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Abstract

This chapter focuses on resource management techniques for performance or
energy optimization in multi-/many-core systems. First, it gives a comprehensive
overview about resource management in a broad perspective. Secondly, it
discusses the possible optimization goals and constraints of resource man-
agement techniques: computational performance, power consumption, energy
consumption, and temperature. Finally, it details the state-of-the-art techniques
on resource management for performance optimization under power and thermal
constraints, as well as for energy optimization under performance constraints.

Acronyms

DPM Dynamic Power Management
DSE Design Space Exploration
DSP Digital Signal Processor
DTM Dynamic Thermal Management
DVFS Dynamic Voltage and Frequency Scaling
EOH Extremal Optimization meta-Heuristic
EWFD Equally-Worst-Fit-Decreasing
GIPS Giga-Instruction Per Second
GPP General-Purpose Processor
ILP Instruction-Level Parallelism
IPC Instructions Per Cycle
IPS Instruction Per Second
ISA Instruction-Set Architecture
ITRS International Technology Roadmap for Semiconductors
LTF Largest Task First

S. Pagani (�) • M. Shafique • J. Henkel
Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany
e-mail: pagani@kit.edu; shafique@kit.edu; henkel@kit.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_11

301

mailto:pagani@kit.edu; shafique@kit.edu; henkel@kit.edu


302 S. Pagani et al.

MPSoC Multi-Processor System-on-Chip
NoC Network-on-Chip
QoS Quality of Service
SCC Single Chip Cloud computer
SFA Single Frequency Approximation
SoC System-on-Chip
TDP Thermal Design Power
TLP Thread-Level Parallelism
TSP Thermal Safe Power

Contents

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
10.1.1 Centralized and Distributed Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
10.1.2 Design-Time Decisions and Run-Time Adaptations . . . . . . . . . . . . . . . . . . . . 305
10.1.3 Parallel Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

10.2 Optimization Goals and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
10.2.1 Computational Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
10.2.2 Power and Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
10.2.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
10.2.4 Optimization Knobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

10.3 Performance Optimization Under Power Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 317
10.3.1 Traditional Per-Chip Power Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
10.3.2 Efficient Power Budgeting: Thermal Safe Power . . . . . . . . . . . . . . . . . . . . . . . 318

10.4 Performance Optimization Under Thermal Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 320
10.4.1 Techniques Based on Thermal Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
10.4.2 Boosting Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

10.5 Energy Optimization Under Performance Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 324
10.6 Hybrid Resource Management Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

10.1 Introduction

In the past decade, single-core processors have reached a practical upper limit with
respect to their maximum operational frequency, mostly due to power dissipation.
This has motivated chip manufacturers to shift their focus toward designing
processors with multiple cores which operate at lower frequencies than their single-
core counterparts, such that they can potentially achieve the same computational
performance while consuming less power. Furthermore, computational performance
demands of modern applications have substantially increased and can no longer
be satisfied only by increasing the frequency of a single-core processor or by
customizing such a processor. In other words, modern computing systems require
processors with multiple cores in the same chip (expected to increase in number
every year, as shown in Fig. 10.1), which can efficiently communicate with each
other and provide increased parallelism. The main idea is therefore to consider an
application as a group of many small tasks, such that these tasks can be executed in
parallel on multiple cores and thus meet the increased performance demands [1].
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Fig. 10.1 System-on-Chip (SoC) consumer portable design complexity trends [24]. The figure
shows the expected total logic and memory sizes (normalized to 2011), as well as the expected
number of processing elements to be found in future SoCs, as predicted by ITRS in 2001

Aside for motivating the use of multi-core processors, the continuous increasing
performance demands and power budget constraints have led to the emergence of
heterogeneous multi-core processors composed by more than one type of core,
where each core type has different performance and power characteristics [62].
The distinct architectural features of the different types of cores can be potentially
exploited in order to meet both the functional and nonfunctional requirements (e.g.,
computational performance, power consumption, temperature, etc.). This makes
heterogeneous multi-core and many-core systems a very promising alternative
over their homogeneous counterpart, where an application may witness large
improvements in power and/or performance when mapped to a suitable type of
core, as also discussed in �Chap. 8, “Architecture and Cross-Layer Design Space
Exploration”.

Furthermore, as nanotechnology evolves, it is expected that in upcoming years
thousands of cores will be integrated on the same chip [24]. Such a large number
of cores need a Network-on-Chip (NoC) based on an efficient and scalable
interconnection infrastructure for core-to-core communication (as also discussed in
�Chap. 15, “Network-on-Chip Design”). To efficiently manage these processors,
we need sophisticated resource and power management techniques, which can be
categorized as “centralized or distributed” (with respect to their view of the system
and information exchange during the management decision), and as “design time
or run time” (with respect to the time of the decision making algorithms). Resource
and power management techniques are responsible for mapping threads/tasks to
specific resources on the chip (i.e., cores of different types, accelerators, remote
servers, etc.), migrating threads/tasks at run time, managing the power modes of the
resources (active, clock gated, sleep, power gated, etc.), selecting the voltage and
frequency levels of the resources, etc. Considering all these management options
leads to a very large design space from which to choose. For example, when
executing N threads/tasks on a system with M cores, in which each core can run
at F different voltage/frequency levels, there are M N C F M possible mapping

http://dx.doi.org/10.1007/978-94-017-7267-9_9
http://dx.doi.org/10.1007/978-94-017-7267-9_16
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and voltage/frequency combinations. According to the desired goals and given
constraints, the appropriate combination can be therefore selected applying Design
Space Exploration (DSE). Furthermore, most run-time techniques (and also several
design-time techniques) considerably limit the design space in order to reduce the
execution time of the management decisions.

10.1.1 Centralized and Distributed Techniques

Centralized techniques assume to have (or be able to obtain) a global view of
the system. Namely, a centralized resource management technique would require
to know what applications are being executed throughout the chip, in how many
threads, mapped to which specific cores, executing at what voltage and frequency
level, their power consumption, etc. With this information, a centralized technique
can potentially arrive to very efficient resource management decisions. However,
if such detailed information is not known by the centralized manager a priori
(most likely scenario in real systems), then it needs to be transmitted through
the corresponding communication infrastructure, requiring high communication
bandwidths. This is the main reason why centralized techniques are generally not
scalable, where scalability is defined as the ability of a technique to remain within
feasible computation and communication constraints when the problem size grows
(i.e., when we have an increasing number of cores on a processor). Therefore,
centralized techniques are well suited for processors with a limited number of cores.

In practice however, a more realistic assumption, in terms of latency and
communication bandwidth, is to assume that every core is restricted to a local view
of the system where only information of the immediate surrounding neighborhood
is known at any given time. This can be easily achieved by having cores periodically
communicate with their neighbors, keeping the communication load distributed
throughout the chip. In this way, the resource management decisions are made in
a distributed fashion, where small groups of cores conduct local optimization,
maintaining scalability. This local optimization is managed differently depending
on the considered distributed technique. For example, each core could manage
itself individually after exchanging information with other cores, or contrarily, some
cores could act as local managers and make decisions that affect a small group of
neighboring cores. In either case, the challenge for distributed techniques is to make
high-quality resource management decisions with respect to the chosen optimization
goal with such limited local information.

In summary, mainly due to scalability issues, distributed techniques are
better suited for large multi-/many-core systems than centralized techniques.
Specifically, in distributed systems:

(continued)
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• The communication load is balanced throughout the processor, avoiding
communication bottlenecks in the central manager.

• The computational complexity of the each distributed (local) resource
management decision is much smaller than the complexity of a centralized
decision, and therefore the problem size is decoupled from the total number
of cores in the chip.

10.1.2 Design-Time Decisions and Run-Time Adaptations

Resource management and power management methodologies based on design-
time decisions require to have advance knowledge of the applications to execute
and their requirements, as well as an estimation of their characteristics (execution
time, power consumption, etc.). Naturally, they have a global view of the system
and are therefore generally implemented in a centralized manner. Furthermore, the
execution time of design-time optimization algorithms is not of major importance,
as long as it remains below reasonable limits (e.g., in terms of minutes or hours
and not months or years). On the other hand, methodologies based on run-
time adaptations only have information of the current application queue (i.e., list
of applications ready for execution) and requirements. Moreover, the execution
time of run-time optimization algorithms (also known as on-the-fly algorithms)
contributes to the overall application execution time, and therefore, it is vital that
they have a short execution time. Given that having a global knowledge of the
system can potentially consume a high communication bandwidth and also requires
considerable time, run-time methodologies are usually restricted to a local view
of the system where only information of the immediate surrounding neighbor-
hood may be available and are therefore generally implemented in a distributed
manner.

In more detail, methodologies based on design-time decisions:

• Have a global view of the system.
• Do not have stringent timing constraints and therefore can involve complex

dynamic programming algorithms [25, 44], integer linear programming [26],
time-consuming heuristics (e.g., simulated annealing [33, 40] or genetic algo-
rithms [11]), or a large DSE.

