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Abstract  Germ cells are a sexual reproductive cell type at any stage from  
primordial germ cells (PGCs) to mature gametes. Germ line stem cells are impor-
tant for genetic transmission to future generations. In this review, we focus on 
female germ line stem cells (FGSCs), spermatogonial stem cells (SSCs), and 
PGCs. In addition, we summarize current research progress concerning PGC spec-
ification, migration, and development, SSC properties, their niche, and fate deci-
sions, as well as the history and current research of FGSCs and their applications.
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1.1 � The Origin and Fate of Germ Cells in Mammals

In many organisms, a primary event during development is the segregation of 
germ cells from somatic cells. Germ cell development ensures the perpetuation 
of genetic information across the generations. In mammals, primordial germ cells 
(PGCs) are the first cell type established during embryogenesis and are the com-
mon precursors of both oocytes and spermatozoa.

1.1.1 � PGC Specification in Mammals

In many invertebrates, PGCs are determined by the inheritance of maternal fac-
tors deposited in the egg, and only blastomeres containing germ cell determinants 
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develop into germ cells. However, in mammals, pluripotent epiblast cells acquire 
a germ cell fate in response to extrinsic and intrinsic signaling molecules. Prior to 
gastrulation, the mouse embryo consists of three distinct cell lineages: the epiblast, 
extraembryonic endoderm, and trophectoderm. PGCs are derived from the proxi-
mal fraction of the population of epiblast cells that will mainly give rise to the 
extraembryonic mesoderm. Transplantation experiments have demonstrated that 
signals from extraembryonic tissues are critical for PGC fate specification (Tam 
and Zhou 1996). In the mouse, PGCs are identified as an alkaline phosphatase-
positive cell population in the developing allantois [embryonic day (E) 6.5–7.5].

Bone morphogenetic protein (BMP) signaling from extraembryonic tissues 
is essential for PGC specification in mouse embryos. Bmp4, which is expressed 
in the extraembryonic ectoderm prior to gastrulation and subsequently in the 
extraembryonic mesoderm, is required for the generation of PGCs. A previous 
study of Bmp4 mutant embryos revealed a significant reduction in the number of 
PGCs in heterozygous mutant embryos, and no PGCs were detected in homozy-
gous mutant embryos (Lawson et  al. 1999). Bmp8b, which is expressed in the 
extraembryonic ectoderm in pregastrula and gastrula stage mouse embryos, is 
also required for PGC generation (Ying et al. 2000). Bmp4 and Bmp8b may form 
heterodimers to induce the formation of PGCs (Ying et al. 2001). Targeted inac-
tivation of the Bmp2 gene, which is primarily expressed in the endoderm of pre-
gastrula and gastrula stage mouse embryos, significantly reduces the number of 
PGCs (Ying and Zhao 2001). Moreover, WNT signaling in the epiblast plays a 
role in PGC formation. Wnt3 in the epiblast ensures its responsiveness to BMP4 
for PGC differentiation (Ohinata et al. 2009). Dullard (also known as C-terminal 
domain nuclear envelope phosphatase 1; Ctdnep1) is a member of the serine/threo-
nine phosphatase family of the C-terminal domain of eukaryotic RNA polymerase 
II. A recent study revealed that Dullard is essential for the formation of PGCs in 
the mouse embryo as a positive regulator of WNT signaling (Tanaka et al. 2013).

After induction by BMP and WNT signals, epiblast cells are regulated by PR 
domain proteins PRDM1 (also known as B lymphocyte induced maturation pro-
tein 1, Blimp1) and PRDM14. PRDM1, a potential transcriptional repressor of a 
histone methyltransferase subfamily, has a critical role in the foundation of the 
mouse germ cell lineage. PRDM1 promotes the expression of Stella (also known 
as Dppa3), a definitive PGC marker, and represses the expression of somatic cell 
genes, particularly members of the Hox gene family. In Prdm1 knockout mouse 
embryos, PGC-like cells fail to repress the expression of somatic cell genes, 
Hoxa1 and Hoxb1, and PGCs lacking PRDM1 do not properly migrate or pro-
liferate (Ohinata et  al. 2005). Prdm14, a PR domain-containing transcriptional 
regulator, has been found to be important for PGC specification in mice. Similar 
to Prdm1-knockout mice, PGCs are almost completely lost by E12.5 in Prdm14 
mutant embryos (Yamaji et al. 2008). Another study has demonstrated that a con-
served mesodermal factor, T, which is induced by WNT3, is essential for the acti-
vation of Prdm1 and Prdm14 via binding to distinct regulatory elements in these 
genes for direct upregulation, thereby delineating the downstream PGC program 
(Aramaki et  al. 2013). Recently, an in vitro study revealed that simultaneous 
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overexpression of Prdm1, Prdm14, and Tfap2c (also known as AP2γ) rapidly and 
efficiently directs epiblastlike cells derived from embryonic stem cells (ESCs) or 
induced pluripotent stem cells or (iPSCs) into a PGC state (Nakaki et al. 2013). 
Another study demonstrated that, in principle, PRDM1, AP2γ, and PRDM14 are 
sufficient for PGC specification and the unprecedented resetting of the epigenome 
toward a basal state (Magnusdottir et al. 2013).

1.1.2 � PGC Migration in Mammals

In the mouse, PGCs begin to migrate from the primitive streak to the endoderm 
(the future hindgut) at E7.5. They continue to migrate through the hindgut endo-
derm at E8.0 and then migrate bilaterally toward the dorsal body wall at E9.5 to 
finally colonize the gonadal ridges at E10.5.

