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Summary

This chapter describes (1) how light distributes within a leaf canopy and (2) light intercep-
tion by leaves. Basic equations are shown so that readers can make light distribution models
by themselves.
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I. Incoming Radiation

A. Its Total Value

The total flux of natural daylight at ground
level is called Global Radiation. Outside the
atmosphere the energy flux from the sun
through one square meter, measured in a per-
pendicular position towards the solar rays, is
about 1370 W m�2 (Monteith and Unsworth
1990). This number is called the solar ‘con-
stant’ although it is not really a constant. Most
of its variation is due to the eccentricity of the
earth’s orbit around the sun which causes a
regular annual variation of the flux of 3.3 %
above and below its average value. The solar
output itself has a much smaller variation,
mainly due to sunspots.

The flux that reaches the earth surface is,
of course, dominated by the day-night
regime, but also it is strongly affected by
absorption in the atmosphere. Absorption
of ultraviolet radiation by ozone in the strato-
sphere weakens the flux by about 25 %. As a
result, Global Radiation at ground level has a
maximum of about 1000 W m�2 which
should still be multiplied by the sine of
solar height (or to the cosine of zenithal
distance) to get the intensity at a horizontal
ground surface. Cloudy conditions will fur-
ther reduce the Global Radiation.

In contrast to the solar constant and the
sine of solar height, atmospheric transmis-
sion cannot be accurately predicted. Gener-
ally it varies between about 0.2 and 0.7, but it
may occasionally wander outside this range.

Atmospheric transmission is really a cli-
matic variable and it must therefore be con-
tinuously measured if we want to know its
value at all times, and this is also the case in
Global Radiation.

B. Spectral Energy Distribution

The spectral properties of leaves permit us to
work with only three major wavebands
(McCree 1981; Gausman and Allen 1973;
Gates 1980): Ultraviolet Radiation
(UV) (about 4 %) between 350 and 400 nm,
Photosynthetically Active Radiation (PAR)
(about 50–60 %) between 400 and 700 nm
and Near Infrared Radiation (NIR) (about
40 to 45 %) between 700 and 2000 nm
(Fig. 1.1). Outside the atmosphere the frac-
tion of PAR is equal to 0.368, which means a
solar constant for PAR at 504 W m�2. At
ground level, the maximum level of PAR is
reduced but not to the same extent as that of
NIR and particularly of UV, resulting in a
higher fraction of PAR at ground level than
outside the atmosphere. Leaves absorb UV
almost completely, but NIR is strongly
scattered. The chlorophyll pigment, which
is the most important pigment in leaves, is
translucent to NIR. These facts enable a
strong simplification in modelling radiation
absorption in green crops. It is normally not
needed to distinguish dozens of different
waveband regions, but it is sufficient to just
lump all PAR and lump all NIR radiation, so
that we end up with only two major radiation
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Fig. 1.1. Typical spectral distribution of reflection and
transmission of a green leaf

Abbreviations: F – Fraction; h – Height; Ic – Absorbed
flux per leaf area; Id – Downward flux; Iu – Upward
flux; k – Light extinction coefficient; k0 – Light extinc-
tion coefficient for “black” leaves; L – Cumulative
amount of leaf area per unit soil area; Lt – Total
amount of leaf area per unit soil area; LAI – Leaf
area index; N – Sky radiance; n – Layer; NIR – Near
infrared radiation; p – Path width; PAR – Photosyn-
thetically active radiation; r – Radius; S – Soil surface;
T – Temperature in Kelvin; UOC – Uniform overcast
sky; UV – Ultraviolet radiation; w – Width; α – Azi-
muth; β – Solarelevation; ζ – Angle between leaf
normal and solar ray; ρ – Reflection coefficient; λ –
Leaf angle; σ – Scattering coefficient; τ – Transmission
coefficient
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bands in the solar spectrum. Light is the term
that is usually reserved for visible radiation
and it is practically identical to PAR. The
most common leaf color is green, which
means that leaves scatter more green light
than blue and red light (Fig. 1.1). Radiation
outside these boundaries is not visible nor
does it have any photosynthetic effects but it
still carries energy. As noted, NIR represents
an energy flux of similar magnitude to that of
visible radiation.

Remarkably, in non-succulent plants leaf
reflection and transmission are of similar
magnitude, both in the PAR and in the NIR
region, although leaf color is stronger in
transmission than in reflection. Unlike trans-
mission, leaf reflection contains a colorless
component of about 4 % of direct reflection
on the cuticular surface. After passage
through the cuticula the radiation is partly
absorbed and scattered into all directions,
both as transmitted and as reflected radiation.

Values for leaf reflection and leaf trans-
mission are about 0.1 and 0.4 for PAR and
NIR respectively. This means that leaf scat-
tering is about 0.2 and 0.8 in PAR and NIR
respectively for non-senescent leaves,
though the former value may differ some-
what between and within species depending
on e.g. leaf thickness, anatomy and
cholorophyll content (Lambers et al. 1998).

C. Directional Distribution

If light has a direction, what then is its direc-
tion? It is obvious for solar beams. The posi-
tion of the sun at the sky can be precisely
calculated, both in terms of solar elevation
and azimuthal position (compass position),
which is expressed as the angular distance
with respect to the south, measured in clock-
wise direction. Therefore, in the northern
hemisphere, north of the Tropics, the azi-
muth will be negative in the morning, pass
through zero around noon and be positive at
sunset. For the calculation of the solar azi-
muth and solar elevation, see Box 1.1. The
algorithm, given in this Box, is also valid for
the southern hemisphere and for the tropical
regions (Goudriaan and Van Laar 1994).

Box 1.1: Solar Coordinates

Maximum solar declination is equal to the

latitude of the tropics:

δmax ¼ 23:44π=180 ðB1:1:1Þ

Sine and cosine of solar declination δ
depend on day number tday counted from

1 January onwards:

sin δ ¼ � sin δmax cos
2π tday þ 10

� �
365:24

� �
ðB1:1:2aÞ

cos δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2δ

p
ðB1:1:2bÞ

Intermediate variables a and b dependent

on local latitude λ and solar declination δ

a ¼ sin λ sin δ ðB1:1:3aÞ
b ¼ cos λ cos δ ðB1:1:3bÞ

Daylength DL expressed in hours:

DL ¼ 12 1þ 2arcsinab
π

� �
ðB1:1:4Þ

Sine and cosine of solar elevation β, depen-
dent on solar time th (hr):

sin β ¼ aþ b cos
2π th � 12ð Þ

24
ðB1:1:5aÞ

cos β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2β

p
ðB1:1:5bÞ

Cosine of solar azimuth αs:

cos αs ¼ sin β sin λ� sin δ

cos β cos λ
ðB1:1:6aÞ

αs ¼ �arccos cos αsð Þ if th < 12

ðB1:1:6bÞ

αs ¼ arccos cos αsð Þ if th > ¼ 12

ðB1:1:6cÞ
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The apparent size of the solar disc is very
small, about half a degree in diameter, so that
the solar rays are practically all parallel and
we may consider the solar disc as a point
source of light. Objects will then cast
shadows with well-defined outlines. Diffuse
light coming from other parts of the sky will
enter the shaded areas and is additional to the
light coming directly from the solar disc.
Very small or narrow leaves, such as conifer
needles, do not cast full shade on lower
leaves if they are far enough apart. They
are then too small to mask the solar disc
completely. A rigid treatment of this partial
shade (penumbra) is outside the scope of this
study. A practical approximation is to con-
sider part of the direct sunlight as diffuse
radiation, in other words to increase the frac-
tion of diffuse radiation.