• Can generally result in higher quality decisions than run-time methodologies.
• Require previous knowledge (or predictions) of the system behavior, which is not

always feasible to obtain a priori.
• Cannot adapt to changes in the system behavior, for example, the insertion of a

new application unknown at design time.
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Contrarily, methodologies based on run-time (or on-the-fly) adaptations:

• Only have information of the current application queue and requirements.
• Generally, restricted to a local view of the system having only information of the

immediate surrounding neighborhood.
• Optimization decisions require a short execution time.
• Trade quality in order to reduce the communication bandwidth and the execution

time.
• Generally implemented using (probably distributed) lightweight heuristics.
• Can adapt to changes in the system behavior, for example, to take advantage of

dynamic workload variations of the applications (as also discussed in �Chap. 9,
“Scenario-Based Design Space Exploration”, e.g., early completions, perfor-
mance requirement changes, etc.) or to execute new applications unknown at
design time (even after the delivery of the system to the end-user).

• Can adapt to hardware changes after the production of a System-on-Chip (SoC),
for example, permanent hardware failures or core degradations due to aging
effects.

Finally, aside from design-time or run-time algorithms, there exist hybrid
methodologies which partially rely on results previously analyzed at design time
and also on run-time adaptations [50, 56, 59, 60, 63, 68]. Namely, based on design-
time analysis of the applications (stored on the system for a specific platform),
lightweight heuristics can make very efficient run-time decisions that adapt to
the system behavior (current applications on the ready queue, available system
resources, desired performance, etc.). Such techniques still suffer from some of the
downsides of design-time methods, for example, knowing all potential applications
to be executed at design time such that they can be properly analyzed on the desired
platform. Nevertheless, they can generally result in better resource management
decisions than design-time algorithms (as they can adapt to the current system
behavior) and than on-the-fly heuristics (as they can make more informed decisions
or require less time to evaluate certain alternatives).

10.1.3 Parallel Applications

For an application to be executed in a multi-/many-core system, the application has
to be parallelized (or partitioned) into multiple threads/tasks that can be concurrently
executed on different cores. Although far from a solved problem, there exist some
state-of-the-art application parallelization tools [7, 34] that can be used to take care
of the task partitioning and manual analysis, involving finding a set of tasks, adding
the required synchronization and inter-task communication to the corresponding
tasks, management of the memory hierarchy, verifying the parallelized code in order
to ensure a correct functionality [35], etc.

A task binding process is also required for the case of heterogeneous platforms,
such that the system can know which tasks can be mapped to which type of cores

http://dx.doi.org/10.1007/978-94-017-7267-9_10
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and with what cost [61]. Namely, depending on the underlying architecture, it is
possible that not all tasks can be mapped to all core types, for example, a task
requiring a floating point unit may not be mapped to a core that does not have such
a unit. Moreover, the binding process must analyze the implementation costs (e.g.,
performance, power consumption, and resource utilization) of every task on all the
types of cores that support each task, such as a General-Purpose Processor (GPP), a
Digital Signal Processor (DSP), or some reconfigurable hardware.

10.2 Optimization Goals and Constraints

There are several possible optimization goals and constraints for resource man-
agement techniques: computational performance, power consumption, energy con-
sumption, and temperature. For example, a system could choose to maximize
the computational performance under a power or temperature constraint, while
another system would prefer to minimize energy consumption under performance
constraints.

10.2.1 Computational Performance

In few words, computational performance refers to how fast and efficiently can the
system execute a given set of applications. It can be measured in many different
ways, for example, application’s execution time, throughput, Instructions Per Cycle
(IPC), Instruction Per Second (IPS), normalized speed-up factor with respect to a
known reference, etc. Generally, IPC and IPS are not well-suited metrics to use in
heterogeneous systems, as different types of cores might have different Instruction-
Set Architectures (ISAs) or require a different number of instructions to finish the
same amount of work.

Maximizing the overall system performance (generic term which can, e.g.,
refer to maximizing the summation of the weighted throughput of all appli-
cations, minimize the longest execution time among all applications, etc.)
is generally the most commonly pursued optimization goal. Nevertheless,
for applications with hard real-time deadlines, meeting the deadlines can be
formulated as satisfying certain performance requirements, and therefore for
such cases performance is considered as a constraint.

The execution time of an application (or the resulting performance of the
application) will depend on how the application is executed, for example, in how
many threads the application is parallelized in, the types of cores to which the
application is mapped to, the execution frequency, the utilization of shared resources
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(caches, NoC, etc.) by other applications, etc. The application’s characteristics also
play a major role in its execution time, for example, its Instruction-Level Parallelism
(ILP) or its Thread-Level Parallelism (TLP) have a direct impact in how well an
application scales with respect to frequency and the number of threads, respectively.
Applications with high ILP generally scale well with increasing frequencies, while
applications with high TLP generally scale better when parallelized in many
threads. For example, Fig. 10.2 shows the execution time and speed-up factors
of three applications from the PARSEC benchmark suite [3] with respect to the
frequency when executing a single thread. Similarly, Fig. 10.3 shows the execution
time and speed-up factors of the same application with respect to the number of
parallel threads when executing at 2 GHz. From the figures, we can observe that
the impact of the frequency and the number of parallel threads on the speed-up
factors are entirely application dependent and that the application’s performance
will eventually stop scaling properly after a certain number of threads, known as the
parallelism wall.
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Fig. 10.2 Execution time and speed-up factors with respect to frequency based on simulations
conducted on gem5 [4] for three applications from the PARSEC benchmark suite [3] executing
a single thread on an out-of-order Alpha 21264 core. The speed-up factors are normalized to the
execution time of each application running at 0:2 GHz
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Fig. 10.3 Execution time and speed-up factors based on simulations conducted on gem5 [4] and
Amdahl’s law for three applications from the PARSEC benchmark suite [3] executing at 2 GHz on
an out-of-order Alpha 21264 core. The speed-up factors are normalized to the execution time of
each application running a single thread
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10.2.2 Power and Energy Consumption

Power consumption is in nature an instantaneous metric which changes through
time. Particularly, a core executing a certain thread of an application will consume
different amounts of power at different time instants and application phases.
For example, Fig. 10.4 illustrates the power consumption results of simulations
conducted with Sniper [5] and McPAT [31], for a PARSEC bodytrack application
executing four parallel threads on a quad-core Intel Nehalem cluster running at
2:2 GHz. The power consumption values observed on a specific core at a given point
in time depend on several parameters, e.g., the underlying architecture of the core,
the technology scaling generation, the mode of execution of the core (e.g., active,
idle, or in a low-power mode), the selected voltage/frequency levels for execution,
the temperature on the core (for leakage power thermal dependency), the application
phase begin executed, etc.

Generally, as detailed in [17], the power consumption of a CMOS core can be
modeled as formulated in Equation (10.1):

P D ˛ � C
app
eff � V 2

dd � f C Vdd � Ileak .Vdd; T / C Pind (10.1)

where ˛ represents the activity factor (or utilization) of the core, C
app
eff represents

the effective switching capacitance of a given application, Vdd represents the supply
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Fig. 10.4 Power consumption results of simulations conducted using Sniper [5] and McPAT [31],
for a PARSEC bodytrack application with simmedium input, executing four parallel threads at
2:2 GHz on a quad-core Intel Nehalem cluster
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voltage, f represents the execution frequency, Ileak represents the leakage current
(which depends on the supply voltage and the core’s temperature T ), and Pind

represents the independent power consumption (attributed to keeping the core in
execution mode, i.e., the voltage-/frequency-independent component of the active
power consumption). Moreover, in Equation (10.1), ˛ � C

app
eff � V 2

dd � f represents
the dynamic power consumption, while Vdd � Ileak .Vdd; T / represents the leakage
power consumption. Hence, if a core is clock gated, it still consumes leakage and
indirect power. On the other hand, cores can also be set to some low-power mode
(e.g., sleep or power-gated), each mode with an associated power consumption and
different latencies for entering and leaving each low-power mode.

