
5Modeling Hardware/Software Embedded
Systems with UML/MARTE: A Single-Source
Design Approach

Fernando Herrera, Julio Medina, and Eugenio Villar

Abstract

Model-based design has shown to be a powerful approach for embedded software
systems. The Unified Modeling Language (UML) provides a standard, graph-
ically based formalism for capturing system models. The standard Modeling
and Analysis of Real-Time Embedded Systems (MARTE) profile provides
syntactical and semantical extensions required for the modeling and HW/SW
codesign of real-time and embedded systems. However, the UML/MARTE
standard is not sufficient. In addition, a modeling methodology stating how to
build a model capable to support the analysis and HW/SW codesign activities of
complex embedded systems is required. This chapter presents a UML/MARTE
modeling methodology capable to address such analysis and design activities.
A distinguishing aspect of the modeling methodology is that it supports a single-
source design approach.

Acronyms

BCET Best-Case Execution Time
BSP Board Support Package
CPS Cyber-Physical System
DSE Design Space Exploration
DSL Domain-Specific Language
EDF Earliest Deadline First
EML Execution Modeling Level
ESL Electronic System Level

F. Herrera • E. Villar
GESE Group, TEISA Department, ETSIIT, Universidad de Cantabria, Santander, Cantabria,
Spain
e-mail: fherrera@teisa.unican.es; evillar@teisa.unican.es

J. Medina (�)
Software Engineering and Real-Time Group, University of Cantabria, Santander, Cantabria, Spain
e-mail: medinajl@unican.es

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_6

141

mailto:fherrera@teisa.unican.es
mailto:evillar@teisa.unican.es
mailto:medinajl@unican.es

142 F. Herrera et al.

FPGA Field-Programmable Gate Array
GME Generic Modeling Environment
HLS High-Level Synthesis
HRM Hardware Resource Modeling
HSCD Hardware/Software Codesign
ISA Instruction-Set Architecture
M2M Model-to-Model
MARTE Modeling and Analysis of Real-Time Embedded Systems
MCS Mixed-Criticality System
MDA Model-Driven Architecture
MPSoC Multi-Processor System-on-Chip
NFP Non-Functional Property
OMG Object Management Group
OS Operating System
PIM Platform Independent Model
PVT Programmers View Time
RR Round Robin
RTOS Real-Time Operating System
SLS System-Level Synthesis
TLM Transaction-Level Model
UML Unified Modeling Language
UTP Universal Testing Profile
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VSL Value Specification Language
WCET Worst-Case Execution Time

Contents

5.1 Introduction . 143
5.2 Modeling Requirements . 144

5.2.1 Single-Source Approach . 144
5.2.2 Separation of Concerns . 146
5.2.3 Incremental Modeling . 146
5.2.4 Component-Based Functional Modeling . 147
5.2.5 Support of System-Level Design Activities . 147
5.2.6 Support of Mixed-Criticality . 148

5.3 State of the Art . 149
5.4 Single-Source Modeling Methodology . 151

5.4.1 Introductory Example: Quadcopter System . 151
5.4.2 Introduction . 152
5.4.3 Platform-Independent Model . 154
5.4.4 Platform Resources . 159
5.4.5 Platform-Specific Model . 162
5.4.6 Extra-Functional Properties and Performance Constraints 162
5.4.7 Design Space . 167
5.4.8 Modeling for Software Synthesis . 170

5 Modeling Hardware/Software Embedded Systems with. . . 143

5.4.9 Verification Environment . 171
5.4.10 Mixed-Criticality . 172
5.4.11 Modeling for Schedulability Analysis . 178

5.5 Single-Source Design Framework . 180
5.6 Conclusions . 182
References . 183

5.1 Introduction

Model-based design is a powerful approach for the design of complex embedded
systems [27]. It can be adapted to different design contexts and domains, being
compatible with methodologies like Agile [2]. The Unified Modeling Language
(UML) supports Model-Driven Architecture (MDA) [40] and provides the following
remarkable advantages:

• It is a widely spread language, known and used in different domains.
• It is an Object Management Group (OMG) standard [30].
• It provides a set of generic modeling elements, supported by a graphical syntax

and a closed set of diagrams, which enables the capture of architectural and
behavioral details.

A key of the success of UML is related to the generality of the provided modeling
elements. These elements have a simple semantics that can be easily understood
and interpreted by engineers of different domains. For instance, stating that a UML
port is a mechanism to access to/from a UML component which hides component
internals. This simple element semantics is encompassed by a simple graphical
syntax, which facilitates the comprehension and adoption of UML diagrams.

UML has been also proposed for the modeling of embedded systems. Embedded
systems have become complex. The increasing amount of silicon available in a
single-chip enables the integration of more hardware and software functions. In
close relationship, the specification and modeling tasks have become increasingly
complex. Models need to reflect systems integrating multiple applications and
diverse software platform components, e.g., embedded RTOS, middleware, drivers,
etc. Similarly, current hardware architectures rely on multi-core processors, sur-
rounded by many HW devices for communication, storage, sensing, and actuation.
In addition, several types of analysis are applied (e.g., schedulability, timed-
simulations, etc.) which require to add additional information to the model, e.g., an-
notations of extra-functional properties related to timing, memory sizes, energy, etc.

A solution is to build models integrating parts under different Domain-Specific
Languages (DSLs). However, fragmentation into DSLs limits the understanding of
the overall model (all the engineers handling the model should know all the DSLs
involved) and requires an additional effort to integrate the DSLs.

In this scenario, relying on UML has the advantage of providing a common
and comprehensive host language. UML lacks the semantics and specific ele-
ments required for tackling the Hardware/Software Codesign (HSCD) of complex

144 F. Herrera et al.

embedded systems. However, UML enables to cover this semantic lack by means of
a UML extension mechanism called profile. A UML profile provides stereotypes.
Stereotypes are applied to UML modeling elements and add them additional
attributes and domain-specific semantics. In fact, the OMG currently provides a rich
portfolio of UML profiles oriented to different domains like telecommunication,
middleware, and real time.

Among these OMG standard profiles, the Modeling and Analysis of Real-Time
Embedded Systems (MARTE) profile [29] provides a rich set of modeling elements,
sufficiently broad to cover HSCD of real-time and embedded systems. For instance,
it supports the modeling of the hardware and software platform, of the application,
of extra-functional properties, and the definition of performance and real-time
analyses.

As well as the UML and the MARTE profile, a modeling methodology is
required. The modeling methodology states how to use the language in order to build
the model of a system. It states which information have to be captured and how it
is structured and captured through the available modeling techniques, such that the
model can be processed and provides all the information required by the analysis
tools and processes related to the HW/SW codesign. All these aspects defining a
modeling methodology have to serve to its main purposes. The main purpose of
the methodology presented in this chapter is to enable the development of abstract
models which can be used as a single-source for the different activities involved in
electronic system-level design. The modeling methodology shall not fix a specific
Electronic System Level (ESL) design flow, but it has to allow that applicable
design flows can progressively enrich the model from early stages, when limited
information is available, toward an enriched model which allows the implementation
of an efficient, potentially optimal, solution.

Following, Sect. 5.2 presents the goals of the methodology. The section motivates
how these goals turn into requirements because of the need of higher design
productivity. Moreover, it precises the meaning of some of this requirements (e.g.,
single-source, incremental modeling) in the modeling context. Section 5.3 provides
an overview of related modeling approaches, showing how they partially cover
the aforementioned requirements. Then, Sect. 5.4 presents the generic UML-based
modeling techniques adopted by the methodology to cover Sect. 5.2 requirements.
Section 5.5 introduces, before the conclusions, a single-source design framework
exploiting the presented modeling methodology.

5.2 Modeling Requirements

5.2.1 Single-Source Approach

A model-driven design approach helps in analyzing and predicting the behavior
of a system from different perspectives and for different purposes. In a multi-source
approach, several models of the same system have to be developed, each one associ-
ated to a perspective, type of analysis, or design activity. However, relying on several

5 Modeling Hardware/Software Embedded Systems with. . . 145

models easily leads to extra modeling efforts, redundancies, inconsistencies, and
traceability problems. In contrast, an advanced software development methodology
like Agile adopts a single-source approach, which reduces the maintenance burden
and the traceability burden and increases consistency [2].

The same advantages motivate the proposal of a single-source approach for
modeling and design of embedded systems [7], which is sketched in Fig. 5.1.

A single model, a UML/MARTE model in this case, captures all the information
required by the many tasks involved in a modern embedded system design flow, e.g.,
reusability, verification, schedulability analysis, architectural mapping, simulation
and performance analysis, design space exploration, etc.

The left-hand side of Fig. 5.2 illustrates the multi-source approach, where two
independent models, A and B, of an embedded system are developed.

Fig. 5.1 The MARTE model as a single-source model

Fig. 5.2 Multi-source vs. single-source approach

146 F. Herrera et al.

Model A serves for analyzing timing performance. Model B is the input for
a SW synthesis process. Model A adds some timing annotations, which are not
present in model B. Model B adds target information, which is not present in model
A. However, both models should reflect the same architecture of the application.
Therefore, a double unnecessary modeling effort has been done. A consistency
check to ensure that both models A and B reflect the same architecture is required, at
least after the first development of the models and specially in a context where model
architectures can be edited. These problems exponentially grow with the number of
independent models required (in the worst case, one per design activity shown in
Fig. 5.1).

In contrast, in the single-source approach (right-hand side of Fig. 5.2), the
architectural information is captured once in the model. Then, in order to capture
models A and B, the model is extended twice: once for capturing the time
annotations required by the A model and once more for capturing the synthesis
information required by the B model. The adoption of a single-source approach is a
distinctive and remarkable aspect of the shown approach. Moreover, there are other
important characteristics which need to be preserved and adopted, as addressed in
the following sub-sections.

