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Summary

Plant canopies are characterized by extensive gradients in light availability that importantly
alter the photosynthetic productivity of leaves in different canopy layers and result in
acclimatory changes in leaf structural, chemical and physiological traits. These within-canopy
variations are further importantly driven by species functional type and ecological
characteristics such as shade tolerance (ecological controls). This chapter explores the
within-canopy variations in key functional traits among different plant functional types and
in species with different ecological potentials using a simple methodology to separate the
importance of different leaf-level traits in foliage photosynthetic acclimation. As a major
acclimatory change, foliage photosynthetic capacity per leaf area (Amax

A) increases
with increasing long-term average integrated quantum flux density (Qint) in the canopy.
Within-canopy variation in Amax

A results in a greater whole canopy carbon gain than having
Amax

A constant through the canopy. The increase in Amax
AwithQint can potentially result from

increases in leaf dry mass per unit area (MA), nitrogen content per unit dry mass (NM) and
nitrogen allocation to rate-limiting photosynthetic proteins. This analysis indicates that the
importance of these three key factors varies among plant functional types. In species with
relatively low rates of canopy expansion and leaf turnover such as woody evergreens and
woody deciduous species, within-canopy variation in Amax

A is primarily determined by MA,
while in herbaceous species with high rates of canopy growth and leaf turnover, the variation is
mainly driven by changes in NM and nitrogen allocation to rate-limiting proteins of photosyn-
thetic machinery. Furthermore, there are large within-canopy modifications in structural traits
such as leaf angles and spatial aggregation modulating light harvesting and light avoidance,
and in chemical traits such as xanthophyll cycle carotenoid content and isoprene emission
contributing to abiotic stress resistance. As the result of light-dependent alterations in these

Abbreviations: A – Net assimilation rate; Ac,con –
Canopy photosynthesis for constant leaf biochemical
potentials; Ac,var – Canopy photosynthesis for variable
leaf biochemical potentials; Amax – Photosynthetic
capacity; Amax

A – Photosynthetic capacity per unit
area; Amax

M – Photosynthetic capacity per unit dry
mass; BC – Chlorophyll binding (amount of chloro-
phyll per unit nitrogen invested in light harvesting
Eq. 4.4); Chl – Chlorophyll; Ca – Ambient CO2 con-
centration; Cc – Chloroplastic CO2 concentration; Ci –
CO2 concentration in the intercellular air space; EN –
Photosynthetic nitrogen use efficiency; FB – Fraction
of leaf nitrogen in rate-limiting proteins of photosyn-
thetic electron transport; FL – Fraction of leaf nitrogen
in light harvesting; FR – Fraction of leaf nitrogen in
Rubisco; gm – Mesophyll diffusion conductance; gs –
Stomatal conductance; Jmax – Capacity for photosyn-
thetic electron transport; Jmax

A – Capacity for photo-
synthetic electron transport per unit area; Jmc –
Capacity for photosynthetic electron transport per
unit cytochrome f; k – Light extinction coefficient;
L – Leaf area index; LHC II – Light harvesting com-
plex II; MA – Leaf dry mass per unit area; NA –
Nitrogen content per unit area; NM – Leaf nitrogen
content per unit dry mass; PS I – Photosystem I;

PS II – Photosystem II; Q – Photosynthetic quantum
flux density; Q0 – Above-canopy Q; Qint – Incident
integrated Q during leaf growth and development; Rc –
Light-dependent change of a given trait (Eq. 4.5); SC –
Shade tolerance score; ST/SP – Total to projected leaf
area ratio; VAZ – Xanthophyll cycle carotenoids
(violaxanthin antheraxanthin and zeaxanthin); Vcmax –
Maximum carboxylase activity of Rubisco; Vcmax,b –
Vcmax at the bottom of the canopy; Vcmax,t – Vcmax at
the top of the canopy; Vcmax

A – Maximum carboxylase
activity of Rubisco per unit area; Vcr – Specific activity
of Rubisco (maximum rate of ribulose-1,5-bisphosphate
carboxylation per unit Rubisco protein); Vi – Trait
value at a seasonal average quantum flux density of
i (Qint,i); α – Initial quantum yield for photosynthetic
electron transport; αp,a – Initial quantum yield of photo-
synthesis for an absorbed light; αp,i – Initial quantum
yield of photosynthesis for an incident light; θ – Lamina
cross-sectional angle; ξ – Leaf absorptance; χA –
Chlorophyll content per unit area; χM – Chlorophyll
content per unit dry mass; φF – Leaf lamina inclination
angle at leaf fall-line; |ϕL| – Absolute lamina inclination
angle (average angle between the normal to the leaf
plane and the vertical direction); φP – Petiole inclination
angle; Ω – Leaf clumping index
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traits, lower canopy leaves have a greater light harvesting efficiency, while upper canopy leaves
a greater capacity for excess radiation dissipation and resistance to abiotic stress. Plasticity for
foliar modifications varies among woody species of different ecological potentials with shade-
intolerant species tending to have a greater photosynthetic plasticity, while shade-tolerant
species greater leaf areas and higher canopy light interception. This review emphasizes the
overall large within-canopy variation in key foliage functional traits and underscores the
important differences among plant functional types and in species with different ecological
potentials in their acclimation to within-canopy environment.

Keywords Acclimation • Chlorophyll content • Carotenoids • Dry mass per unit area •
Isoprene emission • Leaf age • Leaf life span • Leaf morphology • Nitrogen content •
Nitrogen partitioning • Optimization • Photosynthetic capacity • Shade tolerance

I. Introduction

Variation in light availability is one of the
most conspicuous features of plant canopies.
Daily integrated average light flux varies
often more than 50-fold between canopy
top and bottom in dense plant canopies
(Fig. 4.1, Hirose et al. 1988; Koike
et al. 2001; Valladares 2003; Niinemets and
Anten 2009; Chap. 9, Hikosaka et al. 2016b),
but unexpectedly, the gradient is still 10–20-
fold in relatively open canopies (Hirose
et al. 1988; Werger and Hirose 1988; Rambal
2001; Joffre et al. 2007). Even in free-
standing plants, foliage is importantly
aggregated within the canopy envelope, and
leaves at the top shade the leaves positioned
lower in the canopy, resulting in major
light gradients (e.g., Le Roux et al. 1999;
Chap. 11, Disney 2016).

Foliage photosynthetic capacities accli-
mate to these extensive long-term light
gradients through plant canopies such that
whole canopy photosynthetic response can-
not be predicted from “an average leaf
response”, but is the integrated response of
leaves in different canopy positions with dif-
ferent physiological potentials tuned to their
specific light environment (Hirose and
Werger 1987b; Ellsworth and Reich 1993;
Anten 1997; Pons and Anten 2004;
Niinemets and Anten 2009; Chap. 5, Pons
2016). In fact, multiple leaf structural and
chemical traits vary between canopy top and
bottom, including leaf dry mass per unit
area, leaf nitrogen content and nitrogen

partitioning among proteins of photosynthetic
machinery (Hirose and Werger 1987b;
Ellsworth and Reich 1993; Anten 1997;
Pons and Anten 2004; Niinemets and Anten
2009; Chap. 5, Pons 2016). Variations in these
key functional traits ultimately drive within-
canopy photosynthetic acclimation. Various
structural and chemical traits have inherently
different plasticities to within-canopy light
conditions in different plant life forms and
in species with different ecological potentials,
leading to a spectrum of within-canopy pho-
tosynthetic acclimation responses across spe-
cies (Niinemets and Anten 2009 for a review).

In addition to long-term variations in light
availability, the environmental setting in
plant canopies is much more complex.
Light is a highly dynamic environmental
factor that varies strongly during the day
and among the days and seasons. Despite
photosynthetic acclimation, leaves at the
top of the canopy can be exposed to excess
irradiance on clear days, resulting in
photoinhibition and oxidative stress
(Osmond et al. 1999; Werner et al. 2001b;
Demmig-Adams and Adams 2006).
Photoinhibition can become particularly pro-
nounced when photosynthesis rates are
reduced due to other abiotic stress factors
such as soil drought (Ramalho et al. 2000;
Werner et al. 2002; Valladares et al. 2005;
Niinemets and Keenan 2014). There are
major within-canopy gradients in the leaf
capacity to adjust to dynamically changing
light conditions (Niinemets et al. 2003;
Garcı́a-Plazaola et al. 2004), indicating that
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coping with excess light can be importantly
determined by past leaf light regime.

In addition to light, air temperatures
increase from canopy bottom that receives
less radiation toward canopy top that is
exposed to greater radiation (Niinemets
et al. 1999b; Zhang et al. 2010; Krédl

et al. 2012; Pinheiro Prado et al. 2013;
Zhang et al. 2013). These gradients in tem-
perature are also associated with gradients in
relative air humidity (Chiariello 1984; Krédl
et al. 2012; Zhang et al. 2013). Lower
humidity coupled with greater temperature
and radiation input leads to greater

Fig. 4.1. Illustration of within-canopy variation in incident seasonal average integrated quantum flux density
(Qint) in a temperate evergreen conifer Pinus sylvestris canopy in Ahunapalu (58�190 N, 27�170 E, elevation
ca. 60 m). Niinemets et al. (2001) provides further details of the stand. Hemispherical photographs taken from the
upper part of the canopy (height of 18 m,Qint ¼ 31.2 mol m�2 d�1) and lower part of the canopy within the shrub
layer (height of 1.5 m,Qint ¼ 3.85 mol m�2 d�1) are also demonstrated. Error bars show � SD of average Qint at
each height level. Qint is defined as the average daily integrated quantum flux density during foliage growth and
development. Hemispherical photo analysis is a classic method for obtaining the relative potential penetrating
quantum flux density in different locations of the canopy (e.g., Anderson 1964). The obtained relative potential
values of incident diffuse and direct light availability need to be calibrated by long-term quantum flux density
measurements to estimate Qint for each canopy location (e.g., Niinemets et al. 1998a). Note that for illustrative
purposes, the y-axis crosses with the x-axis at the highest Qint value
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evaporative demands and potentially greater
water stress in the upper canopy (Niinemets
et al. 1999c; Hubbard et al. 2002; Aasamaa
et al. 2004; Niinemets et al. 2004d; Sellin
and Kupper 2004). In fact, the hydraulic
conductivity of stem and branches can limit
water transport to upper canopy in clear days
with high radiation input (Joyce and Steiner
1995; Brodribb et al. 2005; Renninger
et al. 2006; Ewers et al. 2007; Peltoniemi
et al. 2012; Chap. 7, Woodruff et al. 2016).
Thus, upper canopy leaves may become
water-stressed even in situations with ample
soil water supply (Joyce and Steiner 1995;
Lemoine et al. 2002; Ewers et al. 2007).
Stronger water stress in turn can lead to
more severe photoinhibition and oxidative
stress in leaves in the upper canopy.

This evidence suggests that, apart from
changes in photosynthetic capacity, acclima-
tion to within-canopy light gradients also
involves structural and chemical adjustments
to avoid excess light interception and
increase the resistance to photoinhibition
and oxidative stress in the upper canopy
leaves (Rasmuson et al. 1994; Hikosaka
and Hirose 1997; During 1999; Ishida
et al. 1999a; James and Bell 2000; Werner
et al. 2001b; Niinemets et al. 2003; Garcı́a-
Plazaola et al. 2004). It has been even
suggested that interactions among environ-
mental drivers and co-occurrence of multiple
stresses can constrain the photosynthetic
acclimation to within-canopy light environ-
ment, and as the result, “full acclimation” to
within-canopy light is principally not possi-
ble (Niinemets and Valladares 2004;
Niinemets 2012; Peltoniemi et al. 2012).

