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Summary

Plants use light as their main source of energy and to gather information about their
surroundings. The light environment is monitored through an extensive set of photoreceptors
and largely dictates plant development through induction of processes such as germination
and flowering, entrainment of the circadian clock and photomorphogenic responses. Plants
display remarkable phenotypic plasticity upon perception of changes in the light, ranging
from seedling de-etiolation to shade avoidance and phototropic responses in competition for
light. Here, we describe photomorphogenic responses and their underlying mechanisms such
as they occur in a leaf canopy. This shade avoidance review will largely focus on the model
plant species Arabidopsis thaliana as the underlying mechanisms controlling shade avoid-
ance are particularly well elucidated in this species.
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I. Competition for Light: Shade
Tolerance and Shade Avoidance

Plants growing at high density are at risk of
becoming shaded and have to compete for
light to prevent losing access to their main
source of energy. The consequence of
becoming overgrown is clearly demonstrated
by the life style of several (sub)tropical spe-
cies of Ficus. These “strangler” figs can
avoid germination at the dark forest floor
by starting their life as an epiphyte, which
then grows its roots downward and envelops
the host tree’s stem (Athreya 1999). When
these plants reach the light at the top of the
canopy they establish a large crown shading
the host tree, which eventually dies from lack
of light. When plants are growing in dense
canopies, size inequalities between individ-
ual plants increase with increasing density
(Weiner 1985). This shows that a small ini-
tial difference in size can have a huge com-
petitive advantage leading to suppression of
smaller individuals, whose light capture will
be diminished as their taller neighbours start
to grow. To conserve energy and enhance
fitness in adverse conditions, plants can
employ different types of stress responses.
Stresses that cannot be outgrown might
require a quiescent response, while other
stresses can be overcome by an escape strat-
egy (Voesenek and Pierik 2008). In competi-
tion for light, both strategies can be found.

Plants that are adapted to completing their
life cycle under shade conditions are consid-
ered to be shade tolerant. For example, plants
living in the forest understory will not be
able to outgrow the tall neighbouring trees
and a shade tolerance strategy is therefore
more adaptive. A photosynthetically optimal
strategy in low light environments is to form

leaves with a high specific leaf area (SLA:
leaf area / leaf dry weight). A high SLA
indicates leaves with a relatively large sur-
face area per unit invested dry weight and
usually represents relatively thin leaves. This
is highly suitable under low light conditions
since these leaves will be able to intercept
the majority of photons available and have
low respiration per unit leaf area due to fewer
cell layers. Such acclimated leaves, there-
fore, have a low light compensation of
photosynthesis. These leaf morphological
acclimations, combined with photosynthetic
adjustments such as reduced chlorophyll a / b
ratio’s and increased photosystem (PS)II:I
ratio’s (Meils and Harvey 1981) constitute
the so-called carbon gain hypothesis of
shade tolerance (reviewed in Givnish 1988;
Valladares and Niinemets 2008). Although
these leaf traits optimize carbon acquisition
in low light, leaves with a high SLA tend to
be more prone to mechanical damage and
herbivory. In low light conditions, however,
plants cannot always afford to lose biomass
quite so easily. Therefore, it is observed that
very shade tolerant species in deep forest
shade produce well-protected, tough and rel-
atively thick leaves rather than the photosyn-
thetically optimal thin leaves (Kitajima and
Poorter 2010; Poorter and Bongers 2006).
This constrained SLA development is typical
of true shade tolerant species. Many shade
avoiding species show an even stronger
increase of SLA in response to shade to
optimize light harvesting but would not be
shade tolerant because of a relatively short
leaf longevity. It has been proposed that
shade tolerant species are therefore less plas-
tic for various morphological traits than are
shade avoiding species and invest more in
leaf longevity. This hypothesis has been
coined the stress tolerance hypothesis of
shade tolerance (Kitajima 1994); reviewed in
(Valladares and Niinemets 2008).