5.2.2 Separation of Concerns

The single-source approach centralizes the information required for the design tasks
in a single model, with the advantages discussed in the previous section. The
complex system model will have a big amount of information. In this context,
Separation-of-concerns helps to provide a structure to such information. Model
Viewpoints [22] and Perspectives [46] become essential for the modeling activity.
Viewpoints are about defining the most relevant categories of information and
about the structure the model concerning them. Perspectives are related to the
model concerns, e.g., model properties or actions performed on the model, that
shall be presented and can be accessed in the modeling framework. Combining
perspectives and viewpoints facilitates model edition. It enables the cooperation of
different modelers, which can focus on specific information of the model. It also
simplifies tools and activities around it, e.g., the model navigation performed by
code generators.

5.2.3 Incremental Modeling

In software engineering, incremental modeling refers to the delivery of a series
of releases called increments [39]. This approach enables to progressively provide
more functionality on each increment. In software modeling, increments can refer
to customizations, as well as to extensions [1].

In our single-source modeling context, incremental modeling refers to the
possibility to start by building a first model that enables a first set of analysis

5 Modeling Hardware/Software Embedded Systems with. . . 147

and design activities, and enhance it later on. Then, further modeling increments
may enable additional design activities and/or improve the results of the previously
applicable activities, e.g., enabling more accuracy in the performance assessments.
A model increment shall not prevent performing the design activities already
enabled by previous versions of the model.

5.2.4 Component-Based Functional Modeling

A software component-based approach [38] has important advantages. First, it
enables to build system functionality as a composition of existing and reusable
components. These components interact with each other only through well-defined
interfaces [32], which declare the functional services they provide and require.
Adopting a software-centric approach, i.e., assuming a default software implemen-
tation of the functionality, is also an efficient approach according to the increasing
and dominant amount of software in current embedded systems.

5.2.5 Support of System-Level Design Activities

Adoption of ESL design [4] is key in order to shorten the productivity gap [19]. ESL
design tackles the productivity gap by raising the abstraction of the starting model
and by introducing automated design activities around that system-level model. Two
main design activities are:

• Design Space Exploration (DSE): consists in the activity of exploring design
alternatives and selecting the optimal ones.

• System-Level Synthesis (SLS): consists in the generation of the implementation
from the initial model, used as a specification. It requires the decision of the
HW/SW partition and the automated generation of software, hardware, and
HW/SW interfaces.

DSE can rely on SLS. For instance, [4] highlights that one of the most important
benefits for High-Level Synthesis (HLS) is that it enables (hardware) design
exploration. The methodology in [37] enables the automated SW synthesis from
a UML/MARTE model of the binaries targeted to a multi-core heterogeneous
platform. This automation is exploited for the exploration of different software
implementation alternatives. The aforementioned approaches are applied after
HW/SW partition.

An explore-then-synthesise approach relying on performance assessment tech-
niques is also possible. Kang et al. [20] refers to DSE as the activity of exploring
design alternatives prior to implementation. Therefore, in this approach, the ex-
ploration activity is done first on the model. Performance estimations on different
model configurations, which can reflect different HW/SW partitions, serve to decide
the most convenient one. Thus the system-level synthesis is only applied on that

148 F. Herrera et al.

choice. In a UML/MARTE context, [13] showed how the model can reflect different
mappings, comprising different HW/SW partitions. It enables the generation of a
performance assessment model which, linked to a DSE tool, enabled an automated
search of the Pareto solutions set.

The automation of the DSE and SLS activities is key in order to cope with the
exploration of huge design spaces and in order to eliminate human errors both in
the exploration and implementation steps. This has motivated the development of
automated DSE, SW synthesis, and hardware HLS frameworks. The possibility
to exploit these frameworks relies on the fact of enabling an input model which
conjugates the abstraction required by ESL, with the information required for
performing these activities. This chapter shows how it is done from a UML/MARTE
model under a single-source approach.

5.2.6 Support of Mixed-Criticality

Mixed-Criticality System (MCS) have got an increasing interest [23]. MCS integrate
applications with constraints whose fulfillment has different levels of criticality and
which can share computational, memory, and communication resources. Although
there is not an unanimous convey in the meaning of criticality, it has been associated
to the impact of the occurrence of a failure [6]: e.g., safety critical when the
failure can cause injures to humans, mission critical when the failure prevents the
system to perform its expected behavior, but it does not compromise safety, and
low critical when the impact is affordable. Safety standards associate criticalities
to a set of more or less strict requirements on the development process. There
are several reasons for the highest interest in mixed-criticality systems. Reusing
existing functionalities and integrating them in the same chip or in the same platform
is an efficient way to exploit growing integration capabilities and cost-effective
platforms. However, dependability problems arise, as not all the functionalities
and performance requirements are equally important. A mixed-criticality aware
design methodology considers this differences. For instance, methodologies need
to combine real-time analysis for the safety parts with hard real-time constraints,
with other techniques employed in the optimization of soft real-time embedded
systems, e.g., based on simulation and on average-case optimization. Accordingly,
MCS models need to provide support for the emerging mixed-criticality design
methodologies. Mixed-criticality has to be reflected in system models.

The modeling scenarios which can be identified in recent MC research and in
current industrial practices related to safety standards lead to the need to associate
criticalities to different type of elements, i.e., application components, platform
resources, constrains, annotations of extra-functional properties. These criticality
annotations are used to apply mixed-criticality-specific modeling rules to feed
mixed-criticality-specific schedulability analyses, DSE flows, and development and
implementation constraints.

5 Modeling Hardware/Software Embedded Systems with. . . 149

5.3 State of the Art

There are several examples of model-based methodologies for modeling, explo-
ration, and implementation of complex embedded systems. For instance, MILAN
[5] enables a model-based approach to capture the application and the platform
(called resource model). MILAN also introduced the idea of constraint model,
which distinguishes between semantic constraints, which give composability rules,
from design constraints, which capture performance requirements. The framework
shows how a model-based approach facilitates the integration of several simulation
tools at different levels of abstraction for the estimation of the performance of the
design point by relying on a Generic Modeling Environment (GME) [35]. Koski [21]
is a design flow for Multi-Processor System-on-Chip (MPSoC) covering the design
phases from system-level modeling to Field-Programmable Gate Array (FPGA)
prototyping. System-level modeling relies on UML and separates the capture of
the application from the platform. However, this approach relies on a proprietary
profile for capturing the required semantics.

Despite the relative recent release of the standard MARTE profile, there
have been already several proposals relying on it. Gaspard2 [8, 35] is a design
environment for data-intensive applications which enables a MARTE description
of both the application and the hardware platform, including MPSoC, and
regular structures. Gaspard2 uses composite diagrams and the MARTE profile for
capturing both application and platform architectures. Gaspard2 tooling supports
the chaining of different Model-to-Model (M2M) transformation tools. This
facilitates the generation of synthesis flows and also of performance models.
Specifically, Gaspard2 supports the generation of SystemC TLM models at the
Programmers View Time (PVT) level. It enables fast simulations, which speeds up
exploration.

MoPCoM [45] is another design methodology for the design of real-time
embedded systems which supports UML and the MARTE profile for system
modeling. Specifically, MoPCoM uses the Non-Functional Property (NFP) MARTE
profile for the description of real-time properties; the Hardware Resource Modeling
(HRM) MARTE profile for platform description; and the Alloc MARTE profile
for architectural mapping. Moreover, MoPCoM defines three levels of generation.
The second level, called Execution Modeling Level (EML), targets the generation
of models for performance analysis, and it is suitable for obtaining performance
figures used in DSE iterations. However, work reported in [24] mostly focuses on the
Detailed Modeling Level (DML), intended for implementation, by enabling VHDL
code generation.

The PHARAON methodology [33] provided a solution for automatically
synthesizing models combining new communication semantics with standard
UML/MARTE real-time management features. This approach provides a flexible
and easy-to-use way to specify and explore the system’s concurrent architecture.

150 F. Herrera et al.

CoFluent methodology [18] captures application and hardware architecture by
means of composite diagrams and SysML blocks. UML activity diagrams are
used to specify application execution flows. The MARTE HRM profile is used
for capturing the HW platform. CoFluent models can be translated into executable
SystemC transaction-level models, which serves to obtain utilization, time, and
power performance metrics.

A main limitation of the previous methodologies is that the exploration of
architectural alternatives requires the edition of the UML/MARTE model and a re-
generation of the executable performance model.

In [24], a UML-MARTE-based methodology relying on activity threads is
proposed in order to reduce the effort required to capture the set of architectural
mappings. An activity thread is a UML activity diagram where each path reflects a
design alternative, that is, an architectural mapping.

In [26], a methodology for supporting designers on the evaluation of the HW/SW
partitioning solutions, specifically, to identify design points fulfilling the timing
constraints is shown. It proposes a way to depict in one set of diagrams all possible
combinations of system configurations. By means of annotation of MARTE non-
functional properties and of the application of schedulability analysis, the design
space is restricted to the design points fulfilling timing requirements. However,
this methodology does not rely on automated technologies for the estimation of
performance metrics.

These MARTE-based specification methodologies are still limited for DSE pur-
poses. The exploration of different platform architectures, of different architectural
mappings, and even a small change in a design parameter (e.g., a cache size) still
requires a manual change of the model. The COMPLEX [13] flow proposes a
single-source approach to overcome the aforementioned limitations. Moreover, the
COMPLEX framework produces a configurable performance model which avoids
the re-generation and re-compilation of a performance model for each exploration
alternative and thus a significant impact in the exploration time. This framework
also supported the capture of the output performance metrics to be used by the
objective function(s) of the DSE process within the model and of performance
constraints. Enabling the capture of the performance metrics in the model, and so
in a tool independent manner, enabled the direct relation of such metrics with the
performance constraints also captured in the model.

