
Handbook of
Hardware/
Software
Codesign

Soonhoi Ha
Jürgen Teich
Editors

Handbook of Hardware/Software Codesign

Soonhoi Ha • Jürgen Teich
Editors

Handbook of
Hardware/Software
Codesign

With 575 Figures and 56 Tables

123

Editors
Soonhoi Ha
Department of Computer
Science and Engineering
Seoul National University
Seoul, Korea

Jürgen Teich
Department of Computer Science
Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)
Erlangen, Germany

ISBN 978-94-017-7266-2 ISBN 978-94-017-7267-9 (eBook)
ISBN 978-94-017-7268-6 (print and electronic bundle)
https://doi.org/10.1007/978-94-017-7267-9

Library of Congress Control Number: 2017947685

© Springer Science+Business Media Dordrecht 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Science+Business Media B.V.
The registered company address is: Van Godewijckstraat 30, 3311 GX Dordrecht, The Netherlands

https://doi.org/10.1007/978-94-017-7267-9

Foreword

Hardware/software codesign means to achieve system-level design objectives by
leveraging the synergy between hardware and software through their concurrent
design. Codesign has been practiced in various ways since the inception of digital
systems. The specification of instruction-set architectures enabled the concurrent
development of hardware and software as well as the creation of high-level
languages and compilers. Grace Hopper was indeed a pioneer of codesign in the
early 1950s with the design of portable languages (i.e., machine-independent),
which led to the development of COBOL and of modern programming languages.

Within about 70 years of computer science and engineering, various em-
bodiments of abstractions, programmability, and hardware have given different
meanings to hardware/software codesign. The renewed interest on this topic in the
last two decades relates to the use of structured design methodologies and tools
for hardware and software design. Thus, electronic systems design automation had
to embrace hardware/software codesign as one of its major tasks and objectives.
The formalization of the related design problems enabled synthesis and verification
of hardware/software systems through the development of computer-aided design
methods and tools.

However, it is our opinion that a sound system design methodology must start
by capturing the design specifications at the highest level of abstraction and then
proceed toward an efficient implementation by subsequent refinement steps. The
partition of the design into hardware and software is indeed a consequence of
decisions taken at a higher level of abstraction. The critical decisions are about
the architecture of the system (processors, buses, hardware accelerators, memories,
and so on) that will carry on the computation and communication tasks associated
with the overall specification of the design. This design process is segmented into
a series of similar steps. The principles at the basis of each step consist of hiding
unnecessary details of an implementation, summarizing the important parameters of
the implementation in an abstract model, and limiting the design space exploration
to a set of potential platform instances. The design process is a meet-in-the-
middle approach where the refinement from specification toward implementation is
matched against a library of components whose models are abstractions of possible
implementations.

v

vi Foreword

This was indeed the basis for the development of a design methodology that
goes under the name of platform-based design where the steps outlined above have
been formalized wherever possible. This methodology includes the development of
hardware and the related software when the architectural decisions have been made
and the design tasks have been mapped to the components of the architecture. A task
that is mapped into hardware can then be synthesized with the appropriate tools in
parallel to the software development that takes place when the mapping process has
allocated the task to a programmable component. Note also that in this framework,
it is rather clear that according to the available programmable components, different
software design processes can be developed. In fact, programming a microprocessor
is quite different than programming a DSP or a special purpose processor.

The first step in the design process is then capturing a set of specifications or
requirements on the functionality and the architecture of the design. These will
guide the design process through the refinement steps. Requirements are in general
denotational statements about what the system is supposed to do. For example, if
we are to design a special purpose math processor that computes the solution of
nonlinear algebraic equations, the functional requirement would be stated as:

Find x such that F .x/ D 0;

where no algorithm to accomplish this task has been chosen. The choice of the al-
gorithm is already a refinement step in the design task. This example underlines that
requirements are abstract statements about what the design has to accomplish. Some
of the requirements may be given in terms of the properties of an implementation
but still in abstracted form. For example,

The system has to consume no more than 1kW of power.

Of course this is a constraint that encompasses the entire design space from
functionality to final implementation, and while in the first steps of the architecture
selection, the power consumption can be estimated, and it will have to be verified
at the final implementation where the physics of the solution will be known. The
design space exploration is determined in part by these requirements.

In addition to the requirements, often a set of desirable features of the design
can be stated. In this case, the mathematical formalism is a function that can be
either minimized or maximized. Then the refinement steps take the form of an
optimization problem where the objective functions are optimized in the presence
of complex constraints.

Often the design process of interest has already been given in terms of high-
level functionality where some design decisions have been taken. Using the example
above, we may be asked to implement the Newton–Raphson procedure, a choice for
the algorithm to be used to meet the requirement. This is given in terms of behavior,
i.e., an operational description at the appropriate level of abstraction.

Once the behavior has been selected and described, then it is time to determine
an architecture to implement this behavior that optimizes the goal function(s)
and satisfies the constraints. The architecture may be developed anew or obtained
combining elements in a library of available components or a combination of both

Foreword vii

whereby library elements are combined with virtual components that have to be
designed from scratch.

In the design process, synthesis steps are intertwined with verification steps
that check whether the constraints are satisfied, the functionality is correctly
implemented, and the design is feasible.

This handbook covers extensively many topics specific to hardware/software
codesign intended as system design as described above, namely, modeling, design
and optimization, validation and verification, as well as application areas. Modeling
has been a key design technology for capturing system-level aspects: it is achieved
today via specialized languages and graphical formalisms. The underlying seman-
tics of these representations is key to the application of rigorous methods to capture
the real intent of the design and to offer a framework where properties of the design
can be assessed. At the same time, the expressive power of the language is important
to serve a wide variety of designers and design applications. For example, within
general-purpose languages, SystemC – a class library with hardware semantics –
has shown to be a viable extension to C++ to capture hardware components in an
object-oriented fashion.

System architectures have changed significantly over the last two decades, to
exploit the growth and diversification of the underlying semiconductor technol-
ogy. As a result of the limited growth of clock operational frequencies and the
wide availability of devices due to downscaling, multiprocessor architectures with
significant on-chip memory (or low-latency off-chip memory) are dominating the
market. Indeed, multiprocessing fits the need of realizing systems with limited
energy consumption, thus avoiding thermal and dark silicon issues. Codesign in a
multiprocessing environment provides major challenges, such as exploration of the
design space and of parametric choices that can maximize the return of distributed
software applications. Design and optimization require often cross-layer techniques
that can span various modeling abstractions and operate on the tuning of various
system aspects concurrently.

Much research emphasis on memory architectures has been fueled both by the
need to handle big data “in proximity” as well as by the availability of novel memory
technologies including their physical stacking. It is important to remark that this
problem is not only a hardware design problem, as the potential beneficial use of
memory hierarchies affects system and software design. By the same token, on-chip
communication has evolved to networks-on-chips (NoCs), which encompass various
structured interconnect schemes leveraging data packetization and routing. NoC
design within multiprocessing systems requires the use of specific design techniques
to match hardware structures realizing the network architecture to their operational
protocols that are often programmable and specified in software.

Many design tools have been proposed to synthesize, partition, and optimize
systems. In the recent years, the use of programmable processor cores (e.g., ARM)
as black boxes within multiprocessing systems has led to a specific focus on both
memory and communication synthesis and optimization. Conversely, the search for
energy-performance optimal computational engines has led to application-specific
instruction-set processors. Such processors occupy a limited but strategic part of

viii Foreword

the computing product spectrum and pose a key codesign problem. Indeed, the
definition of an instruction set has been the fulcrum of codesign techniques since the
invention of the digital computer. Thus, the possibility of designing and optimizing
the instruction set can be viewed as searching for an optimum position of this
fulcrum to balance the hardware and software cost and performance.

The selection of the functionalities to implement in hardware and of the ones in
software is a system design issue that precedes HW/SW codesign. Indeed, system
design can be characterized as function/architecture codesign, where function is
what we wish to realize and architecture is how we are going to implement the func-
tionality. As described above, architecture can be defined as the functional level as
well. In this case, we decompose a function into a network of subfunctions. Each of
this subfunction can be further decomposed until we decide to allocate the leaves of
the functional decomposition to components of a hardware architecture. The hard-
ware architecture consists of components such as processors, memories, sensors,
actuators, communication entities, and specialized hardware components. Once a
block of functionality is assigned to a programmable component, its implementation
will be a software program running onto that component. If it is assigned to a
specialized hardware, then its implementation will be a set of IP blocks, and we have
a HW/SW codesign problem at hand. System design is where important decisions
are taken and where it is of paramount importance to consider available components
to maximize reuse. Platform-based design has been a major step forward in
conceiving HW/SW systems that enabled the use of synthesis and verification tools
with high efficiency. Indeed, a platform is a restriction of the design space.

Methods and tools for software synthesis and optimization have led to the
automatic rewriting of specification in terms of the best primitives to be used by
a processor. For example, ARM processors benefit from using guarded instructions,
and making them explicit in software improves the compiler performance. Software
analysis – in terms of execution time – is extremely important to quantify and bound
delay in system design, especially in view of satisfying timing constraints for task
executions. Thus, software timing analysis and verification is a key task of HW/SW
codesign.

Validating system design is the most important task of all, since most digital
systems are required to satisfy safety and dependability constraints. An important
area is the verification of formal models that abstract parts – if not the entirety –
of digital systems. Formal verification is based on choosing specific properties and
checking if they are satisfied in all operational instances. Functional and timing
behavior are cornerstones of verification. Often such properties are shown to hold
with subsystems, and thus system composability is a key asset in proving correctness
by construction. Needless to say, few systems are composable in a straightforward
way, and this motivates the large research effort in verification. Large systems are
often validated by semiformal techniques or by broader but weaker techniques
such as simulation, emulation, and prototyping. The inherent weakness of these
techniques is in asserting properties that are valid under a wide set of environmental
conditions. Unfortunately, when systems fail, they often fail under unusual operating
conditions.

Foreword ix

Codesign is practiced differently in various application domains. This book
covers examples such as datacenter, automotive system, video/image processing,
and cyber-physical system design. The peculiarities of these domains in terms of
requirements and objectives are reflected in the various ways of applying codesign
modeling abstraction as well as synthesis, optimization, and verification methods.

Overall, this handbook presents a broad set of techniques that show the inherent
maturity of the state of the art in hardware/software codesign.

University of California at Berkeley Alberto L. Sangiovanni-Vincentelli
USA
November 2016

Institute of Electrical Engineering Giovanni De Micheli
EPFL, Switzerland
November 2016

Preface

Hardware/software (HW/SW) codesign was first introduced as a new design
methodology for SoCs (systems-on-chip) in the early 1990s to design hardware
and software concurrently with the goal to reduce the design time and cost of such
systems. After more than 25 years of incessant research and development, it is now
regarded as a de facto standard, and the term has become serving as an umbrella for
methodologies to design complex electronic systems, even distributed embedded
systems. HW/SW codesign covers the full spectrum of system design issues from
initial behavior specification to final implementation. Codesign methodologies also
include modeling the system behavior independently of the system architecture at a
high level and exploring the design space of system architecture at the early design
stage. For fast design space exploration, it is necessary to estimate the system per-
formance and resource requirements. HW/SW cosimulation enables us to develop
software before hardware implementations become available. Finally, cosynthesis
denoting the process of automatically synthesizing hardware components as well
as software from a given specification for implementation on a target platform and
including also the interfaces for communication between hardware components and
processors belongs to the key problems attacked by codesign.

In spite of its significance and usefulness, we discovered that it is quite difficult
to understand and learn about its benefits and full impact on real system design,
particularly because there did not exist any book or reference on HW/SW codesign
until the time of writing this book. Thus, it is our great pleasure to edit this
handbook, quenching the thirst for the reference. In this book, we present to you
the core issues of hardware/software codesign and key techniques in the design
flow. In addition, selected codesign tools and design environments are described as
well as case studies that demonstrate the usefulness of HW/SW codesign. This book
will be updated regularly to follow the progress of design techniques and introduce
commercial as well as research design tools available for our readers. It is meant to
serve as a reference not only to interested researchers and engineers in the field but

xi

xii Preface

equally to students. We hope you all will grasp the wide spectrum of subjects that
belong to HW/SW codesign and get most benefits out of it for your system design
and related optimization problems.

Department of Computer Science and Engineering Soonhoi Ha
Seoul National University
Gwanak-ro 1, Gwanak-gu
Seoul, Korea
June 2017

Department of Computer Science Jürgen Teich
Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)
Cauerstr. 11
Erlangen, Germany
June 2017

Contents

Volume 1

Part I Introduction to Hardware/Software Codesign 1

1 Introduction to Hardware/Software Codesign 3
Soonhoi Ha, Jürgen Teich, Christian Haubelt, Michael Glaß,
Tulika Mitra, Rainer Dömer, Petru Eles, Aviral Shrivastava,
Andreas Gerstlauer, and Shuvra S. Bhattacharyya

Part II Models and Languages for Codesign . 27

2 Quartz: A Synchronous Language for Model-Based
Design of Reactive Embedded Systems . 29
Klaus Schneider and Jens Brandt

3 SysteMoC: A Data-Flow Programming Language for Codesign . . . 59
Joachim Falk, Christian Haubelt, Jürgen Teich, and
Christian Zebelein

4 ForSyDe: System Design Using a Functional Language
and Models of Computation . 99
Ingo Sander, Axel Jantsch, and Seyed-Hosein
Attarzadeh-Niaki

5 Modeling Hardware/Software Embedded Systems with
UML/MARTE: A Single-Source Design Approach 141
Fernando Herrera, Julio Medina, and Eugenio Villar

Part III Design Space Exploration . 187

6 Optimization Strategies in Design Space Exploration 189
Jacopo Panerati, Donatella Sciuto, and Giovanni Beltrame

7 Hybrid Optimization Techniques for System-Level Design
Space Exploration . 217
Michael Glaß, Jürgen Teich, Martin Lukasiewycz, and
Felix Reimann

xiii

xiv Contents

8 Architecture and Cross-Layer Design Space Exploration 247
Santanu Sarma and Nikil Dutt

9 Scenario-Based Design Space Exploration . 271
Andy Pimentel and Peter van Stralen

10 Design Space Exploration and Run-Time Adaptation for
Multicore Resource Management Under Performance
and Power Constraints . 301
Santiago Pagani, Muhammad Shafique, and Jörg Henkel

Part IV Processor, Memory, and Communication Architecture
Design . 333

11 Reconfigurable Architectures . 335
Mansureh Shahraki Moghaddam, Jae-Min Cho, and
Kiyoung Choi

12 Application-Specific Processors . 377
Tulika Mitra

13 Memory Architectures . 411
Preeti Ranjan Panda

14 Emerging and Nonvolatile Memory . 443
Chun Jason Xue

15 Network-on-Chip Design . 461
Haseeb Bokhari and Sri Parameswaran

16 NoC-Based Multiprocessor Architecture for
Mixed-Time-Criticality Applications . 491
Kees Goossens, Martijn Koedam, Andrew Nelson,
Shubhendu Sinha, Sven Goossens, Yonghui Li,
Gabriela Breaban, Reinier van Kampenhout, Rasool Tavakoli,
Juan Valencia, Hadi Ahmadi Balef, Benny Akesson,
Sander Stuijk, Marc Geilen, Dip Goswami, and Majid Nabi

Part V Hardware/Software Cosimulation and Prototyping 531

17 Parallel Simulation . 533
Rainer Dömer, Guantao Liu, and Tim Schmidt

18 Multiprocessor System-on-Chip Prototyping Using
Dynamic Binary Translation . 565
Frédéric Pétrot, Luc Michel, and Clément Deschamps

19 Host-Compiled Simulation . 593
Daniel Mueller-Gritschneder and Andreas Gerstlauer

Contents xv

20 Precise Software Timing Simulation Considering
Execution Contexts . 621
Oliver Bringmann, Sebastian Ottlik, and Alexander Viehl

Volume 2

Part VI Performance Estimation, Analysis, and Verification 653

21 Timing Models for Fast Embedded Software
Performance Analysis . 655
Oliver Bringmann, Christoph Gerum, and Sebastian Ottlik

22 Semiformal Assertion-Based Verification
of Hardware/Software Systems in a Model-Driven
Design Framework . 683
Graziano Pravadelli, Davide Quaglia, Sara Vinco, and
Franco Fummi

23 CPA: Compositional Performance Analysis . 721
Robin Hofmann, Leonie Ahrendts, and Rolf Ernst

24 Networked Real-Time Embedded Systems . 753
Haibo Zeng, Prachi Joshi, Daniel Thiele, Jonas Diemer,
Philip Axer, Rolf Ernst, and Petru Eles

