω1 and ω2 are mixed.

This is often regarded as the hallmark of entangled quantum states; but, as we
see, it is really a quite general possibilty arising in any non-classical probabilistic
setting. Of course, one can still ask at this point whether entangled states exist in
any generality, once one leaves the confines of quantum theory. However, as we’ll
see in Sect. 3.4 below, there is a sense in which most non-signaling composites of
non-classical models admit entangled states.

The CHSH Inequality Let AA be a non-signaling composite of two copies of A.
For any a, b ∈ E(A) with −u A ≤ a, b ≤ u A, let a′ = u A − a and b′ = u A − b. For
any state ω in AA, define

S(ω; a, b) = ω(a, b) + ω(a, b′) + ω(a′, b) − ω(a′, b′).

This is called the CHSH (Clauser-Horn-Shimony-Holt) parameter associated with
ω, a and b. of a bipartite If ω is a product state, then S ≤ 2 for all choices of a and b;
as S is affine in ω, it follows that S ≤ 2 for all separable states. For entangled states it
can be larger. A priori, the upper bound for S is 4, and this is achieved, for example, if
A is the “square bit” of Example 3. However, for bipartite quantum states, the upper
bound is much lower. As pointed out by Tsirel’son [66], S ≤ 2

√
2 for any quantum

bipartite state and any effects a and b. A great deal of work has gone into trying to
find a deeper explanation for this bound. [3, 55]. In Sect. 4, we will return to this
matter.

Conditioning Maps and Isomorphism States If ω is any non-signaling state on
AB, then the associated bilinear formBω on E(A)× E(B) gives us a positive linear
mapping

ω̂ : E(A) → E(B)∗
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defined by

ω̂(a)(b) = ω(a ⊗ b)

for all a ∈ E(A) and b ∈ E(B). Notice that ω̂(a) = ω1(a)ω2|a . Accordingly, we
think of ω̂(a) as an un-normalized conditional state of B given the effect a ∈ E(A),
and refer to ω̂ as the conditioning map associated with ω. Of course, there is also a
conditioning map running in the opposite direction. In fact, this is just the adjoint of
ω̂; that is, ω̂∗(b)(a) = ω̂(a)(b) = ω(a, b) for all effects a ∈ E(A) and b ∈ E(B).

There is a dual construction for effects. An effect f ∈ E(AB) defines a positive
bilinear form on V(A)×V(B) by (α, β) �→ f (α⊗β). This, in turn, yields a positive
linear mapping

f̂ : V(A) → V(B)∗ = E(B)

given by f̂ (α)(β) = f (α⊗β).We call f̂ the co-conditioning map associatedwith f .

Definition 13 Let AB be a non-signaling composite of A and B. An isomorphism
state on AB is a stateω ∈ �(AB) such that the conditioningmap ω̂ : E(A) → V(B)

is an order-isomorphism. Dually, an isomorphism effect is an effect f ∈ E(AB) such
that the co-conditioning map f̂ : V(A) → E(B) is an order-isomorphism.

If there exists an isomorphism state on a composite AA of A with itself, then
we have E(A) � V(A) = E(A)∗.12 More generally, we shall say that A is weakly
self-dual iff there exists an order-isomorhism E(A) � V(A). Although this is a
strong constraint on the structure of a probabilistic model, it is nevertheless satisfied
by many examples that are neither quantum nor classical. For example, the models
associatedwith state spaces that are regular 2-dimensional polytopes—that is, regular
n-gons—are weakly self-dual.

As we’ll discuss further in Sect. 5, quantum models satisfy a much stronger form
of self-duality: not only does there exist an order-isomorphism V(H) � E(H), but
this is given by an inner product on E(H) = L(H), namely, a �→ Tr(a·).
Theorem 1 ([14])Let A and B be irreducible, and let AB be any locally-tomographic,
non-signaling composite of A with B. Then any isomorphism state in AB is pure in
�(AB), and any isomorphism effect is extremal in E(AB)+.

If A and B are not irreducible, an isomorphism state on AB need not be pure.
For example, if A = B = (E,�(E)), then any state uniformly correlating A and
B—say ω(x, x) = 1/|E | and ω(x, y) = 0 for x �= y—is an isomorphism state, but
will be pure only if |E | = 1.

12The converse is not quite true: an order-isomorphism E(A) � V(A) defines a non-signaling state
on A ⊗max B (see definition 14 below), but need not correspond to a state of AB.
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3.3 Quantum Composites

This is a good place at which to pause for a second and more detailed look
at quantum-mechanical composites. As noted earlier in Example 2, the mapping
X (H) × X (K ) �→ X (H ⊗ K ) given by x, y �→ x ⊗ y turns A(H ⊗ K ) into a
composite of the models A(H) and A(K ). This mapping extends to the bilinear
mapping

E(H) × E(K ) = Lh(H) × Lh(K ) → Lh(H ⊗ K ) = E(H ⊗ K ),

that sends a, b ∈ Lh(H) × Lh(K ) to the operator a ⊗ b on H ⊗ K (given by
(a ⊗ b)(x ⊗ y) = ax ⊗ by for all x ∈ H, y ∈ K ). Hence, by Lemma 3, A(H⊗ K )

is a non-signaling product of A(H) and A(K ).

Conditioning LetH be a complex Hilbert space. For any vectors x, y ∈ H, let x � y
denote the rank-one operator onH given by (x � y)z = 〈z, y〉x . (In Dirac notation,
this is |x〉〈y|.) If x is a unit vector, then x � x = Px , the orthogonal projection
operator associated with x .

The mapping x, y �→ x � y is sesquilinear, that is, linear in its first, and conjugate
linear in its second, argument; it therefore extends to a linear mapping H ⊗ H̄ →
L(H), where H̄ is the conjugate space ofH, taking any vector v = ∑

i ti xi ⊗ ȳi to
the corresponding operator v̂ := ∑

i ti xi � yi . It is easy to see that this is injective
and hence, on dimensional grounds, an isomorphism. It is useful to note that

〈v̂(x), y〉 = 〈v, y ⊗ x̄〉

for all x, y ∈ H. Hence, if v is any unit vector in H ⊗ H̄, the corresponding pure
state ω = αv of A(H ⊗ H̄) assigns joint probabilities to outcomes x ∈ X (H) and
ȳ ∈ X (H̄) by

ω(x, ȳ) = |〈v, x ⊗ ȳ〉|2 = ∣∣〈v̂(y), x〉∣∣2
so that the conditional stateω2|ȳ is exactly the pure state associatedwith the unit vector

ˆv(y)/‖ ˆv(y)‖. (The rather special fact that conditioning a pure bipartite quantum
state by a measurement outcome always leads to a pure state—the pure conditioning
property—has been exploited in [24, 74].)

Purification and Correlation Suppose now that α is a state on A(H), represented
by a density operator W onH with spectral resolution

W =
∑
x∈E

λx Px =
∑
x∈E

λx x � x

where E is an orthonormal basis for H and
∑

x∈E λx = Tr(W ) = 1. Functional
calculus gives us W 1/2 = ∑

x∈E λ
1/2
x x � x . We can interpret this as a unit vector in

H ⊗ H̄, namely
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�W :=
∑
x∈E

λ1/2
x x ⊗ x̄ . (1)

This, in turn, defines a bipartite state on the composite quantum system AĀ :=
A(H⊗H). The marginal, or reduced, state of the first component system is given by

ω1(a) = Tr(P�W (a ⊗ 1H) = 〈(a ⊗ 1H̄)�W , �W 〉 = Tr(Wa)

so the pure state corresponding to �W is a dilation (or purification) of the given
mixed state W . Now observe that if u, v ∈ X (H) with u ⊥ v, then we have

〈�W , u ⊗ v̄〉 =
∑
x∈E

λ1/2
x 〈x, u〉〈x̄, v〉 = 0.

Evidently, the pure stateω corresponding to�W sets up a perfect correlation between
E ∈ M(H) and the corresponding test Ē = {x̄ |x ∈ E} ∈ M(H̄), with

ω(x, x̄) = |〈�W , x ⊗ x̄〉|2 = |λ1/2
x |2 = λx .

An especially interesting case arises when α is the maximally mixed state, i.e.,
when W = 1

n 1 (where n = dim(H)). In this case, we have

�W = 1√
n

∑
x∈E

x ⊗ x̄ .

This is the analogue, on H ⊗ H̄, of the maximally entangled, or EPR, state on
H⊗H. Notice that �W is independent of the choice of E (since every orthonormal
basis of H is an eigenbasis for 1). Hence, �W simultaneously correlates every test
E ∈ M(H) with its counterpart in M(H). Moreover, the correlation is uniform, in
that the probabilities of correlated pairs x ⊗x of outcomes is uniformly 1/n. As we’ll
see later, the existence of such a uniformly correlating state between two isomorphic
systems has interesting consequences.

Local Tomography IfH and K are real or complex Hilbert spaces of dimensions m
and n, respectively, As was remarked above, A(H⊗ K ) is a non-signaling composite
of A(H) and A(K ). It is easily checked that dim E(A) = dimLh(H) = m2 if H
is complex and (m2 + m)/2 if H is real. Hence, the dimension of the real vector
space E(H⊗ K ) = Lh(H⊗ K ) of Hermitian operators is (mn)2 = m2n2, so in fact
Lh(H⊗ K ) = Lh(H) ⊗Lh(K ), and the composite system is locally tomographic.
On the other hand, if H and K are real, the dimension of Lh(H ⊗ K ) is ((mn)2 −
mn)/2 + mn = ((mn)2 + mn)/2, while the product of the dimensions of Lh(H)

and Lh(K ) is

(m2 + m)

2
· (n2 + n)

2
= m2n2 + m2n + mn2 + mn

4
.
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This is strictly less than (m2n2 + mn)/2, which in turn is less then (mn)2, so in this
case, E(AB) is strictly larger than E(A) ⊗ E(B). Thus, for real Hilbert spaces H
and K , the standard compositeM(H ⊗ K ) is not locally tomographic. (Neither do
we have local tomography for quaternionic Hilbert spaces, though here, one needs
to be more careful about the formulation of the relevant tensor products. See [6] and
[46] for more details.)

3.4 Maximal and Minimal Tensor Products

Let AB be a non-signaling composite of two systems A and B. As noted above, if
AB is locally tomographic, then E(AB) � E(A) ⊗ E(B) as vector spaces. In this
section, we consider more closely the possibilities for such a composite.

Aswe saw earlier, any non-signaling stateω on any composite system AB induces
a bilinear form on E(A)× E(B). If AB is locally tomographic, then we can identify
ω with this form. We then see that there are two extreme possibilities for the set
of states on a locally tomographic composite AB: maximally, we may include all
positive, normalized bilinear forms on E(A) × E(B); minimally, we may restrict
our attention to the closed convex hull of the product states.

It will simplify further discussion to put these ideas into a broader context [54]:

Definition 14 Let E and F be any two finite-dimensional ordered vector spaces.
The minimal tensor cone on E ⊗ F is the cone generated by pure tensors a ⊗ b with
a ∈ E+ and b ∈ F+. The maximal tensor cone is the cone consists of all tensors τ

such that ( f ⊗ g)(τ ) ≥ 0 for all ( f, g) ∈ E∗
+ × F∗

+—in other words, the cone of
tensors corresponding to positive bilinear forms on E∗ × F∗.

Evidently, (E ⊗min F)+ ⊆ (E ⊗max F)+; in general, the inclusion is proper.
These two cones on E ⊗ F give us two different ordered tensor products, which we
denote by E ⊗min F and E ⊗max F, respectively. It is not difficult to see that (in finite
dimensions) we have

(E ⊗min F)∗ = E∗ ⊗max F∗ and (E ⊗max F)∗ = E∗ ⊗min F∗.

Let B(E, F) stand for the space of bilinear forms on E × F (so that (E ⊗ F)∗ �
B(E, F)), and B+(E, F), for the cone of all bilinear forms that are non-negative
on E+ × F+. Then we also have

(E∗ ⊗max F∗)+ � B(E, F)+ and (E ⊗max F)+ � B+(E∗, F∗).

If E and F are order-unit spaces, with order-units u and v, say, then u ⊗v is an order
unit for both E ⊗max F and E ⊗min F .

Let AB be any locally tomographic composite of models A and B. As noted
above, every state on AB induces a positive bilinear form on E(A) × E(B). This
gives us a positive linear mapping
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V(AB) �→ B(E(A), E(B)) = V(A) ⊗max V(B).

The existence of product states (condition (ii) in definition 9) tells us that the image
of V(AB)+ under this mapping contains (V(A)⊗min V(B))+. Thus, if AB is locally
tomographic, we have order-embeddings

V(A) ⊗min V(B) ≤ V(AB) ≤ V(A) ⊗max V(B).

This raises the question of whether we can define, in a canonical way, locally
tomographic composites—call them A ⊗max B and A ⊗min B—in such a way that

V(A ⊗min B) = V(A) ⊗min V(B) and V(A ⊗max B) = V(A) ⊗max V(B).

To this end, we define the maximal composite of models A and B, A ⊗min B by
setting X (A ⊗max B) = X (A) × X (B) and M(A ⊗min B) = M(A) × M(B), and
taking �(A ⊗max B) to be the state space of E(A)⊗min E(B). Then V(A ⊗max B) =
V(A) ⊗max V(B). Define the minimal composite of A and B, A ⊗min B, to be the
maximalmodel associatedwith the order-unit space E(A)⊗max E(B) (see the remark
on page 13). Then V(A ⊗min B) = V(A) ⊗min V(B).

Thus, A⊗max B is the smallest possible locally tomographic composite of A and B,
in the sense of having the fewest possible tests, and the largest, in the sense of having
the most states; dually, A ⊗min B has the largest possible set of tests, and hence, the
smallest possible state space. (Onemight say, roughly speaking, that A⊗min B admits
no entanglement between effects, and, consequently, admits all possible entangled
states; at the other extreme, A⊗max B admits every possible entangled bipartite effect
and, in consequence, admits no entanglement of states.)

If �(A) or �(B) is a simplex, then it is easy to show that V(A) ⊗max V(B) �
V(A) ⊗min V(B) and E(A) ⊗max E(B) � E(A) ⊗min E(B). Thus, a classical
systemadmits no entangled states or effects in any locally tomographic non-signaling
composite with another system. There is a partial converse:

Theorem 2 ([54]) The following are equivalent:

(a) �(A ⊗max B) contains no entangled state for any model B,
(b) �(A ⊗max B) contains no entangled state, B the square bit (Example 3),
(c) �(A) is a simplex.

It follows that any non-classical system A—one with a non-simplicial state
space—will admit some locally tomographic, non-signaling composite AB that
admits entangled states. In this sense, entanglement is a highly generic phenom-
enon in non-classical probability theory.
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3.5 Monoidal Probabilistic Theories

Earlier, we decided to represent a probabilistic theory as a category of probabilistic
models with positivemappings asmorphisms. It is not unreasonable to require that, if
A, B andC are three systems, we should be able to form tripartite composites (AB)C
and A(BC). We’d perhaps like to require that these be the same, i.e., that we have an
associative rule of composition. This is not a trivial requirement—one can readily
imagine situations in which the composition of systems might not be associative13—
but it is a natural one, especially if we think of AB as simply modelling the two
systems considered together, but not necessarily interacting in any way.

A symmetric monoidal category is a category C, equipped with a bi-functor C ×
C

⊗−→ C, such that for all A, B, C, D ∈ C,

A ⊗ (B ⊗ C) � (A ⊗ B) ⊗ C and A ⊗ B � B ⊗ A

bymeans of natural isomorphsism αA;BC and σA,B belonging to C; and also equipped
with a tensor unit, I , and natural isomorphisms

I ⊗ A � A � A ⊗ I

This point of view has been extensively developed in the the categorical semantics
for quantum theory developed by Abramsky and Coecke [1, 26] and Selinger [61],
and also in the work of Baez and his students [6, 7].

Definition 15 A monoidal probabilistic theory is a probabilistic theory C, equipped
with a rule of composition A, B �→ AB assigning, to each pair of models A, B ∈ C,
a composite AB in the sense of Definition 9, and making C a symmetric monoidal
category. We shall say that C is non-signaling, respectively locally tomographic, iff
AB is non-signaling or locally tomographic for every pair A, B ∈ C.

This definition implies that, for all A, B ∈ C and all states α ∈ �(A), β ∈ �(B),
there is a distinguished product state α ⊗ β with (α ⊗ β)(xy) = α(x)β(y) for all
x ∈ X (A), y ∈ X (B). Similarly, for any (dual) processes τ1 ∈ C(A) and τ2 ∈ C(B),
there exists a process (τ1 ⊗ τ2) ∈ C(AB) with (τ1 ⊗ τ2)(a ⊗ b) = τ1(a) ⊗ τ2(b) for
all effects a ∈ E(A) and b ∈ E(B).

Finite-dimensional classical and quantum probability theory are both monoidal
with respect to their usual rules of composition. The minimal and maximal tensor
products are each naturally associative, and hencemake the category of all probabilis-
tic models into a monoidal probabilistic theory; but neither is entirely satisfactory:
the former provides for entangled states, but does not permit entangled effects, while
the latter provides for entanglement between effects, but allows none between states.

13Consider, for instance, the case of (Farmer ⊗ Hen) ⊗ Fox vs. Farmer ⊗ (Hen ⊗ Fox).
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That a probabilistic theory support a single “tensor product” that accommodates
entanglement of both states and effects, is a non-trivial constraint. To be sure, one
might consider probabilistic theories equipped with more than one rule of compo-
sition; however, the interactions among different non-signaling compositions on a
given theory can be very delicate. It therefore seems reasonable to begin by investigat-
ing the simpler possibilities for a theory equipped with a single privileged, monoidal
rule of composition.Accordingly, in the balance of this paper, we work in a monoidal
probabilistic theory C.

Historical Remarks Tensor products of compact convex sets or of order-unit spaces
were studied in a number of papers in the late 1960s, notably that of Namioka and
Phelps [54]. The fact that the marginal of an entangled pure state must be a mixed
state already appears there, albeit not in these terms, as do the definitions of what
we are calling the maximal and minimal tensor products. Our treatment composite
systems derives from that of Foulis and Randall [36, 46]. Some first attempts to
understand probabilistic theories as symmetric monoidal categories of probabilistic
models can be found in [15, 17]; work in this direction is ongoing.

4 Post-Classical Information Processing

As we’ve seen, entangled bipartite states and effects arise very naturally, not only in
quantum theory, but in almost any context in which we form non-signaling compos-
ites of non-classical systems. While this observation goes back at least to [45, 46] in
the late 1980s, it remained unexploited. Entanglement lies at the heart of quantum
information theory, so it natural to wonder to what extent quantum information-
theoretic results carry over to other non-classical settings. It turns out that a great
many such results do have analogues for probabilistic theories that are far more
general than quantum mechanics. While the exploration of this post-classical infor-
mation theory is still in its infancy, it has already shed considerable light on the scope
and meaning of several key quantum-informational results.

In this section, we review in some detail two of these. The first is the no-cloning
theorem, and its generalization, the no-broadcasting theorem. These hold in any
finite-dimensional theory having a state space that is not a simplex. The second is the
existence of a teleportation protocol, or, a bit more generally, of an entanglement-
swapping protocol. Here, some restrictions need to bemade, but they are of moderate
strength. For example, anymonoidal probabilistic theory inwhich individual systems
are weakly self-dual, and composites include states corresponding to isomorphisms
witnessing the weak self-duality, supports a certain kind of teleportation. Moreover,
when viewed in this generality, teleportation loses most of its mystery: it is simply
a form of classical conditioning, one which appears startling only owing to the
appearance of isomorphism states.
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4.1 Cloning and Broadcasting

To clone a state of a system A means, very broadly, to produce two independent
copies of that state by means of some physical process. In the present formalism, if
the initial state belongs to a system A, this would require a positive linear mapping

φ : V(A) → V(AA)

such that φ(α) = α ⊗α. There is no difficulty in producing a mapping that clones a
particular state: indeed, the constantmapping�(A) → �(AA) given byβ �→ α⊗α

for all β ∈ �(A) is affine, and hence, extends uniquely to a positive linear mapping
V(A) → V(AA). However, this mapping is (highly!) state-dependent. One might
ask whether one could jointly clone a collection of states, say, α1, . . . , αn . That is:
given such a set of states, can one find a single, norm-nonincreasing, positive linear
mapping V(A) → V(AA) that clones them all, in the sense that φ(αi ) = αi ⊗αi for
all i?

If the statesαi are jointly distinguishable, the answer is yes. If {ai } is an observable
on A with αi (ai ) = 1 for all i , then the mapping φ defined by

φ(β) =
∑

i

β(ai ) αi ⊗ αi

does the trick. The no-cloning theorem is essentially the converse: if there exists
a single process that will clone all of the states α1, . . . , αn , then there exists an
observable that distinguishes them. In the case of a discrete classical model, where
all pure states are jointly distinguishable, this is no restriction on the clonability of
pure states; but quantum pure states, which are not jointly distinguishable, are in
general not jointly clonable.

Thequantumno-cloning theoremwasfirst proved, independently, byWootters and
Zurek [78] and by Dieks [27]. That the same result holds for arbitrary probabilistic
theories is proved in [9].We omit the proof here, but the idea is simple: if we can clone
each of the states α1, . . . , αn with a single mapping, then by iterating this process,
we can create arbitrarily large ensembles of independent copies of an unknown
state α ∈ {α1, . . . , αn} and, by making measurements on this ensemble, we can use
statistics to distinguish among them.

We say that a state ρ ∈ � is broadcast by an affine mapping φ : � → � ⊗ � iff
the bipartite state φ(ρ) has marginal states φ(ρ)1 and φ(ρ)2 both equal to ρ. If ρ can
be expressed as a mixture of distinguishable—hence, clonable—states α1, . . . , αn ,
say ρ = ∑

i tiαi , then one can broadcast ρ using a cloning map φ for the states
α1, . . . , αn: the state φ(ρ) = ∑

i tiαi ⊗ αi has both marginal states equal to ρ,
as required. The quantum no-broadcasting theorem of Barnum et al. [8] tells us
that, conversely, two quantum states are jointly broadcastable iff, regarded as density
operators, they commute—which, by the Spectral Theorem, is equivalent to requiring



398 H. Barnum and A. Wilce

that all are convex combinations of some single set of distinguishable pure states. In
fact, this is a corollary of a more general result:

Theorem 3 ([9, 10]) Let � be the set of states broadcast by an affine mapping
φ : � → � ⊗ �. Then � is the simplex generated by a set of distinguishable states
in �, which are cloned by φ.

(Although we omit the proof here, it is not especially difficult. This is in contrast
to earlier proofs of the quantum no-broadcasting result [8, 47], which were not
especially easy.)

4.2 Remote Evaluation

Suppose C is a locally tomographic, monoidal probabilistic theory. Consider two
parties, Alice andBob, occupying arbitrarily distant sites. Suppose thatAlice controls
a pair of systems, say A0, A1 ∈ C, while Bob controls a system B ∈ C. Since
C is monoidal, we can represent Alice’s two systems together as a single bipartite
system A = A0 A1, and the entire Alice-Bob system, by the tripartite composite
AB = (A0 A1)B � A0(A1B).

Now suppose that the composite system A1B is in a state ω, while Alice’s system
A0 is in a state α, independent of the A1B sub-system. Then the total state of the
system AB = A0(A1B) is α ⊗ω. Now let Alice make a measurement on her system
A = A0 A1, obtaining a result represented by an effect f ∈ E(A); suppose Bob also
makes a measurement on his system, B, obtaining a result represented by an effect
b ∈ E(B), so that the joint outcome of these two measurements is f ⊗ b.

Lemma 5 (Remote Evaluation) With notation as above, let ω̂ : E(A1) → V(B)

and f̂ : V(A0) → E(A1) be the conditioning and co-conditioning maps associated
with the state ω and the effect f . Then, for all α ∈ V(A0) and all b ∈ E(B),

( f ⊗ b)(α ⊗ ω) = f̂ (ω̂(α))(b). (2)

The proof is easy: one simply checks that the formula is correct when ω is a prod-
uct state and f is a product effect. Since we are working with locally tomographic
composites, product states and product effects span E(A1B)∗ and E(A0 A1), respec-
tively, so (2) holds for all choices of ω and f . Nevertheless, the result is somewhat
surprising, for it asserts that the mapping

τ := ω̂ ◦ f̂ : V(A0) → V(B)

can be implemented, probabilistically, by means of a preparation of A1B in the
joint state ω and a (successful) observation of f on A0 A1. In particular, when Alice
observes the effect f , the corresponding un-normalized conditional state of Bob’s
system is
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( f ⊗ −)(α ⊗ ω) = τ(α).

Note that the probability of the process τ occurring in state α is u B(τ (α)), which is
exactly the marginal probability (α⊗ω)1( f ) of Alice’s obtaining f . In what follows,
we refer to the pair ( f, ω) as a remote evalution protocol for the process τ = f̂ ◦ ω̂.

We can reformulate the notion of conditioning and co-conditioning map, and
the remote evaluation Lemma (Lemma 5), in purely categorical terms. In fact, both
make sense in any symmetric monoidal category C. Given objects A, B ∈ C and a
morphism ω : A ⊗ B → I , there is a canonical mapping ω̂ : C(I, A) → C(B, I )
given by

B
a⊗idB ��

ω̂(a)

����
��

��
��

��
� A ⊗ B

ω

��

I

. (3)

Dually, if f ∈ C(I, A ⊗ B), there is a natural mapping f̂ : C(A, I ) → C(I, B)

given by

I
f

��

f̂ (α)
����

��
��

��
��

� A ⊗ B

α⊗idB

��

B

(4)

If C is a monoidal probabilistic theory, then ω̂ and f̂ , defined in this way, correspond
exactly to the conditioning and co-conditioning maps associated with the bipartite
state ω : A ⊗ B → I and effect f : I → A ⊗ B. Combining diagrams (3) and
(4), and taking advantage of the monoidal structure of C—in particular, the fact that
α ⊗ ω = (I ⊗ ω) ◦ (α ⊗ idA0⊗A1)—we have

ω̂( f̂ (α) ⊗ idB) = ω ◦ (α ⊗ idA1B) ◦ ( f ◦ idB) = (α ⊗ ω) ◦ ( f ⊗ idB) (5)

which precisely expresses Lemma 5.

A0 ⊗ A1 ⊗ B

α⊗idA1B

��

B = I ⊗ B

f ⊗B

������������������ f̂ (α)⊗idB ��

ω̂( f̂ (α))

�������������������� A1 ⊗ B

ω

��

I

(6)
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This has an important corollary. Since ω ◦ (α ⊗ idA1B) = α ⊗ (idA0 ◦ ω), we can
re-write (6) as

ω̂( f̂ (α) ⊗ idB) = α ◦ (idA0 ⊗ ω) ◦ ( f ⊗ idB)

Thus, the dual process τ ∗ : E(B) → E(A) corresponding to the process τ = ω̂ ◦ f̂
arising in the remote evaluation protocol, is in fact a morphism in C(A0, B).

Conclusive Teleportation In the special case in which the models A0, A1 and B are
isomorphic and weakly self-dual, we can consider a remote evaluation protocol in
which both the effect f ∈ E(A) and the state ω ∈ �(A1B) correspond to order
isomorphisms f̂ : V(E0) � E(A1) and ω̂ : E(A1) � V(B). In this case, the
process τ = ω̂ ◦ f̂ is again an order-isomorphism. If this scenario is repeated many
times, Bob can perform sufficiently many measurements to determine τ(α) with
reasonable confidence, and then compute the value of α. On the other hand, if τ is
probabilistically reversible, in a single run of the scenario Bob can actually correct
his state, with non-zero probability, so that it agrees with α. In this case, we may
say that the state α has been teleported from Alice’s system A0 to Bob’s system
B, and refer to ( f, ω) as a conclusive teleportation protocol. If τ is reversible with
probability 1, we shall say that ( f, ω) is a strong conclusive teleportation protocol.

Deterministic Teleportation Suppose now that Alice has access to an observable
{ fi } on A = A0 A1, with each of the effects fi an isomorphism effect. Each of
these effects, in combination with the isomorphism state ω, gives rise to a conclusive
teleportation protocol, implementing the order-isomorphism τi = ω̂ ◦ f̂i : V(A0) �
V(B). If Alice is permitted to communicate (classically) with Bob, then upon observ-
ing outcome fi , she can instruct Bob to implement the inverse process τ−1, which
he can do with probability ci := uBτ−1

i (α). It follows that the post-measurement
state of Bob’s system will be

∑
i ciα = α. In particular,

∑
i ci = ∑

i uBτ−1
i (α). Say

that A0 supports a deterministic teleportation protocol iff there exist such an effect
f and such a state ω on suitable composites A0 A1 and A1B, with B � A. In fact,
one might as well take these comosites to be Ao ⊗min A1 and A1 ⊗max B (in order
to have as many effects as possible on the former, and as many states as possible on
the latter.)

Theorem 4 ([11])Suppose there exist a finite group G acting transitively on A’s pure
states, and a G-equivariant order-isomorphism E(A) � E(A)∗. Then A supports a
deterministic teleportation protocol.

Entanglement Swapping Suppose that, like Alice, Bob controls a bipartite system
B = B1B2. Assume here that A0, A1, B1 and B0 are all isomorphic to one another.
Given an entangled state ω between A1 and B1, and isomorphism effects f on
A = A0 A1 and g on B = B1B0, we find that, for any state μ on A0 A0, we have
(up to the obvious symmetrizers and associators)

( f ⊗ g)(μ ⊗ ω) = g(ω̂ ◦ f̂ ◦ μ̂∗).
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Since this holds for any choice of g ∈ E(B), we have

(μ ⊗ ω)B| f = ω̂ ◦ f̂ ◦ μ̂∗

If τ = ω̂ ◦ f̂ is probabilistically reversible, then upon Bob’s executing the reverse
process, the state μ has been transferred from A0B2 to B = B1B0.

Teleportation and Compact Closure Let C be any symmetric monoidal category.
A dual for an object A ∈ C is an object B ∈ C, together with two morphisms,
η : I → B ⊗ A and ε : A⊗ B → I—called the unit and co-unit, respectively—such
that

(ε ⊗ idA) ◦ (idA ⊗ η) = idA and (idB ⊗ ε) ◦ (η ⊗ idA) = idB (7)

In view of the discussion above, if C is a monoidal probabilistic theory and f, ω is
a conclusive teleportation protocol for a pair of systems A, B ∈ C, then the remote
evaluation lemma tells us that f and ω function as a unit and co-unit, respectively,
for A and B. A symmetric monoidal category in which every object has a dual is
said to be compact closed. A compact structure on a compact closed category is a
specification, for every object A ∈ C, of a distinguished dual A′ ∈ C. Where A = A′
for every A ∈ C, this structure is degenerate.14

Theorem 5 ([15]) Let C be a monoidal probabilistic theory. The following are
equivalent.

(a) C admits a compact closed structure.
(b) Every A ∈ C can be teleported through some B ∈ C;
(c) Every morphism in C has the form ω̂ ◦ f̂ for some bipartite state ω and bipartite

effect f in C.

Proof The equivalence of (a) and (b) is clear from the preceding discussion. To see
that these are in turn equivalent to (c), suppose first that (a) and (b) hold. Choose for
each A ∈ C a dual system A′, a stateωA ∈ C(A⊗ A′, I ), and an effect f A ∈ C(I, A′⊗
A) with ω̂A = f̂ A

−1
. Then for any morphism τ ∈ C(A, B), let fτ ∈ C(I, A ⊗ B) be

the effect f A ◦(A′⊗τ). It is easily checked that then f̂τ = τ ◦ f̂ A, so that τ = f̂τ ◦ω̂A.
Conversely, if (c) holds, then for each A, the identity mapping idA factors as ω̂A ◦ f̂ A

for some ωA ∈ C(B ⊗ A, I ) and some f ∈ A ⊗ B. It follows that ω̂A = f̂ −1
A , so this

gives us a compact closed structure. �

14Duals, where they exist, are canonically isomorphic. Hence, for most purposes, the choice of
one rather than another object as “the” dual is irrelevant. The existence of a degenerate compact
structure is, however, a real constraint [15, 62].
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4.3 Ensemble Steering

Let B be a probabilistic model. An ensemble for a state β ∈ �(B) is a finite set of
of states βi ∈ V(B)+ such that

∑
i βi = β. We can understand such an ensemble as

representing one possible way of preparing the state β, namely, to choose one of the
normalized states β̂i := βi/u(βi ) with probability pi = uB(βi ).

One way to do this is to begin with a bipartite state ω on a non-signaling com-
posite AB, with marginal ω2 = β. Then for any observable E = {ai } on A, the
un-normalized conditional states βi := ω̂(ai ) are an ensemble for β. That is: by
measuring E , we prepare not only the marginal state ωB , but a particular ensem-
ble for this state. By choosing to measure a different observable, we will typically
obtain a different ensemble for β. If A and B are quantum systems, and if ω is a
pure entangled state of AB, then any ensemble for ω2 can be obtained in this way
from a suitable choice of measurement on A. This phenomenon was first observed by
Schrödinger [60], who called it steering. The concept extends readily to the setting
of an arbitrary non-signaling composite.

Definition 16 Let AB be a non-signaling composite of probabilistic models A and
B. A bipartite stateω ∈ AB is steering for its B marginal, or B-steering, for short, iff,
for every ensemble (convex decomposition)ω2 = ∑

i βi , whereβi are un-normalized
states of B, there exists an observable E = {ai } on A with βi = ω̂(ai ). We say that
ω is bi-steering iff it’s steering for both marginals.

The relevance of steering to information processing became evident when Ben-
nett and Brassard [21], in the same paper that introduced quantum key distribution,
considered a natural quantum scheme for another important cryptographic primitive,
bit commitment, and showed that ensemble steering can be used to break it. In the
proposed scheme, the two possible values to which Alice can commit are represented
by two distinct ensembles for the same density matrix. She is to send samples from
the ensemble to Bob in order to commit, and later reveal which states she drew so
that Bob can check that she used the claimed ensemble. However, by sending to
Bob, not a draw from the ensemble, but one of two systems in an entangled pure
bipartite state with the specified density matrix as its marginal, and keeping the other
system, she can realize either ensemble after she has already sent the systems to Bob
by making measurements on her entangled system, enabling her to perfectly mimic
commitment to either bit.

Later Mayers, and Lo and Chau, showed that no information-theoretically secure
quantum bit commitment protocol can exist. The techniques they used to defeat
putative protocols do not literally use steering, but are closely related to the Bennett-
Brassard steering attack, in particular in Alice’s retention of a system purifying the
systems she sends to Bob in the course of the protocol.

The paper [14] studies steering in the context of general probabilistic theories. If
α is any state on A and β is a pure state on B, then ω = α ⊗β is trivially steering for
ω2 = β since the latter has no non-trivial ensembles. In particular, any pure product
state will be steering for both of its marginals. Any isomorphism state ω ∈ V(AB)

will also be steering.
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It follows almost immediately from the definition, that if ω is steering for its
B-marginal, then the image, ω̂(E(A)+), of the positive cone in E(A), is a face of
V(B)+. Indeed, we have

Lemma 6 If ω is steering for its B-marginal, then ω̂(E(A)+) = Face(ω2).

Here Face(ω2) refers to the face generated by ω2, i.e., the smallest face of V(B)+
containing ω2. The converse of Lemma (6) is false.

A probabilistic theory C supports uniform universal steering if, for every system
B ∈ C, there exists a system AB ∈ C such that every state β ∈ A is the marginal
of some B-steering state ω ∈ AB B. If one can always take AB = A, we say that C
supports universal self-steering.

Theorem 6 Let ω ∈ �(AB) be steering for ω2, where ω2 is interior to V(B)+,
so that Face(ω2) = V(B)+. If ω̂ is injective (non-singular), then ω̂ is an order
isomorphism. If V(B) is irreducible, therefore, by Proposition 1, ω̂ it is pure.

In other words, if A and B have the same dimension, then the states that are
steering for an interior marginal are precisely the isomorphism states (and hence,
are steering for both marginals).

Steering is closely related to an important property of quantum theory called
homogeneity.

Definition 17 Let G be a group of order-automorphisms of an ordered vector space
E. We say that E is homogeneous with respect to G if G acts transitively on the
interior of the positive cone E+. That is, for every pair of interior points a, b of
E+, there exists an element g ∈ G with ga = b. We say E is homogeneous if it is
homogeneous with respect to some group of order-automorphisms, or, equivalently,
if it is homogeneous with respect to the group Aut(E) of all order-automorphisms.

It can be shown that the coneL+(H) of positive operators on a finite-dimensional
Hilbert spaceH is homogeneous with respect to the group of order-automorphisms
of L(H). As we discuss below in Sect. 5, the combination of homogeneity and
strong self-duality comes close to characterizing finite-dimensional quantum theory
among probabilistic theories generally. More precisely, the Koecher-Vinberg The-
orem asserts that if E is an ordered linear space whose positive cone E+ is both
homogeneous and self-dual, then E can be given the structure of a euclidean Jordan
algebra. With this in mind, the following result is particularly intriguing:

Theorem 7 For a model with irreducible state space V(A) the following are equiv-
alent:
(a) A is homogeneous;
(b) Every normalized state in the interior of �(A) is the A-marginal of an iso-
morphism state in B ⊗max A, where B is any (fixed) model with state space order-
isomorphic to V(A)∗.
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From this we obtain:

Corollary 4 For any model with irreducible state space A, the following are equiv-
alent:
(a) V(A)+ is weakly self-dual and homogeneous;
(b) Every normalized state in the interior of �(A) is the marginal of an isomorphism
state in A ⊗max A.

Corollary 4, combined with Theorem 7, gives

Theorem 8 In any theory that supports universal uniform steering, every irre-
ducible, finite-dimensional state space in the theory is homogeneous.

In light of Corollary 5, we also have

Theorem 9 In any theory that supports universal self-steering, every irreducible,
finite-dimensional state space in the theory is homogeneous and weakly self-dual.

Therefore, the distance between probabilistic theories allowing universal self-
steering, and those whose state-spaces are Jordan-algebraic is just that between weak
and strong self-duality.

In [13] it was shown that an asymptotically exponentially secure bit commit-
ment protocol, based (like the original Bennett-Brassard one-qubit protocol) on the
nonuniqueness of convex decomposition in nonclassical state spaces, exists in any
theory containing some nonclassical state spaces, coupled only by theminimal tensor
product (so that there is no entanglement between them). In a nonclassical theory in
which all states can be steered, by contrast, this type of bit commitment protocol can
always be defeated.