Modeling complexity has increased with the need to consider the modeling
of Cyber-Physical System (CPS) and Mixed-Criticality Systems (MCS). A UML-
Modelica-SysML integrated modeling environment as a ModelicaML profile inte-
grated in Eclipse is presented in [36]. Modelica is an object-oriented mathematical
language for component-oriented modeling of complex physical systems containing
components of diverse nature, e.g., mechanical, electrical, electronic, hydraulic,
thermal, control, electric power, etc. The modeling of mixed-criticality systems
in UML/MARTE has been proposed in [15, 16]. This work provides modeling
techniques which cover a number of scenarios where mixed-criticality has to be
captured.

5 Modeling Hardware/Software Embedded Systems with. . . 151

5.4 Single-Source Modeling Methodology

5.4.1 Introductory Example: Quadcopter System

Along the following sections, the main modeling techniques of the proposed single-
source methodology are presented. These modeling techniques will be presented by
taking excerpts of a model of a digital electronics system embedded in a quadcopter.
This quadcopter system, shown in Fig. 5.3, has been developed by the OFFIS
Institute for Information Technology in the context of the CONTREX project [28].
The quadcopter digital system includes:

• The data mining, radio control & telemetry, and flight control functionalities.
They are safety critical as a failure on them compromises person’s safety.

• A mission functionality, which consists in the detection and tracking through a
camera a moving ball, e.g., in a sport action, in order to track, record, and stream
that action video to a base station.

• A functionality to log monitoring and debug data.

All this functionality is implemented in a Xilinx Zynq platform, which contains
a processing system with two ARM Cortex-A9 processors. In addition, the Zynq
platform has an FPGA which allows the integration of custom logic and additional
Microblaze processors, configured without caches, for enabling more predictable
computational resources for safety critical functions. The Zynq board is integrated

Fig. 5.3 The digital electronic system of a quadcopter is used for introducing the single-source
methodology

152 F. Herrera et al.

in a board together with sensor components, motor actuators, and IO devices IO.
These components are abstracted as part of the environment in the UML/MARTE
model.

5.4.2 Introduction

The modeling methodology supports separation of concerns. At the root of the
UML/MARTE model, model information is distributed into views. Model views are
captured as UML packages decorated with a methodology-specific stereotype which
adds the view semantics. Figure 5.4 shows a diagram with the views enclosing all
the quadcopter model information.

In this methodology, model views support the separation under different con-
cerns. The model of the verification environment (verification view) is separated
from the system model (remaining views). As stated in MDA, the Platform
Independent Model (PIM) is separated from the platform model. The PIM is
captured through the data, functional and application views. Platform-dependent
information is added later. The HW resources view declares the HW components,
which can be later instanced in the architectural view. The declaration of software
platform resources (in the SW platform view) is also separated from the declaration
of hardware platform resources. Architectural information is captured through
UML composite diagrams, and separated from component declaration, which have
associated the behavioral information. The methodology follows a pragmatical and
generic approach with respect to the association of behavior to the model. Figure 5.5
shows an excerpt of the quadcopter model where source files are associated
to application components (UML artifacts allocated to the PIM component via
UML relations decorated with the MARTE «allocated» stereotype). In addition,
the methodology allows the association of paths for the sources through UML

Fig. 5.4 Model views

5 Modeling Hardware/Software Embedded Systems with. . . 153

Fi
g

.
5

.5
A

ss
oc

ia
tio

n
of

so
ur

ce
fil

es
co

nt
ai

ni
ng

th
e

be
ha

vi
or

to
PI

M
co

m
po

ne
nt

s

154 F. Herrera et al.

constraints associated to the artifacts. This mechanism is language independent and
has been exploited in the automated generation of executable performance models
and of synthesized binaries.

As Fig. 5.4 shows, building a platform-specific model depends on the PIM
model, but not the opposite. Then, incremental model development is possible.
Thus, for instance, the methodology makes possible the generation of an executable
functional model. After capturing the platform-dependent model, the generation of
a performance model or the synthesis phase is enabled. Similarly, time or energy
annotations can be added, e.g., to a hardware component, to add accuracy to the
automatically generated performance model. However, if these annotations are not
present, the generation of the performance model is still possible (default values are
used).

5.4.3 Platform-Independent Model

The methodology enables the description of a platform-independent model (PIM)
under a component-based approach.

The methodology enables a clean separation of the PIM information. Figure 5.6
shows the components of the quadcopter PIM as they are seen in the Eclipse model
explorer view.

Among the six components, the quadcopter_app component is decorated as
«system» component (it can be seen in Fig. 5.7). The PIM system component is the
top component of the PIM model hierarchy, which contains the PIM architecture,
shown in Fig. 5.7. The remaining components are PIM components, to be eventually
instanced in the PIM system component and which shall be stereotyped to be either
an active component, a passive component, or a shared variable. The MARTE
«RtUnit», «PpUnit», and «SharedComResource» stereotypes are respectively used
for that purpose. Figure 5.8 shows the application of the «RtUnit» stereotype to the
datamining (DataMiningC) and radio-control and telemetry (RCTelemetryC) com-
ponents of the quadcopter. As can be observed in Fig. 5.6, non-system components
have been enclosed in an additional UML package called AppComponents. This

Fig. 5.6 Components of the
quadcopter PIM model

5 Modeling Hardware/Software Embedded Systems with. . . 155

Fi
g

.
5

.7
Q

ua
dc

op
te

r
PI

M
ar

ch
ite

ct
ur

e

156 F. Herrera et al.

Fi
g

.
5

.8
Q

ua
dc

op
te

r
fu

nc
tio

na
lv

ie
w

ex
ce

rp
t

5 Modeling Hardware/Software Embedded Systems with. . . 157

is not required, but supported by the methodology, to structure more PIM model
information.

The architecture of the platform-independent model is captured within the PIM
system component by means of a UML composite diagram, as shown in Fig. 5.7.

The PIM system component makes instances of the PIM components as UML
properties, either active components or passive components, that is either of
«RtUnit» or «PpUnit» components. The quadcopter model only instances active
components, since all the components have internal periodic tasks. For instance,
datamining is an instance of the DataMiningC component. PIM component in-
stances are connected via channels. Channels are captured as UML port-to-port
connectors. While these connectors reflect to internal connections, the PIM archi-
tecture also contains UML connectors. In this case, they connect a port of the top
component and a port of an internal component, reflecting the delegation of the
function services or requirements across one hierarchy level.

Each port is stereotyped as a client-server port via the MARTE «ClientServer-
Port» stereotype. This stereotype has the attribute kind, of the MARTE
ClientServerKind type, which allows the methodology to state that the port has
either a provided or a required interface. In addition, the attributes provInterface
and reqInterface, both of the UML interface type, enable the specification of the
specific interface associated to the port. Such an interface has to be previously
captured as a client-server interface in the functional view. Figure 5.8 shows an
excerpt of the functional view of the quadcopter, with three interfaces.

All of them have been applied to the MARTE «ClientServerSpecification»
stereotype to identify the interfaces that can be exported by PIM components. Each
interface declares the methods that are exported at that interface. For instance, the
AttitudeIF interface declares two methods: the getAttitude method for obtaining the
attitude information from the provider component and the isAttituteValid method
for obtaining a flag stating if the attitude value that can be currently retrieved from
the component is valid. In turn, each of those methods are specified by their input
and output parameters. Both of them have to have a precisely specified type. The
data view enables the user to precise all the types to be employed in the interfaces.
Figure 5.9 shows an excerpt of the data view of the quadcopter model. This excerpt
shows the capability of the methodology to capture complex structured types, e.g.,
the attitude_type returned by the getAttitude method.

Concerning the capture of communication semantics, Fig. 5.7 reflects the sim-
plest case, where a default semantics is associated to channels. For instance, the
default semantics states that the call to the service is blocking at the initiation and
end of the service. That is, the component requiring the service, i.e., making the call,
waits for the provider component, i.e., the one implementing the called function, to
be ready for executing it, and also waits for its completion.

In addition, the methodology enables a more detailed specification of the channel
semantics. Figure 5.10 illustrates a case where the semantics of the channel used
by the overall_mon_dbg component to retrieve attitude data from the datamining
component has a user-defined semantics. For it, the UML port-to-port connector
representing the channel is stereotyped with the «channel» methodology-specific

158 F. Herrera et al.

Fi
g

.
5

.9
Q

ua
dc

op
te

r
da

ta
vi

ew
ex

ce
rp

t

5 Modeling Hardware/Software Embedded Systems with. . . 159

Fig. 5.10 Channel instance with custom semantics

Fig. 5.11 Specification of channel with custom semantics

stereotype. The «channel» stereotype provides the attribute channelType. This at-
tribute can be assigned a UML component decorated with the MARTE «Communi-
cationMedia» stereotype. This component has to be included in an additional view,
the communication view (see Fig. 5.11), and represents a channel whose semantics
can be customized by the user. In order to customize the communication semantics,
the MARTE «StorageResource» stereotype and the «ChannelTypeSpecification»
stereotype are used. The former stereotype makes possible to specify the channel
buffering capability, i.e., how many function calls can be buffered by the chan-
nel. The methodology-specific «ChannelTypeSpecification» stereotype contributes
additional attributes for configuring the channel semantics, for instance, if the com-
municating components shall synchronize at function call and at function return.