Another category of plants displays an
array of escape responses that serve to ensure
light capture in a competitive light environ-
ment and collectively are called the shade
avoidance syndrome (SAS) (Casal 2012;
Franklin 2008; Vandenbussche et al. 2005).

Abbreviations: ABA – Abscisic acid; B – Blue light;
BR – Brassinosteroid; Cry – Cryptochrome; ET –
Ethylene; FR – Far-red light; GA – Gibberellin;
PAR – Photosynthetically Active Radiation; Phot –
Phototropin; Phy – Phytochrome; PIF – Phyto-
chrome-interacting Factor; R – Red light; R:FR –
Red: Far-red light ratio; UV – Ultraviolet light;
VOC – Volatile Organic Compound
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These include changes in morphology to
position the leaves in a more competitive
position through increased leaf angles
(hyponasty), elongation of hypocotyls,
internodes, petioles and stems (Fig. 6.1),
reduced shoot branching due to reduced
bud outgrowth (Finlayson et al. 2010;
Kebrom et al. 2006), and adjustment of the
photosynthetic apparatus. The effect of
shade signals on leaf surface area varies
between species and both growth stimulation
and inhibition have been reported (Bittebiere
et al. 2012; Carabelli et al. 2007; Chitwood
et al. 2012; Liu et al. 2012). As an ultimate
escape response, shade also induces
accelerated flowering. Shade avoidance
responses are influenced by environmental
conditions. Shade-induced flowering and
changes in leaf architecture are highly
temperature-dependent (Franklin 2009;
Halliday et al. 2003) and the effect of light
quality on branching is dependent on the
light intensity (Su et al. 2011).

Shade avoidance responses have great
impact on patterns and species distribution
of natural plant communities and plant bio-
diversity (Goldberg and Barton 1992;
Hautier et al. 2009) and can have a major
impact on agricultural yield. In homoge-
neous crop fields shade avoidance negatively
affects yield because resources are invested
in non-harvestable organs such as stems at
the expense of crops. Furthermore, the
reduced branching (tillering) in cereals,
strongly affects the yield potential, while
stem elongation and apical dominance may
lead to crop lodging. Expression of shade
avoidance responses reduces plant fitness in
the absence of competition, but has great
adaptive value when plants have to compete
for light (Ballaré et al. 1988; Casal and
Smith 1989; Casal et al. 1994; Pierik et al.
2003; Schmitt et al. 1995). Thus, to avoid
unnecessary fitness costs on one hand and
small size differences that may cause great
competitive imbalance on the other, it is
essential that plants adjust their growth to
neighbours exactly at the right time.

II. Perception of Neighbour-Derived
Signals

To perceive the presence of proximate
neighbours plants make use of the qualitative
changes in the spectral composition of the
light that occur in the transmitted and
reflected light in a canopy (see Chap. 1,
Goudriaan 2016). Red (R) and blue (B)
light are absorbed for photosynthesis and
thus depleted from the transmitted light,
whereas far-red (FR) wavelengths are
reflected by green issues. The different light
components are signalled through a variety
of photoreceptors, notably phytochromes,
cryptochromes and phototropins (Fig. 6.2).
Besides these plant-specific light signals
plants may also perceive nearby competitors
through touching neighbouring leaves, accu-
mulation of the plant hormone ethylene and
possibly other volatile components.

Fig. 6.1. Shade avoidance in low R:FR-exposed
(right) sunflower (Helianthus annuus) versus control
light conditions (left). Three weeks old plants that have
been exposed to high (1.8) or low (0.2) R:FR light
conditions from 4 day after sowing onwards. Plants
were grown at 180 μmol m�2 s�1 PAR (16 h light,
8 h dark), 21 �C and 70 % RH
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A. Low R:FR Perception and Signal
Transduction

As R light (wavelength 600–700 nm) is
absorbed by plant tissues while FR
(700–800 nm) light is mostly reflected, the
ratio between R and FR (R:FR) decreases in
the vertically incoming light inside a canopy
(Ballaré et al. 1987b). Since it is reflected by
plants, a FR signal can lower the R:FR even
before actual shading takes place and thus
play an important role as an early neighbour
detection signal. A low R:FR in high PAR
background was indeed shown to induce
shade avoidance responses in plants grown
without neighbours (Morgan and Smith
1978; Morgan et al. 1980). Final proof that
plants can detect remote vegetation through
reflected FR radiation came from plants that
failed to respond to neighbours with incre-
ased stem elongation at an early stage of
competition when they were blinded to FR
by a CuSO4 filter around individual inter-
nodes (Ballaré et al. 1990).