4.4 Entropy and Information Causality

Classical information theory begins with the Gibbs-Shannon entropy H(p) =
−∑

i pi log(pi ) of a discrete probabiilty weight p1, . . . , pn . Analogously, in quan-
tum theory the von Neumann entropyof the state corresponding to a density operatorρ
is given by S(ρ) := Trρ log ρ. This is related to the classical Gibbs-Shannon entropy
in two important ways. On one hand, S(ρ) is the minimum of the Gibbs-Shannon
entropies −∑

i pi log pi of the probability weights pi = Tr(ρei ) that ρ induces on
quantum tests {ei }. (This turns out to be achieved when the measurement is in a
diagonalizing basis). Alternatively, S(ρ) is the minimum Gibbs-Shannon entropy of
the probabilities pi arising in representations of ρ as a mixture ρ = ∑

i piρi of pure
states ρi . (This again turns out to be achieved for an ensemble whose states are the
rank-one projectors corresponding to a diagonalizing basis).

Both of these characterizations make sense in the context of an arbitrary proba-
bilistic model, but in general, they are not equivalent.
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Definition 18 Let α be a state on A. For each test E ∈ M(A), define the local
measurement entropy of α at E , HE (α), to be the classical (Shannon) entropy of
α|E , i.e.,

HE (α) := −
∑
x∈E

α(x) log(α(x)).

The measurement entropy of α, H(α), is the infimum of HE (α) as E ranges over
M(A), i.e.,

H(α) := inf
E∈M(A)

HE (α).

Note that the measurement entropy of a state α ∈ �(A) depends entirely on the
structure of the test space M(A), and not on the geometry of the state space �.

We shall assume inwhat follows that themeasurement entropy of a state is actually
achieved on some test, i.e., that H(α) = HE (α) for some E ∈ M(A). This is the
case in quantum theory, and can be shown to hold much more generally, given some
rather weak analytic requirements on the model A ([12], Appendix B.) It follows
that H(α) = 0 if and only if there is a test such that α assigns probability 1 to one
of its outcomes.
Notation: It will often be convenient to write H(α) as H(A), where context makes
clearwhich state is being considered. If AB is a non-signaling composite, and H(AB)

represents H(ω), we shall write H(A) and H(B) for the marginal entropies H(ω1)

and H(ω2). It is easily checked that the measurement entropy is subadditive, i.e.,

H(AB) ≤ H(A) + H(B).

Definition 19 Let α be a state on A. The mixing (or preparation) entropy for α,
denoted S(α), is the infimum of the classical (Shannon) entropy H(p1, . . . , pn) over
all finite convex decompositions α = ∑

i piαi with αi pure states in �(A).

Again, we write S(A) for S(α) where α belongs to the state space � of a system
A = (M,�). In contrast to measurement entropy, the mixing entropy of a state
depends only on the geometry of the state space �, and is independent of the choice
of test spaceM(A). Themixing entropy is essentially the same as the entropy defined
for elements of compact convex sets by A. Uhlmann in [67].

We call a theory monoentropic if mixing entropy equals measurement entropy,
for every state of every model in the theory. Appendix B of [12] considers some
implications of monoentropicity. For instance, it is shown that any monoentropic
model A in which the set of pure states is closed in �(A) is sharp.

We define conditional and mutual information in terms of measurement entropy
via formulas that also hold classically:
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Definition 20 The conditional measurement entropy between A and B is defined
to be

H(A|B) := H(AB) − H(B). (8)

The (measurement-based) mutual information is defined to be:

I (A : B) := H(A) + H(B) − H(AB). (9)

Intuitively, one might expect that I (A : B) should not decrease if we recognize
that B is a part of some larger composite system BC—i.e., we might expect that
I (A : B) ≤ I (A : BC). Simple algebraic manipulations (using Eqs. (8) and (9))
allow us to reformulate this condition in various ways.

Lemma 7 The following are equivalent:

(a) I (A : BC) ≥ I (A : B)

(b) H(A|BC) ≤ H(A|B)

(c) H(AB) + H(BC) − H(B) ≤ H(ABC)

(d) I (A : B|C) ≥ 0, where I (A : B|C) = H(A|C) + H(B|C) − H(AB|C).

Themeasurement entropy is said to be strongly subadditive if it satisfies the equivalent
conditions (a)–(d). (Condition (c) is what is usually termed “strong subadditivity”
(SSA).) A probabilistic theory inwhich conditions (a)–(d) are satisfied for all systems
A, B and C will also be called strongly subadditive. Despite the intution mentioned
above, strong subadditivity can fail in general theories, which is perhaps a signal
that mutual information as defined above should not be interpreted in general as “the
information each system contains about the other”.

The Holevo Bound and the Data Processing Inequality The strong subadditivity
inequality is crucial to deriving bounds on many quantum information-transmission
protocols, and the conditions under which it is satisfied with equality are also of great
importance. Another extremely important inequality—derivable, in the quantum set-
ting, from strong subadditivity—is theHolevo bound, which figures in an expresssion
for the highest achievable rate of classical information transmission through a noisy
quantum channel.

The standard formulation of the Holevo bound can apply to a general theory, if the
entropies are interpreted as measurement entropies: it asserts that if Alice prepares a
state ρ = ∑

x∈E pxρx for Bob, then, for any measurement F that Bob can make on
his system,

I (E : F) ≤ χ,

where χ := H(ρ) − ∑
x∈E px H(ρx ) (often called the Holevo quantity).

Suppose that Alice has a classical system A = ({E},�(E)) and Bob a general
system B. Alice’s system is to serve as a record of which state of B she prepared.
The situation above is modeled by the joint state ωAB = ∑

x∈E pxδx ⊗ βx , where
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δx is a deterministic state of Alice’s system with δx (x) = 1. Bob’s marginal state
is ω2 = ∑

x∈E pxβx . It is easily shown that, H(ωAB) = H(A) + ∑
x∈E px H(βx ).

Hence,

I (A : B) = H(A) + H(B) − H(AB)

= H(A) + H(B) −
(

H(A) +
∑
x∈E

px H(βx )

)

= H(ωB) −
∑
x∈E

px H(βx ) = χ.

So the content of the Holevo bound is simply that the mutual information between
the measurement of Alice’s classical system and any measurement on Bob’s system
is no greater than I (A : B),

I (E : F) ≤ I (A : B).

(While this is certainly natural, in general theories it does not always hold.)
Both strong subadditivity and the Holevo bound are instances of a more basic

principle. The data processing inequality (DPI) asserts that, for any systems A, B
and C , and any physical process E : B → C ,

I (A : E(B)) ≤ I (A : B)

where I (A : E(B)) refers to the mutual information of the state resulting from
applying idA ⊗ E) to the state of AB. The strong subadditivity of entropy amounts
to the DPI for the process that simply discards a system (the marginalization map
BC → C). The Holevo bound is the DPI for the special case of measurements,
which can be understood as processes taking a system into a classical system which
records the outcome.

Information Causality In a widely discussed paper [55], M. Pawlowski et al. intro-
duced a constraint on a non-signaling probabilistic theory, which they called informa-
tion causality, in terms of the following protocol. Two parties, Alice and Bob, share
a joint non-signaling state, known to both of them. Alice receives a random bit string
e of length N ; after making measurements, she sends Bob a message, f , a bit-string
of length length m or less. Bob receives a random variable G, encoding a number,
k = 1, . . . , N , which he takes as the instruction to measure Alice’s k-th bit. After
making a suitablemeasurement, and taking into account both its outcome andAlice’s
message, Bob produces his guess, bk . Information causality is the requirement that

N∑
k=1

I (ek : bk |G = k) ≤ m. (10)
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The main result of [55] is that if a theory contains states that violate the CHSH
inequality by more than the Tsirel’son bound, then it violates information causality.
In particular, if Alice and Bob can share PR boxes, then using a protocol due to
van Dam [68], they can violate information causality maximally, meaning that Bob’s
guess is correct with certainty, and the left hand side of Eq. (10) is N . Pawlowski et al.
also give a proof, using fairly standardmanipulations of quantummutual information,
that quantum theory does satisfy information causality.

One of the principal results of [12] is a sufficient condition for a general prob-
abilistic theory to be information-causal. The following is a strengthening of that
result:

Theorem 10 Suppose that a theory is strongly subadditive, and satisfies the Holevo
bound. Then the theory satisfies information causality. It follows that any theory
satisfying these conditions cannot violate Tsirel’son’s bound.

Since strong subadditivity and the Holevo bound follow from the data processing
inequality, we have the following:

Corollary 5 Any theory in which measurement-based mutual information satisfies
the data processing inequality satisfies information causality.

In [12], monoentropicity was assumed in addition to SSA and Holevo. As noted
there, it was only used to derive that H(A|B) ≥ 0 when A is classical. However,
this follows easily from strong subadditivity in the equivalent (cf. Lemma 7) form
I (A : B|C) ≥ 0, when we let A and B be identical perfectly correlated classical
systems. We have ([12], Addendum):

I (A : B|C) = H(A|C) + H(B|C) − H(AB|C) (11)

= H(AC) − H(C) + H(BC) − H(C) − H(ABC) + H(C) (12)

= H(AC) + H(BC) − H(ABC) − H(C). (13)

Since A, B are perfectly correlated classical systems, H(AC) = H(BC) =
H(ABC). Consequently, in this case I (A : B|C) = H(AC) − H(C) ≡ H(A|C).
By SSA, this is ≥ 0.

4.5 Other Developments

There is much more to say about information processing in general probabilistic
theories than we have room to discuss here. We remark in particular on [20], in
which a version of the de Finetti theorem is proved for states on test spaces.
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5 Characterizing Quantum Theory

Aswe’ve seen, a great number of information-processing phenomena first discovered
in association with quantum theory, are actually rather more generally post-classical,
as opposed to quantum, in character. This brings us back to the question of how
to characterize quantum theory in operational or probabilistic terms. The idea is
to identify one or more features of quantum theory that can be expressed in purely
operational-probabilistic terms—roughly,without any special reference to theHilbert
space structure, but only in terms of primitive concepts such as states, effects, tests,
processes, etc.—and that, taken together, uniquely specify quantum (or quantum-
plus-classical) models. This is an old problem, and also a somewhat vague one,
since what counts as a satisfactory solution will be, to some extent, a matter of
taste. Even so, striking progress has been made in the past several years, leading to
several different, more-or-less satisfactory characterizations of quantum mechanics
as a probability theory [24, 28, 50, 57]. In this section, we review one of these [17,
18, 74, 76], which makes use of the equivalence between homogeneous self-dual
cones and Euclidean Jordan algebras.

It will be convenient (and largely harmless) to assume in this section that every
model A is outcome-closed, meaning that the image of X (A) in E(A) is closed. This
is a weak condition, virtually always satisfied in practice.

5.1 Homogeneity and Self-Duality

Let E be (for the moment) any finite-dimensional ordered linear space. Given a
bilinear form B : E × E → R, we define the internal dual (with respect to B) of
the cone E+ to be the cone

E+ := {a ∈ E|∀x ∈ E+, B(a, x) ≥ 0}.

We say that B is positive on E+, or simply positive, iff E+ ⊆ E+—in other words,
if the linear mapping β : E → E∗ given by β(a)(x) = B(a, x) is positive.

Definition 21 E is self-dual with respect to B iff E+ = E+. We shall say that E is
weakly self-dual iff there exists a bilinear formBwith respect to which E is self-dual,
and strongly self-dual, if there exists an inner product on E having this feature.

Weak self-duality is equivalent to the existence of an isomorphism state in A⊗max

A. As discussed above, this is equivalent to the requirement that there exist some
composite of three copies of A that supports a conclusive teleportation protocol, and
to the requirement that states on A arise as marginals of steering states in a composite
of A with itself [14]. Strong self-duality is much less easy to motivate, but we will
discuss several ways in which it can be justified in the next section.
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Recall that E is homogeneous with respect to a group G of order-automorphisms
if G acts transitively on the interior of the positive cone E+, so that for every pair of
interior points a, b of E+, there exists an element g ∈ G with ga = b.

Classical and quantum probabilistic models are both homogeneous and self-dual.
Somewhat more generally, let E be a euclidean Jordan algebra. This is a finite-
dimensional real vector space E equipped with a commutative bilinear operation
• satisfying the Jordan identity a2 • (b • a) = (a2 • b) • a for all a, b ∈ E, and
equipped with a canonical trace such that 〈a, b〉 := Tr(a • b) is an inner product,
with 〈a • b, c〉 = 〈a, b • c〉 for all a, b, c ∈ E. The set E+ = {a2|a ∈ E} (where
a2 = a • a) is a cone in E+, and one can show is homogeneous with respect to the
group of order-automorphisms of E, and self-dual with respect to the tracial inner
product. Remarkably, there is a converse, to be found in work of M. Koecher [44]
and E. Vinberg [69].

If G be any closed subgroup of Aut(E), acting transitively on the interior of E+,
then G is a Lie subgroup of GL(E). Let g denote its Lie algebra, and let gu denote the
Lie algebra of the stabilizer Gu ≤ G of the order-unit. The following formulation of
the Koecher-Vinberg Theorem summarizes the construction of the Jordan product on
E. See [32] for a proof (also, the Appendix to [18] contains a fairly detailed outline of
the proof and some additional remarks pertinent to the precise version given below):

Theorem 11 (Koecher-Vinberg) Let E+ be self-dual with respect to some inner
product on E, and let G be a closed, connected subgroup of Aut(E), acting transi-
tively on the interior of E+. Then

(a) It is possible to choose a self-dualizing inner product on E+ in such a way that
Gu = G ∩O(E) (where O(E) is the orthogonal group with respect to the inner
product);

(b) If G = G† with respect to this inner product, then gu = {X ∈ g|X† = −X} =
{X ∈ g|Xu = 0}, and g = gu ⊕ P, where P = {X ∈ g|X† = X};

(c) In this case the mapping P → E, given by X �→ Xu, is a vector-space
isomorphism. Letting La be the unique element of P with Lau = a, define

a • b = Lab

for all a, b ∈ E. Then • makes E a formally real Jordan algebra, with identity
element u.

In [43], Jordan, von Neumann and Wigner classified Euclidean Jordan algebras
as belonging to one of two broad types, plus one exceptional example. These are

(a) Hermitian parts of matrix algebras over R,C or H, ordered as usual;
(b) Spin factors, in which the normalized state space is a ball of dimension n; and
(c) The Exceptional Jordan Algebra of positive semidefinite 3×3 hermitianmatri-

ces over the Octonions.

Thus, it would seem that if we can motivate both homogeneity and self-duality in
operational terms, we will go a great way towards obtaining an operational charac-
terization of finite-dimensional QM. This problem is taken up in the next section.
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We then discuss the consequences of assuming that a monoidal probabilistic theory
consistingof Jordanmodels has locally tomographic composites.Here a theorem of H.
Hanche-Olsen [40] can be invoked to show that, so long as the theory contains even a
single instance of the simplest quantum-mechanical system—a qubit—every system
allowed by the theory must be quantum.

5.2 Motivating Homogeneity and Self-Duality

Let us call a model A HSD (Homogeneous and self-dual) iff its linear hull E(A)—or,
equivalently, its dual, V(A)—is homogeneous and self-dual. Why should this be the
case? In this section, we discuss several possible answers.

Homogeneity Call a state α ∈ �(A) non-singular iff α(x) > 0 for all x ∈ X (A).
Since V(A) is finite-dimensional, it is easy to see that α is non-singular iff it lies in
the interior of the cone V(A)+. If α and β are two states and τ is a probabilistically
reversible process such that τ(α) = tβ for some 0 < t ≤ 1, then t−1τ is an
order-automorphism of V(A) taking α to β. This gives us a perfectly serviceable
operational interpretation of homogeneity: any non-singular state can be prepared
from any other, up to normalization, by a probabilistically reversible process.15 As
noted above, homogeneity is also implied by either of the following conditions:

(a) Every interior state is the marginal of an isomorphism state
(b) Every state is the marginal of a steering state.

Yet another way of arriving at the homogeneity of V(A) can be found in [74].

Self-Duality Self-duality seems less clear-cut, but can be obtained as a consequence
of certain symmetry assumptions. Perhaps the simplest and most dramatic is the
following beautiful result due to M. Mueller and C. Ududec. Call two states α, β ∈
�(A) sharply distinguishable by effects iff there exists an effect a such that α(a) = 1
and β(a) = 0. Mueller and Ududec call a system bit-symmetric iff every such pair
of states can be mapped to any other such pair by a symmetry of the state cone, that
is, an affine symmetry of �. They then prove:

Theorem 12 ([52]) If �(A) is bit-symmetric, then V(A) (and hence, E(A)) is self-
dual.

It is worth noting that not every self-dual model is bit-symmetric. For instance,
if � is a 2-dimensional regular 2n + 1-gon, then V(�) is self-dual, but � is not
bit-symmetric. Bit-symmetry is thus a very restrictive, yet very plausible, and oper-
ationally meaningful, constraint.

15One might raise the aesthetic objection that it is awkward to make special reference to the interior
state. But it is difficult to see how this is any worse aesthetically than making special reference to,
say, pure states.
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A more involved condition having a somewhat similar flavor, but dealing with the
test space structure X (A) rather than the pure states of A, is worth mentioning. Call
A bi-symmetric iff it is 2-symmetric under G(A) and if G(A) acts transitively on
pure states. As discussed in Sect. 2.2, it is quite easy to construct such models one at
a time. Recall that A is sharp iff for every outcome x , there is a unique state α with
α(x) = 1.

Theorem 13 ([76]) Let C be a monoidal probabilistic theory in which every model
is bi-symmetric. If A ∈ C is irreducible and sharp, then E(A) is self-dual.

Another way of obtaining self-duality from bi-symmetry involves the notion of a
conjugate system:

Definition 22 A conjugate for a model A is a structure (A, γA, ηA), where A is
a model, γA : A → A is an isomorphism, and ηA is a bipartite state (on some
non-signaling composite) AA such that

ηA(x, γA(x)) = 1/n

for every x ∈ X (A). We’ll call γA the conjugation map and ηA, the correlator for
the given conjugate.

Notice that this implies that every test E ∈ M(A) has cardinality n.

Example 10 Let A = A(H) be the quantum model associated with a complex
Hilbert spaceH, and A = A(H̄) associated with the conjugate Hilbert space. Define
a mapping γA : X (H) → X (H̄) by γA : x �→ x̄ (strictly speaking, the identity
map!). Then, as discussed in Sect. 3.3, ηA(x, γA(y)) = |〈�, x ⊗ y〉|2 = Tr(P� Px⊗y)

is a correlator, where � is the ‘EPR’ state.

If A has a conjugate, then it has a conjugate for which the correlator ηA is sym-
metric, in the sense that η(x, γA(y)) = η(y, γA(x)), and invariant, in the sense that
ηA(gx, γA(gy)) = η(x, γA(y)). Indeed, ηT (x, γA(y)) := η(y, γA(x)) is again a cor-
relator; averaging η and ηT gives us a symmetric correlator. If η is symmetric, then
for all symmetries g ∈ G(A), ηg(x, y) = η(gx, gy) is again a symmetric correlator;
averaging over G yields an invariant symmetric correlator. Henceforth, we assume
that correlators are symmetric and invariant. It follows that the bilinear form

B(a, b) := η(a, γA(b))

is orthogonalizing, meaning that B(x, y) = 0 for all x ⊥ y in X (A). For the
following, see [76]:

Theorem 14 Let A be irreducible, bi-symmetric, and have a conjugate ( Ā, γA, ηA).
Then (a) B is an inner product on E, and (b) A is self-dual with respect to B iff ηA

is an isomorphism state iff A is sharp.
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5.3 HSD and Jordan Models

Call a model A HSD (Homogeneous and self-dual) iff the cone E+ is homogeneous
under some group G(A) of order-automorphisms, and self-dual with respect to some
inner product. If A is an HSD model, then by the Koecher-Vinberg theorem, E(A)

carries a unique euclidean Jordan structure with respect to which the order unit, u,
is the identity and 〈a, u〉 = Tr(a).

An idempotent in a Jordan algebra E is an element e ∈ E+ with e2 = e • e = e.
Idempotents in the special Jordan algebraLh(H) are precisely orthogonal projection
operators. A primitive idempotent is an idempotent that is not a sum of other non-
zero idempotents; thus, in the context ofLh(H), a primitive idempotent is a rank-one
projection operator. Any Euclidean Jordan algebra E carries a canonical trace func-
tional, with Tr(ab) = 〈a, b〉, and one can show that Tr(e) = 1 for any primitive
idempotent. A Jordan frame in a Euclidean Jordan algebra E is a sete1, . . . , en of
primitive idempotents summing to u. The Spectral Theorem for Euclidean Jordan
algebras asserts that every a ∈ E has a unique representation as a sum of the form∑

e∈E tee over a Jordan frame E , where {te|e ∈ E} are non-negative real coeffi-
cients. It follows that the extremal elements of the cone E+ are exactly the primitive
idempotents. The group of order-automorphisms of E fixing the unit u acts transi-
tively on the set of Jordan frames, so all Jordan frames have the same size, the rank
of E. (Indeed, regarding the set of Jordan frames as a test space, this group acts
fully transitively, i.e., any permutation of a Jordan frame can be implemented by an
order-automorphism of E.)

Definition 23 A probabilistic model A is uniform iff its test have a uniform cardi-
nality n, and the uniformly mixed probability weight μ(x) ≡ 1/n belongs to �(A).

If A is an HSD model, then every primitive idempotent e in E(A) defines a
pure state, 〈e|, and this is the unique pure state assigning probability 1 to the effect
corresponding to e. By a Jordan model, we mean an HSD model A such that every
outcome in X (A) is a primitive idempotent in E(A), or, equivalently, every test is a
Jordan frame. Evidently, such a model is unital, indeed, sharp, and uniform.

In fact, these properties characterize Jordanmodels. Suppose that A is HSD. By an
easy extension of the converse to the Krein-Mil’man theorem, any closed, generating
subset of V(A)+ contains a point on every extremal ray of V(A)+. By our standing
assumption of outcome-closure, X (A) is closed in E(A) � V(A). By construction,
it is generating. Therefore, every extremal ray of E(A)+ consists of multiples of an
outcome. Giving E(A) its standard Jordan structure, primitive idempotents generate
extremal rays of E(A)+, so every primitive idempotent in E(A) is a positive multiple
of an outcome in X (A).

Call an outcome x ∈ X (A) unital iff there exists at least one state α ∈ �(A) with
α(x) = 1.
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Lemma 8 Let A be HSD, and let E(A) have its canonical Jordan structure. Then:

(a) Every extremal unital outcome x ∈ X (A) is a primitive idempotent.
(b) If A is uniform, then every unital outcome is extremal, hence, a primitive idem-

potent.
(c) If A is both unital and uniform, it is a Jordan model.

Proof (a) Let x ∈ X (A) be extremal. As discussed above, there then exists some
t > 0 such that t x =: e, a primitive idempotent. Now suppose f is a primitive
idempotent representing a pure state of E, with 〈 f, x〉 = 1. Then

t = t〈 f, x〉 = 〈 f, t x〉 = 〈 f, e〉 ≤ 1,

by the Cauchy-Schwarz inequality. Now notice that

t2〈x, x〉 = 〈e, e〉 = 1

so 〈x, x〉 = 1/t2. Choosing any E ∈ M(A) with x ∈ E , we now have

1 = 〈e, u〉 = t〈x, u〉 = t

⎛
⎝〈x, x〉 +

∑
y∈E\{x}

〈x, y〉
⎞
⎠ ≥ t〈x, x〉 = t/t2 = 1/t,

so that t ≥ 1. Thus, t = 1, and x = e, a primitive idempotent.
(b) Let x = ∑

i si xi where the xi are extremal outcomes and si ≥ 0. Let μ be the
uniform state on A. Then

1

m
= μ(x) =

∑
i

siμ(xi ) =
∑

i

si
1

m

so
∑

i si = 1. If x is unital, therefore, there exists a primitive idempotent f with

1 = 〈 f, x〉 =
∑

i

si 〈 f, xi 〉.

Since the coefficients si are convex, we have 〈 f, xi 〉 = 1 for every i with si �= 0. But
then, every xi is a unital extremal outcome and so, by part (a), a primitive idempotent.
It follows (again by the Cauchy-Schwarz inequality) that si �= 0 implies xi = f ,
whence, x = f is again a primitive idempotent. (c) now follows at once from (a)
and (b). �
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5.4 Composites of Jordan Models

Suppose a probabilistic theory C consists entirely of Jordan models. Under what
conditions can one equip C with an associative compositional structure so as to
obtain a monoidal probabilistic theory? Subject to two further requirements, this this
is possible only if C is in fact a standard quantum theory:

Theorem 15 ([18]) Let C be a symmetric monoidal category of Jordan probabilistic
models such that (i) for every A, B ∈ C, the composite AB is locally tomographic,
and (ii) at least one system in C has the structure of a qubit. Then every model in C

is the hermitian part of a complex matrix algebra.

The proof of this result exploits the following theorem due to H. Hanche-Olsen
[40]. A JB algebra is a Jordan algebra E equipped with a norm making it a Banach
space, and satisfying ‖a2‖ = ‖a‖2 and ‖a2‖ ≤ ‖a2 + b2‖ for all a, b ∈ E. In finite
dimensions, this is the same thing as a euclidean Jordan algebra.

Theorem 16 (Hanche-Olsen) If E is a JB algebra and M2 is the Jordan algebra of
2 × 2 hermitian matrices over C, then E is the Hermitian part of a complex matrix
algebra iff there exists a Jordan product on E ⊗ M2 such that

(a ⊗ 1) • (b ⊗ 1) = ab ⊗ 1 and (1 ⊗ x) • (1 ⊗ y) = 1 ⊗ xy (14)

for all a, b ∈ E and all x, y ∈ M2.

Essentially, [18] shows that if AB is a non-signaling HSD composite of HSD
models A and B, then local tomography forces the Jordan product on E(AB) to
satisfy (14). A key step is the following observation.

Lemma 9 Suppose A is a Jordan model. Let AA be a non-signaling composite of
A with itself. If AA is Jordan, then the trace form on E(AA) factors.

Proof By definition of a composite, if x, y ∈ X (A), then x ⊗ y is an outcome in
X (AA). Since x and y are unital in A, x ⊗ y is unital in X (AA). Indeed, the pure
product state 〈x |⊗〈y| assigns x⊗y probability 1 (again, by definition of a composite).
Hence, by part (b) of Lemma 8, x ⊗ y is a primitive idempotent in E(AA). But then
we also have 〈x ⊗ y|x ⊗ y〉 = 1, and this is the unique pure state with this property.
Hence, 〈x | ⊗ 〈y| = 〈x ⊗ y|, so that

〈x ⊗ y|a ⊗ b〉 = 〈x |a〉〈y|b〉

for all a, b ∈ E(A). Since X (A) spans E(A), the same holds with arbitrary elements
of E(A) in place of x and y, i.e., the inner product factors. �

Local tomography is a strong constraint on a probabilistic theory. The fact that
real and quaternionic quantummechanics are not locally tomographic should at least
slightly temper our willingness to adopt it. A classification of non-locally tomo-
graphic non-signaling composites of Jordan models is the subject of on-going work.
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6 Conclusion

The framework we have sketched here for a post-classical probability theory has
several virtues. It is conceptually conservative, mathematically straightforward, and
easily accommodates free mathematical constructions, as well as the introduction
of further structure (for example, one can readily topologize the concept of a test
space; see [72, 73]). Still, at present, what we have is indeed just the sketch of a
framework. Its further development offers many interesting opportunities. We close
by mentioning five areas for further work.
Quantum Axiomatics. As long as we restrict our attention to finite-dimensional prob-
abilistic models, it seems that there are many different axiomatic packages—that is,
many different clusters of plausible constraints—that locate orthodoxQM, or its near
environs, within thewild landscape of general post-classical probabilistic theories. In
addition to the approach via homogeneity and self-duality, sketched in Sect. 4, there
are various derivations of finite-dimensional QM in the spirit of Hardy’s axioms
[41], including work by Rau [57], Dakic and Brukner [28], Masanes and Mueller
[50] and Chiribella, D’Ariano and Perinotti [24]. A different approach [37] exploits
information geometry. There is also the completeness theorem of Selinger [63] for
dagger-compact categories. This is not even to mention the various axiomatic treat-
ments of quantum theory given in the older quantum-logical literature.16 It would be
of great interest to knowhowall of these various axiomatizations (most ofwhich share
at least a few assumptions), are related to one another. The mathematical framework
developed here seems ideal for this task.
Infinite-Dimensional Models Of even greater interest would be to extend the results
of these efforts to infinite-dimensional settings. Individually, infinite-dimensional
probabilistic models have been well-studied [29, 31], and tools are available for
dealing with composites in this setting, too [71]. However, the line of argument
developed in Sect. 5, depending as it does on the Koecher-Vinberg Theorem, does
not generalize easily to the infinite-dimensional setting. Efforts in this direction are
just getting under way, and there is a great deal more work to be done.
Quantum Field Theory Algebraic quantum field theory associates an algebra of
observables to each open subset of spacetime. An obvious project would be to con-
sider a probabilistic theory inwhich each such region is associatedwith a probabilistic
model, subject to the constraint that the model associated with a union of spacelike
separated regions be a non-signaling composite of the models associated with the
regions individually.
Applications; Post-Quantum Information Theory The notion of a probabilistic model
is very broad. It would likely be a fruitful exercise to look for concrete information-
theoretic applications in which models that are neither classical nor quantum arise.
In anticipation of this, it would be reasonable to further develop the post-classical

16This last has sometimes been criticized for being “too mathematical”—that is, insufficiently
operational and at the same time, too technically involved. It’s worth pointing out, however, that
much of it becomes significantly simpler when specialized to the finite-dimensional case.
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information theory sketched in [12, 64], especially by investigating in some detail
such ideas as channel capacity in this setting.
The Measurement Problem. Even though we take measurements and measurement-
outcomes as primitives, nothing prevents us from asking whether these can be mod-
eled dynamically within the formal framework presented here. Certain versions of
the measurement problem can be formulated as theorems in this framework, leading
one to wonder whether various strategies for resolving the quantum measurement
problem—e.g., some version of “many worlds” interpretations, or the apparatus of
decoherence—have analogues in the setting of a general probabilistic theory. If so,
this would shed some light on how these interpretive moves work; if not, then the
existence of such an analogue could be regarded as another constraint on a proba-
bilistic theory, taking us closer to orthodox QM.A further discussion of these matters
can be found in [75].
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Information Causality

Marcin Pawłowski and Valerio Scarani

1 Certain Things Should Not Happen

Like many people working in quantum information science, Bob had spent a few
weeks in the Centre for Quantum Technologies in Singapore, collaborating with
Alice. Some time after he left, Alice finished preparing ten tutorials for her module
on quantum biology. She thought of sharing them with Bob, who was preparing to
teach a similar module in his university. However, the latest policies allow only 1Mb
attachment per year to an e-mail,1 and each tutorial alone amounts at 1Mb. Alice
is in a dilemma: which tutorial will be the best for Bob? It would be much simpler
to let Bob choose. But this means that the information about all the tutorials must
be made available in Bob’s location. How can that happen by sending only a much
smaller amount of information?

Alice remembers having shared with Bob, when he was in Singapore, a one-time
pad key and even several qubits maximally entangled with hers. Quantum channels

1As the reader may expect, this restriction is not really implemented in Singapore at the time
of writing: we may have to wait for the next generation of managers.
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can perform tasks that appear incredible to the classically-minded. Can then these
shared resources be helpful for this specific task? Alice does not believe it: she knows
that shared randomness and entanglement are no-signaling resources. So, she argues,
how could they help in sending new information, like the tutorials, which did not
even exist at the time of the sharing?

In this text, we show that Alice’s argument is wrong: no-signaling resources
could in principle solve that task. Her final conclusion is nevertheless correct: the
no-signaling resources that exist in our world cannot solve that task. Why? It is
probably beyond physics to answer this question. Maybe simply because certain
things should not happen?

2 The Context

2.1 Defining Quantum Physics

Definire means to find the boundary. In order to define quantum physics, therefore,
one can’t invoke the “typically quantum” notions of coherence and entanglement: if
anything, these notions fix the boundaries of classical physics. One really needs to
go at the quantum finis terræ. However, all known natural phenomena can be made
to fit in the quantum framework. So, are there any boundaries to be found at all?

We leave the question open regarding boundaries in nature. But there are certainly
boundaries in the world of physical theories. In quantum theory: (i) physical systems
must be described by Hilbert spaces, their pure states by one-dimensional projectors,
with the rule that orthogonal vectors describe fully distinguishable states; and (ii)
the evolution in time must be reversible. As well known by now, pretty much all the
formalism stems from these two requirements: a clear boundary, a sharp definition,
and a very successful one. However, curiosity is not assuaged: recipes (i) and (ii)
define a boundary with what? What is there outside? How would physics be if (i)
and (ii) would not be true?

2.2 No-Signaling Is Not Enough

2.2.1 No-Signaling as a Principle

It is far from easy to invent decent, consistent answers to the previous questions.
Even the anarchical freedom of science fiction has ultimately produced a single
creative alternative: signaling, in all its possible variations (faster-than-light travel,
teleportation of matter between distant locations, etc.). No-signaling is certainly a
boundary, and a very constraining one at that: just think how tiny is the portion of the
universe that the human kind may hope to visit, unless a family of kind wormholes
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Fig. 1 The representation of a bipartite no-signaling probability distribution, or “no-signaling box”,
used in this text. The wavy line is not meant as a material connection, but only as a reminder of
the existence of correlations. The PR-box is defined by x, y, a, b ∈ {0, 1}, random marginals i.e.
P(a|x) = P(b|y) = 1

2 , and perfect correlations satisfying a ⊕ b = xy

comes to rescue. So let us take this single suggestion seriously: is no-signaling the
physical principle that defines our (quantum) universe?

Popescu and Rohrlich were the first to raise this question explicitly, and to find
a negative answer [1]. The counter-example uses a simple mathematical object that
had been described some years earlier by Rastall [2]; nowadays it is customarily
referred to as the PR-box.2

2.2.2 The PR-Box and the CHSH Game

The PR-box is a specific bipartite no-signaling probability distribution with both
binary input and output (Fig. 1). Alice can input a bit x and receives a bit a as output;
and similarly Bob can input a bit y and receives a bit b as output. The PR-box is
specified by the rule

PPR(a, b|x, y) = 1

2
δa⊕b=xy, (1)

where the symbol ⊕ indicates sum modulo 2. In other words, a and b are always
locally random; they are equal in the three cases (x, y) = (0, 0), (0, 1) and (1, 0),
while they are different when (x, y) = (1, 1).

The PR-box is tailored to violate maximally the Clauser-Horne-Shimony-Holt
(CHSH) Bell inequality [3]. For the purpose of this paper, we present this criterion
as the CHSH game. Alice and Bob are given two binary inputs and must produce,
without communication, binary outcomes satisfying (1). If the inputs are distributed
randomly, the probability of success is

2In the remainder of this section, we introduce notions and tools that are pretty basic for people
working in the field, in order to address a more general readership and also to have a consistent
discourse in the text. The reader in need of a more tutorial introduction can refer to Sect. 5 of:
V. Scarani, Quantum information: primitive notions and quantum correlations, in: C. Miniatura
et al. (eds), Ultracold Gases and Quantum Information—Les Houches 2009 session XCI (Oxford
University Press, Oxford, 2011). Preprint available as http://arXiv.org/abs/0910.4222

http://arXiv.org/abs/0910.4222
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pCHSH = 1

4

1∑
x,y=0

P(a ⊕ b = xy|x, y) . (2)

If Alice and Bob are allowed to use only classical shared randomness, their winning
probability is bounded as pCHSH ≤ pC = 3

4 . If they can share entanglement, their
winning probability is increased up to the Tsirelson bound [4]

pCHSH ≤ pQ = 2 + √
2

4
≈ 85% (3)

which is still smaller than one. By construction, the PR-box reaches pCHSH = 1.
This simple argument proves that no-signaling cannot be the only physical princi-

ple that defines our quantum world. At least another constraint is in place, that limits
the probability of success of the CHSH game. We can thus rephrase the questions of
our curiosity: given that we live in a world, in which Bell’s inequalities are violated,
why are they then not violated as much as no-signaling would allow? Any physical
principle (or collection thereof) claiming to come close to a definition of quantum
physics should be able to deal with the riddle of the Tsirelson bound.

2.3 Mathematical Framework

We focus on an operational generalization of quantum kinematics (states and mea-
surement, without dynamics). The measurement process is defined as “choosing an
input and getting an output”. The information about the state of the system is con-
tained in the observed probability distributions of the outputs, for each input. Since
we focus on bipartite systems, let us fix the notations: the inputs of Alice and Bob
are written x ∈ X and y ∈ Y , respectively; the outputs (we assume that every input
leads to the same number of possible outcomes) are written a ∈ A and b ∈ B respec-
tively. So, for each x, y, Alice and Bob can reconstruct the probability distribution
Pxy = {

P(a, b|x, y)
∣∣a ∈ A, b ∈ B

}
. All that Alice and Bob know about the system

and the measurements is captured by the probability point

P = {
Pxy

∣∣x ∈ X , y ∈ Y
}
. (4)

A priori, each Pxy is specifiedby |A||B|−1values because of normalization; therefore
P is generically specified by |X ||Y|(|A||B| − 1

)
values.

For the following, it is important to classify probability points as follows:

• P belongs to the classical set if it can be written as a convex combination of
local deterministic points, i.e. points of the form P(a, b|x, y) = δa = f (x)δb = g(y).
These points are the extremal points of the classical set; since there are finitely
many of them, namely |A||X | |B||Y|, the classical set is a polytope. In summary,
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the classical polytope contains all the P that can be obtained from “local (hidden,
or not hidden) variables”.

• P belongs to the quantum set if there exist a state ρ and projectors {�x
a,�

y
b}

such that

P(a, b|x, y) = Tr
(
ρ�x

a �
y
b

)
, (5)

where the projectors must satisfy [�x
a,�

y
b] = [�x

a,�
x
a′ ] = [�y

b,�
y
b′ ] = 0 for

all a, b, x, y. There is no loss of generality in considering only projective mea-
surements, since the dimensionality of ρ is not restricted. For finite-dimensional
Hilbert spaces, these relations between projectors are fulfilled if and only if there
is a tensor product representation �x

a = π x
a ⊗ 11 and �

y
b = 11 ⊗ π

y
b [5].

• P belongs to the no-signaling set if P(a|x, y) = P(a|x) and P(b|x, y) = P(b|y)

for all a, b, x, y. This set is also a polytope. Clearly the classical set is included in
the quantum set, which is included in the no-signaling set. Notice also that the no-
signaling constraints reduce the number of values required to specify a probability
point P down to |X ||Y|(|A| − 1

)(|B| − 1
) + |X |(|A| − 1

) + |Y|(|B| − 1
)
.