5.4.4 Platform Resources

As was mentioned, the methodology enables the specification of platform resources
in two separated views. The SW platform view is used to declare the software
resources of the platform, i.e., operative systems and drivers. Figure 5.12 shows the
software platform resources in the software platform view of the quapcopter model.
The basic SW platform resource is the Operating System (OS), which is captured
as a UML component decorated by the methodology-specific «OS» stereotype. The
only OS semantics injected by this means is used for producing performance models
based on generic RTOS models. However, more specific information is required in
other contexts. The «OS» stereotype provides the type property, which serves as a
string descriptor which uniquely identifies the target OS or RTOS in SW synthesis.
The methodology also supports a more detailed specification of the OS behavior.
This is necessary for safety critical cases, where an accurate performance analysis
also relies on an accurate modeling of the OS scheduler behavior. For it, the «OS»

160 F. Herrera et al.

Fig. 5.12 SW resources of the quadcopter platform

stereotype provides the scheduler attribute. The scheduler attribute specifies one
scheduler component, i.e., a component stereotyped with the MARTE «Scheduler»
stereotype. In turn, the «Scheduler» stereotype enables the attributes isPreemptible,
schedPolicy, schedule, and otherSchedPolicy, which enable quick and versatile
specification of scheduling policy. The schedPolicy attribute enables a synthetic
capture of the most usual scheduling policies (static scheduler, fixed priorities,
Earliest Deadline First (EDF), Round Robin (RR), etc.). The attribute isPreemptible
states that the RTOS re-schedules on release events of other application tasks.
The schedule attribute is used to configure and complete the description of the
scheduling policy when schedPolicy=TimeTableDriven. TheTimeTableDriven value
can be used in MARTE to specify both order-based schedules and time-triggered
schedules. In the former case, the schedule attribute serves to capture the execution
order, i.e., the schedule of the tasks allocated to the OS. The otherSchedPolicy
attribute is used to support other scheduling policies not covered by MARTE. In the
methodology, it is also exploited for enabling a more synthetic description capable
to preserve the single-source approach in a DSE context (an example is given in
[16]). In the quadcopter case, the SW resource view shown in Fig. 5.12 states that
the xilkernel OS has been configured with a priority-based scheduling policy.

Figure 5.13 shows the resources declared in the hardware platform view of the
quapcopter model. In this view, all the hardware platform resources to be instanced
in the hardware platform architecture shall be declared. Each platform resource
is declared through a component with a specific MARTE stereotype adding the
hardware resource semantics. For this, the HRM MARTE profile is intensively used.
As shown in Fig. 5.13, the methodology supports the modeling of computational
resources (e.g., HW processors), communication resources (e.g., buses), memory
resources (e.g. cache memories), main memories, and I/O devices. Depending on
the type of hardware component, and thus of the stereotype, different attributes are
available. None of the platform views contain any architectural information. There
is one exception in the HW resources view, which allows to directly link a set of
cache components to a processor component. The set is passed as the value of the
caches attribute of the MARTE «HwProcessor» stereotype. Each element of the
set passed to the caches attribute is a component decorated with the «HwCache»
MARTE stereotype and also declared in the HW resources view. This mechanism
has been used in the quadcopter model to simplify the capture of level 1 caches
associated to the ARM_Cortex_A9 processor components. For the same example,

5 Modeling Hardware/Software Embedded Systems with. . . 161

Fi
g

.
5

.1
3

H
W

re
so

ur
ce

s
of

th
e

qu
ad

co
pt

er
pl

at
fo

rm

162 F. Herrera et al.

the microblaze processor components declared in the HW resources view have an
empty cache attribute. The microblaze processors in the quadcopter system have no
cache since they are used to run the datamining and control functionalities, which
require more predictability due to their criticality.

5.4.5 Platform-Specific Model

As was shown in Sect. 5.4.4, the SW platform and the HW resources views declare
platform resources. They do not contain architectural information, apart from cache
resources associated to processors. The methodology supports the specification of
the SW/HW platform architecture and of the mapping of the PIM model to the
SW/HW platform through the memory space and architectural views.

The memory space view is a non-mandatory view which can be used to specify
memory spaces and the mapping of the component instances to the declared memory
spaces. This is a first mapping level, which is relevant in SW implementation. A
software process is inferred for each memory space. By default, if the user does
not specify a memory space view, an implicit one with a single memory space is
inferred, and it will be assumed that all the component instances are mapped to
the implicit memory space. Figure 5.14 reflects a case where four memory spaces
have been specified. The specification is done again within a composite diagram
associated to a system top component, called quadcopter_memspaces, captured
within the memory space view. This component is captured as a specialization of
the PIM top component. Therefore, the references to the component instances, i.e.,
telemetry, datamining, flight_alg, mission, and overall_mon_dbg, are visible and
can be used as source of the allocations.

Figure 5.15 shows the architectural view of the quadcopter system. The ar-
chitectural view captures the mapping of memory spaces to OS instances, which
effectively closes the mapping of the PIM to the SW/HW platform.

The SW/HW architecture captures the mapping of the OS instances onto the
computing elements, i.e., HW processors, and the interconnection of the different
HW elements.

As can be noticed, the mapping of memory spaces to OS instances and the
mapping of OS instances to computing elements are captured again by means of
UML abstractions with the «allocate» stereotype. Regardless of the type of source
or destination, a static mapping is captured with the same modeling technique. For
the connection of PIM component instances, hardware platform components are
linked also through UML port-to-port connectors. Summing up, the methodology
employs the same modeling techniques, to solve the same type of modeling needs,
for yielding more understandable models and an easier to learn methodology.

5.4.6 Extra-Functional Properties and Performance Constraints

The methodology supports the annotation of several types of extra-functional
properties (EFPs). These annotations are used by performance and schedulability

5 Modeling Hardware/Software Embedded Systems with. . . 163

Fi
g

.
5

.1
4

M
ap

pi
ng

of
PI

M
co

m
po

ne
nt

in
st

an
ce

s
to

m
em

or
y

pa
rt

iti
on

s

164 F. Herrera et al.

Fi
g

.
5

.1
5

Q
ua

dc
op

te
r

ar
ch

ite
ct

ur
al

vi
ew

5 Modeling Hardware/Software Embedded Systems with. . . 165

analyses. Most of them are performed in the HW resources view. Figure 5.12
illustrates several types of EFPs. For instance, the sizes of the different types of
memories and structural information of caches, i.e., number of sets, cache policies,
bus widths, frequencies for processors (and other types of hardware resources),
and I/O device bandwidths, can be stated by only relying on the different MARTE
stereotypes from the HRM profile.

Moreover, the methodology also supports the annotation of power and energy
consumption associated to HW resources. For annotating static power consumption,
the HW component is decorated with the MARTE «HW_Component» stereo-
type, which provides the staticConsumption property. Moreover, the methodology
supports the modeling of power state machines. The HW component can have
different functional modes defined by the operating frequency, source voltage,
dynamic power, and average leakage. A UML state diagram associated to the
HW component and the MARTE «mode» and «ModeTransition» stereotypes are
employed for that purpose. The «HwPowerState» stereotype introduced in [3] and
the MARTE «ResourceUsage» stereotypes are used for characterizing the static
and dynamic power consumptions of each mode. The modeling methodology also
supports the annotation of energy consumption. The annotations depend on the
modeling element. For instance, in order to annotate the energy consumed per cycle
in a processor, a cycle attribute of MARTE NFP_Energy type, and decorated with
the MARTE «NFP» stereotype, is added to the processor component. An analog
technique is used for associating energy consumptions to other components. For
buses and memories, the energy associated to an access is annotated. For caches, two
energy consumption figures are annotated, for distinguishing the hit consumption
from the miss consumption.

The methodology also allows the annotation of workloads, e.g., Worst-Case
Execution Time (WCET), average times, and Best-Case Execution Time (BCET),
to application components. Figure 5.30 in Sect. 5.4.10 illustrates such annotations
in the mixed-criticality context and how they depend on the allocation to platform
resources.

The methodology enables the specification of performance requirements. Perfor-
mance requirements are used in performance analysis and design space exploration
to check if the assessed solutions are acceptable. Similarly, implementation and
test phases should consider this information for the validation of the chosen design
alternative. Figure 5.16 illustrates a compact mechanism for performance constraint
specification, possible whenever the performance constraint is captured through a
UML property. In the case of Fig. 5.16, through a UML comment decorated with
the MARTE, «RtSpecification» stereotype is linked to the PIM component instances
of the quadcopter. The «RtSpecification» contributes the relDl stereotype, a UML
property which enables a synthetic capture of the deadline through an expression
under the MARTE Value Specification Language (VSL).

The methodology provides a mode general mechanism to express performance
constraints. It is done by means of a UML constraint decorated with the MARTE
«NFP_constraint» and «ExpressionContext» stereotypes. The latter enables the
capture of a Boolean expression written in VSL. The Boolean expression refers

166 F. Herrera et al.

Fig. 5.16 System and application performance constraints on the quadcopter

«Component»
quadcopter_system

«expressionContext»

«expressionContext»
throughput

structure

Power

{out$frame_sending.throughput(Hz,est)>=(30,Hz)}

+ cpu1

structure structure structure structure structure structure structure

+ cpu2 + cpu3 + cpu4 + axi1 + axi3axi64 : ...

{out$cpu1.power(W,est)+out$cpu2.power(w,est)+out$cpu3.power(W,est)
+out$cpu4.power(W,est)+out$axi1.power(W,est)+out$axi2.power(W,est)
+out$axi3.power(W,est)<15W}

Fig. 5.17 System and application performance constraints on the quadcopter

to at least one output performance metric. An output performance metric is a value
of an extra-functional property which should be estimated by an analysis tool after
taking the own UML/MARTE model as an input. The output performance metric
is expressed as a VSL variable with the out prefix. The output performance metric
can be general (independent on the model), e.g., overall power consumption, or
refer to a model element, e.g., a processor consumption. Figure 5.17 provides an
example on the quadcopter. The NFP constraint is linked to the processor and bus
instances referenced in the expression and whose power dissipation contributes to
the overall power consumption. Several output performance metrics are required to

5 Modeling Hardware/Software Embedded Systems with. . . 167

be calculated, i.e., the dissipation of each CPU and of the axi64, axi1, and axi3 bus
instances. Notice that the performance requirements refer to both application and
platform elements.

5.4.7 Design Space

The proposed methodology enables the description of a design space. That is,
instead of a design solution, the modeler can capture several or many design
solutions, e.g., several PSMs, in a single model, thus effectively enabling the single-
source approach for DSE. As was mentioned, this is crucial for avoiding model
re-factoring and thus enabling fast iterations during the design space exploration.

The modeling of the design space refers to two basic modeling elements:
property values annotations and architectural mappings.