With respect to the voltage and frequency of the core, in order to stably
support a specific frequency, the supply voltage of the core has to be adjusted
above a minimum value. This minimum voltage value is frequency dependent,
and higher frequencies require a higher minimum voltages. Furthermore, as shown
by Pinckney et al. [49], the relation between the frequency and the corresponding
minimum voltage can be modeled according to Equation (10.2):

f D k �
.Vdd � Vth/2

Vdd
(10.2)

where Vth is the threshold voltage and k is a fitting factor. Expressed in other words,
the physical meaning of Equation (10.2) is that for a given supply voltage, there is
a maximum stable frequency at which a core can be executed, and running at lower
frequencies is stable but power/energy inefficient. Therefore, if the system runs
at the corresponding power-/energy-efficient voltage and frequency pairs, we can
derive a linear relationship between voltage and frequency and thus arrive at a cubic
relation between the frequency and the dynamic power consumption. Figure 10.5
uses Equation (10.2) to model the minimum voltages necessary for stable execution
on a 28 nm x86-64 microprocessor [14], and Fig. 10.6 shows how the power model
from Equation (10.1) fits average power consumption results from McPAT [31]
simulations for an x264 application from the PARSEC benchmark suite [3].
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Fig. 10.5 Frequency and voltage relation modeled with Equation (10.2) for the experimental
results of a 28 nm x86-64 microprocessor developed in [14]
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Fig. 10.6 Experimental results for a 22 nm out-of-order Alpha 21264 core, based on our
simulations conducted on gem5 [4] and McPAT [31] for an x264 application from the PARSEC
benchmark suite [3] running a single thread, and the derived power model from Equation (10.1)
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from Equation (10.1). (a) Frequency vs. voltage [19] (b) Power vs. voltage [19] (c) Power model
for a single core

Similarly, we can also use Equation (10.1) to model the experimental re-
sults from a research paper on Intel’s Single Chip Cloud computer (SCC) [19],
which developed a many-core system that integrates 48 cores. The work in
[19], presents a relationship between the minimum voltages necessary for stable
execution when running the cores at different frequencies, as well as average power
consumption values for the entire chip when executing computational intensive
applications running at the maximum allowed frequency for a given voltage, and
these results are summarize in Fig. 10.7a, b. Therefore, we can fit the power
model from Equation (10.1) based on the values of these two tables, such that
the power consumption on individual cores can be modeled as illustrated in
Fig. 10.7c.

Energy is the integration of power over time, and thus, when plotted, the energy
consumed between two time points is equivalent to the area below the power curve
between the two time points. Therefore, energy is associated with a time window, for
example, an application instance. Figure 10.8 presents average power consumption
and energy consumption examples for one instance of some applications from the
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Fig. 10.8 Average power and energy values based on simulations in gem5 [4] and McPAT [31]
for one instance of three applications from the PARSEC benchmark suite [3] executing a single
thread on an out-of-order Alpha 21264 core

PARSEC benchmark suite [3] executing a single thread on an out-of-order Alpha
21264 core.

Previous work in the literature [27, 42] has shown that there exists a critical
frequency for every application executing on a certain type of core which mini-
mizes the energy consumption for execution. Namely, although executing at slow
frequencies reduces the power consumption (due to the cubic relationship between
dynamic power consumption and the frequency), it also prolongs the execution
time of an application. Therefore, the critical frequency represents the frequency
for which the energy savings achieved by reducing the power consumption (mainly
savings in dynamic energy) are less significant than the corresponding increases in
the energy consumption for prolonging the execution time (mainly due to leakage
effects). In simple terms, this means that executing an application below its critical
frequency for the corresponding type of core is not energy efficient, and it should
hence be preferably avoided, even if it reduces the power consumption and meets the
performance and timing constraints. The examples in Fig. 10.8 show the presence
of such discussed critical frequency, where we can see that executing an application
below 0:4 GHz (0:2 GHz in the figure) consumes more energy than executing it at
0:4 GHz.

Minimizing the overall energy consumption under timing (performance)
constraints is a common optimization goal for real-time mobile systems, in
which prolonging the battery lifetime is of major importance. Furthermore,
on other battery-operated systems for which we can estimate the elapsed
time between charging cycles (e.g., mobile phones), energy could also be
used as a constraint, such that the system optimizes (maximizes) the overall
performance under the battery’s energy budget. Contrarily, it is very rare to
optimize for power consumption, and thus power is mostly considered as a
constraint, for example, to run the system under the given Thermal Design
Power (TDP).
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10.2.3 Temperature

Whenever some part of the chip is consuming power, it is also generating heat.
Given that excessively high temperatures on the chip can cause permanent failures
in transistors, maintaining the temperature throughout the chip below a certain
threshold is of paramount importance. This issue is even more significant in
modern chips due to voltage scaling limitations, which lead to increasing power
densities across technology scaling generations and the so-called dark silicon
problem [17, 37], that is, all parts of a chip cannot be simultaneously active at
full speed. The use of a cooling solution (e.g., the combination of the thermal
paste, the heat spreader, the heat sink, the cooling fan, etc.) and Dynamic Thermal
Management (DTM) techniques is employed for such a purpose. DTM techniques
are generally reactive (i.e., only become active after the critical temperature is
reached or exceeded) and may power-down cores, gate their clocks, reduce their
supply voltage and execution frequency, boost-up the fan speed, etc. Nevertheless,
DTM techniques are generally aimed at avoiding the chip from overheating, not
to optimize its performance. An abstract example of a DTM technique based on
voltage and frequency scaling is presented in Fig. 10.9.

Although there exist some work which aims at reducing the peak temperature
under performance constraints or at minimizing the thermal gradients in
the chip, temperature is mostly considered as a constraint rather than a
goal. Furthermore, thermal constraints tend to be the biggest limiting factor
for performance optimization, especially in modern computing platforms in
which power densities are ever increasing.
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Fig. 10.9 Example of a DTM technique based on voltage and frequency scaling
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The most widely adopted models used for thermal modeling in electronics
are RC thermal networks, which are based on the well-known duality between
thermal and electrical circuits [20]. In an RC thermal network, thermal conductances
interconnect the thermal nodes among each other. Furthermore, there is a thermal
capacitance associated with every thermal node that accounts for the transient
effects in the temperatures, but there is no thermal capacitance associated with the
ambient temperature as it is considered to be constant for long periods of time. The
power consumption of cores and other elements corresponds to heat sources. In
this way, the temperatures throughout the chip can be modeled as a function of the
ambient temperature, the power consumptions inside the chip, and by considering
the heat transfer among neighboring thermal nodes.

An example of a simplified RC thermal network for a chip with two cores is
presented in Fig. 10.10. In the figure, T1 and T2 are voltages that represent the
temperatures on core 1 and core 2, respectively. Voltages T3 and T4 represent the
temperatures on the heat sink immediately above the cores. Current supplies p1 and
p2 represent the power consumptions on each core. The thermal conductances bc,
bc-hs, bhs, and gamb account for the heat transfer among the thermal nodes. Finally,
the thermal capacitances of thermal node i are represented by capacitor ai . By using
Kirchoff’s first law and linear algebra for the example in Fig. 10.10, we can derive
a system of first-order differential equations as:

p1

p2

a1

a2

T1

T2

bc

bc-hs

bc-hs

a3

a4

T3

T4

bhs

gamb

gamb

Tamb

Fig. 10.10 Simple RC thermal network example for two cores (Figure from [46]), where we
consider that cores are in direct contact with the heat sink and being the only connection between
cores and the ambient temperature. A more detailed example would consider more layers between
a core and the heat sink, for example, the ceramic packaging substrate, the thermal paste, and the
heat spreader; and there would be more paths leading to the ambient temperature, for example,
through the circuit board
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The system of first-order differential equations can be rewritten in matrix and vector
form as:
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Therefore, RC thermal networks can serve as mathematical expressions to model
the temperatures on the chip. In condensed matrix and vector form, the system of
first-order differential equations of an RC thermal network is expressed as:

AT0 C BT D P C TambG;

where for a system with N thermal nodes, Tamb denotes the ambient temperature,
matrix A D

�
ai;j

�

N �N
holds the values of the thermal capacitances (generally a

diagonal matrix, since thermal capacitances are modeled to ground), matrix B D�
bi;j

�

N �N
contains the values of the thermal conductances between vertical and

lateral neighboring nodes (in
�

Watt
Kelvin

�
), column vector T D ŒTi �N �1 represents the

temperature on each node, column vector T0 D
�
T 0

i

�

N �1
represents the first-order

derivative of the temperature on each node with respect to time, column vector P D

Œpi �N �1 contains the values of the power consumption on every node, and column
vector G D Œgi �N �1 contains the values of the thermal conductance between every
node and the ambient temperature. In practice, the RC thermal network model of a
chip and cooling solution can be modeled through profiling or by using a modeling
tool like HotSpot [20].
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10.2.4 Optimization Knobs

In order to achieve the abovementioned optimization goals under the corre-
sponding constraints, efficient resource management techniques are required. Such
techniques, however, are based on some basic hardware and software methods
(commonly present in standard chip designs) which are used and exploited as
optimization knobs. Among such optimization knobs, the most commonly used
are thread-level selection, thread-to-core mapping and run-time task migration,
Dynamic Power Management (DPM), and Dynamic Voltage and Frequency Scaling
(DVFS). Specifically:

• Thread-level selection refers to selecting an appropriate level of parallelism for
every application, which depending on the TLP of each application can have a
major impact in the resulting performance, as seen in Sect. 10.2.1.

• Thread-to-core mapping involves to which specific core a thread is mapped to,
both in terms of the type of core and the physical location of the core in the chip.
In other words, the type of core to which a thread is mapped to is very important.
Nevertheless, the selection of the physical location of the core is also a nontrivial
issue, as this will have an impact on the performance (due to communication
latencies among cores, potential link congestions, and the utilization of the shared
resources) and also on the resulting temperature distribution (due to the heat
transfer among cores, potentially creating or avoiding hotspots).