Part VII Hardware/Software
Compilation and Synthesis . 793

25 Hardware-Aware Compilation . 795
Aviral Shrivastava and Jian Cai

26 Memory-Aware Optimization of Embedded Software for
Multiple Objectives . 829
Peter Marwedel, Heiko Falk, and Olaf Neugebauer

27 Microarchitecture-Level SoC Design . 867
Young-Hwan Park, Amin Khajeh, Jun Yong Shin,
Fadi Kurdahi, Ahmed Eltawil, and Nikil Dutt

Part VIII Codesign Tools and Environment . 915

28 MAPS: A Software Development Environment for
Embedded Multicore Applications . 917
Rainer Leupers, Miguel Angel Aguilar, Juan Fernando Eusse,
Jeronimo Castrillon, and Weihua Sheng

29 HOPES: Programming Platform Approach for Embedded
Systems Design . 951
Soonhoi Ha and Hanwoong Jung

xvi Contents

30 DAEDALUS: System-Level Design Methodology for
Streaming Multiprocessor Embedded Systems on Chips 983
Todor Stefanov, Andy Pimentel, and Hristo Nikolov

31 SCE: System-on-Chip Environment . 1019
Gunar Schirner, Andreas Gerstlauer, and Rainer Dömer

32 Metamodeling and Code Generation in the
Hardware/Software Interface Domain . 1051
Wolfgang Ecker and Johannes Schreiner

33 Hardware/Software Codesign Across Many Cadence
Technologies . 1093
Grant Martin, Frank Schirrmeister, and Yosinori Watanabe

34 Synopsys Virtual Prototyping for Software Development
and Early Architecture Analysis . 1127
Tim Kogel

Part IX Applications and Case Studies . 1161

35 Joint Computing and Electric Systems Optimization for
Green Datacenters . 1163
Ali Pahlevan, Maurizio Rossi, Pablo G. Del Valle,
Davide Brunelli, and David Atienza

36 The DSPCAD Framework for Modeling and Synthesis of
Signal Processing Systems . 1185
Shuoxin Lin, Yanzhou Liu, Kyunghun Lee, Lin Li,
William Plishker, and Shuvra S. Bhattacharyya

37 Control/Architecture Codesign for Cyber-Physical Systems 1221
Wanli Chang, Licong Zhang, Debayan Roy, and
Samarjit Chakraborty

38 Wireless Sensor Networks . 1261
Mihai Teodor Lazarescu and Luciano Lavagno

39 Codesign Case Study on Transport-Triggered Architectures 1303
Jarmo Takala, Pekka Jääskeläinen, and Teemu Pitkänen

40 Embedded Computer Vision . 1339
Marilyn Wolf

Index . 1353

About the Editors

Soonhoi Ha
Department of Computer Science and
Engineering
Seoul National University
Gwanak-ro 1, Gwanak-gu
Seoul, Korea

Soonhoi Ha received the B.S. and M.S. degrees in
Electronics Engineering from Seoul National Univer-
sity, Seoul, Korea, in 1985 and 1987, respectively, and
the Ph.D. degree in Electrical Engineering and Com-

puter Science from the University of California at Berkeley, Berkeley, CA, USA,
in 1992. He is currently a professor with Seoul National University. His current
research interests include HW/SW codesign of embedded systems, system simu-
lation, and robust embedded software design. Prof. Ha has actively participated in
the premier international conferences in the EDA area, serving CODES+ISSS 2006,
ASP-DAC 2008, and ESTIMedia 2005–2006 as the program cochair and ESWeek
2017 as the vice general chair. He is an IEEE Fellow and a member of ACM.

Jürgen Teich
Department of Computer Science
Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)
Cauerstr. 11
Erlangen, Germany

Jürgen Teich is with Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Germany, where he is di-
recting the Chair for Hardware/Software Codesign
since 2003. He received the M.S. degree (Dipl.- Ing.;
with honors) from the University of Kaiserslautern,

Germany, in 1989 and the Ph.D. degree (Dr.-Ing.; summa cum laude) from the
University of Saarland, Saarbruecken, Germany, in 1993.

xvii

xviii About the Editors

Prof. Teich has organized various ACM/IEEE conferences/symposia as program
chair including CODES+ISSS 2007, FPL 2008, ASAP 2010, and DATE 2016. He
also serves as the vice general chair of DATE 2018 as well as in the editorial board
of scientific journals including ACM TODAES, IEEE Design and Test, and JES. He
has edited two textbooks on hardware/software codesign (Springer).

Since 2010, he has also been the principal coordinator of the Transregional
Research Center 89 “Invasive Computing” on multicore research funded by the
German Research Foundation (DFG). Since 2011, he is a member of Academia
Europaea, the Academy of Europe.

Section Editors

Part I: Introduction to Hardware/Software Codesign

Soonhoi Ha Department of Computer Science and Engineering, Seoul National
University, Gwanak-gu, Seoul, Korea
sha@snu.ac.kr

Part II: Models and Languages for Codesign

Christian Haubelt Institute of Applied Microelectronics and Computer Engineer-
ing, University of Rostock, Rostock, Germany
christian.haubelt@uni-rostock.de

xix

xx Section Editors

Part III: Design Space Exploration

Michael Glass Institute of Embedded Systems/Real-Time Systems at Ulm Univer-
sity, Ulm, Germany
michael.glass@uni-ulm.de

Part IV: Processor, Memory, and Communication Architecture
Design

Tulika Mitra Department of Computer Science, School of Computing, National
University of Singapore, Singapore, Singapore
tulika@comp.nus.edu.sg

Section Editors xxi

Part V: Hardware/Software Cosimulation and Prototyping

Rainer Dömer Center for Embedded and Cyber-physical Systems, Department
of Electrical Engineering and Computer Science, The Henry Samueli School of
Engineering, University of California at Irvine, Irvine, CA, USA
doemer@uci.edu

Part VI: Performance Estimation, Analysis, and Verification

Petru Eles Department of Computer and Information Science, Linkoping Univer-
sity, Linköping, Sweden
petru.eles@liu.se

xxii Section Editors

Part VII: Hardware/Software Compilation and Synthesis

Aviral Shrivastava School of Computing, Informatics and Decision Systems
Engineering, Arizona State University, Tempe, USA
aviral.shrivastava@asu.edu

Part VIII: Codesign Tools and Environment

Andreas Gerstlauer Department of Electrical and Computer Engineering, The
University of Texas at Austin, Austin, TX, USA
gerstl@ece.utexas.edu

Section Editors xxiii

Part IX: Applications and Case Studies

Shuvra Bhattacharyya Department of Electrical and Computer Engineering and
Institute for Advanced Computer Studies, University of Maryland, College Park,
USA
Department of Pervasive Computing, Tampere University of Technology, Tampere,
Finland
ssb@umd.edu

Contributors

Miguel Angel Aguilar Institute for Communication Technologies and Embedded
Systems, RWTH Aachen University, Aachen, Germany

Leonie Ahrendts Institute of Computer and Network Engineering, Technical
University Braunschweig, Braunschweig, Germany

Benny Akesson Eindhoven University of Technology, Eindhoven, The Netherlands

David Atienza Embedded Systems Laboratory (ESL), EPFL, Lausanne,
Switzerland

Seyed-Hosein Attarzadeh-Niaki Shahid Beheshti University (SBU), Tehran, Iran

Philip Axer NXP Semiconductors, Hamburg, Germany

Hadi Ahmadi Balef Eindhoven University of Technology, Eindhoven, The
Netherlands

Giovanni Beltrame Polytechnique Montréal, Montreal, QC, Canada

Shuvra S. Bhattacharyya Department of Electrical and Computer Engineering
and Institute for Advanced Computer Studies, University of Maryland, College
Park, MD, USA

Department of Pervasive Computing, Tampere University of Technology, Tampere,
Finland

Haseeb Bokhari University of New South Wales (UNSW), Sydney, NSW,
Australia

Jens Brandt Faculty of Electrical Engineering and Computer Science, Hochschule
Niederrhein, Krefeld, Germany

Gabriela Breaban Eindhoven University of Technology, Eindhoven, The
Netherlands

Oliver Bringmann Wilhelm-Schickard-Institut, University of Tübingen, Tübingen,
Germany

Embedded Systems, University of Tübingen, Tübingen, Germany

xxv

xxvi Contributors

Davide Brunelli Department of Industrial Engineering, University of Trento,
Trento, Italy

Jian Cai Arizona State University, Tempe, AZ, USA

Jeronimo Castrillon Center for Advancing Electronics Dresden, TU Dresden,
Dresden, Germany

Samarjit Chakraborty TU Munich, Munich, Germany

Wanli Chang Singapore Institute of Technology, Singapore, Singapore

Jae-Min Cho Department of Electrical and Computer Engineering, Seoul National
University, Seoul, Korea

Kiyoung Choi Department of Electrical and Computer Engineering, Seoul
National University, Seoul, Korea

Pablo G. Del Valle Embedded Systems Laboratory (ESL), EPFL, Lausanne,
Switzerland

Clément Deschamps Antfield SAS, Grenoble, France

Jonas Diemer Symtavision, Braunschweig, Germany

Rainer Dömer Center for Embedded and Cyber-Physical Systems, Department
of Electrical Engineering and Computer Science, The Henry Samueli School of
Engineering, University of California, Irvine, CA, USA

Nikil Dutt Center for Embedded and Cyber-Physical Systems, University of
California Irvine, Irvine, CA, USA

Wolfgang Ecker Infineon Technologies AG, Neubiberg, Germany

Petru Eles Department of Computer and Information Science, Linköping
University, Linköping, Sweden

Ahmed Eltawil Center for Embedded and Cyber-Physical Systems, University of
California Irvine, Irvine, CA, USA

Rolf Ernst Institute of Computer and Network Engineering, Technical University
Braunschweig, Braunschweig, Germany

Juan Fernando Eusse Institute for Communication Technologies and Embedded
Systems, RWTH Aachen University, Aachen, Germany

Heiko Falk Institute of Embedded Systems, Hamburg University of Technology,
Hamburg, Germany

Joachim Falk Department of Computer Science, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Erlangen, Germany

Franco Fummi Università di Verona, Verona, Italy

Marc Geilen Eindhoven University of Technology, Eindhoven, The Netherlands

Contributors xxvii

Andreas Gerstlauer Department of Electrical and Computer Engineering, The
University of Texas at Austin, Austin, TX, USA

Christoph Gerum Embedded Systems, University of Tübingen, Tübingen,
Germany

Michael Glaß Institute of Embedded Systems/Real-Time Systems at Ulm
University, Ulm, Germany

Kees Goossens Eindhoven University of Technology, Eindhoven, The Netherlands

Sven Goossens Eindhoven University of Technology, Eindhoven, The Netherlands

Dip Goswami Eindhoven University of Technology, Eindhoven, The Netherlands

Soonhoi Ha Department of Computer Science and Engineering, Seoul National
University, Gwanak-gu, Seoul, Korea

Christian Haubelt Department of Computer Science and Electrical Engineering,
Institute of Applied Microelectronics and Computer Engineering, University of
Rostock, Rostock, Germany

Jörg Henkel Chair for Embedded Systems (CES), Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany

Fernando Herrera GESE Group, TEISA Department, ETSIIT, Universidad de
Cantabria, Santander, Cantabria, Spain

Robin Hofmann Institute of Computer and Network Engineering, Technical
University Braunschweig, Braunschweig, Germany

Pekka Jääskeläinen Tampere University of Technology, Tampere, Finland

Axel Jantsch Vienna University of Technology, Vienna, Austria

Prachi Joshi Department of Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA, USA

Hanwoong Jung Seoul National University, Gwanak-gu, Seoul, Korea

Amin Khajeh Broadcom Corp., San Jose, CA, USA

Martijn Koedam Eindhoven University of Technology, Eindhoven, The
Netherlands

Tim Kogel Synopsys, Inc., Aachen, Germany

Fadi Kurdahi Center for Embedded and Cyber-Physical Systems, University of
California Irvine, Irvine, CA, USA

Luciano Lavagno Politecnico di Torino, Torino, Italy

Mihai Teodor Lazarescu Politecnico di Torino, Torino, Italy

xxviii Contributors

Kyunghun Lee Department of Electrical and Computer Engineering, University
of Maryland, College Park, MD, USA

Rainer Leupers Institute for Communication Technologies and Embedded
Systems, RWTH Aachen University, Aachen, Germany

Lin Li Department of Electrical and Computer Engineering, University of
Maryland, College Park, MD, USA

Yonghui Li Eindhoven University of Technology, Eindhoven, The Netherlands

Shuoxin Lin Department of Electrical and Computer Engineering, University of
Maryland, College Park, MD, USA

Guantao Liu Center for Embedded and Cyber-Physical Systems, University of
California, Irvine, CA, USA

Yanzhou Liu Department of Electrical and Computer Engineering, University of
Maryland, College Park, MD, USA

Martin Lukasiewycz Robert Bosch GmbH, Corporate Research, Renningen,
Germany

Grant Martin Cadence Design Systems, San Jose, CA, USA

Peter Marwedel Computer Science, TU Dortmund University, Dortmund,
Germany

Julio Medina Software Engineering and Real-Time Group, University of
Cantabria, Santander, Cantabria, Spain

Luc Michel Antfield SAS, Grenoble, France

Tulika Mitra Department of Computer Science, School of Computing, National
University of Singapore, Singapore, Singapore

Daniel Mueller-Gritschneder Department of Electrical and Computer
Engineering, Technical University of Munich, Munich, Germany

Majid Nabi Eindhoven University of Technology, Eindhoven, The Netherlands

Andrew Nelson Eindhoven University of Technology, Eindhoven, The Netherlands

Olaf Neugebauer Computer Science, TU Dortmund University, Dortmund,
Germany

Hristo Nikolov Leiden University, Leiden, The Netherlands

Sebastian Ottlik Microelectronic System Design, FZI Research Center for
Information Technology, Karlsruhe, Germany

Santiago Pagani Chair for Embedded Systems (CES), Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany

Ali Pahlevan Embedded Systems Laboratory (ESL), EPFL, Lausanne, Switzerland

Contributors xxix

Preeti Ranjan Panda Department of Computer Science and Engineering, Indian
Institute of Technology Delhi, New Delhi, India

Jacopo Panerati Polytechnique Montréal, Montreal, QC, Canada

Sri Parameswaran University of New South Wales (UNSW), Sydney, NSW,
Australia

Young-Hwan Park Digital Media and Communications R&D Center, Samsung
Electronics, Seoul, Korea

Frédéric Pétrot Université de Grenoble Alpes, Grenoble, France

Andy Pimentel University of Amsterdam, Amsterdam, The Netherlands

Teemu Pitkänen Ajat Oy, Espoo, Finland

William Plishker Department of Electrical and Computer Engineering, University
of Maryland, College Park, MD, USA

Graziano Pravadelli Università di Verona, Verona, Italy

Davide Quaglia Università di Verona, Verona, Italy

Felix Reimann Audi Electronics Venture GmbH, Gaimersheim, Germany

Maurizio Rossi Department of Industrial Engineering, University of Trento,
Trento, Italy

Debayan Roy TU Munich, Munich, Germany

Ingo Sander KTH Royal Institute of Technology, Stockholm, Sweden

Santanu Sarma University of California Irvine, Irvine, CA, USA

Gunar Schirner Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA

Frank Schirrmeister Cadence Design Systems, San Jose, CA, USA

Tim Schmidt Center for Embedded and Cyber-Physical Systems, University of
California, Irvine, CA, USA

Klaus Schneider Embedded Systems Group, University of Kaiserslautern,
Kaiserslautern, Germany

Johannes Schreiner Infineon Technologies AG, Neubiberg, Germany

Donatella Sciuto Politecnico di Milano, Milano, Italy

Muhammad Shafique Chair for Embedded Systems (CES), Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany

Mansureh Shahraki Moghaddam Department of Electrical and Computer
Engineering, Seoul National University, Seoul, Korea

Weihua Sheng Silexica GmbH, Köln, Germany

xxx Contributors

Jun Yong Shin Center for Embedded and Cyber-Physical Systems, University of
California Irvine, Irvine, CA, USA

Aviral Shrivastava School of Computing, Informatics and Decision Systems
Engineering, Arizona State University, Tempe, AZ, USA

Shubhendu Sinha Eindhoven University of Technology, Eindhoven, The
Netherlands

Todor Stefanov Leiden University, Leiden, The Netherlands

Sander Stuijk Eindhoven University of Technology, Eindhoven, The Netherlands

Jarmo Takala Tampere University of Technology, Tampere, Finland

Rasool Tavakoli Eindhoven University of Technology, Eindhoven, The
Netherlands

Jürgen Teich Department of Computer Science, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Erlangen, Germany