Observed values of the fraction diffuse
versus direct radiation are often not avail-
able, and one should then use statistical
approximations, for instance on the basis of
daily radiation sums (Spitters et al. 1986).
The diffuse sky radiation can be measured by
carefully shielding the sun using a small disc
mounted on a thin bar. Ideally there should
be no other shading objects that stand out
above the horizon in order to make sure that
the radiometer receives all radiation from the
hemisphere of the sky except direct solar
radiation. However, in this way we can only
measure the total diffuse radiation, not how
the radiance is distributed over the sky dome.
As a first guess the radiance is often assumed
to be uniform, the Uniform Overcast Sky
(UOC) (Monteith and Unsworth 1990). In
this situation azimuth does not matter. The
contribution of a sky portion is proportional
to the sine of its elevation (or cosine of its
zenith angle) and to its size which is
expressed in solid angles. In plane geometry
the unit for an angle of a portion of a circle is
a radian, defined as the ratio between the arc
and its radius. Similarly, for an area on a
sphere the unit for its size (its “solid angle”
expressed in steradians, sr) is given by the
ratio between the area on the sphere and the
radius squared of this sphere. In this way the
value of the solid angle is dimensionless and

does not depend on the size of the sphere
itself.

D. Radiance and Irradiance

Irradiance is an energy flux that enters a
surface and it is expressed in J s�1 m�2 or
in W m�2. Global Radiation, mentioned
above, is an example. If it is confined to a
spectral region, for instance UV, it is still an
Irradiance, but with the specification UV
Irradiance. Radiance refers to the brightness
of the radiating surface and indicates the
energy flux that is emitted per unit surface
area per unit solid angle. For an isotropically
radiating surface, the radiance is indepen-
dent of the angle of view. The solid angle
of a hemisphere is equal to 2π sr. If the sky
has a radiance with a value N W m�2 sr�1,
what will then be the corresponding irradi-
ance on the ground surface? If we consider a
small portion of the sky located at elevation
β and azimuth α, and with a very small
height dβ and width dα, its solid angle will
be cosβ dα dβ. Its contribution to the irradi-
ance at the ground will be equal to N times
sinβ cosβ dα dβ. The cosine factor arises
from the fact that the sky portions will get
narrower towards the zenith and the sine
factor arises from the angle of incidence
effect. Now, let us extend the small portion
all over the azimuth from 0 to 2π, because
azimuth does not matter anyway. We then
have an annular sky zone at elevation α and
with a solid angle 2π cosβ dβ and conse-
quently contributing N2π sinβ cosβ dβ to
the ground irradiance. In order to find the
total irradiance from a homogeneous dome
with radiance N we have to integrate this
value over a range for β from 0 to π/2. Ele-
mentary calculus shows that the result is
equal to πN. This somewhat strange result
reminds us to the fact that the unit of irradi-
ance is W m�2 whereas the unit of radiance
is W m�2 sr�1. To give an example, if the
global radiation under a UOC is equal to
100 W m�2, the radiance of the UOC is
equal to 31.83 W m�2 sr�1. It is interesting
to compare this value to that of the solar disc.
The solar disc has a diameter of half a
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degree. Its solid angle is therefore equal to
0.0598 10�3 sr (you can check this). Outside
the atmosphere the solar irradiance is equal to
1370Wm�2 and therefore the radiance of the
solar surface is equal 22.9 106 W m�2 sr�1.
Imagine the whole sky to be as bright as the
naked sun, the irradiance would then be equal
to 72 MW m�2 ! This value is also equal to
the outgoing radiation flux at the solar sur-
face. Using the equation for thermal black-
body radiation (σ T4, where T is temperature
in Kelvin) we can calculate a thermal radia-
tive temperature of 5970 K, not too far from
the observed value of the temperature of the
solar surface of 5778 K (p. 84 in Phillips
1992).

II. Modelling Radiation in Leaf
Canopies

We are going to develop a mathematical
model for the absorption and scattering of
radiation in leaf canopies. We will find
expressions for the reflection and transmis-
sion by a leaf canopy as a whole, and also for
the distribution of irradiation of individual
leaves. Leaves differ in place and orientation
and therefore their irradiation and absorption
should be a function of their position in the
leaf canopy and of their orientation towards
the sun. These expressions for radiation
absorption per leaf area are needed for the
calculation of photosynthesis and transpira-
tion, first for individual leaves, and by inte-
gration of the leaf rates also for the whole
canopy. The expressions for leaf absorption
will be continuous functions of canopy depth
where the latter is usually defined as the
cumulative amount of of leaf area per unit
soil area (Leaf Area Index, LAI) above a
given point (Monsi and Saeki 1953).
Because of the distinct character of direct
light, the functions will be different for sunlit
and shaded leaves.

We will now gradually derive such
expressions, starting with a simple model
situation of black horizontal leaves

A. Black Horizontal Leaves

A thin layer of non-overlapping horizontal
leaves with an area of ΔL m2 leaf per m2 of
ground area will intercept a same fraction
ΔL of the incoming radiation so that the
fraction transmitted will be equal to
1 – ΔL. If there are many layers of leaves,
the positioning of leaves in each subsequent
layer is supposed to be independent of that in
other layers so that each subsequent layer
will reduce the transmission by the same
fraction 1 – ΔL (Fig. 1.2). If there are
n such layers, one below the other, with leaf
positioning at random, the downward flux
just under layer n will be given by:

Id,n ¼ Id, 0 1� ΔLð Þn ð1:1Þ

where Id,n is the downward flux after n layers,
and Id,0 is the downward flux above the
crop.

Of course, the area of all leaf layers
together is equal to nΔL. So far, we have
considered leaves to be spaced in discrete
layers but it is more realistic to assume that
the leaves are homogeneously distributed.
We can represent this situation by increasing
the number of layers while proportionally
reducing the area per layer, so that the
total leaf area L is kept the same. We can
write the number of layers n as the ratio
L/ΔL:

Id ¼ Id, 0 1� ΔLð Þ L
ΔL ð1:2Þ

When ΔL approaches zero (and the number
of layers (n) becomes very large), this
expression becomes:

Id ¼ Id, 0exp �Lð Þ ð1:3Þ

Here, the depth (L) in the canopy represents
the leaf area above the level considered,
varying between zero and the total LAI.
The radiation flux that reaches the soil sur-
face can be found by substituting the value of
the LAI.