In this framework, we are looking for a physical principle, which would single
out the quantum set within the no-signaling polytope.

Before continuing, we want to stress a difference with other operational appro-
aches, in particular with the line of research on axiomatics [6]. There, a lot is built
on the assumption of tomography: it is supposed that some given P’s are known
to carry all the information the system. This is physically possible if the degrees of
freedom under study and the measurements that are being performed on it have been
characterized. Here, on the contrary, we work in a completely black-box scenario,
ultimately the same as in Bell’s theorem and in device-independent assessments [7].
In such a scenario, the pointP can never be claimed to be “the state”, with the idea of
complete information that this term conveys. Rather, P encodes just the information
that can be gathered from the black boxes. This is also one of the reasons why we
start out with bipartite systems: in a black-box scenario, the behavior of a single
system can always be described in terms of hidden variables.

3 Information Causality: The Task

The statement of “no-signaling” is the impossibility of a task, namely, sending any
amount of information by sampling a bipartite probability distribution. Every device
independent principle must have a task (an information processing protocol) and a
statement about it. In this section we aim at explaining the choice of the task and the
statement of Information Causality. We start by asking the question: in what sense
the PR-box is to powerful?
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3.1 The Power of the PR-Box

The first device independent principle that put some bounds on the winning prob-
ability of the CHSH game was that of nontrivial communication complexity [8]. It
has been shown that the access to perfect PR-boxes allows two parties to solve any
communication complexity problem with the transmission of a single bit. Later this
result has been improved in [9] where it was shown that the same happens even if
the boxes are a little noisy, i.e. they allow for the success probability in the CHSH
game greater than 3+√

6
6 ≈ 0.908. The question whether this principle can be used

to derive even stronger limits is still open.
The simple idea behind taking this approach to study nonlocality is that if nothing

seems to be wrong with the PR-boxes if the parties are not communicating (and no
communication must be the case if we would like to use the no-signaling principle)
then maybe there is something wrong with them when the communication takes
place. To see why this should be the case let us put ourselves in the place of Bob, the
owner of one part of the PR-box. When we choose our setting to be y = 0 we know
that the outcome of our part of the box is going to be equal to the outcome of Alice
b = a. If we choose y = 1 instead then we can expect b = a ⊕ x . We see that we can
choose to learn any one of the two independent bits a or a ⊕ x by choosing different
settings. Granted that these two bits are perfectly random, but their randomness is
the same. What we mean by that is that both of them are generated by XORing
something deterministic (i.e. 0) or controlled by Alice (i.e. x) with the same random
bit a. This is important because it allows, by transmitting later only a single bit form
Alice to Bob, to erase the randomness in any of the bits that Bob might want to get
regardless of his choice.

This property of the PR-box has been exploited in [10] in the context of oblivious
transfer (Fig. 2). Imagine that Alice has two bits x0 and x1. She can send only one bit
of classical communication to Bob who is interested in one of the bits (Alice does
not know in which). Let the index of the bit that Bob is interested in be k. If they
have access to a PR-box they can do this. Alice inputs x = x0 ⊕ x1 in her part of
the box and, after reading a, sends the one bit message m = x0 ⊕ a to Bob. Bob
inputs y = k, reads b and computes C = m ⊕ b = x0 ⊕ a ⊕ b. It is easy to see that
C = xk . Indeed, if k = 0 then a = b and C = x0; if k = 1, then b = a ⊕ x and
C = x0 ⊕ x = x0 ⊕ x0 ⊕ x1 = x1.

Earlier we have promised that this analysis will show us what goes wrong if we
consider the protocols with PR-boxes and communication.We are almost there. Look

Fig. 2 Implementation of perfect oblivious transfer using the PR-box and one bit of communication
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at the situation in the Bob’s laboratory when he has already received Alice’s message
but he has not yet chosen which bit to decode. Considered as a black box his lab now
has, in some sense, two bits. True that the extraction of one will destroy the other but,
since any can be decoded, they both must be there. But we have transmitted only a
single bit and the PR-boxes are supposed to be no-signaling so they cannot be used
to transmit the other. Somehow the amount of information that the lab of Bob has is
larger than the amount it received. Things like this should not happen.

3.2 Random Access Codes

The protocol that we have just described is called (2,1,1) Random Access Code
(RAC) [11]. It allows Alice to encode two bits x0 and x1 into a single bit message m
in such a way that Bob can decode any bit he chooses to. The notion generalizes to
that of (N , M, p) RAC, which allows Alice to encode N bits into M bit message in
such a way that the worst case probability of Bob decoding any of these bits correctly
is p.3 We can talk here as well about the average success probability instead of the
worst case since Yao’s principle [12] applied to RACs allows, with the use of shared
randomness, to make these two equal [13]. There are many different types of RACs
with slightly different properties which depend on the resources that we allow to be
used. The most important distinction among the known codes lies in what is being
communicated (classical bits or qubits).

In the code presented above the bits are decoded correctly as long as the correla-
tions a = b for y = 0 and a = b ⊕ x for y = 1 are always true. If they occur with
probability p then the box can win the CHSH game with this probability and, at the
same time, the average success probability of (2, 1, p) RAC is also p. Therefore, we
see that finding a way to bound the success probability of the RAC is equivalent to
finding the bound on the probability to win the CHSH game.

3.3 Task and Statement of Information Causality

We are now in a position to define the task, to which the principle of Information
Causality is going to apply. It is the same as a (N , M, p) Random Access Code,
where N and M are classical bits (Fig. 3). Notice that it does not matter how this
information is encoded: when we refer to “sending the M bit message”, it should be
understood as a single use of a channel with classical communication capacity M .

The statement of Information Causality requests that, in the task just defined,
the amount of information potentially available to Bob about Alice’s input cannot

3Earlier we have mentioned that the protocol that we have described is for oblivious transfer. It
might puzzle the reader that we are now referring to it as RAC. The difference between these two
is that in the oblivious transfer there is one more requirement: Bob after choosing to decode one bit
cannot learn anything about the other. In RAC there is no such assumption although in the optimal
RACs it is always the case.
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Fig. 3 The task of Information Causality is the same as the one that defines a Random Access
Code. Alice receives N bits, and Bob is asked to guess one of them. Alice is allowed to send a
message m that carries M bits, where M < N to avoid trivialities. Moreover, Alice and Bob can
share a no-signaling resource—and in fact, in all this study the goal is to compare the power of
such resources. The usual figure of merit is the success probability p = ∑N−1

k=0 Prob(βk = xk |k);
Information Causality rather quantifies the amount of information that is potentially available in
Bob’s location

exceed M bits. This potentiality is the key to the Information Causality’s success. If
we would consider only the information that Bob actually gets, then this principle
would be equivalent to no-signaling (indeed, imposing that Bob can actually receive
only M bits is equivalent to stating that any additional resource is no-signaling).
However, this little tweak makes all the difference as we will see in the next section.

3.4 The Reason for the Name

But before we get to it, we would like to take this opportunity and make a short
comment on the choice of the name for our principle. We do this mainly because
several people have asked us for the justification of our choice.

Let us reiterate that Information Causality is about forbidding more information to
be potentially available to the receiver than has been sent by the sender.We hope that
expressing our principle in that formmakes the choice of the name clearer. Causality
is the ability to change something over space-time. In the task we are considering,
what gets changed is the information that Bob has about the particular bits of Alice.
Before the protocol is run it is, by definition, zero. The cause is the transmission of
the message, which increases the information. The statement about the task is that
this increase in information is limited. In other words, we are putting a limit on the
effect that the cause can have in the terms of information. Hence the name.

4 Mathematics

4.1 The Figure of Merit

Now we are ready to present the principle of Information Causality (shortened IC
from now on) in its formal version. There aremany different measures of information
to choose from but in our case the choice is quite obvious. Since the task is about
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communicating over a channelwith a specified classical communication capacity and
because Shannon’s celebrated single letter formula relates it to mutual information
we take this measure. Therefore, the amount of information that Bob can potentially
have about the variable xi of Alice is given by I (xi : βi ) where βi is the random
variable that he generates when using his optimal procedure for maximizing the
amount of information about this particular xi . The statement of IC is that

N∑
i=1

I (xi : βi ) ≤ M. (6)

Note that we the variables xi do not have to be binary. We do not make any assump-
tions about their alphabets. The definition of IC that we have given here is slightly
stronger than the one given in the original paper [14]. There we have assumed that
the communication from Alice to Bob is over a noiseless classical channel. This
assumption can be lifted and, as we show in the next section, our principle will still
hold in the quantum theory.

4.2 Information Causality Holds for Quantum
No-Signaling Resources

IC sounds like a reasonable thing to expect from the universe but so does locality,
determinism or the notion of absolute time. Therefore, in the presentation of a new
principle, there should always be a proof that it is not violated by nature. Now
we present a proof that IC holds in the classical and quantum information theory.
We focus on quantum correlations because classical correlations form a subset of
quantum correlations.

Let us denote by ρB Bob’s part of the shared quantum state and 	x the set of all
Alice’s variables xi . We begin by showing that after receiving the message 	m, which
was communicated over the channel with the classical communication capacity M ,
from Alice all the classical and quantum information he has does not have more than
M bits of information about 	x :

I (	x : 	m, ρB) ≤ M. (7)

For the proof we use the chain rule for mutual information, I (	x : 	m, ρB) = I (	x :
ρB) + I (	x : 	m|ρB). Since at the beginning of the protocol Bob knows nothing about
the variables of Alice I (	x : ρB) = 0, and the second term I (	x : 	m|ρB) = I (	x, ρB :
	m)− I (ρB : 	m) is bounded by M due to the positivity of the mutual information and
the fact that 	m is a message sent over the channel with the classical communication
capacity M .

In the case of independent Alice’s input bits condition (7) limits the information
gain about the individual bits as well because
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I (	x : 	m, ρB) ≥
N∑

i=1

I (xi : 	m, ρB). (8)

This inequality is also proved using the chain rule. Finally, we observe that Bob’s
output bit βi is obtained at the end from 	m and ρB . Hence, the data processing
inequality implies I (xi : 	m, 	B) ≥ I (xi : βi ) which gives us (6).

4.3 Information-Theoretical Derivation
of the Tsirelson Bound

Here we show that any theory which allows for the violation of the Tsirelson bound
violates also IC. To this end we consider a concatenated RAC. Let us explain what
we mean by this.

Previously we have presented a code which encodes two classical bits into a
single one and gives the average probability of correct decoding equal to the winning
probability of the CHSH game. We may think about it as a pair of black boxes.
Alice puts two bits into hers and it returns a single bit which she sends to Bob. Bob
then puts this message into his box, makes a choice which bit he wants to learn and
gets a value which with the probability p is equal to the bit he is interested in. Now
imagine that Alice gets four bits instead of two and she is still limited to one bit of
communication. She and Bob can construct a RAC for this task with the pairs of the
same boxes they used previously with the help of concatenation procedure. It works
like this: The parties need three pairs of boxes. Alice puts two of her bits into her first
box and the remaining two into the second. The boxes have produced two messages
which she does not send to Bob but puts into her third box, instead. It is the output
of this final box that she sends to Bob. He inputs it to his box from the third pair
and chooses to learn the message generated by the first or the second box of Alice.
He inputs this message into one of his other boxes - the one paired with the box of
Alice that generated thismessage, and then he can retrieve the bit. The overall success
probability is now p2+(1− p)2 if the success probability for each pair of boxes is p.

The generalization of this procedure is quite straightforward. If the parties use n
levels of concatenation (using just a single pair of boxes corresponds to n = 1) they
can encode 2n bits using 2n − 1 pairs of boxes. The overall success probability of
decoding the desired bit correctly is pn = 1+E2

2 , where E is the bias of the probability
p (i.e. p = 1+E

2 ).
If βi is Bob’s best guess of xi and they are equal with the probability pn then

I (xi : βi ) = 1 − h(pn), where h(.) is Shannon’s binary entropy. By expanding it
into the Taylor series one gets that

1 − h

(
1 + En

2

)
≥ E2n

2 ln 2
. (9)

Since only one bit has been communicated, IC implies
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1 ≥
2n∑

i=1

I (xi : βi ) ≥ 2n E2n

2 ln 2
= 1

2 ln 2

(
2E2

)n
(10)

for any n. This is going to be true only if 2E2 ≤ 1 or, equivalently, E ≤ 1√
2
. This

puts a bound on the winning probability of the CHSH game p ≤ 1
2

(
1 + 1√

2

)
which

is exactly the Tsirelson bound.
Quite straightforward generalization of this method can be employed if the prob-

abilities of guessing different bits are different. In [15] it has been used to derive the
bound on the efficiency of the RAC’s

N∑
i=1

E2
i ≤ 1, (11)

where Ei is the bias of the guessing probability for the i’th bit.

4.4 Entropic Approach

In order to prove that IC holds in quantum mechanics we have used the properties
of mutual information. This means that something must go wrong with entropy
measures for superstrong nonlocal boxes, as indeed was discussed shortly after the
first IC paper [16]. In the latest development [17], it has been shown that all the
properties necessary for the derivation of IC are consequences of only two conditions.
This means that even if we choose a measure of information different than the mutual
information, the objects exhibiting more nonlocality than the quantum theory allows
will violate at least one of these conditions.

The conditions proposed in [17] are for the entropies H(.). The information that
object A has about B can be defined as for the von Neumann entropies as I (A :
B) = H(A) + H(B) − H(A, B). The first of the conditions is consistency: if A
is a classical random variable, then H(X) is equal to the Shannon entropy of X .
The second is evolution with an ancilla: for any two systems A and B, whenever a
transformation is performed on B alone, one must have �H(A, B) ≥ �H(B). It
can be understood as saying that local transformations can only destroy correlations
not create them.

Since the consistency condition is nothing more than the normalization of the
entropy, it must be the second one which is violated by the superstrong nonlocality.
This provides another characterization of what is wrong with no-signaling theories
that violate Tsirelson bound: even though they cannot instantaneously send informa-
tion at a distance, they can create correlations which is just as unacceptable.

Recently a slightly generalized version of IC has been proposed [18]. It keeps all
its reasonable appeal and leads to entropic inequalities that are strictly stronger than
in the original version. Recall that the reasoning that lead us to stating IC included
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two steps. In the first step, we argued that if the Bob’s part of the system together with
the message are treated as a single black box, then the information it has about the
settings of Alice cannot exceed the classical communication capacity of the channel.
If we associate random variable e with this black box we can express this statement
formally as

H( 	m) ≥ I (	x : e). (12)

In the second step, we argued that the random variable βi is obtained locally from e,
therefore the data processing inequality implies

∀i H(xi |βi ) ≥ H(xi |e). (13)

If we sum up all the inequalities (12) and (13) and use the subadditivity of the entropy
we obtain

H( 	m) +
∑

i

H(ai |βi ) ≥ H(	x), (14)

which is equivalent to (6) in the case when the xi are independent. But nothing forces
us to sum up all the terms with the same weight. In fact, we can use a different one
for each of the inequalities and get that, for all wi ≥ 0 and every p(e|	x), it holds

w0H( 	m) +
∑

i

wi H(ai |βi ) ≥ w0 I (	x : e) +
∑

i

wi H(ai |e), (15)

which is strictly stronger than the original IC. It remains to be seen if this new version
of the principle leads to tighter bounds on what is possible in our world and what is
not.

5 (Un?)expected Complexity

The fact that IC solves the riddle of the Tsirelson bound has been considered as a
remarkable success. But of course, the ultimate goal is far more ambitious: is IC the
physical principle that defines our quantum universe? In other words, does IC define
exactly the quantum set within the no-signaling polytope, in any scenario? In the
following, we refer to this scientific quest as to the IC program.

Several subsequent studies have witnessed partial success and lead to a wealth
of unanswered questions—which are of course also an asset for research, at least
as long as their complexity does not suffocate the driving motivation. In this last
section, we review the status of the IC program.
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5.1 Non-isotropic Correlations

The recovery of the Tsirelson bound proves that IC defines the quantum set if one
considers the single-parameter family of “isotropic correlations”, that is, the proba-
bility points that can be written as a convex combination of the PR-box and the white
noise. In the first extension of the basic result, the authors considered whether IC
defines the whole quantum set in the CHSH scenario [19]. The conclusion is that we
don’t know yet. Specifically, the paper focused on two-parameter families (recall that
the no-signaling polytope lives in an eight-dimensional space). The violation of IC is
assessed using the same explicit protocol described above, which is not guaranteed
to be optimal a priori. For some families, IC is found to be violated as soon as one
leaves the quantum set; in other cases, a finite gap is left. Similar results have been
obtained by studying the probability points that admit a Hardy’s paradox [20].

Adopting an optimistic view on the IC program, one may surmise that the gap is
only due to the specific protocol using concatenatedRAC. Indeed, a subsequent paper
showed that this protocol is provably not optimal for some points [21]. Indeed, some
points, which do not exhibit a violation of IC under that protocol, can be “distilled”
to points which do violate IC under the same protocol. In other words, if the process
of “distillation” is added to the protocol, the gap shrinks. However, it is not yet fully
closed. Notice that, apart from the fact itself of belonging to the quantum set, we
know don’t know any sufficient condition for IC to be respected.4

The scary part of it all comes when one realizes that we are still speaking of
the elementary CHSH scenario: two parties, two inputs and two outputs! Quantum
physics is certainly more than that. What can one say for more general scenarios?

5.2 Comparison with “Macroscopic Locality”

Thefirst natural generalization consists in keeping thebipartite scenario and enlarging
the alphabets of the inputs and/or the outputs of the no-signaling resource. Obviously,
this can in principle be done by keeping the task as a RAC involving bits. For
simplicity, though, the only larger-alphabet study published so far [23] generalized
also the task to a RAC in which Alice receives N classical dits and send M = 1
classical dit to Bob. The underlying no-signaling resources are such that |X | = |A| =
|B| = d, while |Y| = 2.

The main result of this paper is the observation that IC comes closer to defining
the quantum set than does macroscopic locality (ML). The latter is another criterion
proposed with a similar scope [24]. It basically says that, in an experiment with many
independent sources, the coarse-grained statistics should not violate Bell’s inequal-
ities. For instance, imagine a down-conversion experiment in which one would not

4A sufficient condition for IC to hold has been given [22], but for a fixed protocol (how to use the
no-signaling resource, coding of the signal bit etc.); it is therefore of limited scope.
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be able to count photons and had to rely on proportional counting: then the observed
currents and their fluctuations could be compatible with a classical source.

The correlations that satisfy ML have been characterized completely: they form
a set which is close, but not identical, to the quantum set. Therefore, it is a necessary
condition for the IC program to succeed, that IC can rule out more correlations than
ML does. Reference [23] provides examples of correlations for which it is indeed
the case.

5.3 IC and Multi-partite Correlations

Complexity is further increased if onemoves from bipartite to multipartite situations.
Even in the simplest tripartite scenario (two inputs and two outputs per party), the
structure of the no-signaling polytope is appalling [25].

One can certainly takemultipartite boxes and use them as underlying no-signaling
resource in a bipartite scenario: for instance, in the tripartite case, Alice may hold
two of the input-output ports and even wire them together, while Bob keeps the
third port. This has been tried, and the result is somehow expected: bipartite IC is
powerful enough rule out many examples of non-quantum points [26], but not all.
In fact, two different examples have been reported of tripartite probability points,
which are definitely not quantum but which exhibit classical behavior in any bipartite
scenario [27, 28].

In themselves, these results do not vanify the IC program: it is not surprising,
after all, that the quantum set of multipartite scenarios can’t be captured by a bipar-
tite criterion. However, to find a natural generalization of the IC task to more parties
has proved daunting: the several attempts we are aware of through private communi-
cations have not lead to any interesting development. There has been no systematic
attempt of classifying those failures, but loosely speaking, the obstacle seems to be
that most (if not all) multipartite communication task can ultimately be broken down
into a succession of pairwise communications.

6 Conclusion

Formulated just five years ago, Information Causality has immediately attracted the
attention of the scientific community. The reason for this success may be purely
sociological: the idea that physics may be defined in terms of information processing
has been lingering for many years and IC came to fill in the expectation. But we
prefer to think in more “objective” terms: as we were trying to argue all along this
text, IC is a very sensible thing to assume about the universe.

Improvement on the initial study have proved technically challenging: often
restricted to extremely specific examples, they have nevertheless provided inter-
esting information about the power of the notion of IC and unraveled some of its
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complex features. A fewmore of these specific studies will certainly be welcome; but
if the IC program has to succeed, one will have to find a much more comprehensive
approach. It is our sincere wish that this short review be outdated soon.

We acknowledge the support of TEAM programme of foundation for Polish Sci-
ence (FNP), the NCN grant 2013/08/M/ST2/00626, the Singapore Ministry of Edu-
cation and the National Research Foundation of Singapore.

Note Added in Proof

We want to highlight two papers that appeared in the period between the completion
of this short review and its final printing.

Navascués and co-authors [29] conjectured that noneof the information-theoretical
principles presented so far will single out the quantum set, but at best a specific
“almost quantum” set that is known to be strictly larger than it. The conjecture is
actually proved for all the other principles but IC; the authors also show that all the
results on IC published so far do not contain any counter-example to their conjecture.

Chaves and co-authors [30]managed to derive hitherto unknown entropic inequal-
ities using the formalism of causal sets. As a consequence of one of these newbounds,
they were able to extend slightly the set of correlations that provably violate IC.
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Macroscopic Locality

Miguel Navascués

1 Introduction

From the beginning of the 20th century, we have had at our disposal three alternative
models of reality—newtonian, einstenian and quantum—each of which appears log-
ically consistent. These theories, though, are not independent: there are inclusion
relations between them. Indeed, note that the framework needed to describe physical
systems in classical physics can be recovered as a low energy limit of the frame-
work used in general relativity. Likewise, quantum theory allows recovering classi-
cal dynamics when measurements are sufficiently coarse-grained [1], or in the limit
� → 0. Moreover, the fact that both quantum mechanics and general relativity pro-
vide accurate descriptions of reality in their respective domains implies that these
two models emerge as limits of a third (yet unknown) physical theory.

This third theory is expected to reveal its nature in particle experiments dealing
with energies of the order of the Planck mass m P ≈ 1.2×1019 GeV/c2, inaccessible
with current technology. In order to infer properties of this mysterious model that
contains Quantum Physics and General Relativity as particular cases, we are thus
bound to rely on logical reasoning and physical intuition rather than experimental
feedback.

One approach to the problem, initiated by Hardy [2] and further developed in
[3–7], is to find new formulations of Quantum Mechanics in terms of physically
compelling axioms. The idea stems from the fact that while it is fairly easy to propose
extensions of General Relativity, any small modification of Quantum Mechanics
will most likely lead to inconsistencies. The hope here is that reducing Quantum
Mechanics to a set of physical properties should point out new ways to generalize it.

M. Navascués (B)
H.H. Wills Physics Laboratory, University of Bristol,
Tyndall Avenue, Bristol BS8 1TL, UK
e-mail: M.Navascues@bristol.ac.uk

© Springer Science+Business Media Dordrecht 2016
G. Chiribella and R.W. Spekkens (eds.), Quantum Theory:
Informational Foundations and Foils, Fundamental Theories of Physics 181,
DOI 10.1007/978-94-017-7303-4_13

439



440 M. Navascués

Up to now, this line of research has proven very fruitful, allowing to recover finite
dimensional Quantum Mechanics from first principles [3–7].

Another, more operational, approach was introduced in [8], where Rohrlich and
Popescu proposed to classify physical theories regarding their ability to generate
correlations between distant points in space.

For the sake of clarity, suppose, for instance, that two space-like separated parties
(call them Alice and Bob) share a given bipartite physical system. Alice and Bob are
allowed to measure certain observables X and Y (out of a finite set) on their subsys-
tems, and these measurements will report them some outcomes a and b, respectively.
Assuming a complete ignorance about the Physics involved in these processes, Alice
and Bob could regard their system as a black box where they input a pair of symbols
X, Y and obtain a pair of outputs a, b.

Popescu and Rorlich proposed that the choice of Alice’s interaction should not
affect Bob’s statistics and viceversa. This principle, known as the no-signaling con-
dition, translates at the level of probabilities as

∑
a

P(a, b|X, Y ) =
∑

a

P(a, b|X ′, Y ) ≡ P(b|Y )

∑
b

P(a, b|X, Y ) =
∑

b

P(a, b|X, Y ′) ≡ P(a|X), (1)

for whatever interactions X, X ′ (Y, Y ′) available to Alice (Bob).
Despite its simplicity, the no-signaling condition imposes a strong constraint on

the set of possible correlations present in a given physical theory. When represented
in a real space, the set of all no-signaling distributions forms a polytope, i.e., a convex
set defined by a finite number of linear inequalities.

Unfortunately, the no-signaling constraint is not strong enough. Indeed, the no-
signaling polytope contains probability distributions that are so weird that soon
people started to think that they could not be present in any reasonable physical
theory. This motivated different works that ruled out some of the correlations of
the no-signaling polytope on the grounds that they would make communication or
computation trivial [9, 10], or violate the principle of information causality [11], see
the corresponding chapter in this volume.

In [12], the authors proposed reduction to Classical Physics in the macroscopic
limit as a fundamental axiom to be satisfied by any reasonable physical theory.
Note that the theory that describes our universe has to recover Quantum Theory
and General Relativity in some limits, and both these theories allow recovering the
framework of Classical Physics. It thus seems inevitable that any reasonable physical
theory must reduce to Classical Physics in suitable limits.

Notice also that a connection with Classical Physics may come together with a
Correspondence Principle to derive the dynamics of the theory from classical models
of the physical system at stake. A classical macroscopic limit is thus desirable from a
practical point of view: since Classical Physics is the only known theory that relates
Quantum Mechanics and General Relativity, it seems natural to resort to it in order
to find a consistent dynamics for a deeper theory.
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Finally, the notion that any theory has to recover Classical Physics is somehow
implicit in Rorlich and Popescu’s formalism. Expressions like P(a, b|X, Y ) assume
that Alice is bound to apply only one out of the set of possible interactions, and not,
for example, a linear combination of interactions X1, X2. The observer itself is thus
regarded as classical in this scenario, and so the world in which it lives should also
have some notion of classicality.

In this chapter we will show that the existence of a classical limit bounds the
strength of the correlations measured by space-like separated observers in a non-
trivialway. In a nutshell, the fact that there exists a classical limit implies that ‘natural’
macroscopic experiments involving distant partiesmeasuringmanymicroscopic sys-
tems in a coarse-grained way admit a local hidden variable model. This property,
which we will call macroscopic locality [12], in turn imposes strong restrictions
on the correlations generated by such microscopic systems. The main goal of this
chapter is to characterize such restrictions.

The structure of this chapter is as follows: first, we will illustrate the meaning of
macroscopic locality (ML) by means of a specific example. Later, in Sects. 2.2, 2.3,
we will define and characterize Macroscopic Locality in a more general framework
where experimentalists are allowed to apply sequential interactions. In Sect. 2.4, we
will attain one of the main goals of this chapter, that is, to characterize the set Qml of
all multipartite correlations compatible with ML. We will next prove that quantum
correlations are contained in Qml, and, in Sect. 4, we will study the differences and
similarities between the two sets. Finally, we will present our conclusions.

2 Macroscopic Locality

2.1 Some Preliminary Thoughts

Think of the following bipartite scenario (Fig. 1): a particle pair is produced and two
experimentalists, call themAlice andBob, receive one particle each.Within the given
setup, Alice (Bob) can interact with her/his particle in two different ways X = 0, 1
(Y = 0, 1). As a result of each interaction, Alice’s (Bob’s) particle will follow one
of two possible paths, the upper or the lower, and eventually will impinge on one
of Alice’s (Bob’s) two detectors, as shown in Fig. 1. If Alice and Bob repeat the
experiment many times, they will be able to estimate the probabilities P(a, b|X, Y ),
i.e., the probability that Alice’s and Bob’s particles impinge on detectors a, b = 0, 1
when they apply the interactions X, Y .

This is the schema of a bipartite experiment of non-locality. We say that P(a, b|
X, Y ) is local (sometimes called classical) if it can be expressed as

P(a, b|X, Y ) =
∑

λ

P(λ)PA(a|X,λ)PB(b|Y,λ), (2)
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Fig. 1 A microscopic experiment of non-locality. A particle pair is produced. The interaction that
Alice (Bob) subjects her (his) particle will make it take the path a = 0 or a = 1 (b = 0 or b = 1).
Clicks on the detectors at the end of each path are associated to measurement outcomes. In the
figure, the outcomes are a = 0, b = 1

for some probability distributions P(λ), PA, PB . Equivalently, a distribution is local
if there exists a global probability distribution for the variables {aX , bY : X, Y } with
marginals P(aX , bY ) = P(a, b|X, Y ). Otherwise, we say that P(a, b|X, Y ) is non-
local. There is plenty of evidence that our world is non-local (or non-classical) at
the microscopic level, so it should not surprise us that an experiment like the one
described above produces a non-local distribution.

Suppose now that P(a, b|X, Y ) is of the form:

P(a, b|X, Y ) = ε

2
δa⊕b,XY + 1 − ε

4
, (3)

where 0 ≤ ε ≤ 1. Such a probability distribution is known as an isotropic Popescu-
Rorlich (PR) box [13]. It is local for ε ≤ 1

2 , and quantum for ε ≤ 1√
2
.

If there existed a microscopic event producing a particle pair following a distri-
bution of the form (3), one would expect to find natural ‘macroscopic’ sources of
N 	 1 independent identical pairs. According to our guiding principle, namely, the
existence of a classical limit, the observations performed by two classical experimen-
talists situated at a distance from this source should admit a classical description.

And what would two classical observers see in the vicinity of such sources? That
will depend on Alice and Bob’s ‘classical’ measurement devices, which we will
model through their microscopic counterparts. Correspondingly, we will assume that
Alice’s (Bob’s) interactions over her (his) beamwill affect each particle individually,
and so the net effect of such interactionswill be to split the incident beam into two sub-
beams of lower intensity, see Fig. 2. Also, since N 	 1, Alice and Bob’s detectors
will measure sums of clicks or intensities rather than individual clicks. That is, as
opposed to noticing a click in detector a, Alice will measure the intensity I a

A|X .
Now, it is very unlikely to recover Classical Physics in a macroscopic experiment

if we allow Alice’s and Bob’s detectors to have an arbitrary (microscopic) precision.
For instance, if Alice and Bob realized that all their intensities are multiples of a
smaller quantity, they could postulate that their beams are composed of pairs of
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Fig. 2 A macroscopic experiment of non-locality. N independent particle pairs are produced.
Alice’s andBob’s interactions apply to all particles on each beam.This time, the intensitiesmeasured
at each detector (with precision O(

√
N )) are the outcomes of the experiment

correlated elementary particles, and derive the (in general, non-local) microscopic
distribution P(a, b|X, Y ) from their classical data. This consideration leads to the
extra assumption that the resolution of such detectors should just be able to detect
intensity fluctuations of order O(

√
N ). According to the Central Limit Theorem,

such will be the expected size of the intensity fluctuations every time they repeat the
experiment, so the assumption seems quite natural.1

We thus conclude that, under the above conditions (where two parties are conduct-
ing coarse-grained extensive measurements over a natural source of particle pairs),
any macroscopic experiment should be describable in terms of a classical physical
model. A necessary condition for this is the existence of a local hidden variable
model (LHVM) for the distributions2

P(I 0A, I 0B |X, Y ). (4)

That is actually the original definition of Macroscopic locality [12]: namely, the
requirement that coarse-grained (O(

√
N )) extensive observations of macroscopic

sources of N independent particle pairs admit a LHVM in the limit N → ∞.
By the central limit theorem, when N → ∞, P(I 0A, I 0B |X, Y ) become bivariate

gaussian distributions with covariance matrix3 proportional to

γXY =
( 1

4
ε
2δX ·Y,0 − ε

4
ε
2δX ·Y,0 − ε

4
1
4

)
, (5)

1A similar coarse-graining was required in [1] to prove the emergence of macroscopic realism from
quantum mechanical systems. Note, however, that the resolution �m considered there satisfies
�m 	 O(

√
N ).

2Note that, more generally, we could have demanded the existence of a LHVM for
P(I 0A, I 1A, I 0B , I 1B |X, Y ). However, in this class of experiments, it can be observed experimentally
that I 0A + I 1A = I 0B + I 1B = N , and so the locality condition reduces to (4).
3The covariance matrix of a set of random variables ξ1, ξ2, . . . is defined as γi j ≡ 〈ξi ξ j 〉−〈ξi 〉〈ξ j 〉.
It can be verified that any covariance matrix must be positive semidefinite, see Appendix 1.
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see Appendix 2.
Now, suppose that there exists a global measure dρ (or LVHM) for the intensities

{I 0A|X , I 0B|Y : X, Y = 0, 1}. Then one could use such a measure to define a global
covariance matrix of the form

� =

⎛
⎜⎜⎝

1
4 λ1

ε
4

ε
4

λ1
1
4

ε
4 − ε

4
ε
4

ε
4

1
4 λ2

ε
4 − ε

4 λ2
1
4

⎞
⎟⎟⎠ . (6)

Here the rows and columns of the matrix correspond to the intensities I 0A|X=0,
I 0A|X=1, I 0B|Y=0, I 0B|Y=1, and λ1,λ2 ∈ R resp. represent the values 〈I 0A|X=0 I 0A|X=1〉 −
〈I 0A|X=0〉〈I 0A|X=1〉, 〈I 0B|Y=0 I 0B|Y=1〉 − 〈I 0B|Y=0〉〈I 0B|Y=1〉 as calculated via the measure
dρ. Note that λ1,λ2 are not observable, and thus can only be computed with the extra
knowledge dρ.

At this moment there comes a crucial observation: in order for �(λ1,λ2) to be a
covariance matrix, it must be positive semidefinite. This implies that there must exist
a choice of λ1,λ2 such that �(λ1,λ2) ≥ 0.

By symmetry under the exchange of Alice and Bob, it is easy to see that we
can take λ1 = λ2 = λ. Since the minimum eigenvalue of �(λ,λ) is 1/4 −
(1/4)

√
2ε2 + 8ε|λ| + 16λ2, the condition for positivity is thus equivalent to the exis-

tence of λ ∈ R such that

2ε2 + 8ε|λ| + 16λ2 ≤ 1. (7)

It is easy to see that the above equation can only hold if ε ≤ 1√
2
, i.e., if the isotropic

box belongs to the quantum region.
We have just shown that post-quantum isotropic PR boxes are incompatible with

the principle of Macroscopic Locality (ML).

2.2 The Macroscopic Scenario

In this section, we will consider the transition from microscopic to macroscopic
experiments in complexmultipartite scenarios where each party is allowed to interact
sequentially with its particle beam. Before starting, though, some comments about
basic notation are in order. Despite its popularity in nonlocality research, denoting
probabilities by P(a, b|X, Y ) and intensities by I a

A|X soon becomes messy when we
have to deal with macroscopically local models. For this reason, along this article
we will adopt the representation introduced by Tsirelson [14]. In this notation, any
possible outcome we may measure after the application of an interaction X is to
be denoted by a symbol a that allows identifying X . That way, interactions X can
be regarded as disjoint sets of possible outcomes a. For any pair of interactions
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X, Y , available at Alice’s and Bob’s lab, respectively, and any pair of outcomes
a ∈ X, b ∈ Y , the expression P(a, b|X, Y ) thus becomes redundant, and can be
substituted by P(a, b).

In a generic multipartite microscopic experiment, each of the space-like separated
sites has access to a set of local interactions X, Y, Z , . . .. Given a possible outcome
a, the mappings X (a) = X, O(a) = i will return, respectively, the measurement
setting and site i where such a measurement is performed.

An experimental setting S is any arrangement of interactions that an experimental-
ist at lab i can prepare in order tomeasure intensities in amacroscopic experiment. For
example, in Fig. 3, the experimental setting on site 1 consists on applying interaction
X over the main beam and then interactions Z and Z ′ to the particles following a tra-
jectory a or a′, respectively. Given an experimental setting at site i , we will call arc to
the trajectory followedby aparticle since its arrival at lab i until it impinges on adetec-
tor. Any arc s can thus be completely specified by an ordered sequence of outcomes
s ≡ a1 → a2 → a3 → · · · → am , with O(a j ) = i , and therefore any experimental
setting can be identified with the set of all arcs it generates. Interactions applied in
different arcs will be regarded as different, i.e., the specification of each interaction
must make reference to all prior interactions. Coming back to Alice’s experimental
setting S in Fig. 3, we hence have that S = {a → c, a → c′, a′ → d, a′ → d ′}.

We say that two different arcs s, s ′ are locally orthogonal if they both appear in
the same experimental setting, that is, if s = s1 → a → s2 and s ′ = s1 → a′ → s ′

2,
with X (a) = X (a′), a �= a′. Also, two arcs s, s ′ are space-like separated if they cor-
respond to experimental settings on different sites, i.e., iff O(s) �= O(s ′). Given two
space-like separated arcs s ≡ a1 → · · · → am , t ≡ b1 → · · · → bm ′ , P(s, t) will
represent the probability that the first particle of a pair returns the sequence of out-
comes (a1, . . . , am) when interactions X (a1), . . . , X (am) are sequentially applied,
and the second particle outputs (b1, . . . , bm ′) when X (b1), . . . , X (bm ′) are effected.

In this scenario, the no-signaling condition translates as

Fig. 3 A microscopic experiment with sequential measurements
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Definition 1 No-signaling condition
Let {s j }K

j=1 be a collection of space-like separated arcs. Then, for any k ∈ {1, 2, . . . ,
K } and any interaction X , with O(X) = k,

∑
a∈X

P(s1, . . . , sk → a, . . . sK ) = P(s1, . . . sk, . . . sK ). (8)

When we bring a microscopic experiment of non-locality to the macroscopic
scale, we end up in the scenario depicted in Fig. 4. Here the experimental outcomes
are coarse-grained intensity measurements conducted at the end of each arc. The
intensity measured at site i at the end of the arc s will be denoted by I s , and by Ī s

we will refer to the measured intensity fluctuation, i.e., Ī s = I s − 〈I s〉. Notice that
intensities corresponding to the same arc s, but belonging to different experimental
settings, are identified with this notation. The reason is that the different interactions
effected on each measurement setting can be space-like separated from arc s. For
example, in the scenario depicted in Fig. 4 the regions where interactions Z , Z ′ are
applied can be arbitrarily far away from each other, and so the intensities I a→c, I a→c′

(I a′→d , I a′→d ′
) would be regarded as independent of Z ′ (Z ) by classical observers.