Daniel Thiele Elektrobit Automotive GmbH, Erlangen, Germany

Juan Valencia Eindhoven University of Technology, Eindhoven, The Netherlands

Reinier van Kampenhout Eindhoven University of Technology, Eindhoven, The
Netherlands

Peter van Stralen Philips Healthcare, Best, The Netherlands

Alexander Viehl Microelectronic System Design, FZI Research Center for
Information Technology, Karlsruhe, Germany

Eugenio Villar GESE Group, TEISA Department, ETSIIT, Universidad de
Cantabria, Santander, Cantabria, Spain

Sara Vinco Politecnico di Torino, Turin, Italy

Yosinori Watanabe Cadence Design Systems, San Jose, CA, USA

Marilyn Wolf School of Electrical and Computer Engineering, Georgia Institute
of Technology, Atlanta, GA, USA

Chun Jason Xue City University of Hong Kong, Hong Kong, Hong Kong

Christian Zebelein Valeo Siemens eAutomotive Germany GmbH, Erlangen,
Germany

Haibo Zeng Department of Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA, USA

Licong Zhang TU Munich, Munich, Germany

List of Acronyms

6LoWPAN IPv6 over Low Power Wireless Personal Area Network
ABV Assertion-Based Verification
AC Alternating Current
ACK Acknowledgement
ADAS Advanced Driver Assistance System
ADC Analog-to-Digital Converter
ADF Architecture Description File
ADG Approximated Dependence Graph
ADL Architecture Description Language
ADM Abstract Design Module
ADRS Average Distance from Reference Set
ADT Abstract Data Type
AFDX Avionics Full-Duplex Switched Ethernet
AHB Advanced High-performance Bus
AIF Averest Intermediate Format
ALAP As Late As Possible
ALM Adaptive Logic Module
ALU Arithmetic-Logic Unit
ANN Artificial Neural Network
APB Advanced Peripheral Bus
API Application Programming Interface
ARM Advanced Risc Machines
ARQ Automatic Repeat Request
ASAP As Soon as Possible
ASCII American Standard Code for Information Interchange
ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor
ASK Amplitude Shift Key
ASMBL Advanced Silicon Modular Block
ASP Application-Specific Processor
AST Abstract Syntax Tree
AT Approximately Timed

xxxi

xxxii List of Acronyms

AT-BP Approximately Timed Base Protocol
AV Architects View
AVB Audio/Video Bridging
AXI Advanced eXtensible Interface
BB Basic Block
BCET Best-Case Execution Time
BCRT Best-Case Response Time
BD Budget Descriptor
BDF Boolean Data Flow
BER Bit Error Rate
BERET Bundled Execution of REcurring Traces
BFD Best-Fit-Decreasing
BFM Bus-Functional Model
BIST Built-In Self-Test
BLB Bit Lock Block
BLM Block-Level Model
BLS Binary-Level Simulation
BNF Backus-Naur Form
BOM Bill of Materials
BPSK Binary PSK
BRF Bypass Register File
BSP Board Support Package
BTB Branch Target Buffer
CA Cycle Accurate
CAD Computer-Aided Design
CAL Cal Actor Language
CAN Controller Area Network
CCA Configurable Compute Accelerator
CC Communication Controller
CCE Configuration Cache Element
CCSP Credit-Controlled Static Priority
CDC Clock Domain Crossing
CDFG Control-/Data-Flow Graph
CDMA Code Division Multiple Access
CE Communication Element
CFDF Core Functional Data Flow
CFG Control-Flow Graph
CFU Custom Functional Unit
CGA Coarse-Grained Array
CG Call Graph
CGRA Coarse Grained Reconfigurable Architecture
CIC Common Intermediate Code
CIL Compiler-In-the-Loop
CIM Computation Independent Model
CIS Custom Instruction-Set

List of Acronyms xxxiii

CLB Configurable Logic Block
CLDSE Cross-Layer Design Space Exploration
CM Communication Memory
CMOS Complementary Metal-Oxide-Semiconductor
CMP Chip Multi-Processor
CNN Convolutional Neural Network
CORDIC COordinate Rotational DIgital Computer
CVMP Correlation-aware VM Placement
COTS Commercial/Components Off-The-Shelf
CPA Compositional Performance Analysis
CPF Common Power Format
CPN C for Process Networks
CPS Cyber-Physical System
CPU Central Processing Unit
CRAC Computer Room Air Conditioning
CRC Cyclic Redundancy Check
CRPD Cache-Related Preemption Delay
CSDF Cyclo-Static Data Flow
CSMA/CD Carrier Sense Multiple Access/Collision Detection
CTI Charge Transfer Interconnect
CTL Computation Tree Logic
CUDA Compute Unified Device Architecture
CV Computer Vision
D2H Device-to-Host
DAG Directed Acyclic Graph
DB Database
DBT Dynamic Binary Translation
DC Direct Current
DCG Dynamic Call Graph
DCT Discrete Cosine Transform
DDF Dennis Data Flow
DDR Double Data Rate
DE Discrete Event
DES Discrete Event Simulation
DFG Data-Flow Graph/Dependence-Flow Graph
DFT Discrete Fourier Transfrom
DICE DSPCAD Integrative Command Line Environment
DIF Decimation-in-Frequency/Data-flow Interchange Format
DISC Dynamic Instruction-Set Computer
DIT Decimation-in-Time
DLMB Data Local Memory Bus
DLP Data-Level Parallelism
DMA Direct Memory Access
DMAMEM DMA Memory
DMEM Data Memory

xxxiv List of Acronyms

DMI Direct Memory Interface
DoD Depth-of-Discharge
DoE Design of Experiments
DOR Dimension Ordered Routing
DP Dynamic Programming
DPLL Davis-Putnam-Logemann-Loveland
DPM Dynamic Power Management
DPR Dynamic Partial Reconfiguration
DRAA Dynamically Reconfigurable ALU Array
DRAM Dynamic Random-Access Memory
DRESC Dynamically Reconfigurable Embedded System Compiler
DSE Design Space Exploration
DSL Domain-Specific Language
DSML Domain-Specific Modeling Language
DSO Distribution System Operator
DSP Digital Signal Processor/Digital Signal Processing
DTA Dynamic Timing Analysis
DTM Dynamic Thermal Management
DUT Design Under Test
DUV Design Under Verification
DVFS Dynamic Voltage and Frequency Scaling
DVS Dynamic Voltage Scaling
DWM Domain Wall Memory
DWT Discrete Wavelet Transform
EA Evolutionary Algorithm
EBNF Extended Backus-Naur Form
ECO Engineering Change Order
ECU Electronic Control Unit
EDA Electronic Design Automation
EDF Earliest Deadline First
EDP Energy-Delay Product
EDSP Energy-Delay Square Product
E/E Electric and Electronic
EEPROM Electrically Erasable Programmable Read-Only Memory
EFSM Extended Finite-State Machine
EGRA Expression Grained Reconfigurable Array
ELF Executable and Linkable Format
EMB Electro-Mechanical Brake
EMF Eclipse Modeling-Framework
EML Execution Modeling Level
EMS Edge Centric Modulo Scheduling
EOH Extremal Optimization meta-Heuristic
ES Embedded System
ESL Electronic System Level
ESS Energy Storage Systems

List of Acronyms xxxv

ET Event-Triggered/Execution Time
ETSCH Extended TSCH
EWFD Equally-Worst-Fit-Decreasing
FBSP Frame-Based Static Priority
FCFS First-Come First-Serve
FDS Force-Directed Scheduling
FeRAM Ferro-electric Random-Access Memory
FFT Fast Fourier Transform
FIFO First-In First-Out
FIR Finite Impulse Response
ForSyDe Formal System Design
FPGA Field-Programmable Gate Array
FS Feature Selection
FSM Finite State Machine
FTDMA Flexible Time Division Multiple Access
FT Fast Timed
FunState Functions Driven by State Machines
GA Genetic Algorithm
GALS Globally Asynchronous Locally Synchronous
GCC GNU Compiler Collection
GFRBM Generic File Reader Bus Master
GIPS Giga-Instruction Per Second
GLV Graph-Level Vectorization
GME Generic Modeling Environment
GOPS Giga Operations Per Second
GPGPU General-Purpose computing on Graphics Processing Units
GPIO General-Purpose Input/Output-pin
GPP General-Purpose Processor
GPRS General Packet Radio Service
GPT General-Purpose Timer
GPU Graphics Processing Unit
GUI Graphical User Interface
H2D Host-to-Device
HAL Hardware Abstraction Layer
HAPS High-performance ASIC Prototyping System
HDB Hardware Database
HDL Hardware Description Language
HDS Hardware-Dependent Software
HES Hybrid Electric Systems
HLS High-Level Synthesis
HMP Heterogeneous Multi-core Processor
HPC Horizontally Partitioned Cache
HRM Hardware Resource Modeling
HSCD Hardware/Software Codesign
HSDF Homogeneous (Synchronous) Data Flow

xxxvi List of Acronyms

HTML Hypertext Markup Language
HVL Hardware Verification Language
HW Hardware
I2C Inter-Integrated Circuit
ICFG Interprocedural Control-Flow Graph
ICT Information and Communications Technology
ICU Input Capture Unit
IDC Inquisitive Defect Cache
IDE Integrated Development Environment
ID Identifier
IEEE Institute of Electrical and Electronics Engineers
II Initiation Interval
ILMB Instruction Local Memory Bus
ILP Integer Linear Program/Instruction-Level Parallelism
IMEM Instruction Memory
IMS Iterative Modulo Scheduling
IOE I/O Element
I/O Input/Output
IoT Internet of Things
IPC Inter-Process Communication/Instructions Per Cycle
IP Intellectual Property
IPB Intellectual Property Block
IPM Intellectual Property Module
IPS Instruction Per Second
IR Intermediate Representation
ISA Instruction-Set Architecture
ISEF Stretch Instruction-Set Extension Fabric
ISR Interrupt Service Routine
ISS Instruction-Set Simulator
IT Information Technology
ITRS International Technology Roadmap for Semiconductors
ITS Individual Test Subdirectory
JPEG Joint Photographic Experts Group
JSON JavaScript Object Notation
JTAG Joint Test Action Group
KPN Kahn Process Network
LAB Logic Array Block
LCS Live Cache States
LE Logic Element
LIDE LIghtweight Data-flow Environment
LIN Local Interconnect Network
LISA Language for Instruction-Set Architectures
LLVM Low-Level Virtual Machine
LRU Least-Recently Used
LS List Scheduling

List of Acronyms xxxvii

LTF Largest Task First
LTL Linear Time Logic
LT Loosely Timed
LUT Look-Up Table
M2M Model-to-Model
MAC Media Access Control/Multiply-Accumulator
MAPE Mean Average Percentage Error
MAPS MPSoC Application Programming Studio
MARTE Modeling and Analysis of Real-Time Embedded Systems
MBD Model-Based Design
MCO Multi-Core Optimization
MCR Mode Change Request
MCS Mixed-Criticality System
MDA Model-Driven Architecture
MDD Model-Driven Design
MDP Markov Decision Process
MDSDF Multi-Dimensional Synchronous Data Flow
MILP Mixed Integer Linear Programming
MIMO Multiple Input Multiple Output
MIPS Million Instructions Per Second
MIR Medical Image Registration
MISO Multiple Input Single Output
MJPEG Motion JPEG
MLBJ Multi-Level Back Jumping
MLoC Million Lines of Code
MMC/SD Multimedia/Secure Digital Card
MMIO Memory-Mapped I/O
MMU Memory Management Unit
MoC Model of Computation
MOF Meta Object Facility
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
MOST Media Oriented Systems Transport
MPSoC Multi-Processor System-on-Chip
MRRG Modulo Resource Routing Graph
MTF Mean Time to Failure
MTJ Magnetic Tunnel Junction
MTM Mode Transition Machine
NDF Non-Determinate Data Flow
NFP Non-Functional Property
NI Network Interface
nML not a Machine Language
NMOS Negative-type Metal-Oxide-Semiconductor
NN Neural Network
NoC Network-on-Chip
NOCT Nominal Operating Cell Temperature

xxxviii List of Acronyms

NRE Non-Recurring Engineering
NVIC Nested Vectored Interrupt Controller
NVM Non-Volatile Memory
OCL Object Constraint Language
OFDM Orthogonal Frequency Dependent Multiplexing
OMG Object Management Group
OOO PDES Out-of-Order Parallel Discrete Event Simulation
OSAL Operation Set Abstraction Layer
OSCI Open SystemC Initiative
OS Operating System
OT Operation Table
OVL Open Verification Library
OVM Open Verification Methodology
PAMONO Plasmon-Assisted Microscopy of Nano-Objects
PB Pseudo Boolean
PCI Peripheral Component Interconnect
PCM Phase Change Memory
PC Personal Computer
PCP Peak Clustering-based Placement
PDES Parallel Discrete Event Simulation
PDF Probability Density Function
PDU Power Distribution Unit
PE Processing Element
PFU Programmable Functional Unit
PI Principal Investigator
PIC Programmable Interrupt Controller
PIM Platform Independent Model
PIP Parametric Integer Programming
PLB Processor Local Bus
PLL Phase Locked Loop
PLP Pipeline-Level Parallelism
PMOS Positive-type Metal-Oxide-Semiconductor
PMU Power Management Unit
PNG Portable Network Graphics
PN Process Network
PPN Polyhedral Process Network
PREESM Parallel and Real-time Embedded Executives Scheduling Method
PRISC Programmable Instruction-Set Processor
PSDF Parameterized Synchronous Data Flow
PSK Phase Shift Keying
PSL Property Specification Language
PSM Program State Machine/Parameterized Sets of Modes/Platform

Specific Model
PSNR Peak SNR
PSO Particle Swarm Optimization

List of Acronyms xxxix

PSTC Path Segment Timing Characterization
PV Photovoltaic
PVT Programmers View Time
PWM Pulse-Width Modulation
QAM Quadrature Amplitude Modulation
QEA Quantum-inspired Evolutionary Algorithm
QoS Quality of Service
QPSK Quadrature PSK
RAM Random-Access Memory
RAW Read-After-Write
RCM Reconfigurable Computing Module
RC Resistor-Capacitor/Reconfigurable Cell
RCS Reaching Cache States
RDF Random Dopant Fluctuations
RFID Radio-Frequency Identification
RF Register File/Radio Frequency
RFTS Run Fast Then Stop
RISC Reduced Instruction-Set Processor/Recoding Infrastructure for

SystemC
RISPP Rotating Instruction-Set Processing Platform
RLD Run Length Decoding
ROM Read-Only Memory
RR Round Robin
RRAM Resistive Random-Access Memory
RSM Response Surface Modeling
RST ReServation Table
RT Response Time
RTC Real-Time Clock
RTL Register Transfer Level
RTOS Real-Time Operating System
RVC Reconfigurable Video Coding
SADF Scenario-Aware Data Flow
SANLP Static Affine Nested Loop Program
SA Simulated Annealing
SAT Boolean Satisfiability
SBS Sequential Backward Selection
SCC Single Chip Cloud computer/Strongly Connected Component
SCE System-on-Chip Environment
SCML SystemC Modeling Library
SDC Secure Digital Card
SDF Synchronous Data Flow
SDK Software Development Kit
SDR Software Defined Radio
SDS System Development Suite
SDTC Scheduling and Data Transfer Configuration

xl List of Acronyms

SERE Sequential Extended Regular Expression
SESE Single-Entry Single-Exit
SFA Single Frequency Approximation
SFS Sequential Forward Selection
SFU Specialized Functional Unit
SG Segment Graph
SI Scheduling Interval
SIMD Single Instruction, Multiple Data
SIMT Single Instruction, Multiple Threads
SLDL System-Level Description Language
SLD System-Level Design
SLP System-Level Power
SLS Source-Level Simulation/System-Level Synthesis
SMP Symmetric Multi-Processing
SMT Satisfiability Modulo Theories
SMV Symbolic Model Verifier
SNR Signal-to-Noise Ratio
SoC System-on-Chip/State of Charge
SoH State of Health
SPI Serial Peripheral Interface/Signal Passing Interface
SPKM Split & Push Kernel Mapping
SPMD Single Program, Multiple Data
SPM Scratchpad Memory
SPNP Static-Priority Non-Preemptive
SPP Static Priority Preemptive
SPU Synergistic Processor Unit
SRAM Static Random-Access Memory
SSA Static Single Assignment
SSTA Statistical Static Timing Analysis
STC Standard Test Conditions
STMD Single Thread, Multiple Data
STree Schedule Tree
STT-RAM Spin-Transfer Torque Random-Access Memory
SVA System Verilog Assertions
SVM Support Vector Machine
SWC Software Cache
SW Software
SysteMoC SystemC Models of Computation
T-BCA Transaction-based Bus Cycle Accurate
TB Translation Block
TCE TTA-based Codesign Environment
TCL Tool Command Language
TCP/IP Transmission Control Protocol/Internet Protocol
TDB Timing Database
TDM Time-Division Multiplexing