1 Light Distribution 7



B. Non-horizontal Leaves

It is an exception that all leaves are horizon-
tal. The size of the shade cast on an underly-
ing horizontal surface is normally not
identical to the area of the shading leaf but
it will differ by a factor k. For a direct beam
and a single leaf orientation, the value of
k will be equal to cos(ζ)/sin(β) (Fig. 1.3), in
which ζ stands for the angle between the leaf
normal and the solar rays and β stands for the
angle between the horizon and the solar rays
(“solar elevation”). By the same procedure
as given earlier for horizontal leaves the
equation for exponential extinction now
becomes

Id ¼ Id, 0exp �kLð Þ ð1:4Þ

Because of its function as a multiplier in the
expression for extinction, k is generally
called extinction coefficient. The theoretical
extinction coefficient for a leaf canopy with
leaves with different leaf orientations can be
found by weighted addition of the values of
cos(ζ) for the different leaves weighted

for their presence in the leaf angle
distribution.

The exponential extinction equation is a
powerful approximation of real-world radia-
tion profiles in plant canopies. However, the
conditions for which it was derived are never
satisfied in practice. Therefore, empirical
values of k, which can be obtained by fitting
this equation to observed values of Id versus
L, may vary considerably in a range between
0.5 and 1. The physical meaning of k is the

β

ζ

Fig. 1.3. A flat leaf, inclined with angle ζ with respect
to the solar rays. The sun has an elevation angle β. The
size of the shade on the ground is equal to the size of
the leaf multiplied by cos ζ/sinβ

ΔLLayer 1

Id,1 = Id,0 (1-ΔL)

ΔLLayer 2

Id,2 = Id,1 (1-ΔL) = Id,0(1- L)2

Layer n

Id,n = Id,(n-1) (1-ΔL) = d,0(1-ΔL)n

ΔL

I

Δ

Fig. 1.2. Scheme of leaf layers and fluxes of downward and upward radiation in a model canopy with a
horizontal leaf angle distribution
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average absorbed radiation per leaf area as a
fraction of the downward radiation flux at the
same canopy depth. For low solar elevation,
the irradiation of the leaves may largely
exceed the irradiation of a horizontal sur-
face, so that the value of kmay then be larger
than unity, especially when the leaves have a
dominant upright position. The description
of leaf angle distribution and its effect
follows next.

C. Leaf Angle Distribution

The orientation of a single leaf can be
specified by its normal, the vector perpen-
dicular to the leaf surface, for which we need
its inclination above the horizon and also its
azimuth. For a horizontal leaf the normal
points towards the zenith and no azimuth is
needed, but in general we need the compass
direction (azimuth) of the leaf normal as
well, for instance West. Figure 1.3 is drawn
such that the azimuthal direction of the leaf
normal is precisely towards the sun, but this
is in general not the case. Any orientation is
possible and a full description of the leaf
angle distribution consists of its statistical
distribution over inclination and azimuth.
We now make the important simplifying
assumption that the leaves do not have an
azimuthal preference, in other words they
are not preferentially oriented towards a cer-
tain compass direction, even though they
may have a fixed inclination with respect to
the horizon. The second simplifying assump-
tion is that their distribution of inclination is
the same as that of the surface elements of a
sphere. This distribution is known by differ-
ent names that all mean the same thing: the
spherical –, the isotropic – and the random
leaf angle distribution respectively (de Wit
1965; Ross 1981). In crop science it is cus-
tomary to refer to the leaf angle by the incli-
nation of its surface, not to that of its normal.
Therefore the leaf angle λ of a vertically
standing leaf is set at 90� (π/2 radians),
although its normal is in fact horizontal.
Using this convention, the density distribu-
tion of a spherical leaf angle distribution is
given by cos(λ), in accordance to the fact that

the density of the surface elements of a
sphere per inclination angle decreases
towards the top of the sphere.

When illuminated by a direct beam, a
sphere intercepts an area that is identical to
its largest cross-section, which is a quarter of
the external sphere surface area. The total
area intercepted by leaves with a spherical
leaf angle distribution, however, is not a
quarter but half of the leaf area because the
leaves are initially considered not to shade
each other. We could think of them as of the
fragments of a shattered sphere that keep
their original orientation wherever they may
be. Now the ratio between the total leaf area
and the corresponding shade area is identical
to that of a hemisphere that is oriented
towards the sun. At a solar elevation β, the
shade that a hemisphere, precisely oriented
towards the sun, casts on a horizontal ground
surface, is equal to 0.5/sin(β) times its own
area (Fig. 1.4). This ratio 0.5/sin(β) gives
also the value of the extinction coefficient
for black leaves with a spherical leaf angle
distribution. It varies between 0.5 when the
sun is in zenith, passing through 1 when the
sun is at 30� elevation and getting infinitely
large when the sun reaches the horizon. The
canopies of several plant species have leaf
angle distributions that are indeed approxi-
mately spherical (e.g. maize and sorghum),
but other plant species (e.g. many grasses
and Eucalyptus) tend to have more vertically
inclined leaves whereas other species have
more horizontal ones. The above concept of
a sphere can be extended to an ellipsoid
whose height to width ratio reflects the
extent to which leaves are vertically inclined.

β

Fig. 1.4. For a spherical leaf angle distribution the
relative size of the shade is equal to 1/(2 sinβ)

1 Light Distribution 9



A description of that model can be found in
Campbell (1990).

For purposes of calculation of canopy
photosynthesis, a resolution of leaf angle
distribution into just three equally spaced
classes of leaf angle between 0 and 90� is
sufficient (Goudriaan 1988).

D. Leaf Scattering and Canopy Reflection

Leaves are not black, which means that they
reflect and transmit some of the radiation
that they receive. The fraction that they
reflect is called leaf reflection coefficient
and the fraction that they transmit is called
leaf transmission coefficient. Reflection and
transmission together is called scattering.
Conservation of energy requires that the
sum of reflection, transmission and absorp-
tion is equal to incident radiation. When
radiation is scattered by leaves it may be
reabsorbed by other leaves but it may also
disappear towards the sky or to the soil sur-
face. Normally the radiation level decreases
downward in a crop canopy. The soil will
also receive some radiation and reflect
some of it. The theory of the relation
between leaf scattering and the resulting
radiation profile in the canopy, and between
the leaf scattering and the reflection coeffi-
cient of the canopy as a whole is based on the
work of Kubelka and Munk (1931), who
have written an analysis of radiation absorp-
tion and scattering in homogeneous
substances such as paint. Their analysis can
be applied to leaf canopies. In the most con-
cise version of their analysis there is only one
layer of leaves above a soil surface that has a
reflection coefficient ρsoil. The leaves are
horizontal and non-overlapping, similar to
the situation presented above for black
leaves. They are all at precisely the same
height so that they do not shade each other.
Their total area is ΔL m2 leaf per m2 of
ground area. Reflection by leaves and soil
and also transmission by leaves is assumed
to be independent of the direction of the
incident radiation. With these assumptions
there are just two directions of radiation

flux, one downward and one upward (the
“two-stream simplification”) as shown in
Fig. 1.5.