This chapter describes within-canopy
variations in leaf photosynthetic rates and
analyzes underlying sources of variation
due to modifications in leaf structural,
chemical and physiological characteristics.
First, a methodology to separate structural,
chemical and allocational controls on the
variations in foliage photosynthetic rates
within plant canopies is introduced. Then a
short meta-analyses in broad-leaved ever-
green species Quercus ilex is carried out to
highlight the many facets of within-canopy

foliage structural, chemical and physiologi-
cal acclimation. The compiled dataset of
Q. ilex foliar characteristics is unique
in that it covers variations in all key leaf
functional traits including diffusion
conductances from ambient air to
chloroplasts. The comprehensive analysis
of the variation patterns in Q. ilex with
high leaf longevity is used as a baseline to
compare within-canopy acclimation
responses in other plant functional types
with higher leaf turnover.

This review also analyses the overall sig-
nificance of variations in photosynthetic
capacity in altering the whole canopy carbon
gain and considers the possible structural
and chemical constraints on the acclimation
of photosynthetic capacity. This chapter fur-
ther focuses on structural traits determining
efficient light harvesting in the lower canopy
and avoidance of excess radiation intercep-
tion in the upper canopy, and on chemical
traits responsible for safe dissipation of
excess light and increasing resistance to
enhanced oxidative stress in the upper can-
opy. The review emphasizes that there is an
important within-canopy variation in how
the stress resistance traits respond to
dynamic alterations in light availability.
Finally, this chapter analyses the variations
in plasticity in whole-canopy acclimation
among species with different shade tolerance
that characteristically colonize habitats with
varying light availability. This review
emphasizes the strong within-canopy accli-
mation in key leaf traits and outlines the
richness of responses in different plant func-
tional types and in species with different
shade tolerance.

II. Evaluation of the Role of Different
Leaf Functional Traits Involved
in Variation of Photosynthesis
Through Plant Canopies

Variation in environmental drivers through
plant canopies, in particular, variation in
average daily incident integrated quantum
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flux density during foliage growth and devel-
opment (Qint) alters a plethora of foliage
structural, chemical and photosynthetic traits
(Terashima and Hikosaka 1995; Anten
et al. 1996, 1998; Koike et al. 2001; Lemoine
et al. 2002; Meir et al. 2002; Wright et al.
2006; Niinemets 2007). As a key change,
foliage photosynthetic capacity (Amax) typi-
cally increases with increasing Qint from can-
opy bottom to top (Terashima and Hikosaka
1995; Anten et al. 1998; Koike et al. 2001;
Lemoine et al. 2002; Meir et al. 2002; Wright
et al. 2006; Niinemets 2007). Apart from
Amax that determines foliage assimilation
rate at high light, foliage light harvesting effi-
ciency importantly drives photosynthesis at
lower light intensities. The initial quantum
yield of photosynthesis also often varies,
although the within-canopy variation in quan-
tum yield is less than in Amax, at least under
non-stressed conditions (Cartechini and
Palliotti 1995; Sands 1996; Niinemets and
Kull 2001; Werner et al. 2001b).

To gain mechanistic insight into sources
of within-canopy variation in Amax and the
initial quantum yield of photosynthesis, the
steady-state photosynthesis model of
Farquhar et al. (1980) is typically used
(Chap. 3, Hikosaka et al. 2016a). According
to Farquhar et al. (1980) photosynthesis
model, Amax is determined by the biochemi-
cal potentials of photosynthesis, the maxi-
mum carboxylase activity of Rubisco
(Vcmax) and the capacity for photosynthetic
electron transport (Jmax), and by the stomatal
(gs) and mesophyll diffusion (gm) con-
ductances for photosynthesis, while the initial
quantum yield of photosynthesis is mainly
determined by the initial quantum yield for
photosynthetic electron transport (α).

Within-canopy acclimation of Jmax, Vcmax

and α results from changes in multiple
underlying traits. In the following, I define
the modeling framework to evaluate the role
of different leaf traits responsible for
variations in Jmax, Vcmax and α. The mode-
ling framework will be used further through
the chapter to gain insight into the impor-
tance of within-canopy variations in leaf
structure and chemistry.

A. Determinants of Foliage Biochemical
Potentials

Changes in biochemical photosynthesis
potentials are determined by modifications
in leaf structural and chemical traits, and
the key question is to what extent different
traits control variations in Vcmax and Jmax. To
separate among the effects of various struc-
tural and chemical traits on foliage biochem-
ical potentials, Vcmax and Jmax can be
expressed as composites of several indepen-
dent characteristics. For Vcmax:

Vcmax ¼ 6:25VcrMAFRNM, ð4:1Þ

where Vcr is the specific activity of Rubisco,
i.e., the maximum rate of ribulose-1,5-
bisphosphate carboxylation per unit Rubisco
protein (μmol g�1 s�1), MA is the leaf dry
mass per unit area (g m�2), FR is the fraction
of leaf nitrogen in Rubisco, NM is the leaf
nitrogen content per unit dry mass (g g�1)
and 6.25 (g g�1) is the nitrogen content of
Rubisco protein (Niinemets and Tenhunen
1997). Analogously, Jmax is given as:

Jmax ¼ 8:06JmcMAFBNM, ð4:2Þ

where Jmc is the capacity for photosynthetic
electron transport per unit cytochrome f, FB

is the fraction of nitrogen in rate-limiting
proteins of photosynthetic electron transport,
and the factor 8.06 considers the nitrogen
content of proteins and molar stoichiometry
relative to cytochrome f (Niinemets and
Tenhunen 1997). Implicit in this expression
is that the capacity for linear electron trans-
port rate is determined by electron carriers
between photosystems I and II (Niinemets
and Tenhunen 1997 for a discussion).

Estimates of Jmax and Vcmax are typically
obtained from net assimilation vs. CO2

response curves, ideally from net assimila-
tion (A) vs. chloroplastic CO2 concentration
(Cc) response curves. In the past, Cc was not
routinely estimated due to difficulties with
estimation of mesophyll diffusion conduc-
tance (Cc ¼ Ci – A/gm, where Ci is the CO2

concentration in the intercellular air space).
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Thus, in the majority of past studies, Vcmax

and Jmax estimates were derived from A vs.
Ci response curves assuming that gm is infi-
nite. However, recent work has demonstrated
that gm is finite, and that it varies among
species and can limit photosynthesis as sig-
nificantly as stomatal conductance (Flexas
et al. 2012 for a review). Thus, estimates
of foliage biochemical potentials from A
vs. Ci response curves provide apparent,
underestimated, values of Vcmax and Jmax,
and accordingly FR and FB according to
equations 4.1 and 4.2 are also apparent
fractions of N in rate-limiting proteins.

Apart from CO2 response curves, inverse
modeling techniques can be used to estimate
Jmax and Vcmax from light response curves
of photosynthesis (e.g., Niinemets and
Tenhunen 1997; Niinemets et al. 1999d;
Patrick et al. 2009) and estimate Vcmax from
the light-saturated net assimilation rate
(e.g., Niinemets 1999). However, for inverse
modeling, one needs an estimate of CO2

concentration in the chloroplasts or at least
an estimate of Ci. Alternatively, many stud-
ies have calculated the photosynthetic nitro-
gen use efficiency (EN), the ratio of Amax to
foliage N content (Hirose and Werger 1987a,
1994; Hikosaka et al. 1998; Hirose and
Bazzaz 1998; Yasumura et al. 2002; Escudero
and Mediavilla 2003; Pons and Westbeek
2004). Photosynthetic nitrogen use efficiency
provides another estimate of the allocation
of N to rate-limiting components of photo-
synthesis, but differently from FR that
is standardized for variations in gs and gm
(Cc-based estimate of FR) or gs (Ci-based
apparent FR), within-canopy and species
differences in EN can be affected by
differences in diffusion conductances.

B. Traits Affecting Light Harvesting and Initial
Quantum Yield

Classic studies have demonstrated that the
initial quantum yield of photosynthesis for
an absorbed light measured at a given
chloroplastic CO2 and oxygen concentration
and temperature (αp,a) is remarkably constant
among C3 plants (Ehleringer and Björkman
1977; Leverenz 1987, 1988, 1994). However,

quantum yields for an incident light (αp,i)
importantly vary due to differences in leaf
absorptance (ξ) that modifies the amount of
light intercepted at a given incident light
intensity, thereby altering the quantum yield
(αp,i ¼ ξαp,a) (Leverenz 1987, 1988, 1994;
Long et al. 1993; Oberhuber et al. 1993).

Leaf absorptance is primarily a function
of leaf chlorophyll content per unit area (χA,
mmol m�2) (Evans 1993a; Evans and
Poorter 2001), except for hairy or waxy
leaves that often have enhanced reflectance
(Ehleringer and Björkman 1978; Evans and
Poorter 2001; Cescatti and Niinemets 2004).
For leaves without such highly reflective epi-
dermal characteristics, Evans (1993a) devel-
oped an empirical relationship between ξ and
χA that describes well variations in ξ for a
broad range of species with differing foliage
architectures (Evans and Poorter 2001):

ξ ¼ χA
χA þ 0:076

, ð4:3Þ

where 0.076 mmol m�2 is an empirical
constant.

Leaf chlorophyll (Chl) and chlorophyll-
binding proteins contain a large fraction of
foliar nitrogen, and therefore, it is pertinent
to express leaf chlorophyll content in nitro-
gen equivalents (Niinemets and Tenhunen
1997) as:

χA ¼ NMMAFLBC, ð4:4Þ

where FL is the fraction of leaf nitrogen
invested in light harvesting, and BC (mmol
Chl (g N)�1) is the chlorophyll binding
defined as the amount of chlorophyll per
unit nitrogen invested in light harvesting. It
depends on the nitrogen cost of chlorophyll
and specific chlorophyll-binding proteins, on
the number of chlorophyll-binding sites in
each chlorophyll-binding protein and on the
stoichiometry of light-harvesting pigment-
binding protein complexes (Hikosaka and
Terashima 1996; Niinemets and Tenhunen
1997; Bassi and Caffarri 2000). In particular,
BC increases with increasing the share of
chlorophyll associated with light-harvesting
complex of photosystem II (LHC II) that
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binds more chlorophyll than the centers of
photosystems I and II (PS I and PS II) (Bassi
and Caffarri 2000; Jackowski et al. 2001;
Paulsen 2001). Since the bulk of chlorophyll
b is associated with LHC II and minor light
harvesting complexes of PS II (Bassi and
Caffarri 2000), increases in BC are also
associated with decreases in chlorophyll a/b
ratio.

The chlorophyll binding is normally about
2.1–2.5 mmol (g N)�1 in vascular plants
(Niinemets and Tenhunen 1997; Niinemets
et al. 1998b), and it increases and chlorophyll
a/b ratio decreases with decreasing light
availability in the canopy (e.g., Evans 1993a,
b; Niinemets and Tenhunen 1997; Niinemets
et al. 1998b; Pons and Anten 2004), reflecting
increases in the amount of chlorophyll
associated with LHC II relative to that
contained in PS I and PS II. This is an impor-
tant acclimatory modification as it reduces the
N cost of light harvesting (Hikosaka and
Terashima 1995). While values of BC are not
routinely reported in the literature, chloro-
phyll a/b ratio is characteristically assessed
in studies investigating light acclimation,
and can be used as a proxy of light-driven
modifications in thylakoid stoichiometry.