The R:FR is perceived by the phyto-
chrome photoreceptors, which exist in two
photo-convertible conformation states.
Photoconversion of phytochromes is brought
about by cis-trans isomerisation of the
associated tetrapyrrole bilin chromophore
called the phytochromobilin (Rockwell
et al. 2006). The inactive Pr form absorbs R
light and has an absorption peak at 665 nm,

whereas the active Pfr form absorbs FR light
with an absorption peak at 730 nm (Smith
2000; Fig. 6.2). PhyB mutants in various
plant species show a constitutive shade
avoidance phenotype (Devlin et al. 1992;
Reed et al. 1993; Somers et al. 1991),
indicating that this is the main regulating
photoreceptor in low R:FR signalling. The
phytochrome B photoequilibrium thus
reflects the R:FR and acts as a sensor for
qualitative changes in the red spectrum of
the light environment (Holmes and Smith
1975; Smith and Holmes 1977). The Pfr
form of phytochrome A is rapidly degraded
(Clough et al. 1997; Hennig et al. 1999),
making it mostly active in FR. In low R:FR,
phyA can inhibit shade-induced elongation
growth (Fairchild et al. 2000; Johnson
et al. 1994; Reed et al. 1994; Rousseaux
et al. 1997).

Upon activation of phytochrome by R
light the Pfr form translocates from the cyto-
sol, where it resides in its inactive Pr form, to
the nucleus (Kircher et al. 1999; Sakamoto
and Nagatani 1996; Yamaguchi et al. 1999),
where it is required for regulation of growth
inhibition (Huq et al. 2003). In the nucleus,
Pfr interacts with several members of
the BASIC HELIX-LOOP-HELIX (bHLH)
family of transcription factors called PIF or
PIL for phytochrome interacting factor
(�like) (Duek and Fankhauser 2005). Of
these, the positive regulators of elongation

Fig. 6.2. Solar spectrum and the wavebands at which the three major plant photoreceptor classes (phytochromes,
cryptochromes and phototropins) display their activities
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growth PIF4, PIF5 and PIF7 play an impor-
tant role in shade avoidance signalling, as
shown by attenuated hypocotyl elongation
of pif mutants in low R:FR (Li et al. 2012;
Lorrain et al. 2008). PIF4 and PIF5 are
targeted for proteasome-mediated degrada-
tion in red light, which is dependent on
their active phytochrome binding (APB)
domain (Lorrain et al. 2008). This suggests
that in low R:FR conditions inactivation
of phytochrome releases phytochrome-
mediated degradation of these PIFs,
allowing for their interaction with down-
stream components of growth regulation.
PIF7 action on the other hand seems to
involve its de-phosporylation upon detection
of shade (Li et al. 2012).

Perception of low R:FR leads to rapid
induction of gene expression (Salter et al.
2003; Sessa et al. 2005). Among the first
identified genes regulated by changes in R:
FR was the homeobox transcription factor
ATHB2 (Carabelli et al. 1993, 1996), which
was later confirmed to be important for
expression of a shade avoidance phenotype
(Steindler et al. 1999). Another well-
characterised shade avoidance marker gene
is the bHLH transcription factor PIL1,
whose expression is upregulated within
minutes of exposure to low R:FR (Salter
et al. 2003). The expression of negative
regulators of growth such as the bHLH
transcription factors PHY RAPILY
REGULATED (PAR)1 and 2, and LONG
HYPOCOTYL IN FR (HFR)1 are also
induced by a low R:FR signal (Roig-
Villanova et al. 2007; Sessa et al. 2005).
HFR1 was shown to form heterodimers
with PIF4 and PIF5, thereby preventing
their DNA-binding capacity and limiting
the PIF-modulated growth response
(Hornitschek et al. 2009). Further down-
stream, low R:FR-induced elongation
growth through cell expansion is enabled
by regulation of cell wall modifying
proteins, which involve several members
of the xyloglucan endotransglucosylase/
hydrolase (XTH) family in Arabidopsis
(Sasidharan et al. 2010).