There are several factors that play important roles during PGC migration in 
mammals. PGCs lacking β1 integrins fail to migrate normally to the gonads 
(Anderson et  al. 1999). IFITM (interferon-induced transmembrane) proteins are 
cell surface proteins implicated in diverse cellular processes including cell adhe-
sion. Knockdown of Ifitm1 by RNA interference in the primitive streak leads to 
failure of PGC migration into the endoderm (Tanaka et al. 2005). During the later 
stage of migration, the interaction of stromal cell-derived factor 1 (expressed by 
the body wall mesenchyme and genital ridges) and its G-protein-coupled recep-
tor, chemokine (CXC motif) receptor 4 (expressed by the migrating germ cells), 
is required for the colonization of the gonads by PGCs (Molyneaux et al. 2003). 
Foxc1 encodes a forkhead/winged-helix transcription factor expressed in many 
embryonic tissues. Many PGCs fail to migrate normally to the gonadal ridge in 
Foxc1 null mouse embryos, remaining trapped in the hindgut, although the germ 
cells are specified correctly (Mattiske et al. 2006).

1.1.3 � PGC Development in Mammals

Following gonadal sex determination, germ cells in the testis initially proliferate 
and then undergo mitotic cell cycle arrest at G0/G1. The germ cells that differ-
entiate from PGCs to type A spermatogonia, including spermatogonial stem cells 
(SSCs), are termed gonocytes. Gene expression patterns change dynamically dur-
ing the transition from PGCs to gonocytes and SSCs (Culty 2009). After arriving 
at the genital ridge at approximately 10.5  days post-coitus (dpc), female germ 
cells are called oogonia and develop into clusters of cells called germ line cysts or 
oocyte nests. Subsequently, the oogonia enter meiosis and become oocytes. During 
fetal and neonatal development, germ line cysts break apart into single oocytes, 
which are intruded by pregranulosa cells to form primordial follicles (Pepling 
2006, 2012; Pepling and Spradling 2001).
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In mammals, meiotic initiation occurs at different time points in male and 
female germ cells. Female germ cells enter meiosis at around 13.5 dpc and arrest 
at the diplotene stage beginning at 17.5  dpc (Speed 1982), whereas male germ 
cells start meiosis at puberty. Retinoic acid (RA) is produced in the mesonephros 
of both sexes, which is postulated to diffuse or flow into the adjacent gonad. Stra8 
(stimulated by retinoic acid gene 8), which is induced by RA, is a premeiotic gene 
required for meiotic initiation. In the fetal ovary, high levels of RA induce germ 
cells to enter meiosis (Baltus et al. 2006; Bowles et al. 2006; Koubova et al. 2006; 
Vernet et al. 2006; Lin et al. 2008). However, meiosis is not triggered in the fetal 
testis because RA is degraded by the retinoid enzyme CYP26B1. In Cyp26b1-
knockout male fetal gonads, germ cells enter meiosis (Bowles et al. 2006). A study 
of Cyp26b1-, Fgf9 (fibroblast growth factor 9)-, and double-knockout embryos 
demonstrated that fibroblast growth factor (FGF) 9 produced in the fetal tes-
tis acts directly on germ cells to inhibit meiosis, making them less responsive to 
RA (Bowles et al. 2010). A recent study showed that PRC1 (polycomb repressive 
complex 1) has gene dosage effects on PGC development and coordinating the 
timing of sex differentiation of female PGCs by antagonizing extrinsic RA sign-
aling to ensure proper timing of meiotic induction (Yokobayashi et  al. 2013). In 
addition, Dazl (Lin et al. 2008), Msx1/2 (Le Bouffant et al. 2011), Dmrt1 (Matson 
et al. 2010; Krentz et al. 2011), Nodal (Souquet et al. 2012), and Notch pathways 
(Feng et al. 2014) regulate the initiation of meiosis. However, a study of Raldh2 
(retinaldehyde dehydrogenase-2)-knockout mice lacking RA synthesis and signal-
ing in the mesonephros and adjacent gonad revealed that STRA8 expression in the 
fetal ovary does not require RA signaling (Kumar et al. 2011).

The conventional theory is that all germ cells in the fetal ovary enter meiosis, 
thereby committing to oogenesis. The number of germ cells is determined after 
birth. However, this view has been challenged. There are reports that female germ 
line stem cells (FGSCs) with the ability to produce functional oocytes still exist 
in neonatal and adult mouse ovaries (Zou et al. 2009). Subsequently, FGSCs have 
been discovered in the ovaries of reproductive-age woman (White et al. 2012) and 
rats (Zhou et al. 2014).

1.2 � Female Germ Line Stem Cells

1.2.1 � Introduction

FGSCs are a new class of germ cells in mammals. The recent identification and 
isolation of FGSCs from mouse and human ovaries have opened a new research 
area in stem cell biology, developmental biology, and reproductive biology as well 
as reproductive medicine. Although we know little about FGSCs and significant 
research needs to be performed at present, we believe that FGSCs might shed light 
on the preservation of fertility in reproductive-age women under the conditions of 
premature ovarian failure or chemotherapy. Recently, FGSCs were isolated and 
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cultured from postnatal mammals, which allows us to study their biological char-
acteristics and applications. In this section, we will discuss the progress of FGSC 
research.

1.2.2 � History of FGSC Research

In the early 1950s, it was thought that postnatal germ line stem cells (GSCs) only 
existed in the male testis. However, in females, a fixed number of primordial fol-
licles exist in the ovaries, and the defined follicle pool serves as the source of 
oogenesis over the life span of mammals (Zuckerman 1951; Rudkin and Griech 
1962; Borum 1967; Peters and Crone 1967). From then on, although there have 
been different views from some researchers (Ying and Zhao 2001; Ohinata et al. 
2005, 2009; Tanaka et al. 2013; Yamaji et al. 2008), the existence of a non-renew-
ing follicle pool after birth in mammals has become a central dogma in classical 
reproductive biology.

Recently, Johnson et  al. (2004) suggested that the female ovary may have 
regenerative activity in juvenile and adult mice in vivo by examining changes in 
follicle numbers from birth to adulthood. Subsequently, they showed that periph-
eral blood (PB) or bone marrow (BM) transplantation restores oocyte production 
in wild-type mice sterilized by chemotherapy and in ataxia telangiectasia-mutated 
gene-deficient mice (Johnson et  al. 2004). Therefore, they concluded that BM 
and PB may be potential sources of female germ cells that can generate oocytes 
in adulthood. Unfortunately, this view spawned a wave of skepticism and contro-
versy, as well as reports with contradictory findings, claiming there is no evidence 
for the formation of oocytes from BM cells in mice (Eggan et al. 2006; Gosden 
2004).