In a realistic situation, we cannot expect the K parties to be able to realize any
possible experimental setting. Any experimentalist at site i will have to work under
space and budget constraints. Consequently, the length of the available arcs will have
to be limited, and so will be the (finite) set of accessible experimental settings Sacc.

For any particular choice of experimental settings {Si }K
i=1 ⊂ Sacc, the K parties

performing a macroscopic experiment can estimate the marginal probability distrib-
utions

P
({I s : s ∈ ∪K

i=1Si }
)
, (9)

corresponding to all the intensities measured in a single experiment with space-like
separated measurement settings S1, S2, . . . with precision O(

√
N ).

Fig. 4 A macroscopic experiment with sequential measurements
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Following Sect. 2.1, the experiments performed by the K parties will satisfy ML
iff there exists a joint measure P({I s : s ∈ S ∈ Sacc}) for all the intensities
I s accessible in the family of experiments denoted by Sacc, compatible with the
marginal distributions (9) in the limit N → ∞.

2.3 Characterization of Macroscopic Locality

By Appendices 1, 2, a necessary and sufficient condition for ML in a given set
of accessible experimental settings Sacc is the existence of a positive semidefinite
matrix γ, with rows and columns labeled by arcs, and satisfying

γss = P(s) − P(s)2, (10)

γss ′ = P(s, s ′) − P(s)P(s ′) for s, s ′ space-like separated. (11)

γss ′ = −P(s)P(s ′) for s, s ′ locally orthogonal. (12)

for all s ∈ S, s ′ ∈ S′, with S, S′ ∈ Sacc.
Of course, if there is a LHVM behind all possible experiments that the K parties

can perform without any limitation on the size of the settings, then there will exist a
LHVM for all experiments involving a finite set of experimental settings Sacc. How-
ever, in principle there could be weird K -partite microscopic correlations such that,
for any finite set of available experimental settings Sacc there is a Sacc-dependent
LHVM that describes the observed intensity fluctuations, but nevertheless there is not
a single classical model independent of Sacc that is compatible with all experimental
data!
This possibility is ruled out by the next result.

Lemma 2 Let P be a set of K -partite microscopic correlations. If for any finite set
of available experimental settings S there exists a LHVM PS({ Ī s, s ∈ S ∈ S}), then
there exists a setting-independent LHVM compatible with all possible macroscopic
experimental observations. That is, for any finite set of arcs �o there exists a measure
P�o for the intensity fluctuations { Ī s : s ∈ �o} in agreement with experimental data,
such that, for any two finite sets �o, �o′,

P�o
({ Ī s : s ∈ �o ∩ �o′}) = P�o′

({ Ī s : s ∈ �o ∩ �o′}) . (13)

Proof Let (Sn) be a sequence of finite sets of experimental settings such that, for all
n, Sn ⊂ Sn+1 and such that, for any possible setting S, there exists an n such that
S ∈ Sn . According to the previous remarks, this implies that there exists a sequence
of positive semidefinite matrices (γn) of increasing size that satisfy conditions (10),
(11) and (12) for all s, s ′ ∈ Sn . Note as well that all the entries of γn are bounded
by 1/4. If we extend to the infinity all the rows and columns of these matrices by
adding zeros, we will end up with a sequence of vectors γn in the ball l∞. It is not
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difficult to see that there exists an entry-wise convergent subsequence (γnk )nk , call γ̄
its limit. The infinite dimensional matrix γ̄ hence satisfies

1. Any finite submatrix of γ̄ is positive semidefinite.
2. γ̄ satisfies conditions (10), (11) and (12) for all s, s ′ ∈ �O .

Let P�o be the gaussian probability distribution for the variables { Ī s : s ∈ �o} with
covariancematrix {〈 Ī s Ī s ′ 〉 = γ̄s,s ′ } and zero displacement vector. Clearly, P�o satisfies
the conditions of the lemma. �

Remark 3 The proof of the previous lemma shows that a microscopic distribution
is macroscopically local iff there exists a matrix γ̄ satisfying points 1 and 2. Now,
consider the (infinite)matrix�, whose rows are columns are numbered by the symbol
I
4 and any arc s ∈ �O , and is defined by the following relation

� =
(
1 �pT

�p γ̃

)
. (14)

Here �p is a vectorwhose components are numberedby arcs s and such that ps = P(s),
and γ̃ss ′ = γ̄ss ′ + ps ps ′ . Given P(s), we can easily switch fromonematrix to the other.
Note also that, for whatever finite set of arcs �o, the submatrix {�αβ : α,β ∈ �o ∪ {I}}
is positive semidefinite iff {γ̄αβ : α,β ∈ �o} is positive semidefinite. Indeed, by
Schur’s theorem [15], ��o∪{I} is positive semidefinite iff γ̃�o − �p�o �pT

�o = γ̄�o is positive
semidefinite.

Conditions (10), (11) and (12), together with the definition of �, translate into the
following rules

1. �II = 1.
2. �Is = P(s).
3. �ss = P(s).
4. �ss ′ = P(s, s ′), for s, s ′ space-like separated.
5. �ss ′ = 0, for s, s ′ locally orthogonal.

The remark above shows that the existence of a LHVM for all possible macro-
scopic experiments is equivalent to the existence of an object � satisfying conditions
1–5 and such that any finite submatrix of it is positive semidefinite. The advantage
with respect to the previous formulation is that � only depends linearly on the orig-
inal microscopic probabilities. In Sect. 4, this will allow us to compute maximal
violations of linear Bell inequalities in general macroscopically local theories via
semidefinite programming [16].

Remark 4 Remark 3, in combination with Lemma 2, suggests an operational hier-
archy of constraints to be satisfied by any K -partite distribution P(s1, s2, . . . , sK ) in
order to be macroscopically local (in the line of [17]). Given an increasing sequence
of sets of experimental settings (Si ) such that no setting is left out, it is thus enough

4Intuitively, if � were a quantum moment matrix, “I” would correspond to the identity operator.
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to check that, for each i , there exists a positive semidefinite matrix � satisfying con-
ditions 1–5 in Remark 3 for any s, s ′ ∈ S ∈ Si . From Lemma 2, it follows that such
a hierarchy is complete.

2.4 The Set of Correlations Compatible with ML

Let P1, P2 be two independent distributions held by K parties. In principle, an
experimentalist at site i conducting a microscopic experiment on the composed
distribution P1 ⊗ P2 could measure X1 on P1 and, depending on the outcome,
measure Y or Y ′ on P2. In this sort of experiments, a generic arc s12 at site i
is thus decomposed as the interlacing of two arcs s1, s2 associated to measure-
ments on the boxes 1, 2, respectively.5 Since systems P and P ′ are independent,
the probability that the K particles follow the arcs {si

12}K
i=1 is therefore given by

P(s112, . . . , sK
12) = P(s11 , . . . , sK

1 )P(s12 , . . . , sK
2 ).

The joint use of two or more independent distributions to generate new statistics
is known as “wiring” [18], and in some circumstances it can be used to distill Bell
inequality violations [13]. This observation raises the possibility of the existence
of macroscopically local distribution P with the property that P⊗n or some other
allocation of many copies of the distribution P allows generating non-local macro-
scopic intensities. Such a distribution P , though macroscopically local, would not
be compatible with the principle of macroscopic locality.

If such were the case, we would be in a conundrum. On one hand, it may be
that distributions like P ′ never appear naturally at the macroscopic scale, and so
such non-local intensities are never observed. This would not contradict the fact that
Nature seems to be local at big scales, but would lead to a restriction on the dynamics
of this Universe, that allows for the existence of macroscopic sources of P , but not
of P ′. On the other hand, we could simply postulate that any physical system can
be brought to the macroscopic scale, and so we could ban the existence of P on the
grounds that it allows to engineer P ′, which, in turn, generates non-localmacroscopic
correlations. This is the approach we will stick to along this chapter.

Once this point has been clarified, the next question to address is how to determine
if a given probability distribution P is compatible with ML. In general, one would
expect the answer to depend on the rest of available correlations {P ′}, since it could
well be that P and P ′ alone only lead to macroscopically local experiments, but
nonetheless allow to distill macroscopic non-locality when they belong to the same
space of physical states.

In this section we will show that such is not the case: any set of physical systems
unable to produce non-local intensities by themselves cannot be wired into a macro-

5For instance, if a1, a2 are outcomes corresponding to P1; and b, to P2, the arc s12 = a1 → b → a2
corresponds to the event of measuring X (a1) on the first box, then X (b) on the second and then
X (a2) on the first, and obtaining the sequence of outcomes (a1, b, a2). In this case, the arc s12
corresponds to the interlacing of s1 = a1 → a2 and s2 = b.
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scopically non-local system when they are brought together. Ergo, there exists a
maximal set of correlations Qml compatible with macroscopic locality that is closed
under wirings. We will characterize this set at the end of the section.

2.4.1 A Closure Result

We will begin by showing that K -partite macroscopically local distributions are
closed under local wirings. That is, once a number of such correlations has been dis-
tributed between the parties and those are not allowed to communicate classically,
any wiring theymay perform on their systems will not allow them to generate macro-
scopically non-local correlations. That ⊗i Pi cannot be used to distill macroscopic
non-locality when each Pi is macroscopically local follows by induction from the
next theorem.

Theorem 5 Let P1, P2 be K -partite macroscopically local distributions. Then, P1⊗
P2 is also macroscopically local.

Proof Call �O1 ( �O2) the set of all arcs s (s ′) pertaining to system P1 (P2); �O12 will
denote the set of all arcs generated by interlacing arcs from boxes P1 and P2. If P1 and
P2 are ML, then from the last remark, there must exist two infinite matrices �1, �2

that satisfy conditions 1–5 for all s, s ′ ∈ �O1 and �O2, respectively, and such that any
finite submatrix of them is positive semidefinite. Following the lines of [17], we have
that there must exist two sets of vectors V1 = {|s〉1 : s ∈ �O1 ∪{I1}}, V2 = {|s〉2 : s ∈
�O2 ∪ {I2}}, with 〈s|s ′〉1 = �1

ss ′ (〈s|s ′〉2 = �2
ss ′ ) for all s, s ′ ∈ �O1 ∪ {I1}( �O2 ∪ {I2}).

Now, define the vectors6

|I〉12 ≡ |I〉1 ⊗ |I〉2,
|s12〉12 ≡ |s1〉1 ⊗ |s2〉2, (15)

where the arc s12 ∈ �O12 is understood to arise by interlacing the arcs s1 ∈ �O1, s2 ∈
�O2 (without altering the order in which the outcomes of �O1 and �O2 appear).
Then we can construct the matrix �12 as

�12
ss ′ = 〈s|s ′〉, (16)

for s, s ′ ∈ �O12 ∪ {I}. Clearly, any finite submatrix of � will be positive semidefinite.
We will now see that �12 satisfies conditions 1–5 of Remark 3 for the new set of

correlations P1 ⊗ P2.

6In case and s1 = ∅ (s2 = ∅), take |s1〉1 = |I〉1 (|s2〉2 = |I〉2).
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1. �12
II

= 〈I|I〉12 = 〈I|I〉1〈I|I〉2 = 1.
2. �12

Is = 〈I|s〉12 = 〈I|s1〉1〈I|s2〉2 = P(s1)P(s2) = P(s).
3. �12

ss = 〈s|s〉12 = 〈s1|s1〉1〈s2|s2〉2 = P(s1)P(s2) = P(s).
4. If s, s ′ ∈ �O12 are space-like separated, then s1 and s ′

1 (s2 and s ′
2) are space-like sep-

arated. It follows that �12
s,s ′ = 〈s|s ′〉12 = 〈s1|s ′

1〉1〈s2|s ′
2〉2 = P(s1, s ′

1)P(s2, s ′
2) =

P(s, s ′).
5. Let s, s ′ be locally orthogonal. Then, s = t12 → a → t ′

12, s ′ = t12 → a′ → t ′′
12,

where a �= a′ but X (a) = X (a′). Suppose w.l.o.g. that a ∈ O1. Then, |s〉 =
|s1〉⊗|s2〉, and |s ′〉 = |s ′

1〉⊗|s ′
2〉, with s1 = t1 → a → t ′

1 and s ′
1 = t1 → a′ → t ′′

1 .
That is, s1 and s ′

1 are locally orthogonal. This implies that 〈s1|s ′
1〉 = 0, and so

�12
s,s ′ = 〈s|s ′〉12 = 〈s1|s ′

1〉1〈s2|s ′
2〉2 = 0.

Therefore, P1 ⊗ P2 is macroscopically local. �

We have just proven that ML cannot be activated by local wirings without com-
munication. The next section shows, however, that one can distill macroscopic non-
locality fromML boxes via a prior non-local engineering and/or local postselections.

2.4.2 Activation of ML

Consider a tripartite scenario where Alice, Bob and Charlie have each a pair of
measurement settings with two possible outcomes. For clarity, let us return momen-
tarily to the standard notation in non-locality, where probabilities are denoted as
P(a, b, c|X, Y, Z), and a, b, c, X, Y, Z take values in {0, 1}. Then one can check
that the tripartite set of correlations

P ≡ P(a, b, c|X, Y, Z) = 1

4
δa⊕b⊕c=XY Z (17)

generates local intensities. Moreover, if several copies of P were distributed to Alice,
Bob and Charlie, together with any amount of shared randomness, and the parties
were not allowed to communicate, any wiring they performed on their subsystems
would not allow them to distill macroscopic non-locality. The reason is that the
(gaussian) marginal distributions of the macroscopic intensity fluctuations observed
by the three parties are completely determined by the bipartite correlations between
different intensities. These, in turn, just depend on the bipartite probability distrib-
utions P(a, b|X, Y ), P(a, c|X, Z), P(b, c|Y, Z). Since such bipartite distributions
also arise from the local tripartite distribution L(a, b, c|X, Y, Z) = 1/8,∀a, b, c,
any wiring W of m copies of P will be macroscopically indistinguishable from
W(L⊗m), and thus macroscopically local.

However, if Charlie measures Z = 1 and announces his outcome, then Alice
and Bob would be sharing a perfect PR box [8], which, as we saw in Sect. 2, is
macroscopically non-local [12].

Also, suppose that Alice’s and Charlie’s separate degrees of freedom are inte-
grated into just one particle, call it AC , and imagine a macroscopic experiment
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Fig. 5 Activation of macroscopic non-locality. By summing pairs of intensities, Alice and Bob can
reproduce the macroscopic correlations generated by perfect PR boxes

where several independent pairs of AC/B particles are generated and sent to Alice
andBob. ThenAlice could apply two consecutive interactions over her particle beam,
as shown in Fig. 5. The first of such interactions, Z = 1, would address Charlie’s
degree of freedom, and split the particle beam into two different sub-beams. The
subsequent application of an arbitrary interaction X to Alice’s degree of freedom
in AC , would subsequently split each sub-beam, thus ending up with four intensi-
ties on Alice’s lab, each with mean value proportional to N P(a, c|X, Z). Defining
�IA ≡ (I c=0→a=0, I c=0→a=1, I c=1→a=0, I c=1→a=1) and �IB ≡ (I b=0, I b=1), it can be
verified that the observed macroscopic distributions P( �IA, �IB |X, Y ) do not admit a
LVHM, see Fig. 5.

P thus contains some hidden macroscopic non-locality, that can be activated
either with one bit of communication or by joining two separate degrees of freedom
into one.

2.4.3 The Set Qml

Theorem 5 shows that, once several macroscopically local systems have been dis-
tributed, the separated parties are not able to distill macroscopic non-locality. Now,
a general wiring of a finite set of distributions {Pi }m

i=1 will start (or not) with some
post-selectivemeasurements7 (e.g.: in the previous section, in order to activatemacro-
scopic non-locality, Charlie had to measure his subsystem and announce his mea-
surement outcome). Afterwards, the remaining separate degrees of freedom will be
distributed between the different parties, wirings will be made and a macroscopic

7Here, by a post-selective measurement, we understand the generation of a new state or set of
correlations by preparing a (non-local) experimental setting and conditioning the final state on a
specific arc.
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experiment will take place. Invoking Theorem 5, it follows that, if such post-selected
systems are already macroscopically local, then any wiring of them will be macro-
scopically local as well. On the other hand, any distribution P compatible with
macroscopic locality has to remain macroscopically local under postselection. These
considerations lead us to the following set:

Definition 6 A probability distribution P belongs to Qml iff, for any previous post-
selective measurement and subsequent distribution in space of its separate degrees
of freedom, the corresponding K -partite system is macroscopically local.

Following Remark 3, the necessary and sufficient conditions for a (conditional)
set of correlations to be macroscopically local amount to the possibility to complete
a sequence of growing matrices (whose determined entries are linear8 in the micro-
scopic probabilities and whose undetermined entries satisfy certain linear relations)
in such a way that all of them are positive semidefinite. It follows that Qml is a
convex set.

From the previous observations, it is clear that Qml is closed under wirings when
the postselection part is deterministic (i.e., when the state distributed to the parties
has the form⊗i Pi |ai , where Pi |ai is the distribution Pi conditioned on the outcome(s)

a). That Qml is closed under wirings in general is due to the fact that, after a generic
postselection phase, the parties will be distributed convex combinations of boxes of
the form ⊗i,a Pi |a . Any experimental setting Si (or wiring) on each side i will then
only produce a convex combination of that same setting applied to the boxes⊗i,a Pi |a .
Closure under wirings follows then from the convexity of the set Qml.

In sum, Qml is themaximal set ofmacroscopically local correlations that is closed
under wirings.

Note that, in order to determine if a given set of probabilities {P(s)}s belongs to
Qml, one would have to check for the existence of infinite dimensional covariance
matrices for any possible postselection {P(s|s ′) : s}. That amounts to look for an
infinite number of infinitely-sized matrices, not an easy task! In Sect. 4, however,
we will see that in standard scenarios one just has to consider a finite set of finite-
dimensional matrices.

3 Quantum Mechanics Satisfies Macroscopic Locality

In the last sections, we have defined ML and provided a semidefinite programming
characterization of the set of microscopic correlations compatible with this principle.
It is now time to prove that Quantum Mechanics satisfies ML.

8In principle, according toRemark 3, for a set of correlations conditioned on s̃ the determined entries
of � should be of the form P(s|s̃) = P(s, s̃)/P(s̃) and thus highly non-linear in P . Note, though,
that we can always redefine such a matrix � as �′ = P(s̃)�. Obviously, as long as P(s̃) �= 0, the
positivity of �′ is equivalent to that of �, but �′ depends linearly on P .
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Let Sacc be any set of experimentally accessible settings, and let |ψ〉 ∈ H be
the joint state of the corresponding quantum microscopic experiment (w.l.o.g., we
can assume it to be pure). For any interaction X , call Ea the projector operator
corresponding to outcome a ∈ X . Clearly, Ea Ea′ = δaa′ Ea , for a, a′ ∈ X and∑

a∈X Ea = I. Also, if O(a) �= O(b), [Ea, Eb] = 0, i.e., observables corresponding
to different parties commute. One can argue that during the course of the experiment
the quantum system could experience some evolution U , perhaps depending on the
sequence of past interactions effected on the particle. We will solve this issue by
switching to the Heisenberg picture and redefining the measurement operators at
each point of each arc via E → U EU †. Since the experiment is assumed to be
performed under space-like separation, operators belonging to different parties will
still commute.

Associate to each measurement X an auxiliary Hilbert space C
|X |. We will call

such systems registers, and use Hr = ⊗
X C

|X | to denote the space of all of them.
Intuitively, the registers are going to hold a record of the outcomes we observe when
we interact with particle pk sequentially. Let {| j〉}|X |−1

j=0 be an orthonormal basis of
C

|X |; and φ, a function which maps any outcome a ∈ X to a natural number between
0 and |X | − 1 in such a way that φ(a) �= φ(a′), for a �= a′, a, a′ ∈ X . Now, consider
the unitary UX ∈ B(Hr ⊗ H) given by

UX =
∑
a∈X

V φ(a)

X ⊗ Ea, (18)

where VX is a unitary which acts non-trivially only over the register X as V | j〉 =
| j + 1 (mod |X |)〉. For any measurement outcome a ∈ X , call �̄a ∈ B(Hr ⊗H) the
projector that acts non-trivially over register X as |φ(a)〉〈φ(a)|. For any fragment of
an arc s = a1 → a2 → . . . → am , �̄s will denote the projector

�̄s = �̄am �̄am−1 . . . �̄a1 . (19)

Analogously, Us and Es will represent the unitary operator UX (am )UX (am−1) . . . UX (a1)

and the non-hermitian operator Eam . . . Ea1 , respectively. Now, define the projector

�s = U †
s �̄sUs, (20)

for s �= I and IHr ⊗ IH otherwise, and denote the state
⊗

X |0〉X ∈ Hr by |�0〉. We
claim that the positive semidefinite matrix

�ss ′ = 〈�0|〈ψ|�s�s ′ |�0〉|ψ〉. (21)

satisfies the conditions (3).
Indeed:

1. �II = 〈�0|�0〉〈ψ|ψ〉 = 1
2. �Is = �Is = �ss = 〈�0|〈ψ|�s |�0〉|ψ〉 = 〈ψ|E†

s Es |ψ〉 = P(s).
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3. Let s, s ′ be space-like separated. Then, the operators �̄s, Us commute with
�̄s ′ , Us ′ . It follows that

�ss ′ = 〈�0|〈ψ|�s�s ′ |�0〉|ψ〉 = 〈�0|〈ψ|U †
s U †

s ′�̄s�̄s ′UsUs ′ |�0〉|ψ〉 =
= 〈ψ|E†

s ′ E†
s Es Es ′ |ψ〉 = P(s, s ′). (22)

4. Let s, s ′ be locally orthogonal. Then, s = s1 → a → s2, s ′ = s1 → a′ → s ′
2,

with a, a′ ∈ X (a), a �= a′, and so,

�s = U †
s1→aU †

s2�̄s1→a�̄s2Us2Us1→a,

�s ′ = U †
s1→a′U

†
s ′
2
�̄s1→a′�̄s ′

2
Us ′

2
Us1→a′ . (23)

Note that Us1→a = Us1→a′ . Also, �̄s1→a , �̄s1→a′ commute with Us2 , Us ′
2
(because

they act over different subsystems).This, togetherwith the relation �̄s1→a�̄s1→a′ =
0, implies that �s�s ′ = 0, and, consequently, �ss ′ = 〈�0|〈ψ|�s�s ′ |�0〉|ψ〉 = 0.

4 Predictions of ML

Note that up to now we have not discussed the dynamics of theories respecting ML.
This is so because the formalism of black boxes only allows to speak about corre-
lations between distant parties, independently of how those correlations originated.
Consequently, the only predictions we can expect from the ML axiom are limits to
the non-locality exhibited by the physical theories subject to them. We already saw,
in Sect. 2, that supra-quantum isotropic PR boxes are not compatible with ML. In
this section, we will explore further how ML constrains bipartite and tripartite cor-
relations. We will see how these results compare to the no-signaling, quantum and
classical cases. But first we have to point out a practical observation.

Currently, the state of the art in non-locality research is to consider scenarioswhere
each party interacts with its subsystem only once, i.e., the length of all accessible
arcs is 1. We will call this kind of scenario the standard picture. In the standard
picture only probabilities of the type P(a1, . . . , aK ) are considered. To determine
if such distributions are ML, we just have to check the existence of LHVMs for a
finite set of intensities {I a} in a finite set of experiments, i.e., ML can be certified in
a finite number of steps. Along this Section we will always consider standard picture
scenarios.
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4.1 The Bipartite Case

In order to find out if a set of probabilities P(a, b) is compatible with ML, it is
enough to check for the existence of a LHVM for the intensity fluctuations { Ī a, Ī b :
a ∈ X, b ∈ Y,∀X, Y }. By Remark 3, we can therefore identify Qml as Q1 [12], a
set of correlations proposed in [17] as a first approximation to the set Q of quantum
correlations. Q1 is defined as the set of bipartite distributions P(a, b) such that there
exists a positive semidefinite matrix �, whose columns and rows are numbered by
the symbol I, Alice’s outcomes a and Bob’s outcomes b with the structure

� =
⎛
⎝ 1 �P(a)T �P(b)T

�P(a) A P(a, b)
�P(a) P(b, a) B

⎞
⎠ (24)

with Aa,a = P(a), Bb,b = P(b).
From Sect. 3, we know that Q ⊂ Q1. Moreover, this inclusion is strict [12, 17].
However, in a sense, the two sets are quite close.

Consider, for instance, a scenario where both Alice and Bob perform s dichotomic
measurements, and, for any pair of measurement settings Xi , Y j , define the two-point
correlators

Ei j ≡
∑

a∈Xi ,b∈Y j

P(a, b)(−1)φ(a)⊕φ(b), (25)

where φ is a function that assigns the values 0 and 1 to the two outcomes associated
with eachmeasurement. In [12] it was shown that themaximumof anyBell inequality
of the form

∑
i, j

ci, j Ei j (26)

among all possible sets of correlations P(a, b) compatible withML is the same as the
quantum optimum. This implies, as shown in Sect. 2.1, that the maximum violation
of the Clauser-Horn-Shimony-Holt (CHSH) inequality [19]

C H SH ≡ E00 + E10 + E01 − E11 ≤ 2. (27)

allowed in ML theories is the Tsirelson bound, 2
√
2 [20].

In this respect, amuchmore powerful and general result is derived in [21]: consider
a bipartite non-locality scenario involving dichotomic observables, and let

f (E A
i , E B

j , Ei j ) ≤ R, (28)
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with E A
i = ∑

a∈Xi
(−1)φ(a) P(a), E B

j = ∑
b∈Y j

(−1)φ(b) P(b), be a necessary condi-
tion for a microscopic distribution to be classical, i.e., let the former expression be a
Bell inequality. Then, the relation

f

⎛
⎜⎝0, 0,

2

π
arcsin

⎡
⎢⎣ Ei j − E A

i E B
j√

1 − (E A
i )2

√
1 − (E B

j )2

⎤
⎥⎦

⎞
⎟⎠ ≤ R (29)

holds for all distributions compatible with ML.
Given expression (28), inequality (29) is proven by considering the macroscopic

intensity fluctuations Ī i
A = ∑

a∈Xi
(−1)φ(a) Ī a, Ī j

B = ∑
b∈Y j

(−1)φ(b) Ī b generated
by many microscopic systems following a ML distribution P(a, b) with two-point
correlators {Ei j } and mean values {E A

i , E B
j }. By hypothesis, P( Ī i

A, Ī j
B) is a gaussian

local distribution. It follows that the dichotomic distribution P
(
sgn( Ī i

A), sgn( Ī j
B)

)
,

with two-point correlators

Ẽi j = 〈sgn( Ī i
A) · sgn( Ī j

B)〉 = 2

π
arcsin

⎛
⎜⎝ Ei j − E A

i E B
j√

1 − (E A
i )2

√
1 − (E B

j )2

⎞
⎟⎠ , (30)

and average values 〈sgn( Ī i
A)〉 = 〈sgn( Ī j

B)〉 = 0, is also local and thus subject to (28).
Applying the former result to the CHSH inequality (27), for example, we deduce

that any microscopic distribution compatible with ML must satisfy

2

π
arcsin

⎛
⎝ E11 − E A

1 E B
1√

1 − (E A
1 )2

√
1 − (E B

1 )2

⎞
⎠ + 2

π
arcsin

⎛
⎝ E12 − E A

1 E B
2√

1 − (E A
1 )2

√
1 − (E B

2 )2

⎞
⎠ −

2

π
arcsin

⎛
⎝ E21 − E A

2 E B
1√

1 − (E A
2 )2

√
1 − (E B

1 )2

⎞
⎠ − 2

π
arcsin

⎛
⎝ E22 − E A

2 E B
2√

1 − (E A
2 )2

√
1 − (E B

2 )2

⎞
⎠ ≤ 2.

(31)

This is a strengthening of the non-linear condition discovered by Landau [30], which
can be derived from Eq. (31) by taking E A

i = E B
j = 0 for all i, j . As shown in

[17, 21], for this particular scenario of two settings and two outputs, this condition
(and the ones derived by symmetry considerations) is also sufficient to single out all
no-signaling correlations compatible with ML.

It turns out that there exist microscopic distributions with biased outcomes (i.e.,
with some Ei �= 0) attaining the Tsirelson bound which are also compatible with this
condition. On the other hand, any set of quantum correlations maximizing the CHSH
violation can be shown to have unbiased outcomes [22]. We thus conclude that ML
alone is not sufficient to characterize the bipartite quantum set of correlations.
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How does ML compare with other physical axioms at the correlation level? Many
physical principles have been proposed to constrain the set of all bipartite distribu-
tions beyond the non-signalling set, like non-trivial communication complexity [9],
Non-local Computation [10] and Information Causality [11]. However, so far only
those correlations compatible with Information Causality (IC) have been thoroughly
studied [23, 24]. Although a concrete characterization of IC correlations is still miss-
ing, current literature suggests that IC imposes weaker constraints than ML when
applied to scenarios with a small number of measurement outcomes, like the CHSH
scenario. Note, indeed, that, when applied to single out the set of physical two-point
correlators, IC does not seem to recover the quantum set [23]. It has been shown,
nevertheless, that in setups with a large number of measurement outcomes, there
exist distributions compatible with ML which would allow two parties to violate IC
[24]. Both principles hence seem to be independent of one another.

4.2 The Tripartite Case

Here we will briefly analyze the scenario with three separate degrees of freedom
(i.e., three particles), two settings and two outcomes. The correlations will thus have
the form P(a, b, c).

The tripartite case is the simplest scenario where one can study the phenomenon
of monogamy of correlations [25]. Consider, for instance, how much Alice and Bob
can violate the bipartite CHSH Bell inequality [19], see Eq. (27), for a fixed value
C H SHAC of theCHSHparameterwith respect toAlice andCharlie. From arguments
of extensibility, we know that C H SHAB, C H SHAC cannot be both non-local (i.e.,
greater than 2) at the same time [25]. Moreover, as shown in [26], the no-signaling
condition alone implies that

|C H SHAB | + |C H SHAC | ≤ 4. (32)

Toner and Verstraete [27] found that, in quantum theories, this inequality can be
replaced by a stronger one, namely,

|C H SHAB |2 + |C H SHAC |2 ≤ 8, (33)

that, in particular, allows recovering the original Tsirelson bound [20]. Both inequali-
ties are tight in the no-signaling polytope and the set of quantum correlations, respec-
tively.

It is thus intriguinghow these inequalities evolvewhenwemove fromone theory to
another following the inclusion chain Classical Physics⊂Quantum Physics⊂ML⊂
NS.

To find the solution, we had to perform linear optimizations over the set of all
tripartite distributions compatible with ML. In order to prove that P(a, b, c) is com-
patible with ML, it is enough to check that the intensities generated in the three
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scenarios depicted in Fig. 6 (tripartite case, bipartite with recombination of separate
degrees of freedom and bipartite with post-selection) admit a LHVM. This implies
checking the positivity of 10 covariance matrices. We performed the corresponding
SDP calculations with the MATLAB package YALMIP [28] in combination with
SeDuMi [29].

The results can be seen in Fig. 7, that shows the trade-off between C H SHAB

and C H SHAC for different classes of theories. The predictions of ML are disap-
pointing for their simplicity: the no-signaling bound is just complemented with the
requirement that ML only allows violations of the CHSH inequality up to 2

√
2.

Fig. 6 The GHZ scenario. These are the only three non-trivial ways (modulo permutations of the
parties) in which three separate degrees of freedom can be distributed

Fig. 7 Monogamy of
bipartite correlations. The
plot shows the trade-off
between Alice and Bob’s and
Alice and Charlie’s CHSH
parameter in different
theories. The yellow regions
corresponds to the accessible
points exclusive to the
no-signaling polytope
(bound (32)). The green zone
shows the limits compatible
with ML. The predictions of
QM (Eq. (33)) and classical
physics are denoted in grey
and brown, respectively
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5 Conclusion

In this chapter we have introduced the axiom of Macroscopic Locality as a funda-
mental principle to be satisfied by future physical theories that aim at describing our
Universe. We derived a consistent set Qml of ML multipartite correlations, which
we showed to contain strictly the set Q of quantum correlations. In the process, we
noted the phenomenon of macroscopic non-locality activation, whereby K parties
sharing a macroscopically local multipartite distribution can generate macroscopic
non-locality via clustering or classical communication. We showed how to compute
the boundaries of ML in standard nonlocality scenarios and connected our results
with previous works on quantum correlations. Our analysis revealed that, in spite
of the similarities between Qml and Q, there exist bipartite correlations compati-
ble with ML which are impossible to approximate by means of quantum systems.
This offers some hope to the possibility that quantum mechanics is experimentally
falsified in the future via bipartite Bell-type experiments.

Appendix 1: Local Gaussian Distributions

In this appendix, we will show a simple criterion to decide when a set of gaussian
marginal distributions admits a local hidden variable model. Let, then, � be a set of
variables � = {ξ1, ξ2, . . . , ξM }, and let {�i }i be a collection of subsets of � such
that, for any i , there exists a gaussian probability distribution Pi (�i ) with zero mean
and covariance matrix γi for all ξ ∈ �i . We remind the reader that the covariance
matrix of a set of variables (x1, . . . , xn) is a matrix whose entries are labeled by the
variable indices and given by the expression γi j ≡ 〈xi x j 〉 − 〈xi 〉〈x j 〉. The following
theorem provides a characterization of all marginal probability distributions Pi (�i )

that arise from a global probability distribution P(�).

Theorem 7 Let �i be sets of continuous variables ξ1, ξ2, . . ., as defined above,
and let � = ⋃

i �i . Then, there exists a joint probability density P(�) such that
P(�i )d�i = d�i

∫
P(�)

∏
ξ∈�\�i

dξ holds for all i iff the following conditions are
satisfied.

1. For all ξ, ξ′ ∈ �i ∩� j , γi
ξξ′ = γ

j
ξξ′ , that is, covariance matrix entries correspond-

ing to the same two variables have the same value.
2. There exists a positive semidefinite matrix γ whose entries are labeled by the

elements of � and such that, for any i and ξ, ξ′ ∈ �i ,

γξξ′ = γi
ξξ′ . (34)

Notice that, in case ξ, ξ′ do not both belong to one of the sets �i , the coefficient
γξξ′ does not appear among the entries of {γ j } j .
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Proof We will first prove that, if P(�) exists, then conditions 1 and 2 are satisfied.
First of all, if there exists a joint probability distribution for the variables in �, then,
for any pair of variables ξ, ξ′ ∈ � the mean value 〈ξξ′〉 is uniquely defined, and so,
if ξ, ξ′ ∈ �i ∩ � j , then γi

ξξ′ = 〈ξξ′〉 = γ
j
ξξ′ . Condition 1 is thus satisfied. To see that

condition 2 is also respected define the symmetric real matrix

γξξ′ ≡
∫

ξξ′ P(�)d�. (35)

From previous considerations, it is clear that Eq. (34) applied to γ holds. To see
that γ is positive semidefinite, multiply γ on both sides by an arbitrary vector �v. We
have that

�vT γ�v =
∑
ξ,ξ′

vξvξ′γξξ′ =
∫ ⎛

⎝∑
ξ

vξξ

⎞
⎠

2

P(�)d� ≥ 0. (36)

Since �v was an arbitrary vector, it follows that, indeed, γ ≥ 0.
Now we will prove the opposite implication: suppose that there exists a posi-

tive semidefinite matrix γ fulfilling Eq. (34). One can then check that the gaussian
distribution P(�) ∝ e−�ξT γ−1�ξ/2 admits Pi (�i ) as marginals, as long as γ is invertible.

In case γ is not invertible, let r = rank(γ), let {�ui }r
i=1 be a basis for its range; and{�vi }M

i=r+1, a basis for its kernel. Now, perform a change of variables ξ′
i = ∑

i ui
jξ j , for

i = 1, . . . , r and ξ′
i = ∑

i vi
jξ j , for i = r + 1, . . . , M . Since, for all �vi , (�vi )T γ�vi =

〈(ξ′
i )
2〉 = 0, it follows that ξ′

i = 0, for i = r + 1, . . . , M . The distribution of the

remaining {ξ′
i }r

i=1 is thus given by P({ξ′
1, . . . , ξ

′
r }) ∝ e−�ξ′T

(γ′)M P �ξ′/2. Here the symbol
M P denotes the Moore-Penrose inverse. �

Appendix 2: Macroscopic Locality

Here we will study the conditions under which the intensity fluctuations generated
by independent sets of multipartite microscopic correlations admit a classical model.

As explained in the main text, a macroscopic experiment will involve a source of
N identical and independent K -tuples of particles, all parties are allowed to perform
identical microscopic interactions over the particle beams they receive, and their
detectors have a resolution that only allows measuring intensity fluctuations of the
order O(

√
N ).

Given a possible arc s ∈ S ⊂ �Oi , define the observable ds
l as equal to 1 if party

i’s particle from the lth K -tuple impinges on detector D(s) at the end of the arc s. If
we label by Ī s the intensity fluctuation measured by this party in detector D(s), it is
straightforward that
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Ī s ∝
N∑

l=1

[ds
l − P(s)]. (37)

Since the precision of the party’s detectors only allow it to detect fluctuations of
the order

√
N , the i th experimentalist will be measuring a truncation (in principle,

up to an arbitrary number of decimal places) of the variable

Ī s =
∑N

l=1[ds
l − P(s)]√

N
. (38)

Using the notation P(s, s) = P(s), and P(s, s ′) = 0 if s, s ′ are locally orthogonal
arcs, we have that, for any two space-like separated, locally orthogonal or identical
arcs s, s ′,

〈 Ī s Ī s ′ 〉 = P(s, s ′) − P(s)P(s ′). (39)

By virtue of the Central Limit Theorem [31], in the limit N → ∞, for any col-
lection of local settings S̄ = {Si }K

i=1, the distribution of the variables { Ī s : s ∈
Si , for some i} will converge to a multivariate gaussian distribution with zero mean
and covariance matrix given by

γ S̄
ss ′ = P(s, s ′) − P(s)P(s ′). (40)

According toAppendix 1, for anyfinite number of local settings, the set of intensity
fluctuations arising from a finite set of accessible local experimental settings Sacc
will admit a LHVM iff there exists a positive semidefinite covariance matrix γ that
has γ S̄ as a submatrix for all collections S̄ ∈ Sacc.
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Guess Your Neighbour’s Input:
No Quantum Advantage but an Advantage
for Quantum Theory

Antonio Acín, Mafalda L. Almeida, Remigiusz Augusiak
and Nicolas Brunner

1 Introduction

Quantum theory is arguably the most accurate scientific theory designed so far.
However, despite this success, we still lack a deep understanding of the foundations
of the theory. An important goal in the foundations of quantummechanics is therefore
to recover quantum theory from alternative sets of axioms, motivated by physical
principles rather than mathematical ones [1].