Out of the incoming downward radiation
Id,0,the leaves intercept a fraction k’ΔL.
The apostrophe is used to indicate the
k value for non-scattering, thus for inter-
ception only. Subsequently a fraction τleaf
will be scattered downward and a fraction
ρleaf will be scattered upward. Transmitted
and scattered fluxes together constitute a
downward flux Id,1 under the leaf layer, of
which the underlying soil surface reflects a
fraction ρsoil. The upward flux Iu,1 between
the soil surface and the leaf layer is therefore
given by ρsoil times Id,1. A fraction 1 – k’ΔL
of this intermediate upward flux will pass
the leaf layer immediately but a fraction
ρleaf out of the complementary fraction
k’ΔL will be reflected back to the soil sur-
face and likewise a fraction τleaf will be
transmitted towards the sky. The two down-
ward and the two upward fluxes are related
by equations that are now known as the
Kubelka-Munk equations. Using our
symbols we have for the intermediate fluxes
Id,1 and Iu,1:

Id, 1 ¼ 1� k
0
ΔL 1� τleafð Þ

h i
Id, 0 þ k

0
ΔLρleafIu, 1

ð1:5aÞ
Iu, 1 ¼ ρsoilId, 1 ð1:5bÞ

These two linear equations with the two
unknowns Id,1 and Iu,1 can be solved by

Id,0

Id,1

Iu,0

Iu,1

Fig. 1.5. Avery sparse leaf canopy with only one layer
above a soil surface. The incoming flux Id,0 is the
starting point for the calculation of the transmitted
and reflected fluxes
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algebraic elimination of the unknowns,
which gives:

Id, 1 ¼
1� k

0
ΔL 1� τleafð Þ� �

Id, 0

1� k
0ΔLρleafρsoil

ð1:6aÞ

Iu, 1 ¼ ρsoil
1� k

0
ΔL 1� τleafð Þ� �

Id, 0

1� k
0ΔLρleafρsoil

ð1:6bÞ

The upward flux Iu,0 above the leaves is
related to the intermediate upward flux and
the incoming downward flux as:

Iu, 0 ¼ 1� k
0
ΔL 1� τleafð Þ

h i
Iu, 1 þ k

0
ΔLρleafId, 0

ð1:7Þ

It can now be immediately expressed in the
incoming downward flux alone by substitu-
tion of Eq. 1.6b:

Iu, 0 ¼
ρleaf 1� k

0
ΔL 1� τleafð Þ� �2

1� k
0ΔLρleafρsoil

þ k
0
ΔLρleaf

( )
Id, 0

ð1:8Þ

The ratio Iu,0 /Id,0 is the same as the reflection
coefficient of the leaf-soil system, which we
denote by ρsystem. We have now found the
expression for the reflection coefficient of
the leaf soil-system as a function of leaf
and soil properties for the case of one single
leaf layer above a bare soil surface:

ρsystem ¼ ρsoil
1� k

0
ΔL 1� τleafð Þ	 
2

1� k
0ΔLρleafρsoil

þ k
0
ΔLρleaf

ð1:9Þ

What about a canopy with a large LAI? In
principle it is possible to add more layers, thus
increasing the number of linear equations and
solve them by matrix inversion, but this is
cumbersome and it does not result in a neat
expression. There is a better method.

1. The Reflection Coefficient of a Leaf
Canopy with a Large Leaf Area Index

If we have a leaf canopy with a very large
leaf area index, the soil underneath does not

have any effect on the reflection coefficient
of the canopy. We may apply the expressions
that we have just derived, to the top leaf layer
of the large leaf canopy. This time however,
the entire leaf-canopy has the same role as
the soil surface in the earlier calculation,
so that we can replace both ρsoil and ρsystem
by ρc:

ρcanopy ¼ ρc
1� k

0
ΔL 1� τleafð Þ� �2

1� k
0ΔLρleafρc

þ k
0
ΔLρleaf

ð1:10Þ

This expression results in a second order
equation in ρc, which can of course be solved
(see Eq. 1.21), but before doing so it is useful
to realize that this equation is valid locally at
any depth in the canopy as long as the effect
of the soil surface can be neglected. In other
words, well above the soil surface the ratio
between upward and downward radiation
fluxes is constant. This constancy of ratio
will now be used.

2. Extinction of Radiation Within the Leaf
Canopy

There must also be constancy of ratio
between the fluxes going down or going up
at either side of any layer with same size ΔL,
because there is no other difference in
properties and environment of the layers
than the magnitude of the fluxes. A constant
ratio per leaf area index ΔL is equivalent to
exponential decrease of radiation at a con-
stant value of extinction coefficient k. It
should be remembered that this is only true
under the condition that there is no variation
in leaf optical properties. Exponential
extinction was derived before for the case
of black horizontal leaves (zero scattering).
If the leaves do not absorb all radiation, the
extinction coefficient k will be smaller than
the value of k’ for black leaves (and which is
equal to unity for black horizontal leaves).
What is the value now in terms of leaf reflec-
tion and absorption coefficient?

The expression can be found by solving
the differential equations for upward and
downward fluxes, but it is also possible to
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use the expression for the net radiation flux,
which is the difference between the down-
ward and the upward flux. The absorption
per leaf area is identical to the rate of
decrease of the net flux per leaf area index
at leaf level L. For the exponential function
exp(�kL) this rate of decrease is equal to its
first derivative k exp(�kL) times the net flux
above the canopy, so that net absorbed radia-
tion per leaf area is given by:

Ic ¼ Id � Iuð Þkexp �kLð Þ ð1:11Þ

As Iu is equal to Id times ρc, this expression is
identical to

Ic ¼ Id 1� ρcð Þkexp �kLð Þ ð1:12Þ

On the other hand, the absorption per leaf
area must be equal to the sum of the radiation
absorbed from above and the radiation
absorbed from below. A fraction k0
(1 – τleaf – ρleaf) will be absorbed out of
each of these two fluxes. This leads to a
second expression for the absorbed radiation
per leaf area, which must of course be equal
to the one above:

Ic ¼ 1þ ρcð Þk0
1� τleaf � ρleafð Þexp �kLð ÞId

ð1:13Þ

Combining the two expressions for the
absorbed radiation per leaf area gives:

1� ρcð Þk ¼ 1þ ρcð Þk0
1� τleaf � ρleafð Þ

ð1:14Þ

A second relation between k and ρc can be
found by using the upward scattering per leaf
area at depth L, keeping in mind that the total
reflected radiation consists of the
contributions of upward scattering of all
leaf layers together. This upward scattering
per leaf layer at depth L is equal to k0(τleaf Iu,
L + ρleaf Id,L) or to k0Id,0 (τleaf ρc + ρleaf) exp
(�kL). Not all of the radiation that is
scattered upward at depth L will reach the
top of the crop canopy because of partial
masking by leaves overhead. This

interception proceeds in the same way as
the extinction of radiation by black leaves,
because only the direct lines of visibility
count. Therefore only a fraction exp(�k0L)
and not exp(�kL) will escape to the top of
the canopy. This means that the total
reflected radiation must be equal to the inte-
gral of the product of upward scattering and
this escape fraction, so that the crop canopy
reflection coefficient is given by