In 2009, our laboratory successfully isolated FGSCs from neonatal and 
adult mouse ovaries by two enzymatic digestion steps and mouse vasa homolog 
(MVH)-magnetic bead sorting. Furthermore, a neonatal mouse FGSC line was 
established and cultured for more than 1  year, whereas the adult mouse FGSCs 
was cultured for more than 6  months. These long-term cultured FGSCs main-
tained a normal karyotype, high telomerase activity, and their capacity to differ-
entiate into functional oocytes, and offspring were generated after transplantation 
into ovaries (Zou et  al. 2009). Considering the low purification efficiency based 
on MVH-magnetic bead sorting, we screened other germ cell-specific markers and 
found that the germ line-specific protein Fragilis as a selection maker can remark-
ably improve the purification efficiency (Zou et al. 2011). Moreover, transgenic or 
gene knockdown mice were prepared by FGSC transplantation. The gene transfer 
efficiency was up to 29–37 % (Zhang et al. 2011). In addition, we isolated and cul-
tured rat FGSCs with the abilities to produce fat-1 transgenic rats after transplanta-
tion in vivo and differentiate into oocytes in vitro (Zhou et al. 2014).

In 2012, White et  al. extended our previously described protocol and cul-
ture system by isolating FGSCs from adult mice and reproductive-age 
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(20–30-year-old) women using MVH as the selection maker and fluorescence-acti-
vated cell sorting (FACS) (White et al. 2012; Woods and Tilly 2013).

In fact, FGSCs are found not only in rodents (mice and rats) and primates 
(humans), but also in other animals including vertebrate species such as fish 
including zebra fish (Wong et  al. 2013) and teleost medaka (Nakamura et  al. 
2010). More importantly, using a retrospective phylogenetic-based method, a 
study showed preservation of the female germ line in both young and old mice 
(Reizel et  al. 2012). Therefore, the existence of FGSCs has been demonstrated 
through cell biology and genetic analysis.

1.2.3 � Current FGSC Research Progress

1.2.3.1 � FGSC Origin and Their Location

In the mouse, PGCs arise within the proximal epiblast, begin to migrate along the 
hindgut at E8.5, and then arrive at the genital ridge at around E10.5. PGCs prolif-
erate during their migration, thereby increasing their population. In the gonadal 
ridge, PGCs are considered as oogonia (Durcova-Hills et al. 2003). The oogonia 
divide mitotically in a short period. Subsequently, oogonia cease mitosis and enter 
meiosis I and arrest at this phase. Based on the current research of FGSCs, not all 
oogonia enter into meiosis, and a small number of GSCs exist during reproductive 
life (Bukovsky et al. 2008). However, the exact biological processes of differentia-
tion from PGCs to FGSCs are unknown. Single-cell analysis and real-time, high-
resolution imaging systems might facilitate future studies of these processes.

To investigate the location of FGSCs, bromodeoxyuridine (BrdU) has been 
injected into female mice followed by dual immunofluorescence staining of BrdU 
and MVH. The results indicated that FGSCs are located in the cortical surface of 
ovaries (Zou et al. 2009).

1.2.3.2 � FGSC Isolation and Culture

Separation of FGSCs from ovaries requires knowledge of both the ovarian tissue 
structure and cell morphology. A schematic diagram of the major steps for FGSC 
isolation is shown in Fig.  1.1. Generally, there are two main methods to obtain 
pure FGSCs from a single cell suspension after two enzymatic (collagenase IV 
and trypsin) digestion steps, namely the differential plating method and the immu-
notargeted purification method [magnetic-activated cell sorting (MACS) and 
FACS]. Immunotargeting is largely based on a specific antibody targeting the sur-
face markers on GSCs.

To establish FGSC lines, FGSC isolation and purification protocols have been 
developed based on techniques for isolation and in vitro expansion of SSCs. 
Such a method described in our online protocol is able to isolate FGSCs from 
ovarian tissue (Wang et al. 2013). It is important to note that the homogeneity of 



91  Primordial Germ Cells and Germ Line Stem Cells

the starting materials and standardization of the isolation protocol are key fac-
tors for obtaining desired cells. In present, there is no unique surface marker for 
GSCs (SSCs and FGSCs) purification. Therefore, the markers should be carefully 
selected for GSC isolation. Using germ line surface markers may obtain GSCs, 
whereas other pluripotency-related makers such as stage-specific embryonic anti-
gen (SSEA)-1 may not be appropriate for GSC selection (Nakaki et al. 2013). In 
our opinion, regardless of the surface marker, probing the biological identity of the 
obtained cells is an issue of urgent priority.

In addition, a stable culture system is crucial to maintain the propagation and 
features of FGSCs in vitro. From our experience in stem cell culture, we believe 
that basic medium, a feeder layer, and growth factors play a major role in FGSC 
culture, although there is still some discrepancy between optimal culture condi-
tions and the microenvironment of FGSCs in vivo. Growth factors, such as glial 
cell line-derived neurotrophic factor (GDNF), FGF2, epidermal growth factor 
(EGF), and leukemia inhibitory factor (LIF), are important for SSC and FGSC 
propagation (Wu et al. 2008; Xiong et al. 2011; Yuan et al. 2009). Among these 
factors for in vitro culture, GDNF is critical for GSC proliferation.

1.2.3.3 � FGSC Characterization

FGSCs can be characterized based on SSC and other stem cell-related research 
by their morphology and gene expression profiles, as well as functional assays. 

Fig. 1.1   Schematic diagram of major steps for FGSCs
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Interestingly, isolated FGSCs have a morphology common with freshly isolated 
SSCs, including a large cell body with little cytoplasm, helical nuclei with slight 
staining, a large nucleus/cytoplasm ratio, and a nuclear diameter of 12–20  µm. 
The growth pattern of FGSCs and SSCs is also similar. For example, most FGSCs 
grow with a typical grapelike morphology in primary culture. Both FGSCs 
and SSCs express germ cell-specific markers (MVH, Fragilis, Blimp-1, Dazl, 
and Stella) but not pluripotency-related proteins (Nanog, SSEA-1, and Sox2). 
Moreover, long-term cultured FGSCs maintain a normal karyotype (40, XX), alka-
line phosphatase activity, and a female imprinting pattern (Zou et  al. 2009). In 
addition, the most important functional analysis of FGSCs is through oogenesis in 
vitro or in vivo.