In particular, one aspect of quantum theory that has attracted considerable atten-
tion recently is that of quantum nonlocal correlations. Quantum nonlocality [2, 3],
a valuable resource for information processing [4–7], is the strongest manifesta-
tion of quantum correlations; distant observers performing local measurements on
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a shared entangled state, may observe correlations between their measurement out-
comes which could provably not have been obtained in any local theory.

The strength of quantum correlations appears however to be limited, in a way that
cannot be yet explained by any physical principles. Consider for instance the prin-
ciple stating that information cannot be transmitted instantaneously, the so-called
no-signaling principle. Although this principle is satisfied by all quantum correla-
tions, preventing from a direct conflict with relativity, it does not single out quantum
correlations. Indeed there exist no-signaling correlations which are stronger than
those allowed in quantum mechanics [8], usually referred to as super-quantum cor-
relations. Why such correlations would be unlikely to exist in nature and whether
there exist physical principles singling out quantum correlations are important issues
in the foundations of quantum mechanics [9–11].

Several approaches have been investigated to discuss this problem. The first con-
sists in investigating the capabilities for information processing of super-quantum
correlations, and to compare them with that of quantum correlations. Interestingly
it was shown that the availability of certain super-quantum correlations, instead of
quantum correlations, would tremendously increase the power of classical communi-
cation. In particular, it was shown that some of them would collapse communication
complexity [12–14] (hence dramatically reducing the amount of classical commu-
nication required to solve a large class of problems [5]) or violate simple and very
natural information-theoretic principles (usually satisfied by quantum theory). The
latter include the principles of information causality [15, 16] and macroscopic local-
ity [17]. A second approach, perhaps less demanding, starts from assuming ‘local
quantummechanics’. In other words the statistics of localmeasurements are assumed
to follow Born’s rule. What other principle should then be imposed in order for the
global statistics to be quantum? In the bipartite case, it turns out that the no-signaling
principle is enough to single out quantum correlations [18, 19]. That is, imposing
local quantum mechanics and no-signaling is enough to recover quantum correla-
tions. Importantly,while both of these approaches have proven to be (at least partially)
successful in the case of two parties, none of them can tackle the general multipartite
scenario [19].

Here we review a simple multipartite game called ‘Guess your neighbour’s input’
(GYNI) [20], the rules of which can be understood intuitively from its name. Despite
its innocuous appearance, the game captures crucial features of multipartite quan-
tum correlations. The main aspect of the game is the following. Whereas players
sharing quantum resources do not have any advantage over players sharing classi-
cal resources, it turns out that players sharing super-quantum correlations can have
an advantage over players sharing either classical or quantum resources. In other
words, the limitation of quantum resources is here not a mere consequence of the no-
signaling principle. Hence, the game of GYNI provides a natural separation between
quantum and super-quantum correlations. More generally these results point towards
a strengthening of the no-signaling principle, in the general multipartite case, obeyed
by quantum mechanics. Therefore, whereas the game of GYNI may seem a priori
useless from a quantum perspective, it does in fact bring a novel and fresh perspective
on the foundations of quantum theory [21].
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Although it is not clear yet what fundamental principle lies behind the quantum
limitations for GYNI, several important features of such a principle can already be
identified. In particular, this principle must be genuinely multipartite, which can be
shown directly from the GYNI game. This is because there exist multipartite super-
quantum correlations, that will nevertheless satisfy any bipartite principle [22] (see
also [23]). Hence no principle that is inherently bipartite, such as no trivial commu-
nication complexity or information causality, can recover quantum correlations.

Moreover, it was shown, using GYNI, that there exist multipartite super-quantum
correlations obeying the Born rule locally [19]. Therefore, in the multipartite case,
the no-signaling principle is not enough to recover quantum correlations from local
quantum mechanics. This result also has fundamental consequences on extensions
of Gleason’s theorem [24] to composite systems.

Finally, we also review applications of GYNI beyond quantum foundations. In
particular, the game turns out to be strongly related [25, 26] to topics of quantum
information theory, namely bound entanglement [27] and unextendible product bases
[28]. This is surprising since these subjects seem to be completely unconnected
at first sight. This connection deepens our understanding of Bell inequalities with
no quantum advantage. In particular it allows us to derive such inequalities from
unextendible product bases.

This chapter is structured as follows. In Sect. 2, after giving a brief background
introduction to nonlocal correlations, we review the GYNI game and derive the win-
ningprobabilities for various types of correlations (local, quantum, andno-signaling).
Applications of GYNI are reviewed in Sects. 3 and 4. First, in Sect. 3, we discuss
results on the extension ofGleason’s theorem for composite systems. Then, in Sect. 4,
we shall see that any information-theoretic principle capturing quantum correlations
must be genuinely multipartite. In Sect. 5, after reviewing in detail the connection
between GYNI and unextendible product bases, we will make use of this connection
to go beyond GYNI, and to better understand the structure of Bell inequalities with
no quantum advantage. Finally, we conclude in Sect. 6.

2 Guess Your Neighbour’s Input

2.1 Background: Classical, Quantum and No-Signalling
Correlations

The definition of (non)locality was introduced by Bell [2], as a rigorous physical
andmathematical framework to test the Einstein-Podolsky-Rosen paradox. Consider
two distant observers, Alice and Bob, sharing a physical system, and performing
local measurements on their subsystems. Alice and Bob’s choice of observables are
labeled by x1 and x2 respectively, and take outcomes a1 and a2. The joint probability
distribution of outcomes, conditioned on the choice of observables, is represented
by P(a1, a2|x1, x2). This set of data is described as local (or classical) if and only
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if P(a1, a2|x1, x2) can be reproduced by a local hidden-variable model, that is, iff it
can be written in the form

PL(a1, a2|x1, x2) =
∑

λ

P(λ)P(a1|x1, λ)P(a2|x2, λ). (1)

Here individual outcomes are completely specified by the choice of local observables
and the shared (hidden) random variable λ.1 Indeed, Alice and Bob’s outcomes may
be correlated via the variable λ, which is distributed with probability distribution
P(λ).

The probability distribution P(a1, a2|x1, x2) is said to be realizable in quantum
mechanics (or in short, to be quantum) if and only if it can be written in the following
form:

PQ(a1, a2|x1, x2) = tr(ρAB Mx1
a1 ⊗ Mx2

a2 ), (2)

where the state of system ρAB is defined by a density operator on the joint Hilbert
spaceHA ⊗HB , and Mx1

a1 , Mx2
a2 are local generalized measurements (positive semi-

definite operators on the local Hilbert space such that
∑

a j
M

x j
a j = 1 ( j = 1, 2) with

1 denoting an identity matrix of the dimension following from the context). Indeed
quantum correlations are stronger than classical ones, hence there exist quantum
distributions PQ(a1, a2|x1, x2) which cannot be written in the form (1).

A crucial feature of both classical and quantum correlations is that they satisfy
the no-signalling principle: instantaneous information transmission is impossible.
More formally the principle says that Alice’s measurement outcome is uncorrelated
to Bob’s choice of measurement, that is

∀
a1,x1,x2,x ′

2

∑
a2

PN S(a1, a2|x1, x2) =
∑

a2

PN S(a1, a2|x1, x ′
2) ≡ PA(a1|x1). (3)

Similar equations must be obeyed for Bob’s marginal distribution. Correlations sat-
isfying this principle, as well as normalization and positivity, are referred to as
nonsignaling correlations [29]. Interestingly, there exist nonsignaling correlations
that are not quantum [8], i.e. cannot be written in the form (2).

The above definitions are naturally generalized to the multipartite case: local
correlations between N parties are described by

PL(a1, . . . , aN |x1, . . . , xN ) =
∑

λ

P(λ)P(a1|x1, λ)P(a2|x2, λ) . . . P(aN |xN , λ),

(4)

Quantum correlations are given by

PQ(a1, . . . , aN |x1, . . . , xN ) = tr(ρMx1
a1 ⊗ · · · ⊗ MxN

aN
), (5)

1By simplicity,we considerλ to be discrete, but all the formulation can be extended to the continuous
case.
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where ρ denotes the quantum state shared between the parties. Finally nonsignalling
correlations are defined such that the marginal distribution P(ai1 , . . . , aik |xi1 , . . . ,

xik ) of any subset {i1, . . . , ik} of the N parties does not depend on the measurement
settings of the remaining parties, that is

PN S(ai1 , . . . , aik |x1, . . . , xN ) = PN S(ai1 , . . . , aik |xi1 , . . . , xik ) (6)

This guarantees that any subset of the parties is unable to signal to the remaining
parties by their choice of measurement.

In order to distinguish between these three kinds of correlations (local, quantum,
and nonsignaling) one devises a Bell test, involving a certain number (usually finite)
of parties, observables and outcomes. It is convenient to represent a probability
distribution P(a1, . . . , aN |x1, . . . , xN ) as a vector of probabilities P, with entries
P(a|x) = P(a1, . . . , aN |x1, . . . , xN ). In this vector space, Bell inequalities are given
by linear expressions

S =
∑

j

α j Pj ≤ ωc. (7)

where Pj denotes the j th component of P. The coefficients α j are real. The bound
of the inequality, i.e. ωc, is the largest value of the Bell polynomial S for any local
probability distribution, i.e. of the form (4). The set of local correlations defines a
convex polytope. Hence it can be described by a finite set of linear inequalities, that
are called tight Bell inequalities.

The local set is a strict subset of the set of quantum correlations. The latter is
still a convex set, although no longer a polytope. It can, however, be described by
an infinite set of quantum Bell inequalities, similar to (7) but replacing the classical
bound by a quantum one, ωq , which may in general exceed the classical bound, i.e.
ωq ≥ ωc.

Finally, the set of no-signalling correlations is also a convex polytope, which is
strictly larger than the quantum set. Its facets are given by positivity inequalities,
stating that joint probabilities are positive. The largest value of a Bell polynomial
S for any no-signaling probability distribution is denoted ωns ; indeed, in general
ωns ≥ ωq .

The scene being set, let us bring in the protagonists.

2.2 The GYNI Game

Consider N players disposed on a ring. The game starts with each player receiving
a (private) input bit xi (say from a referee), distributed according to the probability
distribution q(x). Now, the name of the game says it all: the goal is that each player
makes a correct guess ai of his (say) right-hand side neighbour’s input bit (see Fig. 1),
that is

∀
i

ai = xi+1, (8)
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Fig. 1 The GYNI game.
The goal is that each party
outputs its right-neighbour’s
input: ai = xi+1

where xN+1 ≡ x1. Importantly, the players are successful if and only if all the parties
make a correct guess.

The winning probability is then given by

ω =
∑

x

q(x)P(ai = xi+1|xi ) (9)

with P(ai = xi+1|xi ) = P(a1 = x2, . . . , aN = x1|x1, . . . , xN ). Note that no com-
munication between the players is allowed during the game. However, during the
preparation stage of the game, the players are informed of the distribution q(x) of
the inputs. They are allowed to establish a common strategy, which will consist in
utilizing in a judicious way physical resources they are allowed to share. Here our
aim will be to find out how good the parties can perform at the game when sharing
classical, quantum, or no-signaling correlations. Formally, the game represents amul-
tipartite Bell test, and Eq. (9) has the structure of a multipartite Bell inequality (see
(7)). Hence our goal will be to determine the bounds ωc, ωq and ωns , corresponding
to the classical, quantum and no-signalling bounds of the GYNI Bell inequality.

2.3 No Quantum Advantage

A central feature of the GYNI game is that the maximum winning probability in the
quantum world is exactly the same as in a classical one. In other words, the GYNI
inequalities (9) have the same classical and quantum bound, i.e. ωc = ωq , for any
distribution of inputs q(x).

Classical bound. Let us start by analyzing the best classical performance. Any
probabilistic classical strategy (which includes the use of shared randomness), can
be decomposed into a convex sum of deterministic strategies. Thismeans that players
can achieve the best winning probability ωc by making a definite guess ai for each
input bit xi . Hence it is enough to analyze such cases. Imagine that their deterministic
strategy allows them to succeed when receiving some input string y, i.e. ai (yi ) =
yi+1,∀i . The input strings have an interesting orthogonality property. Consider any
input bit string x that is different from y and ȳ, where ȳ denotes the negated bit string,
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i.e. ȳi = yi + 1. For any such a string x �= y, ȳ, there is some player i such that
xi = yi and xi+1 �= yi+1. That is, there is always some player which will make a
wrong guess. He will receive the bit xi = yi , and output ai (yi ) = yi+1 according
to the strategy, while the correct output would be ai = ȳi+1. Note that by choosing
the strategy such that ai (ȳi ) = ȳi+1,∀i , it is still possible to score when receiving ȳ.
The score of this strategy, which is in fact the best classical winning probability (see
below), is then

ωc = max
x

[q(x) + q(x̄)], (10)

achieved by using y such that q(y) + q(ȳ) = maxx[q(x) + q(x̄)]. For more details,
we refer the reader to Ref. [20].

Quantum bound. If players have access to quantum systems, the most general
protocol involves a quantum state ρ of arbitrary Hilbert space dimension and general
quantum measurements Mai

xi
corresponding to a probability distribution

P(a1, . . . , aN |x1, . . . , xN ) = tr(ρMa1
x1 ⊗ · · · ⊗ MaN

xN
). (11)

The best quantum winning probability is then the maximum expected value of the
Bell operator

ωq = max
ψ,meas

∑
x

q(x)〈Mx〉. (12)

where Mx ≡ Mx2
x1 ⊗ · · · ⊗ Mx1

xN
. Notice that it is enough to optimize over pure

states |ψ〉 and projective measurements Mxi
ai

Mxi

a′
i

= δai =a′
i
Mxi

ai
, since there are no

restrictions on the size of local Hilbert spaces. Following a similar reasoning to the
classical case, take projectors My and Mx, where x �= y, ȳ. Then there is some local
projector i , defined on the same basis xi = yi , but projecting on orthogonal subspaces
xi+1 �= yi+1. Consequently, the measurement projectors also obey an orthogonality
condition,

My Mx = 0 if x �= y, ȳ. (13)

This property is sufficient to show that

∑
x

q(x)〈Mx〉 ≤ max
x

[q(x) + q(x̄)] , (14)

which proves that the best quantum winning probability is the same as the classical
one

ωq = ωc. (15)
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Indeed, the derivation of the best winning probabilities, in both the classical and
quantum case, relies on a rather natural orthogonality property (either of determin-
istic local strategies, or of orthogonal measurement projectors). Interestingly such a
property is not a consequence of the no-signaling, and does in general not hold for
no-signaling correlations, as we shall see in the next section.

2.4 No-Signalling Advantage

We have just seen that quantum resources provide no advantage over classical ones
for GYNI. Intuitively, this could be understood as follows. The game of GYNI is
in some sense clearly related to the notion of signaling. Indeed, if all players can
guess correctly their neighbour’s input with a high probability, this implies signaling.
As quantum correlations are no-signaling, they cannot help. Following this line of
reasoning, it may seem then natural to conjecture that any no-signaling resources
will provide no advantage over classical resources for GYNI. Surprisingly, however,
this intuition turns out to be wrong. There exist in fact super-quantum no-signaling
correlations which provide an advantage, as we shall see now.

2.4.1 Correlated Inputs

Consider a particular version of the GYNI game in which the inputs are correlated
in the following way: q(x) is uniform on the set of inputs that satisfy the parity
condition:

q(x) =
{
1/2N−1 if x1 ⊕ · · · ⊕ xN̂ = 0
0 otherwise,

(16)

where N̂ = N if N is odd and N̂ = N − 1 if N is even. Using Eq. (10), it is easy
to check that in classical or quantum theory, the success probability is limited by
ωc = 1/2N−1. We will see that, allowing for super-quantum correlations, this limit
can be beaten: the best winning probability ωns is lower-bounded by ωns/ωc ≥ 4/3.
Unlike the previous example, here, although each party still has absolute uncertainty
about his neighbour’s input, no-signalling correlations are able to exploit a global
correlation (the parity of the input-string) to increase the chance of correct guess.

3-player game. Let us first consider the simplest game, featuring three players.2 The
GYNI inequality is then simply given by

ω = 1

4
[P(000|000) + P(110|011) + P(011|101) + P(101|110)] ≤ 1

4
, (17)

2Note that for 2 players, no-signaling correlation provide no advantage.
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where the bound holds for any local or quantum strategy.
Let us first derive an upper bound on the no-signaling winning probability. Con-

sider the first three terms in (17). The no-signalling principle implies that

P(000|000) ≤
∑

a3

P(00a3|000) =
∑

a3

P(00a3|001),

P(110|011) ≤
∑

a2

P(1a20|011) =
∑

a2

P(1a20|001), (18)

P(011|101) ≤
∑

a1

P(a111|101) =
∑

a1

P(a111|001).

Notice that the terms appearing in the right hand side of the three above equations have
no overlap. Hence, from normalization, it follows that P(000|000) + P(110|011) +
P(011|101) ≤ 1. We apply a similar reasoning to the remaining combinations of
three probability terms of Eq. (17), such that we get

3[PN S(000|000) + PN S(110|011) + PN S(011|101) + PN S(101|110)] ≤ 4. (19)

Hence we obtain an upper limit to the no-signalling winning probability: ωns ≤ 1/3.
From this derivation, we also conclude that it is only possible to reach this limit if
every probability term in the GYNI inequality (17) has the value 1/3 (see [20]).

Now, it turns out that this upper bound can be reached by actual no-signaling
probability distributions. There exist two (among 45) inequivalent classes of extremal
tripartite no-signaling boxes [30], that reach the best winning no signaling probability
ωns = 1/3 (see [20]).

Finally note an interesting feature of inequality (17). It is a tight Bell inequality,
that is, it defines a facet of the polytope of local correlations [31]. Hence it identifies
a portion of the quantum boundary which is of maximal dimension [20].

N-player game. Next let us consider the general case of N players, using the condi-
tion (16) on the inputs. For any N , no-signaling correlations provide an advantage.
To show this, we prove that resources that provide a winning probability ω/ωc, in
the game with N players, can provide at least the same ratio ω/ωc for N +1 players.
The strategy is very simple: players 1 to N play exactly as in the N -player game,
while player N + 1 outputs his input, aN+1 = xN+1. This guess is correct when
xN+1 = x1, which happens with probability 1/2. Since ωc(N + 1) = (1/2)ωc(N ),
the ratio remains the same:

ω

ωc
(N ) = ω

ωc
(N + 1). (20)

Then, for any N ≥ 3, the best no-signalling sucess probability is at least as good
as (4/3)ωc. This lower bound is achieved if the first 3 players use the optimal no-
signalling strategy for the 3-player game, while the remaining output their inputs.
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They can however do better: using linear programming, we obtained that ωns/ωc =
4/3, for N = 4; ωns/ωc = 16/11, for N = 5, 6; and ωns/ωc = 64/42, for N = 7, 8.

Inspired by these three values, we provide the following guess for the non-
signalling violation of the GYNI Bell inequality: for odd N one has ωns/ωc =
2N−1/αN and

αN =
� N−1

4 ∑
k=0

(
N

N+1
2 + 2k

)
, (21)

while for even N one has the same value as for N − 1, that is ωns/ωc = 2N−2/αN−1.
The expression of αN may seem obscure but has an easy interpretation. Consider
all the binomial coefficients c(N , l) = N !/(l!(N − l)!). Now, αN is nothing but the
sum of all the coefficients c(N , (N + 1)/2 + 2k), where 0 ≤ k ≤ (N − 1)/4.
It is straightforward to see that this expression reproduces the values obtained
using linear programming up to N = 7. For instance for N = 7 one has
c(7, l) = (1, 7, 21, 35, 35, 21, 7, 1) and αN = c(7, 4) + c(7, 6) = 42. Moreover,
one can also see that in the limit of N → ∞, ωns/ωc → 2. As shown in the next
section, this is an upper bound for GYNI valid for an arbitrary number of parties. If
our guess is correct, the bound becomes tight in the limit of an infinite number of
parties.

Remarkably, it turns out that the N -partite GYNI Bell inequalities (with promise
(16)), hereafter referred to as GYNIN , are tight for an arbitrary odd N [26] and for
N = 4, 6 [20]. It is conjectured that they are tight for any N .

2.4.2 Upper Bounds on ωns

From thewinning probability in the classical case (Eq. (10)), we know that q(x) ≤ ωc

for any x, from which we get the bound ω ≤ ωc
∑

x P(ai = xi+1|xi ). Something
more meaningful is obtained if we now assume the distributions to be no-signalling.
Take the summation

∑
x P(ai = xi+1|x). Repeatedly applying the no-signalling

condition (3), (first to party N , then to N − 1 and so on), we get

∑
x1,...,xN

PN S(x2, . . . , xN , x1|x1, . . . , xN−1, xN )

≤
∑

x1,...,xN

PN S(x2, . . . , xN |x1, . . . , xN−1)

=
∑

x1,...,xN−1

PN S(x2, . . . , xN−1|x1, . . . , xN−2) = · · · = 2. (22)
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We conclude that the success probability for no-signalling correlations is bounded
by

ωns ≤ 2ωc, (23)

which means that, in general, no-signalling correlations do not allow deterministic
success. As we could predict, for some input distributions, perfect guessing is only
possible if players communicate.

2.4.3 Completely Uniform Distributions of Inputs

We have seen that the GYNI game with correlated inputs (16) provides a sharp
distinction between classical/quantum and no-signaling best winning strategies. Now
we provide a non-trivial examplewhere such difference is not present: the completely
uniform distribution over the inputs, i.e. q(x) = 1/2N . We obtain a tight upper bound
on ωns by noticing that 2q(x) = ωc, which leads to

ωns = ωc

2

∑
x

PN S(ai = xi+1|xi ) ≤ ωc. (24)

Classical and no-signalling resources provide exactly the same best winning proba-
bility, in a situation where each player has, a priori, no information about the input
of its neighbour.

Now that we presented the GYNI Bell inequality, we review in the next sec-
tions the application of this inequality in two different contexts, both related to the
characterization of quantum correlations.

3 Application 1: Gleason’s Theorem for Multipartite
Systems

Gleason’s Theorem [24] is a celebrated theorem in the foundations of quantum
mechanics that allows recovering the Born rule for quantum probabilities from the
structure of quantum measurements. Recall that a quantum measurement acting on
a Hilbert space of dimension d corresponds to a set of k positive operators, Mi ≥ 0
with i = 1, . . . , k such that

∑
i Mi = 1. Gleason’s Theorem aims at characterizing

maps from quantum measurements to probability distributions. The maps Λ have to
satisfy the following properties:

1. For any positive operator 0 ≤ M ≤ 1 one has Λ(M) ≥ 0.
2. Given a quantummeasurement, that is, given a set of k positive operators summing

up to the identity, one has
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k∑
i=1

Λ(Mi ) = 1. (25)

Note that the considered maps are non-contextual, as the measurement operators
are mapped into probabilities independently of the structure of the measurement they
belong to.

Gleason’s Theorem implies that all maps satisfying the two requirements 1 and 2
can be written as Λ(M) = tr(ρM) for a given quantum state ρ, that is, ρ a positive
operator of trace one. We sketch here the idea of the proof, while its detailed version
may be found e.g. in Ref. [32]. Notice, however, that the author of [32] imposes an
additional linearity condition on Λ which, as shown in what follows, can be simply
inferred from 1 and 2. Indeed, consider two measurement operators M1, M2 such
that M3 = 1 − (M1 + M2) ≥ 0. Consider now the two different measurements
{M1, M2, M3} and {M1 + M2, M3}. The second measurement is simply a coarse-
grained version of the first in which the two first outcomes are grouped together. A
direct application of property 2 above implies thatΛ(M1)+Λ(M2) = Λ(M1+ M2).
This together with properties 1 and 2 imply that the map Λ, initially defined for
positive operators, can be uniquely extended to a linear map acting on all operators.
It immediately follows that it can be written as tr(X M) for an operator X . But then,
the condition 1 implies the positivity of the operator X and its normalization follows
from condition 2. On the other hand, one checks by hand that any of these maps
satisfies conditions 1 and 2.

This theorem is a seminal result in the foundations of quantum theory. In particular,
it implies that Born’s rule for the computation of measurement probabilities can be
derived from the Hilbert space structure of quantum measurements and the two
natural conditions provided above.

3.1 Gleason Correlations

Gleason’s Theoremwas initially established for single systems. It was later extended
to composite systems in Refs. [33, 34]. The scenario consists of N independent
observers. To each observer j , with j = 1, . . . , N , one associates a Hilbert space
of dimension d j and a structure of quantum measurements given by sets of positive
operators summing up to the identity. For the sake of simplicity, we take in what
follows all the local dimensions equal, di = d, ∀i . We denote by {M ( j)

i j
}, i j =

1, . . . , k j the sets of positive operators defining a measurement for each observer,
that is,

∑
i j

M ( j)
i j

= 1. The extension of the theorem then aims at characterizing
thosemaps frommeasurements by each observer to probability distributions. In what
follows, for the ease of notation, we restrict the analysis to the simplest bipartite case,
although it can be easily generalized to an arbitrary number of parties. The map is
requested to satisfy the following conditions:
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1. For pairs of positive operators, M (1)
i1

, M (2)
i2

, where 0 ≤ M (1)
i1

, M (2)
i2

≤ 1 one has

Λ(M (1)
i1

, M (2)
i2

) ≥ 0.

2. For pairs of measurements, {M (1)
i1

}, {M (2)
i2

}, where 0 ≤ M (1)
i1

, M (2)
i2

≤ 1 one has

k1,k2∑
i1,i2=1

Λ(M (1)
i1

, M (2)
i2

) = 1. (26)

3. Given two complete quantum measurements by one of the observers, say the
second, {M (2)

i2
} and {N (2)

i2
}, the map has to be such that

k2∑
i2=1

Λ(M (1)
i1

, M (2)
i2

) =
k ′
2∑

i2=1

Λ(M (1)
i1

, N (2)
i2

). (27)

The new condition, i.e., the third one, can be understood as the natural formal-
ization of the no-signalling principle in the considered framework: the marginal
probability distribution seen by one of the observers cannot depend on the measure-
ment performed by the other observer. The generalization to an arbitrary number
of parties of these requirements is straightforward. Now Λ maps tuple of positive
operators M (1)

i1
, . . . , M (N )

iN
into non-signalling probability distributions.

The generalization of the theorem to this scenario, that we call multipartite Glea-
son’s Theorem, states that all such maps can be written as

Λ(M (1)
i1

, . . . , M (N )
iN

) = tr
(

W M (1)
i1

⊗ . . . ⊗ M (N )
iN

)
, (28)

where W is an operator which is positive on product states |ψ1〉 . . . |ψN 〉. These
operators can thus be viewed as locally positive quantum states, or equivalently as
entanglement witnesses [35] (below we adopt this last terminology). As above, it
is clear that maps of the form (28) satisfy the previous three requirements and the
non-trivial part of the result is proving the opposite direction.

As the set of entanglement witnesses is larger than the set of quantum states (or,
in other words, there exist operators W that are non-positive, but positive on product
states) the set of distributions (28), called in what follows Gleason correlations, is
in principle larger than the quantum set. However, it was shown in [18, 19] that
the two sets actually coincide for two parties. Thus, as it happens for single-party
systems, imposing the structure of quantum measurements for the observers gives
the quantum correlations.

The proof of the equivalence between Gleason and bipartite quantum correlations
exploits theChoi-Jamiołkowski (CJ) isomorphism [36] that relatesmaps to operators.
In this case, any witness W can be written as (I ⊗Υ )(Φ), where Υ is a positive map
and Φ is the projector onto the maximally entangled state |Φ〉 = (1/

√
d)

∑
i |i i〉 ∈

Cd ⊗Cd and I stands for the identity map. With the aid of Ref. [37], one can prove
that any normalized witness can also be written as (I ⊗ Λ)(Ψ ), where Λ is now a
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positive and trace-preserving map, while Ψ is a projector onto some pure bipartite
state.3 It then follows that

tr(W Mx1
a1 ⊗ Mx2

a2 ) = tr[(I ⊗ Λ)(Ψ )Mx1
a1 ⊗ Mx2

a2 ]
= tr[Ψ Mx1

a1 ⊗ Λ∗(Mx2
a2 )]

= tr(Ψ Mx1
a1 ⊗ M̃x2

a2 ), (30)

where Λ∗ is the dual4 of Λ and M̃x2
a2 = Λ∗(Mx2

a2 ) defines a valid quantum measure-
ment because the dual of a positive trace-preserving map is positive and unital, that
is, Λ∗(1) = 1.

The next natural question is as to whether the equivalence between quantum
and Gleason correlations holds for an arbitrary number of parties. Surprisingly, the
answer to this question turns out to be negative, as there are local measurements
acting on entanglement witnesses that produce supra-quantum correlations [19].
Before reviewing this result, it is worth mentioning that local measurements on
entanglement witnesses that can be written as

W =
∑

k

(
Λk

A1
⊗ · · · ⊗ Λk

AN

)
(ρk), (31)

where ρk are N -party quantum states,Λk
Ai
are positive trace preserving maps and the

number of terms in the sum is arbitrary, do not lead to supra-quantum correlations.
This is a rather straightforward generalization of the equivalence proof in the bipartite
case.

In order to prove that in the multipartite case the set of Gleason correlations con-
tains quantum correlations as a strict subset, we provide an example of entanglement
witness and local measurements giving nonsignalling correlations which violate the
three-partite GYNI Bell inequality (17). Let us start by introducing the following set
of four fully product vectors from the three-qubit Hilbert space:

3To see this explicitly let us first notice that for a normalizedwitnessW it holds thatW = (I ⊗Λ)(Φ)

with trace-preserving Λ iff WA = trB W = 1/d. Then, if WA �= 1/d but it is of full rank, one
introduces another witness W̃ = (1/d)(W −1/2

A ⊗ 1)W (W −1/2
A ⊗ 1). Clearly, W̃A = 1/d and thus

W̃ is isomorphic to a trace-preserving positive map Λ̃. Consequently,

W = d(
√

WA ⊗ 1)W̃ (
√

WA ⊗ 1) = d(
√

WA ⊗ 1)(I ⊗ Λ̃)(Φ)(
√

WA ⊗ 1) = (I ⊗ Λ̃)(Ψ ),

(29)

where Ψ denotes a projector onto some normalized pure state |Ψ 〉 = √
d(

√
WA ⊗ 1)|Φ〉 of full

Schmidt rank. Finally, ifWA is rank-deficient, one constructs yet anotherwitnessW ′ = W+P⊥
A ⊗1,

where P⊥
A = 1 − PA with PA denoting a projector onto the support of WA. Then, W ′

A is of
full-rank and therefore W ′ admits the form (29). To complete the proof, it suffices to notice that
W = (PA ⊗ 1)W ′(PA ⊗ 1), and hence W also assumes the form (29) with a normalized pure
state |Ψ 〉 = √

d[PA(W ′
A)1/2⊗1]|Φ〉 = √

d(W 1/2
A ⊗1)|Φ〉which is now not of full Schmidt rank.

4The dual map Λ∗ of Λ is the map such that tr(AΛ(B)) = tr[Λ∗(A)B].
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|ψ1〉 = |000〉, |ψ2〉 = |1e⊥e〉, |ψ3〉 = |e1e⊥〉, |ψ4〉 = |e⊥e1〉, (32)

where |e〉 ∈ C2 is an arbitrary vector different from |0〉 and |1〉, while |e〉 stands
for a vector orthogonal to |e〉. One checks by hand that there is no other three-qubit
fully product vector orthogonal to all |ψi 〉s; such sets of product vectors are called
unextendible product bases (UPBs) [28] (see Sect. 5.1 for a detailed discussion on
UPBs and more examples).

As noticed in [28], the set (32), called Shifts UPB, can be used for a simple
construction of bound entangled state, i.e., an entangled state from which any type
of maximally entangled state cannot be distilled [27]. The state is given by ρUPB =
(1 − ΠUPB)/4, where ΠUPB denotes the projector onto span{|ψi 〉}.

Let us now consider the normalized entanglement witness detecting ρ:

W = 1

4 − 8ε
(ΠUPB − ε1), (33)

where

ε = min|αβγ 〉〈αβγ |ΠUPB|αβγ 〉. (34)

The fact that there is no fully product vector orthogonal to |ψi 〉 implies that ε > 0,
and, on the other hand, it is fairly easy show that ε < 1/2. One also notices that
Tr(WρU P B) = −ε/4(1 − 2ε).

Now, one can see that the witness W , when measured along the local bases in the
definition of the UPB (32), leads to correlations that produce a value of GYNI game
equal toω/ωc = (1−ε)/(1−2ε), which is larger than one for all 0 < ε ≤ 1/2. Thus,
these correlations represent an example of Gleason correlations with no quantum
analogue.

4 Application II: Quantum Correlations and Information
Principles

Asmentioned in the introduction, an intense research effort has recently been devoted
to understand why nonlocality appears to be limited in quantummechanics. Informa-
tion concepts have been advocated as the keymissing ingredient needed to single-out
the set of quantum correlations [9–11]. The main idea is to identify ‘natural’ infor-
mation principles, satisfied by quantum correlations, but violated by super-quantum
correlations. The existence of the latter would then have implausible consequences
from an information-theoretic point of view. Celebrated examples of these principles
are information causality [15] or non-trivial communication complexity [12]. While
the use of these information concepts has been successfully applied to specific sce-
narios [13, 14, 16, 38, 39], proving, or disproving, the validity of a principle for
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quantum correlations is extremely challenging. On the one hand, it is rather difficult
to derive the Hilbert space structure needed for quantum correlations from informa-
tion quantities. On the other hand, proving that some super-quantum correlations are
fully compatible with an information principle seems out of reach, as one needs to
consider all possible protocols using these correlations and show that none of them
leads to a violation of the principle. Hence it is still unclear whether this approach is
able to fully recover the set of quantum correlations.

Therefore it is relevant to derive general features of a principle that could poten-
tially identify quantum correlations. Using GYNI, it was recently shown that such
a principle must be genuinely multipartite. More specifically, no principle that is
inherently bipartite (i.e. referring only to correlations between two sets of parties)
can characterize the set of quantum correlations when three of more observers are
involved [22]. The rest of this section is devoted to this result.

Before reviewing the result, it is worth recalling that, so far, most information-
theoretic principles have been formulated in the bipartite scenario. Actually, even the
general formulation of the no-signalling principle has a bipartite structure: correla-
tions among N observers are compatible with the no-signalling principle whenever
there exists no partition of the N parties into two groups such that the marginal prob-
ability distribution of one set of the parties depends on the measurements performed
by the other set of parties (see (6)). Moving to information causality, it considers a
scenario in which a first party, Alice, has a string of n A bits. Alice is then allowed
to send m classical bits to a second party, Bob. The principle of information causal-
ity bounds the amount of information Bob can gain on the n A bits held by Alice
whichever protocol they implement making use of the pre-established bipartite cor-
relations and the message of m bits. Alice and Bob can violate this principle when
they have access to some super-quantum correlations [15]. In the case m = 0, infor-
mation causality implies that in absence of a message, pre-established correlations
do not allowBob to gain any information about any of the bits held by Alice, which is
nothing but the no-signaling principle. This suggests the following generalization of
information causality to an arbitrary number of parties, mimicking what is done for
the no-signalling principle: given some correlations P(a1, . . . , an|x1, . . . , xN ), they
are said to be compatible with information causality whenever all bipartite correla-
tions constructed from them satisfy this principle. This generalization ensures the
correspondence between no-signaling and information causality when m = 0 for an
arbitrary number of parties. This generalization of information causality has recently
been applied to the study of extremal tripartite non-signaling correlations [23].

Regarding non trivial communication complexity, it studies howmuch communi-
cation is needed between two distant parties to compute probabilistically a function
of some inputs in a distributed manner. It can also be interpreted as a generalization
of the no-signaling principle, as it imposes constraints on correlations when a finite
amount of communication is allowed between parties. Different multipartite gener-
alizations of the principle have been studied, see [5]. However, as for information
causality, one can always consider the straightforward generalization in which the
principle is applied to every partition of the N parties in two groups.
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We are now in position to review the proof of the impossibility of characterizing
quantum correlations for an arbitrary number of parties using bipartite principles.
For simplicity, we restrict the analysis to tripartite correlations.

4.1 Time-Ordered-Bilocal Correlations and GYNI

The first ingredient in the proof is the characterization of multipartite correlations
such that any bipartite correlations constructed from them have a classical local
model. By definition, correlations satisfying this property do not violate any bipartite
principle satisfied by classical correlations.

A priori, one would think that if the correlations P(a1, a2, a3|x1, x2, x3) have a
local model along all possible bipartitions, namely A1 − A2 A3, A2 − A1A3 and
A3 − A1A2, that is,

P(a1, a2, a3|x1, x2, x3) =
∑

λ

P1(λ)P1(a1|x1, λ)P1(a2, a3|x2, x3, λ)

=
∑

λ

P2(λ)P2(a2|x2, λ)P2(a1, a3|x1, x3, λ)

=
∑

λ

P3(λ)P3(a3|x3, λ)P1(a1, a2|x1, x2, λ), (35)

then, any bipartite object constructed from it also has a local model. This intuition
however has proven to be wrong in [40], where it was shown how non-local bipartite
correlations can be derived from correlations having a decomposition of the form
of (35). The characterization of multipartite correlations such that a local model
exists for any bipartite correlations derived from it is then subtler than expected.
Indeed, at the moment, it is unknown what is the largest set of correlations having
this property [40]. It has however been shown in [22] that the set of time-ordered-
bilocal correlations (TOBL) do fulfill this requirement. Tripartite correlations have
a TOBL model whenever they can be written as

P(a1, a2, a3|x1, x2, x3) =
∑

λ

Pi | jk
λ P(ai |xi , λ)Pj→k(a j , ak |x j , xk, λ)

=
∑

λ

Pi | jk
λ P(ai |xi , λ)Pj←k(a j , ak |x j , xk, λ) (36)

for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2), with the distributions Pj→k and Pj←k

obeying the conditions

Pj→k(a j |x j , λ) =
∑

ak

Pj→k(a j , ak |x j , xk, λ), (37)
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Table 1 Different examples of deterministic bipartite probability distributions P23(a2, a3|x2, x3, λ)

characterized by output assignments to the four possible combination of measurements
x2 x3 a2 a3
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

x2 x3 a2 a3
0 0 0 0
0 1 1 1
1 0 0 0
1 1 1 1

x2 x3 a2 a3
0 0 1 0
0 1 0 1
1 0 0 1
1 1 1 0

Left inputs and outputs corresponding to a point P2→3(a2, a3|x2, x3, λ) in the decomposition (36).
Center inputs and outputs corresponding to a point P2←3(a2, a3|x2, x3, λ) in (36). Right inputs and
outputs corresponding to a distribution which allows signaling in the two directions

Pj←k(ak |xk, λ) =
∑

a j

Pj←k(a j , ak |x j , xk, λ). (38)

The notion of TOBL correlations first appeared in [30] (see [40] and [41] for a
proper introduction and further motivation for such models). As can be seen from
the relations (37) and (38) we impose the distributions Pj→k and Pj←k to allow for
signaling at most in one direction, indicated by the arrow (see Table1).