The methodology supports DSE parameters. A DSE parameter is a property value
annotation which, instead of specifying a single fixed value, specifies a range of
possible values. The capture of a DSE parameter relies on VSL. The syntax of the
VSL expression capturing the DSE parameters is the following one:

$DSEParameterName = DSERangeSpecification
The “$” symbol prefixes a VSL variable and thus the DSE parameter name.

The DSERangeSpecification expresses the range of the DSE parameter, that is, all
the values that the DSEParameterName variable can have during the exploration.
The DSE parameter range can be annotated either as a collection or as an interval.
Collections are captured with the syntax DSERangeSpecification=(v1, v2, v3,
unit), where “v1, v2, v3” are the numerical values of the parameter and unit
expresses the physical unit associated the values. MARTE provides a rich set of
unit kinds to support the different extra-functional properties characterizing systems
components, e.g., frequencies, bandwidth, data size, etc. Intervals follow the syntax
“DSERangeSpecification=([vmin . . . vmax], unit)”. For a complete determination
of the exploration range, this style obliges to assume an implicit step. For an
explicit and complete determination of the DSE range, the support of the style
“DSERangeSpecification=([vmin . . . vmax , step], unit)” is proposed, which means
a minor extension of VSL. The definition of non-linear ranges is possible. For
instance, step can take the value exp2, which enables the definition of a geometrical
progression, i.e., the second value is “vminx2”, and so on.

Figure 5.18 illustrates the specification of a design space on the frequencies of the
ARM processing cores of the quadcopter HW platform. This way, the exploration
of the impact on performance depending on the selection of a Z-7020 device (which
works at 667 MHz), a Z-7015 device (works at 766 MHz), or a Z-7020 device (at
866 MHz) can be explored.

In Fig. 5.18, the DSE has been associated to the processor component declaration
(in the HW platform resources view). Therefore, once the DSE parameter value is
fixed, it is fixed for all its instances. The methodology also allows the association of
the DSE parameter to the instance properties. Therefore, if the user wants to explore
the variations on the frequency of a single ARM core, then the constraint has to be

168 F. Herrera et al.

Fig. 5.18 A DSE parameter
associated to the ARM
Cortex-A9 processor
component declaration

Fig. 5.19 A DSE parameter
associated to the ARM
Cortex-A9 processor
component declaration

Fig. 5.20 A DSE parameter associated to the period of the monitor functionality in the quadcopter
PIM

linked to that processor instance in the suitable view, i.e., in the architectural view
in this case, as illustrated in Fig. 5.19.

The DSE parameter is a powerful mechanism since it is applicable to any
property of the model, and therefore, it enables to specify the exploration of
its impact on the performance of the system. This includes also elements of
the platform-independent model. Figure 5.20 shows an example where a DSE
parameter is associated to the period of the monitor and debugging component of
the quadcopter PIM. In this example, this DSE parameter is useful to explore how
a relaxation on its refresh frequency helps in the fulfillment of time performance
constraints.

5 Modeling Hardware/Software Embedded Systems with. . . 169

Fig. 5.21 Specification of a mapping design space in the memory space view of the quadcopter

The methodology supports the modeling of configurable mappings and, for
each configurable mapping, the expression of which is the set of mappings to
be explored. This way, the single-source approach is kept, as the same model
serves to express all the mapping alternatives to be explored. A configurable
mapping is expressed through a UML comment decorated with the MARTE
«assign» stereotype. Specifically, its from and to attributes reflect a range of possible
source and destination elements, respectively. Therefore, the from and to values are
DSE parameters. Figure 5.21 shows an example of the quadcopter memory space
view which specifies the exploration of two possible mappings of the datamining
component. The «assign» comments can be present in the model together with the
«allocate» fixed mappings. In a DSE context, the «assign» comment overrides the
fixed allocation, stating the range of sources and destinations. Since the «assign»
comment in Fig. 5.21 states nothing about the mapping of the flight_alg, telemetry,
mission, and overall_mon_dbg component instances, the fixed mapping information
stated in Fig. 5.14 is used in a DSE context. In an implementation context, the fixed
allocations are used as a statement of the selected implementation.

Figure 5.21 illustrated the specification of a space of mappings in the memory
space view (from PIM components to memory spaces). The methodology enables
the modeling of configurable mappings in other levels, e.g., for the mapping of
memory spaces to platform resources in the architectural view.

Several «assign» comments can be present in the same model. The cross product
of the mapping spaces defined by each «assign» comment states the overall mapping
space of the model.

The modeling methodology supports DSE rules. DSE rules are constraints
embedding Boolean expressions which impose dependencies among the values of
the DSE parameters. DSE rules can also refer to the from and to properties of
the «assign» comments, and thus to configurable mappings. DSE rules provide an

170 F. Herrera et al.

additional expressiveness to the modeler to customize and prune a potentially huge
and redundant design space that can result out of the cross product of all the DSE
parameters and configurable mappings.

5.4.8 Modeling for Software Synthesis

The functionality associated to the model is platform independent and has no call
to a specific OS API or communication middleware. In the proposed methodology,
such type of platform-dependent code is automatically generated by a SW synthesis
tool called eSSYN [44]. As well as the associated functionality, eSSYN needs

to read PIM information, i.e., retrieved from all PIM views (data, functional and
application view). In general, the PIM information read refers to the component
partition, to the configuration of static and dynamic concurrency, to the semantics of
the communication stated among components and to timing. Taking this information
at its input, eSSYN generates all the target-dependent code to implement in
SW the specified concurrency, communication, and time semantics. Most of the
pieces of target-dependent code are component wrappers, named wrappers in
short.

The partition into components determines the structure of the generated code
and the ambits of visibility. Moreover, the mapping of the application component
instances to memory partitions is also read at software synthesis time. A software
process is inferred for each memory partition, and all functionality of PIM com-
ponents mapped to the memory partition will be integrated and in the ambit of the
inferred process.

Component attributes stating the concurrency semantics include the «RtUnit»
attributes isDynamic and main. The former states if dynamic threads are created
for attending the service calls. The latter captures the functionality to be statically
triggered, i.e., as an autonomous thread at the beginning of the execution. The
communication semantics and the mappings specified by the model have also
involvements on the inference of the dynamic concurrency of the system. While
some services can consist in a simple procedure call, the mapping to different
memory spaces (and thus to different processes) necessarily involves the inference
of dynamic threads to service the calls.

By default, a default semantics for the communications is inferred for the port-to-
port connectors, unless an explicit semantics is captured as was shown in Sect. 5.4.3.
The methodology supports the capture and annotation of additional information
which is specifically required and exploited by implementation tasks. Figure 5.22
illustrates how a channel instance can be annotated with information relevant
for the synthesis of communications. Specifically, two additional attributes of the
«channel» stereotype introduced in Sect. 5.4.3 enable to specify the communication
stack and specific communication service employed. This specification capabilities
were exploited in [37] to show how the different communication alternatives could
be rapidly implemented and its impact in performance explored.

5 Modeling Hardware/Software Embedded Systems with. . . 171

Fig. 5.22 Channel attributes exploited in software synthesis

Specific information can be also captured at lower levels for the SW synthesis
phase. It was also mentioned that the type attribute of the «OS» stereotype is
used to identify a specific target OS or RTOS distribution. In addition, the «OS»
stereotype supports the capture of a set of drivers. This information is used to build
up the so-called Board Support Package (BSP). At the HW platform modeling level,
the processor Instruction-Set Architecture (ISA) is specified through the MARTE
«HwISA» stereotype. ISA information is used for the selection of the suitable target
at the compilation phase of the synthesis flow.

5.4.9 Verification Environment

The modeling methodology enables the capture of an environment model. This
environment model is required by simulation-based performance analysis in order
to describe the external stimuli and collect the functional outputs of the system.

The environment model is separately captured in the verification view, i.e.,
enclosed in a UML package decorated with the «VerificationView» stereotype. The
environment model has a top component which instances the system components
and an arbitrary number of environment components connected to the system
component. Figure 5.23 shows the top environment component (TopEnvQuad-
copter) and the environment components (in gray). The environment model is at
a functional level, thus at the same abstraction level as the PIM. Therefore, it has
to have client-server ports compatible with the system component, as illustrated in
Fig. 5.23. Similarly as for the PIM, functionality is associated to the environment
by means of artifacts and path constraints, thus using modeling techniques familiar
to the system modeler. The functionality of environment components can invoke
libraries and tools which facilitate the environment modeling. In performance model
generation context, this functionality is not annotated. In a SW synthesis context,
this functionality embeds code dealing with environment, i.e., target-dependent code
accessing drivers.

For the identification of the top environment component and of the environment
components, the methodology relies on the Universal Testing Profile (UTP), an
OMG standard. Figure 5.24 shows the components of the verification view of the
quadcopter.

172 F. Herrera et al.

Fig. 5.23 The top environment component of the quadcopter instantiates environment compo-
nents and connects them to the instance of the system component

5.4.10 Mixed-Criticality

The proposed modeling methodology enables the association of different critical-
ities to several types of modeling elements, including value annotations of non-
functional types, constraints on extra-functional properties, application components,
and platform resource components. These techniques rely on two minor extensions
of the MARTE profile shown in Fig. 5.25. These extensions were required to support
the CONTREX metamodel [25] (�Chap. 32, “Metamodeling and Code Generation
in the Hardware/Software Interface Domain” introduces metamodeling), capable to
cover the MCS modeling. The first extension adds a criticality attribute to a NFP
constraint (left-hand side of Fig. 5.25). The criticality attribute is of integer type,
which denotes an abstract criticality level. The NFP constraint can be associated
then directly to different types of modeling elements, e.g., UML components and
UML constraints. Therefore, this extension enables the association of criticalities
to components, e.g., application and platform components, and also to constraints,
employed to capture performance requirements and contracts. The second extension
consists in enabling the annotation of a criticality value on a value annotation
(right-hand side of Fig. 5.25). Again, the criticality value is an integer, denoting
the criticality level.