1.2.3.4 � FGSC Transplantation

In the mouse, transplantation has been used as a functional assay to study the bio-
logical characteristics of GSCs. Although SSC transplantation is considered as a 
quite mature technology, FGSC transplantation research is still lacking. In fact, 
transplantation can be divided into two categories: direct in situ injection (Zou 
et  al. 2009) and tissue grafting (White et  al. 2012). Although the grafting has 
advantage that GSCs still remain in their microenvironment and interact with their 
neighboring or supporting cells, the direct injection strategy can meet the need of 
gametogenesis requirement (Zou et al. 2009). Recent studies have shown that the 
combination of organ culture and transplantation provides a new strategy for func-
tional sperm preparation in vitro (Gohbara et al. 2010; Yokonishi et al. 2013; Sato 
et al. 2011a, b, 2012, 2013). However, whether functional oocytes can be gener-
ated from FGSCs using this platform is still unknown.

To eliminate effects from endogenous germ cells, recipient females of trans-
plantation can be sterilized with cyclophosphamide and busulphan. Furthermore, 
non-endogenous germ cells generated by genetic modification would be more con-
venient for transplantation. To ensure a good outcome after transplantation, some 
critical points need consideration, such as carefully moving the intestines away 
from the inside of the abdominal cavity and not damaging the connective tissue 
or underlying structures of the ovaries. The details of transplantation have been 
described previously (Wang et al. 2013).

1.2.4 � Applications of FGSCs

Stem cells have a great potential for use in regenerative medicine because of 
their self-renewal and multi-lineage differentiation abilities. From a clinical per-
spective, as a new type of adult stem cell, FGSCs may be applicable from the 
preservation of endangered species to ovarian aging therapy, as well as treating 
infertility caused by radiation and chemotherapy, even though embryo and oocyte 
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cryopreservation are currently available to restore fertility. Moreover, FGSCs are 
an alternative source of mitochondria for ooplasmic transfer (Harvey et al. 2007; 
Barritt et al. 2001). From a basic research perspective, as a female germ cell pre-
cursor, FGSCs can be studied to understand the molecular mechanisms of oogen-
esis and folliculogenesis. Although numerous reports have shown that pluripotent 
stem cells including ESCs and iPSCs are able to differentiate into oocytes (Hubner 
et al. 2003; Hayashi et al. 2012), their direct differentiation is currently limited by 
low efficiency.

Since the discovery of pluripotent stem cells, they have created a new research 
area. Recent studies have reported that mouse SSCs can be converted into pluri-
potent stem cells under certain culture conditions (Ko et  al. 2010; Conrad et  al. 
2008; Guan et al. 2006; Kanatsu-Shinohara et al. 2004, 2008; Seandel et al. 2007; 
Golestaneh et  al. 2009; Kossack et  al. 2009). Based on our previous research, 
we have found that FGSCs share common characters with SSCs, including their 
shape, growth pattern, and functions during gametogenesis (Wu et  al. 2013). 
Therefore, we attempted FGSC conversion to pluripotent stem cells. As a result, 
similar to SSC conversion, we found that FGSCs can be converted into pluripo-
tent stem cells under certain culture conditions (Wang et al. 2014). Consequently, 
the generation of patient-specific FGSC-derived pluripotent stem cells is feasible 
and provides a foundation for personalized regenerative applications. Moreover, 
SSCs can transdifferentiate into reproductive and non-reproductive cells and tis-
sues in certain microenvironments (Zhang et al. 2013; Simon et al. 2009). Whether 
FGSCs can transdifferentiate into other types of cells is still unknown. If FGSC 
transdifferentiation occurs, FGSCs will become more widely applicable.

Although FGSCs have a wide range of applications, which is similar to that 
of SSCs (shown in Fig. 1.2), we must have a clear understanding of these cells. 
To reveal more aspects of FGSC biology, studies of SSCs in mice and FGSCs 
in Caenorhabditis elegans and Drosophila can offer us new insights for further 
exploration. More importantly, new technologies and equipment used by scientists 
with different backgrounds will be helpful to further FGSC research.

1.3 � Spermatogonial Stem Cells

1.3.1 � Introduction

Continual spermatogenesis lays the foundation for male fertility, which is highly 
dependent on SSCs, a very small population accounting for only about 0.02–0.03 % 
of the germ cell population (Tegelenbosch and de Rooij 1993). The existence of SSCs 
has been proposed since the 1950s, but the related research progress has been diffi-
cult and little has been clarified in this field (De Rooij and Russell 2000). Traditional 
studies of SSCs highly relied on morphology and not considered the deeper aspects 
of their molecular mechanisms. In 1994, Brinster and colleagues developed a trans-
plantation technique to investigate SSC functionally (Brinster and Avarbock 1994). 
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Briefly, donor testicular cells are dissociated and transplanted into the efferent duct  
of infertile recipient mice. After 6 weeks to 2 months, offspring are produced with the 
donor haplotype. This technique is of great importance because it allows relatively 
easy identification of SSCs and counting of SSC numbers by considering that each 
colony in the seminiferous tubules arises from a single SSC (Kanatsu-Shinohara et al. 
2006). Another important milestone was the development of an in vitro SSC culture 
system in 2003 by Kanatsu-Shinohara et al. (2003). In the presence of GDNF, FGF2, 
LIF, EGF, and other cytokines, germ cells from neonatal mice are able to prolifer-
ate and form clusters of spermatogonia in long-term culture in vitro. Transplantation 
experiments have confirmed that SSC numbers are greatly increased in this system. 
In vitro culture systems are of great importance because they allow in vitro studies 
and the generation of large numbers of SSCs for molecular and biochemical studies 
(Kanatsu-Shinohara and Shinohara 2013). Owing to these two techniques and other 
traditional methods, SSC studies have advanced further to molecular mechanisms and 
signal transduction.