III. Light-Dependent Variations in
Photosynthesis and Underlying Traits
Across Plant Canopies

Equations 4.1, 4.2, 4.3, and 4.4 provide a
simple means to analyze the effects of
variations in foliage structure, nitrogen
content and nitrogen partitioning on foliage
photosynthetic potentials and initial quan-
tum yield. In this section, I analyze how
leaf structural and chemical traits vary in
plant canopies and what are the implications
for foliage photosynthetic potentials. As
realized net assimilation rates are impor-
tantly driven by CO2 diffusion conductances
from ambient atmosphere to chloroplasts,
I also consider within-canopy variations in
stomatal and mesophyll conductances.

This section provides first a meta-analysis
of within-canopy variations in leaf traits in
the Mediterranean evergreen sclerophyll

Quercus ilex. This species grows in water-
limited open ecosystems where the variation
in light availability as a source for foliage
functional differentiation has been tradition-
ally neglected. This meta-analysis serves to
identify the basic scaling relationships
between key foliage traits and irradiance in
the canopy and make the general point that
even in species growing in open ecosystems,
there can be major within-canopy variations
in foliage characteristics. This meta-analysis
also serves as an example demonstrating
how fragmentary information present in
multiple studies can be summarized to gain
insight into within-species variability. Over-
all, there is less data available for broad-
leaved evergreen woody species than for
herbaceous species and needle-leaved ever-
green and winter-deciduous woody species
(Niinemets and Anten 2009 for a review),
making this analysis particularly pertinent.
Furthermore, the data summarized in Q.
ilex include all key functional leaf-level traits
covering structural, biochemical and diffu-
sional limits of photosynthesis, making the
analysis truly comprehensive. In particular,
within-canopy variation in mesophyll diffu-
sion conductance has not been routinely stud-
ied with a few exceptions (Niinemets et al.
2006a; Cano et al. 2013; Niinemets 2015).

Although the meta-analysis in Q. ilex
highlights the basic within-canopy leaf trait
variation patterns, evergreens such as Q. ilex
support multiple age cohorts. This is signifi-
cant as in evergreens, older foliage becomes
gradually shaded with canopy expansion
and formation of new leaves. Accordingly,
within-canopy trait patterns of older leaves
are importantly driven by the capacity of
older foliage to reacclimate to new light
conditions. Thus, in the following, I analyze
the within-canopy trait variations in older
leaf age classes in evergreens primarily
focusing on modifications in the overall plas-
tic variations and on the strength of trait vs.
light climate relationships.

After highlighting the basic within-
canopy variation patterns in evergreens, I
further ask how do the within-canopy
gradients in foliage traits vary among differ-
ent plant functional types? Different plant

108 €Ulo Niinemets



functional types are characterized by varying
rates of foliage and canopy growth and turn-
over and such differences in the rates of
canopy expansion and leaf longevity can
alter the gradients of light through the can-
opy, leaf lifetime intercepted light integral
and the extent of variation in light availabil-
ity during leaf lifetime (Schulze 1981; Jarvis
and Leverenz 1983; Woodward et al. 1994;
Niinemets et al. 2012; Niinemets and
Keenan 2012). This may significantly alter
the degree of within-canopy variation in dif-
ferent leaf-level traits in different plant func-
tional types.

Finally, I analyze the overall significance
of within-canopy variations in photosyn-
thetic potentials for whole-canopy net assim-
ilation rates using a simple modeling
approach. This model-based analysis further
underscores the importance of within-
canopy trait variation and emphasizes the
need to include phenotypic plasticity in
large-scale photosynthesis models.

A. A Meta-Analysis of Within-Canopy
Variations in the Mediterranean Evergreen
Quercus ilex

1. Data and Methods

A thorough literature survey identified eight
studies that provided information on within-
canopy variation in light vs. foliage traits in
Q. ilex (Eckardt et al. 1975; Rambal 1992;
Sala et al. 1994; Rambal et al. 1996;
Niinemets et al. 2002b, 2006a; Davi et al.
2008; Vaz et al. 2011). For these studies,
average seasonal average incident integrated
quantum flux density for 50 days after bud
burst (Qint) was used as an estimate of light
availability. In studies reporting leaf dry
mass per unit area (MA) in relation to directly
measured cumulative leaf area index, rela-
tive quantum flux density was derived
according to Lambert-Beer’s law using an
extinction coefficient of 0.5 (Sala et al.
1994), while for optical leaf area index
obtained by LAI-2000 instrument (Rambal
et al. 1996), an extinction coefficient of 0.8
(Niinemets et al. 2010) was used. The above-

canopy Qint was derived for the year of
foliage sampling using global radiation
databases as in Niinemets and Keenan
(2012). Qint vs. foliage trait relationships
were fitted by non-linear regressions in the
form y ¼ axb and y ¼ aLn(x) + b. As leaf
dry mass per unit area is strongly correlated
with within-canopy variations in Qint (e.g.,
Fig. 4.2a and Meir et al. 2002; Niinemets
2007; Niinemets and Anten 2009), MA was
used as a substitute of light for studies
explicitly investigating variations in foliage
chemistry within the canopy light gradients,
but lacking direct light measurements. This
analysis only included mature fully-
expanded current year foliage. The
relationships in older leaf age classes are
analyzed in Sect. III.B.

2. Variations in key Functional Traits

Analysis of all published within-canopy
patterns of foliage traits in Q. ilex highlights
several broad trends in plastic modifications
in foliage structural, chemical and photosyn-
thetic characteristics. First of all, MA

strongly increased with increasing average
quantum flux density during leaf growth,
1.5–2.4-fold between canopy top and bottom
(Qint, Fig. 4.2a). Nitrogen content per unit
area (NA) also increased, 1.7–2.7-fold,
with increasing Qint (r2 ¼ 0.77–0.93,
P < 0.001), but nitrogen content per unit
dry mass (NM) varied little within the canopy
(r2 ¼ 0.00–0.12, P > 0.2, average � SD
¼ 1.57 % � 0.25 % across the studies
analyzed). Foliage photosynthetic capacity
per unit area (Amax

A, r2 ¼ 0.64, P < 0.001
for the data of Niinemets et al. 2006a) and
foliage photosynthetic potentials, the maxi-
mum carboxylase activity of Rubisco
(Vcmax

A) and the capacity for photosynthetic
electron transport per unit area (Jmax

A,
Fig. 4.2b) scaled positively with Qint

(ca. 2.5-fold change of foliage photosyn-
thetic potentials between canopy top and
bottom for the data in Fig. 4.2b and 1.8-
fold change in Vaz et al. 2011), but mass-
based photosynthetic characteristics varied
little within the canopy (r2 ¼ 0.00–0.06 for
these three traits). Furthermore, the fractions
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of nitrogen in Rubisco (Eq. 4.1, average �
SD ¼ 0.154 � 0.025 for the data of
Niinemets et al. 2006a) and in bioenergetics
(Eq. 4.2, 0.039 � 0.007 for the data of
Niinemets et al. 2006a and 0.036 � 0.009
for the data of Rambal et al. 1996) were
independent of Qint (P > 0.1 for both
variables and both datasets). Given the
invariability of nitrogen allocation and con-
sidering that the area-based traits are the
products of mass-based traits and MA,
within-canopy variation in NA and foliage
photosynthetic potentials was mainly driven
by light-dependent variations in MA

(Fig. 4.2b inset).

Both stomatal and mesophyll conduc-
tances were greater in the upper canopy
(Fig. 4.2c). The CO2 drawdown from ambi-
ent air (Ca) to intercellular air space (Ci) was
independent of Qint (r

2 ¼ 0.01), indicating
that stomata limited photosynthesis similarly
through the canopy. However, the CO2 draw-
down from intercellular air space to
chloroplasts (Cc, Ci-Cc), and the overall
drawdown (Ca-Cc) increased with increasing
Qint (Fig. 4.2d), demonstrating that gm
limited photosynthesis more in the upper
canopy. Thus, increases in MA were not
only associated with stacking of
photosynthesizing biomass per unit area,
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Fig. 4.2. Effects of within-canopy variation in average integrated quantum flux density (Qint) on (a) leaf dry
mass per unit area (MA), (b) maximum carboxylase activity of Rubisco (Vcmax) and capacity for photosynthetic
electron transport (Jmax), (c) stomatal conductance to water vapor (gs) and mesophyll diffusion conductance (gm)
and (d) CO2 drawdown from ambient air to chloroplasts (Ca-Ci) and from intercellular air space to chloroplasts
(Ci-Cc) in current-year leaves of Mediterranean broad-leaved evergreen sclerophyll Quercus ilex. The inset in
(b) demonstrates the correlations of Vcmax and Jmax with leaf dry mass per unit area. The data were fitted by linear
(panel inset and Ci-Cc in d) and by non-linear regressions in the form y ¼ axb and y ¼ aLn(x) + b, whichever of
the two provided a higher r2 (P < 0.01 for all regressions). Data sources in panel a as indicated, all other data are
from Niinemets et al. (2006a). The sampling locations were: 41.73�N, 3.58�E, elevation 270 m (Davi et al. 2008),
41.25�N, 1�E, elevation 700 m (valley) and 975 m (ridge) (Sala et al. 1994), 43.74�N, 3.59�E, elevation 270 m
(Rambal et al. 1996) and 45.88�N, 10.87�E, elevation 300 m (Niinemets et al. 2006a).Qint corresponds to average
daily integrated incident quantum flux density for 50 days after bud burst

110 €Ulo Niinemets



but increased foliage robustness also
resulted in reduced efficiency of use of
resources invested in photosynthetic machin-
ery. Such enhanced diffusion limitations
might reflect increases in cell wall thickness,
an acclimation response contributing to
withstanding low leaf water potentials in
the upper canopy (see Sect. I), but also
reducing CO2 diffusion rate through leaf liq-
uid phase (e.g., Terashima et al. 2011;
Tosens et al. 2012a, b; Tomás et al. 2013).

As light measurements were not available
in studies investigating within-canopy varia-
tion in chlorophyll contents, MAwas used as
a proxy of within-canopy light conditions.

Across these studies, foliage chlorophyll
content per unit dry mass (χM) scaled nega-
tively with MA (Fig. 4.3a). Given that NM

was not correlated with within-canopy vari-
ation in light, this result also suggests that N
in light harvesting (FL, Eq. 4.4) increases
with increasing shading in the canopy. Nev-
ertheless, in this species, within-canopy var-
iation inMAwas greater than the variation in
χM such that leaf chlorophyll content per unit
area was positively correlated with MA

(Fig. 4.3b).