List of Acronyms xli

TDMA Time-Division Multiple Access
TDP Thermal Design Power
TD Temporal Decoupling
TFT Thin-Film Transistor
TIE Tensilica Instruction Extension
TIFU Timer, Interrupt, and Frequency Unit
TLM Transaction-Level Model
TLP Task-Level Parallelism/Thread-Level Parallelism
TRM Trace Replay Module
TSCH Time-Synchronised Channel Hopping
TSN Time-Sensitive Networking
TSP Thermal Safe Power
TTA Transport-Triggered Architecture
TT-CAN Time-Triggered CAN
TTEthernet Time-Triggered Ethernet
TTP Time-Triggered Protocol
TT Time-Triggered
TWCA Typical Worst-Case Analysis
TWCRT Typical Worst-Case Response Time
TWI Two Wire Interface
UART Universal Asynchronous Receiver/Transmitter
UML Unified Modeling Language
UPF Unified Power Format
UPS Uninterruptible Power Supply
USART Universal Synchronous/Asynchronous Receiver/Transmitter
USB Universal Serial Bus
UTP Universal Testing Profile
UVM Universal Verification Methodology
VEP Virtual Execution Platform
VFI Voltage/Frequency Island
VF Vectorization Factor
V/f Voltage/Frequency
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VIVU Virtual Inlining and Virtual Unrolling
VLIW Very Long Instruction Word
VLSI Very-Large-Scale Integration
VM Virtual Machine
VOS Voltage Over Scaling
VPU Virtual Processing Unit
VP Virtual Prototype
VSIA Virtual Socket Interface Alliance
VSL Value Specification Language
VSP Virtual System Platform
WAR Write-After-Read

xlii List of Acronyms

WAW Write-After-Write
WCC WCET-aware C Compiler
WCDMA Wideband CDMA
WCEC Worst-Case Energy Consumption
WCEP Worst-Case Execution Path
WCET Worst-Case Execution Time
WCRT Worst-Case Response Time
WL Word Line
WSDF Windowed Synchronous Data Flow
WSDL Web Service Definition Language
WSN Wireless Sensor Network
XMI XML Metadata Interchange
XML Extensible Markup Language
XSD XML Schema
XSLT Extensible Stylesheet Language Transformations
YML Y-chart Modeling Language

Part I
Introduction to

Hardware/Software Codesign

1Introduction to Hardware/Software Codesign

Soonhoi Ha, Jürgen Teich, Christian Haubelt, Michael Glaß,
Tulika Mitra, Rainer Dömer, Petru Eles, Aviral Shrivastava,
Andreas Gerstlauer, and Shuvra S. Bhattacharyya

Abstract

Hardware/Software Codesign (HSCD) is an integral part of modern Electronic
System Level (ESL) design flows. This chapter will review important aspects
of hardware/software codesign flows, summarize the historical evolution of
codesign techniques, and subsequently summarize each of its major branches

S. Ha (�)
Department of Computer Science and Engineering, Seoul National University, Gwanak-gu,
Seoul, Korea
e-mail: sha@snu.ac.kr

J. Teich
Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Erlangen, Germany
e-mail: juergen.teich@fau.de

C. Haubelt
Department of Computer Science and Electrical Engineering, Institute of Applied
Microelectronics and Computer Engineering, University of Rostock, Rostock, Germany
e-mail: christian.haubelt@uni-rostock.de

M. Glaß
Institute of Embedded Systems/Real-Time Systems at Ulm University, Ulm, Germany
e-mail: michael.glass@uni-ulm.de

T. Mitra
Department of Computer Science, School of Computing, National University of Singapore,
Singapore, Singapore
e-mail: tulika@comp.nus.edu.sg

R. Dömer
Center for Embedded and Cyber-Physical Systems, Department of Electrical Engineering and
Computer Science, The Henry Samueli School of Engineering, University of California, Irvine,
CA, USA
e-mail: doemer@uci.edu

P. Eles
Department of Computer and Information Science, Linköping University, Linköping, Sweden
e-mail: petru.eles@liu.se

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_41

3

mailto:sha@snu.ac.kr
mailto:juergen.teich@fau.de
mailto:christian.haubelt@uni-rostock.de
mailto:michael.glass@uni-ulm.de
mailto:tulika@comp.nus.edu.sg
mailto:doemer@uci.edu
mailto:petru.eles@liu.se

4 S. Ha et al.

of research and achievements that later will be presented in detail by different
parts of this Handbook of Hardware/Software Codesign.

Acronyms

ASIC Application-Specific Integrated Circuit
DES Discrete Event Simulation
DSE Design Space Exploration
EA Evolutionary Algorithm
EDA Electronic Design Automation
ESL Electronic System Level
ForSyDe Formal System Design
FSM Finite-State Machine
GA Genetic Algorithm
HSCD Hardware/Software Codesign
HW Hardware
ILP Integer Linear Program
IP Intellectual Property
ISA Instruction-Set Architecture
KPN Kahn Process Network
MARTE Modeling and Analysis of Real-Time Embedded Systems
MoC Model of Computation
MPSoC Multi-Processor System-on-Chip
OOO PDES Out-of-Order Parallel Discrete Event Simulation
OS Operating System
PB Pseudo-Boolean
PDES Parallel Discrete Event Simulation
PN Process Network
SDF Synchronous Data Flow
SIMD Single Instruction, Multiple Data
SLDL System-Level Description Language

A. Shrivastava
School of Computing, Informatics and Decision Systems Engineering, Arizona State University,
Tempe, AZ, USA
e-mail: aviral.shrivastava@asu.edu

A. Gerstlauer
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin,
TX, USA
e-mail: gerstl@ece.utexas.edu

S.S. Bhattacharyya
Department of Electrical and Computer Engineering and Institute for Advanced Computer
Studies, University of Maryland, College Park, MD, USA

Department of Pervasive Computing, Tampere University of Technology, Tampere, Finland
e-mail: ssb@umd.edu

mailto:aviral.shrivastava@asu.edu
mailto:gerstl@ece.utexas.edu
mailto:ssb@umd.edu

1 Introduction to Hardware/Software Codesign 5

SoC System-on-Chip
SW Software
SysteMoC SystemC Models of Computation
TLM Transaction-Level Model
UML Unified Modeling Language
VLIW Very Long Instruction Word
VP Virtual Prototype
WCET Worst-Case Execution Time

Contents

1.1 Introduction . 5
1.2 Models and Languages for Codesign . 9
1.3 Design Space Exploration . 11
1.4 Processor, Memory, and Communication Architecture Design 13
1.5 Hardware/Software Cosimulation and Prototyping . 15
1.6 Performance Estimation, Analysis, and Verification . 17
1.7 Hardware/Software Compilation and Synthesis . 19
1.8 Codesign Tools and Environments . 21
1.9 Applications and Case Studies . 23
1.10 Conclusion . 25
References . 25

1.1 Introduction

As the name implies, Hardware/Software Codesign (HSCD) denotes design
methodologies for electronic systems that exploit the trade-offs and the synergy
of Hardware (HW) and Software (SW). Typically, the application functionality is
partitioned into software components that are running on the processor cores and
hardware components that are used to accelerate some parts of the application or
to provide interfaces to the environment. In the traditional design practice for such
systems, software is usually designed after the hardware architecture is fixed as
illustrated in Fig. 1.1.

The design starts with a set of specifications and requirements on the functional
and nonfunctional properties of the target system. The first step is to determine
the appropriate algorithm to meet the functional specification if it is not given.
Afterward, system architects typically determine a hardware architecture that would
satisfy the functional requirements while optimizing the design objectives such
as cost minimization and/or energy minimization. The decision is usually made
based on the profiling information of the algorithms to be implemented and their
computational complexity as well as resource requirements and constraints. It is
typically influenced by past design experience of similar systems. How to partition
the functionality into software and hardware components is also determined manu-
ally in this step.

6 S. Ha et al.

Fig. 1.1 A traditional design flow of an electronic system. The HW architecture including
programmable cores and HW components is designed first. The SW development including tests
starts only after HW development. Moreover, the decisions, which parts of the specification are
realized in HW and which parts in SW, are done manually

After this HW/SW partitioning for the determined hardware architecture, two
groups of engineers work independently to design and implement the hardware
components and software components. The software group waits to finalize the
design until a hardware prototype is made by the hardware group since the
software usually contains hardware-dependent components. After the hardware
prototype is built, the entire software that consists of the system software and the
application software is ported. After porting is completed, the system undergoes
testing and verification that checks whether the system satisfies the functional and
nonfunctional requirements. It rarely happens that testing and verification succeeds
at the first attempt. If a test fails, the causes of the failure need to be found, which
is a difficult and tiresome task for all engineers involved in the design. If it turns
out that the hardware architecture and HW/SW partitioning decisions need to be
changed, it is required to go back to the starting point of the design loop to iterate
the design process.

As the system complexity increases, the above traditional design flow faces
several challenges. It is evident that the critical path in the design process becomes
prohibitively long and costly in case multiple iterations of the sequential flow are
performed from HW and SW development, software porting, and testing. And the
design quality mostly depends on the expertise of the architect since the target
architecture and HW/SW partitioning are decided manually.

HW/SW codesign overcomes those challenges in a systematic way as illustrated
in Fig. 1.2. It shortens the critical path of the design loop by estimating the
performance fast and accurately for a given hardware platform and HW/SW
partitioning decision without hardware prototyping. In Fig. 1.3 taken from [31],
it is shown that considerable amounts of design time may be saved from the
concurrent design of hardware and software by codesign flows according to Fig. 1.2.
A popular technique for performance estimation is HW/SW cosimulation in which
the software is running on a virtual prototype of a given hardware architecture. Fast
and accurate performance estimation enables us to explore the wide design space

1 Introduction to Hardware/Software Codesign 7

Behavior specification
(1.2) Models and Languages

for HW/SW codesign

Specifications and
requirements

Platform selection &
HW/SW partitioning

(1.3) Design space exploration

Architecture fine tuning

HW platforms and IPs
(1.4) Processor, memory, and

communication architecture design

Performance estimation

HW/SW synthesis
(1.7) HW/SW compilation and synthesis

HW/SW coverification

(1.5) HW/SW cosimulation and prototyping

(1.6) Performance estimation, analysis,
and verification

Design Loop

Fig. 1.2 Design flow based on HW/SW codesign

that is defined by several axes such as candidate HW architectures and HW/SW
partitioning solutions. This step is called “Design Space Exploration (DSE)” and
aims to explore a set of Pareto-optimal solutions for the system with various design
objective functions. From the DSE step, a target HW architecture and the associated
HW/SW partitioning decision is produced, which would be of better quality than
the one made manually by experts in the traditional design method. Afterward,
the architecture is fine-tuned, which determines the detailed microarchitecture of
the system and allows to verify the system behavior more accurately. HW/SW
cosimulation can be used also for HW/SW coverification with more detailed
modeling of hardware components while sacrificing the simulation performance.
Another popular method for HW/SW coverification is to use an emulation system.
Final implementation is made after the correctness of the design is verified.

An important issue of this methodology is how to specify the system behavior or
algorithm. It is believed that a good specification method should not be biased to any
specific implementation. If a C language program is given as the input specification
model for the HW/SW codesign methodology, the design space to explore will
be severely restricted to a single processor system that has some hardware IPs
to accelerate compute-intensive portions of the algorithm since partitioning a C
program into multiple processors is not an easy task. Thus, the specification model
should be easy to be partitioned into HW and SW components.

HW/SW codesign covers the full spectrum of system design issues from initial
behavior specification to final implementation. In this introductory chapter to
the Handbook of Hardware/Software Codesign, we give the overview of each
design step explaining the research issues and the current status as well as the
future perspective. Section 1.2 explains why various models of computation have
been proposed for behavior specification of applications and introduces some

8 S. Ha et al.

fixes in specificationspecification
Task
a

b

fixes in hardwareHW design

HW verification

SW design fixes in software

SW verification

integration & verification

2 6 2412 18
time [months]

Task
executable specification fixes in specification

S

A

V

I
N

G

fixes in hardwareHW design

HW verification

SW design fixes in software

SW verification

integration & verification

2 6 2412 18
time [months]

Fig. 1.3 Comparison of (a) a classical design flow and (b) an ESL design flow starting from an
executable specification and allowing for concurrent development of hardware and software after
an initial delay for specification and design space exploration. In this figure according to [31],
savings of several months of design time are possible

representative models. Section 1.3 defines the design space exploration problem as
an optimization problem and reviews the state-of-the-art techniques for different
variants and refinements of this problem. The section also presents how the
DSE problem can be extended to cross-layer optimization and dynamic resource
management. Section 1.4 provides a glimpse into unique hardware resources
available for HW/SW codesign such as reconfigurable architectures and application-
specific processors. How the memory hierarchy and interconnection network can

1 Introduction to Hardware/Software Codesign 9

be customized is also discussed in the section. After the hardware platform is
determined and the application is mapped to the platform, it is necessary to
validate the functional correctness and performance satisfaction before actual
implementation through prototyping or cosimulation. Section 1.5 introduces several
state-of-the-art approaches to cosimulation and prototyping. Since the coverage of
cosimulation and prototyping is limited to the input test set, no guarantee can be
made to satisfy the correctness of the design. To overcome this limitation, various
formal approaches to analyze the design have been proposed, which is discussed in
Sect. 1.6. Section 1.7 addresses the issues and related techniques for software and
hardware implementation of a given application on the system architecture based
on the mapping decision made in the DSE step. In Sect. 1.8, some codesign tools
and environments are reviewed, demonstrating how the codesign flow illustrated in
Fig. 1.2 can be realized in a unified framework. The application domain of HW/SW
codesign methodologies is widening to various types of computing systems, as will
be discussed in Sect. 1.9. Finally, we conclude the chapter with a brief summary.

1.2 Models and Languages for Codesign

In order to shorten the critical path of the design loop of HW/SW systems, the
specification of the system behavior plays a key role (cf. Fig. 1.2). As a starting
point of nearly all modern HW/SW codesign methodologies, behavioral models
are used to describe the desired application. In contrast, implementation models
reflect design decisions and describe the structure of the system. Behavioral models
for HW/SW codesign methodologies are the foundation for correct-by-construction
design transformations and optimization. These models should not be biased toward
any specific implementation style (HW or SW).

Hardware/software systems are designed for different application domains.
Hence, the modeling focus can change from system to system, e.g. reactive systems
model their responses to external events, while transformative systems transform
input streams of data into output streams. These requirements have led to a variety of
behavioral models and modeling languages for HW/SW systems. In order to classify
different models, Edwards et al. [15] define the notion of Model of Computation
(MoC) on the concept of the tagged-signal model [26]. In the tagged-signal model,
signals are defined as a set of events where an event is given by a pair of a value
and a tag. If the set of tags is totally ordered, the MoC is said to be timed; if the
set is only partially ordered, the MoC is said to be untimed. Processes transform
input signals into output signals. Different MoCs are distinguished by three largely
orthogonal aspects, namely, sequential behavior, concurrency, and communication
[15]. A coarse-grain classification of MoCs is into activity-based models, i.e.,
models describing processes and their dependencies, and state-based models, i.e.,
states and state transitions are represented by the model. By choosing a MoC, special
attention has to be drawn to the trade-off between expressiveness and analyzability.
The expressiveness of a MoC determines which kind of application can be modeled.
However, increasing the degree of expressiveness limits the degree of analyzability.

10 S. Ha et al.

Important MoCs include process and data-flow networks [22,25], where concur-
rent processes communicate via unbounded first-in-first-out queues; communicating
sequential processes [21], where concurrent processes use rendezvous channels
to synchronize; discrete event models, where events carry totally ordered time
stamps [9]; and synchronous/reactive models [7], based on the perfect synchrony
hypothesis, which assumes that stimuli and responses are simultaneous and that
information is instantaneously broadcast. As the complexity of applications is still
increasing, their control and data flow is tightly coupled, and the expressiveness
of pure reactive or pure transformative models is no longer sufficient. As a
consequence, new heterogeneous MoCs are required. A control/data-flow graph
is presented in [17]. In [4], codesign finite-state machines are introduced as
asynchronously communicating finite-state machines. A first systematic approach
to combine different MoCs called *charts has been presented in [19]. The *chart
approach combines hierarchical pure (events without value), reactive, deterministic
FSMs with concurrent MoCs (data flow, discrete event, synchronous/reactive, etc.).