Fig. 1.2   FGSCs have a wide range of applications similar to that of SSCs
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1.3.2 � SSC Properties

1.3.2.1 � SSC Classification

SSCs residue on the basement compartment of seminiferous tubules and are sur-
rounded by a highly complex microenvironment called the niche that is respon-
sible for sophisticated and orchestrated regulation of the balance between SSC 
self-renewal and differentiation (Kostereva and Hofmann 2008). In mice, SSCs 
are undifferentiated spermatogonial cells of As (A-single), Apr (A-paired), and 
Aal (A-aligned chains of 4, 8, and 16 cells, and 32 in rare cases) configurations 
based on their topographical arrangement (Ohinata et al. 2005; Yamaji et al. 2008). 
Undifferentiated as spermatogonial cells are thought to be the most primitive type 
of spermatogonial cell, which will divide into two Apr cells interconnected by 
intercellular bridges, further division produces intercellular interconnected Aal4, 
Aal8, and Aal16 cells. Aal spermatogonia convert to differentiating type A sper-
matogonia (A1–4) that further progress to In (intermediate) and B spermatogonia. 
Finally, type B spermatogonia divide into primary spermatocytes, and mitosis con-
verts to meiosis to produce haploid spermatozoa (Phillips et  al. 2010). A single 
SSC undergoes 11–12 divisions on average to eventually produce 2048 or 4096 
spermatozoa (De Rooij and Russell 2000) (Fig. 1.3). Classically, Apr and Aal cells 
are thought to be the progenitors committed to differentiate. However, increasing 
evidence shows that some Apr and Aal cells are potential SSCs. Through lineage 
tracing in a transplantation assay, Nakagawa et al. (2007) found that transit-ampli-
fying spermatogonia are also able to form colonies in a germ cell-depleted testis, 

Fig. 1.3   The process of spermatogenesis
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indicating their stem cell ability. Moreover, during tissue regeneration after testis 
injury, a significantly greater number of cells contribute to the stem cell pool than 
that under normal conditions, further confirming the progenitor cell potential.

Compared with rodents, the true identity of SSCs remains largely unknown in 
adult humans. Unlike propose model in mice previously mentioned, in a widely 
accepted model, there are two kinds of type A spermatogonia in human: a dark 
type A spermatogonia (Adark) and pale type A spermatogonia (Apale) according to 
their staining pattern and nuclear morphology. Both types of A spermatogonia are 
stem cells. Apale spermatogonia are the active stem cells responsible for normal 
self-renewal and generating type B spermatogonia, which further divide into sper-
matozoa, while Adark spermatogonia are the reserve stem cells with rare mitotic 
activity but are active under injury and disease states (Clermont 1963, 1966, 
1972). However, this model has been challenged by Ehmcke and colleagues who 
proposed a revised model in which Apale spermatogonia are self-renewing progeni-
tors and Adark spermatogonia are the true stem cells. In a non-human study, they 
showed that Apale spermatogonia undergo higher mitosis than previously thought 
and their increase in number affects the total number of germ cells (Ehmcke and 
Schlatt 2006; Ehmcke et  al. 2006). Nevertheless, a lack of evidence has limited 
our understanding of human SSCs and more studies are required.

1.3.2.2 � SSC Characteristics

The lack of specific SSC markers has greatly hindered our understanding of 
SSCs. However, expression profiles are slowly being revealed spermatogonia 
stem (progenitor) cells (SPC), indicating exclusive expression of many genes. 
The strong adherence of SSCs to laminin, the main component of the extracellu-
lar matrix of basement membranes, led to the clarification of β1 and α6 integrins 
as surface markers of SSCs (Shinohara et  al. 1999). Subsequently, more surface 
markers have been identified, such as thymus cell antigen-1 (Thy-1), Ep-CAM, 
CD9, GDNF receptors GFRα1 and c-Ret, and GPR125, some of which allow 
the enrichment of SSCs by FACS and MACS (Buageaw et  al. 2005; Kanatsu-
Shinohara et  al. 2004; Tokuda et  al. 2007; Kubota et  al. 2003; Anderson et  al. 
1999; Naughton et  al. 2006). GFRα1, a co-receptor of GNDF with c-Ret, tends 
to be expressed in As and Aal cells and appears to represent a relatively primi-
tive proportion of spermatogonia. Combined with gravity sedimentation on a 
bovine serum albumin gradient, Hofmann et al. were able to isolate SSCs to 98 % 
purity using GFRα1 for antibody selection. However, purification with GFRα1 is 
only possible from pubescent mice but not adults, and the cell survival in culture 
is low (Hofmann et al. 2005; Ebata et al. 2005). Many studies have successfully 
enriched SSCs with an antibody against Thy-1 and realized their long-term culti-
vation. However, the cells are a mixture of spermatogonia at various stages, which 
is sufficient for most researchers (Kubota et al. 2004). c-kit is the receptor for stem 
cell factor (SCF), which was previously thought to be expressed by SSCs but later 
identified as a marker of differentiation (Shinohara et al. 1999). In multi-parameter 
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cell sorting, negative selection with c-kit and positive selection with another sur-
face marker will result in a higher percentage of SSCs. c-kit is expressed in late 
Aal spermatogonia to early spermatocytes, and its expression is often used to 
identify Aal cell conversion to differentiating spermatogonia A1 (Shinohara et al. 
2000; Lennartsson and Rönnstrand 2012; Zhang et al. 2013).