B. Leaf Age-Dependent Variations in Foliage
Plasticity in Evergreens

1. Why Should Plasticity Depend on Leaf
Age?

Evergreen species support multiple leaf age
cohorts, e.g., Q. ilex supports leaves up to 6
years old (Niinemets et al. 2005a), and sev-
eral conifers can support leaves more than 10
years old (Ewers and Schmid 1981;
Schoettle 1989; Schoettle and Fahey 1994;
Niinemets and Lukjanova 2003). Increases
in leaf age are characteristically associated
with increases in leaf dry mass per unit area
and in reductions in NM and photosynthetic
capacity (Teskey et al. 1984; Brooks et al.
1994, 1996; Niinemets 1997b; Niinemets
et al. 2005a). On the other hand, older foliage
initially developed at higher light becomes
gradually shaded by new foliage and the key
question is to what extent the older foliage
can reacclimate to the modified light
conditions. Although there is some second-
ary leaf growth at least in conifers (Ewers
1982; Gilmore et al. 1995), rigidification of
cell walls after foliage maturation strongly
curbs further foliage expansion growth.
Thus, foliage structural reacclimation to
modified light conditions is inherently lim-
ited. However, foliage may reacclimate to
altered light conditions by changing nitrogen
content and nitrogen allocation among the
components of photosynthetic machinery
within the leaf (Brooks et al. 1996;
Niinemets 1997b; Escudero and Mediavilla
2003; Oguchi et al. 2005, 2006; Muller et al.
2009). Given the structural constraints, it is
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Fig. 4.3. Correlations of leaf chlorophyll content per
unit leaf dry mass (a) and per unit leaf area (b) with
leaf dry mass per unit area in current-year leaves of
Quercus ilex. Variations in dry mass per unit area are
due to within-canopy differences in light environment
(Fig. 4.2a). Data from multiple studies investigating
within-canopy variation in leaf traits (Gratani and
Fiorentino 1986, Table 1 for site locations; Gratani
et al. 1989, 1992; Gratani 1993, 1997) were pooled
and fitted by a non-linear regression in the form y ¼
axb (a) and with a linear regression (b). P < 0.001 for
both regressions
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plausible that foliage photosynthetic plastic-
ity to light is decreasing with increasing
foliage age.

2. Analyzing Plasticity Changes

To compare plastic changes in foliage traits
of leaves of different age, I calculated the
relative light-dependent change (Rc) of a
given trait as (Niinemets et al. 2015):

Rc ¼ Viþx � Vi

ΔQint Viþx þ Við Þ=2 , ð4:5Þ

where Vi is the trait value at a seasonal
average quantum flux density of i (Qint,i)
and Vi+x is the trait value at Qint,i +
x (Qint,i+x). Rc is normalized with respect
to the average trait value across the given
light range, (Vi+x + Vi)/2, to account for
age-dependent changes in absolute trait
values. The plasticity to within-canopy
variations in light increases with increasing
the Rc value. In the following analysis, Rc

was calculated with Qint,i ¼ 6 mol m�2 d�1

and Qint,i+x ¼ 12 mol m�2 d�1. Foliage
trait vs. Qint relationships are curvilinear
(Fig. 4.2), and this is a moderately high
light range positioned in the strongly
increasing part of foliage trait vs. Qint

relationships. In the following, age-
dependent changes in plasticity are
analyzed in three species, Q. ilex and
conifers Abies amabilis and Pinus contorta.

3. Experimental Evidence of Plasticity
Modifications

Examination of Rc values in leaves of differ-
ent age indicated that the plasticity in
NA (Fig. 4.4a), MA (data not shown) and
Amax

A (Fig. 4.4b) decreased with increasing
leaf age in the three species analyzed. The
reduction in plasticity was also associated
with reduction in the degree of explained
variance (Fig. 4.4c, d), indicating that the
relationships became weaker and more
scattered with increasing leaf age.

However, the age-dependent reduction in
the plasticity in Amax

A was less than in NA

and MA (cf. Fig. 4.4a, b). This suggests that

differently from structural traits and total
nitrogen content, foliage photosynthetic
traits of older shaded foliage can adapt to
modified light regime (Brooks et al. 1994;
Niinemets et al. 2006a). In fact, in Q. ilex,
photosynthetic capacity of 1-year-old foliage
was even more plastic that photosynthetic
capacity of current-year foliage (Fig. 4.4b).
This was associated with within-leaf changes
in nitrogen allocation among proteins limit-
ing photosynthetic capacity. Differently
from current-year leaves (Sect. III.A.2),
both FR (Eq. 4.1, r2 ¼ 0.29, P < 0.05) and
FB (Eq. 4.2, r

2 ¼ 0.45, P < 0.01 for the data
of Niinemets et al. 2006a) increased with
Qint in 1-year-old leaves ofQ. ilex. Neverthe-
less, in these leaves, the within-canopy vari-
ation in nitrogen allocation, FR and FB,
1.4–1.5-fold for the whole canopy, was still
less than for nitrogen content and leaf dry
mass per unit area.

In Abies amabilis, it has been further
demonstrated that reacclimation to reduced
light conditions results in increased nitrogen
allocation to light harvesting (Brooks et al.
1994, 1996). This evidence collectively
indicates that older foliage of evergreens
can reacclimate to altered light conditions
primarily due to modifications in nitrogen
allocation within leaves, but also that the
overall photosynthetic plasticity to light is
lower for older leaves (Fig. 4.4). Thus, the
modifications in nitrogen allocation cannot
fully compensate for the structural inade-
quacy of shaded older foliage morphologi-
cally acclimated to higher past irradiance.

This analysis indicates that in evergreens,
foliage photosynthetic characteristics of any
canopy layer depend both on the structural,
chemical and physiological acclimation to
growth light conditions as well as on the
reacclimation capacity. Interactions of leaf
age with light availability and limited
reacclimation capacity can clearly blur light
vs. foliage structure and physiological activ-
ity relationships (Niinemets et al. 2006a).
For example, such a confounding variation
in leaf age and within-canopy light regime
might explain why the correlations of leaf
structural characteristics with light were
weak for Australian broad-leaved evergreens
(Wright et al. 2006) and in conifer Pinus
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pinaster (Warren and Adams 2001) when all
leaves of different age were analyzed
together.

C. Qualitative Differences among Trait
Relationships between Plant Functional
Types

1. Species with Low to Moderately High
Leaf Turnover

The meta-analysis in the broad-leaved ever-
green sclerophyll Q. ilex underscores the
strong within-canopy variation in foliage
structural, chemical and photosynthetic

characteristics (Figs. 4.2 and 4.3) as is typi-
cal in plant canopies (Hirose and Werger
1987a, b; Ellsworth and Reich 1993; Pons
et al. 1994; Meir et al. 2002; Niinemets
2007). The overall range of variation in MA

between canopy top and bottom in Q. ilex
was 1.5–2.4 in the eight studies analyzed
(Fig. 4.2a). The within-canopy variation in
MA was associated with similar variations
in area-based contents of nitrogen and chlo-
rophyll (Fig. 4.3), mass-based photosyn-
thetic potentials (Fig. 4.2b) and stomatal
conductance (Fig. 4.2c). In contrast, mass-
based nitrogen content and photosynthetic
potentials were not associated with light
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Fig. 4.4. Modifications in relative light-dependent changes in foliage nitrogen content per unit area
(a) and photosynthetic capacity per unit area (b) with leaf age and concomitant changes in the explained variance
(r2, c and d) in the temperate evergreen conifers Abies amabilis (Data of Brooks et al. 1996) and Pinus contorta
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responses). Qint is defined as in Fig. 4.2
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availability and chlorophyll content per unit
dry mass even decreased with increasing
light availability. Overall, this evidence
demonstrates that within-canopy increase in
area-based characteristics in Q. ilex primar-
ily reflected accumulation of tissue with sim-
ilar chemical composition and physiological
activity per unit leaf area (most traits) or that
the stacking trend dominated over the trend
of dilution of the chemicals (chlorophyll).

These observations inQ. ilex are in a broad
agreement with past observations in other
broad-leaved evergreens. Differently from
Q. ilex, a moderate increase in NM with Qint

has been observed in temperate evergreen
Ilex aquifolium (Aranda et al. 2004) and in
several temperate Nothofagus species
(Niinemets et al. 2004b), and in tropical spe-
cies Ficus insipida (Posada et al. 2009).
Analogously, photosynthetic capacity per
unit dry mass (Amax

M) (Chazdon and Field
1987; Ishida et al. 1999b; Posada et al. 2009)
and nitrogen partitioning coefficients, FR and
FB (Evans and Poorter 2001), can either mod-
erately decrease or increase in different ever-
green species. Nevertheless, all these studies
emphasize that the light-dependent increase
inMA is the key factor responsible for within-
canopy increases in NA and Amax

A in broad-
leaved evergreens.

The relationships are analogous in ever-
green needle-leaved conifers. In conifers,
the variations in foliage nitrogen content
and photosynthetic capacity per unit area
are also dominated by MA (Sprugel et al.
1996; Niinemets 1997a; Stenberg et al.
1999; Palmroth and Hari 2001; Han
et al. 2003; Leal and Thomas 2003; Han et
al. 2004, 2006). Furthermore, similar
relationships have been demonstrated in
other species with needle-like assimilative
organs such as cladodes in the angiosperm
Casuarina (Niinemets et al. 2005b). How-
ever, an increase in NM with increasing Qint

has been observed in some conifers, and
this was associated with increased meso-
phyll volume fraction and enhanced photo-
synthetic capacity per leaf dry mass at
higher Qint (Niinemets et al. 2007). So far,

light-dependent modifications in tissue
fractional composition have been studied
only in a few conifers (e.g., Aussenac
1973; Kovalyev 1980; Niinemets et al.
2007), and clearly more studies on three-
dimensional needle anatomy are called for.
Furthermore, in conifers with complex
three-dimensional leaf cross-section,
foliage photosynthetic capacity per unit
projected area also depends on
modifications in total to projected leaf area
ratio (ST/SP, Sect. IV.A).

The relationships of leaf traits with Qint

are qualitatively similar in broad-leaved
deciduous species that form all leaves
simultaneously in the beginning of growing
season, and thus, are characterized by a
relatively high leaf longevity (Ellsworth
and Reich 1993; Tjoelker et al. 1995;
Niinemets and Kull 1998; Niinemets et al.
1998b; Koike et al. 2001; Meir et al. 2002;
Iio et al. 2005). Although in some species,
NM (Niinemets et al. 1998b), Amax

M

(Niinemets et al. 1998b) and nitrogen
partitioning in photosynthetic machinery,
FB and FR (Niinemets et al. 1998b, 2010)
increase with increasing Qint, in other spe-
cies, NM (Ellsworth and Reich 1993;
Niinemets 1995; Fleck et al. 2003), Amax

M

(Ducrey 1981; Ellsworth and Reich 1993;
Niinemets et al. 1998b), and nitrogen
partitioning coefficients (Niinemets et al.
2010) can also moderately decrease with
increasing Qint. Thus, again the overall pho-
tosynthetic response to within-canopy
variations in Qint primarily results from
modifications in MA. Nevertheless, upon
sudden changes in irradiance, woody decid-
uous species can significantly change
foliage photosynthetic capacity through
changes in nitrogen partitioning (Naidu
and DeLucia 1997; Niinemets et al. 2003;
Oguchi et al. 2005, 2006), albeit the accli-
mation is limited due to anatomical
constraints as in evergreen species (Sect.
III.B, Oguchi et al. 2005, 2006) and can be
relatively time-consuming (Naidu and
DeLucia 1997; Kull and Kruijt 1999;
Niinemets et al. 2003).
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2. Species with High Leaf Turnover

The situation is qualitatively different for
broad-leaved deciduous woody species with
continuous canopy expansion such as in fast-
growing dense young Salix stands or coppice
plantations. In such stands, foliage devel-
oped earlier becomes shaded by newly
developed foliage analogously to different-
aged foliage in evergreen canopies
(Sect. III.B). Thus, there are strong leaf age
and light gradients within the fast-expanding
canopies of deciduous species. In fact, in
such canopies, most leaves could have been
exposed to high light during their develop-
ment at the top of the canopy. As the result,
MA is relatively invariable in fast-growing
woody canopies, and the within-canopy var-
iation in NA is primarily driven by a strong
gradient in NM (Vapaavuori et al. 1989;
Vapaavuori and Vuorinen 1989; Noormets
et al. 1996; Kull et al. 1998), while the
within-canopy variation in Amax

A is driven
by increases of Amax

M with Qint (Vapaavuori
et al. 1989; Vapaavuori and Vuorinen 1989).