Since then, many different modeling approaches have been proposed.
Part 2, “Models and Languages for Codesign” of this handbook, Models and
Languages for Codesign, gives a unique introduction to important modeling
approaches based on well-defined MoCs. In four chapters, different MoCs and
concepts of models and languages for codesign are discussed.

In �Chap. 2, “Quartz: A Synchronous Language for Model-Based Design
of Reactive Embedded Systems”, the imperative synchronous language Quartz
is presented, which is based on the synchronous MoC. Since the synchronous
MoC is also used to describe synchronous hardware circuits, a direct path to
generating hardware from Quartz models exists. However, as synchronous MoCs are
implementation independent, also software, and hardware/software systems, can be
synthesized from Quartz models. In this chapter, the syntax and semantics of Quartz
are described, and its analysis and synthesis based on synchronous guarded actions
are presented.

A modeling approach based on a data-flow MoC is presented in �Chap. 3,
“SysteMoC: A Data-Flow Programming Language for Codesign”. With their
focus on concurrency, data-flow models are successfully applied in the modeling
of hardware/software systems. Presenting the SystemC Models of Computation
(SysteMoC) modeling approach, this chapter discusses the expressiveness and
analyzability of different data-flow MoCs. Moreover, an automatic classification
to detect the least expressive but most analyzable MoC within a SysteMoC model
is described. In order to support the integration of SysteMoC in industrial design
flows, an implementation based on the system description language SystemC exists.

In �Chap. 4, “ForSyDe: System Design Using a Functional Language and
Models of Computation”, the modeling approach Formal System Design (ForSyDe)
is presented. The ForSyDe methodology combines the functional programming
paradigm with the theory of models of computation. One key aspect of ForSyDe
is its ability to model heterogeneous systems by supporting different MoCs and
corresponding MoC interfaces. ForSyDe is language independent. This is shown by
presenting a Haskell version and a SystemC version of ForSyDe.

1 Introduction to Hardware/Software Codesign 11

Finally, �Chap. 5, “Modeling Hardware/Software Embedded Systems with
UML/MARTE: A Single-Source Design Approach”, presents a graphical modeling
approach based on UML/MARTE. The Unified Modeling Language (UML) is a
standard formalism for capturing system models in a graphical way. An important
extension to UML is Modeling and Analysis of Real-Time Embedded Systems
(MARTE), a UML profile providing syntactical and semantical extensions for
the modeling and HW/SW real-time and embedded systems. Besides introducing
the UML/MARTE modeling approach, this chapter also presents a modeling
methodology, which addresses analysis and design activities and supports single-
source designs.

1.3 Design Space Exploration

Already in early works, for example [27], the problem of concurrently defining a
target platform, binding tasks to processors, and scheduling tasks has emerged. All
the different possibilities arising from these steps are called the design space of
the system. Different variants and refinements of this problem exist and, especially
when also including hardware components, have become one of the essential
design steps in HW/SW codesign. From the beginning, designers were not only
interested in solving this problem to create systems that work properly but to create
high-quality systems, inherently seeing the mentioned design steps as part of an
optimization problem. Hence, to solve this optimization problem, the design space
has to be explored.

Particularly in the context of HW/SW codesign, many initial works formulate
this problem as a bipartition problem. There, each task is either assigned to a
processor to be executed as software or to be implemented in hardware by a
dedicated hardware accelerator. The typical assumption is that the execution of a
task on a processor comes at an increased execution time and power consumption
compared to a dedicated hardware accelerator. On the other hand, binding a task
to the processor decreases the required amount of chip area and, hence, the cost.
At this point, one can already recognize that it is not trivial to define what makes
a high-quality system: One has to consider several different quality numbers (cost,
area, execution time, power consumption, etc.) that are typically conflicting, i.e., an
enhancement of one quality number very often comes at a deterioration of another.
One possible solution is to weight each quality number according to the designer’s
needs and optimize the system regarding the sum of weighted quality numbers.
The drawback is that only one system implementation will turn out to be optimal
according to the predefined weights. Even worse, the designer has no insight on the
various trade-offs that exist for the system under design. To overcome this, it has
become state of the art for DSE to be formulated as a multi-objective optimization
problem. There, each quality number is considered an individual design objective
that has to be optimized. The goal of multi-objective optimization is to deliver not a
single optimal but a set of so-called Pareto-optimal implementations, each being an
optimal trade-off of all design objectives.

12 S. Ha et al.

The ever-increasing complexity of the systems under design typically renders
exhaustive searches for the best system implementations infeasible. Thus, the
question which optimization techniques to apply for design space exploration
arises. Allocating components, binding tasks, performing task scheduling and
data routing, and often also setting crucial system parameters have, in almost all
cases, the character of a combinatorial optimization problem. Moreover, many
quality numbers cannot be reasonably determined with simple linear models but
require complex calculations and/or even time-consuming simulations. These two
aspects gave rise to meta-heuristics being applied to the DSE problem; see, for
example [32], instead of solving the problem using exact approaches such as solving
an Integer Linear Program (ILP).

In this handbook, �Chap. 6, “Optimization Strategies in Design Space Explo-
ration”, introduces state-of-the-art multi-objective optimization techniques applied
to HW/SW codesign. The chapter divides the techniques into four categories and
compares them regarding crucial metrics such as convergence rate, scalability, and
also in particular the setup effort for the designer. Also, results from extensive
benchmarking are used to recommend techniques with respect to different properties
of the design space. Another significant challenge for DSE is that the problem
of allocation, binding, and scheduling itself is already an NP-complete problem.
For complex systems, it may already be an almost unsolvable task for meta-
heuristic optimization techniques to create a single feasible implementation. In such
situations, the whole DSE is rendered infeasible. �Chapter 7, “Hybrid Optimization
Techniques for System-Level Design Space Exploration”, presents several hybrid
optimization techniques that explicitly target such complex systems. The central
idea is to combine the strengths of exact techniques such as Pseudo-Boolean (PB)
solvers to solve the NP-complete problem of finding a feasible implementation with
a meta-heuristic such as an Evolutionary Algorithm (EA) that performs the actual
multi-objective DSE. The chapter also shows how to extend the PB solving in such
a way that both linear and also nonlinear system constraints such as a maximum
latency can be considered.

Besides the need for suitable exploration algorithms for DSE, the design space of
the system under design becomes increasingly complex: It may not only arise from
design degrees of freedom of one but from several different layers of abstraction.
�Chapter 8, “Architecture and Cross-Layer Design Space Exploration”, introduces
the challenges that arise when having to handle multiple layers of abstraction
concurrently and presents ways to achieve a so-called cross-layer DSE. Performing
simulations including several layers of abstraction to determine the quality numbers
of an implementation may come at significant execution times. As a remedy, the
chapter discusses techniques to prune the large design space and applies predictive
models to avoid the mentioned expensive simulations.

Traditionally, DSE in the context of HW/SW codesign has targeted (embedded
and/or safety-critical) systems with a known set of applications to be executed in a
more or less recurring or static fashion. Recently, the rise of multi- and many-core
architectures and the growing demand for energy efficiency require to not always
overdesign systems for a static worst-case usage, but dynamic behavior at run-time

1 Introduction to Hardware/Software Codesign 13

is explicitly allowed and often even appreciated. �Chapter 9, “Scenario-Based
Design Space Exploration”, introduces the concept of scenario-based design where
the dynamic behavior of applications is categorized into so-called scenarios which
dynamically change at run-time. This chapter presents an approach for the DSE
of such systems that tries to optimize a system for an average-case behavior
across all different scenarios using a multi-objective Genetic Algorithm (GA).
Since the combination of all different scenarios of all applications would result in
a huge space, the chapter introduces a technique to predict the quality numbers
of an implementation using a small subset of representative scenarios. While
�Chap. 9, “Scenario-Based Design Space Exploration” models the dynamic run-
time behavior by means of scenarios at design time, �Chap. 10, “Design Space
Exploration and Run-Time Adaptation for Multicore Resource Management Under
Performance and Power Constraints”, goes one step further and introduces DSE
and run-time adaptation techniques that are applied at run-time. As such, the
problems of resource allocation, task binding, scheduling, etc., remain the same
but have to be dynamically adapted by means of resource management. Resource
management particularly takes place when quality numbers then formulated as
power and performance constraints may be violated due to changing application
mixes and/or workloads of the system. The chapter gives a detailed overview of
different resource management strategies (centralized, decentralized, design time,
run-time, etc.), discusses the advantages and disadvantages, and details the most
important optimization goals and constraints. Moreover, it particularly discusses the
trade-off between performance requirements and available power budgets.

Overall, DSE has become a key ingredient of successful HW/SW codesign. Often
completely automatically, it reveals existing trade-offs regarding crucial quality
numbers to the designer. This not only enhances the designer’s insight into the
design space of the system but also the trust in design decision to be made early
in the development process.

1.4 Processor, Memory, and Communication
Architecture Design

Hardware/Software Codesign involves exploiting complementary trade-offs of
hardware and software. Thus hardware is an integral and essential piece of the
puzzle in the codesign of electronic systems. High-performance computing is domi-
nated by complex general-purpose processors as hardware and primary innovations
happen in software. In contrast, HW/SW codesign enables both the software and the
hardware to be customized and optimized for a specific application(s). The prescient
knowledge about the applications on the target system opens up opportunity to
venture beyond traditional general-purpose processors, memory, and interconnect.
Part 4 “Processor, Memory, and Communication Architecture Design” of this
handbook, Processor, Memory, and Communication Architecture Design provides
a glimpse into the unique hardware resources available for HW/SW codesign.

14 S. Ha et al.

The common theme here is hardware platforms that are amenable to application-
specific design.

The processor engine in codesigned platforms has initially been either tiny
microcontrollers and/or Application-Specific Integrated Circuits (ASICs) custom
designed for a specific functionality. With the advancement of Moore’s law,
microcontrollers have been replaced by powerful general-purpose microprocessors
that are far more cost-effective compared to ASIC accelerators. Software pro-
grammability of general-purpose processors enables the same architecture to be
reused across a large class of applications. But they also lack the performance
and energy efficiency of ASICs, which are essential for certain electronic systems.
At the same time, the enormous nonrecurring engineering cost precludes the
choice of ASICs in cost-sensitive designs. This gulf between the two extremes
is bridged through reconfigurable computing and application-specific processors
that allow the designer to achieve ASIC-like performance and energy efficiency
with processor-like application development cost. These architectures are also
excellent examples of hardware/software codesign principles being applied effec-
tively. While the efficiency of the processor is an important aspect, the memory
plays an equally influential role in system power and performance and should
be considered in all levels of the system design. Again, the codesign paradigm
brings about some nontraditional memory structures. The examples include recon-
figurable and/or customized caches, software-controlled scratchpad memory, and
application-specific register file designs. Similarly, emerging nonvolatile memory
technologies made early appearance in codesigned systems because the memory
hierarchy can be designed to custom-fit the application profile, thereby alleviating
several challenges associated with exploiting nonvolatile memory in general-
purpose systems. Finally, while the initial generation of electronic systems relied
on only a single processor or ASIC, the complexity of contemporary systems
demands multi-core or even many-core architectures to take advantage of the
concurrency present in most applications and provide the required performance
under the power constraints. Thus, the hardware platforms in codesigned systems
today consist of a number of processors, reconfigurable logic, ASIC accelerators,
and different memory structures that need to communicate with each other. The
Network-on-Chip (NoC) provides a flexible communication substrate to take care
of the diverse communication requirements. Similar to processor and memory, the
codesign methodology allows application-specific NoC synthesis to better match
the application demands.

In this handbook, �Chap. 11, “Reconfigurable Architectures”, presents an intro-
duction to reconfigurable architecture that combines the flexibility of software with
the high-performance and low-power advantages of hardware. The heart of any re-
configurable architecture is the reconfigurable fabric that can be reprogrammed after
fabrication to implement and accelerate computational kernels with sufficient paral-
lelism. This chapter presents two popular classes of reconfigurable architectures:
Field-Programmable Gate Arrays (FPGAs) and Coarse-Grained Reconfigurable
Arrays (CGRAs). �Chapter 12, “Application-Specific Processors”, follows up this
domain-specific design theme with application-specific processors that parameterize

1 Introduction to Hardware/Software Codesign 15

and augment the underline base architecture with application-specific features such
as custom instructions, suitable register file and cache size, etc. Application-specific
processors also attempt to bridge the gap between flexibility and performance.
However, unlike reconfigurable architectures that require specialized programming
environments, application-specific processors, once designed appropriately, can be
utilized in familiar software programming environments.

On the memory side, �Chap. 13, “Memory Architectures”, delves into memory
hierarchy in system-on-chip designs. The chapter discusses relative merits of
different memory structures, and customization of the memory hierarchy to im-
prove power-performance characteristics of an application is highlighted. Compiler
optimizations while mapping application data into memory hierarchy are also
presented. �Chapter 14, “Emerging and Nonvolatile Memory”, offers a sneak peek
into the future with emerging and nonvolatile memories that have the ability to
retain information even after the power has been switched off. This nonvolatility
contributes to several advantages including lower leakage power and higher density.
However, the relatively higher write cost and potential endurance issues have so
far plagued widespread adoption of emerging memories. The chapter introduces
different available emerging memory technologies and the optimizations to improve
write latency and endurance through hybrid memory structures combining emerging
memory technology with traditional CMOS memory.

Following processing and memory, �Chap. 15, “Network-on-Chip Design”,
introduces Network-on-Chip (NoC) designs that enable communication among
processors and memory on chip. The chapter describes various NoC architectures.
Special emphasis is placed on power optimizations for NoC, optimized application
mapping on NoC, as well as customization of NoC according to application-
specific communication patterns. Finally, �Chap. 16, “NOC-Based Multiprocessor
Architecture for Mixed-Time-Criticality Applications”, puts together the concepts
presented in the previous chapters in designing a Multi-Processor System-on-Chip
(MPSoC) architecture. This chapter shows how different hardware resources can be
combined together and virtualized to provide a flexible hardware platform that can
be shared across multiple applications in the context of mixed time-critical systems.

1.5 Hardware/Software Cosimulation and Prototyping

In contrast to the traditional design flow with separate HW and SW development, as
discussed in Fig. 1.1, Hardware/Software Codesign relies on a model of the target
system during the product development. This system model describes both the HW
and SW parts of target system and may consist of hardware and software parts
itself. Here, the building of a hardware model is typically referred to as prototyping,
whereas the pure software modeling and execution is called virtual prototyping or
simply simulation. The execution of the combined codesign system model with both
HW and SW parts is correspondingly termed cosimulation.

Both HW/SW cosimulation and prototyping are essential steps in the modern
codesign flow. As illustrated in Fig. 1.2 above, the main objectives of cosimulation

16 S. Ha et al.

and prototyping are performance estimation and functional validation of the target
model, so that the system designer can make educated design decisions for platform
selection, HW/SW partitioning, and algorithm and architecture optimization.

In Part 5, “Hardware/Software Cosimulation and Prototyping”, four dedicated
chapters provide an in-depth description of several state-of-the-art approaches to
modern cosimulation and prototyping.

�Chapter 17, “Parallel Simulation”, presents classic and modern simulation
techniques for codesign models described in System-Level Description Languages
(SLDLs), such as the IEEE SystemC standard which is widely used in industry and
academia. Emphasizing the topic of Parallel Simulation, the chapter first reviews the
classic sequential Discrete Event Simulation (DES) approach and then focuses on
advanced Parallel Discrete Event Simulation (PDES) algorithms. Parallel simulation
approaches can run multiple simulation threads in parallel on multi- or many-
core processor hosts and thus gain execution speed by an order of magnitude
for system models that exhibit parallel structures. Observing PDES semantics
accurately, however, is not easy. The chapter describes the complexities of analyzing
inter-thread dependencies in detail and finally presents a state-of-the-art approach
called Out-of-Order Parallel Discrete Event Simulation (OOO PDES) which can
break the traditional simulation cycle barriers and execute threads in parallel and
out of order (ahead of time) while maintaining the standard SystemC modeling
semantics.

�Chapter 18, “Multiprocessor System-on-Chip Prototyping Using Dynamic
Binary Translation” presents Multi-Processor System-on-Chip Prototyping Using
Dynamic Binary Translation. Binary translation is a processor emulation technique
that enables the efficient execution of a binary software program on a simulation
host processor. Notably, the Instruction-Set Architecture (ISA) of the host processor
can be different than the ISA of the target processor, so that, for example,
a 64-bit workstation processor can execute a binary program compiled for a
16-bit microcontroller. The chapter first provides a brief overview of dynamic
binary translation techniques and the peculiarities involved, such as the advanced
support for Single Instruction, Multiple Data (SIMD) instructions and Very Long
Instruction Word (VLIW) architectures. Next, it also covers improvements to the
translation process in order to monitor nonfunctional metrics for performance
estimation and finally describes the seamless integration with virtual prototyping
platforms.