B. Blue Light Perception and Signalling

Like R light, B light (length 400–500 nm)
is absorbed for photosynthesis and thus
reduced in the light environment inside a
canopy. Although reduction of B fluence
rates cannot be detected as early as an
increase in reflected FR it can induce shade
avoidance responses, suggesting that low B
serves as a light signal at later stages of
competition. Depletion of B light was first
shown to affect growth responses in Datura
feroxmonocultures, which showed enhanced
internode elongation when blue light was
filtered out of the light spectrum (Ballaré
et al. 1991). Internode elongation in response
to attenuated B has furthermore been shown
in the herbaceous perennial Stellaria
longipes (Sasidharan et al. 2008). Cultivated
tobacco (Nicotiana tabacum) displays
enhanced elongation as well as hyponasty
in response to a reduced B environment
obtained through low pressure sodium light
(Pierik et al. 2004). In Arabidopsis seedlings,
low B induces strong hypocotyl elongation
(Djakovic-Petrovic et al. 2007; Keuskamp
et al. 2011; Pierik et al. 2009). In adult
Arabidopsis plants, low B can induce
hyponasty and enhanced petiole elongation
(Keller et al. 2011), although the latter
response is not always apparent (Djakovic-
Petrovic et al. 2007; Pierik et al. 2009) and
may be dependent on total PAR and duration
of treatment.

UV-A/blue light (320–500 nm) is per-
ceived through distinct types of
photoreceptors involved in the regulation of
different responses; the cryptochromes, the
phototropins and the zeitlupe family of
photoreceptors. Low B-induced shade avoid-
ance responses in adult Arabidopsis plants
have been reported to be dependent on the
blue light photoreceptor cryptochrome (cry)
1 (Keller et al. 2011) and hypocotyl elonga-
tion in response to reduced B light was
shown to be regulated by both cry1 and
cry2 (Ahmad et al. 1995; Lin et al. 1998;
Pierik et al. 2009). The phototropic response,
which is especially important for growth
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towards canopy-gaps and thus optimisation
of light capture in high density (Ballaré
et al. 1987a), is regulated through the
phototropins.

Cryptochrome (cry)1 and 2, like the
phytochromes, play a role in photoperiodic
flowering, entrainment of the circadian clock
and in photomorphogenesis through regulation
of stem elongation and leaf expansion (Lin and
Shalitin 2003; Losi and Gartner 2012). Cry1
mutants have elongated hypocotyls in both
high and low fluence rates of B light. Cry2
mutants only show this phenotype under low
B fluence rates due to rapid blue-light induced
degradation of cry2, which is therefore though
to act only in low B conditions (Lin et al.
1998). The cryptochromes are localised in
the nucleus, where they are best known to
directly interact with the E3 ubiquitin ligase
CONSTITUTIVE PHOTOMORPHOGENIC
(COP)1 in the regulation of light-induced inhi-
bition of hypocotyl growth called photomor-
phogenesis (Wang et al. 2001; Yang et al.
2001). In darkness, COP1 interacts with the
positive regulator of photomorphogenesis
HY5 (long hypocotyl 5), thereby targeting
this basic leucine zipper (bZIP) transcription
factor for proteasome-mediated degradation
(Ang et al. 1998; Osterlund et al. 2000). In
light, COP1 translocates to the cytosol, thereby
rescuing HY5 from degradation and allowing
it to inhibit growth (Osterlund et al. 2000). The
light-induced nuclear depletion of COP1 is
believed to be established through its interac-
tion with cry, which undergoes structural
changes upon light perception (Chen et al.
2004). Although phyA and phyB have also
been found to directly bind to COP1 (Seo
et al. 2004; Yang et al. 2001), it is not known
how this affects COP1 binding activity to
HY5. COP1 interaction may however be a
point of convergence between the phyto-
chrome and cryptochrome signalling
pathways. A second point of convergence
might be the earlier mentioned PIF proteins
since PIFs are also required for low blue-
mediated petiole elongation (Keller et al.
2011). It remains to be studied if interaction
between cryptochromes and PIFs indeed
occur.