The situation is similar in the canopies of
herbaceous species where the entire canopy
is formed during a single growing season and
there is a continuous canopy growth until the
onset of inflorescence formation. Examina-
tion of leaf trait vs. Qint relationships in
representative grass (Phragmites australis)
and herb (Solidago altissima) species (Data
of Hirose and Werger 1987a, 1994, 1995,
Werger and Hirose 1988) demonstrates that
although MA does increase with increasing
Qint (Fig. 4.5a), the increase is much less
than the corresponding change of NM

through the canopy (Fig. 4.5b) such that the
increase of NA (Fig. 4.5c) is mainly depen-
dent on within-canopy gradient in NM. In
addition to NA, the light-dependent increase
of Amax

A (Fig. 4.5f) is determined by
increases in nitrogen allocation (photosyn-
thetic nitrogen use efficiency, EN,
Fig. 4.5d), i.e., Amax

A ¼ ENNA. Increases in
both NM and photosynthetic nitrogen use
efficiency are responsible for the strong
increase of Amax

M with Qint (Fig. 4.5e;
Amax

M ¼ ENNM). Given further that

a b c

fed

Fig. 4.5. Light-dependent variations in leaf dry mass per unit area (a), nitrogen content per unit dry mass (b) and
area (c), photosynthetic nitrogen use efficiency (photosynthetic capacity per unit nitrogen, (d), and light-saturated
net assimilation rate at ambient CO2 concentration (photosynthetic capacity) per unit dry mass (e) and area (f) in
the grass Phragmites australis (Data of Hirose and Werger 1994, 1995) and in the herb Solidago altissima (Data
of Hirose and Werger 1987a, b; Werger and Hirose 1988). Data were fitted by non-linear regressions in the form
of y ¼ aLn(x) + b (all regressions are significant at least at P < 0.02). Seasonal average integrated quantum flux
density (Qint) is defined as in Fig. 4.2
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Amax
A ¼ ENNMMA, this evidence collec-

tively indicates that nitrogen reallocation
among the leaves and modification in nitro-
gen partitioning within the leaves are the
primary mechanisms determining acclima-
tion of herbaceous canopies to within-
canopy light gradients, while changes in
MA play a less important role.

Overall, the strong gradients in NM, pho-
tosynthetic nitrogen use efficiency and
Amax

M in species with high leaf turnover
partly reflect reacclimation to modified
light conditions, but also greater leaf turn-
over and senescence of older leaves at the
bottom of plant canopy (Vapaavuori et al.
1989; Vapaavuori and Vuorinen 1989; Pons
and Pearcy 1994; Hikosaka 1996; Anten et
al. 1998; Weih 2009). In fact, in species with
short leaf life-span and fast leaf turnover, it
has been demonstrated that shading, espe-
cially shading of individual leaves, can intro-
duce programmed cell death, leading to
rapid reductions of leaf photosynthetic
capacity and leaf abscission (Burkey and
Wells 1991; Pons and Pearcy 1994; Ackerly
and Bazzaz 1995; Ono et al. 2001; Vos and
van der Putten 2001; Boonman et al. 2006).
On the other hand, compared with species
with low rate of leaf turnover, photosynthetic
capacity in species with high leaf turnover
can relatively rapidly respond to increases in
light availability (Pons and Pearcy 1994;
Boonman et al. 2006).

D. Variations in Photosynthetic Plasticity
Among Plant Functional Types

In Q. ilex, the relationships of MA and pho-
tosynthetic potentials with Qint were strongly
curvilinear, with most of the change
in foliage characteristics occurring over the
light range of 2–12 mol m�2 d�1 (Fig. 4.2).
In the case ofMA, clear site differences were
evident at the saturating part of MA vs. Qint

relationships, at Qint values higher than ca.
12 mol m�2 d�1 (Fig. 4.2a). Although exten-
sive, the ranges of variation in MA, NA and
photosynthetic potentials in broad-leaved
evergreens are somewhat smaller than the

within-canopy variations in these traits of
two- to four-fold in the canopies of winter-
deciduous forest trees (see Sect. V; e.g.,
Ellsworth and Reich 1993; Niinemets and
Kull 1998; Iio et al. 2005; Niinemets and
Anten 2009; Niinemets et al. 2015). In fact,
in several deciduous broad-leaved species,
there is only a moderate curvilinearity in
leaf trait vs. Qint relationships (Niinemets
and Kull 1998; Meir et al. 2002; Aranda et
al. 2004; Niinemets et al. 2015). The range
of variation in trait vs. Qint relationships is
also high, more than two- to four-fold in
several evergreen shade-tolerant conifers
from genera Abies and Picea (Niinemets
1997a; Stenberg et al. 1998; Cescatti and
Zorer 2003). However, there was a low
within-canopy plasticity of 1.3–1.7-fold in
two Picea species in the study of Ishii et al.
(2003), and in Pseudotsuga menziesii and
Tsuga heterophylla in the study of Bond et
al. (1999). Low foliage plasticity 1.3–2-fold
has been reported for several Pinus species
(Bond et al. 1999; Niinemets et al. 2001,
2002a).

In the case of herbaceous species, high
photosynthetic plasticity, typically two- to
four-fold (Fig. 4.5f; Hirose and Werger
1994; Anten et al. 1995b; Niinemets et al.
2015), in exceptional cases close to or even
more than an order of magnitude (Pons et al.
1993; Hirose and Werger 1994; Anten et al.
1995b, Chap. 5, Pons 2016) has been
reported. This high plasticity is associated
with moderate changes in leaf dry mass per
unit area (Fig. 4.5a) and nitrogen allocation
(Fig. 4.5d) and moderate to extensive
changes in leaf nitrogen content per unit
dry mass (Fig. 4.5b; Hirose et al. 1989;
Lemaire et al. 1991; Evans 1993a, b; Hirose
and Werger 1994; Niinemets et al. 2015;
Chap. 5, Pons 2016).

Overall, there is evidence of greater pho-
tosynthetic plasticity in leaves with shorter
life-span. The differences among evergreen
and deciduous woody species mainly result
from the circumstance that evergreens can
reduce their MA when growing in shade
conditions less than deciduous species,
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resulting in correspondingly narrower range
in photosynthetic potentials in evergreens.
High photosynthetic plasticity in herbaceous
canopies is mainly associated with moderate
to high gradients in all three determinants of
photosynthetic capacity (Eqs. 4.1 and 4.2):
MA, nitrogen allocation and partitioning. In
particular, gradients in nitrogen allocation in
herbaceous species reflect the inherent strat-
egy of resource remobilization from shaded
leaves undergoing senescence to young
developing leaves at the top of the canopy
(Werger and Hirose 1988; Hikosaka et al.
1994; Hirose and Werger 1994; Hikosaka
1996; Franklin and Ågren 2002, Chap. 5,
Pons 2016).

E. Importance of Within-Canopy Biochemical
Modifications in Whole Canopy
Photosynthesis

Within-canopy variation in key leaf traits
allows for investment of photosynthesizing
biomass in environments where the
pay-back is higher, and has therefore been
considered as an adaptive feature. Several
studies have explored the quantitative
benefits of trait variation using either
numerical integration or optimality
analyses (Field 1983; Hirose and Werger
1987b; Gutschick and Wiegel 1988;
Farquhar 1989; Sands 1995; Anten 2005;
Peltoniemi et al. 2012; Hikosaka 2014;
Chap. 13, Anten 2016). There can be sev-
eral target variables for optimization of
canopy photosynthesis: maximization of
canopy photosynthesis for given biomass
investment in leaves (Gutschick and
Wiegel 1988), maximization of canopy
photosynthesis for given total canopy nitro-
gen content (Field 1983; Hirose and Werger
1987b; Farquhar 1989; Anten 2005;
Chap. 13, Anten 2016) or maximization of
canopy photosynthesis with given nitrogen
and water use (Buckley et al. 2002;
Farquhar et al. 2002; Peltoniemi et al.
2012). Overall, all optimality analyses
have suggested that foliage photosynthetic
capacity and nitrogen content should
increase with average quantum flux density

in the canopy and that such “optimal” dis-
tribution of resources results in a higher
carbon gain than a constant photosynthetic
capacity for all leaves in the canopy
(Fig. 4.6; Niinemets 2012 for a review).

Comparisons of predicted and observed
canopy gradients, however, indicate that
unconstrained optimality analyses predict
too strong gradients in nitrogen content and
foliage photosynthetic capacity (Niinemets
and Anten 2009 and Chap. 13, Anten 2016
for reviews). Various hypotheses have been
put forward to explain the discrepancies
from full optimality. First of all, the condi-
tion of optimality can differ depending on
the time scale and light characteristics, e.g.,
for diffuse and direct light (Hikosaka 2014).
Thus, definition of the pertinent light (dif-
fuse vs. direct, incident vs. absorbed, instan-
taneous vs. integrated) driving within-
canopy acclimation can importantly modify
the predicted optimal distribution. It has fur-
ther been hypothesized that changes in
foliage traits from canopy top to bottom are
not only driven by light, but also by other
co-varying environmental characteristics
(Sect. I), in particular, by variations in
evaporative demand (e.g., Niinemets and
Valladares 2004). Meeting the needs for
hydraulic and structural adjustment to ensure
water flux to photosynthetically more active
leaves and cope with potentially enhanced
water availability limitations in the upper
canopy can compromise full photosynthetic
acclimation to high light (Peltoniemi et al.
2012; Chap. 7, Woodruff et al. 2016).