• Run-time task migration is simply the ability to migrate a task/thread from
one core to another, at run-time. When migrating tasks at run-time, binary
compatibility of tasks needs to be considered, given that, for example, different
cores might have different ISAs, or a software task may be migrated to a
reconfigurable fabric as a hardware implementation. Furthermore, it is also
important to consider the non-negligible migration overheads, which could
potentially result in larger performance penalties than benefits when applying
too frequent migrations. For example, depending on the memory hierarchy, both
instruction and data cache will experience many misses after a task is migrated
from one core to another.

• Dynamic Power Management (DPM) refers to the dynamic power state
selection of cores. For example, cores could be set to execution (active) mode,
or they could be set to a low-power mode (e.g., clock gated, sleep, power gated,
etc.). Every low-power mode has an associated power consumption and different
latencies for entering and leaving each mode.

• Dynamic Voltage and Frequency Scaling (DVFS) refers to the ability to
dynamically scale the voltage and/or frequency of a single core or a group of
cores. Depending on the chip, voltage scaling and frequency scaling could be
available at a per-core level, there could be only one global voltage and frequency,
or it could be managed by groups of cores (i.e., clusters or voltage/frequency
islands). For example, in Intel’s Single Chip Cloud computer (SCC) [23], cores
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are clustered into groups of eight cores that share the same voltage (dynamically
set at run time), while the frequency of the cores can be selected every two cores,
such that we can have up to four different frequencies inside each cluster of eight
cores sharing a voltage.

10.3 Performance Optimization Under Power Constraints

As explained in Sect. 10.2, maximizing the overall system performance is generally
the most commonly pursued optimization goal. In regard to the constraints, some
resource management techniques consider power consumption, others consider
temperature, and some consider both power and temperature. Furthermore, with
respect to the power consumption, every system will have a physical power
constraint which can, for example, be determined by the wire thickness or the
supply voltage. Nevertheless, it is also very common to use power constraints
as abstractions that allow system designers to indirectly deal with temperature.
Namely, running the system under a given power constraint should presumably
avoid violations of the thermal constraints. In line with such a concept, a power
constraint aimed as a thermal abstraction is considered to be safe if satisfying it
guarantees no thermal violations, and it is considered to be efficient if it results in
temperatures that are not too far away from the critical temperature. Figure 10.11
shows an abstract example of a safe and efficient power budget, in which the
maximum temperature throughout the chip remains just below the critical value
when the system does not exceed the power budget.

The motivation for this approach is mainly to simplify the problem, given that
proactive resource management techniques that directly deal with temperature
are potentially more complex than those that only deal with power, mostly due
to the heat transfer among cores and transient thermal effects.

Power Budget

Po
w

er
[W

]

Critical Temperature

Time

Te
m

pe
ra

tu
re

[◦
C

] Max. Chip Temperature
Power Consumption

Fig. 10.11 Abstract example of a safe and efficient power budget
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10.3.1 Traditional Per-Chip Power Constraints

The most common scheme in this direction (i.e., to have a power constraint as a
thermal abstraction) is to use TDP as a per-chip power constraint, and there are
several works in the literature aiming at performance optimization for such scenarios
[30, 37, 52, 55].

Muthukaruppan et al. [37] propose a control-based framework that attempts
to obtain the optimal trade-off between performance and power consumption, for
homogeneous multi-core systems, while using TDP as a per-chip power constraint.
DVFS and task migrations are used at different levels, specifically, at a task level, at
a cluster level, and on the chip controllers. The controllers are coordinated such that
they can throttle down the power consumption in case TDP is violated and to map
tasks to cores in order to optimize the overall performance.

Also for overall performance optimization on homogeneous systems, Raghu-
nathan et al. [52] try to exploit process variations between cores as a means for
choosing the most suitable cores for every application. Their results show that,
mostly due to the proportional increment of the process variations, the performance
efficiency can potentially be increased along with the increase in the dark silicon
area.

Sartori and Kumar [55] focus on maximizing many-core processor throughput for
a given peak power constraint. It proposes three design-time techniques: mapping
the power management problem to a knapsack problem, mapping it to a genetic
search problem, and mapping it to a simple learning problem with confidence
counters. These techniques prevent power from exceeding the given constraint and
enable the placement of more cores on a die than what the power constraint would
normally allow.

Kultursay et al. [30] build a 32-core TFET-CMOS heterogeneous multi-core
processor and present a run-time scheme that improves the performance of appli-
cations running on these cores, while operating under a given power constraint. The
run-time scheme combines heterogeneous thread-to-core mapping, dynamic work
partitioning, and dynamic power partitioning.

However, using a single and constant value as a power constraint, either
at a per-chip or per-core level, for example, TDP, can easily result in
thermal violations or significantly underutilized resources on multi-/many-
core systems. This effect and a solution are discussed in Sect. 10.3.2.

10.3.2 Efficient Power Budgeting: Thermal Safe Power

For a system with 16 cores (simple in-order Alpha 21264 cores in 45 nm, simulated
with McPAT [31]) and HotSpot’s default cooling solution [20], Fig. 10.12 shows
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Fig. 10.12 Maximum steady-state temperature among all cores (DTM deactivated) as a function
of the number of active cores, when using different single and constant per-chip and per-core power
budgets

the maximum temperature among all cores (in the steady state, for concentrated
mappings, and with DTM deactivated) as a function of the number of simultane-
ously active cores when using several traditional per-chip or per-core power budgets.
Assuming that the critical temperature in this case is 80 ıC, the figure shows that (for
these specific concentrated mappings) there is only one point for each power budget
in which the maximum temperature on the chip matches the critical value. For the
other number of active cores, the temperature is either below or above the threshold,
meaning that the power budget was not efficient or that it was not safe, respectively.

Therefore, the Thermal Safe Power (TSP) [47] power budget concept is
introduced, proposing a safe and efficient alternative. The idea behind TSP is to
have a per-core power constraint that depends on the number of active cores, rather
than considering a single and constant value. Executing cores at power levels that
satisfy TSP can result in a higher overall system performance when compared to
traditional per-chip and per-core power budgeting solutions while maintaining the
temperature throughout the chip below the critical value. Based on the RC thermal
network of a given chip and its cooling solution, TSP can be computed at design
time in order to obtain safe power constints for the worst-case mappings (namely,
concentrated mappings promoting hotspots) as shown in the example in Fig. 10.13a,
thus allowing the system to make thread-level selection decisions independent of the
thread-to-core mapping. Furthermore, TSP can also be computed at run time for a
(given) specific mapping of active cores, such that the system can further optimize
the power budget for dispersed core mappings, for example, as shown in Fig. 10.13b.

Generally, as the number of active cores increases, the TSP power constraints
decrease (as seen in Fig. 10.14), which in turn translates to executing cores at
lower voltage and frequency levels. In this way, TSP derives a very simple relation
between the number of active cores in a processor and their (application dependent)
maximum allowed voltage and frequency levels for execution.

The major limitation with the techniques discussed in this section (both tradi-
tional power constraints and TSP) is that power is generally not easily measured
in practical systems, mainly due to the lack of per-core power meters. In order to
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address this issue, there are some works in the literature that attempt to estimate
power consumption by measuring performance counters and core utilization [32].
Otherwise, extensive design-time application profiling with potential run-time
refinement is required to estimate the power consumption of different applications
running on different types of cores.

10.4 Performance Optimization Under Thermal Constraints

A different approach is to avoid using a power constraint as a thermal abstraction
(as discussed in Sect. 10.3) and rather deal with temperature directly, either through
thermal models or by using thermal sensors.
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Using thermal models that rely on power estimations (as seen in Sect. 10.2.3)
merely adds complexity to the problem (by considering the heat transfer among
cores and the transient temperature effects), and it does so by maintaining the same
issues with regard to how power consumption can be estimated in practice. Although
this might look as a downside, the motivation for using these techniques instead of
those presented in Sect. 10.3 is to avoid possible pessimistic or unsafe scenarios
that can exist when using power constraints as thermal abstractions. Furthermore,
these techniques can be proactive in nature, and we discuss them in more detail in
Sect. 10.4.1.

Techniques that directly measure temperature by using thermal sensors can
potentially be more accurate and easier to implement, as it is very common to find
many thermal sensors in modern processors, to the point of possibly having one
thermal sensor for every core in the chip. In this way, techniques that rely on thermal
sensors can avoid the need for power consumption estimation tools. Nevertheless,
the problem with these techniques is that it is very hard to do proactive thermal
management without having thermal models. Therefore, they are generally reactive
techniques which exploit the available thermal headroom, commonly also known as
boosting, as discussed in Sect. 10.4.2.