These extensions support several modeling scenarios requiring mixed-criticality
modeling. Figure 5.26 illustrates the direct association of criticalities to PIM
component instances of the quadcopter. The association is performed through a
«NfpConstraint» with its criticality value annotated in the criticality attribute. Please

http://dx.doi.org/10.1007/978-94-017-7267-9_32

5 Modeling Hardware/Software Embedded Systems with. . . 173

Fi
g

.
5

.2
4

C
om

po
ne

nt
s

of
th

e
en

vi
ro

nm
en

tm
od

el
of

th
e

qu
ad

co
pt

er

174 F. Herrera et al.

Fig. 5.25 Proposed MARTE extensions for mixed-criticality modeling

Fig. 5.26 Criticalities directly associated to PIM component instances

observe that Figure 5.26 actually shows the «NfpConstraint_Contrex» stereotype.
This is provided by the methodology-specific eSSYN profile, and it is used as long
as the aforementioned MARTE extension remains as a proposal. Similarly, critical-
ities can be also directly associated to other application components, e.g., memory
spaces, and to software and platform components. Figure 5.27 shows the association
of a criticality level to the computational resources of the quadcopter platform. The
criticality associated to the application and platform component instances can then
be used according to the design context. A main application of this direct association
of criticality to PIM and platform components is the application of mapping rules
at different levels (from application component to memory spaces, from application
level to platform level), oriented to ensure a given degree of separation of resources.
Other scenarios covered by this technique is when the development process of
the components, either application or platform components, is conditioned by the
criticality level, e.g., higher criticality components require more testbenches and
more strict coding rules.

The methodology enables the association of criticalities to requirements and
specifically to performance requirements. The methodology supports the associa-
tion of criticalities to extra-functional requirements in several ways. An implicit

5 Modeling Hardware/Software Embedded Systems with. . . 175

«Component»
quadcopter_system

structure

structure structure

criticality=[2] criticality=[3]

mission_critical_resources
{}

structure structure

«nfpConstraint_Contrex»
«NfpConstraint_Contrex»

safety_critical_resources
{}

«nfpConstraint_Contrex»
«NfpConstraint_Contrex»

+ cpu1 :ARM_Cortex_A9 + cpu2 :ARM_Cortex_A9 + cpu3 :Microblaze + cpu4 :Microblaze

Fig. 5.27 Criticalities directly associated to HW computational elements

«Compount»
quadcopter_app

structure

structure structure structure

structurestructure

+ datamining : DataMiningC + flight_alg : FightAlgorithmC + telemetry : RCTelemetryC

+ overall_mon_dbg : OverallMonitorDbgC+ mission : MissionPayloadC

«rtSpecification»

«rtSpecification» «rtSpecification»

«rtSpecification»
«RtSpecification»

«RtSpecification» «RtSpecification»

«RtSpecification»
occKind=periodic(period=(2,ms))
relDl=(value=2,unit=ms,criticality=3)

occKind=periodic(period=(33.33,ms))
relDl=(33.33,ms,criticality=3)

occKind=periodic(period=(10,ms))
relDl=(10.0,ms,criticality=1)

occKind=periodic(period=(2,ms))
relDl=(value=2,unit=ms,criticality=3)

«rtSpecification»
«RtSpecification»
occKind=periodic(period=(2,ms))
relDl=(value=2,unit=ms,criticality=3)

Fig. 5.28 Criticalities associated to deadline constraints

association is supported through the previously shown direct association of crit-
icalities to components. In such a case, the methodology assumes that all the
performance constraints associated to a component with an associated criticality
inherit such a criticality. Additional techniques for associating criticalities to specific
requirements are available in case a component has more than one associated
requirement. In the constructs where the requirement on the extra-functional
property is captured as a value annotation by means of VSL expression, now it
is possible to annotate a criticality associated to the value annotation. Figure 5.28
reflects the association of the deadline requirements on the periodic tasks of the
quadcopter and the criticalities annotations on the VSL expression; such a criticality
value is associated to each specific deadline requirement.

When the performance requirement is expressed by means of a «NfpConstraint»,
e.g, as it was the case in Fig. 5.17, the extension of the «NfpConstraint» with the
criticality attribute can be used. Figure 5.29 shows the extension of the model

176 F. Herrera et al.

«Component»
quadcopter_system

«NfpConstraint_Contrex»

«NfpConstraint_Contrex»
«nfpConstraint_Contrex,expressContext»

«nfpConstraint_Contrex»
«expressionContexy»

criticality=[3]

criticality=[2]

{out$cpu1.power(W,est)+out$cpu2.power(W,est)+out$cpu3.power(W,est)
+out$cpu4.power(W,est)+out$axi1.power(w,est)+out$axi2.power(W,est)
+out$axi3.power(W,est) < 15W}

structure

structure structure structure structure

throughput
{out$frame_sending.throughput(Hz,est)>=(30,Hz)}

structure structure structure

Power

+ cpu1 + cpu2 + cpu3 + cpu4 axi64 : ... + axi1 + axi3

Fig. 5.29 Criticalities associated to system performance constraints

shown in Fig. 5.17, in order to specify the power dissipation constraint as safety
critical (criticality = 3). This is because the heating can have side effects on the
hardware executing the flight algorithm. The same technique is used to state that
the throughput requirement associated to the PIM mission component (in charge to
capture video, to detect and track an object, and to streaming the recorded action) is
mission critical (criticality = 2).

Figure 5.30 shows another modeling scenario requiring mixed-criticality annota-
tion. Schedulability theory on mixed-criticality systems rely on input models where
a set of WCETs, instead of a single one, are associated to a task. Each WCET of
the WCET set is associated to a criticality level. The proposed methodology covers
this modeling need. Figure 5.30 illustrates the annotation of different worst-case
execution times to the main application component instance. In the methodology, the
implicit semantics associates the WCET to the main functionality of the component.
The annotation relies on the execTime property of the «ResourceUsage» MARTE
stereotype. The methodology assumes that a time annotation is associated not only
to the application functionality but also to the computational resource which will run
the workload. That is, the time annotation reflects the time taken by the execution
of the application functionality in isolation conditions. Therefore, the annotation
is performed through an association between the application component and the
used computational component of the HW resource view. Specifically, such an as-
sociation is a UML use dependency decorated with the MARTE «ResourceUsage»
stereotype. The execTime property of the «ResourceUsage» is typed as a set of

5 Modeling Hardware/Software Embedded Systems with. . . 177

Fi
g

.
5

.3
0

C
ri

tic
al

iti
es

as
so

ci
at

ed
to

di
ff

er
en

tW
C

E
T

va
lu

e
an

no
ta

tio
ns

178 F. Herrera et al.

values of MARTE NFP_Duration type. Therefore, the execTime property can be
and is used for annotating several values of execution time.

In addition, the methodology supports several «ResourceUsage» associations.
This way, a single-source model provides information to trigger several schedula-
bility analyses, e.g., for different mapping alternatives. Specifically, Fig. 5.30 states
that if the flight algorithm component is mapped to a microblaze processor instance,
then the WCETs to be considered are 5.2, 3.5, and 2.4 ms for criticalities 3, 2, and
1, respectively. Notice that this technique can be used only if a single functionality
is associated to the component.

5.4.11 Modeling for Schedulability Analysis

This section shows the modeling elements and techniques used to do the validation
of timing properties by means of schedulability analysis. The goal is to ensure
real-time constraints (hence timing predictability) for critical tasks and evaluate
the unused processing capacity that can be used for other non-critical activities in
a simple way. This kind of real-time analysis is necessary when the systems are
highly complex and have critical time constraints. The modeling for schedulability
analysis is integrated in this component-based modeling methodology. The func-
tionality is broken down into the internal and provided functions of communicating
components, which in turn are mapped to the processing platform and where the
analysis of many real-time situations is possible. A real-time situation corresponds
to a workload and a platform. A workload is a set of end-to-end flows and their
related stimuli (each end-to-end flow has its associated stimuli). An end-to-end flow
describes the causal flow of actions that is triggered by external events and for which
a deadline is specified. In such an end-to-end flow or execution path, one or more
functions of one or more components can be executed. The objective of the analysis
is to ensure that the response time of all the sequences of functions executed on each
flow is smaller than the deadline associated.

For each individual function, the annotation of the worst-case and best-case
execution times (WCET/BCET) is required. WCETs are needed to get upper
bounds for response times and so to verify that the real-time requirements are
met. The knowledge of BCETs is useful to reduce jitter and minimize pessimism
in upper bounds for distributed systems [31]. The WCET and BCET of a given
piece of functionality depends on the type of processing resource executing it.
The mode of operation, and specifically, the operation frequency has also direct
impact on the execution time of the same code segment. Section 5.4.10 showed
how to annotate in the UML model different WCETs for different processor types.
The operation modes are captured by means of UML state machines, where the
operation modes are represented as UML states specified by the «Mode» MARTE
stereotype. Transitions are represented as “UML transitions”, specified by the
«ModeTransition» MARTE stereotype.

In general, WCET annotations for independent functions are needed for per-
forming schedulability analysis. However, the schedulability analysis introduced

5 Modeling Hardware/Software Embedded Systems with. . . 179

before requires more information, in particular, the workload, the stimuli patterns
that triggers the workload, the platform where it runs, and the hard real-time
requirements. Moreover, the modeling methodology shall enable the specification
of the ambit and elements of the model involved in the real-time analysis, i.e., the
functions and resources of which are really involved out of the overall model.