There are also biophysical limitations on
the minimum and maximum thickness of
leaves and their N content per unit dry mass,
constraining leaf MA and NA values and ulti-
mately leaf photosynthetic capacity in both
high and low light (Gutschick and Wiegel
1988; Dewar et al. 2012; Niinemets 2012).
Clearly, including constraints on MA and NA

has resulted in more realistic predictions of
within-canopy gradients in MA, NA and pho-
tosynthetic capacity (Gutschick and Wiegel
1988; Dewar et al. 2012) than assuming
unconstrained variation in leaf traits (e.g.,
Farquhar 1989; Sands 1995).
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Using either constrained or unconstrained
optimization algorithms, it is possible to ana-
lyze what is the possible significance of
within-canopy variation in foliage traits in
canopies of different leaf area index (L) and
structure (Fig. 4.6; Anten et al. 1995a; Anten
2005; Chap. 13, Anten 2016). In the case of
constrained optimization, the within-canopy
gradient in Amax

A was fixed at a moderately
high level of 2.6-fold between canopy top and
bottom. In the case of unconstrained optimi-
zation, Amax

A was set directly proportional to
Qint. In all simulations, the whole-canopy leaf
area-weighted averageAmax

Awas a given fixed
constant value (Amax,c

A). Thus, the “uncon-
strained” optimization used the greatest gradi-
ent to yield the given Amax,c

Avalue.
Independent of the way of modeling, these

analyses suggest that the possible benefits of
foliage acclimation to Qint are greater for
canopies with stronger light gradients, i.e.,
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Fig. 4.6. Simulated whole canopy daily integrated
photosynthesis (a, b) in dependence on canopy leaf
area index (L ) for hypothetical canopies with constant
foliage biochemical potentials (canopy photosynthe-
sis, Ac,con) and in canopies with light-dependent varia-
tion in foliage biochemical potentials (Ac,var), and
(c) relative differences in daily canopy photosynthesis
among canopies with constant and variable biochemis-
try, (Ac,var – Ac,con)/Ac,con, in relation to L. The
simulations were conducted for canopies with high
initial quantum yield for photosynthetic electron trans-
port for an incident light of 0.248 mol mol�1 (a) and in
canopies with a low quantum yield 0.15 mol mol�1.
The high quantum yield scenario corresponds to
non-photoinhibited leaves with moderately high leaf
absorptance of 0.85, while the low quantum yield

scenario corresponds to photoinhibited and/or highly
reflective leaves. Foliage net assimilation rates were
modeled according to Farquhar et al. (1980) photosyn-
thesis model for constant values of leaf temperature of
25 �C and CO2 concentration in chloroplasts (Cc) of
280 μmol mol�1 and using the Rubisco kinetic
characteristics as in Niinemets and Tenhunen (1997).
In the case of the simulation with constant biochemis-
try, the maximum carboxylase activity of Rubisco was
set at a value of 20 μmol m�2 s�1 and the capacity for
photosynthetic electron transport was scaled as
2.5Vcmax, and non-photorespiratory respiration rate as
0.015Vcmax (see Niinemets et al. 1998b). A sine func-
tion with a maximum quantum flux density (Q) of
1,400 μmol m�2 s�1 was used to approximate the
diurnal variations in above-canopy Q (Q0). Variation
in Q through the canopy was simulated according to a
simple Lambert-Beer model assuming that foliage is
randomly dispersed (the clumping index Ω ¼ 1.0): Q
¼ Q0e

�kΩL, where k is the extinction coefficient
(k ¼ 0.5 in this simulation). In the case of variable
biochemistry, Vcmax vs. daily integrated Q (Qint)
relationships were fitted for canopies with different
L by linear regressions such that the ratio of the values
of Vcmax at the top of the canopy (Vcmax,t) and at the
bottom (Vcmax,b) was 2.6 (moderately high within-
canopy variation in foliage biochemical potentials)
and the whole-canopy leaf area-weighted average
Vcmax was 20 μmol m�2 s�1. All other characteristics
of Farquhar et al. (1980) photosynthesis model were
varied with Vcmax as in the simulations with the con-
stant biochemistry
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in canopies with a larger leaf area index
(Fig. 4.6a, b) and in canopies with higher
light extinction coefficient (data not shown,
see Chap. 9, Hikosaka et al. 2016b for
gradients of cumulative L and light). In the
case of the constrained optimization, the
optimal distribution was expected to increase
whole canopy photosynthesis between 1.5
and 21 % compared with all leaves having
a constant photosynthetic capacity equal to
Amax,c

A. The effect of considering within-
canopy variation in leaf traits increased
with increasing L (Fig. 4.6c). Of course, the
stronger the within-canopy gradient in pho-
tosynthetic characteristics, the greater is the
overall whole-canopy photosynthetic benefit.
In the case of “unconstrained” optimization
of Amax

A, whole-canopy photosynthetic rate
was predicted to be ca. 50 % greater than in
the simulation with a constant Amax

A (data
not shown).

The photosynthetic benefit might seem
relatively small for open canopies
(Fig. 4.6a), especially when the whole-
canopy gradient in Amax

A is moderate as for
instance in the Mediterranean evergreen Q.
ilex (Fig. 4.2). Nevertheless, even a moderate
improvement of long-term carbon gain can
importantly benefit the plant in highly stress-
ful environments where the annual carbon
gain is significantly reduced due to soil
drought. Furthermore, drought stress often
leads to photoinhibition, importantly reduc-
ing the initial quantum yields of photosyn-
thetic electron transport and carbon
assimilation (Niinemets and Keenan 2014
for a review). The implication of such a
reduction in the initial quantum yields is
that the light saturation point of photosyn-
thesis is shifted to higher quantum flux
densities, and thus higher quantum flux
densities appear limiting to photosynthesis.
The overall effect in terms of whole-canopy
photosynthesis is that the canopy photosyn-
thesis decreases with a reduction of the
quantum yield (cf. Fig. 4.6a, b). However,
photosynthesis of canopies with low to
moderate L, becomes much more sensitive
to within-canopy variations in Amax

A

(Fig. 4.6b, c). Thus, within-canopy diffe-
rences in photosynthetic capacity can

importantly benefit photosynthesis in rela-
tively open canopies as well, especially
under conditions leading to reduction of
quantum yields of photosynthesis such as
drought and photoinhibition stresses.

IV. Variations in Traits Improving
Light Harvesting and Protecting
from Excess Light

Apart from the major within-canopy
modifications in foliage functional traits
that result in alterations in foliage photosyn-
thetic potentials, variations in a number of
leaf traits also alter leaf light harvesting effi-
ciency and/or play a role in avoidance of
excess light harvesting. Given the interaction
of light with other environmental drivers
(Sect. I), there are also significant within-
canopy gradients in abiotic stress. In partic-
ular, leaves exposed to high irradiances can
be severely heat- and drought-stressed, espe-
cially in conditions of soil drought, while in
the lower canopy, the photosynthetic produc-
tivity is still most severely limited by light
availability. The interactive effects of envi-
ronmental drivers are further complicated by
highly dynamic nature of light in plant
canopies. In this section, I analyze variations
in structural and chemical traits responsible
for alterations in light harvesting and abiotic
stress tolerance, and further consider the
dynamic responses of leaf traits to rapid
changes in light availability.

A. Structural Traits as Determinants of Light
Harvesting and Avoidance

Section III.A indicated that acclimation to
low light availability in the bottom of a
plant canopy is associated with enhanced
investment of nitrogen in chlorophyll and
pigment-binding complexes (see Fig. 4.3),
and analogous relationships have been
observed in a number of species (Niinemets
and Anten 2009 for a review). Such
enhanced investment of nitrogen in light
harvesting within the leaf enhances light
harvesting per unit mass, i.e., increases
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light availability of an average mesophyll
cell (e.g., Niinemets 2007). Although
researchers seldom think of light harvesting
as a mass-based phenomenon, mass basis
characterizes the cost of light harvesting in
terms of resource investment.

Differently from themass basis, area-based
chlorophyll contents may increase (Fig. 4.3b),
be invariable or decrease with increasing Qint

(e.g., Hallik et al. 2009a). Nevertheless, due
to non-linear dependence of leaf absorptance
on leaf chlorophyll content (Eq. 4.3), effects
of such changes in area-based chlorophyll
content generally result in minor within-
canopy modifications in leaf absorptance
(e.g., St-Jacques et al. 1991; St-Jacques and
Bellefleur 1993; Poorter et al. 1995). Given
this, major reductions inMA in woody species
in low light constitute an important acclima-
tion response leading to greater light
intercepting surface area, and thus, enhanced
light interception with given biomass invest-
ment in leaves.

Light harvesting efficiency in needle-
leaved species can also be enhanced by
changes in total to projected leaf area ratio
(ST/SP). ST/SP decreases strongly with
decreasing Qint in some shade-tolerant
conifers such as in Picea and Abies
(Niinemets and Kull 1995; Sprugel et al.
1996; Cescatti and Zorer 2003), increasing
the light harvesting surface area at the given
total surface area in lower light. However,
minor modifications or invariable ST/SP
have been observed in intolerant conifers
from the genus Pinus (Niinemets et al.
2001, 2002a) and in the angiosperm Casua-
rina with needle-like cladodes (Niinemets et
al. 2005b).

Furthermore, at the shoot scale, the degree
of foliage spatial aggregation in shoots
decreases with decreasing Qint, implying
reduction of within-shoot shading (Stenberg
1996, 1998; Smolander and Stenberg 2001;
Cescatti and Zorer 2003; Niinemets et al.
2006b). In addition, foliage inclination
angle distributions within shoots become
more horizontal in the lower canopy in sev-
eral shade-tolerant conifers, thereby improv-
ing interception of light from vertical

inclination angles that constitute a more
prevalent source of both diffuse and direct
radiation in the lower canopy (Stenberg
1996, 1998; Cescatti and Zorer 2003;
Niinemets et al. 2006b). On the other hand,
greater foliage aggregation and more vertical
foliage inclination angles at higher
irradiances reduce mean irradiance on leaf
surface, and thus reduce the degree of foliage
photoinhibition and severity of heat stress
(Cescatti and Zorer 2003; Niinemets et al.
2006b). This implies that modifications in
needle and shoot structure play a dual role,
improving light harvesting in low light and
avoiding excess radiation interception at
high light.

In broad-leaved species, there are also
classic changes in leaf inclination angle
distributions analogous to conifers
(Fig. 4.7a; for reviews see Niinemets 2010;
Chap. 2, Goudriaan 2016). In addition to
changes in average leaf inclination angle
from vertical to horizontal with decreasing
light availability in the canopy, there are also
important modifications in the degree of
lamina flatness in several broad-leaved spe-
cies. In particular, leaves tend to be increas-
ingly rolled at the top of plant canopies
(Fig. 4.7b). Such increases in the degree of
foliage rolling can strongly reduce leaf light
interception and also change the share of
light interception by leaf lower and upper
surface (Fleck et al. 2003). Consideration
of both the within-canopy changes in leaf
inclination angle and degree of leaf rolling
indicates that the overall efficiency of light
interception may vary more than two-fold
within the canopy of broad-leaved species
due to modifications in these structural traits
(Fig. 4.7c). Thus, modifications in inclina-
tion angles and degree of rolling play a major
role in altering the balance between light
interception and avoidance. Overall, these
case studies suggest that avoidance of excess
light interception leads to a more uniform
illumination of foliage in the canopy, i.e.,
greater penetration of light into deeper can-
opy layers. Simulations studies indicate that
more uniform light distribution strongly
benefits the whole canopy carbon gain
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(Ryel et al. 1994; Hikosaka and Hirose 1997;
Werner et al. 2001a; Cescatti and Niinemets
2004; Valladares and Niinemets 2007), and
thus, “optimization” of canopy structure
constitutes an important means to maximize
canopy carbon gain.

B. Chemical Traits Improving Abiotic Stress
Tolerance

Excess light intercepted during midday on
clear days can result in severe photooxida-
tive damage of photosynthetic apparatus
compromising photosynthetic activity in the
morning and evening periods and on over-
cast days when light intensities are lower.
Temporal exceeding of leaf heat stress limits
during lighflecks and upon sustained expo-
sure to high radiation loads can further result
in heat damage of photosynthetic apparatus.
All such adverse effects are expected to be
more significant in the upper canopy due to
greater radiation loads (Sect. I).