ρc ¼
Z 1

0

�
τleafρc þ ρleaf

�
k0exp �kLð Þexp �k0Lð ÞdL

ð1:15Þ

or

ρc ¼
τleafρc þ ρleaf

k0 þ k
k0 ð1:16Þ

The two Eqs. 1.14 and 1.16 relate k and ρc to
the canopy property k0 and the leaf properties
τleaf and ρleaf. Algebraic manipulation leads
to the explicit expressions:

k ¼ k
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� τleafð Þ2 � ρleaf2

q
ð1:17Þ

ρc ¼
ρleaf

k=k
0 þ 1� τleaf

ð1:18Þ

and also to

k ¼ k
0
1� τleafð Þ 1� ρc

2

1þ ρc2
ð1:19Þ

In Sect. I.B, we have seen that leaf reflection
and leaf transmission do not differ much,
each being practically equal to half the scat-
tering coefficient σleaf. The equations for
k and ρc can then be further simplified to
(Cowan 1968):

k ¼ k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σleaf

p
ð1:20Þ

ρc ¼
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� σleaf
p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σleaf

p ð1:21Þ

The latter two equations occur frequently as
building blocks in simulation models for
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plant growth. This equation for ρc appro-
aches σleaf/4 (or ρleaf/2) when the leaves
have a small reflection and transmission
coefficient. This is usually the case in the
PAR region of the spectrum where reflection
and transmission coefficient are about equal
to 0.1. Therefore the reflection coefficient of
a closed canopy in the PAR region is typi-
cally about 5 %. Note that this calculation
does not consider the effect of solar elevation
on ρc that occurs for non-horizontal leaf
angle distributions. In Sect. IV under
Eq. 1.34, I will show that ρc will then be
larger than 5 % under low solar elevation
and smaller under high solar elevation.

III. Absorption of Radiation in Row
Crops

A. Directional Distribution of Incoming
Radiation

So far I have treated canopies as being hori-
zontally homogenous. This may apply to
uniformly sown crop stands or natural
mono-species stands. Most vegetation how-
ever is horizontally heterogenous, there
being different species or plants of the
same species forming discontinuous
canopies. Further in the book some of these
cases will be treated e.g. mixed species veg-
etation (Chap. 14 Anten and Bastiaans 2016)
and 3D architecture of plants (Chap. 8, Evers
2016). Here I discuss a specific but very
common example of a discontinuous stand,
the row crop.

The irradiance on a horizontal surface
coming from a well-defined sky portion, for
instance, a window, can be calculated by a
double integration of sky radiance N(α,β)
over azimuth α and elevation β , using the
formula:

I ¼ 1

π

Z
N α; βð Þ sin β cos βdβdα ð1:22Þ

If the radianceN is the same for all directions
(Uniform Overcast Sky), N can be used as a
constant multiplier in the integration. In the

case that the boundaries of azimuth and
elevation are independent, the integration is
straightforward. To give an example, a hori-
zontal circular window in a zenithal position
at height h and with radius r is bounded at
arctan(h/r) for all azimuthal values, resulting
in a relative irradiance of r2/(h2 + r2).

B. Row Crops

A row crop has heterogeneity, it has the
leaves clustered into the rows. Due to clus-
tering, row crops absorb less radiation as
compared to a fully homogeneous crop.
Radiation absorption is the primary factory
that determines crop photosynthesis and
therefore it is to be expected that a row
crop has a smaller rate of photosynthesis
than a homogeneous crop at the same LAI.
It is our goal to quantify this reduction. We
know that row crops are common practice in
agriculture and it would therefore be strange
if the reduction of photosynthesis is large.
We investigate the reduction by considering
model situations with increasing complexity.

1. Infinite LAI, Black Leaves

At the soil surface on a path between rows,
the sky is only partly visible (Fig. 1.6). The
outline of a row is simplified to a rectangular
hedge, at height h, width w, separated by path
widths p. For simplicity, the crop field is
considered infinitely large and so row length
does not matter. It is illustrative to use ortho-
graphic projection to find the relative irradi-
ance (Monteith and Unsworth 1990). In the
orthographic projection the sky portion that
is visible is first projected onto the imaginary
dome of the upper hemisphere which is sub-
sequently projected vertically downward
onto its horizontal circular base. The relative
size of the projected sky portion on the area
of the base is equal to its relative contribu-
tion to the irradiance. The correction for the
sine of incidence is automatically taken into
account by the inclination of a piece on the
sky dome when it is vertically projected.
Some types of fish-eye lenses do indeed pro-
duce an orthographic projection, but this
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type of projection does not retain the solid
angle because vertical angular distances near
the horizon will get compressed. In Fig. 1.7
the orthographic projection of the visible sky
is drawn for a point halfway the path between
the two adjacent rows.

The relative irradiance at such a point is
given by the projected area as a fraction of
the whole circle area. This fraction is identi-
cal to half the sum of the two cosine values of
α1 and α2 in Fig. 1.6, which can be calculated
from row height and lateral distance of the
point. The fraction value will slightly vary
from a maximum in the middle of the path to
the minimum value at each side of the row.

Its average value over the path is found by
analytical integration (Goudriaan 1977) and
is equal to

Ipath ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ p2

p
� h

p
ð1:23Þ

In an extremely dense row crop with black
leaves, this is all radiation that is transmitted.
The complementary fraction is absorbed by
the crop.

This model situation is unrealistic: the
row structure is so dense that no radiation
can penetrate to the soil surface under a row
itself because it has infinite LAI and it is
completely black. Yet, it is a useful starting
point for the situation in which radiation
does penetrate the rows.

2. Non-infinite LAI, Black Leaves

A precise geometric calculation is possible
(Gijzen and Goudriaan 1989; Röhrig
et al. 1999; Colaizzi et al. 2012) but it is
rather complicated. It involves the distinc-
tion of the zones delimited by the row
edges of many subsequent adjacent rows.
Here, we will aim at a much faster approxi-
mation that is sufficiently accurate in prac-
tice and that also gives more insight.

To do so, we distinguish two
configurations at the same averaged LAI
between which the row crop is situated. The
first one is the completely homogeneous
crop that we have considered already. The

a1 a2 

Fig. 1.6. Cross-section
through a simplified row
crop. The angles α1 and
α2 delimit the part of the
sky that is visible from the
given point at the soil
surface

a2 a1 

Fig. 1.7. The rows and the gap of the path as seen
in a fish eye projection from the same point as in
Fig. 1.6
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radiation level at the soil surface under this
crop is given by:

Shomogeneous ¼ exp �kLtð Þ ð1:24Þ

where Lt is the total LAI. In the other one all
rows are pushed together so that we get a
new homogeneous, but denser, crop at part of
the total land area being equal to the sum
of all row area. The local leaf area index,
Ltcomp, of this compressed crop is equal
to the original LAI multiplied by the ratio
(w + p)/w. The radiation level at the soil
surface under this compressed crop is
equal to:

Scomp ¼ exp �kLtcomp

� � ð1:25Þ

In the actual row crop we have two types of
soil surface, one right under row itself and
one right under the path.