The schedulability analysis model is contained in a specific view package,
stereotyped as «SchedulabilityView». A real-time situation corresponding to an
execution model is included in this package and consists in one or more end-to-
end flows. The end-to-end flow is modeled as a UML activity decorated with the
«SaEndtoEndFlow» MARTE stereotype. An activity diagram is used to describe
the causal flow as a sequence of steps. In general, a step represents the usage
of resources needed at that point in the flow. Here, it is used to express the
execution time taken from the processing resource associated and the messages
sizes that are to be sent through network channels. The characteristics of the
event that triggers the end-to-end flow are annotated in the initial node of the
activity of the end-to-end flow by means of the «GaWorkLoadEvent» MARTE
stereotype. This stereotype allows to indicate the pattern of activation (e.g., periodic
or sporadic) and its parameters (e.g., period). Each step in the flow is modeled in
the activity diagram as a UML opaque action annotated with the «SaStep» MARTE
stereotype. The attribute execTime of «SaStep» is used to capture the worst and
the best execution times of the function involved. The steps may be specified at
different granularity levels depending on the knowledge available for the underlying
execution elements. At the finest granularity, steps are used on functions with known
WCET/BCET. A step can also be used to model operations that invoke other steps.
The concurRes attribute of a step is used to indicate the task it runs on, in the case of
a computational step, or the channel through which the message is sent, in the case
of a communication step. In the former case, a computation step may also model
a sequence of operations executed by the task by means of the subusage attribute.
Each operation in the subusage sequence is modeled statically by means of UML
operations stereotyped with «SaStep». Figure 5.31 shows (on the left-hand side) the
modeling of two end-to-end flows for the quadcopter case: one for the data miner
task and one for the flight algorithm task. The right-hand side of Fig. 5.31 shows the
activity diagram of one of the end-to-end flows, which illustrates the simplest way
to describe it.

Schedulability analysis requires to explicitly model the concurrent tasks the
aforementioned steps belong to, i.e., steps are mapped to those tasks through the
concurRes attribute. These tasks are specified through UML properties with the
«SchedulableResource» MARTE stereotype in the concurrency view. Figure 5.32
shows the modeling of the quadcopter tasks (one for the datamining and another
one for the flight algorithm) involved in the schedulability analysis.

In turn, these tasks are associated to the HW/SW platform resources that will
execute them by means of the host attribute of the «SchedulableResource» stereo-
type. The «SaExecHost» and «SaCommHost» MARTE stereotypes are employed
for indicating the platform resources involved in the schedulability analysis. Specif-
ically, the «SaExecHost» stereotype indicates platform component instances where

180 F. Herrera et al.

Fig. 5.31 Specification of end-to-end flows in the quadcopter

Fig. 5.32 Modeling of quadcopter tasks and their mapping to the SW/HW platform for schedula-
bility analysis

tasks can be scheduled and thus mapped and enables capturing properties such as
the range of priorities and context switching times. This way, each host attribute
of the quadcopter tasks involved in schedulability analysis, shown in Fig. 5.32, can
only point to any of the platform resources stereotyped as «SaExecHost» in the
architectural view of the quadcopter, that is, rtos1 and rtos2, shown in Fig. 5.33.

5.5 Single-Source Design Framework

The single-source modeling methodology introduced in this chapter is documented
in detail in [42]. The modeling methodology enables the production of models
which serve as an input to a tool infrastructure supporting a single-source design
approach. The CONTREX Eclipse plug-in (CONTREP) [41] is the unified, graphical
front-end of that infrastructure. As shown in Fig. 5.34, for the modeling activity,

5 Modeling Hardware/Software Embedded Systems with. . . 181

Fig. 5.33 Indication of the execution resources in the SW/HW platform architecture of the
quadcopter for schedulability analysis

Fig. 5.34 The CONTREX Eclipse plug-in takes the UML/MARTE model as an input for the
design activities which rely on different tools

CONTREP provides the eSSYN profile, which provides an implementation of
the UTP stereotypes and of a minimum set of methodology-specific extensions
employed by the modeling methodology. In addition, CONTREP also integrates a
validation tool for the detection of the violation of the modeling rules. As Fig. 5.35
reflects, as well as modeling, CONTREP enables further design activities. For room
reasons, it is not possible to illustrate here the application of a complete use case.
However, related publications have reported how the UML model served for the
generation of a functional model and for SW synthesis [37] relying on eSSYN. For
schedulability analysis, the MARTE2MAST generator [10] has been adapted for its
integration in CONTREP, and so to enable the automatic generation of the input
for the MAST tool [11]. Schedulability analysis requires also tools for obtaining
the WCETs and BCETs. In [34], simulation was used to obtain maximum observed
times as an early approach. The framework is also capable to generate a ForSyDe
executable model [14] (see �Chap. 4, “ForSyDe: System Design Using a Functional
Language and Models of Computation”) for formal functional validation. CON-
TREP also automates the generation of a fast performance model. The performance
model relies on the VIPPE tool [43], which implements advanced techniques for
fast simulation and performance assessment. Simulation is convenient for getting
accuracy and considering the dynamism of the application and of the input stimuli

http://dx.doi.org/10.1007/978-94-017-7267-9_5

182 F. Herrera et al.

Fig. 5.35 Design activities that can be launched with the CONTREX Eclipse plug-in

of the system environment, that is, for an scenario-aware assessment of the system
(�Chap. 9, “Scenario-Based Design Space Exploration”). Specifically, VIPPE
relies on host-compiled simulation (see �Chap. 19, “Host-Compiled Simulation”)
and is capable to parallelize the simulation (�Chap. 17, “Parallel Simulation”
introduces advanced parallelization techniques in a SystemC context) to exploit
multi-core host platforms.

CONTREP also automates the generation of a complete simulation-based DSE
infrastructure. As well as the performance model, files describing information
like the design space, the performance constraints, the cost functions, and the
exploration strategy, a basic input for the exploration tool coupled to the simulatable
performance model is generated. The framework is flexible and allows the user to
select from the CONTREP front-end, at a high abstraction level, among different
exploration strategies (see �Chap. 6, “Optimization Strategies in Design Space
Exploration”), exploration tools, and report options. Moreover, the framework
enables also the launch of the automated DSE process and the visualization of
results from the own graphical environment.

5.6 Conclusions

This chapter has presented the main modeling techniques of a single-source
modeling methodology relying on the UML language and the MARTE profile, both
OMG standards. These techniques enable the methodology to support separation of

http://dx.doi.org/10.1007/978-94-017-7267-9_10
http://dx.doi.org/10.1007/978-94-017-7267-9_18
http://dx.doi.org/10.1007/978-94-017-7267-9_19
http://dx.doi.org/10.1007/978-94-017-7267-9_7

5 Modeling Hardware/Software Embedded Systems with. . . 183

concerns, incremental modeling, and functional component modeling and to feed
ESL key design tasks such as design space exploration and software synthesis. All
these capabilities are mandatory for the productivity boost required by the current
complexities of modern embedded systems.

More information on the introduced methodology can be found in related
publications [12–16, 34, 37], in the methodology related website [44], and in the
CONTREX website [28].

The presented methodology maximizes the exploitation of UML and specifically
of the MARTE and UTP profiles for complex embedded system modeling. This
does not necessarily mean that these profiles are currently capable to cover all
the required concepts. In most of the cases, the methodology covers the lacks
by proposing minimal extensions to MARTE, for instance, for the annotation of
criticalities, for the description of a design space in VSL, or for the capture of the
system views. In other cases, more important extensions are required. This is the
case of embedded distributed systems description, for which CONTREX has made
also a proposal [9, 17].

Acknowledgments This chapter has been partially funded by the European FP7 611146 (CON-
TREX) project and by the Spanish TEC 2014-58036-C4-3-R (REBECCA) project. We are thankful
to the OFFIS team in CONTREX for their support and for all the documentation and material on
their quadcopter implementation. This includes the quadcopter picture of the chapter.

References

1. Alam O, Kienzle J (2013) Incremental software design modelling. In: Proceedings of the 2013
conference of the center for advanced studies on collaborative research, CASCON ’13. IBM
Corp., Riverton, pp 325–339

2. Ambler SW (2015) Single source information: an Agile best practice for effective documenta-
tion. http://agilemodeling.com/essays/singleSourceInformation.htm

3. Arpinen T, Salminen E, Hämäläinen TD, Hännikäinen M (2012) {MARTE} profile extension
for modeling dynamic power management of embedded systems. J Syst Archit 58(5):209–219.
doi:10.1016/j.sysarc.2011.01.003. Model Based Engineering for Embedded Systems Design

4. Bailey B, Martin G, Piziali A (2007) ESL design and verification: a prescription for electronic
system level methodology. Morgan Kaufmann/Elsevier, Amsterdam/Boston

5. Bakshi A, Prasanna VK, Ledeczi A (2001) Milan: a model based integrated simulation
framework for design of embedded systems. In: Proceedings of the 2001 ACM SIGPLAN
workshop on optimization of middleware and distributed systems, OM ’01. ACM, New York,
pp 82–93. doi:10.1145/384198.384210

6. Burns A, Davis R (2015) Mixed-criticality systems: a review, 6th edn. Technical report,
Department of Computer Science, University of York

7. Cabot J (2014) Single-source modeling for embedded systems with UML/MARTE. http://
modeling-languages.com/modeling-embedded-systems-uml-marte

8. Dekeyser J, Gamatie A, Atitallah R, Boulet P (2008) Using the UML profile for MARTE
to MPSoC co-design. In: 1st international conference on embedded systems and critical
applications (ICESCA’08)

9. Ebeid E, Medina J, Quaglia D, Fummi F (2015) Extensions to the UML profile for MARTE for
distributed embedded systems. In: 2015 forum on specification and design languages (FDL),
pp 1–8

http://agilemodeling.com/essays/singleSourceInformation.htm
http://modeling-languages.com/modeling-embedded-systems-uml-marte
http://modeling-languages.com/modeling-embedded-systems-uml-marte

184 F. Herrera et al.

10. Garcia A, Medina J: MARTE2MAST. http://mast.unican.es/umlmast/marte2mast/
11. Gonzalez M, Gutierrez JJ, Palencia JC, Drake JM (2001) Mast: modeling and analysis suite for

real time applications. In: 2001 13th Euromicro conference on real-time systems, pp 125–134.
doi:10.1109/EMRTS.2001.934015