�Chapter 19, “Host-Compiled Simulation” introduces Host-Compiled Simula-
tion which is based on Virtual Prototypes (VPs). Such abstract software platform
models enable early software development, validation, and exploration before the
availability of any actual target hardware platform. The chapter covers several
new approaches that overcome the accuracy-speed bottleneck of today’s virtual
prototyping methods. Such next-generation VPs utilize sophisticated host-compiled
software models which can achieve both high speed and high accuracy in the timing
behavior of the application, operating system, and underlying hardware architecture.
Special attention is paid to improved simulation speed by using so-called TLM-
based communication models.

1 Introduction to Hardware/Software Codesign 17

After the general host-compiled simulation discussion, �Chap. 20, “Precise
Software Timing Simulation Considering Execution Contexts” covers an important
optimization technique focusing on the critical timing accuracy of high-level mod-
els. The chapter describes a novel approach for Precise Software Timing Simulation
Considering Execution Contexts. Classic timing estimation in simulation models is
agnostic to the exact execution context of the software running on the modeled pro-
cessors. In contrast, context-sensitive simulation enables a precise approximation of
software timing while maintaining high simulation speed. The chapter provides an
overview of this concept and presents a state-of-the-art context-sensitive simulation
framework. For this novel approach, the experimental results show accurate and
fast timing simulation for software executing on current commercial embedded
processors with complex high-performance microarchitectures.

1.6 Performance Estimation, Analysis, and Verification

As illustrated in Fig. 1.2, any framework aimed at assisting developers in building
efficient and high-confidence systems has to provide appropriate support in order
to check that the resulting HW/SW implementation works correctly. This notion of
correctness has to address both functional aspects of the system and nonfunctional
ones, such as timing properties.

The first step toward meaningful system verification is a support for specifying
the requirements (properties) of the designed system. With other words, we need to
unambiguously describe what are the desired/undesired behaviors of the HW/SW
implementation. Once such a system specification is at hand, the next step is
to check that it is correctly implemented by the existing design. Traditionally,
system specifications were expressed in natural language which, due to unavoidable
ambiguities, cannot be used as an entry for rigorous verification. What is needed is
a specification based on a mathematically rigorous notation for expressing system
requirements. One such formalism, which has gained wide popularity both in the
hardware and software community, is temporal logic [11].

The challenging problem now is to check if the system satisfies its temporal
logic specification. One way to perform this checking, in particular in the case of
safety-critical systems, is by formal verification. This can be done, for example, by
using model checking techniques [12]. While such formal verification techniques
have been successfully used in practice, in many cases, their application can
become difficult due to tractability problems. Therefore, in particular in the case of
noncritical applications, verification is based on testing the system using simulation
and running the system implementation. When applied in a systematic way and
using appropriate coverage metrics, such techniques have been very successful
in practice. Moreover, formal techniques can be used as part of such testing
frameworks, for specification of the properties to be verified, and in order to
systematically generate efficient test inputs.

Initially, the target of techniques like the ones discussed above has been func-
tional verification. However, with the proliferation of embedded and cyber-physical

18 S. Ha et al.

systems, in which timeliness has become an intrinsic part of the notion of cor-
rectness, verifying timing properties has gained more and more attention. Several
problems have to be addressed in this context. One is to determine the execution
time of a piece of software (task) when running on a certain processor. One obvious
technique is to measure the execution time by running the task. However, execution
time depends, among others, on the inputs applied during measurement. Therefore,
if the Worst-Case Execution Time (WCET) is of interest, a measurement-based
technique might not be safe. Hence, formal techniques to determine WCETs of
tasks have been proposed [10,33]. They are based on static analysis of the code and
on models of the processor microarchitecture. The WCET, as determined above,
reflects the behavior of the task when running alone on the system, without sharing
any resources. In modern systems, however, a potentially large number of tasks
are running together, sharing not only processor but also other resources such as
memory and communication infrastructure. Such an interference between tasks
makes the analysis of timing properties a challenging problem. Moreover, modern
execution platforms consist of distributed processors interconnected by complex
networks, which makes the analysis even more complex. In this context, formal
techniques using model checking have been extended to support the verification of
timing properties for systems specified as timed automata [2, 6]. Another family of
formal techniques is based on scheduling analysis of real-time applications specified
as task sets [8]. One of the main challenges facing current research in this area is to
capture the complex resource sharing patterns characteristic to modern multi-core
platforms.

In this handbook, �Chap. 22, “Semiformal Assertion-Based Verification of
Hardware/Software Systems in a Model-Driven Design Framework”, addresses the
issue of functional verification of HW/SW systems using simulation-based tech-
niques combined with formal specification. The approach is based on (1) a model-
driven design technique with automata-based modeling, (2) formal assertions
specifying desired properties, and (3) automatic test stimuli generation and mutant-
based quality evaluation. The assertion definitions are automatically synthesized
into executable checkers that are integrated into the simulation environment and
monitor the software execution for detecting violations of the imposed requirements.

�Chapters 21, “Timing Models for Fast Embedded Software Performance Anal-
ysis”, � 23, “CPA: Compositional Performance Analysis”, and � 24, “Networked
Real-Time Embedded Systems” are dealing with the verification of timing prop-
erties. �Chapter 21, “Timing Models for Fast Embedded Software Performance
Analysis”, presents a simulation-based approach for determining the temporal
behavior of software modules. The technique can be efficiently used, particularly
early in the design process, in order to make initial system configuration decisions.
The basic idea is to build timing models that are integrated with the functional
simulation environment. Different mechanisms are presented for generating those
timing models, depending on the degree to which the details of the underlying
hardware platform are known.

While the approach presented in �Chap. 21, “Timing Models for Fast Embed-
ded Software Performance Analysis” is meant for early performance estimation,

1 Introduction to Hardware/Software Codesign 19

�Chaps. 23, “CPA: Compositional Performance Analysis” and � 24, “Networked
Real-Time Embedded Systems” are addressing issues related to the formal re-
sponse time analysis for safety-critical hard real-time systems. �Chapter 23, “CPA:
Compositional Performance Analysis”, introduces a compositional timing analysis
approach that supports the analysis of complex systems consisting of various
modules using different scheduling and arbitration strategies. Due to its scalability
and the availability of industrial strength tools, the framework is widely used
in practice, especially for the analysis of distributed applications in automotive
systems. And this brings us to �Chap. 24, “Networked Real-Time Embedded
Systems”, which is dedicated to the topic of networked real-time embedded systems.
Distributed embedded systems are becoming increasingly common, and their deign
has to consider not only the HW/SW aspects but also their integration with the
underlying communication network. The chapter provides an introduction to some
of the real-time communication networks dominant in today’s automotive industry
or predicted to be widely used in the future: CAN, FlexRay, and Switched Ethernet.
The basic features of these protocols are presented as well as some of the related
formal timing analysis techniques.

1.7 Hardware/Software Compilation and Synthesis

After design space exploration and architecture fine-tuning, we need to finalize the
implementation of software and hardware, by performing one last step – hardware
and software compilation and synthesis. In system design, synthesis means con-
structing an implementation of software or hardware that provably satisfies a given
high-level specification. To be more specific, software synthesis, or compilation,
transforms source code written in a programming language (such as C/C++ or
JAVA) into a binary form that can be recognized by target machines [1]. Similarly,
hardware synthesis interprets an algorithmic description of a desired behavior and
creates digital hardware that implements that behavior [13]. The goal of this step is
therefore to translate the specifications of hardware and software from the previous
steps of the hardware/software codesign process into a real implementation of the
hardware platform and the machine instructions that run efficiently on the hardware,
respectively.

The compilation of software should take into consideration the hardware pa-
rameters, since one very important advantage of HW/SW codesign is that it allows
software requirements decide choices of hardware parameters, and hardware design
parameters in turn motivate changes in the software design to better make use
of these hardware parameters. If the compilation of software is agnostic to the
underlying hardware details, then such codesign efforts become vain. Unfortunately,
the popular optimizing compilers used today, such as GCC [30] or LLVM-based
compilers [24], are not aware of many hardware details. Being oblivious to hardware
details is fine for most general-purpose processors, but it can result in leaving a
lot of power and performance optimization opportunities on the table for resource-
constrained embedded systems. Consider a processor without hardware branch

20 S. Ha et al.

predication to preserve power efficiency [16]. To reduce the performance loss caused
by hardware branch prediction, such processors usually provide instructions for
software branch hinting. If a compiler ignores such hardware feature and does
not insert any software branch hints, then the penalties due to branch instructions
can result in a huge performance loss. Another example is that some processors
may have scratchpad memories (SPMs) [5, 28] instead of or along caches in the
memory hierarchy. Missing out such a feature of the memory subsystem could cost a
considerable amount of performance, as exploiting the SPMs could largely improve
the system performance. For example, placing frequently executed instructions or
data in the SPMs instead of leaving them to caching may avoid unnecessary cache
misses due to cache pollution. Fortunately, there have been many research efforts
toward hardware-aware and memory-aware compilation. A large body of memory
management of SPM-based architectures is a prominent example. The earliest SPM
management techniques were mostly static, assigning the most frequently accessed
part of application data into an SPM and not changing the location of data once
it is copied into the SPM. The static approaches do not take into consideration
the dynamic behaviors of programs and are gradually replaced by dynamic SPM
management techniques over time. Dynamic SPM management techniques copy
data between an SPM and the main memory dynamically at run-time and the
location of data in SPM may be changed as it is swapped in and out from SPM.
The goals of these SPM management techniques vary from worst-case execution
time, average-case execution time, and power efficiency.

In this handbook, �Chaps. 25, “Hardware-Aware Compilation”, and � 26,
“Memory-Aware Optimization of Embedded Software for Multiple Objectives”,
introduce compiler designs that are aware of underlying microarchitectural features
and memory hierarchy, with details of some of the techniques, respectively. The
results show that performing optimization with regard to hardware characteristics
can significantly improve design objective, be it improving performance or reducing
worst-case execution time.

On the other hand, the synthesis of hardware should implement the hardware in a
way that can meet the design constraints posed by the target (software) application.
These common constraints include area, power, temperature, performance, and
reliability. It is readily seen that a high-quality hardware platform should function
properly following all these constraints. Otherwise, the outcome will not be
satisfying – even if a mobile device can deliver impressive performance running
applications, it may still be undesirable to consumers if running any application
drains battery power abnormally fast, for example. The implementation of a high-
quality hardware platform is, however, complicated by conflicts of interests among
these constraints. For example, increasing performance (flops) of a processor may
end up increasing cost of area and power consumption. Therefore, implementation
of the hardware cannot simply optimize toward one design objective. Instead, the
relation and trade-offs of different constraints should be considered at the same
time in order to obtain a (nearly) optimal hardware implementation that satisfies
all the constraints. To illustrate how to implement such a hardware platform,
�Chap. 27, “Microarchitecture-Level SoC Design”, elaborates how to construct a

1 Introduction to Hardware/Software Codesign 21

System-on-Chip (SoC), meeting constraints of performance, power, thermal, and
reliability. SoC needs a system design methodology that combines predesigned
and preverified components, called Intellectual Property (IP) cores into a single
chip [29]. An IP core can be an embedded processor, a memory block, or any
component that handles application-specific processing functions. By reusing IP
cores, SoCs can effectively overcome the increased complexity of chips.

1.8 Codesign Tools and Environments

In previous sections of this chapter and in the main parts of this book, various
ingredients for successful HW/SW codesign methodologies as originally summa-
rized in Fig. 1.2 are described. Over the years, many of the underlying methods
and concepts have been realized in practical academic or industrial codesign tools.
Most of the early tools were thereby focused on providing point solutions for
individual design tasks. An extensive survey of such point tools can be found in [14].
Only in later years, however, did comprehensive design environments aimed at
supporting a complete HW/SW codesign flow start to appear [18]. Nevertheless,
providing a comprehensive design automation solution that truly covers all aspects
of a design flow aimed at automatically synthesizing an abstract, high-level system
specification into a system implementation spanning across hardware, and software
boundaries is a daunting, complex, and challenging endeavor. As such, existing
codesign environments each have their unique focus, strengths, and weaknesses.

Chapters in Part 8, “Codesign Tools and Environment”, describe several promi-
nent examples of such codesign environments covering the spectrum of solutions as
developed in both academia and industry. Tools differ in the supported specification
models/languages, target architectures, and the amount of automation provided for
different design tasks. However, there are also many common characteristics that
have emerged and are shared by existing tools, such as the use of generally task-
based concurrency models as input descriptions and the support for heterogeneous,
bus-based MPSoC architectures as targets for synthesis.

�Chapters 28, “MAPS: A Software Development Environment for Embedded
Multicore Applications”, � 29, “HOPES: Programming Platform Approach for Em-
bedded Systems Design”, � 30, “DAEDALUS: System-Level Design Methodology
for Streaming Multiprocessor Embedded Systems on Chips”, and � 31, “SCE:
System-on-Chip Environment” describe four codesign environments that originated
in academic settings. �Chapter 28, “MAPS: A Software Development Environment
for Embedded Multicore Applications” presents the MPSoC Application Program-
ming Studio (MAPS). The focus in MAPS is on software aspects, with the goal of
providing a comprehensive environment to develop, debug, and deploy software for
heterogeneous Multi-Processor System-on-Chip (MPSoC) architectures containing
multiple concurrent processors of differing type. Software development for such
concurrent, heterogeneous architectures is a challenge that MAPS aims to address.
MAPS is based on a variant of Process Networks (PNs) as input programm-
ing model, with support for automatic code parallelization, early performance

22 S. Ha et al.

estimation, and final heterogeneous target code generation. MAPS technology has
also been spun out from its original academic origins into a startup company.

�Chapter 29, “HOPES: Programming Platform Approach for Embedded Sys-
tems Design” describes the Hope of Parallel Software (HOPES) environment.
HOPES builds on and is the successor to the Ptolemy extension as a Codesign
Environment (PeaCE) previously developed in the same group. PeaCE and HOPES
use variants, combinations, and extensions of Synchronous Data Flow (SDF) and
Finite-State Machine (FSM) computational models as input descriptions. While
PeaCE was focused on classical HW/SW codesign, partitioning, and interfacing
tasks targeting a single CPU assisted by a set of hardware accelerators, HOPES
extends on this framework to target more advanced multiprocessor mapping,
scheduling, and code generation tasks. This is similar to the goals in MAPS, with a
particular emphasis on support for design space exploration.

�Chapter 30, “DAEDALUS: System-Level Design Methodology for Streaming
Multiprocessor Embedded Systems on Chips” introduces the Daedalus environ-
ment. In Daedalus, applications are specified in the form of extended Kahn Process
Network (KPN) models, where automatic parallelization from sequential input code
is supported similar to MAPS. Daedalus then employs a library-based approach
to synthesize a target MPSoC that is assembled out of predesigned heterogeneous
processor, memory, hardware Intellectual Property (IP), and communication/bus
components, including generation of all required glue logic and target processor
code. In the process, Daedalus performs optimized application mapping and target
architecture synthesis using an automated design space exploration approach that is
aided by cosimulation and performance estimation tools.

Finally, �Chap. 31, “SCE: System-on-Chip Environment”, provides an overview
of the System-on-Chip Environment (SCE) as the final academic tool set described
in Part 8, “Codesign Tools and Environment”. SCE is based on the SpecC SLDL,
which is used both as input specification as well as internal representation of all
intermediate design models within the tool itself. In SCE, all decision-making
and design space exploration for application mapping and target architecture
definition is manual. By contrast, the emphasis is on automated computation and
communication synthesis for complex and general MPSoC target architectures,
including synthesis of optimized software, Operating System (OS) and driver stacks,
custom hardware components, hardware interfaces, and bus architectures. Using
internally a successive and gradual refinement process on top of its SpecC basis,
SCE also supports automatic generation of cosimulation and performance models
at varying levels of abstraction. A derivative of SCE called the Specify-Explore-
Refine (SER) environment has been transferred into an industry setting through
collaborations with the Japanese Aerospace Exploration Agency (JAXA).

�Chapters 32, “Metamodeling and Code Generation in the Hardware/Software
Interface Domain”, � 33, “Hardware/Software Codesign Across Many Cadence
Technologies”, and � 34, “Synopsys Virtual Prototyping for Software Development
and Early Architecture Analysis”, then describe three codesign approaches used
or originating in industry. �Chapter 32, “Metamodeling and Code Generation
in the Hardware/Software Interface Domain”, provides an industrial perspective

1 Introduction to Hardware/Software Codesign 23

on the practical use of codesign methodologies and concepts in a semiconductor
company. The chapter describes a metamodeling approached used in Infineon
for MPSoC architecture definition and code generation. Using languages like IP-
XACT or UML/SysML, a metamodel defines an architecture in abstract, annotated,
and extended netlist form from which concrete models in the form of SystemC,
RTL, C, or other code can be automatically generated. Using a single architecture
specification, this allows otherwise incompatible tools to be used and combined
for further system implementation and synthesis across hardware and software
boundaries.