Many transcription factors that promote self-renewal have been proposed 
as SSC markers. According to their response to GDNF, a key extracellular fac-
tor that promotes self-renewal, transcription factors can be divided into GDNF-
dependent or GDNF-independent factors. GDNF is the most important extrinsic 
factor that regulates SSC self-renewal in a dose-dependent manner, and it is 
essential to culture SSCs in vitro (Meng et al. 2000). To define downstream effec-
tors of GDNF signaling, Oatley and Brinster conducted microarray analysis of 
cultured germ cells. In their study, GDNF was removed and re-added to the cul-
tured cells, and then, microarray analysis was performed at various time points 
to determine GDNF-inducible factors. Six genes responded most dramatically 
to GDNF, which were proposed to be the downstream effectors of GDNF sig-
nals, including Bcl6b, Etv5, Lhx1, Egr2, Egr3, and Tspan8 (Oatley et  al. 2006). 
In vitro disruption of Bcl6b with siRNA significantly affects the proliferation of 
SSCs. Moreover, Bcl6b-null mice exhibit the same progressive defect as GDNF-
null mice, further confirming that Bcl6b is a downstream effector of GDNF 
(Oatley et  al. 2006). Subsequently, Etv5-knockout mice were generated and 
showed a similar phenotype (Chen et al. 2005). Inhibitor of DNA binding protein 
4 (ID4) is another GDNF-inducible factor. However, ID4 is unique because it is 
exclusively expressed in As cells but not in Apr or Aal cells (Oatley et al. 2011). 
Recently, NONOS2, an RNA-binding protein that is preferentially expressed 
in As and Apr cells, was found to be a downstream effector of GDNF signaling. 
A lack of NANOS2 results in the same phenotype as that of GDNF-null mice, 
whereas NANOS2 overexpression will compensate for GFRα1 depletion in mice 
(Sada et  al. 2012). GDNF signals through three pathways to downstream effec-
tors for the promotion of SSC self-renewal, including PI3  K-AKT, SFK, and 
Ras/ERK1/2, which also cross talk with each other (Lee et  al. 2007; Braydich-
Stolle et  al. 2007; He et  al. 2008). Promyelocytic leukemia zink factor (PLZF), 
also known as ZFP145 and ZBTB16, is the first identified intrinsic factor that is 
exclusively expressed in undifferentiated spermatogonia in the testis. Disruption of 
PLZF leads to progressive germ cell loss, indicating the essential role of PLZF in 
SSC maintenance (Buaas et al. 2004; Costoya et al. 2004). The exact mechanism 
of PLZF has not been fully clarified in the maintenance of SSCs, although some 
details have been revealed, which will be discussed below. Oct4, another GDNF-
independent maintenance factor, is also exclusively expressed in undifferenti-
ated spermatogonia in the adult testis. Oct4 disruption in cultured GSCs notably 
reduces both their proliferation and survival rates, suggesting its indispensable role 
in SSC self-renewal (Dann et al. 2008). However, the downstream and upstream 
molecules of OCT4 signaling are almost unknown in SPCs, which require further 
study.
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1.3.2.3 � Reversibility and Heterogeneity

Recent studies have proposed that undifferentiated spermatogonia are not uniform 
as previously thought and that morphologically classified SPCs exhibit different 
molecular and biology characters among themselves. At all stages of undifferenti-
ated SSCs (As, Apr, and Aal cells), NGN3 expression can be detected, but there 
are undifferentiated SSCs that are negative for NGN3, suggesting molecular het-
erogeneity among undifferentiated SSCs (Yoshida et  al. 2007). Lineage tracing 
under the control of NGN3 expression revealed that most labeled cells are com-
mitted to differentiation, while a very small population are stem cells that account 
for only about 10 % of total SSCs (Nakagawa et al. 2007). Quantitative analysis 
revealed that about 10 % of As spermatogonia are GFRα1 negative, but transplan-
tation has demonstrated their clonogenic ability. In contrast, cells selected using 
GFRα1 show almost no clonogenic ability. In addition, GFRα1 expression is not 
the same among Apr spermatogonia (Grisanti et al. 2009). Taking these evidences 
together, heterogeneity does exist among undifferentiated SSCs. Such heterogene-
ity raises the possibility that there may be more stages among the undifferentiated 
types of SSCs. Morphological classification may be not truly reflect the actual sta-
tus of undifferentiated spermatogonia, and a better classification system combined 
with molecular characters should be developed.

Under normal conditions, the vast majority of NGN3-expressing spermato-
gonial cells are transit-amplifying cells committed to differentiate. However, in 
transplantation assays, a significantly larger number of NGN3-expressing sper-
matogonial cells are clonogenic and contribute to regeneration in lineage tracing 
experiments. This finding demonstrates that in addition to true stem cells, transit-
amplifying cells can revert to SSCs (Nakagawa et al. 2007; Yoshida et al. 2007). 
Nakagawa et al. (2007) referred to this subpopulation as potential stem cells. Such 
a functionally distinct population of undifferentiated spermatogonia possesses the 
potential for self-renewal but do not show this ability in undisrupted testis. Similar 
results have been obtained in two studies showing that c-kit-positive spermatogo-
nia both in vivo and in vitro, which are usually thought to be the differentiating 
subpopulation, are also able to regenerate recipient testis, although with a sig-
nificantly lower ability compared with that of the c-kit-negative fraction (Barroca 
et  al. 2009; Morimoto et  al. 2009). Considering the existence of potential stem 
cells, transplantation assays may overestimate the number of true SSCs. However, 
estimations of total SSCs at <2000 per testis according to transplantation assays 
are similar to those in a study by Nakagawa et al. (2007) based on the boundary 
of one SSC territory, although this strategy is somehow confusing (Nakaki et al. 
2013; Reizel et  al. 2012). It is still unclear whether only some SPCs are revers-
ible or all SPCs are able to convert to SSCs under certain conditions. The former 
possibility may indicate the complexity or heterogeneity of the undifferentiated 
spermatogonia population, while the latter may represent the phenotypic plasticity. 
If heterogeneity is important, a certain phase may mark the undirected differen-
tiation. If there is a certain phase, it might be possible to characterize a molecular 
phenotype that marks the specific point, but no such marker has been revealed thus 
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far. It is also possible that undifferentiated spermatogonia show plasticity and can 
be reversed under certain conditions, such as transplantation and tissue regenera-
tion, which is important for the robustness of the spermatogenesis system.