To understand the operational meaning of these models, consider the bipartition
1|23 for which systems 2 and 3 act together. In this situation, P(a1, a2, a3|x1, x2, x3)
can be simulated if a classical random variable λ with probability distribution p1|23

λ

is shared by parts 1 and the composite system 2–3, and they implement the following
protocol: given λ, 1 generates its output according to the distribution P(a1|x1, λ);
on the other side, and depending on which of the parties 2 and 3 measures first,
2–3 uses either P2→3(a2, a3|x2, x3, λ) or P2←3(a2, a3|x2, x3, λ) to produce the two
measurement outcomes. Likewise, any other bipartition of the three systems admits
a classical simulation.

By construction, the set of tripartite TOBL models is convex and is included
(in fact, it is strictly included [40]) in the set of tripartite probability distributions
of the form (35). Moreover, TOBL models always produce classical correlations
under post-selection: indeed, suppose that we are given a tripartite distribution
P(a1, a2, a3|x1, x2, x3) satisfying condition (36), and a postselection is made on
the outcome ã3 of measurement x̃3 by party 3. Then, one has

P(a1, a2|x1, x2 x̃3ã3) =
∑

λ

P ′
λ P(a1|x1, λ)P ′(a2|x2, λ), (39)

with

P ′
λ = P1|23

λ

P(ã3|x̃3) P2←3(ã3|x̃3, λ), P ′(a2|x2, λ) = P2←3(a2|x2, x̃3, ã3, λ). (40)

Postselected tripartite TOBL boxes can thus be regarded as elements of the TOBL
set with trivial outcomes for one of the parties.
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We now demonstrate that any possible bipartite correlations derived from many
uses of TOBL correlations have a local model and, thus, are compatible with any
bipartite principle satisfied by classical (and obviously quantum) correlations. The
most general protocol consists in distributing an arbitrary number of boxes described
by P1, P2, . . . , P N among three parties which are split into two groups, A and B.
Both groups can process the classical information provided by their share of the N
boxes. For instance, outputs generated by some of the boxes can be used as inputs
for other boxes (see Fig. 2). This local processing of classical information is usually
referred to as wirings. Thus, in order to prove our result in full generality, we should
consider all possiblewirings of tripartite boxes.We shownext that if P1, P2, . . . , P N

are in TOBL, then the resulting correlations Pfin obtained after any wiring protocol
have a local decomposition with respect to the bipartition A|B, and therefore fulfill
any bipartite information principle.

For simplicity, we illustrate our procedure for the wiring shown in Fig. 2, where
boxes P1, P2, P3 are distributed between two parties A and B, and party A only
holds one subsystem of each box. The construction is nevertheless general: it applies
to any wiring and also covers situations where for some TOBL boxes party A holds
two subsystems instead of just one (or even the whole box).

From (36) we have

Pi (ai
1, ai

2, ai
3|xi

1, xi
2, xi

3) =
∑
λi

Pi
λi Pi

1(a
i
1|xi

1, λ
i )Pi

2→3(a
i
2, ai

3|xi
2, xi

3, λ
i ) (41)

=
∑
λi

Pi
λi Pi

1(a
i
1|xi

1, λ
i )Pi

2←3(a
i
2, ai

3|xi
2, xi

3, λ
i ), (42)

Fig. 2 Wiring of several
tripartite correlations
distributed among parties A
and B. The generated
bipartite box accepts a bit x
(two bits y1, y2) as input on
subsystem A (B) and returns
a bit a (two bits b1, b2) as
output. Relations (41, 42)
guarantee that the final
bipartite distribution
Pfin(a, (b1, b2)|x, (y1, y2))
admits a local model

P1(a11,a
1
2,a

1
3|x11,x12,x13)

y2

a

x y1

b1 b2

BA

P3(a31,a
3
2,a

3
3|x31,x32,x33)

P2(a21,a
2
2,a

2
3|x21,x22,x23)
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for i = 1, 2, 3. Consider the first box that receives an input, in our case subsys-
tem 2 of P1. The first outcome a1

2 can be generated by the probability distribution
P1
2→3(a

1
2, a1

3 |x1
2 , x1

3 , λ
1) encoded in the hidden variable λ1 that models these first cor-

relations. This is possible because for this decomposition a1
2 is defined independently

of x1
3 , the input in subsystem 3. Then, the next input x2

3 , which is equal to a1
2 , gener-

ates the output a2
3 according to the probability distribution P2

2←3(a
2
2 , a2

3 |x2
2 , x2

3 , λ
2)

encoded in λ2. The subsequent outcomes ai
2 and ai

3 are generated in a similar way.
The general idea is that outputs are generated sequentially using the local models
according to the structure of the wiring on 2–3. Finally, subsystem 1 can generate its
outputs ai by using the probability distribution Pi

1(a
i
1|xi , λi ). This probability distri-

bution is independent of the order in which parties 2 and 3 make their measurement
choices for any of the boxes.Averaging over all hidden variables one obtains Pfin. This
construction provides the desired local model for the final probability distribution.

The final step in the proof consists of showing that there exist correlations in
the TOBL set that do not have a quantum realization. This was shown by means
of the GYNI inequality. More precisely, it can be proven that, contrary to quantum
correlations, this inequality is violated by TOBL correlations:

maximize P(000|000) + P(110|011) + P(011|101) + P(101|110)
subject to P(a1, a2, a3|x1, x2, x3) ∈ TOBL.

(43)

The maximization yields a value of 7/6, implying the existence of supra-quantum
correlations inTOBL.The formof theTOBLcorrelations leading to this violation can
be found in [22]. Later, another example of supra-quantum correlations in TOBLwas
provided in [23], where the authors proved that an extremal point of the no-signalling
polytope for three parties and two two-outcome measurements per party is also in
TOBL and has no quantum realization.

5 Generalization of GYNI: Bell Inequalities Without
Quantum Violation and Unextendible Product Bases

The relation between GYNI’s Bell inequality and the three-qubit unextendible prod-
uct basis (UPB)was used in the previous section to show that, contrary to the bipartite
case [18] (see also [19]), in the three-partite scenario Gleason correlations define a
larger set than the quantum ones. In fact, this link can be generalized and used to
derive a systematic construction of nontrivial Bell inequalities without quantum vio-
lation from UPB, see Ref. [25]. That is, all the Bell inequalities derived using this
construction lack a quantum violation, nevertheless, they are nontrivial in the sense
that there exist some nonsignalling correlations violating them. They also comple-
ment the results of Ref. [19] providing new examples of multipartite scenarios where
Gleason correlations are different from the quantum ones. Finally, some UPBs lead
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to tight Bell inequalities with no quantum violation, providing novel examples of
this intriguing phenomenon [26].

Our aim in this section is to recall the method from Refs. [25, 26] and then
discuss properties of the resulting Bell inequalities. We provide some classes of
nontrivial Bell inequalities with no quantum violation associated to UPBs. Finally,
we go beyond UPB and show that there are also sets of orthogonal product vectors
that are not UPBs but can be associated to nontrivial Bell inequalities. Before that let
us recall the notion of unextendible product bases and briefly review their properties.

5.1 Unextendible Product Bases

We start by introducing an N -partite product Hilbert space

H = Cd1 ⊗ . . . ⊗ CdN , (44)

where di (i = 1, . . . , N ) denote the dimensions of the local Hilbert spaces. In
what follows we call an element |ψ〉 of H fully product if it assumes the form
|ψ〉 = ⊗N

i=1|ψi 〉 ≡ |ψ1, . . . , ψN 〉 with |ψi 〉 ∈ Cdi .
Then, let us consider a set of orthogonal product vectors

S = {|Ψm〉 = |ψ(1)
m 〉 ⊗ . . . ⊗ |ψ(N )

m 〉}|S|
m=1 , (45)

where |ψ(i)
m 〉 (m = 1, . . . , |S|) are local vectors belonging to Cdi and |S| ≤ dimH .

With this we have the following definition [28].

Definition 1 Let S be a set of orthogonal fully product vectors (45) from H . We
call S unextendible product basis (UPB) if it spans a proper subspace in H , i.e.,
|S| < dim H , and there is no product vector ⊗N

i=1|φi 〉 ∈ H orthogonal to spanS.

The notion of unextendible product bases reflects the peculiar feature of some
composite Hilbert spaces H , which can be represented as the direct sum of two
orthogonal subspaces, one spanned by product vectors, and another one that does
not contain any of them. That is, all the states belonging to this second subspace
must be entangled (see Fig. 3). This has interesting consequences from the quantum
information point of view. As first observed by Bennett and coworkers [28], UPBs
can be used for constructing bound entangled states, i.e., states that are entangled
but nevertheless no pure-state entanglement can be distilled from them by means of
local operations and classical communication [27].

To be more precise, following [28], let us consider a particular UPB U , and the
normalized projector onto the subspace of H orthogonal to U , i.e.,

ρ = 1

dim H − |U | (1 − Π) . (46)
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H no product

vectors
spanU

Fig. 3 Schematic definition of a UPB: a set of orthogonal product vectors S spanning a proper
subspace spanS ⊂ H such that there is no fully product vector ⊗N

i=1|φi 〉 ∈ H orthogonal to S. A
normalized projector onto (spanS)⊥ (46) is a bound entangled state [28]

By Π and 1 we denoted, respectively, the projector onto the subspace spanned by U
and the identity operator acting on H . Since there is no product vector orthogonal to
U , the support of ρ consists only of entangled states, implying that ρ must be entan-
gled. Also, it immediately follows from Eq. (46) that ρ has all partial transpositions
positive, which implies that ρ is bound entangled [27].

To illustrate the above definitions we consider the following examples of UPBs.

Example 1 We start from the TILES UPB, one of the first bipartite UPBs introduced
in Ref. [28]. It consists of five two-qutrit vectors of the form

UTILES = {|0〉(|0〉 − |1〉), |2〉(|1〉 − |2〉), (|0〉 − |1〉)|2〉, (|1〉 − |2〉)|0〉,
(|0〉 + |1〉 + |2〉)⊗2}. (47)

As shown in [28], no product state can be orthogonal to all these vectors. Notice that
in the two-qutrit Hilbert space there only exist five-elements UPBs and all of them
are known [28, 42–44].

Example 2 Second, let us consider a general class of N -qubit unextendible product
bases with odd N = 2k − 1 (k ∈ N; k ≥ 2) given by the following 2k vectors [42]:

UGenShifts = {|0 . . . 0〉, |1e1 . . . ek−1ek−1 . . . e1〉, |e11e1 . . . ek−1ek−1 . . . e2〉, . . . ,
|e1 . . . ek−1ek−1 . . . e11〉} (48)

with {|0〉, |1〉} and {|ei 〉, |ei 〉} (i = 1, . . . , k −1) being k arbitrary but different bases
in C2. The i th (i ≥ 2) vector in (48), except for the first two ones, is obtained from
the vector i −1 by shifting all the local vectors by one to the right, and thus the name
Generalized Shifts.

Example 3 Third, let us consider the general class of UPBs found by Niset and Cerf
[45]. Here we take the Hilbert space H = (Cd)⊗N , where N ≥ 3 and d ≥ N − 1,
and the following set of N (d − 1) + 1 vectors:

UNC = {|ed−1〉⊗N } ∪
N−1⋃
i=0

Si , (49)
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where

S0 = {|0, 1, . . . , d − 1〉|e0〉, . . . , |0, 1, . . . , d − 1〉|ed−2〉} (50)

and Si = V i S0 (i = 1, . . . , N − 1) with V denoting a unitary permutation operator
such that V |x1〉 . . . |xN 〉 = |xN 〉|x1〉 . . . |xN−1〉 for |xi 〉 ∈ Cd , and {|ei 〉}d−1

i=0 is any
orthogonal basis inCd different from the standard one. Notice thatUNC can straight-
forwardly be generalized to an arbitrary local dimension di ≥ N −1 (i = 1, . . . , N )

just by adjusting both bases at each site to the respective dimension [45].

Both classes of multipartite UPBs from Examples 2 and 3 (here up to local unitary
operations) recover, for N = 3, the already introduced Shifts UPB (32), i.e.,UShifts =
{|000〉, |1ee〉, |e1e〉, |ee1〉} with {|e〉, |e〉} being an arbitrary basis of C2 different
from the standard one. Clearly, this set can be slightly generalized by taking the
second basis different at each site, that is, {|000〉, |1e2e3〉, |e11e3〉, |e1e21〉} (the first
basis can be fix to the standard one by a local unitary operation). As shown by
Bravyi [46], any three-qubit UPB can be written in this canonical form by local
unitary operations and permutations of the parties.

5.2 Constructing Bell Inequalities with No Quantum
Violation from Unextendible Product Bases

We are now ready to recall the method from [25, 26] allowing one to associate a
nontrivial Bell inequality with no quantum violation to UPB’s. However, as shown
below, in order for the construction to work the UPB cannot be generic and has to
satisfy a certain property.

5.2.1 The Construction

To begin, consider again the product Hilbert space H and the set of vectors S. For
the time being, we do not assume S to be a UPB, keeping, however, the assumption
that elements of S are orthogonal product vectors from H . Then, let us collect all
different local vectors appearing in all vectors |Ψm〉 at the i th site in the local sets

S(i) = {|ψ(i)
m 〉}si

m=1 (i = 1, . . . , N ), (51)

where si ≤ |S|. Subsequently, among elements of S(i) we search for mutually orthog-
onal vectors and collect them in separate subsets S(i)

n (n = 0, . . . , ki ) such that
S(i)
0 ∪ . . .∪ S(i)

ki
= S(i) for any i (see Fig. 4). Notice that these subsets may, but do not

have to, span the corresponding Hilbert space Cdi . The idea, as it becomes clearer
below, is to associate local measurements to each party from the given UPB.
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· · ·S(1) S(N)
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(1)
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(1)
k1

S
(N)
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(N)
kN

· · ·· · ·

Fig. 4 Schematic description of our construction. From the set S having the local independence
property, one constructs the local sets S(i) (i = 1, . . . , N ) by collecting different local vectors in
|Ψm〉. Then, one distinguishes local subsets S(i)

m of mutually orthogonal vectors among elements of
each local set S(i)

It should be emphasized that there exist sets S for which the local subsets cannot
be unambiguously defined. This is, for instance, the case for vectors UTILES [cf.
Eq. (47)]. At both sites there are five different vectors |0〉, |0〉 − |1〉, |1〉 − |2〉, |2〉,
and |0〉 + |1〉 + |2〉. Clearly, the first one is orthogonal to the third and fourth ones,
however, the latter are notmutually orthogonal. Then, in order to avoid this ambiguity,
we consider only those sets S that have the following property.

Local independence property. Let S be a set of orthogonal product vectors from
H . For each party i , construct the subset of states S(i)

k as described above. The set
S is said to satisfy the local independence property whenever, for each party, two
vectors belonging to different subsets S(i)

k and S(i)
l (k �= l) are not orthogonal.

In other words, what we need is that the local subsets are constructed in such away
that by replacing one of them by another set of orthogonal vectors of the same size,
we keep the orthogonality of the product states of the initial UPB S. In yet another
words, the above property guarantees that the orthogonality of S is preserved under
any unitary rotation of elements of any local subset S(i)

k , which, in a sense, makes
them independent. This is why we call this property local independence property.
This property also implies that given a UPB S, there is a unique way of defining the
sets S(i)

k for each party.
A particular example of a set having the above property is the already introduced

Shifts UPB (32). At each site there are four different vectors |0〉, |1〉, |e〉, and |e〉,
which can be grouped in two distinct sets S0 = {|0〉, |1〉} and S1 = {|e〉, |e〉}. Since,
by the very assumption, |e〉 �= |0〉, |1〉, none of the vectors from S0 is orthogonal to
none of elements of S1, and hence UShifts has the local independence property.

Interestingly, as it can easily be checked, all sets of orthogonal vectors in multi-
qubit Hilbert spaces satisfy the local independence property, as all local subsets
contain at most two elements. On the other hand, the example of TILES UPB shows
that this is in general not the case when local dimensions are larger than two.

Let us now pass to our construction of Bell inequalities. The construction of
the different sets S(i)

k for each party defines a set of local measurements. Now, to
every vector |Ψm〉 from S [cf. Eq. (45)] we can associate a conditional probability
P(am |xm), or, strictly speaking, vectors of measurements settings and outcomes
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am = (a(1)
m , . . . , a(N )

m ) and xm = (x (1)
m , . . . , x (N )

m ) (52)

in the following way:

• the measurement setting x (i)
m of the observer i is given by the index k enumerating

the subset S(i)
k containing |ψ(i)

m 〉,
• the measurement outcome a(i)

m corresponds to the position of |ψ(i)
m 〉 in the set S(i)

k .

Eventually, we simply add the obtained conditional probabilities and maximize
the resulting expression over all classical correlations, which leads us to the following
Bell inequality

|S|∑
m=1

P(am |xm) ≤ 1. (53)

The value of the right-hand side of the above, the so-called classical bound, directly
follows from the orthogonality of elements of S. In fact, as these events come from a
set of orthogonal product vectors with the local independence property, for each pair
of vectors |Ψm〉, |Ψn〉 (m �= n), there exists a site, say i , such that |ψ(i)

m 〉 ⊥ |ψ(i)
n 〉. Con-

sequently, the associated conditional probabilities P(am |xm) and P(an|xn) involve
at site i the same measurement setting but different outcomes. This means that for
any deterministic local model, if one of these two probabilities is one, the other has
to be zero. Let us further call such probabilities orthogonal. Since the above holds
for any pair of conditional probabilities, the left-hand side of (53) clearly amounts
to at most one.

Notice that, in principle, we can consider more general inequalities by combining
the conditional probabilities P(am |xm) (m = 1, . . . , |S|) with arbitrary positive
weights qm . However, the use of different weights leads to Bell inequalities that are
weaker and certainly cannot be tight (see below).

5.2.2 Properties

Let us now shortly characterize the obtained Bell inequalities (53). We collect their
most important properties in the following theorem [25, 26].

Theorem 1 Let S be a set of orthogonal product vectors from H having the local
independence property. Then the following implications are true:

(i) the associated Bell inequality (53) is not violated by quantum correlations
(ii) if S is a UPB in H, then the Bell inequality (53) is nontrivial in the sense that

it is violated by some nonsignalling correlations,
(iii) if S is a full basis in H or can be completed to one in such a way that it

maintains the local independence property, the associated Bell inequality (53)
is not violated by any nonsignalling correlations.
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Proof (i): Let us, in contrary, assume that indeed the Bell inequality (53) associated
to S is violated by a quantum state ρ. Then, there exist local measurement operators
and the resulting Bell operator, denoted B, such that tr(Bρ) > 1. This means that
at least one of the eigenvalues of B has to exceed one. On the other hand, it is clear
that the local measurement operators can be assumed to be projective; if ρ violates
(53) with a non-projective measurements, one is able to find another quantum state
ρ ′, possibly acting on a larger Hilbert space, violating the same Bell inequality with
projective measurements.

Let then Pm = ⊗N
i=1P (i)

m denote a product projective measurement operator cor-
responding to P(am |xm), which, in general, may be different from the corresponding
vectors |Ψm〉 ∈ S. Clearly, orthogonality of the conditional probabilities P(am |xm) is
translated to the orthogonality of the corresponding Pm . Precisely, as already stated,
any pair of probabilities P(am |xm) and P(an|xn) has at some site, say i , the same
settings but different outcomes, implying that P (i)

m ⊥ P (i)
n and hence Pm ⊥ Pn . As a

result all Pm (m = 1, . . . , |S|) are orthogonal and the Bell operator B = ∑
m Pm is

again a projector contradicting the fact that for some ρ, tr(Bρ) > 1.
(ii): Our proof is constructive, that is, for any Bell inequality associated to a UPB

we provide non-signalling correlations violating it. We denote by Π the projector
onto spanS, and introduce, in a full analogy to (33), the following witness

W = 1

|S| − dim H
(Π − ε1) (54)

with ε being a positive number defined as

ε = min〈x1, . . . , xN |Π |x1, . . . , xN 〉, (55)

where the minimum is computed over all fully product vectors from H and, as S is
UPB, one has ε > 0. One directly checks that this witness detects entanglement of
the state (46) constructed from the UPB S, i.e., tr(Wρ) < 0. This, after substituting
the exact form of ρ, see (46), can be rewritten as

tr(WΠ) > 1. (56)

Clearly, Π can be seen as a Bell operator corresponding to the Bell inequality asso-
ciated to S. To complete the proof of (ii) it suffices to notice that local measurements
performed on an entanglement witness, in particular (54), always give nonsignalling
correlations (see e.g. [18, 19]).

(iii): Let us start from the case when |S| < dim H and assume that S can be
completed to a basis of H maintaining the local independence property (if H =
(C2)⊗N one can always do that provided S is completable). Let then |Ψm〉 (m =
|S| + 1, . . . , dim H) denote product orthogonal vectors completing S, i.e., span(S ∪
{|Ψm〉}m) = H . Consequently, one can associate a Bell inequality (53) to the set
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S and conditional probabilities P(am |xm) to the new vectors |Ψm〉 (m = |S| +
1, . . . , dim H) in an unambiguous way. Then

|S|∑
m=1

P(am |xm) ≤
dim H∑
m=1

P(am |xm) ≤ 1, (57)

meaning that it suffices to prove that the Bell inequality appearing on the right-hand
side (the one constructed from a full basis in H ) is trivial. For this purpose, we note
that the latter is saturated by the uniform probability distribution P(a|x) = 1/ dim H
for any a and x, which is an interior point of the corresponding polytope of classical
correlations. Consequently, this Bell inequality is saturated by all vertices of the
polytope, and hence by any affine combination thereof, in particular, all nonsignalling
correlations. �

It is illuminating to see how the properties of S determine the properties of the
associatedBell inequality.Orthogonality of the elements of S implies that the inequal-
ity lacks a quantum violation. If S is additionally a UPB, then the Bell inequality is
nontrivial because it detects some nonsignalling correlations. On the other hand, the
inequality is trivial if S is or can be completed to a full basis in H , while maintaining
the local independence property. In the case of H = (C2)⊗N, apart from sets that
can only be completed to a UPB, the implication (iii) becomes an equivalence [26].
In the higher-dimensional case, however, there are sets of orthogonal product states
that have the local independence property, are not UPBs but cannot be extended
maintaining the local independence property (see Sect. 5.3).

The more important and interesting question concerns the tightness of these Bell
inequalities. As shown in Refs. [25, 26] there exist example of both tight and nontight
Bell inequalities associated to UPBs (see Sect. 5.2.3 for examples). Thus, at the
moment, it remains unclear what decides tightness.

5.2.3 Examples

To illustrate the construction, let us apply it to some particular examples of sets S,
in particular those presented in Sect. 5.1.

Example 4 Using the already exploited relation between the GYNI Bell inequality
(17) and Shifts UPB let us show how the above construction works in practice.
As already noticed, UShifts has two different bases at each site S0 = {|0〉, |1〉} and
S1 = {|e〉, |e〉}. The vector |e〉 ∈ C2 is, by assumption, different than |0〉 and |1〉, and
hence UShifts has the local independence property. We then associate a conditional
probability to every vector in UShifts:

|000〉 �→ P(000|000), |1ee〉 �→ P(110|011),
|e1e〉 �→ P(011|101), |ee1〉 �→ P(101|110). (58)
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By simply adding the above probabilities we get (17). In fact, we can reverse the
construction and derive a new family of N -qubit UPB from the Bell inequality
GYNIN [25, 26]. Moving to tightness, recall that GYNIN were proven to be tight for
odd N [26] (and also numerically for some values of even N ).

Interestingly, the inequality GYNI3, which is the only tight tripartite Bell inequal-
ity with no quantum violation in the scenario of two dichotomic measurements per
site, is associated to the only class of UPB in (C2)⊗3 [46].

Example 5 Second, let us consider the Generalized Shifts UPB (48). The corre-
sponding Hilbert space is H = (C2)⊗N with N = 2k − 1 for integer k ≥ 2.
Following the above rules, at each site one can define k local subsets S0 = {|0〉, |1〉}
and Si = {|ei 〉, |ei 〉} (i = 1, . . . , k − 1), which will later define k observables. We
then associate a conditional probability to every element of UGenShifts:

|0 . . . 0〉 �→ P(0 . . . 0|0 . . . 0)

|1e1 . . . ek−1ek−1 . . . e1〉 �→ P(10 . . . 01 . . . 1|01 . . . k − 1, k − 1 . . . 1)
...

|e1 . . . ek−1ek−1 . . . e11〉 �→ P(0 . . . 01 . . . 11|1 . . . k − 1, k − 1 . . . 10). (59)

Summing all these probabilities up, we get the N -partite Bell inequality with odd N :

P(0 . . . 0|0 . . . 0) +
2k−1∑
i=1

Di P(10 . . . 01 . . . 1|01 . . . k − 1, k − 1 . . . 1) ≤ 1, (60)

where D denotes an operation shifting the input and output vectors by one to the right,
i.e., D(x1, . . . , xN ) = (xN , x1, . . . , xN−1). Notice that since at each site one has k
two-element local subsets Si , the Bell inequality (60) corresponds to the scenario
with k dichotomic observables per site.

Due to Theorem 1, all the Bell inequalities (60) are nontrivial. However, it is
unclear whether they are tight. For N = 3 the above class recovers the GYNI3 which
is tight, while already for N = 5 the corresponding Bell inequality is not tight.

Example 6 Consider now the class ofUPBs provided inRef. [45], i.e.,UNC presented
in example 3. Here H = (Cd)⊗N with d ≥ N −1. From Eqs. (49) and (50) it follows
that at each site one can distinguish two local subsets S0 = {|i〉}d−1

i=0 , i.e., the standard
basis, and S1 = {|ei 〉}d−1

i=0 . Since the elements ofUNC are orthogonal irrespectively of
the choice of the second basis,UNC has the local independence property. Associating
conditional probabilities to elements of UNC and summing them up, one gets the
N -partite Bell inequality:

P(d − 1, . . . , d − 1|1, . . . , 1) +
N−1∑
i=0

d−2∑
j=0

Di P(0, 1, . . . , d − 1, j |0, . . . , 0, 1) ≤ 1, (61)

where D is defined as before and D0 is an identity.
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Theorem 1 says that all the Bell inequalities (61) are nontrivial. However, it is
not clear whether they are tight in general. For N = 3 and d = 2, this class gives
GYNI3, but for N = 4 and d = 3 one checks that the resulting Bell inequality is not
tight.

The previous examplesmay lead to the conjecture thatGYNIN is the only situation
in which the inequality is tight. However, this is not the case: within our framework,
one can also obtain tight Bell inequalities with no quantum violation from UPBs that
are independent of GYNIN . An example is, for instance, the following four-partite
Bell inequality

p(0000|0000) + p(1000|0111) + p(0110|1012) + p(0001|0110)
+p(1011|0001) + p(1101|0102) + p(1110|1101) ≤ 1 (62)

which was found recently in Ref. [26].

5.3 Further Generalizations

In this last section, we present a further generalization of these results and show
that it is possible to derive nontrivial Bell inequalities with no quantum violation
already from sets of orthogonal product vectors that are not UPB. In fact, if at least
a local dimension di in H is larger than two, there exist sets of orthogonal product
vectors that (i) are not UPBs, in the sense of Definition 1, but (ii) the associated Bell
inequalities (53), following the rules from Sect. 5.2.1, lack quantum violation and
are violated by non-signalling correlations.

To be more precise, let us again consider a set of orthogonal product vectors S
and let us split the local sets S(i) [cf. Eq. (51)] into subsets S(i)

k following the same
rules as above. We introduce the definition:

Definition 2 Let S be a set of orthogonal fully product vectors from H having the
local independence property. Then, if |S| < dim H and there does not exist a product
vector ⊗N

i=1|φi 〉 ∈ H with |φi 〉 ∈ S(i) that is orthogonal to all vectors from S, we
call S a weak unextendible product basis (wUPB).

In this definition, we relax the notion of unextendibility of the set by considering
only product vectors made of states from the sets S(i). Clearly, any UPB is also a
wUPB. Also, if all di = 2 in Eq. (44), these two notions are equivalent. If, however,
at least one of the local dimensions di is larger than two, there exist wUPB that are
not UPB. As a particular example consider the following.

Example 7 Consider the following set of vectors from H = C2 ⊗ C2 ⊗ C3:

S = {|000〉, |1e f 〉, |e1 f 〉, |ee1〉, |ee2〉, |e1 f̂ 〉}, (63)
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where | f 〉, | f 〉, and | f̂ 〉 are three orthogonal vectors from C3. At the first two sites
one distinguishes two local sets S(1)

0 = S(2)
0 = {|0〉, |1〉} and S(1)

1 = S(2)
1 = {|e〉, |e〉},

while at the third site S(3)
0 = {|0〉, |1〉, |2〉} and S(3)

1 = {| f 〉, | f 〉, | f̂ 〉}.
The set S has the local independence property because irrespectively of the choice

of all these subsets, all its elements are orthogonal. However, it is clearly not a UPB
because |e0g〉 and |eeg〉 with C3 � |g〉 ⊥ |0〉, | f 〉 are orthogonal to S. Still, S is a
wUPB: there is no product vector |φ1〉|φ2〉|φ3〉 ∈ C2 ⊗ C2 ⊗ C3 with |φi 〉 ∈ S(i)

j
(i = 1, 2, 3; j = 1, 2), orthogonal to S.

Following the rules given in Sect. 5.2.1, any wUPB can be associated to a Bell
inequality (53) with no quantum violation that is violated by nonsignalling correla-
tions. In fact, we have the following theorem.

Theorem 2 If S is a wUPB, the associated Bell inequality (53) is violated by some
nonsignalling correlations.

Proof The proof goes along the same lines as in point (ii) of Theorem 1. It suffices to
consider the same operator as in Eq. (54) with Π denoting now a projector onto the
subspace spanned by the wUPB S and the minimum in Eq. (55) taken over product
vectors ⊗N

i=1|φi 〉 ∈ H with local vectors |φi 〉 ∈ S(i). Notice that if S is a wUPB but
not UPB, the operator W is no longer an entanglement witness, but still a Hermitian
operator.

One can see that measuring such W along the settings corresponding to the local
sets S(i)

k produces non-signalling correlations [19]. The value of the Bell inequality
(53) associated to these non-signalling correlations is given by |S|(1 − ε)/(|S| −
ε dim H). This, due to the fact that |S| < dim H and ε < |S|/ dim H , is always
larger than one. �

To conclude, let us notice that the Bell inequality corresponding to the set (63):

p(000|000) + p(110|011) + p(011|101) + p(101|110)
+p(012|101) + p(102|110) ≤ 1, (64)

which has two three-outcome observables at the third site, is tight. This is because it
is a lifted tripartite GYNI Bell inequality (17) [47].

6 Conclusions

‘Guess your neighbour’s input’ is a multipartite nonlocal game that, despite its sim-
plicity, captures important features of multipartite correlations. Moreover, it has
unexpected connections to topics in quantum foundations and quantum information
theory. In particular, it shows that the natural multipartite generalization of Gleason’s
Theorem fails for more than two parties, that intrinsically multipartite principles are
needed to characterize quantum correlations and that there exists a link between
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unextendible orthogonal product bases and Bell inequalities with no quantum viola-
tion.

From a speculative point of view, GYNI suggests that we are lacking an intrin-
sically multipartite principle in our understanding of correlations. Indeed, the most
interesting feature of the game is that it represents a multipartite strengthening of the
no-signaling principle,which is by construction a bipartite principle, obeyed by quan-
tum correlations. This naturally raises the question of what physical or information-
theoretic principles lie behindGYNI. The principle of Local Orthogonality, proposed
in Ref. [48], represents a possible solution to this question.
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The Completeness of Quantum Theory
for Predicting Measurement Outcomes

Roger Colbeck and Renato Renner

1 Introduction

In this chapter we look at the question of whether quantum theory is optimal in
terms of the predictions it makes about measurement outcomes, or whether, instead,
there could exist an alternative theory with improved predictive power. This was
much debated in the early days of quantum theory, when many eminent physicists
supported the view that quantum theory will eventually be replaced by a deeper
underlying theory. Our aim will be to show that no alternative theory can extend the
predictive power of quantum theory, and hence that, in this sense, quantum theory is
complete.

Before turning to this question, it is worth reflecting on why one might think that
quantum theory may not be optimally predictive. A key factor is that the theory is
probabilistic. This is in stark contrast with classical theory, which is deterministic
at a fundamental level. Even in classical theory there are scenarios where we may
assign probabilities to various events, for example when making a weather forecast.
However, this isn’t in conflict with our belief in underlying determinism, but, instead,
the fact that we assign probabilities simply reflects a lack of knowledge (about the
precise value of certain physical quantities) when making the prediction. By analogy,
we might imagine that even if we know the quantum state of a system before mea-
surement (i.e., its wave function), we are also in a position of incomplete knowledge,
and that additional information might be provided in a higher theory.

A further argument for incompleteness was given by Einstein, Podolsky and Rosen
(EPR) [1]. They argued that whenever the outcome of an experiment can be predicted

R. Colbeck (B)
Department of Mathematics, University of York, York YO10 5DD, UK
e-mail: roger.colbeck@york.ac.uk

R. Renner (B)
Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
e-mail: renner@phys.ethz.ch

© Springer Science+Business Media Dordrecht 2016
G. Chiribella and R.W. Spekkens (eds.), Quantum Theory:
Informational Foundations and Foils, Fundamental Theories of Physics 181,
DOI 10.1007/978-94-017-7303-4_15

497



498 R. Colbeck and R. Renner

with certainty, there should be a counterpart in the theory representing its value. They
then consider measurements on a maximally entangled pair. In this scenario, the
outcome of any measurement on one member of the pair can be perfectly predicted
given access to the other member. Since the particles can be far apart, a measurement
on one shouldn’t, say EPR, affect the other in any way. They hence argue that there
should be parts of the theory allowing these perfect predictions and, hence, that the
quantum description is incomplete.

Following EPR, one might hope that quantum theory can be explained in terms
of an underlying deterministic theory. Such a view was put into doubt by the Bell-
Kochen-Specker theorem, independently discovered by Kochen and Specker [2] and
by Bell [3], who showed that an underlying deterministic theory is not possible if one
demands non-contextuality and freedom of choice. (A non-contextual theory is one in
which the probability of a particular measurement outcome occurring depends only
on the projector associated with that outcome, and not on the entire set of projectors
that specify the measurement according to quantum theory.) Furthermore it was also
shown by Bell [4] that there cannot be an underlying theory that is compatible with
local causality and freedom of choice (we will explain this in more detail in Sect. 5).
It is also worth noting that an assumption about locality can be seen as a physical
means of justifying certain non-contextuality conditions.

In this chapter, we consider arbitrary alternative theories and ask whether they
could have more predictive power than quantum theory. We remark that this question
is different from those asked by Kochen and Specker and by Bell, whose goal was
to rule out theories with certain specific properties such as non-contextuality or
local causality. In this work, we do not demand any of these properties. The only
assumption we make about a theory (beyond compatibility with quantum theory) is
that it is compatible with a notion of free choice defined with respect to a natural
causal order—see later. Roughly, the freedom of choice assumption demands that
the theory can be applied to a setting where an experimenter makes certain choices
independently of certain pre-existing parameters. It is worth noting that quantum
theory is compatible with this assumption, as we would expect, since it is a reasonable
theory.

To illustrate how an alternative theory may enable improved predictions over those
of quantum theory while remaining probabilistic, one might imagine that the quantum
state is supplemented by an additional parameter Z . When measuring one half of a
maximally entangled pair of qubits, it could be that if Z = 0 the extended theory
assigns outcome 0 with probability 3/4, and outcome 1 with probability 1/4, while,
if Z = 1, the extended theory assigns outcome 0 with probability 1/4, and outcome
1 with probability 3/4. The extended theory would thus provide more information
than quantum theory, which predicts that both outcomes occur with probability 1/2.
Furthermore, if Z is uniformly distributed, the quantum predictions are recovered
when Z is unknown (and hence the extended theory is compatible with quantum
theory).

This particular example is rather artificial and its purpose is merely to illustrate
that—in principle—a theory that is more informative than quantum theory is con-
ceivable. However, there are historical precedents of this type, for instance related
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to the problem of determining the mass of chemical elements. Take, as an example,
the atomic mass of chlorine. Before the discovery of isotopes, its average atomic
mass was measured to be 35.5. However, it was later discovered that chlorine in fact
naturally occurs as two isotopes with atomic masses 35 and 37 (in approximate ratio
3:1). By introducing isotopes, the theory was extended in such a way that the mass
of an individual atom could be better predicted.

Using a more advanced apparatus to measure the masses of individual atoms
(rather than averaging), the theory without isotopes would predict that 35 occurs
with probability 3/4, and 37 occurs with probability 1/4, while knowledge of the
isotope would allow the outcome to be predicted perfectly for each atom. Note that
the predictions made before the discovery of isotopes were not incorrect, but are
simply the natural ones to make without knowledge of the different isotopes (and
hence the new theory is compatible with the old one).

Returning to quantum theory, various alternatives, motivated in a more physical
way than our earlier example, have been proposed in the past, some of which we will
review later (see Sect. 5). Similarly to quantum theory, these alternatives provide
rules to compute predictions for future measurement outcomes, based on certain
(additional) parameters.

The aim of this chapter is to explain recent results relating the predictive power
of quantum theory to that of possible alternative theories [5–7]. For this, we first
need to specify what we mean by “quantum theory” and by “alternative theories”,
and how they can be compared (Sect. 3). The central requirement we impose on any
alternative theory is that it be compatible with a notion of “free choice” defined with
respect to a natural causal order. This means that the theory can be applied consis-
tently in scenarios where measurements are chosen independently of certain other
events (Sect. 4). We then discuss the implications of some existing results to our
main question. These impose constraints on any alternative theory that is compati-
ble with quantum theory; for instance, no such theory can be locally deterministic
(Sect. 5). The last sections are then devoted to the recent, more general, results. A
central claim is that no alternative theory that is compatible with quantum theory can
improve the predictions of quantum theory (Sects. 6 and 7). Furthermore, if such an
alternative theory is also at least as informative as quantum theory, then it is necessar-
ily equivalent to quantum theory (Sect. 8). In this sense, quantum theory is complete.
We conclude with a discussion of how these results relate to known hidden-variable
theories, in particular the de Broglie-Bohm theory, and mention some applications
(Sect. 9).