10.4.1 Techniques Based on Thermal Modeling

Khdr et al. [28] propose a design-time dark silicon-aware resource management
technique based on dynamic programming, called DsRem, which attempts to
distribute the processors resources among different applications. Based on extensive
application profiling, DsRem determines the number of active/dark cores and their
voltage/frequency levels by considering the TLP and ILP characteristics of the
applications, in order to maximize the overall system performance. Specifically,
DsRem will attempt to map applications with high TLP by using a large number
of cores executing at low voltage/frequency levels while mapping applications with
high ILP to a small number of cores executing at high voltage/frequency levels.
Applications that exhibit both high TLP and high ILP will potentially be mapped to a
large number of cores executing at high voltage/frequency levels whenever possible.

Another work in the literature proposes a variability-aware dark silicon manager,
called DaSiM [58]. In order to optimize the system performance under a thermal
constraint, the idea behind DaSiM is to exploit the so-called dark silicon patterning
in tandem with the core-to-core leakage power variations. Different dark silicon
patterns denote different spatiotemporal decisions for the power state of the cores,
namely, which cores to activate and which to put in low-power mode. These patterns
directly influence the thermal profile on the chip due to improved heat dissipa-
tion, enabling to activate more cores to facilitate high-TLP applications and/or
boosting certain cores to facilitate high-ILP applications. In order to enable run-
time optimizations, DaSiM employs a lightweight run-time temperature prediction
mechanism that estimates the chip’s thermal profile for a given candidate solution.
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Hanumaiah et al. [16] propose a thermal management technique based on RC
thermal networks which attempts to minimize the latest completion time among
the applications. This technique first derives an optimal solution by using convex
optimization, which has a high time complexity and is therefore only suited
for design-time decisions. Nevertheless, the structure of certain matrices in the
convex optimization formulation can be exploited in order to have an approximate
solution which is 20 times faster than the convex optimization approach. The
implementation of such a technique for run-time adaptations is however debatable,
as the experiments in [16] show that it may require more than 15 ms to compute the
voltage and frequency levels of each core, which is generally not fast enough for
run-time usage in multi-/many-core systems.

Pagani et al. [48] presents seBoost, a run-time boosting technique (see
Sect. 10.4.2) based on analytical transient temperature estimation on RC thermal
networks [45]. This technique attempts to meet run-time performance requirement
surges, by executing the cores mapped with applications that require boosting at
the specified voltages and frequencies while throttling down the cores mapped
with application of lower priority. The performance losses of the low-priority
applications are minimized by choosing the throttling down levels such that the
critical temperature is reached precisely when the boosting interval is expected
to expire. Furthermore, in order to select the throttle down levels of the cores
mapped with the low-priority applications, seBoost performs a Design Space
Exploration (DSE) but limiting the number of evaluated combinations by using a
binary search like approach proportional to the nominal voltage/frequency operation
levels on every core. A limitation of seBoost is that it assumes that the thread to
core is given as an input, that is, it requires mapping decisions to be known a
priori. Therefore, similar to the boosting techniques later explained in Sect. 10.4.2,
seBoost needs to rely on another resource management technique to do the thread-
level selection of applications and the mapping of threads to cores, such that it can
then handle the boosting decisions and exploit the available thermal headroom.

10.4.2 Boosting Techniques

Boosting techniques have been widely adopted by chip manufacturers in commer-
cial multi-/many-core systems, mostly because they provide the ability to exploit
the existing thermal headroom in order to optimize the performance of a group
of cores at run-time. Basically, by using DVFS, boosting techniques allow the
system to execute some cores at high voltage and frequency levels during short
intervals of time, even if this means exceeding standard operating power budgets
(e.g., TDP), such that the system can optimize its performance under a thermal
constraint. Given that executing at high voltage and frequency levels increases the
power consumption in the chip, boosting techniques will incur in increments to
the chip’s temperature through time. Because of this increase in the temperature,
once any part of the chip reaches a critical (predefined) temperature, the system
should return to nominal operation (requiring some cool-down time before another
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boosting interval is allowed) or use a closed loop control-based technique in order
to oscillate around the critical temperature (allowing the boosting interval to be
prolonged indefinitely) [48].

Boosting techniques generally do not aim at selecting the number of threads in
which to parallelize applications, to make thread-to-core mapping decisions,
or to migrate tasks between cores. Therefore, they are mostly well suited to ex-
ploit any available thermal headroom left by some other resource management
technique (e.g., a thread-level selection and thread-to-core mapping technique
based on a pessimistic per-chip power budget), in order to increase the system
performance at run-time.

Intel’s Turbo Boost [6, 8, 21, 22, 53] allows for a group of cores to execute at
high voltage and frequency levels whenever there exists some headroom within
power, current, and temperature constraints. In other words, when the temperature,
power, and current are below some given values, the cores boost their voltage and
frequency in single steps (within a control period) until it reaches a predetermined
upper limit according to the number of active cores. Similarly, when either the
temperature, power, or current exceeds the constraints, the cores reduce their voltage
and frequency in single steps (also within a control period) until the corresponding
constraints are satisfied or until the nominal voltage and frequency levels are
reached. Although boosting to very high voltage and frequencies has an undesired
effect on the power consumption (due to the cubic relationship between frequency
and dynamic power consumption), Turbo Boost exploits the thermal capacitances of
the thermal model knowing that, although there will be a temperature increase, this
increase will require some time to reach the critical temperature rather than reach
it immediately after the change in power. Figure 10.15 shows an example of Turbo
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Boost’s behavior based on simulations conducted in gem5 [4], McPAT [31], and
HotSpot [20] for executing two applications from the PARSEC benchmark suite [3]
in a multi-core processor with 16 out-of-order Alpha 21264 cores (each application
running eight parallel dependent threads, one thread per core), under a temperature
constraint of 80 ıC.

Computational sprinting [51] is another boosting technique which proposes
optimizing performance at run time via parallelism, by activating cores that are
normally off (i.e., power gated) during short bursts of time (typically shorter
than 1 s). Due to the cubic relationship between frequency and dynamic power
consumption, computational sprinting intentionally discourages boosting through
DVFS. Contrarily, it is motivated by the (ideally) linear relationship between
performance and power expected when the system activates several cores at the
same voltage and frequency levels. However, although this is a very valid point,
the latency for waking up cores from low-power modes and the correspondent
thread migrations can potentially result in significant overheads, especially when
taking into consideration the short duration of the sprinting periods. Because of
this, Turbo Boost will generally result in a higher overall system performance than
computational sprinting.

10.5 Energy Optimization Under Performance Constraints

Energy-efficient scheduling and power management to minimize the overall energy
consumption for homogeneous multi-core systems has been widely explored for
real-time embedded systems with per-core DVFS, for example, [2, 9, 10, 36, 65].
Chen and Thiele [10] present a theoretical analysis of the Largest Task First
(LTF) strategy, proving that, in terms of energy consumption, using LTF for task
mapping results in solutions with approximation factors (particularly, the analytical
worst-case ratio between the optimal solutions and the algorithms of interest)
that depend on the hardware platforms. Moreover, [10, 65] propose polynomial-
time algorithms that derive task mappings which attempt to execute cores at their
critical frequency. For the special case in which there are uniform steps between
the available core frequencies and also negligible leakage power consumption (a
very restricting assumption), the work in [36] presents an algorithm that requires
polynomial time for computing the optimal voltage and frequency assignments.
Nevertheless, although having per-core DVFS can be very energy-efficient, Herbert
and Marculescu [18] conducts extensive VLSI circuit simulations suggesting that
it suffers from complicated design problems, making it costly for implementation.
Therefore, assuming global DVFS, or DVFS at a cluster level (i.e., groups of cores
or voltage/frequency islands), is much more realistic for practical systems, as seen
in [23, 54].

For homogeneous systems with one global supply voltage and frequency, also
referred to as global DVFS, Yang et al. [66] provide energy optimization solutions
for systems with negligible leakage power consumption and frame-based real-time
tasks (all tasks have the same arrival time and period). These are both very restricting
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assumptions, and, therefore, the work in [12, 57] relaxes them in order to consider
periodic real-time tasks (tasks have different arrival times and periodicity) with
non-negligible leakage power consumption and non-negligible overhead for turning
cores to low-power modes. Specifically, Seo et al. [57] proposes to dynamically
balance the task loads of multiple cores and efficiently select the number of
active cores, such that the power consumption for execution is minimized and the
leakage power consumption for low workloads is reduced. Devadas and Aydin [12]
first decide the number of active cores, and the voltage and frequencies of such
cores are decided in a second phase. However, [12] does not provide theoretical
analysis for the approximation factor of their proposed approach in terms of energy
optimization. Furthermore, the basic ideas of [12] are used in [41] to theoretically
derive the approximation factor, in terms of energy minimization, of the so-
called Single Frequency Approximation (SFA) scheme. SFA is a simple strategy
for selecting the DVFS levels on individual clusters. Particularly, after the tasks
are assigned to clusters and cores, SFA uses a single voltage and frequency for
all the cores in the cluster, specifically, the lowest DVFS level that satisfies the
timing constraints of all tasks mapped to the cluster. Given that different tasks are
assigned to different cores, not all cores in a cluster will have the same frequency
requirements to meet the timing constraints. Therefore, the DVFS level of the cluster
is defined by the core with the highest frequency demand in the cluster. Figure 10.16
presents an example of a cluster with four cores using SFA. The analysis of SFA is
extended in [42] and [43] in order to consider the task partitioning phase.