Another type of blue light receptors are
the phototropins (phot)1 and 2. Phototropins
are involved in phototropism (directional
growth towards a unilateral light source),
stomatal opening and chloroplast movement;
responses that serve to optimise photosyn-
thesis upon changes in light intensity (Chris-
tie 2007). Phot1 mutants do not show
phototropism in low B fluence rates and
both phot1 and phot2 show a normal photo-
tropic response in higher light intensities
(Liscum and Briggs 1995; Sakai et al.
2000, 2001). Phototropism however is
completely abolished in the phot1phot2 dou-
ble mutant (Sakai et al. 2001), which implies
that phot1 is important for low fluence rates
while both phototropins act redundantly at
high fluence rates. The phototropins are
localised at the plasmamembrane (Kong
et al. 2006; Sakamoto and Briggs 2002),
where they might regulate the distribution
of auxin efflux carriers. Phot1 was found to
interact with NONPHOTOTROPIC HYPO-
COTYL (NPH)3, by which a lateral auxin
gradient is established to allow for growth on
the shaded side of the stem (Haga et al. 2005;
Motchoulski and Liscum 1999). NPH3-like
proteins were shown to regulate directional
auxin transport through PIN-FORMED
(PIN) auxin efflux carriers (Furutani et al.
2011). In relation to this, the auxin efflux
carriers PIN1 and PIN3 have been shown to
be required for a proper phototropic response
(Blakeslee et al. 2004; Ding et al. 2011;
Friml et al. 2002). Upon illumination, PIN3
trafficking to all cell sides by the PINOID
(PID) kinase is repressed and unidirectional
trafficking is brought about by the GNOM
ARF GTPase GUANINE NUCLEOTIDE
EXCHANGE FACTOR (GEF) (Ding et al.
2011). This directional targeting of PIN3
is likely to induce the differential auxin
concentration between the illuminated and
shaded side, leading to bending of hypocotyls
and stems. Furthermore, the auxin-regulated
transcription factors NPH4/ARF7 and
MASSUGU (MSG)2/IAA19 have been
involved in phototropism (Stowe-Evans
et al. 1998; Tatematsu et al. 2004),
emphasizing the importance of auxin
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signalling in this response. Other signalling
components implemented in the regulation of
phototropic responses are PHYTOCHROME
KINASE SUBSTRATE (PKS)1 and
2 (Boccalandro et al. 2008; de Carbonnel
et al. 2010; Lariguet et al. 2006). PKS1 was
found to bind both phot1 andNPH3 (Lariguet
et al. 2006), and might thus play an essential
role in phototropin signal transduction. As
PKSs also interact with phytochromes and
since phyA and phyB have been shown to
be required for red-light-induced enhance-
ment of phototropism (Janoudi et al. 1997;
Parks et al. 1996; Whippo and Hangarter
2004), they might cross-talk between the
two different photoreceptor pathways.

More recently, a novel class of blue light
photoreceptors has been described. The
zeitlupe family of photoreceptors consists
of three members (ZTL, FKF1, and LKP2)
with a photosensory domain similar to that
of the phototropins (Christie 2007; Demarsy
and Fankhauser 2009). So far, this type of
photoreceptor has been described to play a
role in regulation of photoperiodic flowering
and the circadian clock, although ZTL might
also be involved in photomorphogenesis
(Kiba et al. 2007).