The radiation level at the soil surface of
the path contains of course the unobstructed
component Ipath (Eq. 1.23) but in addition
there is radiation penetrating through the
rows adjacent to the path. The view factor
for this radiation is complementary to Ipath.
As an approximation we assume that for
laterally penetrating light the row crop is
identical to a homogeneous crop, so that the
fraction laterally penetrating is identical to
Shomogeneous (as it turns out, this assumption
causes a small systematic error to which I
will come back right below Eq. 1.29).

The sum of the two components is now
given by

Spath ¼ Ipath þ 1� Ipath
� �

Shomogeneous ð1:26Þ

For the radiation level at the soil surface
right under the row we follow a similar
approach: it is also separated in two parts,
one transmitted through the top of the row
and one transmitted through the sides of the
row. For the first component we need the
view factor of the row Irow, in the same way
as was done for the path (Fig. 1.6), but this
time multiplied by extinction in the row. The
extinction is calculated with the LAI value
within the row, which is the same as that of

the compressed crop. For the radiation that
enters laterally we use the LAI value of the
homogeneous crop (averaged Lt) multiplied
by the view factor that is complementary to
Irow. Combining the two components we find
for the Srow:

Srow ¼ IrowScomp þ 1� Irowð ÞShomogeneous

ð1:27Þ

For the entire soil surface we use the
weighted average of the two components
for path and row:

Ssoil ¼ wSrow þ pSpath
wþ p

ð1:28Þ

The fraction of radiation absorbed by the
crop is the complement of the fraction of
radiation absorbed by the soil surface:

Fcrop ¼ 1� Ssoil ð1:29Þ

However, one correction to the equation for
Spath is still needed, because in the present
form the radiation absorbed by the crop for
near zero values of leaf area index deviates
from kL. We know that the first derivative of
absorbed radiation with respect to L at L ¼ 0
should be equal to k because there is no
mutual shading in the limit transition to
zero LAI. Algebraic analysis shows that
this requirement is met if Spath is corrected
by a small term in the lateral view factor:

Spath ¼ Ipath þ 1� Ipath � 1� Shomogeneous

� ��
Ipath � Irow
� ��

Shomogeneous

ð1:30Þ

Apparently the lateral penetration of radia-
tion in a row canopy to the bottom of the path
is slightly different from that in a homoge-
neous canopy, which was assumed in the
simpler equation. Usually the correction is
small, but in a sparse row crop with narrow
rows and wide paths it cannot be ignored.
This correction is a price that must be paid
for the brevity of the approximative
equation.
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3. Loss of Radiation due to Plant
Arrangement in Rows

The equation for the radiation that is lost on
the path (Eq. 1.23) is an upper limit to the
relative loss. It shows that the losses will
rarely exceed 30 % and usually be in the
order of 10–20 %. In a homogeneous crop
there is also transmission to the soil surface
and in fact we should compare the result
of Eq. 1.28 (Ssoil) with that of Eq. 1.24
(Shomogeneous). The difference between these
two values gets smaller as LAI gets smaller.
For LAI ¼ 0.5 the relative loss will only be
about 5–10 %.

A general conclusion is that there only a
moderate loss of intercepted radiation due to
row cultivation as compared to that in a
homogeneous crop.

The same conclusion proably applies to
even more complicated plant arrangements,
such as in tree nurseries (Pronk et al. 2003)
in which small trees are regularly positioned
between intersecting rows. A more sophisti-
cated approach of a similar plant arrange-
ment can be found in Röhrig et al. (1999).

IV. Direct and Diffuse Light
in Photosynthesis Modeling

Leaf photosynthesis is a curvi-linear func-
tion of radiation absorption that gets
saturated (i.e., it levels off) at high light
intensities. If we simply multiplied the aver-
age radiation absorption and quantum effi-
ciency, we would end up with a gross
overestimation of canopy photosynthesis.
There are two major causes of variation of
radiation absorption in a leaf canopy: first
the exponential extinction with increasing
canopy depth, and second the unevenness
among sunlit and shaded leaves, even at the
same height within the canopy. Thus we need
to consider the distinction between direct
beam radiation and diffuse radiation (both
diffuse sky radiation and scattered light in
the canopy) that is intercepted by all leaves.
This section therefore deals with the

modeling of diffuse and direct radiation in
relation to canopy photosynthesis.

With a completely overcast sky there is no
direct radiation, and the radiation extinction
in this situation is treated by assuming a
single value for the extinction coefficient
k for diffuse light, called kdif, and likewise
for canopy reflection, ρdif, usually with nom-
inal values of 0.7 and 0.05 respectively.
These values can be refined if needed. If we
consider a leaf canopy with an LAI value
that is small, (less than 1), we make a small
error if we assume that all leaves have the
same level of radiation absorption. A good
estimate for this radiation absorption can be
obtained by using Eq. 1.12, which gave the
radiation absorption at canopy depth L. We
should however be careful about the value
for L that we are going to use. Clearly LAI
itself is not correct: we then get the radiation
absorption at the bottom of the canopy which
is an underestimate for the average value. A
better estimate is the one in the middle at one
half of LAI, let us call it Lmiddle. The expres-
sion that we thus get for radiation absorption
per leaf area is:

Ic, dif ¼ Idif 1� ρdifð Þkdifexp �kdifLmiddleð Þ
ð1:31Þ

Energy conservation requires that total LAI
(Lt) times this quantity be identical to the
difference in net radiation above and below
the canopy. The expression for net radiation
at any level L in the canopy is Idif (1 – ρdif)
exp(�kdif L), and so the total absorption is
equal to Idif (1 – ρdif)(1 – exp(�kdif Lt)). The
result of Equation 1.31 times LAI is not
identical to this total absorption, but it is a
very good approximation, getting better as
LAI gets smaller. In mathematical terms, the
first derivative of a function of x is
approximated by its difference over dx
divided by dx, as dx approaches zero.
Check for yourself at, for instance, Lt ¼ 0.4
and see if you also get 0.23201 and 0.23125
times Idif, using the nominal values of k and ρ
at 0.7 and 0.05 respectively.
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The reason towork with the leaf absorption
level in the middle, rather than with the dif-
ference of net radiation above and below the
layer divided by its layer size, is anticipation
upon the numerical procedure of Gaussian
integration that we will use later in a more
general model for canopy photosynthesis.

The Gaussian integration procedure solves
the problem that the above approximation
begins to fall short as LAI gets larger. For
instance, at Lt ¼ 5, the balance method
gives 0.921 of Idif, whereas the midpoint
method of Eq. 1.31 gives 0.578 of Idif which
is far too small. As the balance method gives
the right result for the total radiation absorp-
tion, you may wonder why not just using this
method of balancing above and below the leaf
canopy. However, the problem we then get is
that we overestimate canopy photosynthesis
due to the mentioned saturation of leaf photo-
synthesis at high radiation levels. The best
way out of this problem is to calculate leaf
photosynthesis at a number of carefully cho-
sen levels in the leaf canopy, using the radia-
tion absorption in situ (see Box 1.2). Having
chosen these points, the radiation absorption
per leaf area is calculated at each point, sub-
sequently the leaf photosynthesis that goes
with it, and finally leaf photosynthesis over
the whole canopy is found by integration. For
reasons of balance checking it is sensible to
do the integration for absorbed radiation as
well, and compare it with the result of the
balance method for net radiation.