2 Preliminaries

2.1 Notation

On a technical level, the main results presented in this chapter are theorems about ran-
dom variables (RVs) whose (joint) probability distribution satisfies certain assump-
tions. In the following we introduce our notation for such RVs and their distributions.
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We usually denote RVs using upper case letters, and use lower case letters to
specify particular values they can take. Thus, X = x means that the RV X takes the
value x . We write PX to denote the probability distribution of the RV X , with PX (x)

being the probability that X = x . For two RVs, X and Y , PXY represents their joint
distribution. We also use PX |Y to represent the conditional distribution of X given
Y . We use PX |Y=y := PX |Y (·, y) to denote the distribution of the RV X conditioned
on Y = y. We often abbreviate this distribution to PX |y . If Y is a discrete random
variable, then PX |Y = PXY /PY . More generally, if X takes values from the set X and
Y takes values from set Y , then PX |Y is defined such that, for all X̃ ⊆ X and Ỹ ⊆ Y ,

PXY (X̃ , Ỹ) =
∫
Ỹ

∫
X̃

dPY (y)dPX |y(x).

We also use P(X = Y ) to denote the probability that the RVs X and Y have
equal values. We will only use this for discrete RVs, so we can take P(X = Y ) :=∑

x PXY (x, x). Likewise, P(X �= Y ) := 1 − P(X = Y ).

2.2 Distance Between Probability Distributions

Our technical argument uses the variational distance to quantify the closeness of
two probability distributions. For two distributions, PX and Q X , over a discrete set,
X , it is defined by

D(PX , Q X ) := 1

2

∑
x∈X

|PX (x) − Q X (x)|.

This measure is connected to the distinguishability of the two distributions. Specifi-
cally, suppose we have a black box that samples either from PX or Q X . Then, given
one sample, the maximum probability of successfully guessing whether the sam-
ple has been generated from PX or Q X equals 1

2 (1 + D(PX , Q X )). Thus, if two
distributions are close in variational distance, they are virtually indistinguishable.
Appendix A summarizes some properties of D(·, ·) that are used in this work.

2.3 Measuring Correlations

A useful approach towards characterizing alternative theories is to consider the corre-
lations (between the outcomes of two distant measurements) that can be reproduced
by a given theory. The strength of these correlations may then, for instance, be com-
pared to those occurring in quantum theory. To quantify correlations, we use an
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extension of a measure that has been proposed by Pearle [8] and, independently, by
Braunstein and Caves [9], based on earlier work by Clauser et al. [10].

The correlation measure is tailored to a specific bipartite setup where measure-
ments are carried out at two separate locations. One of the measurements is specified
by a parameter A and has outcome X . The other is specified by a parameter B and
has outcome Y . It is furthermore assumed that the outcomes X and Y take values
from the set {0, 1, . . . , M − 1} and that the parameters A and B are labelled by
elements from the sets

{
0, 2

2N , . . . , 2N−2
2N

} =: AN and
{

1
2N , 3

2N , . . . , 2N−1
2N

} =: BN ,
respectively, where M ≥ 2 and N ≥ 2 are integers. The correlation measure, in the
following denoted by IM,N , is then defined by

IM,N (PXY |AB) := P(X ⊕ 1 �= Y |A = 0, B = 2N − 1

2N
) +

∑
a∈AN , b∈BN|a−b|=1/(2N )

P(X �= Y |A = a, B = b),

where ⊕ denotes addition modulo M . This measure is depicted in Fig. 1. Note that
the measure only depends on the conditional distribution PXY |AB , and that stronger
correlations have a lower value of IM,N .

We will be particularly interested in the correlations that quantum theory predicts
for measurements on two maximally entangled systems. To specify these correla-
tions, define

|ψM 〉 := 1√
M

M−1∑
i=0

|i〉 ⊗ |i〉 , (1)

where {|i〉} is an orthonormal basis. We will consider the correlations produced by
a particular set of measurements on states of this form. To construct these measure-

2N
1

2N
3

2      1N
2N

2N
2

2N
4

2N
2      2N

b

b

b =

=

=

a

a

a

=

=

= 0

a

=

Fig. 1 Illustration of the terms in the correlation measure IM,N . This measure is defined as the sum
of the probabilities of obtaining different outcomes when measuring two subsystems in neighbouring
bases (depicted with the solid lines), and of obtaining X ⊕ 1 different from Y for a = 0, b = 2N−1

2N
(depicted with the dashed line)
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N2
1

N2
2

N2
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N2

=0
=

=

a b
a

b

b

=

= N2     1

Fig. 2 Depiction of the measurements used to achieve the quantum value of the correlation measure

I2,N . The circle represents the
{
|0〉 , 1√

2
(|0〉 + |1〉)

}
plane of the Bloch sphere. The arrows depict

the Bloch vectors associated with the 0 outcome (i.e. Ea
0 or Fb

0 are the projectors onto these states).
Those for the 1 outcome lie in the opposite direction and are not depicted. In the limit of large N , the
measurements for neighbouring bases (|a − b| = 1

2N ) are virtually identical and the outcomes are

almost always perfectly correlated. Conversely, for a = 0, b = 2N−1
2N and large N , the measurements

are virtually opposite of one another and the outcomes are almost always perfectly anti-correlated

ments, consider the generalized Pauli operator X̂ M ≡ ∑M−1
l=0 |l〉〈l ⊕ 1| (where again

⊕ denotes addition modulo M), and define for any a ∈ AN and b ∈ BN the POVMs1

{Ēa
x }x and {F̄b

y }y by2

Ēa
x ≡ (X̂ M)a |x〉〈x | (X̂†

M)a (2)

F̄b
y ≡ (X̂ M)b |y〉〈y| (X̂†

M)b. (3)

To understand the idea behind the arguments presented here, it is sufficient to
consider the case where M = 2. Defining |[θ]〉 = cos θ

2 |0〉 + sin θ
2 |1〉, the POVM

element Ēa
x then corresponds to the projector onto |[(a + x)π]〉 and, likewise, F̄b

y is
the projector onto |[(b + y)π]〉 (cf. Fig. 2).

We now define P̄ M,N
XY |AB as the conditional distribution of the outcomes of two

separate quantum measurements, specified by {Ēa
x }x and {F̄b

y }y , respectively, applied
to two separate subsystems with joint state |ψM 〉, i.e.,

P̄ M,N
XY |ab(x, y) := 〈ψM | Ēa

x ⊗ F̄b
y |ψM 〉 .

1See Sect. 3.1 for a definition.
2Note that Ēa

x and F̄b
y depend on M , but we suppress this dependence in our notation for brevity.
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One can verify that the correlation strength, quantified with the above correlation
measure, IM,N , equals

IM,N (P̄ M,N
XY |AB) = 2N

(
1 − sin2 π

2N

M2 sin2 π
2M N

)
≤ π2

6N
(4)

(see the appendix of [7] for details of this calculation).
As we will discuss later, a key feature of these correlations is that for all M ,

IM,N (P̄ M,N
XY |AB) tends to zero as N tends to infinity.

3 Quantum and Alternative Theories

The aim of this chapter is to make statements about physical theories, i.e., quantum
theory as well as possible alternatives to it. However, in order to derive our result,
we do not need to provide a comprehensive mathematical definition for the concept
of a “physical theory”. Rather, it suffices to focus on one crucial feature that we
expect any theory to have, namely that it allows us to compute predictions about
values that can be observed (e.g., in an experiment). These predictions, which need
not be deterministic, are generally based on certain parameters that characterize the
(experimental) setup, i.e., how it has been prepared (its initial state), the evolution it
undergoes, and which measurements are going to be applied.

3.1 Predictions of Quantum Theory

In this chapter we consider experimental setups that within quantum theory can be
described by taking the Hilbert space, H, of the system to have finite dimension. The
state of the system will be described by a RV �, and we will also use RVs A and X
to specify the measurement process and the observed outcome respectively. Since A
and X refer to experimental parameters, we take them to be finite. Within quantum
theory, Born’s rule can be used to generate a prediction of X given A and �.

Most generally the state of the system � = ψ can be given in the form of a
density operator on H, although we will often only need to consider pure states.
Furthermore, any measurement process A = a can be characterized by a Positive
Operator Valued Measure (POVM) on H, i.e., a family of positive operators {Ea

x }x

labelled by the possible measurement outcomes x ∈ X such that
∑

x Ea
x = 11H.

For our treatment, we will assume that any evolution of the system prior to the
measurement {Ea

x }x is already accounted for by its quantum state, i.e., that � = ψ
is the state of the system directly before the measurement is applied.3 The predic-

3Alternatively, one may work in the Heisenberg picture, for instance, and use the POVM to account
for the evolution.
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tions that quantum theory makes about the measurement outcome X can then be
represented by a conditional distribution P̄X |A� , which is given by

P̄X |aψ(x) = tr(Ea
x ψ) ∀ x ∈ X . (5)

We note that, by considering an extension of the Hilbert space H, we may describe
any quantum-mechanical measurement process equivalently as a projective mea-
surement, i.e., one for which the POVM {Ea

x }x consists of orthogonal projectors.4

Furthermore, we call a set of POVMs {Ea
x } on H tomographically complete if the

values P̄X |aψ(x) for all a and x are sufficient to determine ψ on H uniquely.5

For later reference, we also note that, according to quantum theory, any possible
evolution of a quantum system, S, corresponds to a unitary mapping on a larger state
space (that may include the environment of the system). In the case of a measurement
process, this larger state space includes the measurement device, D. Specifically, a
projective measurement, say {Ea

x }x , would correspond to an isometry of the form

|ψ〉S �→
∑

x

√
Ea

x |ψ〉S ⊗ |x〉D ,

where {|x〉D} are orthonormal states of the measurement device (and possibly also its
environment) that encode the outcome. The outcome X of the original measurement
may then be recovered by a subsequent projective measurement on D in the basis
{|x〉D}.

3.2 Predictions of Alternative Theories

In an alternative theory, the measurement process A with outcome X , as described
above in terms of the quantum formalism, may admit a different description. This
description could involve other parameters, which we denote by Z (one might think
of Z as the list of all parameters used by the theory to describe the system’s state
before the measurement A is chosen).6 For any values A = a and Z = z of these
parameters, the theory specifies a rule for computing the probability distribution,
PX |az , for the measurement outcome X . Hence, in the following, if we want to make

4According to Naimark’s theorem, there exists a Hilbert space H̄ that contains H as a subspace
as well as orthogonal projectors P̄a

x in H̄ such that for each x ∈ X the POVM element Ea
x is the

projection of P̄a
x into H.

5An example of a tomographically complete set of projective POVMs in the case of a single qubit
are the three POVMs whose elements are projectors onto (i) |0〉 and |1〉, (ii) (|0〉 + |1〉)/√2 and
(|0〉 − |1〉)/√2, and (iii) (|0〉 + i |1〉)/√2 and (|0〉 − i |1〉)/√2.
6In [5], Z was modelled more generally as a system with input and output. For simplicity, we ignore
this higher level of generality in this work.
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a statement about the predictive power of a given theory,7 it is sufficient to consider
the properties of the corresponding distributions PX |az .

Since we want to use theories to make predictions, we usually think of Z as (in
principle) learnable. However, this is merely an interpretive statement, and none of
the conclusions of this work are affected if Z is instead thought of as fundamentally
hidden and hence unlearnable in principle. The only thing that changes in the latter
case is the interpretation of certain statements. In particular, one may not want to call
the condition PX Z |AB = PX Z |A, derived in Sect. 7.1, a “no-signalling” condition, or
to speak about “predictions” made based on Z if Z is not learnable in principle. Note
that although the experimental parameters A and X are finite, no such restriction is
placed on the parameters of the alternative theory, which we allow to take values
from an arbitrary set.

3.3 Compatibility of Predictions

The predictions computed within two different theories (e.g., quantum theory and an
alternative theory) are generally not identical. Nevertheless, they may be compatible
with each other. In order to say what this means we introduce a definition of when
a joint distribution is compatible with another marginal distribution (this is formu-
lated such that it is directly in the form that we need it, but the definition is readily
generalized to other situations).

Definition 1 We say that a distribution PAX Z Z ′ is compatible with P̄X |AZ ′ if PX |AZ ′ =
P̄X |AZ ′ .8 In other words,

P̄X |az′ = PX |az′ =
∫
Z

dPX Z |az′(·, z) ∀ a, z′,

where the conditional distribution on the right-hand-side is derived from PAX Z Z ′ (see
Sect. 2.1).

Now suppose Z ∈ Z and Z ′ ∈ Z ′ are the parameters of two different theories,
and that their predictions (about the outcome X of a measurement A) are given by
conditional probability distributions P̃X |AZ and P̄X |AZ ′ , respectively.9 The predictions
can be considered compatible with each other if there exists a joint distribution
PAX Z Z ′ that is compatible with both P̃X |AZ and P̄X |AZ ′ .

To relate the definition of compatibility back to the earlier example of the isotopes,
by way of illustration, we can take Z ′ to be the chemical element, and imagine that
(without knowledge of the isotope) when sending individual chlorine atoms (call

7When referring to the predictive power of a theory, we mean predictions based on the value Z .
8We require that the distributions on each side of the equality are defined for the same pairs (a, z′).
9Note that the conditional probability distribution P̃X |AZ (and, similarly, P̄X |AZ ′ ) may in principle
be defined only for a restricted set of pairs (a, z).
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this Z ′ = Cl) through a measurement device we observe a mass of X = 35 with
probability 3/4 and X = 37 with probability 1/4. However, given knowledge of the
isotope, Z = 35Cl or Z = 37Cl, we can make the prediction perfectly. It is easy to
see that there exists PX Z Z ′ that is compatible with both predictions:

PX Z Z ′(x, z, z′) =
⎧⎨
⎩

3/4 if x = 35, z = 35Cl and z′ = Cl
1/4 if x = 37, z = 37Cl and z′ = Cl
0 otherwise.

3.4 Comparing the Accuracy of Predictions

The predictive powers of different theories can be compared provided the theories
are compatible with each other.10 If one theory has predictions P̃X |AZ and the other
has predictions P̄X |AZ ′ , then we can consider PAX Z Z ′ such that PX |AZ = P̃X |AZ and
PX |AZ ′ = P̄X |AZ ′ . Roughly speaking, the predictions based on Z improve over those
based on Z ′ if P̄X |AZ Z ′ and P̄X |AZ ′ differ. However, because Z and Z ′ may take values
over arbitrary sets, we require that the distributions differ on more than a measure
zero set. This motivates the following definition.

Definition 2 Let PAX Z Z ′ be a distribution compatible with P̃X |AZ and P̄X |AZ ′ . P̃X |AZ

is said to give improved predictions over P̄X |AZ ′ with respect to P if for some A = a

∫
Z,Z ′

D(PX |az′ , PX |azz′)dPZ Z ′|a(z, z′) > 0.

This can again be illustrated using the earlier example of the isotopes. The theory
that includes the information Z ′ about the particular isotope naturally gives improved
predictions over the one that only specifies the chemical element Z with respect to
the distribution PX |Z Z ′ given in the previous section.

We remark that quantum-mechanical predictions based on pure states generally
give improved predictions over those derived from mixed states. To see this, imagine
a system that is prepared in a pure state ψC depending on a random bit C , and assume
that a measurement with outcome X is performed. If C is unknown, with C = 0 and
C = 1 being equally likely, the distribution of X is, according to quantum theory,
given by (5) with ψ substituted by the mixed state 1

2ψ0 + 1
2ψ1. However, if we had

access to C , we could use (5) with ψ replaced by ψC , resulting in a more accurate
prediction.

Clearly, when studying the question of whether there can be more informative
theories than quantum theory, we need to consider specifications of states and mea-
surement processes that are maximally informative among all predictions that are
possible within quantum theory. Hence, following the above remark, we will restrict

10If two theories make incompatible predictions, then at least one of the sets of predictions would
be falsifiable in principle.
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our attention to quantum states that correspond to pure density operators and to
projective measurements.

We will use the above notions of compatibility and improved predictions to com-
pare quantum theory to alternative theories. For this, we let Z ′ ≡ � be the quantum
state of a system and consider the conditional distribution P̄X |A� defined by (5), and
take the predictions of the alternative theory to be P̃X |AZ (based on a parameter Z ).
We require that there exists a distribution PAX Z� compatible with both P̄X |A� and
P̃X |AZ . We will often consider the case where � is fixed to some particular state ψ.
In this case, we can drop explicit mention of it, so that the condition that P̃X |AZ gives
improved predictions with respect to P can be simplified to

∫
Z

D(PX |a, PX |az)dPZ |a(z) > 0,

for example.
Note that because we will always take the case where PAX Z� is compatible with

the predictions of the alternative theory, P̃X |AZ , we henceforth make this condition
implicit in the notation by dropping the tilde on the alternative theory.

4 Freedom of Choice

As explained above, physical theories involve certain parameters, and it is generally
assumed (often implicitly) that these can be chosen freely. Quantum mechanics,
for instance, allows us to compute the probabilities of a measurement outcome X
depending on the system’s state � as well as a description of the measurement
process, A, and our understanding is that these parameters can in principle be chosen
freely (e.g., by an experimenter carrying out a measurement of her choice). In fact, one
may argue that a description of nature that does not involve any such choices—thereby
not allowing us to compute conclusions for different initial conditions—cannot be
reasonably termed a theory [11].

It is worth noting that by assuming free choice, we are not making any metaphys-
ical assertion that the real world contains, say, agents with free will, or anything of
that sort. Instead, allowing free choice is a property that we require of a theory. In
essence, it means that the theory gives predictions for all possible values of the free
parameters, and furthermore, that it does so no matter what happened elsewhere in
the theory. Without such an assumption, depending on other events described by the
theory, certain values of the ‘free’ parameters could be unavailable, in the sense that
the theory would not be able to predict a response to them.

In this section, we specify what we mean by such free choices. The idea is that, for
a given theory, the statement that a parameter of the theory, say A, is considered free
is equivalent to saying that A is uncorrelated with all values (described by the theory)
that are outside the future of A. For this definition to make sense mathematically, we
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need to establish a notion of future. We do this by introducing a causal order, i.e., a
(partial) ordering of events. We stress, however, that the causal order is only used to
define free choice and plays no further part in the argument.11

4.1 Causal Order

Let � be the set of all parameters required for the description of an experiment within
a given theory. In particular, � may contain variables that specify the (joint) state
in which the relevant physical systems have been prepared (in the following usually
denoted by � for quantum theory and by Z for more general theories), the choice of
measurements (denoted A and B), as well as the measurement outcomes (denoted X
and Y ). For any such set of variables �, we can define a causal order � as follows.

Definition 3 A causal order � for � is a preorder relation12 on �.

If A � X , we say that X is in the (causal) future of A, and if this doesn’t hold, we
write A �� X . These relations can be conveniently specified by a diagram (see Fig. 3
for an example). Note that the causal order � should not be interpreted as specifying
actual causal dependencies,13 but instead indicates that such causal dependencies are
not precluded (by the theory).

A typical—but for the following considerations not necessary—requirement on
a causal order is that it be compatible with relativistic space time. Consider, for
example, an experiment where a parameter A is chosen at a given space time point
rA and where a measurement outcome X is observed at another space time point rX .
One would then naturally demand that A � X if and only if rX lies in the future
light cone of rA. This captures the idea that the choice A is made at an earlier time
than the observation of X , with respect to any reference frame.

4.2 Free Random Variables

To define the notion of a “free choice”, we consider a set � of RVs equipped with a
causal order. (As above, � should be thought of as the set of all parameters relevant
for the description of an experiment within a given theory.)

Definition 4 With respect to a set of RVs � equipped with a causal order and a set
A, we say that A ∈ � is a free choice if PA(a) > 0 for all a ∈ A and

11In particular, we do not assume local causality within the specified causal order.
12That is, � is a binary relation on the set � that is reflexive (i.e., A � A) and transitive (i.e.,
Z � A and A � X imply Z � X ).
13I.e., A � X is not meant to imply that there is necessarily a physical process such that changing
A imposes a change of X .
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E J

H

F

G

Fig. 3 Free choice and causal order. An arbitrary causal order is depicted for random variables E ,
F , G, H and J . The arrows correspond to the relation �. For example, G lies in the future of F ,
i.e., F � G, but not of J , i.e., J �� G. Because of the transitivity property, it follows that F � E ,
for example. In this setting we would say that, for instance, G is free if it is uncorrelated with F
and J , i.e., PG F J = PG × PF J

PA�A = PA × P�A

holds, where �A is the set of all RVs X ∈ � such that A �� X .14

We stress that this notion of free choice makes sense only with respect to a causal
order, and cannot be defined on its own (see [12] for further explanation). Obviously,
whether a variable from the set � is considered free depends on the causal order that
we impose. If the causal order is taken to be the one induced by relativistic space
time (see the description above), then this definition coincides with the notion of a
free variable as used by Bell [11].15 We remark that both standard quantum theory
and classical theory in relativistic space time allow for free choices within such a
causal order.

5 Constraints on Theories Compatible with Quantum
Theory

We discuss here the implication of some well-known results to our main ques-
tion, whether an extension of quantum theory can have improved predictive power.
Although they were not asking the same question, the works of Bell [4] and Leggett
[13] imply constraints on such higher theories, and hence can be seen as special cases
of the general theorem presented in Sect. 6, which excludes all alternative theories

14By definition, the set �A also excludes A.
15In [11], Bell discusses the assumption that the settings of instruments are free variables, which
he characterizes as follows: “For me this means that the values of such variables have implications
only in their future light cones.”
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whose predictions are more informative than quantum theory. Furthermore, we will
show that Bell’s theorem and the result of Leggett follow as corollaries of our main
theorem.

5.1 Bipartite Setup

The statements described below refer to a bipartite setup which involves two sepa-
rate measurements, specified by parameters A and B, and with outcomes X and Y ,
respectively. As before, we consider a theory that allows us to compute predictions
about these measurements based on a parameter (or list of parameters) Z , which
describes the system’s state before the measurement process is started. Furthermore,
in order to define free choices, we need to specify a causal order. The technical claims
described in this section can be applied to any causal order that satisfies the following
conditions:

(i) A � X and B � Y ;
(ii) A �� Z and B �� Z ;

(iii) A �� Y and B �� X .

Condition (i) corresponds to the requirement that the measurement is specified before
its outcome is obtained. Condition (ii) captures the fact that the parameters of the
theory, Z , on which the predictions are based, should not only become available after
the measurement process is started. This assumption can be considered necessary in
order to reasonably talk about “predictions”. Finally, Condition (iii) demands that
the arrangement of the two measurements should be such that neither of them lies
in the future of the other. (Note that, assuming a relativistic space time structure,
this would correspond to a setup where the measurements are space-like separated.)
Together, the three conditions imply a causal order in which A is considered free if
PABY Z = PA × PBY Z , and likewise for B. The causal orders respecting (i)–(iii) are
illustrated in Fig. 4.

5.2 Local Deterministic Theories

Within the bipartite setup described above a local deterministic theory is one for
which all conditional probabilities PX |az(x) and PY |bz(y) are equal to either 0 or
1. Such theories were introduced by Bell [4] who proved that no such theory can
reproduce the predictions of quantum theory.

Within the terminology of the present paper, Bell’s argument implies the following
theorem that makes use of the correlations P̄ M,N

XY |AB that quantum theory predicts for
the measurements on the maximally entangled state |ψM 〉 defined in Sect. 2.3.
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YX

BA

Z

Fig. 4 The causal orders for which our argument applies. We consider a setup with two separate
measurements, one depending on a choice A with outcome X , and the other with choice B and
outcome Y . Moreover, Z denotes all extra parameters that may be used to make predictions about the
outcomes. The figure illustrates all of the causal orders compatible with our requirements (i)–(iii).
The black arrows originating from A and B are required, while each of the grey arrows originating
from Z is optional

Theorem 1 (No higher theories are locally deterministic) For any probability dis-
tribution PAB XY Z at least one of the following cannot hold:

• Freedom of choice:16 A and B are free with respect to any of the causal orders
depicted in Fig.4;

• Compatibility with quantum theory: PAB XY Z is compatible with the predictions
P̄ M,N

XY |AB of quantum theory (for some M ≥ 2, N ≥ 2);
• Local determinism:

PX |az(x) ∈ {0, 1} ∀ a, z s.t. PAZ (a, z) > 0

PY |bz(y) ∈ {0, 1} ∀ b, z s.t. PB Z (b, z) > 0.

The theorem follows directly from the general non-extendibility theorem described
in Sect. 6. One may also prove it directly using the correlation measure IM,N defined
in Sect. 2.3 for M = N = 2. The central idea is to show that, under the free choice
assumption, all correlations explained by a locally deterministic model satisfy the
inequality I2,2 ≥ 1, which corresponds to the CHSH inequality [10]. (The free choice
assumption ensures that PAB|z has full support for each z, and hence that the condi-
tional distributions PX |az and PY |bz are well defined for any a, b, and z.) The assertion
then follows from the fact that I2,2(P̄2,2

XY |AB) = 2 − √
2 < 1 (see Eq. 4).

16The freedom of choice assumption is often not mentioned explicitly, but its necessity has been
stressed by Bell in later work [11].
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5.3 Stochastic Local Causal Theories

In his later work, Bell dropped the assumption of determinism and considered more
general stochastic models. He adopted the following definition of locality called local
causality, which leads to the relation PXY |AB Z = PX |AZ PY |B Z [14]. Expanding the
left hand side using Bayes’ rule, this can be broken down into four separate relations,
PX |AB Z = PX |AZ , PY |AB Z = PY |B Z , PX |ABY Z = PX |AB Z and PY |AB X Z = PY |AB Z .
The first two of these have sometimes been termed parameter independence and
imply that, even given access to Z , there cannot be signalling between the two
measurement processes.

The last two conditions have been termed outcome independence. They do not
have an obvious operational significance (such as no-signalling), and do not in general
hold for the theories we consider in this work. We note, however, that they are
automatically satisfied in any deterministic model, where each of the outcomes X
and Y is a function of A, B, and Z . Conversely, as we argue just below, if a theory
is locally causal then the predictions it makes about the outcomes of measurements
on the entangled state |ψ2〉 = 1√

2
(|00〉 + |11〉) are necessarily deterministic. (This is

the essence of the EPR argument [1].)
To see this, note that for any projective measurement (specified by A = a) applied

to the first part of |ψ2〉, there exists another projective measurement (specified by B =
ba) on the second part such that the outcomes are perfectly correlated. For example,
if A = a corresponds to the POVM {|0〉〈0| , |1〉〈1|}, and if we choose B = ba such
that it corresponds to the same POVM, then PXY |aba (0, 0) = PXY |aba (1, 1) = 1

2 . This
means that X is determined by Y , i.e., PX |aba yz(x) = δx,y ∈ {0, 1} for all a, x , y and z.
Applying now the conditions of local causality, we obtain PX |abyz(x) = PX |az(x) ∈
{0, 1}, which corresponds to the assumption of local determinism. Hence, there is
an analogue of Theorem 1 in which the local determinism condition is weakened to
Bell’s local causality condition. This modified theorem also follows from our main
result via the above argument.

We remark that, as we shall see below (Lemma 1), the freedom of choice assump-
tion implies parameter independence, but is not strong enough to imply local causal-
ity, since it doesn’t imply outcome independence.

5.4 Leggett-Type Theories

In [13], Leggett introduced what he calls a “non-local hidden variable” model, which
attempts to give an explanation of quantum correlations that is partly local and
partly non-local. The presence of non-local hidden variables in his model leads to
an incompatibility with the free choice assumption. However, since the behaviour of
the non-local variables is not specified in Leggett’s model, we can consider a slightly
modified version in which they are ignored (hence forth, when we speak about
Leggett’s model, we refer to the local part of it). The model is then compatible with
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our notion of free choice, and offers improved predictive power for measurements on
maximally entangled particles. We note that the model is not a full-fledged theory,
as it only specifies how the outcomes of spin measurements are obtained.

Leggett’s model is based on the idea of assigning to each spin particle a three-
dimensional vector (in addition to its quantum mechanical state). In particular, if we
consider two spin particles, each measured on one side within the bipartite setup
described above, we need to specify two such vectors, denoted u and v, respectively.
To connect this to our general discussion, we may think of these vectors as part of Z ,
i.e., Z takes as values pairs (u, v). As above, we denote the choice of measurement
on each side by A and B. Restricting to projective spin measurements, the two
choices may be labelled by three-dimensional vectors, denoted a and b, respectively,
indicating their orientation in space (see, for example, [15] for more details). The
predictions for the measurement outcomes X and Y , as prescribed by Leggett’s
model, are then given by

PX |auv(x) = 1

2
(1 + (−1)x a · u) (6)

PY |buv(y) = 1

2
(1 + (−1)yb · v). (7)

In order to completely define the model, one would also need to assign proba-
bilities to all possible values Z = (u, v), i.e., specify a probability distribution PZ

(which, in general, depends on the quantum state). However, the following theorem,
which is a corollary of results in [13, 15–17], implies that there is no such assignment
for which Leggett’s model can be made compatible with quantum theory.

Theorem 2 (No higher theories obey the Leggett conditions) There exists a quantum
distribution P̄XY |ABψ2 , generated by measurements on the state |ψ2〉 (defined in (1)),
such that for any probability distribution PAB XY Z at least one of the following cannot
hold:

• Freedom of choice: A and B are free with respect to any of the causal orders
depicted in Fig.4;

• Compatibility with quantum theory: PAB XY Z is compatible with P̄XY |ABψ2 ;
• Leggett rule: PXY |AB Z satisfies Eqs.6 and 7 for all values A = a, B = b, and

Z = (u, v).

We will not give a proof of this theorem here, since it follows from the more
general results presented in the next section. To see this, it is sufficient to observe
that, when measuring the entangled state |ψ2〉 = 1√

2
(|00〉 + |11〉), for instance,

quantum theory prescribes that P̄X |a(x) = 1
2 , independently of the orientation a of

the measurement. Conversely, for any given Z = (u, v), Leggett’s model predicts a
non-uniform distribution whenever the measurement orientation a is not orthogonal
to the vector u. The Leggett model is therefore more informative than quantum theory,
and hence excluded by Lemma 3 (as well as the more general Theorem 3) below.
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5.5 Other Constraints

Here we summarize a few other known constraints on theories compatible with
quantum mechanics. One of the first results in this direction was that the quantum
outcomes cannot be predetermined within a non-contextual model [2, 3]. In such a
model, one assumes the existence of a map from the set of projectors to the set {0, 1}
such that for every set of projectors that constitute a POVM, only one member of
that set is mapped to 1 (the element that maps to 1 is interpreted as the outcome that
will occur if a measurement described by that POVM is carried out). Such a model
is non-contextual in that whether or not a particular outcome occurs depends only
on the individual projectors, and not on the set of projectors making up the POVM.
The Bell-Kochen-Specker Theorem [2, 3] implies that no such assignment can exist
if the Hilbert space dimension is at least 3.

Hardy [18] later showed that within any extended theory, an infinite number of
underlying states are required, even to describe a single qubit, and Montina [19,
20] proved, under the assumption of Markovian dynamics, that the number of real
parameters that an extended theory needs to characterize a state in Hilbert space
dimension M is at least 2M − 2 (the same as the number of parameters needed to
specify a pure quantum state up to a global phase).

In addition, a claim in the same spirit as our non-extendibility theorem (presented
in the next section) has been obtained recently [21] under the assumption of mea-
surement non-contextuality, introduced in [22].

6 The Non-extendibility Theorem

This section is devoted to the key result of this chapter, asserting that quantum theory
is maximally informative. Stated informally, we make the following claim, first made
in [5].

Claim 1 No alternative theory that is compatible with quantum theory and allows
for free choice (with respect to the discussed causal orders) can give improved pre-
dictions.

The main technical statement is a generalization of the theorems discussed in the
previous section. The setup is broadly the same, but instead of the condition that
the higher theory remains compatible with quantum theory for measurements on
maximally entangled states, we require this for a wider class of states. Furthermore,
rather than considering theories that satisfy local determinism or the Leggett rule,
the claim is about arbitrary theories that make improved predictions.

The main technical theorem is as follows (this should be read as a purely mathe-
matical statement about bipartite pure states, whose significance to the extendibility
of quantum theory will be explained subsequently).
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Theorem 3 Let HS, HS̃ , HD and HD̃ be finite dimensional Hilbert spaces, |φ〉SD ∈
HS ⊗HD be a pure state and {∣∣ŷ〉

D} be a Schmidt basis on D. Then there exists a state

|�〉S̃ D̃ ∈ HS̃ ⊗ HD̃ and local POVMs {Ea
x } and {Fb

y } on SS̃ and DD̃, respectively,
with Fb0

y = |ŷ〉〈ŷ|D ⊗11D̃ for some b = b0, such that, for any probability distribution
PAB XY Z at least one of the following cannot hold:

• Freedom of choice: A and B are free with respect to any of the causal orders
depicted in Fig.4;

• Compatibility with quantum theory: PAB XY Z is compatible with the predictions
P̄XY |AB(φ⊗�) of quantum theory for the measurements {Ea

x } and {Fb
y } on |φ〉SD ⊗

|�〉S̃ D̃ .17

• Improved predictions: PY |b0 Z gives improved predictions over P̄Y |b0φ with respect
to P.

To understand the implications of this theorem, consider a fixed measurement â
on a system S. Assume that, according to quantum theory, the system (before the
measurement) is in a pure state, denoted ψ, and that the measurement corresponds
to a projective POVM, {Ê â

x̂ }. Quantum theory then gives a probabilistic prediction

P̄X̂ |âψ for the measurement outcome X̂ , which depends on ψ and {Ê â
x̂ } (see Eq. 5).

Our aim is to compare this quantum-mechanical prediction with the prediction PX̂ |âZ
that may be obtained by an alternative theory, whose parameters we denote by Z .

We then consider the joint state of the measured system, S, and the measurement
device, D, after the measurement â. Following the discussion in Sect. 3, according
to quantum theory, this state can be assumed to have the form

|φ〉SD =
∑

x̂

√
Ê â

x̂ |ψ〉S ⊗ ∣∣x̂ 〉
D . (8)

Note that the POVM {Fb0
y } defined by Theorem 3 corresponds to a measurement of

D in the basis {∣∣x̂ 〉
D}. The outcome, Y , of this measurement can therefore be seen

as reading out the outcome of the original measurement, specified by {Ê â
x̂ }, and it is

this that we want to predict.
We now apply Theorem 3 to |φ〉SD . If we assume that PAB XY Z , in addition to

being compatible with quantum theory, satisfies the freedom of choice assumption,
then the theorem implies that its third condition, improved predictions, cannot hold.
This means that ∫

Z
D(PY |b0φ, PY |b0z)dPZ (z) = 0.

17Formally, PXY |AB(φ⊗�) is given by

PXY |ab(φ⊗�)(x, y) = tr((Ea
x ⊗ F y

b ) |φ ⊗ �〉〈φ ⊗ �|) .

[NB: the states and POVM elements do not factor in the same way.].
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It hence follows that P̄Y |b0φ is equal to PY |b0 Z (almost surely over PZ ), and hence the
alternative theory doesn’t give better predictions. This is what is stated informally as
Claim 1.

7 Proof of Theorem 3

The theorem follows from three statements, which we formulate and prove separately.
An overview of the argument is as follows. We consider the previously introduced
bipartite scenario and any of the causal orders depicted in Fig. 4. We begin by showing
that free choice with respect to this causal order implies that the alternative theory
is no-signalling (see Lemma 1). In the second part of the argument, we show that
for measurements on maximally entangled states, if quantum theory is correct, no
higher theory can give improved predictions about the outcomes (see Lemma 3). In
the final part of the argument, we generalize this to measurements on an arbitrary
bipartite entangled state. More precisely, we show that for any such state, there exist
local measurements that generate correlations arbitrarily close to those generated by
r maximally entangled states for some sufficiently large integer r . Hence, from the
second part of the argument, these measurements can have no improved predictions.

7.1 Part I: No-signalling From Free Choice

In this part, we show that if A and B are free choices with respect to one of the
given causal orders, then there is no signalling within the alternative theory (i.e. no
signalling even given access to Z ).18

Lemma 1 The freedom of choice assumption implies PX Z |AB = PX Z |A and PY Z |AB =
PY Z |B.

Proof That A is free within the specified causal order implies PA|BY Z = PA and
hence

PY Z A|B = PY Z |B × PA|BY Z = PA × PY Z |B , and

PY Z A|B = PA|B × PY Z |AB = PA × PY Z |AB .

We therefore have PY Z |AB = PY Z |B . The relation PX Z |AB = PX Z |A follows by
symmetry. �

18As explained in Sect. 3, the interpretation of this as “no-signalling” may change if Z is thought
of as in principle unlearnable. However, since we only use this condition for an intermediate step,
its interpretation is not relevant for our argument.
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7.2 Part II: Non-extendibility for Measurements on
Maximally Entangled States

In the second part of the argument, we show that the claim holds for particular mea-
surements on maximally entangled pairs of qubits. The proof uses the correlation
measure IM,N introduced in Sect. 2.3. The following lemma shows that this measure,
applied to a distribution PXY |AB , gives a bound on how well any additional informa-
tion, Z , can be correlated to the outcome X . Note that the lemma is independent of
quantum theory and is simply a property of probability distributions.

Lemma 2 Let PXY Z |AB be a distribution that obeys PX Z |AB = PX Z |A and PY Z |AB =
PY Z |B. Then, for all a and b, we have

∫
Z

D(PX |abz, P̂X )dPZ |ab ≤ M

4
IM,N (PXY |AB), (9)

where P̂X denotes the uniform distribution on X.

The proof is based on an argument given in [7], which develops results of
[5, 17, 23, 24].

Proof We first consider the quantity IM,N evaluated for the conditional distribution
PXY |ABz = PXY |AB Z (·, ·|·, ·, z), for any fixed z. The idea is to use this quantity to
bound the variational distance between the conditional distribution PX |az and the
distribution, PX⊕1|az , which corresponds to the distribution of X if its values are
shifted by 1 modulo M . If this distance is small, it follows that the distribution PX |az

is roughly uniform. Because this holds for any Z = z, X must be independent of Z .
It is first worth noting that the conditions of the lemma (PX Z |AB = PX Z |A and

PY Z |AB = PY Z |B) imply PX |AB Z = PX |AZ and PY |AB Z = PY |B Z respectively, and
together imply PZ |AB = PZ .