�Chapters 33, “Hardware/Software Codesign Across Many Cadence Technolo-
gies”, and � 34, “Synopsys Virtual Prototyping for Software Development and Early
Architecture Analysis”, finally provide the perspectives of two major Electronic
Design Automation (EDA) tool vendors on codesign solutions offered by their
companies, namely, Cadence and Synopsys, respectively. This includes various
point tools for cosimulation, performance and power modeling, verification, FPGA-
based emulation, high-level hardware synthesis and application-specific processor
design, as well as complete solutions for integrated system and hardware and
software development as supported by a common virtual prototyping basis on top
of industry-standard languages like SystemC.

1.9 Applications and Case Studies

Early work on specialized codesign techniques included a focus on the areas
of control-dominated systems and digital signal processing (DSP). For example,
Antoniazzi et al. introduced a codesign toolset targeted to control-oriented ASICs,
such as those applied in digital switching systems for telecommunications [3]. The
toolset operated on system models that were specified in terms of hierarchical, con-
current finite-state machines. The tool emphasized trade-off exploration involving
transformations for restructuring application processes, clustering of processes onto
architectural units, and binding of these architectural units into hardware or software
implementations. The toolset was integrated with a commercial design environment
called speedCHART, which was based on the Statecharts formalism [20].

Kalavade and Lee presented a codesign methodology for signal processing
and communication systems. The methodology applied the Ptolemy tool for
heterogeneous modeling and design [23] and SDF model of computation. The
authors’ approach focused on enabling interoperability and integrated design space
exploration using advanced tools that are effective for critical aspects of the signal
processing codesign process, including multiprocessor software synthesis, custom
hardware synthesis, digital hardware modeling and simulation, and SDF modeling
of analog components, such as A/D and D/A converters.

Part 9, “Applications and Case Studies” of this handbook, Applications and Case
Studies, focuses on the demonstration of codesign methodologies and tools in the
context of specific applications areas and concrete case studies. It contains six
chapters that provide reviews of state-of-the-art methodologies, tools, platforms,

24 S. Ha et al.

and implementations for codesign in the context of important applications and
application domains. A common theme throughout the chapters is the representation
and exploitation of relevant characteristics in the targeted applications to streamline
codesign processes and bridge general-purpose codesign methods with constraints
and design objectives that are specific to the applications.

�Chapter 35, “Joint Computing and Electric Systems Optimization for Green
Datacenters”, presents a real-time framework for jointly minimizing the energy
consumption and carbon footprint of green virtualized data centers. The framework
involves two cooperating subsystems: the Datacenter Energy Controller, which
minimizes energy consumption while preserving quality of service, and the Green
Energy Controller, which manages renewable energy sources and electrical energy
storage systems that incorporate heterogeneous battery technologies.

�Chapter 36, “The DSPCAD Framework for Modeling and Synthesis of Signal
Processing Systems” presents a computer-aided design framework, called the
DSPCAD Framework, that facilitates design, implementation, and optimization of
signal processing systems using data-flow models of computation. The framework
includes three complementary tools – the Data-flow Interchange Format (DIF)
for data-flow modeling, the LIghtweight Data-flow Environment (LIDE) for actor
implementation, and the DSPCAD Integrative Command Line Environment (DICE)
for cross-platform DSP system integration and validation.

�Chapter 37, “Control/Architecture Codesign for Cyber-Physical Systems”,
discusses the emerging paradigm of control/architecture codesign, which involves
the joint design of control parameters and embedded platform parameters for cyber-
physical systems. Three examples of control/architecture codesign approaches
are presented together with case studies demonstrating the approaches. These
approaches involve, respectively, communication-aware, memory-aware, and
computation-aware design.

�Chapter 38, “Wireless Sensor Networks”, discusses challenges in design
flows for Wireless Sensor Networks (WSNs) and reviews various development
techniques and tools for WSNs. The authors also present in detail two specific
model-based design flows with varying degrees of automation and their associ-
ated toolsets. The flows are demonstrated through two case studies involving,
respectively, a self-powered WSN gateway and a WSN sensor node for air quality
monitoring.

�Chapter 39, “Codesign Case Study on Transport-Triggered Architectures”,
presents a codesign case study involving the implementation of the Fast Fourier
Transform (FFT) using customizable architecture templates that are defined in terms
of the Transport Triggered Architecture (TTA) paradigm. In the TTA paradigm,
programs are executed entirely in terms of data transport (move instructions), and
operations are carried out as side effects of these transports. The case study pre-
sented in this chapter applies a toolset called the TTA-based Codesign Environment
(TCE), which supports optimized design of customized TTA architectures from
high-level programming languages.

�Chapter 40, “Embedded Computer Vision”, finally reviews design methodolo-
gies, platform architectures, and application-specific architectures that are relevant

1 Introduction to Hardware/Software Codesign 25

to codesign for embedded computer vision. The chapter motivates the utility of
heterogeneous architectures and multiprocessor systems on chip for this application
domain and discusses application-specific architectural solutions for a variety of
important embedded computer vision applications, including foreground detection,
face detection and recognition, and convolutional neural networks.

1.10 Conclusion

In this introductory chapter, an overview of the remaining contents in the handbook
is presented. The various chapters of this book are organized into parts that align
with the discussions in the different subsections presented earlier in this chapter. We
hope that you enjoy reading the book as much as we enjoyed preparing it.

References

1. Aho AV, Lam MS, Sethi R, Ullman JD (2006) Compilers: principles, techniques, and tools,
2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston

2. Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126(2):183–235
3. Antoniazzi S, Balboni A, Fornaciari W, Sciuto D (1994) A methodology for control-dominated

systems codesign. In: Proceedings of the international workshop on hardware/software code-
sign, pp 2–9

4. Balarin F, Chiodo M, Giusto P, Hsieh H, Jurecska A, Lavagno L, Passerone C, Sangiovanni-
Vincentelli A, Sentovich E, Suzuki K, Tabbara B (1997) Hardware-Software co-design of
embedded systems: the POLIS approach. Kluwer Academic Publishers, Boston

5. Banakar R, Steinke S, Lee BS, Balakrishnan M, Marwedel P (2002) Scratchpad memory: a
design alternative for cache on-chip memory in embedded systems. In: Proceedings of CODES

6. Bengtsson J, Larsen K, Larsson F, Pettersson P, Yi W (1996) UPPAAL—a tool
suite for automatic verification of real-time systems. Springer, Berlin, pp 232–243.
doi:10.1007/BFb0020949

7. Benveniste A, Caspi P, Edwards S, Halbwachs N, Le Guernic P, de Simone R (2003) The
synchronous languages twelve years later. Proc IEEE 91(1):64–83

8. Buttazzo GC (2011) Hard real-time computing systems: predictable scheduling algorithms and
applications, vol 24. Springer, New York

9. Cassandras C, Lafortune S (2008) Introduction to discrete event systems, 2nd edn. Springer,
New York

10. Chattopadhyay S, Roychoudhury A, Rosén J, Eles P, Peng Z (2014) Time-predictable embed-
ded software on multi-core platforms: analysis and optimization. Found TrendsrElectron Des
Autom 8(3–4):199–356. doi:10.1561/1000000037

11. Clarke EM, Emerson EA, Sistla AP (1986) Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans Program Lang Syst 8(2):244–263

12. Clarke EM, Grumberg O, Peled DA (1999) Model checking. MIT Press, Cambridge
13. Coussy P, Morawiec A (2008) High-level synthesis: from algorithm to digital circuit, 1st edn.

Springer, Dordrecht
14. Densmore D, Passerone R, Sangiovanni-Vincentelli A (2006) A platform-based taxonomy for

ESL design. IEEE Des Test Comput 23:359–374
15. Edwards S, Lavagno L, Lee EA, Sangiovanni-Vincentelli A (1997) Design of embedded

systems: formal models, validation, and synthesis. Proc IEEE 85(3):366–390

http://dx.doi.org/10.1007/BFb0020949
http://dx.doi.org/10.1561/1000000037

26 S. Ha et al.

16. Eichenberger AE, O’Brien JK, O’Brien KM, Wu P, Chen T, Oden PH, Prener DA, Shepherd
JC, So B, Sura Z, Wang A, Zhang T, Zhao P, Gschwind MK, Archambault R, Gao Y, Koo R
(2006) Using advanced compiler technology to exploit the performance of the cell broadband
engineTM architecture. IBM Syst J 45:59–84

17. Gajski DD, Dutt N, Wu A, Lin S (1992) High level synthesis: introduction to chip and system
design. Springer, New York

18. Gerstlauer A, Haubelt C, Pimentel A, Stefanov T, Gajski D, Teich J (2009) Electronic
system-level synthesis methodologies. IEEE Trans Comput Aided Des Integr Circuits Syst
28(10):1517–1530

19. Girault A, Lee B, Lee EA (1999) Hierarchical finite state machines with multiple concurrency
models. IEEE Trans Comput Aided Des Integr Circuits Syst 18(6):742–760

20. Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program
8(3):231–274

21. Hoare C (1985) Communicating sequential processes. Prentice Hall, Englewood Cliffs
22. Kahn G (1974) The semantics of a simple language for parallel programming. In: Proceedings

of IFIP congress 74. North-Holland Publishing Co
23. Kalavade A, Lee, EA (1993) A hardware/software codesign methodology for DSP applications.

IEEE Des Test Comput 10(3):16–28
24. Lattner C, Adve V (2004) LLVM: a compilation framework for lifelong program analysis &

transformation. In: Proceedings of the 2004 international symposium on code generation and
optimization (CGO’04), Palo Alto

25. Lee EA, Parks TM (1995) Dataflow process networks. Proc IEEE 83:773–799
26. Lee EA, Sangiovanni-Vincentelli A (1998) A framework for comparing models of computa-

tion. IEEE Trans Comput Aided Des Integr Circuits Syst 17(12):1217–1229
27. Prakash S, Parker AC (1992) SOS: synthesis of application-specific heterogeneous multipro-

cessor systems. J Parallel Distrib Comput 16(4):338–351
28. Redd B, Kellis S, Gaskin N, Brown R (2014) The impact of process scaling on scratchpad

memory energy savings. J Low Power Electron Appl 4(3):231. http://www.mdpi.com/2079-
9268/4/3/231

29. Saleh R, Wilton S, Mirabbasi S, Hu A, Greenstreet M, Lemieux G, Pande PP, Grecu
C, Ivanov A (2006) System-on-chip: reuse and integration. Proc IEEE 94(6):1050–1069.
doi:10.1109/JPROC.2006.873611

30. Stallman RM, DeveloperCommunity G (2009) Using the GNU compiler collection: a GNU
manual for GCC version 4.3.3. CreateSpace, Paramount

31. Teich J (2012) Hardware/Software codesign: the past, the present, and predicting the future.
Proc IEEE 100(Special Centennial Issue):1411–1430. doi:10.1109/JPROC.2011.2182009

32. Teich J, Blickle T, Thiele L (1997) An evolutionary approach to system-level synthesis. In:
Proceedings of the international workshop on hardware/software codesign (CODES/CASHE),
pp 167–171

33. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C,
Heckmann R, Mitra T, Mueller F, Puaut I, Puschner P, Staschulat J, Stenstrom P (2008) The
worst-case execution time problem–overview of methods and survey of tools. ACM Trans
Embed Comput Syst 7(3):Art. 36

http://www.mdpi.com/2079-9268/4/3/231
http://www.mdpi.com/2079-9268/4/3/231
http://dx.doi.org/10.1109/JPROC.2006.873611
http://dx.doi.org/10.1109/JPROC.2011.2182009

Part II
Models and Languages

for Codesign

2Quartz: A Synchronous Language for
Model-Based Design of Reactive
Embedded Systems

Klaus Schneider and Jens Brandt

Abstract

Since the synchronous model of computation is shared between synchronous
languages and synchronous hardware circuits, synchronous languages lend
themselves well for hardware/software codesign in the sense that from the same
synchronous program both hardware and software can be generated. In this
chapter, we informally describe the syntax and semantics of the imperative
synchronous language Quartz and explain how these programs are first analyzed
and then compiled to hardware and software: To this end, the programs are
translated to synchronous guarded actions whose causality has to be ensured
as a major consistency analysis of the compiler. We then explain the synthesis
of hardware circuits and sequential programs from synchronous guarded actions
and briefly look at extensions of the Quartz language in the conclusions.

Acronyms

AIF Averest Intermediate Format
EFSM Extended Finite-State Machine
MoC Model of Computation
SMV Symbolic Model Verifier
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

K. Schneider (�)
Embedded Systems Group, University of Kaiserslautern, Kaiserslautern, Germany
e-mail: schneider@cs.uni-kl.de

J. Brandt
Faculty of Electrical Engineering and Computer Science, Hochschule Niederrhein, Krefeld,
Germany
e-mail: jens.brandt@hsnr.de

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_3

29

mailto:schneider@cs.uni-kl.de
mailto:jens.brandt@hsnr.de

30 K. Schneider and J. Brandt

Contents

2.1 Introduction . 30
2.2 The Synchronous Language Quartz . 31
2.3 Compilation . 35

2.3.1 Intermediate Representation by Guarded Actions . 35
2.3.2 Surface and Depth . 37
2.3.3 Compilation of the Control Flow . 38
2.3.4 Compilation of the Data Flow. 41
2.3.5 Local Variables and Schizophrenia . 42

2.4 Semantic Analysis . 45
2.5 Synthesis . 46

2.5.1 Symbolic Model Checking . 47
2.5.2 Circuit Synthesis . 48
2.5.3 SystemC Simulation . 50
2.5.4 Automaton-Based Sequential Software Synthesis . 51

2.6 Conclusions and Future Extensions . 55
References . 56

2.1 Introduction

Compared to traditional software development, the design of embedded systems is
even more challenging: In addition to the correct implementation of the functional
behavior, one has to consider also non-functional constraints such as real-time
behavior, reliability, and energy consumption. For this reason, embedded systems
are often built with specialized, often application-specific hardware platforms. To
allow late design changes even on the hardware/software partitioning, languages and
model-based design tools are required that can generate both hardware and software
from the same realization-independent model. Moreover, many embedded systems
are used in safety-critical applications where errors can lead to severe damages up
to the loss of human lives. For this reason, formal verification is applied in many
design flows using different kinds of formal verification methods.

The synchronous Model of Computation (MoC) [2] has shown to be well-suited
to provide realization-independent models for a model-based design of embedded
reactive systems where both hardware and software can be generated. There are at
least the following reasons for this success: (1) It is possible to determine tight
bounds on the reaction time by a simplified worst-case execution time analysis
[28, 29, 31, 32, 50], since by construction of the programs, only a statically bounded
finite number of actions can be executed within each reaction step. (2) The formal
semantics of these languages allows one to prove (a) the correctness of the com-
pilation and (b) the correctness of particular programs with respect to given formal
specifications [40,42,44,47]. (3) It is possible to generate both efficient software and
hardware from the same synchronous programs. Since the synchronous MoC is also
used by synchronous hardware circuits, the translation to synchronous hardware
circuits [3,4,38–40,47] is conceptually clearer and simpler than for classic hardware
description languages such as VHSIC Hardware Description Language (VHDL) or
Verilog (at least if these are not restricted to synchronous synthesizable subsets).

2 Quartz: A Synchronous Language for Model-Based Design . . . 31

All these advantages are due to the synchronous MoC that postulates two
essential properties: (1) A run of a synchronous system consists of a linear sequence
of discrete reactions. In each of these reactions, a synchronous program reads the
inputs, updates the internal state, and computes the values of the corresponding
outputs. (2) All the computations within such a reaction are virtually performed
in zero time, i.e., they are supposed to happen at the very same point of time so
that every computation can immediately see the effects of every other computation
within the same reaction step. Of course, this is not possible in a real system, but
executing all computations according to the underlying data dependencies gives the
programmer the impression postulated by the synchronous MoC.