Plants cope with excess energy by
increasing the capacity for non-photochemi-
cal quenching (non-radiative dissipation of
excess light energy), in particular, through
xanthophyll cycle. In the xanthophyll cycle,
the xanthophyll violaxanthin is converted
into xanthophylls antheraxanthin and zea-
xanthin under strong light by violaxanthin
deepoxidaze enzyme (Demmig-Adams and
Adams 1994, 1996b, 2006). This process is
activated by acidification of chloroplast
lumen when photosynthetic electron trans-
port exceeds the capacity for electron use in
dark reactions of photosynthesis, and ulti-
mately, zeaxanthin formation together with
acidification result in thylakoid conforma-
tional changes that lead to enhanced
non-radiative dissipation of excess light
(Demmig-Adams and Adams 1994, 1996,
b, 2006; Gilmore et al. 1994; Arnoux et al.
2009). The capacity for non-radiative
energy dissipation depends on the pool size
of xanthophyll cycle carotenoids, viola-
xanthin, antheraxanthin and zeaxanthin
(VAZ) (Demmig-Adams and Adams 1996a;
Demmig-Adams et al. 1998; Logan et al.
1996).
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Fig. 4.7. Effects of seasonal average daily integrated
quantum flux density (Qint) on (a) the absolute lamina
inclination angle, i.e., the average angle between the
normal to the leaf plane and the vertical direction
(|ϕL|, inset in (a) for the definition), (b) lamina cross-
sectional angle (θ, inset in (b) for the definition) and (c)
lamina projected to total area ratio in a dominant ( filled
circles) and a sub-dominant tree (open circles) of the
temperate deciduous species Fagus sylvatica. Inset in
(a) also demonstrates the definition of inclination angles
of petiole (φP) and leaf lamina at leaf fall-line (φF). Data
fitting as in Fig. 4.5 (P < 0.001 for all). In (a), the
slopes and intercepts of |ϕL| vs. LnQint relationships
did not differ among the trees according to covariation
analyses, and thus, the data for both trees were fitted by
a common regression. Modified from Fleck et al. (2003)
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Acclimation to high irradiance typically
results in increases in VAZ pool size
(Fig. 4.8a, b; Demmig-Adams et al. 1999;
Demmig-Adams and Adams 2006). The
within-canopy range of variation in leaf
area-based VAZ pool size is often three- to
four-fold (Fig. 4.8a). Since VAZ content per
unit dry mass also increases with increasing
light availability (Fig. 4.8b), this increase
does reflect greater VAZ content and higher
capacity for safe dissipation of excess exci-
tation energy of single mesophyll cells at
higher light (e.g., Niinemets et al. 1998a,

2003). However, differently from foliage
photosynthetic capacity and nitrogen alloca-
tion that are relatively invariable during
growing season in temperate trees
(Niinemets et al. 2004c; Grassi and Magnani
2005; Grassi et al. 2005), the adjustment in
VAZ pool size to changed light conditions is
much faster, occurring typically in a few
days (Sect. IV.C). The pool sizes of other
carotenoids, for example β-carotene and
lutein pools, can also change along the light
gradients, but the changes are typically only
moderate compared with modifications in
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Fig. 4.8. Correlations of xanthophyll cycle carotenoids (VAZ) (a, b) and total tocopherol (c, d) contents per unit
area (a, c) and dry mass (b, d) with seasonal average integrated incident quantum flux density (Qint) in the canopy
of the temperate deciduous tree Populus tremula. VAZ is the sum of contents of violaxanthin, antheraxanthin and
zeaxanthin (Data of Niinemets et al. 2003), and total tocopherol content is the sum of contents of α-, β, δ- and
γ-tocopherol (Data of Garcı́a-Plazaola et al. 2004). Data were fitted by non-linear regressions as in Fig. 4.5
(P < 0.001 for all)
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VAZ. In fact, VAZ to carotenoid ratio also
increases with increasing light availability
in the canopy (e.g., Niinemets et al. 1998a,
1999a, 2003; Hansen et al. 2002).

Free non-protein-bound, VAZ, in particu-
lar zeaxanthin, has also been implicated in
direct protection against photooxidative
stress (Havaux and Niyogi 1999). In fact,
plants have multiple antioxidant systems to
cope with oxidative stress, including ascor-
bate and glutathione in leaf liquid phase and
tocopherols in leaf lipid phase (Barclay et al.
1997; Noctor and Foyer 1998; Havaux and
Niyogi 1999). In addition to VAZ, the
contents of these specific liquid- and lipid-
phase antioxidants increase with increasing
light in the canopy (Garcia-Plazaola and
Becerril 2001; Hansen et al. 2002, 2003;
Garcı́a-Plazaola et al. 2004). However, the
within-canopy variation seems to be larger
for liphophilic antioxidants than for water-
soluble antioxidants (Garcı́a-Plazaola et al.
2004). For instance, in Populus tremula, total
tocopherol content per unit area varied more
than three-fold within the canopy (Fig. 4.8c),
while total ascorbate and glutathione contents
per leaf area varied only ca. 1.5-fold within
the canopy (Garcı́a-Plazaola et al. 2004). In
fact, the within-canopy variation of total
tocopherol content per unit dry mass was
more than two-fold (Fig. 4.8d), while no
strong canopy gradient was evident for
liquid-soluble antioxidants expressed on a
dry mass basis (Garcı́a-Plazaola et al. 2004).

Some of the lipid-phase antioxidant
systems have been implicated in heat stress
resistance as well. In particular, zeaxanthin
has been demonstrated to play an important
role in maintaining membrane integrity in
heat-stressed leaves (Havaux et al. 1996;
Havaux and Tardy 1997). Furthermore,
constitutive isoprene emissions have been
demonstrated to improve foliage heat stress
resistance in isoprene-emitting species
(Sharkey and Singsaas 1995; Singsaas et al.
1997). Improvement of heat resistance by
isoprene has been suggested to be due to
direct involvement of isoprene in stabiliza-
tion of membranes at higher temperatures
or/and due to antioxidative properties of

isoprene that avoids peroxidation of mem-
brane lipids in heat-stressed leaves (Sharkey
et al. 2008; Vickers et al. 2009; Possell and
Loreto 2013). Although isoprene is emitted
constitutively only in a few emitting species
(Kesselmeier and Staudt 1999; Fineschi et al.
2013), in the emitting species, there are
extensive within-canopy gradients in iso-
prene emission rate (Harley et al. 1996,
1997; Funk et al. 2006; Niinemets et al.
2010). For example, in deciduous broad-
leaved trees, the variation between canopy
top and bottom was 27-fold for isoprene
emission rate per leaf area (Fig. 4.9a) and
17-fold for isoprene emission rate per leaf
dry mass (Fig. 4.9b). Furthermore, the frac-
tion of photosynthetic carbon used for iso-
prene emission varied 12-fold (Fig. 4.9c),
indicating that the plasticity in isoprene
emission rate was more than a magnitude
larger than the plasticity in net assimilation
rate.

Taken together, the evidence summarized
here demonstrates presence of major
gradients in photoprotective pigment and
antioxidant pools and isoprene emissions in
plant canopies. These gradients in protective
chemicals likely play key roles in coping
with excess irradiance and recurrent heat
stress events, whereas the protective capacity
is particularly high at the top of plant
canopies where the abiotic stress is often
the greatest. Presence of such an extensive
array of defenses plays a major role in pre-
serving the integrity of foliage photosyn-
thetic capacity through stress periods and
allows for rapid onset of photosynthesis
when the stress is relieved.

C. Dynamics in Protective Traits After Rapid
Changes in Light Availability

As mentioned in Sect. IV.B, VAZ pool size
adjusts to changes in light regime much
faster than leaf structure, nitrogen content
and allocation and photosynthetic capacity,
although the rate of change in photosynthetic
traits depends on plant growth form
(Sect. III.C). In fact, it seems that the accli-
mation to potentially damaging high
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irradiances is governed by adjustments in
foliar photosynthetic capacity in long-term,
while the safe dissipation of excess light
energy is accomplished by changes in xantho-
phyll cycle pool size during short-term
weather fluctuations. However, as discussed
in the Sect. III.C, acclimation to altered light
conditions not always occurs, and either
shading or exposure to excessive light can
result in a continuous time-dependent decline
in foliage photosynthetic rates and pigment
contents, and ultimately leaf abscission.

Provided leaves do acclimate to the
modified conditions, the key questions are
what is the overall capacity for adjustment
of VAZ content and antioxidant pools to
changes in light conditions and whether the
rate of acclimation varies within the canopy?
Field data can to some extent be used to
study the speed of xanthophyll cycle accli-
mation in ecosystems with significant day-
to-day variations in quantum flux densities.
For instance, in temperate humid forests,
clear days are commonly intervened with
overcast days such that day-to-day variation
in above-canopy irradiance is several-fold
(Niinemets et al. 2004c). Averaging quantum
flux density over various number of days
preceding measurement of physiological
and chemical characteristics and using
these various estimates of average integrated
light can be used to test the strength of
correlations of integrated light vs. leaf trait
relationships in dependence on the length of
light integration period (Ögren and Sjöström
1990; Niinemets et al. 1998a, 1999a; Geron
et al. 2000; Werner et al. 2001b).

Using such an approach, it was observed
that integrated light for 3 days preceding
foliage sampling best explained the within-
canopy variation in VAZ pool size in a tem-
perate deciduous tree canopy (Niinemets
et al. 1998a, 1999a). This result indicates
that VAZ pool size can rapidly adjust to
day-to-day variations in light conditions,
thereby quickly regulating the capacity
for non-photochemical quenching of excess
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light to match the changed light conditions.
However, using illumination with extra light,
it was further demonstrated that the degree
of acclimation in VAZ pool size varies
through the canopy and that there are differ-
ent response kinetics in leaves developed at
different light availabilities in the canopy
(Niinemets et al. 2003). In particular, VAZ

pool size was less responsive in the lower
canopy species Tilia cordata than in the
upper canopy species Populus tremula, and
the initial increase in VAZ pool size tended
to be faster in the upper canopy of Populus
tremula (Fig. 4.10a–c). Furthermore, the
ratio of VAZ to chlorophyll content was
more responsive to extra illumination in the
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representative control and illuminated leaves of temperate deciduous trees Populus tremula from the upper (a, d,
g) and the mid-canopy (b, e, h) and Tilia cordata from the lower canopy (c, f, i). In addition, the inset in (d)
demonstrates the variation in VAZ/Chl ratio in relation to cumulative extra irradiance in P. tremula (the control
treatment corresponds to leaves without extra light sampled at the same time as the treated leaves). The data were
fitted by non-linear (a, h, i) or linear (all others) regressions. The non-significant regression (P > 0.8) in (c) is
drawn by a dashed line. In the upper-canopy leaves of P. tremula (height 23 m), the seasonal average natural
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irradiance was 40.8 mol m�2 d�1. In the mid-canopy leaves of P. tremula (height 19 m), Qint was 22.5 mol
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In the lower canopy leaves of T. cordata (height 17 m), Qint was 6.03 mol m�2 d�1 for the control and 6.10 mol
m�2 d�1 for the treated leaf, and the extra irradiance of the illuminated leaf was 48.0 mol m�2 d�1. Data of
Niinemets et al. (2003)
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upper canopy leaves in both species
(Niinemets et al. 2003; Fig. 4.10d–f),
reflecting within-canopy differences in the
response of chlorophyll contents to extra
illumination (Niinemets et al. 2003,
Fig. 4.10g–i). Foliage tocopherol contents
responded even stronger to extra illumina-
tion than leaf pigments, and the rate of
increase of tocopherol content was greater
in upper canopy leaves (Garcı́a-Plazaola et
al. 2004). These results together demonstrate
that the overall degree of adjustment in pig-
ment pools and foliage antioxidative capac-
ity after light changes can importantly
depend on leaf past acclimation status.