Let P̂X be the uniform distribution on X . For a0 := 0, b0 := 2N − 1, we have

IM,N (PXY |ABz)

= P(X ⊕ 1 �= Y |a0, b0, z) +
∑

a∈AN , b∈BN|a−b|=1/(2N )

P(X �= Y |a, b, z)

≥ D(PX⊕1|a0b0z, PY |a0b0z) +
∑

a∈AN , b∈BN|a−b|=1/(2N )

D(PX |abz, PY |abz)

= D(PX⊕1|a0z, PY |b0z) +
∑

a∈AN , b∈BN|a−b|=1/(2N )

D(PX |az, PY |bz)

≥ D(PX⊕1|a0z, PX |a0z)

≥ 4

M
D(PX |a0b0z, P̂X ). (10)
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The first inequality follows from the fact that D(PX |�, PY |�) ≤ P(X �= Y |�)

for any event � (see Lemma 6 in Appendix A). The final inequality follows from
Lemma 7 in Appendix A. Furthermore, we have used the conditions PX |abz = PX |az

and PY |abz = PY |bz , and the triangle inequality for D. By symmetry, this relation
holds for all a and b.

We now take the average over z on both sides of (10). The left-hand-side gives

∫
Z

IM,N (PXY |ABz)dPZ |ab(z)

=
∫
Z

IM,N (PXY |ABz)dPZ (z)

=
∫
Z

P(X ⊕ 1 �= Y |a0, b0, z)dPZ |a0b0(z)+
∑

a∈AN , b∈BN|a−b|=1/(2N )

∫
Z

P(X �= Y |a, b, z)dPZ |ab(z)

= P(X ⊕ 1 �= Y |a0, b0) +
∑

a∈AN , b∈BN|a−b|=1/(2N )

P(X �= Y |a, b, c)

= IM,N (PXY |AB) , (11)

where we used the condition PZ |ab = PZ several times. Using

〈
D(PX |abz, P̂X )

〉
z :=

∫
Z

D(PX |abz, P̂X )dPZ |ab(z),

we establish (9). �
We now apply Lemma 2 to the quantum correlations P̄ M,N

XY |AB arising from mea-
surements on the maximally entangled state ψM (cf. Sect. 2.3). In the limit where
N tends to infinity, we have limN→∞ IM,N (P̄ M,N

XY |AB) = 0 (for all M ≥ 2), and

hence we can establish that PX |abz = P̄ M,N
X |ab almost surely over Z (note that

P̄ M,N
X |ab (x) = P̄ M,N

X |a (x) = P̂X (x) = 1
M for all x). Under the freedom of choice assump-

tion and assuming compatibility with quantum theory this implies PX |az = P̄ M,N
X |a

almost surely over Z , i.e., Z gives no additional information about the measurement
outcome, X .

Taking Parts I and II together, we obtain the following lemma, which may be of
independent interest.

Lemma 3 (No higher theories give improved predictions for measurements on one
half of a pair of particles in the state ψM ) For any δ > 0 and any M there exists an
N such that for any probability distribution PAB XY Z , at least one of the following
three conditions cannot hold:

• Freedom of choice: A and B are free with respect to any of the causal orders
depicted in Fig.4;
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• Compatibility with quantum theory: PAB XY Z is compatible with P̄ M,N
XY |AB

19;

• Improved predictions: There exists a value A = a such that
〈
D(PX |az, P̄ M,N

X |a )
〉
z >

δ, where 〈·〉z denotes the expectation value over z.

Hence, if PAB XY Z is compatible with quantum theory and satisfies the freedom
of choice assumption then the third condition cannot hold. Since the lemma holds
for any δ > 0, under these assumptions,

〈
D(PX |az, P̄ M,N

X |a )
〉
z = 0. This implies that

the quantum predictions P̄ M,N
X |a are the same as those of the alternative theory PX |az

(almost surely over Z ).

7.3 Part III: Generalization to Arbitrary Measurements

The last part of the proof of Theorem 3 consists of generalizing Lemma 3, which
applies to specific measurements on a maximally entangled state, to measurements
on the general state |φ〉SD . The proof relies on the concept of embezzling states
[25]. These are entangled states that can be used to extract any desired maximally
entangled state locally and without communication. More precisely, we will use the
following lemma, which is implicit in [25].

Lemma 4 For any ε > 0 and for any k ∈ N there exists a bipartite state
∣∣�k

〉
S̃ D̃ , the

embezzling state, such that for any m ≤ k, there exist local isometries, Um : HS̃ �→
HS̃ ⊗ HS′ and Vm : HD̃ �→ HD̃ ⊗ HD′ that perform the transformation

Um ⊗ Vm : ∣∣�k
〉
S̃ D̃

�→ ∣∣�k
〉
S̃ D̃

⊗ ∣∣ψm
〉
S′ D′

with fidelity20 at least 1 − ε, where |ψm〉S′ D′ := 1√
m

∑m−1
x=0

∣∣x̂ 〉
S′

∣∣x̂ 〉
D′ denotes a

maximally entangled state of two m dimensional systems.

Note that the state |φ〉SD considered in Theorem 3 can be represented by its
Schmidt decomposition as

|φ〉SD =
∑

ŷ

√
pŷ

∣∣ŷ〉
S
⊗ ∣∣ŷ〉

D
.

We now consider an embezzling state on S̃ D̃ and use Lemma 4 to define isometries
Û and V̂ on SS̃ and DD̃, respectively, which are controlled by the entry ŷ in the
registers S or D, and build up entanglement between registers S′ and D′, i.e.,

19Note that this condition is (by definition) only satisfied if PA and PB have full support.
20The fidelity between two pure states |ψ〉 and |φ〉 is |〈ψ|φ〉|.
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Û =
∑

ŷ

∣∣ŷ〉〈
ŷ
∣∣

S ⊗ Um(ŷ)

V̂ =
∑

ŷ

∣∣ŷ〉〈
ŷ
∣∣

D ⊗ Vm(ŷ).

The integers m(ŷ) are chosen such that the state resulting from applying Û ⊗ V̂ to∣∣φ〉
SD ⊗ ∣∣�k

〉
S̃ D̃ is close to a state of the form

( 1√
M

∑
ŷ

m(ŷ)−1∑
ŷ′=0

∣∣ŷ, ŷ′〉
SS′ ⊗ ∣∣ŷ, ŷ′〉

DD′

)
⊗ ∣∣�k

〉
D̃ S̃ ,

with
∑

ŷ m(ŷ) = M , for some integer M . (This can be achieved to arbitrary precision
for sufficiently large k and m(ŷ).) Note that the first part of this state corresponds
to a maximally entangled pair, |ψM 〉, between the registers SS′ and DD′.21 We now
construct the POVMs {Ea

x } and {Fb
y } by concatenating the operations Û and V̂ with

the measurements {Ēa
x } and {F̄b

y } introduced in Sect. 2.3. More precisely, we define

Ea
x := Û †·

[(
Ēa

x

)
DD′

⊗ 11D̃

]
· Û

Fb
y := V̂ † ·

[(
F̄b

y

)
SS′

⊗ 11S̃

]
· V̂

with a ∈ AN and b ∈ BN , for some large N . In addition we define

Fb0
y = ∣∣ŷ〉〈

ŷ
∣∣

S ⊗ 11S̃.

Assume now that the freedom of choice as well as the compatibility with quantum
theory assumption are satisfied. Furthermore, let X = (X̂ , X̂ ′) and Y = Ŷ be the
outcomes of the measurements A = a0 and B = b0, respectively. Note that quantum
theory predicts that the outcomes of the measurements of a0 and b0 are in agreement,
in the sense that X̂ = Y holds with probability 1. Hence, together with the no-
signalling conditions (cf. Lemma 1) we find that

P̄Y |b0(φ⊗�) = P̄X̂ |a0(φ⊗�)

PY |b0 Z = PX̂ |a0 Z .

Now let δ > 0. Lemma 3 implies that by taking N large enough,

21As a simple example, consider the state |φ〉SD = 1
2

∣∣∣0̂〉
S

∣∣∣0̂〉
D

+
√

3
2

∣∣∣1̂〉
S

∣∣∣1̂〉
D

. In this case we would

take m(0) = 1 and m(1) = 3 to yield a state of the form 1
2 (

∣∣∣0̂0̂
〉

SS′

∣∣∣0̂0̂
〉

DD′ +
∣∣∣1̂0̂

〉
SS′

∣∣∣1̂0̂
〉

DD′ +∣∣∣1̂1̂
〉

SS′

∣∣∣1̂1̂
〉

DD′ +
∣∣∣1̂2̂

〉
SS′

∣∣∣1̂2̂
〉

DD′ ) after the transformation.
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〈
D(PX |a0z, P̄X |a0(φ⊗�))

〉
z ≤ δ,

and hence the same relation holds for the marginals of these distributions, i.e.,

〈
D(PX̂ |a0z, P̄X̂ |a0(φ⊗�))

〉
z ≤ δ.

Combining this with the above identities and noting that P̄Y |b0(φ⊗�) = P̄Y |b0φ, we
find that

〈
D(PY |b0z, P̄Y |b0φ)

〉
z ≤ δ, and since this holds for any δ > 0, we have

〈
D(PY |b0z, P̄Y |b0φ)

〉
z = 0 .

In other words, PY |b0 Z does not give improved predictions over P̄Y |b0φ with respect
to P . �

8 Alternative Theories Are Equivalent to Quantum Theory

In this section, we discuss an implication of the non-extendibility theorem
(Theorem 3) to a long-standing debate on the nature of the quantum mechanical
wave function. The debate centres around whether it should be interpreted as a sub-
jective quantity, for example a state of knowledge about some underlying physical
reality, or whether it should instead be interpreted as objective (real).22 The wave
function could be considered subjective if there existed an alternative theory, with
predictions based on a parameter Z , whose predictions are the same whether or not
the wave function, �, is taken into account,23 and in which two different wave func-
tions, say ψ and ψ′, are compatible with the same value of the parameter, say Z = z.
Formally, if � takes values from a finite set, this would mean that there exist z, ψ,
and ψ′ �= ψ such that P�|Z (ψ|z) > 0 and P�|Z (ψ′|z) > 0. This is sometimes called
a ψ-epistemic view of the wave function and contrasts with the ψ-ontic, or objec-
tive, view [27] (we refer to [26, 28, 29] for arguments in favour of the ψ-epistemic
view). In the objective view, in any alternative theory whose predictions are the same
whether or not � is taken into account, the wave function is uniquely determined by
the parameters of the alternative theory. In other words, there exists a (deterministic)
function, f such that � = f (Z) holds almost surely (over Z ). In this section, we
give an argument in support of this.

Our result is based on the following simple lemma, which applies when the RV
� takes values from a finite set of wave functions, P .

22Note that in some subjective interpretations (e.g. [26]) there is no underlying physical reality—
the wave function is simply a state of knowledge about future measurement outcomes and nothing
more.
23If the predictions are about a measurement outcome X based on a setting A, then this condition
reads PX |azψ = PX |az .
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Lemma 5 Let {Ea
x } form a tomographically complete set of POVMs for a ∈ A, and

let PAX Z� be a probability distribution such that:

• A is a free choice with respect to a causal order in which A �� Z and A �� �.
• The predictions based on Z are at least as informative as those based on �, i.e.,

PX |azψ = PX |az whenever PX |azψ is defined.24

• The predictions based on � are at least as informative as those based on Z, i.e.,
PX |azψ = PX |aψ whenever PX |azψ is defined, where PX |aψ(x) = tr(Ea

x ψ).

Then there exists a function, f : Z �→ P , such that � = f (Z).

Proof Combining the second and third conditions of the lemma we have

PX |aψ = PX |az, (12)

whenever PX |azψ is defined. If A is a free choice then PAZ� = PA × PZ� , hence (12)
holds provided that PA(a) > 0.

Suppose now that z, ψ and ψ′ are such that P�|z(ψ) > 0 and P�|z(ψ′) > 0.
From (12), this implies PX |aψ = PX |aψ′ for all a such that PA(a) > 0. Since the
set of measurements with PA(a) > 0 is tomographically complete, this can only be
satisfied if ψ = ψ′. Since we can repeat this for any pair of wave functions in P , the
existence of the function f such that � = f (Z) follows. �

Combining Theorem 3 with Lemma 5, we can establish the main result of this
section, which we state informally as follows.

Claim 2 ([6]) In any alternative theory that is at least as informative as quan-
tum theory and compatible with free choice (with respect to the discussed causal
orders), there is a one-to-one correspondence between the parameters of the alter-
native theory and the quantum state (up to a possible removable degeneracy25 in the
parameters of the alternative theory).

To establish this, as before, we use Z to denote the parameters of the alternative
theory. The statements in the remainder of this paragraph hold almost surely over PZ |ψ
for any ψ ∈ P , where P is any finite set of wave functions (we omit writing these
conditions below for brevity). Theorem 3 shows that under the freedom of choice
assumption, quantum theory is at least as informative as any alternative theory. We
hence satisfy the conditions of Lemma 5 so find � = f (Z), for some function
f : Z �→ P . Furthermore, since Z cannot improve the predictions for any � = ψ,
any z in f −1(ψ) must give identical predictions. Hence, if f −1(ψ) contains more
than one element, this corresponds to a removable degeneracy in the parameters of
the alternative theory.

24Note that if Z takes values from a finite set, this is the same as saying that PX |AZ does not give
improved predictions over PX |A� with respect to P .
25Any degeneracy is removable in the sense that it has no operational effect, i.e., one can define
another theory without the degeneracy (but otherwise identical) without affecting the predictive
power.
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8.1 Related Work

An interpretation of the wave function as a subjective state of knowledge about some
underlying theory has also been ruled out by Pusey et al. [30] via a different argument
using different assumptions which we now summarize. They consider the preparation
of multiple quantum systems, with states �i , where each system is associated with
a particular parameter in the higher theory, Zi . Pusey et al. assume that the joint
distribution of these is product, i.e.

PZ1 Z2...�1�2... = PZ1�1 × PZ2�2 × . . . . (13)

Starting from this assumption, they show that there cannot exist two distinct states,
ψ and ψ′, such that for each i there exists a value of Zi = zi satisfying P�i |zi (ψ) > 0
and P�i |zi (ψ

′) > 0.
We note that the product nature of the joint distribution, Eq. (13), is related to free

choice of preparation. In particular, it implies

P�1 Z2...Z N �2...�N = P�1 × PZ2...Z N �2...�N .

If we take the causal order to be such that �i �� � j and �i �� Z j for j �= i (as would
be natural if we make space-like separated preparations), then this is equivalent to
saying that �1 can be chosen freely. (Note that (13) embodies more than just this.)

It was subsequently noted [31] that the separability assumption can be weakened,
in essence to the assumption that there exists a particular set of parameters in the
higher theory that are compatible with every product state composed of ψ and ψ′,
i.e., there exist values of the parameters, z1, . . . , zN , such that

P�1...�N |z1,...,zN (ψ(′), . . . ,ψ(′)) > 0,

where each ψ(′) is independently either ψ or ψ′ (so that the above represents 2N

conditions). This condition can be further weakened [32] such that the parameters of
the alternative theory for multiple systems need not be made up only of the individual
parts, but could be replaced or supplemented with global parameters (provided these
are also compatible with all the product state preparations).

An alternative argument against an interpretation of the quantum state as a state
of knowledge about an underlying reality can be found in [33].

We remark that some models in which the wave function is subjective have been
developed for restricted scenarios. For example, by modifying an earlier model by
Bell [3], Lewis et al. constructed a model for a single qubit in which the wave function
is subjective, and extended that model to arbitrary dimensions [34]. These models
are not in conflict with Claim 2 because they treat only single systems, and cannot
be extended to bipartite scenarios while allowing for free choice with respect to one
of the causal orders of Fig. 4. However, they do show that the same type of result
cannot be established when looking only at single systems.
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9 Discussion

The main statements described in this chapter about the completeness of quantum
theory are based on two assumptions. One of them is that quantum theory is correct,
and is implicit in the question of completeness. The other is that of free choice within
a natural causal order. It is worth commenting on the existence of alternative models
that are not compatible with this assumption.

A prominent example is the de Broglie-Bohm model [35, 36] which recreates
quantum correlations, providing higher explanation in the form of hidden particle
positions. These can be thought of as parameters of a higher theory that would allow
perfect predictions of the outcomes. However, introducing these parameters comes at
a price: it is incompatible with the freedom of choice assumption of our theorems. In
fact, for the bipartite setting discussed above, if Z includes the particle positions of the
de Broglie-Bohm model, we have some non-local behaviour, so that PX |abz = PX |az ,
for instance, does not hold. Thus, given Lemma 1, it follows that A and B cannot be
free choices with respect to any of the causal orders of Fig. 4.

There are at least two ways to avoid our conclusions. The first is to maintain
free choice, but assume that the alternative theory has a different causal order (in
particular, one in which either A �� Y or B �� X does not hold). The second is to
consider alternative theories without free choice, in which the measurement settings
A and B may depend on the additional parameters Z (sometimes, this view is argued
for by imagining that the additional parameters are permanently hidden).

One may take the view that the freedom of choice assumption, which demands
complete independence between the chosen settings and the other variables, is rela-
tively strong, and perhaps contemplate alternative theories where this assumption is
weakened. Some results in this direction can be found in [37], where a theorem sim-
ilar to Lemma 3 is established under a relaxed free choice assumption, and provided
there is no signalling at the level of the underlying theory.

Finally, we note that the result presented here has a generic application in quantum
cryptography. Standard security proofs for schemes such as quantum key distribution
[38, 39] are based on the assumption (usually not stated explicitly) that quantum
theory is complete. If this were not the case, it could be that a scheme is proven
secure within quantum theory, yet an adversary can break it by exploiting information
available in a higher theory. However, our non-extendibility theorem, Theorem 3,
implies that it is sufficient to make only the weaker assumption that quantum theory
is correct, since this implies completeness.

Acknowledgments We are grateful to Klaas Landsman, Gijs Leegwater and Robert Spekkens for
helpful comments on an earlier draft of this chapter.
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Appendix: Variational Distance

The following is a list of the main properties of the variational distance D(·, ·) used
in this work (note that we only use this measure for discrete distributions):

• D(·, ·) is a metric on the space of probability distributions.
• D(·, ·) is upper bounded by 1.
• The variational distance of marginal distributions cannot be larger than that of the

joint distributions: D(PX , Q X ) ≤ D(PXY , Q XY ) for any PXY and Q XY .
• It is convex: If {αi } satisfy αi ≥ 0 and

∑
i αi = 1, and {Pi

X } and {Qi
X } are sets of

distributions over X , then D(
∑

i αi Pi
X ,

∑
i αi Qi

X ) ≤ ∑
i αi D(Pi

X , Qi
X ).

• For a joint distribution PXY , the variational distance of the marginal distribu-
tions is bounded by the probability that the RVs X and Y have different values:
D(PX , PY ) ≤ P(X �= Y ).

The first four properties follow straightforwardly from the definition. The last is
proved in the following.

Lemma 6 Let X and Y be two discrete random variables jointly distributed accord-
ing to PXY . Then the variational distance between the marginal distributions PX and
PY is bounded by

D(PX , PY ) ≤ P(X �= Y ).

Proof Let P �=
XY := PXY |X �=Y be the joint distribution of X and Y conditioned on the

event that they are not equal. Similarly, define P=
XY := PXY |X=Y . We then have

PXY = p �= P �=
XY + (1 − p �=)P=

XY

where p �= := P(X �= Y ). By linearity, the marginals of these distributions satisfy
the same relation, i.e.,

PX = p �= P �=
X + (1 − p �=)P=

X

PY = p �= P �=
Y + (1 − p �=)P=

Y .

Hence, by convexity of the variational distance,

D(PX , PY ) ≤ p �= D(P �=
X , P �=

Y ) + (1 − p �=)D(P=
X , P=

Y )

≤ p �=,

where the last inequality follows because the variational distance is at most 1, and
D(P=

X , P=
Y ) = 0. �

Lemma 7 Let X be a random variable taking values in the set {0, 1, . . . , M − 1}
that is distributed according to PX , and P̂X be the uniform distribution over X. Then
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D(PX , P̂X ) ≤ M

4
D(PX⊕1, PX ) .

Proof Since D is convex, we have

D(PX , P̂X ) = D

(
1

M

M−1∑
i=0

PX ,
1

M

M−1∑
i=0

PX⊕i

)

≤ 1

M

M−1∑
i=0

D(PX , PX⊕i ).

Now, noting that D(PX⊕(i−1), PX⊕i ) = D(PX⊕1, PX ) for all i we have for i ≤ M/2

D(PX , PX⊕i ) ≤ D(PX , PX⊕(i−1)) + D(PX⊕(i−1), PX⊕i )

= D(PX , PX⊕(i−1)) + D(PX⊕1, PX ) ,

from which we obtain D(PX , PX⊕i ) ≤ i D(PX⊕1, PX ) by repeated application. A
similar analysis in the case i ≥ M/2 gives D(PX , PX⊕i ) ≤ (M − i)D(PX⊕1, PX ).
Thus,

M−1∑
i=0

D(PX , PX⊕i )

≤
⎛
⎝�M/2�∑

i=0

i +
M−1∑

i=�M/2�+1

(M − i)

⎞
⎠ D(PX⊕1, PX )

≤ M2

4
D(PX⊕1, PX ),

from which we obtain the claimed result. �

References

1. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality
be considered complete? Phys. Rev. 47, 777–780 (1935)

2. S. Kochen, E.P. Specker, The problem of hidden variables in quantum mechanics. J. Math.
Mech. 17, 59–87 (1967)

3. J.S. Bell, On the problem of hidden variables in quantum mechanics, in Speakable and Unspeak-
able in Quantum Mechanics, Chap. 1 (Cambridge University Press, Cambridge, 1987)

4. J.S. Bell, On the Einstein-Podolsky-Rosen paradox, in Speakable and Unspeakable in Quantum
Mechanics, chap. 2 (Cambridge University Press, Cambridge, 1987)

5. R. Colbeck, R. Renner, No extension of quantum theory can have improved predictive power.
Nat. Commun. 2, 411 (2011)

6. R. Colbeck, R. Renner, Is a system’s wave function in one-to-one correspondence with its
elements of reality? Phys. Rev. Lett. 108, 150402 (2012)



The Completeness of Quantum Theory for Predicting Measurement Outcomes 527

7. R. Colbeck, R. Renner, A system’s wave function is uniquely determined by its underlying
physical state. e-print (2013) arXiv:1312.7353

8. P.M. Pearle, Hidden-variable example based upon data rejection. Phys. Rev. D 2, 1418–1425
(1970)

9. S.L. Braunstein, C.M. Caves, Wringing out better Bell inequalities. Ann. Phys. 202, 22–56
(1990)

10. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-
variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

11. J.S. Bell, Free variables and local causality, in Speakable and Unspeakable in Quantum Mechan-
ics, chap. 12 (Cambridge University Press, Cambridge, 1987)

12. R. Colbeck, R. Renner, A short note on the concept of free choice (2013) arXiv:1302.4446
13. A.J. Leggett, Nonlocal hidden-variable theories and quantum mechanics: an incompatibility

theorem. Found. Phys. 33, 1469–1493 (2003)
14. J.S. Bell, La nouvelle cuisine, in Speakable and Unspeakable in Quantum Mechanics, 2nd edn

chap. 24 (Cambridge University Press, Cambridge, 2004),
15. C. Branciard et al., Testing quantum correlations versus single-particle properties within

Leggett’s model and beyond. Nat. Phys. 4, 681–685 (2008)
16. S. Gröblacher et al., An experimental test of non-local realism. Nature 446, 871–875 (2007)
17. R. Colbeck, R. Renner, Hidden variable models for quantum theory cannot have any local part.

Phys. Rev. Lett. 101, 050403 (2008)
18. L. Hardy, Quantum ontological excess baggage. Stud. Hist. Philos. Mod. Phys. 35, 267–276

(2004)
19. A. Montina, Exponential complexity and ontological theories of quantum mechanics. Phys.

Rev. A 77, 022104 (2008)
20. A. Montina, State-space dimensionality in short-memory hidden-variable theories. Phys. Rev.

A 83, 032107 (2011)
21. Z. Chen, A. Montina, Measurement contextuality is implied by macroscopic realism. Phys.

Rev. A 83, 042110 (2011)
22. R.W. Spekkens, Contextuality for preparations, transformations, and unsharp measurements.

Phys. Rev. A 71, 052108 (2005)
23. J. Barrett, L. Hardy, A. Kent, No signalling and quantum key distribution. Phys. Rev. Lett. 95,

010503 (2005)
24. J. Barrett, A. Kent, S. Pironio, Maximally non-local and monogamous quantum correlations.

Phys. Rev. Lett. 97, 170409 (2006)
25. W. van Dam, P. Hayden, Universal entanglement transformations without communication.

Phys. Rev. A 67, 060302(R) (2003)
26. C.M. Caves, C.A. Fuchs, R. Schack, Quantum probabilities as Bayesian probabilities. Phys.

Rev. A 65, 022305 (2002)
27. N. Harrigan, R.W. Spekkens, Einstein, incompleteness, and the epistemic view of quantum

states. Found. Phys. 40, 125–157 (2010)
28. R.W. Spekkens, Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A

75, 032110 (2007)
29. M.S. Leifer, R.W. Spekkens, Formulating quantum theory as a causally neutral theory of

Bayesian inference. e-print (2011) arXiv:1107.5849
30. M.F. Pusey, J. Barrett, T. Rudolph, On the reality of the quantum state. Nat. Phys. 8, 476–479

(2012)
31. M.J.W. Hall, Generalisations of the recent Pusey-Barrett-Rudolph theorem for statistical mod-

els of quantum phenomena. e-print (2011) arXiv:1111.6304
32. M. Schlosshauer, A. Fine, On a recent quantum no-go theorem. e-print (2012) arXiv:1203.4779
33. L. Hardy, Are quantum states real? e-print (2012) arXiv:1205.1439
34. P.G. Lewis, D. Jennings, J. Barrett, T. Rudolph, Distinct quantum states can be compatible with

a single state of reality. Phys. Rev. Lett. 109, 150404 (2012)
35. L. de Broglie, La, mécanique ondulatoire et la structure atomique de la matière et du rayon-

nement. J. de Physique, Serie VI VIII, 225–241, (1927)

http://arxiv.org/abs/1312.7353
http://arxiv.org/abs/1302.4446
http://arxiv.org/abs/1107.5849
http://arxiv.org/abs/1111.6304
http://arxiv.org/abs/1203.4779
http://arxiv.org/abs/1205.1439


528 R. Colbeck and R. Renner

36. D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables. I.
Phys. Rev. 85, 166–179 (1952)

37. R. Colbeck, R. Renner, Free randomness can be amplified. Nat. Phys. 8, 450–454 (2012)
38. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in

Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing,
(IEEE, New York, 1984), pp. 175–179

39. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663
(1991)


	Contents
	Introduction
	1 Characteristics of the New Wave of Quantum Foundations
	1.1 A Pragmatic Perspective
	1.2 Quantum Foundations in the Light of Quantum Information
	1.3 The Shift from Interpretation to Reconstruction
	1.4 The Operational Framework
	1.5 Foil Theories
	1.6 Goals

	2 Frameworks for Operational Theories
	2.1 The Framework of Convex Operational Theories
	2.2 The Category-Theoretic Framework
	2.3 The Framework of Operational-Probabilistic Theories
	2.4 The Device-Independent Framework

	3 Book Synopsis
	3.1 Foil Theories
	3.2 Axiomatizations
	3.3 Categories and Convex Sets
	3.4 Quantum Versus Super-Quantum Correlations

	4 Concluding Remarks
	References

	Part I Foil Theories
	Optimal Information Transfer  and Real-Vector-Space Quantum Theory
	1 Introduction
	2 Real-Vector-Space Quantum Theory
	3 Optimal Transfer of Information: The Two-Dimensional Case
	4 Optimal Transfer of Information: The d-Dimensional Case
	5 Optimal Information Transfer in Standard Quantum Mechanics?
	6 Conclusions
	References

	Almost Quantum Theory
	1 Introductory Remarks
	1.1 Motivation
	1.2 Generalization
	1.3 Scope of the Present Paper

	2 Modal Quantum Theory
	2.1 A Modal World
	2.2 Basic Axioms
	2.3 Entanglement

	3 States and Measurements
	3.1 Generalized States and Measurements in AQT
	3.2 Annihilators and Mixed States
	3.3 Mixed States in MQT
	3.4 Effects and Measurements
	3.5 Conditional States

	4 Open System Evolution
	4.1 Type M Maps
	4.2 Constructive Approach
	4.3 Axiomatic Characterization
	4.4 Representation Theorem for MQT

	5 Generalized Modal Theories
	5.1 Possibility Tables for Two Systems
	5.2 Popescu-Rohrlich Boxes
	5.3 Probabilistic Resolutions
	5.4 A Hierarchy of Modal Theories

	6 Concluding Remarks
	6.1 What MQT Has, and What It Does not Have
	6.2 Open Problems

	References

	Quasi-Quantization: Classical Statistical Theories with an Epistemic Restriction
	1 Introduction
	1.1 Epistricted Theories
	1.2 Explanatory Scope
	1.3 Interpretational Significance
	1.4 Significance for the Axiomatic Program

	2 Quadrature Epistricted Theories
	2.1 Classical Complementarity as an Epistemic Restriction
	2.2 Characterization of Quadrature Epistricted Theories
	2.3 Quadrature Epistricted Theory of Continuous Variables
	2.4 Quadrature Epistricted Theory of Trits
	2.5 Quadrature Epistricted Theory of Bits

	3 Quadrature Quantum Subtheories
	3.1 Quadrature Observables
	3.2 Characterization of Quadrature Quantum Subtheories

	4 Comparing Quantum Subtheories to Epistricted Theories
	4.1 Equivalence for Continuous and Odd-Prime Discrete Cases
	4.2 Inequivalence for Bits/Qubits

	References

	Part II Axiomatizations
	Information-Theoretic Postulates  for Quantum Theory
	1 Introduction
	2 What Do We Mean by ``Quantum Theory''?
	3 Generalized Probabilistic Theories
	3.1 States and Measurements
	3.2 Transformations
	3.3 Composite Systems
	3.4 Equivalent State Spaces

	4 The Postulates
	5 How Quantum Theory Follows from the Postulates
	5.1 Why Bits are Balls
	5.2 The Multiplicativity of Capacity
	5.3 How to Get Classical Probability Theory (CPT)
	5.4 The Curious 7-Dimensional Case
	5.5 Subspace Structure and 3-Dimensionality
	5.6 Quantum Theory on N-level Systems for N3

	6 Conclusions and Outlook
	References

	Quantum from Principles
	1 Introduction
	2 Operational-Probabilistic Theories
	2.1 Operational Structure
	2.2 Probabilistic Structure

	3 Background of the Quantum Reconstruction
	3.1 Standing Assumptions
	3.2 Basic Operational Tasks

	4 The Principles
	4.1 Causality
	4.2 Purity of Composition
	4.3 Local Tomography
	4.4 Perfect State Discrimination
	4.5 Ideal Compression
	4.6 Purification

	5 The Reconstruction of Quantum Theory
	5.1 Elementary Facts
	5.2 Correlation Structures
	5.3 Distinguishability Structures
	5.4 Interaction Between Correlation and Distinguishability Structures
	5.5 Qubit Structures
	5.6 The Density Matrix

	6 Conclusions
	References

	Reconstructing Quantum Theory
	1 Motivation
	2 A Personal History of Reconstruction
	3 The Circuit Framework
	3.1 Operations
	3.2 Wires
	3.3 Fragments
	3.4 Circuits
	3.5 Preparations, Results, and Transformations
	3.6 The First Background Assumption
	3.7 The State
	3.8 Using Fiducial Results to Define States
	3.9 Pure States
	3.10 Maximal Sets
	3.11 Two More Assumptions for Framework
	3.12 Permutation Transformations
	3.13 P1
	3.14 Informational Faces and Non-flat Sets of States
	3.15 Filters

	4 The Postulates
	4.1 Ruling Out the Classical Case
	4.2 P2
	4.3 P3
	4.4 P4'
	4.5 P5

	5 Outline of Reconstruction
	5.1 Reversible Transformation Between Pure States
	5.2 Arbitrary Filters are Possible
	5.3 Systems with Same are N Equivalent
	5.4 Proof that Ka=Nra
	5.5 All Points on Hypersphere Correspond to Pure States
	5.6 Getting the Qubit and Ka=Na2
	5.7 The Magic Operation

	6 Conclusions
	References

	The Classical Limit of a Physical Theory  and the Dimensionality of Space
	1 Introduction
	2 The Classical Limit of Quantum Theory  and Three-Dimensionality of Space
	3 Generalized Spins and Higher-Dimensional Space
	3.1 Single System
	3.2 Generalized Spin-Coherent States

	4 Dynamics and Macroscopic Limit
	4.1 The Composite System
	4.2 Dynamics in Macroscopic Limit
	4.3 Pairwise Interaction

	5 Covariant Interaction
	6 Main Proofs
	6.1 Hint to Representation Theory
	6.2 d Odd Case and dneq7
	6.3 d=7 Case
	6.4 d=4k Case (k=12,1,2,�)
	6.5 d=4k+2 Case (k=1,2,3,�)

	7 Going Beyond Three Dimensions
	8 Conclusions
	References

	Some Negative Remarks on Operational Approaches to Quantum Theory
	References

	Part III Categories and Convex Sets
	Generalised Compositional Theories  and Diagrammatic Reasoning
	1 Introduction to Quantum Picturalism
	1.1 Theories and Diagrams
	1.2 Rewrites and Models
	1.3 The Dagger

	2 Pure State Quantum Mechanics
	2.1 The Elements of an Operational Theory
	2.2 Duals
	2.3 Observable Structures
	2.4 Phase Group for an Observable Structure
	2.5 Two Toy Models

	3 Complementarity and Strong Complementarity
	3.1 Strongly Complementary Observables
	3.2 Strong Complementarity and Phase Groups
	3.3 Classification of Strong Complementarity in FHilb

	4 Mixed States, Measurements, and ``Abstract Probabilities''
	4.1 Measurements and Born Vectors

	5 Example: Non-locality of QM
	5.1 A Local Hidden Variable Model
	5.2 Encoding the GHZ State and Computing Correlations, Diagrammatically
	5.3 Deriving the Contradiction
	5.4 GHZ/Mermin Assumptions and the Necessity of Strong Complementarity

	6 Summary and Further Reading
	References

	Post-Classical Probability Theory
	1 Introduction
	2 Elementary Probability Theory, Classical and Otherwise
	2.1 Test Spaces and Probabilistic Models
	2.2 Further Examples
	2.3 Models Linearized
	2.4 Processes and Categories

	3 Composition and Entanglement
	3.1 Composites of Models
	3.2 Non-Signaling Composites and Entanglement
	3.3 Quantum Composites
	3.4 Maximal and Minimal Tensor Products
	3.5 Monoidal Probabilistic Theories

	4 Post-Classical Information Processing
	4.1 Cloning and Broadcasting
	4.2 Remote Evaluation
	4.3 Ensemble Steering
	4.4 Entropy and Information Causality
	4.5 Other Developments

	5 Characterizing Quantum Theory
	5.1 Homogeneity and Self-Duality
	5.2 Motivating Homogeneity and Self-Duality
	5.3 HSD and Jordan Models
	5.4 Composites of Jordan Models

	6 Conclusion
	References

	Part IV Quantum Versus Super-QuantumCorrelations
	Information Causality
	1 Certain Things Should Not Happen
	2 The Context
	2.1 Defining Quantum Physics
	2.2 No-Signaling Is Not Enough
	2.3 Mathematical Framework

	3 Information Causality: The Task
	3.1 The Power of the PR-Box
	3.2 Random Access Codes
	3.3 Task and Statement of Information Causality
	3.4 The Reason for the Name

	4 Mathematics
	4.1 The Figure of Merit
	4.2 Information Causality Holds for Quantum  No-Signaling Resources
	4.3 Information-Theoretical Derivation  of the Tsirelson Bound
	4.4 Entropic Approach

	5 (Un?)expected Complexity
	5.1 Non-isotropic Correlations
	5.2 Comparison with ``Macroscopic Locality''
	5.3 IC and Multi-partite Correlations

	6 Conclusion
	References

	Macroscopic Locality
	1 Introduction
	2 Macroscopic Locality
	2.1 Some Preliminary Thoughts
	2.2 The Macroscopic Scenario
	2.3 Characterization of Macroscopic Locality
	2.4 The Set of Correlations Compatible with ML

	3 Quantum Mechanics Satisfies Macroscopic Locality
	4 Predictions of ML
	4.1 The Bipartite Case
	4.2 The Tripartite Case

	5 Conclusion
	References

	Guess Your Neighbour's Input:  No Quantum Advantage but an Advantage  for Quantum Theory
	1 Introduction
	2 Guess Your Neighbour's Input
	2.1 Background: Classical, Quantum and No-Signalling Correlations
	2.2 The GYNI Game
	2.3 No Quantum Advantage
	2.4 No-Signalling Advantage

	3 Application 1: Gleason's Theorem for Multipartite Systems
	3.1 Gleason Correlations

	4 Application II: Quantum Correlations and Information Principles
	4.1 Time-Ordered-Bilocal Correlations and GYNI

	5 Generalization of GYNI: Bell Inequalities Without Quantum Violation and Unextendible Product Bases
	5.1 Unextendible Product Bases
	5.2 Constructing Bell Inequalities with No Quantum  Violation from Unextendible Product Bases
	5.3 Further Generalizations

	6 Conclusions
	References

	The Completeness of Quantum Theory  for Predicting Measurement Outcomes
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Distance Between Probability Distributions
	2.3 Measuring Correlations

	3 Quantum and Alternative Theories
	3.1 Predictions of Quantum Theory
	3.2 Predictions of Alternative Theories
	3.3 Compatibility of Predictions
	3.4 Comparing the Accuracy of Predictions

	4 Freedom of Choice
	4.1 Causal Order
	4.2 Free Random Variables

	5 Constraints on Theories Compatible with Quantum Theory
	5.1 Bipartite Setup
	5.2 Local Deterministic Theories
	5.3 Stochastic Local Causal Theories
	5.4 Leggett-Type Theories
	5.5 Other Constraints

	6 The Non-extendibility Theorem
	7 Proof of Theorem 3
	7.1 Part I: No-signalling From Free Choice
	7.2 Part II: Non-extendibility for Measurements on Maximally Entangled States
	7.3 Part III: Generalization to Arbitrary Measurements

	8 Alternative Theories Are Equivalent to Quantum Theory
	8.1 Related Work

	9 Discussion
	References