Box 1.2: Example of Calculation

of Photosynthesis When There Is only

Diffuse Radiation

C Input data, normally available through
subroutine arguments:
C LAI ¼ 3., REFH ¼ 0.05, KDF ¼ 0.7,
PARDF ¼ 100., EFF ¼ 0.011, AMAX ¼ 1.
C Units mg(of CO2), m, s, J (of PAR),
C Gaussian numbers

DIMENSIONWGAUSS(3), XGAUSS(3)
DATA IGAUSS/3/
DATA XGAUSS/0.112702,0.5,0.887298/
DATAWGAUSS/
0.277778,0.444444,0.277778/

C Canopy photosynthesis and absorbed
radiation are initialized at zero:

PHOT ¼ 0.
RADABS ¼ 0.
DO I ¼ 1,IGAUSS

C Calculate the three Gaussian depths
LAIC ¼ XGAUSS(I)*LAI

C Calculate absorbed radiation at that depth
VISDF ¼ PARDF*(1. –REFH)
*KDF*EXP(�KDF*LAIC)

C Calculate the resulting rate of
photosynthesis

PHOTL ¼ AMAX*(1. – EXP
(�EFF*VISDF/AMAX))

C Weighted addition
PHOT ¼ PHOT + WGAUSS(I) *
PHOTL
RADABS ¼ RADABS + WGAUSS
(I)*VISDF

ENDDO
C Calculate totals from the mean values:

PHOTT ¼ PHOT*LAI
RADBST ¼ RADABS*LAI

Up to this point we have dealt with canopy
photosynthesis under an overcast sky with
just diffuse radiation.

If the sun shines there is also a large
unevenness in the distribution over sunlit
and shaded leaves. You can appreciate this
in a forest understorey where sun flecks are
considerably brighter than the rest of the
understory. First the diffuse component in
incoming radiation must be singled out
(Spitters et al. 1986). The incoming diffuse
radiation can be dealt with in the same way
as above, but in addition all leaves will
receive radiation originating from the direct
component. As mentioned before, the sunlit
leaves receive the direct radiation, but also
all leaves, including the sunlit ones, will
receive a small amount from scattering by
directly illuminated leaves. This additionally
scattered radiation is intercepted on its turn
and it is decreasing both, as goes down and
as it goes up into the canopy. This secondary
illumination seems to burden us with a com-
plicated iterative problem, but it is possible
to implicitly take care of this iteration, in the
same way as it was handled in Eq. 1.12 for
absorbed radiation at the leaf level. The
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coefficients for leaf scattering were already
incorporated into canopy reflection and
extinction by using Eqs. 1.20 and 1.21.

By setting apart the incoming diffuse
component, the direct radiation component
can be treated as if the rest of the sky is
black. Direct radiation is intercepted and
partly scattered, but no matter how large
this scattering, it is lost from the direct
beam. This means that the direct beam will
follow an exponential extinction curve with a
k-value that was derived earlier for black
leaves (k ¼ 0.5/sin(β) for a spherical leaf
angle distribution), which we will denote by
kdir. The fraction of sunlit leaves at canopy
depth L is now given by exp(�kdirL) and it is
identical to the frequency of sunflecks at
that same level. Conversely, the fraction of
shaded leaves is equal to its complement. The
incidence angle of the direct beam is usually
not perpendicular to a leaf (Fig. 1.3), which
must be taken into account in the calculation
of the radiation absorbed on a leaf area basis.
As explained earlier and implied in the value
of kdir, for a spherical leaf angle distribution
the average sine of incidence (or cosine
to the leaf’s normal) has a value of 0.5,
irrespective of solar height, whereas the
actual value of the sine of incidence for an
individual leaf may vary between 0 and 1. In
the procedure for calculating canopy photo-
synthesis this variation is taken into account
by integration over the sine of incidence
while allowing for its frequency distribution.
Here again Gaussian integration will be
used. The frequency distribution of leaf
area with the sine of incidence is simple for
a spherical leaf angle distribution: it is
uniform between the values 0 and 1.

The effect of scattering needs special
attention as it implies a redistribution of
radiation from sunlit leaves to shaded leaves.
The sunlit leaves absorb a fraction (1 � σ) of
what is incident upon them, and then they
scatter the fraction σ into all directions,
which in turn is intercepted by both other
sunlit leaves and by shaded leaves. We
assume that there is no difference between
sunlit and shaded leaves at the same canopy

height as far as the absorption of the
scattered radiation is concerned.

The mean total absorption rate at depth L,
averaged over both sunlit and shaded leaves
is given by:

Imean,dir ¼ Idir 1� ρcð Þkexp �kLð Þ ð1:32Þ

where k is the overall extinction coefficient

given by k
0 ffiffiffiffiffiffiffiffiffiffiffi

1� σ
p

. This average total
absorption is the sum of absorption of direct
radiation in sunlit leaves only and of
scattered, diffused radiation in both sunlit
and shaded leaves. The first term, the absorp-
tion rate of the direct radiation in the sunlit
leaves only, must be equal to:

Ic, dir ¼ Idir 1� σð Þk0
direxp �k

0
dirL

� �
ð1:33Þ

which is smaller than Imean,direct. The
difference between Eqs. 1.32 and 1.33,
defined by Ic,sca ¼ Imean,direct – Isunlit,direct,
represents absorption of scattered radiation
(secondary, but also tertiary, etc), which is
the same for all leaves at that same height in
the canopy, whether sunlit or shaded.

For PAR the scattering coefficient is about
0.2 which means that tertiary and higher
order scattering can be ignored. A mathe-
matical series development shows that the
first order approximation of the difference
Imean,direct – Isunlit,direct for a spherical leaf
angle distribution is given by

Isca ¼ σ
1

2 1þ 2sin βð Þ þ
L

8sin 2β

� �
exp � 2L

sin β

 �
ð1:34Þ

The integral of this expression over the
whole canopy from 0 to infinity is equal to
σ (1 + 4sin β)/(2 + 4 sinβ), which varies
between σ/2 for very small solar heights
passing 3 σ/4 at 30� solar height to 5 σ/6
for a zenithal position of the sun. Because
the primary scattering is equal to σ itself, the
remainder must have escaped as radiation
reflected by the canopy (at infinite LAI
there is no absorption by the soil surface).
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This means that the reflection coefficient of
the canopy is equal to σ/(2 + 4 sinβ) which is
a decreasing function of solar height. At 30�
solar height this is equal to σ/4, the same as
for a horizontal leaf angle distribution. Thus,
for a lower sun most canopies will reflect a
slightly larger fraction and for a higher sun
they will reflect a slightly smaller fraction.

This “second-hand” absorbed radiation
enhances total crop photosynthesis particu-
larly because the shaded leaves will use it
much more efficiently than the sunlit leaves.
Finally the absorption from the diffuse sky
radiation (see Eq. 1.31) (that we had tempo-
rarily set apart) must be added to get the total
absorption rate of diffuse radiation, Ic,sh,
which is common to sunlit and shaded
leaves:

Ic, sh ¼ Ic, dif þ Ic, sca ð1:35Þ

The rate of photosynthesis of the shaded
leaves at the canopy depth L can now be
calculated. Their contribution to crop photo-
synthesis on a ground area basis still requires
multiplication by the fraction shaded which
is equal to 1 – exp(�kdirL).