C. Other Light Signals: Low PAR and
Enriched Green Light

In a closing canopy total light intensity at the
lower levels of the vegetation will decrease,
even when the leaves might still be in full
sunlight (Ballaré et al. 1991). Perception of
drastically reduced light intensity induces a
hyponastic response and petiole elongation
in Arabidopsis even when the spectral com-
position of the light is similar to sunlight,
which is dependent on both phyA and phyB,
cry1 and cry2 and photosynthesis-derived
signals (Kozuka et al. 2005; Millenaar et al.
2009). Although spectral-neutral reduction
of photosynthetically active radiation (PAR)
also enhanced stem elongation in tobacco
(Pierik et al. 2004) it does not affect inter-
node lengths in Datura ferox monocultures
(Ballaré et al. 1991), indicating that the role
for reduced PAR may be species-specific.

Like FR, green light is reflected by plant
tissues containing chlorophyll, making them
appear green to the human eye. In a canopy,
this results in enrichment of green
wavelengths in the light environment.
Green light irradiation indeed increased
hypocotyl elongation in Arabidopsis
seedlings, and addition of green light to con-
stant red and blue light induced the shade
avoidance phenotype of increased leaf
angles and enhanced petiole elongation in
adult Arabidopsis plants (Folta 2004; Zhang
et al. 2011). Cryptochromes have been
shown to have a green-sensing state with
biological activity (Banerjee et al. 2007;
Bouly et al. 2007), but other modes of
green light perception may exist.

D. Light-Independent Signals

Various plant species are known to have
increased emissions of the volatile plant hor-
mone ethylene (ET) upon perception of low
R:FR (Finlayson et al. 1999; reviewed in
Kegge and Pierik 2010). ET is known to be
the main regulator of hyponasty and
subsequent petiole elongation in de semi-
aquatic species Rumex palustris upon sub-
mergence stress (Peeters et al. 2002;
Voesenek et al. 2003), a response that much
resembles the growth adjustments that occur
upon shading (Pierik et al. 2011). Indeed, ET
has been found to accumulate inside the
atmosphere of tobacco canopies to a level
in which it induces shade avoidance-like
growth responses in single-grown plants
(Pierik et al. 2004). ET can induce elevated
leaf angles even at very low concentrations
(Polko et al. 2012) and it was mainly due to a
retarded hyponastic response that
ET-insensitive tobacco plants were
outcompeted by wild-type plants when
grown in high density (Pierik et al. 2003,
2004). These results show that ET can be
an important player in neighbour detection.

In Arabidopsis, ethylene is perceived
through a family of five redundant receptors
(ETR1-2, ERS1-2 and EIN4) divided into
two subfamilies based on structural
similarities (Bleecker 1999; Chang and
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Stadler 2001). All five receptors interact
with the Raf-like kinase CONSTITUTIVE
TRIPLE RESPONSE (CTR)1 upon binding
of ethylene, thereby releasing its inhibition
of EIN2 and other downstream signalling
components in the ethylene pathway (Hall
et al. 2007). Recent progress in the field of
plant volatile signalling has shown that
emissions of plant-produced volatile organic
compounds (VOCs) are light-dependent and
are affected by competition (reviewed in
Kegge and Pierik 2010). Recently, it was
shown that the composition of the VOC
blend emitted by Arabidopsis plants is
affected by R:FR signalling, leading to
altered multitrophic interactions (Kegge
et al. 2013). Although not much is known
about the perception of the different biogenic
volatile organic compounds, it is possible
that they are used as a neighbour detection
signal in competition for light.

The earliest response to neighbours in
Arabidopsis, hyponasty, was found to be
induced through touching leaf tips (de Wit
et al. 2012). This touch-induced hyponasty is
driven by an unidentified touch mechanism
and occurs prior to a reduction in the R:FR.
In fact, hyponasty was shown to be required
to create a low R:FR in an Arabidopsis can-
opy (de Wit et al. 2012). Touch thus appears
to be an especially important detection sig-
nal in rosette species, but may also play a
role at later stages of competition for light in
stem-forming species.