For homogeneous systems with multiple clusters of cores sharing their voltage
and frequency, there exist several heuristic algorithms [15, 29, 39, 44, 64], and
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Fig. 10.16 SFA example for a cluster with four cores. The hyper-period of all tasks (i.e., the
least common multiple among all periods of all tasks) is 10 s. To meet all deadlines, the frequency
demand of the cores are 0:2, 0:4, 0:6, and 0:8 GHz. Hence, the single frequency is set to 0:8 GHz.
In order to save energy, cores go individually to sleep when there is no workload on their ready
queues
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also an optimal dynamic programming solution [44], among which [13, 39, 44, 64]
use SFA to choose the voltage and frequency of individual clusters. Particularly,
Kong et al. [29] present a heuristic which first chooses the number of active
clusters and then partitions the tasks by using the LTF task partitioning strategy.
The task model used in [29] is later extended in [15] in order to consider shared
resources and a synchronized version of LTF that considers that only one task can
access specific resources at any given time instant. An Extremal Optimization meta-
Heuristic (EOH) that considers a task graph and the communication costs among
tasks is presented in [39], with the limitation that only one task can be assigned
to each core. A heuristic based on genetic algorithms is presented in [64], where
the energy consumption is gradually optimized in an iterative process through the
selection, crossover, and mutation operations.

The work in [44] presents an optimal dynamic programming algorithm for given
task sets (i.e., the tasks are already partitioned into cores, but the specific cores are
not yet selected), called DYVIA, and suggests to use LTF for the task partitioning
phase. Specifically, the authors of [44] first prove that when the average power
consumption of different tasks executing at a certain DVFS level are equal or very
similar and when the highest cycle utilization task sets in every cluster are given (i.e.,
when the DVFS levels of operation for every cluster are known), then the optimal
solution will assign the highest cycle utilization task sets to the clusters running
at the lowest possible DVFS levels, while still guaranteeing that the deadlines of all
tasks are satisfied, as illustrated in Fig. 10.17. Furthermore, based on such a property,
the DYVIA algorithm is able to reduce the number of combinations evaluated during
its internal Design Space Exploration (DSE). For example, for a system with three
clusters and three cores per cluster, if when finding the task sets to be assigned to
cluster 3 we assume that the highest cycle utilization task set (i.e., T12) is always
assigned to cluster 3, there are in total

�
8
2

�
D 28 possible combinations for selecting

the other two task sets to be assigned to cluster 3. However, as shown in the example

T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

a

b

c

Fig. 10.17 Examples of possible task set assignments, for a chip with four clusters and three
cores per cluster, where the task sets are increasingly ordered according to their cycle utilization.
The figure shows the three possible assignments when the highest cycle utilization task sets in
the clusters are T4, T6, T9, and T12 (boxed in gray), for which [44] proves that combination (a)
minimizes the energy consumption
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Combination 1: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 2: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 3: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 4: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 5: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 6: T9 T8 T7 T6 T5 T4 T3 T2 T1

Fig. 10.18 Example of the potentially optimal combinations evaluated by the DYVIA algo-
rithm [44], for a system with three clusters and three cores per cluster, where the task sets
are increasingly ordered according to their cycle utilization. Each combination corresponds to
the possible task sets to assign in cluster 3, for which DYVIA evaluates the resulting energy
consumption, returning the minimum energy among all evaluated cases. In the figure, the task
sets assigned to cluster 3 in a combination are boxed in green, and the resulting subproblems are
colored in gray

in Fig. 10.18, for such case, DYVIA is able to reduce the design space, such that it
only needs to evaluate six potentially optimal combinations in order to find the
optimal assignment for cluster 3. DYVIA then finds the optimal assignment for
cluster 2 by solving the associated subproblems.

There are several works focusing on heterogeneous systems with per-core
DVFS. For example, Yang et al. [67] present a dynamic programming approach
that uses trimming by rounding, in which the rounding factor can trade quality (in
terms of energy optimization) of the derived solution with the total execution time
of the algorithm.

There is also some work focusing on energy optimization for the more general
model of heterogeneous multi-core systems with clusters of cores sharing their
voltage and frequency, for example, [13, 38]. Muthukaruppan et al. [38] present
a distributed framework based on price theory which attempts to minimize the
overall power consumption, not the overall energy. Therefore, with the existence of
critical frequencies, such a framework may fail to minimize the energy consumption
when executing at very low frequencies (even when all performance constraints are
satisfied). Moreover, this approach is not well suited for real-time systems, as it
does not guaranty that all real-time tasks meet their deadlines, and only a best effort
can be accomplished. Elewi et al. [13] propose a task partitioning and mapping
scheme called Equally-Worst-Fit-Decreasing (EWFD), which attempts to balance
the total utilization in every cluster. However, EWFD is an overly simplistic heuristic
that assumes that executing different tasks on a given core type and frequency
consumes equivalent power, which is not true in real systems as already observed in
Fig. 10.8.
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10.6 Hybrid Resource Management Techniques

Sharifi et al. [59] propose a joint temperature and energy management hybrid
technique for heterogeneous Multi-Processor Systems-on-Chips (MPSoCs). In
case that the system becomes underutilized, the technique focuses on energy
minimization while satisfying the performance demands and thermal constraints.
When the performance demands of the applications become higher, satisfying
the thermal constraints has higher priority than minimizing energy, and thus the
proposed technique applies a thermal balancing policy. This work includes a design-
time application profiling phase that characterizes possible incoming tasks. It also
derives different DVFS levels that balance the temperature throughout the chip for
several performance demands. Then, at run-time, the technique integrates DVFS
(including the design-time analysis) with a thread-to-core assignment strategy that
is performance and temperature aware. When the performance demands can be
satisfied only in some cores, the technique chooses which cores to power gate in
order to minimize energy.

Ykman-Couvreur et al. [68] present a hybrid resource management technique
for heterogeneous systems that aims at maximizing the overall Quality of Service
(QoS) under changing platform conditions. In the design-time phase, by using an
automated design-space exploration tool, the technique derives a set of Pareto-
optimal application configurations under given QoS requirements and optimization
goals. Then, the run-time resource management dynamically switches between the
predefined configurations evaluated at design-time.

Singh et al. [60] present a hybrid management technique for mapping
throughput-constrained applications on generic MPSoCs. The technique first
performs design-time analysis of the different applications in order to derive
multiple resources/cores vs. throughput trade-off points, therefore performing all
the compute intensive analysis and leaving a minimum pending computation for the
run-time phase. The run-time mapping strategy then selects the best point according
to the desired throughput and available resources/cores.

Schor et al. [56] present a scenario-based technique for mapping a set of
applications to a heterogeneous many-core system. The applications are specified as
Kahn process networks. A finite state machine is used to coordinate the execution
of the applications, where each state represents a scenario. During design-time
analysis, the technique first precomputes a set of optimal mappings. Then, at run-
time, hierarchically organized controllers monitor behavioral events and apply the
precomputed mappings to start, stop, resume, and pause applications according
to the finite state machine. In order to handle architectural failures, the technique
allocates spare cores at design-time, such that the run-time controllers can move
all applications assigned to a faulty physical core to a spare core. Given that this
does not require additional design-time analysis, the proposed technique has a high
responsiveness to failures.



10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 329

Acknowledgments This work was partly supported by the German Research Foundation (DFG)
as part of the Transregional Collaborative Research Centre Invasive Computing [SFB/TR 89] http://
invasic.de.

References

1. Al Faruque MA, Krist R, Henkel J (2008) ADAM: run-time agent-based distributed application
mapping for on-chipcommunication. In: Proceedings of the 45th IEEE/ACM design automa-
tion conference (DAC), pp 760–765. doi:10.1145/1391469.1391664

2. Aydin H, Yang Q (2003) Energy-aware partitioning for multiprocessor real-time systems. In:
Proceedings of 17th international parallel and distributed processing symposium (IPDPS),
pp 113–121

3. Bienia C, Kumar S, Singh JP, Li K (2008) The PARSEC benchmark suite: characterization
and architectural implications. In: Proceedings of the 17th international conference on parallel
architectures and compilation techniques (PACT), pp 72–81

4. Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower DR,
Krishna T, Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill MD, Wood DA (2011) The
gem5 simulator. ACM SIGARCH Comput Archit News 39(2):1–7

5. Carlson TE, Heirman W, Eyerman S, Hur I, Eeckhout L (2014) An evaluation of high-
level mechanistic core models. ACM Trans Archit Code Optim (TACO) 11(3):28:1–28:25.
doi:10.1145/2629677

6. Casazza J (2009) First the tick, now the tock: intel microarchitecture (Nehalem). White paper,
Intel Corporation

7. Ceng J, Castrillon J, Sheng W, Scharwächter H, Leupers R, Ascheid G, Meyr H, Isshiki T,
Kunieda H (2008) MAPS: an integrated framework for MPSoC application parallelization.
In: Proceedings of the 45th IEEE/ACM design automation conference (DAC), pp 754–759.
doi:10.1145/1391469.1391663