Although pigment and antioxidant pool
sizes dynamically respond to variations in
light input among days, the experiment
with extra illumination in the canopies of
deciduous trees demonstrated that full accli-
mation was not reached even after 11 days of
exposure to extra light (Fig. 4.10). This
delayed response is in agreement with sev-
eral other experimental studies that have
indicated that the response to stepwise
increase in light in the field conditions may
not even be fully completed in 17 days after
start of exposure to enhanced illumination
(Logan et al. 1998a, b). This differs from
experiments in growth chambers under con-
stant environmental conditions where
changes in VAZ and antioxidant pools were
completed in 5–7 days after stepwise
increases in irradiance (Demmig-Adams et
al. 1989; Bilger et al. 1995; Eskling and
Åkerlund 1998). This suggests that in natural
plant canopies under strongly fluctuating
light, temperature and humidity conditions,
pigment and antioxidant systems are
inherently in non-steady-state conditions.
Although pigment pools do rapidly adjust
to environmental changes, the period of
environmental fluctuations is often shorter
than is needed to reach the steady-state
pigment and antioxidant pool sizes. Further-
more, the rate of response to altered
conditions significantly varies through the
canopy, being likely an important factor
determining leaf abiotic stress resistance in
the canopy.

V. Photosynthetic Acclimation in
Relation to Species Shade Tolerance

The term “economics spectrum” charac-
terizes the covariation of foliage traits
associated with superior performance in
low resource environments such as structur-
ally more robust foliage, and traits that
improve fitness in high resource environ-
ments such as enhanced photosynthetic
capacity (e.g., Wright et al. 2004, 2005).
However, shading is associated both with
reduced foliage robustness and reduced pho-
tosynthetic capacity, especially within single
species, but also for several plant functional
types (Lusk et al. 2008; Hallik et al. 2009b;
Niinemets and Anten 2009). Thus, compared
with other stresses, shading constitutes an
outlying low resource environment. Here
I analyzed within-canopy patterns in key
foliage functional traits from the perspective
of the leaf economics spectrum with main
focus on Northern hemisphere temperate
species.

A. Evidence from the Case Studies

Section III demonstrated that there are
important differences in the within-canopy
variations in different leaf traits among
plant functional types and that these
differences are associated with differences
in leaf turnover. Apart from differences
among plant functional types, plant stands
are often composed of species with different
ecological potentials. Characteristically, spe-
cies in the lower canopy layers and in dense
late-successional communities have greater
shade tolerance than species in the upper
canopy positions and in more open early-
successional communities (Valladares and
Niinemets 2008). Differences in community
position among shade-tolerant and intolerant
species are also associated with differences
in leaf trait vs. Qint relationships. In broad-
leaved deciduous trees, MA often responds
less plastically to Qint in more shade-tolerant
than in less tolerant species (Fig. 4.11, Kull
and Niinemets 1998; Niinemets et al. 1998b;
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Valladares and Niinemets 2008). However,
such a pattern is not always observed (e.g.,
very intolerant Populus tremula in Fig. 4.11a
vs. very tolerant Fagus sylvatica in
Fig. 4.11e). Although shade-intolerant spe-
cies can maintain leaves at low light
availabilities when grown in monocultures
(Nygren and Kellomäki 1983; Niinemets et
al. 2004a), the situation is different in multi-
species canopies where shade-tolerant spe-
cies gradually grow into the upper canopy,
and the foliage of intolerant species
competes for light availability with foliage
of tolerant species in the lower and
mid-canopy. Thus, the apparent low plastic-
ity in P. tremula in Fig. 4.11a might reflect
the general circumstance that in multispecies
canopies intermixed with shade-tolerant spe-
cies, the intolerant species may not simply be
able to maintain leaves below a certain Qint

value (ca. 7–8 mol m�2 d�1 for P. tremula in
Fig. 4.11a).

As in broad-leaved deciduous woody spe-
cies, within-canopy plasticity in foliage pho-
tosynthetic potentials is mainly driven by
changes in MA that result in stacking of
rate-limiting photosynthetic proteins per
unit leaf area (Sect. III.C), lower within-
canopy plasticity in MA is also associated
with lower photosynthetic plasticity in less
shade-tolerant species (Kull and Niinemets
1998; Niinemets et al. 1998b). It has further
been demonstrated that the sensitivity to
photoinhibition is greater in more shade-
tolerant species (Lovelock et al. 1994;
Chazdon et al. 1996; Naidu and DeLucia
1997) that also generally possess lower pho-
tosynthetic capacities (Bazzaz 1979; Love-
lock et al. 1994).

On the other hand, shade-tolerant tem-
perate species can support foliage at
lower Qint than intolerant species and have
both smaller minimum and maximum MA

values (Fig. 4.11). Thus, despite lower
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sylvatica are from Niinemets (1995) and for the four other species from Niinemets et al. (1998b)
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photosynthetic plasticity, shade-tolerant spe-
cies can form a greater leaf area with given
foliage biomass in leaves, improving light
interception of the canopy. Such a greater
light interception capacity not only improves
the whole canopy carbon gain, but the
shading by more extensive canopy itself can
serve as an important competitive attribute
constraining the survival of seedlings and
saplings of less shade-tolerant competitors
and ultimately leading to dominance of
shade-tolerant late-successional plants in
the canopy (Küppers 1985; Schieving and
Poorter 1999; Anten 2002).

Much less data are available for within-
canopy gradients in tropical and southern
hemisphere temperate evergreen species. In
three tropical species, within-canopy plastic-
ity inMA, NA and Amax

Awas greater in shade-
intolerant evergreen species Ficus insipida
than in more tolerant Luehea seemannii,
whereas the highest plasticity was observed
in the shade-intolerant drought-deciduous
species Castilla elastica (Posada et al. 2009).
Among the tropical Piper species of varying
shade tolerance, the within-canopy plasticity
in MA, NA and Amax

A of shade tolerant P.
aequale and P. lapathifolium was less than in
moderately tolerant P. hispidum and intolerant
P. auritum and P. umbellatum (Chazdon and
Field 1987). Among southern hemisphere
temperate evergreen Nothofagus species,
more shade tolerant Nothofagus solandri var.
cliffortoides had a greater within-canopy plas-
ticity inMA than less tolerant N. fusca, but the
plasticity in NA did not differ among species
(Niinemets et al. 2004b). In another study in
temperate southern hemisphere evergreens,
more tolerant Nothofagus solandri var.
cliffortoides had a greater plasticity in MA

than very intolerant species Kunzea ericoides
(White and Scott 2006). However, in this
study, other moderately shade-tolerant species
had a similar within-canopy plasticity in MA

as the very intolerant K. ericoides (White and
Scott 2006). Clearlymore comparative studies
are needed to gain conclusive insight into the
controls of foliage plasticity by shade toler-
ance in tropics and in southern hemisphere
temperate ecosystems.

B. Generalizing the Patterns

The conclusions drawn from the case studies
in temperate deciduous broad-leaved species
seem to be valid more widely. Broad-scale
analyses of structural, chemical and physio-
logical variation in high-light-developed
leaves across Northern hemisphere temper-
ate woody flora indicate that MA decreases
with increasing species shade-tolerance also
in broad-leaved and needle-leaved evergreen
species (Fig. 4.12a). Thus, formation of an
extensive leaf area is also the key competitive
strategy in shade-tolerant evergreen species
(Niinemets 2010; Warren et al. 2012). How-
ever, in temperate evergreens, greater canopy
leaf area in more tolerant species is also
importantly driven by enhanced leaf longevity
(Hallik et al. 2009b; Niinemets 2010).

Differently fromMA, nitrogen content per
unit area (Fig. 4.12b) and photosynthetic
capacity per unit area (Fig. 4.12c) were not
correlated with species shade tolerance in
temperate evergreens. However, the patterns
developed for leaves exposed to high light
do not necessarily provide insight into
variations in within-canopy plasticity in
foliage structure and photosynthetic poten-
tials. Given the higher leaf longevity in
shade-tolerant species and reduction in leaf-
level plasticity with leaf age (Fig. 4.4),
canopy-level photosynthetic plasticity across
leaves of different age might be lower in
more shade-tolerant species.

Differently from Northern hemisphere
temperate species,MA of tropical evergreens
and southern hemisphere temperate ever-
greens is typically higher in more shade tol-
erant species than in less tolerant species
(Chazdon 1992; Kitajima 1994; Lusk 2004;
Lusk et al. 2008; Houter and Pons 2012).
Thus, higher biomass investment is needed
for a given plastic change in MA in more
shade tolerant species, implying that the
high initial MA may limit both structural
and photosynthetic plasticity in shade
tolerators. Further studies are needed to gen-
eralize within-canopy plastic changes in
evergreens of different shade tolerance in
both temperate and tropical ecosystems.
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VI. Conclusions

This review highlights major within-canopy
modifications in foliage photosynthetic capac-
ity that improve thewhole canopy carbon gain
compared with a hypothetical canopy with
constant photosynthetic capacity for all leaves
in the canopy.While scaling of photosynthetic
capacity with long-term average integrated
quantum flux density is a ubiquitous response
in plants, there are important plant functional
type differences in the scaling of key foliage
functional traits with light availability. The
rate of foliage turnover increases in the
sequence evergreens < deciduous woody
species with deterministic growth < decidu-
ous woody species with indeterminate growth
< herbaceous species. The evidence
summarized here indicates that plant func-
tional type differences in canopy growth phe-
nology and differences in leaf turnover
importantly alter the significance of various
leaf traits in determining the within-canopy
acclimation of foliage photosynthetic capacity.

This chapter also emphasizes that envi-
ronmental gradients are typically complex
in plant canopies. Leaves at the top of plant
canopies often can suffer from more sever
water, photoinhibition and oxidative stresses
that can constrain photosynthetic acclima-
tion to canopy light regime. Furthermore,
coping with such interacting stresses typi-
cally leads to structural adaptations reducing
excess light interception in the upper canopy,
and chemical modifications improving the
stress resistance. In fact, within-canopy
variations in protective traits can be much
larger than in photosynthetic characteristics,
and there are further significant within-canopy
variations in the degree and rate of adjustment
of the pools of protective chemicals to
dynamically changing light conditions.0 1 2 3 4 5
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There is still a limited understanding of
species differences in foliage plasticity to
within-canopy environmental gradients,
but the evidence summarized suggests that
shade tolerance is an important driver of
species plasticity. Shade-tolerant species
growing in understory and in late-succes-
sional communities characteristically form a
greater foliage area and have superior light
harvesting capacity, but their photosynthetic
capacity and plasticity seem to be lower than
in less tolerant species growing in more open
communities and in early-successional habitats
where rapid carbon gain capacity is the primary
attribute of competition. Further studies are
needed to gain insight into the generality of
suggested variation patterns of foliage plastic-
ity with species ecological potentials. Under-
standing such plastic variations is not only
fundamentally important, but would allow con-
struction of more realistic carbon gain models
capable of simulating ecosystem carbon gain
through ecosystem development.
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