III. Hormonal Regulation of Shade
Avoidance

Besides ethylene, several other hormones
play a role in the shade avoidance response.
Gibberellin (GA) is a key regulator of many
growth processes in plants and was shown to
be essential for low R:FR-induced elonga-
tion. Auxin is involved in phototropism as
described previously, but also plays an
important role in phytochrome-mediated
shade avoidance responses. More recently
brassinosteroids (BR), which have partly
overlapping functions with auxin, have been

implicated in low R:FR signalling as well.
Besides their linear pathways these
hormones are known to interact, which
adds another level of complexity to under-
standing their actions. Here, it is described
how these hormones are involved in regula-
tion of the shade avoidance response.

A. Gibberellin

In the 1990s, it was shown that the constitu-
tively elongated phenotype of phyB mutants
was related to increased sensitivity to GA
(Lopez-Juez et al. 1995; Reed et al. 1996)
and could be suppressed by GA deficiency
and insensitivity (Peng and Harberd 1997).
GA deficient and insensitive mutants have
indeed been found to show reduced low R:
FR-induced responses (Djakovic-Petrovic
et al. 2007; Pigliucci and Schmitt 2004). In
an unbiased microarray approach,
GA-related genes were found to be
upregulated in response to low R:FR and in
the cry1 mutant (Devlin et al. 2003; Folta
et al. 2003). Furthermore, GA20ox2 expres-
sion is increased by an end-of-day (EOD)
pulse of FR light while mutants with
impaired GA20ox2 expression showed a
reduced elongation response to EOD-FR
(Hisamatsu et al. 2005), suggesting that the
shade avoidance response requires de-novo
synthesis of GA.

Binding of GA to its receptor GID1 (GA
insensitive dwarf 1; a-c in Arabidopsis) leads
to interaction between the receptor and the
nuclear growth-inhibiting DELLA proteins,
which are subsequently targeted for
proteasome-mediated degradation through
the SCFsly1 complex (Dill et al. 2004; Fu
et al. 2004; Nakajima et al. 2006; Ueguchi-
Tanaka et al. 2005). Degradation of DELLAs
relieves their suppression of genes sensitive
to GA, thereby allowing for GA-induced
growth responses. The discovery of DELLAs
allowed for further understanding of the role
GA has in shade avoidance. Abundance of
the DELLA protein RGA, which has been
implicated in GA-induced vegetative growth
(Fleet and Sun 2005), was shown to be
strongly reduced in petioles in response to
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neighbours, low R:FR and low B (Djakovic-
Petrovic et al. 2007). RGA was found to
interact with PIF3 and PIF4, thereby
preventing their transcriptional activity (De
Lucas et al. 2008; Feng et al. 2008). Besides
nuclear depletion of active phytochrome
upon perception of low R:FR, GA-regulated
degradation of DELLAs thus contributes to
the release of PIF suppression to allow for
growth during the shade avoidance response.

B. Auxin and BR

Many auxin-regulated genes were found to
be regulated during shade avoidance-induc-
ing conditions (Devlin et al. 2003; Folta et al.
2003; Roig-Villanova et al. 2007),
suggesting the importance of this hormone
for the response. Expression of auxin-
inducible genes is, like for the GA pathway,
dependent on relieved suppression of tran-
scriptional inhibitors (Aux/IAAs) that are
targeted for 26S proteasome-mediated deg-
radation when auxin binds to its receptor (the
F-box protein TRANSPORT INHBITOR
RESPONSE (TIR)1). Auxin binding to the
SCFTIR1 complex thus stimulates the
removal of Aux/IAAs from the ARF (auxin
response family) transcription factors that
are already bound to the promoter of auxin-
responsive genes, allowing for their expres-
sion (Benjamins and Scheres 2008; Teale
et al. 2006).