To get the photosynthesis of the sunlit
leaves the absorption rate of direct light
should be added to the absorption rate for
the shaded leaves that we have just obtained.
On a ground area basis this absorption rate of
direct light is given by Eq. 1.33. On a leaf
area basis it is equal to (see also Fig. 1.3):

Ic, su ¼ Idir 1� σð Þ cos

ζsin β
ð1:36Þ

with Ic,sh the total absorption rate of diffuse
radiation, ζ the angle between the leaf nor-
mal and the solar beam and β the solar incli-
nation angle. For horizontal leaves, cos(ζ) is
equal to sin(β) so that the photosynthesis rate

of the sunlit leaves can be immediately cal-
culated, but for any other leaf angle distribu-
tion cos(ζ) varies and we need another
integration over cos(ζ) that is nested within
the integration over canopy depth. For a
spherical leaf angle distribution (see also
Fig. 1.4) cos(ζ) varies uniformly between
0 and 1.irrespective of solar height.

We can now choose a photosynthesis-light
response curve in order to calculate the con-
tribution of the sunlit leaves at the consid-
ered canopy depth L. For the often-used
negative exponential function Amax (1 – exp
(�εI/Amax)) an analytical solution exists for
this case, and with I given by Idir cos(ζ)
it is equal to

Amax 1þ Amax= εIdirð Þ 1 exp �εIdir=Amaxð Þð Þð Þ
ð1:37Þ

with Amax the photosynthetic at saturating
light and ε the initial slope of the light
response curve (i.e., the apparent quantum
yield). Other equations can be used such as
the non-rectangular hyperbola which also
includes a curvature factor (Marshal and
Biscoe 1980; see Chap. 9 Hikosaka
et al. 2016). This expression could be used
in a numerical model but there are two
reasons not to do so: first there is a zero
division for Idir ¼ 0, and second it excludes
the use of another light response curve. It
does, however, give a chance to check the
numerical performance of the Gaussian inte-
gration procedure. For ε Idir/Amax ¼ 1 the
analytical solution gives 0.3678794 Amax

whereas the numerical three-point approxi-
mation gives 0.3678797 Amax, so that in this
situation the Gaussian integration is
extremely accurate.

A modelling example of the nested Do –
loop is given in Box 1.3.
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Box 1.3: Example of Calculation of Canopy

Photosynthesis When There Is also Direct

Radiation

C Input data, normally available through
subroutine arguments:
C LAI ¼ 3., KDF ¼ 0.7,
PARDF ¼ 100., PARDR ¼ 200., EFF ¼ 0.011
C AMAX ¼ 1.,SIGMA ¼ 0.2,
SINB ¼ 0.7
C Units mg(of CO2), m, s, J (of PAR),

REFH ¼ (1.-SQRT(1.-SIGMA))/
(1. + SQRT(1.-SIGMA))
REFS ¼ REFH*2./(1. + 2.*SINB)
KBL ¼ 0.5/SINB
KDRT ¼ KBL*SQRT(1.-SIGMA)

C Gaussian numbers
DIMENSIONWGAUSS(3), XGAUSS(3)
DATA IGAUSS/3/
DATA XGAUSS/0.112702,0.5,0.887298/
DATAWGAUSS/
0.277778,0.444444,0.277778/

C Canopy photosynthesis and absorbed
radiation are initialized at zero:

PHOT ¼ 0.
VISABS ¼ 0.
DO I ¼ 1,IGAUSS

C Calculate the three Gaussian depths
LAIC ¼ XGAUSS(I)*LAI

C Calculate absorbed radiation at that depth
VISDF ¼ PARDF*(1. –REFH)
*KDF*EXP(�KDF*LAIC)
VIST ¼ PARDR*(1.-REFS)
*KDRT*EXP(�KDRT*LAIC)
VISD ¼ PARDR*KBL*EXP
(�KBL*LAIC)
VISSHD ¼ VISDF + VIST-VISD

C Calculate the resulting rate of
photosynthesis

PHOSHD ¼ AMAX*(1. – EXP(�
EFF*VISSHD/
AMAX))

VISPP ¼ PARDR*(1.-SCP)/SINB
PHOSUN ¼ 0.
VISLL ¼ 0.
DO I2 ¼ 1,IGAUSS
VISSUN ¼ VISSHD +

VISPP*XGAUSS(I2)
PHOS ¼ AMAX*(1.-EXP

(�EFF*VISSUN/AMAX))
PHOSUN ¼ PHOSUN +

PHOS*WGAUSS(I2)
VISLL ¼VISLL +

VISSUN*WGAUSS(I2)
ENDDO
FSSLA ¼ EXP(�KBL*LAIC)

PHOTL ¼ FSSLA*PHOSUN+
(1.-FSSLA)*PHOSHD

VISL ¼ FSSLA*VISLL+(1.-
FSSLA)*VISSHD

C Weighted addition
PHOT ¼ PHOT + WGAUSS(I) *

PHOTL
VISABS ¼ VISABS + WGAUSS(I)

*VISL
ENDDO

C Calculate totals from the mean values:
PHOTT ¼ PHOT*LAI
VISABST ¼ VISABS*LAI

Even the three-point Gaussian integration
is not accurate enough for a leaf area index
larger than 3. Therefore, it is advisable to use
a 5-point method for larger leaf area indices.

The following table gives the Gaussian
distances and weights for the 5-point method
(see Lanczos 1957; Scheid 1968):

DATA IGAUSS/5/

DATA XGAUSS/0.0469101,0.2307534,0.5,

0.7692465,0.9530899/

DATAWGAUSS/0.1184635,0.2393144,

0.2844444,0.2393144,0.1184635/

V. Conclusions and Prospects

Real plant canopies exhibit fuzzy features that
are superimposed on the regular and smooth
model skeleton which was used for the
description of the canopies in this chapter.
The idealizing model approach may be
criticized for this reason, arguing that real
canopies are very different. However, it will
not be an easy task to show and prove to what
extent the irregularities in real crops modify
the outcomes provided by the approach given
here. It will be an enormous effort to collect
the statistical attributes of 3-D plant forms
that are needed, let alone to properly include
them in a model (see Chap. 8 Evers 2016).

Another criticism to the modelling
approaches as presented in this chapter is
that they tend to be unbalanced: too much
emphasis on the mathematical analysis,
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thereby suggesting an unjustified accuracy,
and shying away from the harder to grasp
biological and agricultural variability. For
instance, how can we include and describe
the spatial and temporal variations in photo-
synthetic leaf properties? This topic is
treated in the Chap. 4 (Niinemets 2016) and
5 (Pons 2016) of this book.

Such criticisms tell us as modellers to be
cautious. Our results are vulnerable,
depending as they are on the underlying
assumptions. This may be a weakness of the
modelling approach, but at the same time this
weakness turns into a strength when it gives
us also the power to analyze the sensitivity of
the model outputs to these same assumptions.
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