12. Herrera F, Penil P, Posadas H, Villar E (2014) Model-driven methodology for the development
of multi-level executable environments. In: Haase J (ed) Models, methods, and tools for
complex chip design. Lecture notes in electrical engineering, vol 265. Springer International
Publishing, pp 145–164. doi:10.1007/978-3-319-01418-0_9

13. Herrera F, Posadas H, Peñil P, Villar E, Ferrero F, Valencia R, Palermo G (2014) The COM-
PLEX methodology for UML/MARTE modeling and design space exploration of embedded
systems. J Syst Archit 60(1):55–78. doi:10.1016/j.sysarc.2013.10.003

14. Herrera F, Peñil P, Villar E (2015) Enhancing analyzability and time predictability in
UML/MARTE component-based application models. In: Proceedings of the 18th international
workshop on software and compilers for embedded systems, FDL ’15. IEEE

15. Herrera F, Peñil P, Villar E (2015) A model-based, single-source approach to design-space
exploration and synthesis of mixed-criticality systems. In: Proceedings of the 18th international
workshop on software and compilers for embedded systems, SCOPES ’15. ACM, New York,
pp 88–91. doi:10.1145/2764967.2784777

16. Herrera F, Peñil P, Villar E (2015) UML/MARTE modelling for design space exploration
of mixed-criticality systems on top of predictable platforms. In: Jornadas de Computación
Empotrada (JCE’15)

17. Herrera F, Peñil P, Villar E (2015) Extension of the UML/MARTE network modelling
methodology in CONTREX. Technical report, University of Cantabria. http://umlmarte.
teisa.unican.es/wp-content/uploads/2016/05/ExtendedUML_MARTE_Network_Modelling_
Methodology.pdf

18. Intel (2014) Intel cofluent methodology for SysML: UML*SysML*MARTE flow for In-
tel CoFluent studio. http://www.intel.com/content/www/us/en/cofluent/cofluent-methodology-
for-sysml-white-paper.html

19. ITRS: International roadmap of semiconductors. http://www.itrs.net/
20. Kang E, Jackson E, Schulte W (2011) An approach for effective design space exploration.

In: Calinescu R, Jackson E (eds) Foundations of computer software. Modeling, development,
and verification of adaptive systems. Lecture notes in computer science, vol 6662. Springer,
Berlin/Heidelberg, pp 33–54. doi:10.1007/978-3-642-21292-5_3

21. Kangas T, Kukkala P, Orsila H, Salminen E, Hännikäinen M, Hämäläinen TD, Riihimäki
J, Kuusilinna K (2006) UML-based multiprocessor soc design framework. ACM Trans Embed
Comput Syst 5(2):281–320. doi:10.1145/1151074.1151077

22. Kruchten P (1995) Architecture blueprints—the “4+1” view model of software architecture. In:
Tutorial proceedings on TRI-Ada ’91: Ada’s role in global markets: solutions for a changing
complex world, TRI-Ada ’95. ACM, New York, pp 540–555. doi:10.1145/216591.216611

23. Lemke M (2012) Mixed criticality systems. Report from the workshop on mixed criticality
systems. Technical report, Information Society and Media Directorate-General

24. Liehr AE (2009) Languages for embedded systems and their applications. Lecture notes in
electrical engineering, vol 36. Springer Netherlands, pp 43–56. doi:10.1007/978-1-4020-9714-
0_3

25. Medina J et al (2015) CONTREX system metamodel. Technical report. https://contrex.offis.
de/home/images/publicdeliverables/Deliverable%20D2.1.1%20v1.0.pdf

26. Mura M, Murillo L, Prevostini M (2008) Model-based design space exploration for RTES with
SysML and MARTE. In: Forum on specification, verification and design languages, FDL 2008,
pp 203–208. doi:10.1109/FDL.2008.4641446

27. Nicolescu G, Mosterman P (2009) Model-based design for embedded systems. Computational
analysis, synthesis, and design of dynamic systems. CRC Press, Boca Raton

28. OFFIS (2015) CONTREX FP7 project website. https://contrex.offis.de/home/
29. OMG (2011) OMG UML profile for MARTE, modelling and analysis of real-time embedded

systems, Version 1.1. Available at www.omg.org

http://mast.unican.es/umlmast/marte2mast/
http://umlmarte.teisa.unican.es/wp-content/uploads/2016/05/ExtendedUML_MARTE_Network_Modelling_Methodology.pdf
http://umlmarte.teisa.unican.es/wp-content/uploads/2016/05/ExtendedUML_MARTE_Network_Modelling_Methodology.pdf
http://umlmarte.teisa.unican.es/wp-content/uploads/2016/05/ExtendedUML_MARTE_Network_Modelling_Methodology.pdf
http://www.intel.com/content/www/us/en/cofluent/cofluent-methodology-for-sysml-white-paper.html
http://www.intel.com/content/www/us/en/cofluent/cofluent-methodology-for-sysml-white-paper.html
http://www.itrs.net/
https://contrex.offis.de/home/images/publicdeliverables/Deliverable%20D2.1.1%20v1.0.pdf
https://contrex.offis.de/home/images/publicdeliverables/Deliverable%20D2.1.1%20v1.0.pdf
https://contrex.offis.de/home/
www.omg.org

5 Modeling Hardware/Software Embedded Systems with. . . 185

30. OMG (2015) OMG unified modeling language. Available at www.omg.org
31. Palencia JC, Gutierrez JJ, Gonzalez Harbour M (1998) Best-case analysis for im-

proving the worst-case schedulability test for distributed hard real-time systems.
In: Proceedings of the 10th Euromicro workshop on real-time systems, pp 35–44.
doi:10.1109/EMWRTS.1998.684945

32. Panunzio M, Vardanega T (2009) On component-based development and high-integrity real-
time systems. In: IEEE 19th international conference on embedded and real-time computing
systems and applications

33. Peñil P, Posadas H, Nicolás A, Villar E (2012) Automatic synthesis from UML/MARTE
models using channel semantics. In: Proceedings of the 5th international workshop on model
based architecting and construction of embedded systems, ACES-MB ’12. ACM, New York,
pp 49–54. doi:10.1145/2432631.2432640

34. Peñil P, Posadas H, Medina J, Villar E (2015) UML-based single-source approach for
evaluation and optimization of mixed-critical embedded systems. In: DCIS’15

35. Piel E, Atitallah RB, Marquet P, Meftali S, Niar S, Etien A, Dekeyser J, Boulet P (2008)
Gaspard2: from MARTE to SystemC simulation. In: Design, automation and test in Europe
(DATE 08)

36. Pop A, Akhvlediani D, Fritzson P (2007) Integrated UML and modelica system modeling
with modelicaml in Eclipse. In: Proceedings of the 11th IASTED international conference on
software engineering and applications, SEA ’07. ACTA Press, Anaheim, pp 557–563

37. Posadas H, Peñil P, Nicolás A, Villar E (2014) Automatic synthesis of embedded {SW} for
evaluating physical implementation alternatives from UML/MARTE models supporting mem-
ory space separation. Microelectron J 45(10):1281–1291. doi:10.1016/j.mejo.2013.11.003.
DCIS’12 Special Issue

38. Szyperski C (2002) Component software: beyond object-oriented programming. Addison
Wesley, London

39. TILLOO R (2015) What is incremental model in software engineering? It’s advantages
and disadvantages. Available in http://www.technotrice.com/incremental-model-in-software-
engineering

40. Truyen F (2006) The fast guide to model driven architecture – the basics of model driven
architecture. http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf

41. University of Cantabria: CONTREX Eclipse plug-in website. http://contrep.teisa.unican.es.
Accessed 04 Oct 2016

42. University of Cantabria: UML/MARTE single-source methodology website. http://umlmarte.
teisa.unican.es. Accessed: 04 Oct 2016

43. University of Cantabria: VIPPE website. http://vippe.teisa.unican.es. Accessed 04 Oct 2016
44. University of Cantabria (2016) eSSYN website. http://eSSYN.com
45. Vidal J, de Lamotte F, Gogniat G, Soulard P, Diguet JP (2009) A co-design approach for embed-

ded system modeling and code generation with UML and MARTE. In: Design, automation test
in Europe conference exhibition. DATE ’09, pp 226–231. doi:10.1109/DATE.2009.5090662

46. Woods E, Rozanski N (2005) Using architectural perspectives. In: 2014 IEEE/IFIP conference
on software architecture, vol 0, pp 25–35. doi:10.1109/WICSA.2005.74

www.omg.org
http://www.technotrice.com/incremental-model-in-software-engineering
http://www.technotrice.com/incremental-model-in-software-engineering
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://contrep.teisa.unican.es
http://umlmarte.teisa.unican.es
http://umlmarte.teisa.unican.es
http://vippe.teisa.unican.es
http://eSSYN.com

	5 Modeling Hardware/Software Embedded Systems with UML/MARTE: A Single-Source Design Approach
	Contents
	5.1 Introduction
	5.2 Modeling Requirements
	5.2.1 Single-Source Approach
	5.2.2 Separation of Concerns
	5.2.3 Incremental Modeling
	5.2.4 Component-Based Functional Modeling
	5.2.5 Support of System-Level Design Activities
	5.2.6 Support of Mixed-Criticality

	5.3 State of the Art
	5.4 Single-Source Modeling Methodology
	5.4.1 Introductory Example: Quadcopter System
	5.4.2 Introduction
	5.4.3 Platform-Independent Model
	5.4.4 Platform Resources
	5.4.5 Platform-Specific Model
	5.4.6 Extra-Functional Properties and Performance Constraints
	5.4.7 Design Space
	5.4.8 Modeling for Software Synthesis
	5.4.9 Verification Environment
	5.4.10 Mixed-Criticality
	5.4.11 Modeling for Schedulability Analysis

	5.5 Single-Source Design Framework
	5.6 Conclusions
	References