Auxin biosynthesis was shown to be rap-
idly induced by low R:FR through the TRYP-
TOPHAN AMINOTRANSFERASE OF
ARABIDOPSIS (TAA)1 and YUCCA-
dependent auxin biosynthetic pathway (Li
et al. 2012; Stepanova et al. 2008; Tao et al.
2008; Won et al. 2011). This increase of
auxin production proved to be essential for
full induction of a shade avoidance response,
as was shown by two allelic mutants for the
TAA1 gene; sav3-1 and wei8-1 (Keuskamp
et al. 2010; Moreno et al. 2009; Tao et al.
2008). Apart from enhanced auxin biosyn-
thesis, lateral redistribution of auxin was
proposed to be important for a shade avoid-
ance phenotype (Morelli and Ruberti 2000).
Indeed, the auxin efflux carriers PIN3 and

PIN7 were found to be upregulated in
low R:FR (Devlin et al. 2003). Besides its
previously described role in phototropism
(Friml et al. 2002), auxin redistribution
through PIN3 was reported to be required
for shade avoidance responses to both
neighbours and low R:FR (Keuskamp et al.
2010).

A microarray study on leaves of EOD-FR-
treated plants revealed a strong overrepre-
sentation of both auxin and BR-related
genes (Kozuka et al. 2010). BR-regulated
gene expression is brought about when
active BR (brassinolide) binds to the
leucine-rich repeat receptor-like kinase
BRASSINOSTEROID INSENSITIVE
(BRI)1, followed by a number of (de)phos-
phorylation events leading to accumulation
and DNA-binding of the transcription factors
BES1 (BRI1 EMS SUPPRESSOR1) and
BZR1 (BRASSINAZOLE RESISTANT1)
(Clouse 2011; Kim and Wang 2010). The
same study on EOD-FR reported a reduced
petiole elongation response in the auxin-
deficient mutant doc1 and the BR-deficient
mutant rot3 (Kozuka et al. 2010). Another
study on low B-induced hypocotyl elonga-
tion showed that this response requires both
auxin and BR action (Keuskamp et al. 2011),
further confirming a role for BR in shade
avoidance.

C. Hormone Physiological Control of Shoot
Branching

The above described modes of molecular
regulation have been researched for low R:
FR-mediated shoot elongation responses.
Very little research has been devoted to low
R:FR-induced inhibition of shoot branching
and tillering. Therefore, it remains mostly
unknown if the above-mentioned regulatory
network also controls signalling toward
branching control. A few recent studies
have identified Abscisic acid (ABA), auxin
and strigolactones as candidate regulators of
phytochrome control of shoot branching
(Finlayson et al. 2010; Reddy et al. 2013).
The latter two hormones are also implied in
phytochrome control of shoot elongation,
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which may imply that branching and elonga-
tion are phytochrome-controlled through at
least some shared regulators.

IV. Future Perspective

The majority of studies on shade avoidance
have focussed on internode, petiole or hypo-
cotyl elongation in Arabidopsis. These stud-
ies have provided breakthrough insights into
molecular and physiological regulation of
light signalling and signal transduction
towards these responses (summarized in
Fig. 6.3). Nevertheless, several aspects of
how shade avoidance signals alter plant
architecture are less intensively studied. For
example, the phytochrome-mediated signal-
ling mechanisms that drive changes in leaf
blade morphology and shoot branching,
important traits for crop yield, remain largely
unknown. Phytochrome control of shoot
branching is known to involve two TCP
domain proteins, called BRANCHED
(BRC)1 and BRC2 (Finlayson et al. 2010),
but much more in-depth knowledge is
needed on this trait. Although Arabidopsis
flowering stems do show branching and this
is controlled by phytochromes (Finlayson
et al. 2010; Reddy et al. 2013), inclusion of
other species might facilitate such research.
Current technological developments such as

high-throughput phenotyping and next gen-
eration RNA sequencing enable the charac-
terization of shade avoidance responses with
unprecedented resolution and facilitate the
use of non-model species. This furthermore
opens up possibilities to study the molecular
mechanisms behind the alternative strategy
of shade tolerance (Gommers et al. 2013).
Filling in such gaps will provide a more
complete understanding of plant responses
to competition for light in both natural and
agricultural environments.
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