1.3.3 � SSC Niche

In sexually reproductive animals, the SSC niche is the specialized microenviron-
ment that harbors the stem cells and precisely regulates their self-renewal and 
differentiation. In Drosophila and C. elegans, whose gonads are polarized, its 
localization is identified by a specialized somatic compartment that supports the 
stem cells. However, in mammals, this specialized microenvironment has not been 
proposed (Spradling et al. 2001; Yamashita and Fuller 2005). Seminiferous tubules 
are comprised of basal and adluminal compartments separated by tight junctions 
among Sertoli cells, and all spermatogonia lie in the basal compartment. Together 
with morphological research showing that SSCs are situated on the basal mem-
brane, we can speculate that the SSC niche must be located somewhere adjoining 
the basal membrane in the basal compartment. Sertoli cells and the basal mem-
brane composed of peritubular and extracellular matrix provide the structural 
basis for the SSC niche. However, no report has shown the functional difference 
of sertoli cells and the basal membrane, suggesting that these two components are 
not the main factors that dictate the location of the SSC niche (Wang et al. 2013). 
Another factor must maintain the SSC niche, which is probably derived from 
interstitial cells. Oatley et al. (2009) reported that cultured thy1+ germ cells are 
enriched for colony-stimulating factor 1 receptor (Csf1r), and the addition of col-
ony-stimulating factor 1 (Csf1) greatly enhances the self-renewal of SSCs, but not 
the total germ cells, as confirmed by transplantation assays (Oatley et  al. 2009). 
Csfr1 is expressed by Leydig cells that are not evenly to distributed in the interstit-
ium of seminiferous tubules, suggesting that interstitial cells, such as Leydig cells, 
may contribute to the formation of the SSC niche. Yoshida et  al. (2007) showed 
that undifferentiated spermatogonia are more likely to reside within the area that 
the vasculature goes through in the seminiferous interval using time-lapse imag-
ing of green fluorescent protein. This result suggests that the SSC niche is located 
in this area because SSCs are a subpopulation of undifferentiated spermatogonia. 
Moreover, an alternate pattern of the vasculature system leads to rearrangement of 
the undifferentiated spermatogonia, which further confirms the vasculature-asso-
ciated niche location (Yoshida et al. 2007). Despite the association of the vascula-
ture and Leydig cells, the true location of the niche is still under debate owing to 
the lack of specific SSC markers (Fig. 1.4).

It is thought that the number of SSC niches decides the potential SSC number. 
Therefore, it is important to reveal which factors influence the number of niches. 
Ectopically expressed human GDNF in mouse sertoli cells results in a dramatic 
increase of SSCs in the testis, indicating that high GDNF levels may increase the 
number of SSC niches (Yomogida et al. 2003). Oatley et al. (2011) found that the 
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number of SSCs is possibly dictated by the number of Sertoli cells that secrete 
GDNF. A threefold increase in the number of colony-forming cells in seminifer-
ous tubules of recipient mice occurs after transplantation of SSCs from PTU-treated 
mice with an increased number of sertoli cells at puberty compared with that in nor-
mal mice. Furthermore, PTU-treated mice exhibit threefold more accessible niches 
than that in normal mice with normal sertoli cells. In addition, they found that 
expansion of the niche number is influenced by neither the vasculature nor the inter-
stitial cell populations (Oatley et al. 2011). SSC numbers are strictly regulated by 
GDNF in a dose-dependent manner. Overexpression of GDNF results in accumu-
lation of SSCs, and heterozygous mutants show depletion of germ cells including 
SSCs (Meng et al. 2000). Follicle-stimulating hormone (FSH) upregulates GDNF 
and during testis damage. GDNF expression is increased possibly through FSH to 
maintain a normal number of SSC niches (Tadokoro et  al. 2002). Other factors, 
such as Sin3A and RA, may also affect the niche number. Germ cells transplanted 
into RA-deficient mice show less colony formation, whereas mice with sertoli cells 
lacking Sin3A show germ cell depletion (Payne et al. 2010; McLean et al. 2002).

The study of the niche has been difficult owing to the complicated three-dimen-
sional structure of seminiferous tubules in vivo. Developing a three-dimensional 
culture system may provide a possible strategy to solve this problem. Using the 
testicular cells of infertile mice as feeder cells, Kanatsu-Shinohara et  al. (2012) 

Fig. 1.4   A brief outlook of niche structure
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reconstructed the SSC niche to some extent in a culture system, and the cultured 
SSCs migrated beneath the sertoli cells and formed cobblestone colonies. In this 
system, they found that the chemokine CXCL12 contributes to the SSC homing 
efficiency. Another study from Yokonishi and colleagues demonstrated that disso-
ciated testicular cells are able to aggregate in suspension culture and form semi-
niferous tubules after transfer and culture on the surface of an agarose gel. When 
cultured GSCs were added to this autoreconstructed system, the GSCs differenti-
ate before the meiotic phase (Yokonishi et  al. 2013). This autoreconstruction of 
testicular cells is extraordinary and may be of great value for in vitro study of the 
niche.