8. Charles J, Jassi P, Ananth NS, Sadat A, Fedorova A (2009) Evaluation of the Intel core i7 turbo
boost feature. In: IISWC, pp 188–197

9. Chen JJ, Hsu HR, Kuo TW (2006) Leakage-aware energy-efficient scheduling of real-time
tasks in multiprocessor systems. In: Proceedings of the 12th IEEE real-time and embedded
technology and applications symposium (RTAS), pp 408–417

10. Chen JJ, Thiele L (2010) Energy-efficient scheduling on homogeneous multiprocessor plat-
forms. In: Proceedings of the ACM symposium on applied computing (SAC), pp 542–549

11. Choi J, Oh H, Kim S, Ha S (2012) Executing synchronous dataflow graphs on a SPM-based
multicore architecture. In: Proceedings of the 49th IEEE/ACM design automation conference
(DAC), pp 664–671. doi:10.1145/2228360.2228480

12. Devadas V, Aydin H (2010) Coordinated power management of periodic real-time tasks on
chip multiprocessors. In: Proceedings of the international conference on green computing
(GREENCOMP), pp 61–72

13. Elewi A, Shalan M, Awadalla M, Saad EM (2014) Energy-efficient task allocation techniques
for asymmetric multiprocessor embedded systems. ACM Trans Embed Comput Syst (TECS)
13(2s):71:1–71:27

14. Grenat A, Pant S, Rachala R, Naffziger S (2014) 5.6 adaptive clocking system for improved
power efficiency in a 28nm x86-64 microprocessor. In: IEEE international solid-state circuits
conference digest of technical papers (ISSCC), pp 106–107

15. Han JJ, Wu X, Zhu D, Jin H, Yang L, Gaudiot JL (2012) Synchronization-aware energy man-
agement for vfi-based multicore real-time systems. IEEE Trans Comput (TC) 61(12):1682–
1696

http://invasic.de
http://invasic.de
http://dx.doi.org/10.1145/1391469.1391664
http://dx.doi.org/10.1145/2629677
http://dx.doi.org/10.1145/1391469.1391663
http://dx.doi.org/10.1145/2228360.2228480


330 S. Pagani et al.

16. Hanumaiah V, Vrudhula S, Chatha KS (2011) Performance optimal online DVFS and task
migration techniques for thermally constrained multi-core processors. Trans Comput Aided
Des Integr Circuits Syst (TCAD) 30(11):1677–1690

17. Henkel J, Khdr H, Pagani S, Shafique M (2015) New trends in dark silicon. In: Proceed-
ings of the 52nd ACM/EDAC/IEEE design automation conference (DAC), pp 119:1–119:6.
doi:10.1145/2744769.2747938

18. Herbert S, Marculescu D (2007) Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors. In: Proceedings of the international symposium on low power electronics and
design (ISLPED), pp 38–43

19. Howard J, Dighe S, Vangal S, Ruhl G, Borkar N, Jain S, Erraguntla V, Konow M, Riepen
M, Gries M, Droege G, Lund-Larsen T, Steibl S, Borkar S, De V, Van Der Wijngaart
R (2011) A 48-core IA-32 processor in 45 nm CMOS using on-die message-passing and
DVFS for performance and power scaling. IEEE J Solid State Circuits 46(1):173–183.
doi:10.1109/JSSC.2010.2079450

20. Huang W, Ghosh S, Velusamy S, Sankaranarayanan K, Skadron K, Stan MR (2006) HotSpot:
a compact thermal modeling methodology for early-stage VLSI design. IEEE Trans VLSI Syst
14(5):501–513. doi:10.1109/TVLSI.2006.876103

21. Intel Corporation (2007) Dual-core intel xeon processor 5100 series datasheet, revision 003
22. Intel Corporation (2008) Intel turbo boost technology in Intel CoreTM microarchitecture

(Nehalem) based processors. White paper
23. Intel Corporation (2010) SCC external architecture specification (EAS), revision 0.98
24. International technology roadmap for semiconductors (ITRS), 2011 edition. www.itrs.net
25. Jahn J, Pagani S, Kobbe S, Chen JJ, Henkel J (2013) Optimizations for configuring and

mapping software pipelines in manycore. In: Proceedings of the 50th IEEE/ACM design
automation conference (DAC), pp 130:1–130:8. doi:10.1145/2463209.2488894

26. Javaid H, Parameswaran S (2009) A design flow for application specific heterogeneous
pipelined multiprocessor systems. In: Proceedings of the 46th IEEE/ACM design automation
conference (DAC), pp 250–253. doi:10.1145/1629911.1629979

27. Jejurikar R, Pereira C, Gupta R (2004) Leakage aware dynamic voltage scaling for real-time
embedded systems. In: Proceedings of the 41st design automation conference (DAC), pp 275–
280

28. Khdr H, Pagani S, Shafique M, Henkel J (2015) Thermal constrained resource man-
agement for mixed ILP-TLP workloads in dark silicon chips. In: Proceedings of
the 52nd ACM/EDAC/IEEE design automation conference (DAC), pp 179:1–179:6.
doi:10.1145/2744769.2744916

29. Kong F, Yi W, Deng Q (2011) Energy-efficient scheduling of real-time tasks on cluster-based
multicores. In: Proceedings of the 14th design, automation and test in Europe (DATE), pp 1–6

30. Kultursay E, Swaminathan K, Saripalli V, Narayanan V, Kandemir MT, Datta S (2012) Perfor-
mance enhancement under power constraints using heterogeneous CMOS-TFET multicores.
In: Proceedings of the 8th international conference on hardware/software codesign and system
synthesis (CODES+ISSS), pp 245–254

31. Li S, Ahn JH, Strong R, Brockman J, Tullsen D, Jouppi N (2009) McPAT: an integrated
power, area, and timing modeling framework for multicore and manycore architectures. In:
Proceedings of the 42nd annual IEEE/ACM international symposium on microarchitecture
(MICRO), pp 469–480

32. Li Y, Henkel J (1998) A framework for estimation and minimizing energy dissipation
of embedded hw/sw systems. In: Proceedings of the 35th ACM/IEEE design automation
conference (DAC), pp 188–193. doi:10.1145/277044.277097

33. Lin LY, Wang CY, Huang PJ, Chou CC, Jou JY (2005) Communication-driven task binding for
multiprocessor with latency insensitive network-on-chip. In: The 15th Asia and South Pacific
design automation conference (ASP-DAC), pp 39–44. doi:10.1145/1120725.1120739

34. Mallik A, Marwedel P, Soudris D, Stuijk S (2010) MNEMEE: a framework for memory
management and optimization of static and dynamic data in MPSoCs. In: Proceedings of
the international conference on compilers, architectures and synthesis for embedded systems
(CASES), pp 257–258. doi:10.1145/1878921.1878959

http://dx.doi.org/10.1145/2744769.2747938
http://dx.doi.org/10.1109/JSSC.2010.2079450
http://dx.doi.org/10.1109/TVLSI.2006.876103
www.itrs.net
http://dx.doi.org/10.1145/2463209.2488894
http://dx.doi.org/10.1145/1629911.1629979
http://dx.doi.org/10.1145/2744769.2744916
http://dx.doi.org/10.1145/277044.277097
http://dx.doi.org/10.1145/1120725.1120739
http://dx.doi.org/10.1145/1878921.1878959


10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 331

35. Martin G (2006) Overview of the MPSoC design challenge. In: Proceedings
of the 43rd IEEE/ACM design automation conference (DAC), pp 274–279.
doi:10.1109/DAC.2006.229245

36. Moreno G, de Niz D (2012) An optimal real-time voltage and frequency scaling for uniform
multiprocessors. In: Proceedings of the 18th IEEE international conference on embedded and
real-time computing systems and applications (RTCSA), pp 21–30

37. Muthukaruppan T, Pricopi M, Venkataramani V, Mitra T, Vishin S (2013) Hierarchical power
management for asymmetric multi-core in dark silicon era. In: DAC, pp 174:1–174:9

38. Muthukaruppan TS, Pathania A, Mitra T (2014) Price theory based power management for het-
erogeneous multi-cores. In: Proceedings of the 19th international conference on architectural
support for programming languages and operating systems (ASPLOS), pp 161–176

39. Nikitin N, Cortadella J (2012) Static task mapping for tiled chip multiprocessors with multiple
voltage islands. In: Proceedings of the 25th international conference on architecture of
computing systems (ARCS), pp 50–62

40. Orsila H, Kangas T, Salminen E, Hämäläinen TD, Hännikäinen M (2007) Automated memory-
aware application distribution for multi-processor system-on-chips. J Syst Archit 53(11):795–
815. doi:10.1016/j.sysarc.2007.01.013