1.3.4 � Fate Decisions of SSCs

SSC self-renewal and differentiation must be sophistically balanced to main-
tain normal spermatogenesis and avoid tumorigenesis. When the balance shifts to 
self-renewal, there is accumulation of stem cells and decreases in the number of 
developed germ cells. In contrast, when the balance shifts to differentiation, main-
tenance defects will occur, eventually leading to infertility. This effect is best illus-
trated by paracrine regulation of GDNF secreted by sertoli cells. Meng et al. (2000) 
developed two transgenic mouse strains: one with overexpression of GDNF and the 
other with heterozygous ablation of GDNF. All transgenic mice showed decreased 
germ cell development and reduced fertility, and some even showed infertility. 
Mice overexpressing GDNF under the control of the promoter of testis-specific, 
human translation elongation factor showed larger clusters of spermatogonia, indi-
cating accumulation of undifferentiated spermatogonia. Moreover, as the mice 
aged, these clusters grew larger and began to invade into the interstitium, and most 
of the mice generated non-metastatic tumors after 1  year of age. Through BrdU 
incorporation and apoptosis staining, they found no marked enhancement in the 
total proliferation rate. Thus, it was inhibition of differentiation rather than hyper-
proliferation that was responsible for the SSC accumulation. In GDNF+/− mice, 
although most were fertile, the depletion of germ cells increased with age and 
eventually resulted in only Sertoli cells in seminiferous tubules, indicating a main-
tenance defect of SSCs (Meng et al. 2000). This dose-dependent effect highlights 
the importance of precise regulation of GDNF and the role of GDNF in SSC fate 
decisions. GDNF is the ligand for co-receptors GFRα1/Ret, and its binding is able 
to activate several intrinsic signaling pathways such as PI3K/AKT/MEK and Src 
(He et al. 2008; Braydich-Stolle et al. 2007; Oatley et al. 2007). Many downstream 
transcription factors have been revealed, such as Bcl6b, Etv5, NANOS2, and ID4 
(Oatley et al. 2006, 2011; Sada et al. 2009, 2012). Knockout or overexpression of 
these transcription factors have been performed in mice, confirming their indispen-
sable roles in SSC maintenance. In addition to the most important extrinsic factor 
(GDNF), FGF2 and CSF1 play a role in SSC self-renewal, but not in the balance 
between self-renewal and differentiation (Oatley et al. 2009; Ishii et al. 2012).
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An important intrinsic factor that regulates SSC fate is the transcriptional 
repressor Plzf. Ablation of Plzf leads to progressive germ cell loss due to exhaus-
tion of the SSCs. One possible mechanism has been proposed by Filipponi et al. 
(2007). They revealed that Plzf directly binds to the promoter region of the kit 
gene, a character of spermatogonia differentiation, thus repressing the expression 
of kit, the SCF receptor (Filipponi et  al. 2007). By inducing Redd1 expression, 
Plzf can oppose with mTORC1 whose hyperactivity leads to stem cell exhaus-
tion. Through activation of PI3 K/AKT signaling, mTORC1 activates as a down-
stream effector. However, activation of mTORC1 suppresses the expression of the 
GDNF co-receptor GFRα1/Ret, which in turn inhibits GDNF signaling for SPC 
self-renewal. In the absence of Plzf, excessive amounts of GDNF are able to pro-
mote SPC self-renewal. Thus, the fate of SPCs is controlled by cross talk between 
Plzf-Redd1-mTORC1 and AKT/PI3K-mTORC1 signaling pathways in which 
mTORC1 plays the central role. The addition of rapamycin, a specific inhibitor 
of mTORC1, to Plzf−/− cultured GSCs restores expression of the receptor and 
partly rescues the GDNF signal (Hobbs et al. 2010). Another study from the same 
group revealed that Plzf–Sall4 antagonism decides the fate of SPCs. Sall4, a zing-
finger transcription factor, restricts Plzf to non-cognate chromatin domains and 
induces the expression of the differentiation factor kit. In turn, Plzf opposes Sall4 
functions and induces Sall1 expression. In vitro treatment of GSCs with RA, an 
indispensable extrinsic factor for initiation of differentiation, downregulates Plzf 
expression and increases the number of kit-positive spermatogonia. Though Sall4 
transient upregulation in vivo, this change is accompanied by increasing numbers 
of kit+ spermatogonia (Hobbs et  al. 2012). Considering the importance of Plzf 
in SSC fate decision, it is crucial to determine the regulatory mechanisms of Plzf 
expression. Identifying such factors will greatly enhance our understanding of the 
mechanisms of SSC fate decisions.

1.4 � Perspectives

The expression profiles of undifferentiated spermatogonia involved in self-renewal 
and differentiation have been gradually revealed during the last few decades. 
However, there are no specific molecular markers that are unique to the subpop-
ulation with both self-renewal and commitment abilities. Id4 may be a potential 
marker because it is the only identified molecule that is exclusively expressed 
by some As cells (Oatley et  al. 2011). Identifying such molecules will greatly 
improve our understanding of fate decisions. It is still unclear whether there is a 
stage that marks the irreversibility of spermatogonia or whether it is the biological 
plasticity that leads to the heterogeneity among undifferentiated spermatogonia. 
Clarification of these aspects may change the current model of SSC development.

Development of a three-dimensional culture system for SSCs is another future 
challenge. In vivo studies have been difficult owing to the complex microenviron-
ment. However, a three-dimensional SSC culture system will greatly facilitate niche 
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studies. An in vitro culture system that supports the entire differentiation process 
and is able to produce haploid germ cells would be a useful tool. In vitro culture 
of SSCs has resolved the problem of rarity, but only establishment of an in vitro 
differentiation system will realize clinical applications. Dann et al. (2008) reported 
that expansion of cultured GSC with RA increases the number of germ cells posi-
tive for kit. However, they also noted premature meiosis and incomplete differen-
tiation (Dann et  al. 2008). Sato and Katagiri (2013) developed an organ culture 
system that supports all differentiation stages. Mature sperm can be obtained using 
this system, and in vitro fertilization has generated offspring (Sato et  al. 2013). 
Nevertheless, this system still depends on testis organ fragments, thereby limiting 
its application to clinical use. Transplantation of rat or hamster SSCs into mouse 
testes results in exogenous spermatogenesis, which indicates conservation among 
species (Ogawa et al. 1999). Combining organ culture with xenogeneic testis cul-
ture is possible to fully support spermatogenesis, which needs further validation.

The signaling network that promotes SSC self-renewal and differentiation 
remains largely unknown. Microarray and transgenic mouse analyses have pro-
vided many potential genes that are important for SSC maintenance and differ-
entiation, such as PHF13, SALL4, CDH1, and OCT4, but their exact roles have 
not been clarified (Tokuda et  al. 2007; Gassei and Orwig 2013; Bordlein et  al. 
2011). As previously mentioned, the upstream molecules of Plzf remain unknown. 
Clarification of such networks will provide a better understanding of SSC self-
renewal and differentiation to easily manipulate SSCs. Rodent SSC culture is effi-
cient, but the culture of SSCs from other species is difficult (Kanatsu-Shinohara 
and Shinohara 2013). Understanding the molecular networks may improve the cul-
ture efficiency in other species.
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