41. Pagani S, Chen JJ (2013) Energy efficiency analysis for the single frequency ap-
proximation (SFA) scheme. In: Proceedings of the 19th IEEE international conference
on embedded and real-time computing systems and applications (RTCSA), pp 82–91.
doi:10.1109/RTCSA.2013.6732206

42. Pagani S, Chen JJ (2013) Energy efficient task partitioning based on the single frequency
approximation scheme. In: Proceedings of the 34th IEEE real-time systems symposium
(RTSS), pp 308–318. doi:10.1109/RTSS.2013.38

43. Pagani S, Chen JJ, Henkel J (2015) Energy and peak power efficiency analysis for the single
voltage approximation (SVA) scheme. IEEE Trans Comput Aided Des Integr Circuits Syst
(TCAD) 34(9):1415–1428. doi:10.1109/TCAD.2015.2406862

44. Pagani S, Chen JJ, Li M (2015) Energy efficiency on multi-core architectures with multiple
voltage islands. IEEE Trans Parallel Distrib Syst (TPDS) 26(6):1608–1621. doi:10.1109/T-
PDS.2014.2323260

45. Pagani S, Chen JJ, Shafique M, Henkel J (2015) MatEx: efficient transient and peak
temperature computation for compact thermal models. In: Proceedings of the 18th design,
automation and test in Europe (DATE), pp 1515–1520

46. Pagani S, Khdr H, Chen JJ, Shafique M, Li M, Henkel J (2016) Thermal safe power: efficient
thermal-aware power budgeting for manycore systems in dark silicon. In: The dark side of
silicon. Springer

47. Pagani S, Khdr H, Munawar W, Chen JJ, Shafique M, Li M, Henkel J (2014) TSP: thermal safe
power – efficient power budgeting for many-core systems in dark silicon. In: The international
conference on hardware/software codesign and system synthesis (CODES+ISSS), pp 10:1–
10:10. doi:10.1145/2656075.2656103

48. Pagani S, Shafique M, Khdr H, Chen JJ, Henkel J (2015) seBoost: selective boosting for
heterogeneous manycores. In: Proceedings of the 10th IEEE/ACM international conference
on hardware/software codesign and system synthesis (CODES+ISSS), pp 104–113

49. Pinckney N, Sewell K, Dreslinski RG, Fick D, Mudge T, Sylvester D, Blaauw D (2012)
Assessing the performance limits of parallelized near-threshold computing. In: 49th design
automation conference (DAC), pp 1147–1152

50. Quan W, Pimentel AD (2015) A hybrid task mapping algorithm for heterogeneous MPSoCs.
ACM Trans Embed Comput Syst (TECS) 14(1):14:1–14:25. doi:10.1145/2680542

51. Raghavan A, Luo Y, Chandawalla A, Papaefthymiou M, Pipe KP, Wenisch TF, Martin MMK
(2012) Computational sprinting. In: Proceedings of the IEEE 18th international symposium on
high-performance computer architecture (HPCA), pp 1–12

52. Raghunathan B, Turakhia Y, Garg S, Marculescu D (2013) Cherry-picking: exploiting process
variations in dark-silicon homogeneous chip multi-processors. In: DATE, pp 39–44

53. Rotem E, Naveh A, Rajwan D, Ananthakrishnan A, Weissmann E (2012) Power-management
architecture of the Intel microarchitecture code-named sandy bridge. IEEE Micro 32(2):20–27

http://dx.doi.org/10.1109/DAC.2006.229245
http://dx.doi.org/10.1016/j.sysarc.2007.01.013
http://dx.doi.org/10.1109/RTCSA.2013.6732206
http://dx.doi.org/10.1109/RTSS.2013.38
http://dx.doi.org/10.1109/TCAD.2015.2406862
http://dx.doi.org/10.1109/TPDS.2014.2323260
http://dx.doi.org/10.1145/2656075.2656103
http://dx.doi.org/10.1145/2680542


332 S. Pagani et al.

54. Samsung Electronics Co., Ltd.: Exynos 5 Octa (5422). www.samsung.com/exynos
55. Sartori J, Kumar R (2009) Three scalable approaches to improving many-core throughput for a

given peak power budget. In: International conference on high performance computing (HiPC),
pp 89–98

56. Schor L, Bacivarov I, Rai D, Yang H, Kang SH, Thiele L (2012) Scenario-based design flow
for mapping streaming applications onto on-chip many-core systems. In: Proceedings of the
15th international conference on compilers, architectures and synthesis for embedded systems
(CASES), pp 71–80. doi:10.1145/2380403.2380422

57. Seo E, Jeong J, Park SY, Lee J (2008) Energy efficient scheduling of real-time tasks
on multicore processors. IEEE Trans Parallel Distrib Syst (TPDS) 19(11):1540–1552.
doi:10.1109/TPDS.2008.104

58. Shafique M, Gnad D, Garg S, Henkel J (2015) Variability-aware dark silicon management in
on-chip many-core systems. In: Proceedings of the 18th design, automation and test in Europe
(DATE), pp 387–392

59. Sharifi S, Coskun AK, Rosing TS (2010) Hybrid dynamic energy and thermal management in
heterogeneous embedded multiprocessor SoCs. In: Proceedings of the Asia and South Pacific
design automation conference (ASP-DAC), pp 873–878

60. Singh AK, Kumar A, Srikanthan T (2011) A hybrid strategy for mapping multiple throughput-
constrained applications on MPSoCs. In: Proceedings of the 14th international conference
on compilers, architectures and synthesis for embedded systems (CASES), pp 175–184.
doi:10.1145/2038698.2038726

61. Smit L, Smit G, Hurink J, Broersma H, Paulusma D, Wolkotte P (2004) Run-time mapping
of applications to a heterogeneous reconfigurable tiled system on chip architecture. In:
Proceedings of the IEEE international conference on field-programmable technology (FPT),
pp 421–424. doi:10.1109/FPT.2004.1393315

62. Tan C, Muthukaruppan T, Mitra T, Ju L (2015) Approximation-aware scheduling on het-
erogeneous multi-core architectures. In: The 20th Asia and South Pacific design automation
conference (ASP-DAC), pp 618–623

63. Weichslgartner A, Gangadharan D, Wildermann S, GlaßM, Teich J (2014) DAARM: design-
time application analysis and run-time mapping for predictable execution in many-core
systems. In: Proceedings of the international conference on hardware/software codesign and
system synthesis (CODES+ISSS), pp 34:1–34:10. doi:10.1145/2656075.2656083

64. Wu X, Zeng Y, Han JJ (2013) Energy-efficient task allocation for VFI-based real-time multi-
core systems. In: Proceedings of the international conference on information science and cloud
computing companion (ISCC-C), pp 123–128

65. Xu R, Zhu D, Rusu C, Melhem R, Mossé D (2005) Energy-efficient policies for embedded
clusters. In: Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on languages,
compilers, and tools for embedded systems (LCTES), pp 1–10

66. Yang CY, Chen JJ, Kuo TW (2005) An approximation algorithm for energy-efficient schedul-
ing on a chip multiprocessor. In: Proceedings of the 8th design, automation and test in Europe
(DATE), pp 468–473

67. Yang CY, Chen JJ, Kuo TW, Thiele L (2009) An approximation scheme for energy-efficient
scheduling of real-time tasks in heterogeneous multiprocessor systems. In: Proceedings of the
12th design, automation and test in Europe (DATE), pp 694–699

68. Ykman-Couvreur C, Hartmann PA, Palermo G, Colas-Bigey F, San L (2012) Run-time
resource management based on design space exploration. In: Proceedings of the 8th
IEEE/ACM/IFIP international conference on hardware/software codesign and system synthesis
(CODES+ISSS), pp 557–566. doi:10.1145/2380445.2380530

www.samsung.com/exynos
http://dx.doi.org/10.1145/2380403.2380422
http://dx.doi.org/10.1109/TPDS.2008.104
http://dx.doi.org/10.1145/2038698.2038726
http://dx.doi.org/10.1109/FPT.2004.1393315
http://dx.doi.org/10.1145/2656075.2656083
http://dx.doi.org/10.1145/2380445.2380530

	10 Design Space Exploration and Run-Time Adaptation for Multicore Resource Management Under Performance and Power Constraints
	Contents
	10.1 Introduction
	10.1.1 Centralized and Distributed Techniques
	10.1.2 Design-Time Decisions and Run-Time Adaptations
	10.1.3 Parallel Applications

	10.2 Optimization Goals and Constraints
	10.2.1 Computational Performance
	10.2.2 Power and Energy Consumption
	10.2.3 Temperature
	10.2.4 Optimization Knobs

	10.3 Performance Optimization Under Power Constraints
	10.3.1 Traditional Per-Chip Power Constraints
	10.3.2 Efficient Power Budgeting: Thermal Safe Power

	10.4 Performance Optimization Under Thermal Constraints
	10.4.1 Techniques Based on Thermal Modeling
	10.4.2 Boosting Techniques

	10.5 Energy Optimization Under Performance Constraints
	10.6 Hybrid Resource Management Techniques
	References