The synchronous MoC simplifies the design of reactive embedded systems, since
developers do not have to care about low-level details like timing, synchronization,
and scheduling. Instead, the synchronous paradigm poses some specific problems
to compilers, in particular, the causality analysis [4, 7, 13, 24, 34, 45, 48, 52] of
synchronous programs. Intuitively, causality cycles occur when the input of a
computation depends on its own output. Causally correct programs therefore have
a causal order of the actions in every macro step, which allows the program
to compute values before they are read. Another important analysis is the clock
consistency that is required for synchronous programs with more than one clock:
Here, we have to ensure that variables are only read at points of time when they are
defined and that they are only assigned values whenever their clocks allow this.
Although these and other problems turned out to be quite challenging, research
over the last three decades has considered these problems in detail, found practical
algorithms, and developed various compilers like [6,11,16,17,19,21,36,37,47] that
are able to generate both hardware and software from one and the same synchronous
program.

This chapter gives an overview of our synchronous language Quartz, which was
derived from the pioneering language Esterel with a special focus on hardware
design and formal verification. We start with a presentation of the language
statements in Sect. 2.2 and explain with a few illustrative examples how it adheres
with the synchronous MoC. The subsequent sections give more details of our
Quartz compiler as implemented in our Averest system (http://www.averest.org):
Sect. 2.3 shows how the compiler translates the source code into an intermediate
representation which is subsequently used as the starting point for analysis and
synthesis. Section 2.4 explains how causality is analyzed, before Sect. 2.5 describes
how the intermediate representation is finally transformed to executable software or
hardware. Finally, we briefly have a look at planned extensions of the language in
the conclusions in Sect. 2.6.

2.2 The Synchronous Language Quartz

As outlined in the introduction, the synchronous MoC assumes that the execution
consists of a sequence of reactions R D hR0;R1; : : :i. In each reaction (also
called macro step [25]), all the actions (also called micro steps) that take place

http://www.averest.org

32 K. Schneider and J. Brandt

within a reaction are executed according to their data dependencies. This leads
to the programmer’s view that the execution of micro steps does not take time
and that every macro step of a synchronous program requires the same amount of
logical time. As a consequence, concurrent threads run in lockstep and automatically
synchronize at the end of their macro steps, which yields the very important fact that
even concurrent synchronous programs still have deterministic behaviors (indeed,
most concurrent programming models lead to nondeterministic behaviors). As a
result, deterministic single-threaded code can be obtained from multi-threaded
synchronous programs. Thus, software generated from synchronous programs can
be executed on ordinary microcontrollers without having the need of complex
process scheduling of operating systems.

Synchronous hardware circuits are well-known models that are also based on the
synchronous MoC: Here, each reaction is initiated by a clock signal, and all parts
of the circuits are activated simultaneously. Although the signals need time to pass
gates (computation) and wires (communication), propagation delays can be safely
neglected as long as signals stabilize before the next clock tick arrives. Variables
are either mapped to wires or registers, which both have unique values for every
cycle. All these correspondences make the modeling and synthesis of synchronous
circuits from synchronous programs very appealing [3, 4, 38–40, 47]. It is therefore
not surprising that causality analysis of synchronous programs is a descendant of
ternary simulation of asynchronous circuits [13, 33, 34, 52] and can this way be
viewed as the proof of the abstraction from physical time to the abstract logical time
(clocks).

In this section, we introduce our synchronous language Quartz [43], which
provides the synchronous principle described above in the form of an imperative
programming language similar to its forerunner Esterel [5, 6]. In the following, we
give a brief overview of the core of the language that is sufficient to define most
other statements as simple syntactic sugar. For the sake of simplicity, we do not give
a formal definition of the semantics; the interested reader is referred to [43], which
also provides a complete structural operational semantics in full detail. The Quartz
core consists of the statements listed in Fig. 2.1, provided that S , S1, and S2 are also

nothing (empty statement)
� : pause (start/end of macro step)
x = t and next(x) = t (assignments)
if(s) S1 else S2 (conditional)
S1;S2 (sequence)
do S while(s) (iteration)
S1 ‖ S2 (synchronous concurrency)
[weak] [immediate] abort S when(s) (preemption: abortion)
[weak] [immediate] suspend S when(s) (preemption: suspension)
{a x; S} (local variable x of type a)
inst : name(t1, . . . ,tn) (call of module name)

Fig. 2.1 The Quartz core statements

2 Quartz: A Synchronous Language for Model-Based Design . . . 33

core statements, ` is a label, x and � are a variable and an expression of the same
type, � is a Boolean expression, and ˛ is a type.

Values of variables (or often called signals in the context of synchronous lan-
guages) of the synchronous program can be modified by assignments. They imme-
diately evaluate the right-hand side expression � in the current environment/macro
step. Immediate assignments x D � instantaneously transfer the obtained value of
� to the left-hand side x in the current macro step, whereas delayed assignments
next.x/ D � transfer this value only in the following macro step. For this reason,
all micro step actions are evaluated in the same variable environment which is
also determined by these actions. The causality analysis makes sure that this cyclic
dependency can be constructively resolved in a deterministic way.

The synchronous programming paradigm is therefore different to traditional
sequential programs: For example, the incrementation of a loop variable i by an
assignment i D i C 1 does not make sense in synchronous languages, since this
requires to compute a solution to the (unsolvable) equation i D iC1. Using delayed
actions, one can write next.i/ D iC1, which is the true intention of the assignment.
Even more difficult is the interaction of several micro step actions, e.g., in the same
sequence or in different parallel substatements: Their order given in the program
does not matter for the execution, since execution just follows the data dependencies
in a read-after-write schedule: In legal schedules, variables are only read if their
value for the current macro step has already been determined. For example, the
program in Fig. 2.2a has the same behavior as the program in Fig. 2.2b. Thus, every
statement knows and depends on the results of all operations in the current macro
step. In particular, a Quartz statement may influence its own activation condition
(see the program in Fig. 2.2c). Obviously, this generally leads to causal cycles that
have to be analyzed by the compilers, i.e., the compilers have to ensure that for all
inputs, there is an execution order of the micro step actions such that a variable is
never read before it is written in the macro step.

If a variable’s value is not determined by an action in the current macro step,
its value is determined by the so-called reaction to absence, which depends on the
storage type of the variable. The current version of Quartz knows two of them:
memorized variables keep the value of the previous step, while event variables
are reset to a default value if no action determines their values. Future versions
of Quartz will contain further storage types for hybrid systems and multi-clocked
synchronous systems.

a = 1; b = a; a = 1;
b = a; a = 1; if(b = 1) b = a;
pause; pause; pause;
a = b; a = b; if(a �= 2) a = b;

a b c

Fig. 2.2 Three Quartz programs illustrating the synchronous MoC

34 K. Schneider and J. Brandt

{ {
b = true; a = false,b = true,c = false
�1 : pause; �3 : pause;
if(a) b = false; if(¬b) c = true;

a = true; a = true,b = false,c = true
�2 : pause; �4 : pause;

b = true; a = true,b = true,c = true
} }

Fig. 2.3 Synchronous concurrency in Quartz

In addition to the usual control flow statements known from typical imperative
languages (conditionals, sequences, and iterations), Quartz also offers synchronous
concurrency. The parallel statement S1kS2 immediately starts the statements S1 and
S2. Then, both S1 and S2 run in lockstep, i.e., they automatically synchronize when
they reach their next pause statements. The parallel statement runs as long as at
least one of the substatements is active.

Figure 2.3 shows a simple example consisting of two parallel threads with
Boolean memorized variables a, b, and c. The threads are shown on the left-hand
side of Fig. 2.3, and their effects are shown on the right-hand side. Initially, the
default values of the variables are false, but in the first step, these values can be
changed by the program. If the program is started, both threads are started. The
first thread executes the assignment to b and stops at location `1, while the second
thread immediately stops at location `3. In the second macro step, the program
resumes from the labels `1 and `3. Thereby, the first thread cannot yet proceed
since the value of a in this step is not yet known. The second thread cannot
execute its if-statement either, but it can execute the following assignment to a.
Thus, the second thread assigns true to a, then the first thread can assign false
to b, and then the second thread can finally assign true to c. The last step then
resumes from `2 and `4, where the second thread performs the final assignment to
variable b.

Preemption of system behaviors is very important for reactive systems. It is
therefore very convenient that languages like Esterel and Quartz offer abort
and suspend statements to explicitly express preemption. The meaning of these
statements is as follows: A statement S which is enclosed by an abort block is
immediately terminated when the given condition � holds. Similarly, the suspend
statement freezes the control flow in a statement S when � holds. Thereby, two
kinds of preemption must be distinguished: strong (default) and weak (indicated by
keyword weak) preemption. While strong preemption deactivates both the control
and data flow of the current step, weak preemption only deactivates the control flow,
but retains the data flow of the current macro step (this concept is sometimes also
called ‘run-to-completion’). The immediate variants check for preemption already
at starting time, while the default is to check preemption only after starting time.

Modular design is supported by the declaration of modules in the source code
and by calling these modules in statements. Any statement can be encapsulated in a

2 Quartz: A Synchronous Language for Model-Based Design . . . 35

module, which further declares a set of input and output signals for interaction with
its context statement. There are no restrictions for module calls, so that modules can
be instantiated in every statement. In contrast to many other languages, a module
instantiation can also be part of sequences or conditionals (and is therefore not
restricted to be called as additional thread). Furthermore, it can be located in any
abortion or suspension context, which possibly preempts its execution.

The pioneer of the class of imperative synchronous languages is Esterel. As
the description above suggests, both Esterel and Quartz share many principles,
but there are also some subtle differences: First, the concept of pure and valued
signals in Esterel has been generalized to event and memorized variables in Quartz
as presented above. In particular, there is no distinction between if and present
statements, and the reaction to absence considers arbitrary variables and not just
signals. Another important difference is causality: while Esterel usually sees the
statements S1IS2 as a real sequence, where the backward flow of information from
S2 to S1 is forbidden, Quartz has a more relaxed definition of that. As long as
S1 and S2 are executed in the same macro step, information can be arbitrarily
exchanged, as the example in Fig. 2.3 illustrates. In consequence, more programs
are considered to be causally correct. In contrast to Esterel, Quartz offers also
the delayed assignments next.x/ D � that are convenient to describe hardware
designs (while Esterel makes use of a pre operator to refer to the previous value
of a signal).

2.3 Compilation

2.3.1 Intermediate Representation by Guarded Actions

Having presented the syntax and semantics of the synchronous language Quartz in
the previous section, we now describe how it is compiled to hardware and software
systems. As usual for compilers, we thereby make use of an internal representation
of the program that can be used for analysis and the later synthesis. Especially in
the design of embedded systems, where hardware-software partitioning and target
platforms are design decisions that are frequently changed, persistent intermediate
results stored in an internal representation are very important. It is thereby natural
to distinguish between compilation and synthesis: Compilation is the translation of
the Quartz program into the internal representation, and synthesis is the translation
from the internal representation to traditional hardware or software descriptions.

In our Averest system, which is a framework for the synthesis and verification
of Quartz programs, we have chosen synchronous guarded actions as internal
representation that we called Averest Intermediate Format (AIF). Synchronous
guarded actions are in the spirit of traditional guarded commands [15, 18, 27, 30]
but follow the synchronous MoC. The Boolean condition � of a guarded action
h�) C i is called the guard and the atomic statement C is called the action
of the guarded action. According to the previous section, atomic statements are

36 K. Schneider and J. Brandt

essentially the assignments of Quartz, i.e., the guarded actions have either the form
�) x D � (for an immediate assignment) or �) next.x/ D � (for a delayed
assignment).

The intuition behind such a guarded action �) C is that the action C
is executed in every macro step where the condition � is satisfied. Guarded
actions may be viewed as a simple programming language like Unity [15] in that
every guarded action runs as a separate process in parallel to the other guarded
actions. This process observes its guard � in each step and executes C if the
guard holds. The semantics of synchronous guarded actions is simply defined as
follows: In every macro step, all guards are simultaneously checked. If a guard is
true, its action is immediately executed: immediate assignments instantaneously
transfer the computed value to the left-hand side of the assignment, while the
delayed assignments defer the transfer to the next macro step. As there may be
interdependencies between actions and trigger conditions, the actions must be
executed according to their data dependencies. Similar to the Quartz program,
the AIF description handles the reaction to absence implicitly: If no action has
determined the value of the variable in the current macro step (obviously, this is the
case iff the guards of all immediate assignments in the current step and the guards of
all delayed assignments in the preceding step of a variable are false), then its value is
determined by the reaction to absence according to its storage mode: Event variables
are reset to their default values (like wires in hardware circuits), while memorized
variables store their previous values (like registers in hardware circuits). Future
versions of Quartz will contain clocked variables that are absent if not explicitly
assigned in a step, i.e., the reaction to absence will not provide any value for them.

We are convinced that this representation of the behavior is exactly at the right
level of abstraction for an intermediate code format, since guarded actions provide a
good balance between (1) removal of complexity from the source code level and (2)
the independence of a specific synthesis target. The semantics of complex control
flow statements can be completely encoded by the guarded actions, so that the
subsequent analysis, optimization, and synthesis steps become much simpler: Due
to their very simple structure, efficient translation to both software and hardware is
efficiently possible from guarded actions.

In general, programs written in all synchronous languages can be translated to
synchronous guarded actions [8–10]. While this translation is straightforward for
data flow languages such as Lustre, more effort is needed for imperative languages
such as Quartz and Esterel. There, the translation has to extract all actions of
the program and to compute for each of them a trigger condition according to the
program. In the rest of this section, we describe the basics of the translation from
Quartz programs to guarded actions. For a better understanding, we neglect local
variables and module calls and rather describe a simple, but incomplete translation
in this section. More details of the translation are given in [11].

In the following, we first discuss the distinction of surface and depth of a program
in Sect. 2.3.2. Based on this distinction, we present the compilation of the control
flow in Sect. 2.3.3, before we focus on the data flow in Sect. 2.3.4. Finally, we
consider the additional problems due to local variables in Sect. 2.3.5.

2 Quartz: A Synchronous Language for Model-Based Design . . . 37

2.3.2 Surface and Depth

A key to the compilation of synchronous programs is the distinction between the
surface and depth of a program: Intuitively, the surface consists of the micro steps
that are executed when the program is started, i.e., all the parts that are executed
before reaching the first pause statements. The depth contains the statements that
are executed when the program resumes execution after the first macro step, i.e.,
when the control is already inside the program and proceeds with its execution. It
is important to note that surface and depth may overlap, since pause statements
may be conditionally executed. Consider the example shown in Fig. 2.4a: while the
action x D 1 is only in the surface and the action z D 1 is only in the depth,
the action y D 1 is both in the depth (Fig. 2.4b) and the surface (Fig. 2.4c) of the
sequence.

The example shown in Fig. 2.5 illustrates the necessity of distinguishing between
the surface and the depth for the compilation. The compilation should compute for
the data flow of a statement S guarded actions of the form h�) C i, where C
is a Quartz assignment, which is executed if and only if the condition � holds.
One may think that the set of guarded actions for the data flow can be computed
by a simple recursive traversal over the program structure, which keeps track of
the precondition leading to the current position. However, this is not the case, as
the example in Fig. 2.5 illustrates. Since the abortion is not an immediate one, the
assignment a D true will never be aborted, while the assignment b D true will
be aborted if i holds. Now, assume we would first compute guarded actions for the
body of the abortion statement and would then replace each guard ' by ' ^ :i to
implement the abortion. For the variable a, this incorrect approach would derive two

x = 1;
if(a)

pause;
y = 1;
pause;
z = 1;

x = 1;
if(true)

pause;

y = 1;
pause;
z = 1;

x = 1;
if(false)

pause;
y = 1;
pause;

z = 1;

Fig. 2.4 Overlapping surface and depth: (a) Source code. (b) Case a D true. (c) Case a D false

�0 : pause;do
abort {

a = true;
�1 : pause;
b = true;

} when(i);
while(true) ;

�0 ∨ �1 ⇒ a = true
�1 ∧¬i ⇒ b = true

Fig. 2.5 Using surface and depth for the compilation

38 K. Schneider and J. Brandt

guarded actions `0 ^ :i) a D true and `1 ^ :i) a D true. However, this is
obviously wrong since now both assignments a D true and b D true are aborted
which is not the semantics of the program.

The example shows that we have to distinguish between the guarded actions of
the surface and the depth of a statement since these must be treated differently by
the preemption statements. If we store these actions in two different sets, then we
can simply add the conjunct :� to the guards of the actions of the depth, while
leaving the guards of the actions of the surface unchanged. For this reason, we have
to compute guarded actions for the surface and the depth in two different sets.

2.3.3 Compilation of the Control Flow

The control flow of a synchronous program may only rest at its control flow
locations. Hence, it is sufficient to describe all situations where the control flow can
move from the set of currently active locations to the set of locations that are active
at the next point of time. The control flow can therefore be described by actions of
the form h�) next.`/ D truei, where ` is a Boolean event variable modeling the
control flow location and � is a condition that is responsible for moving the control
flow at the next point of time to location `. Since a location is represented by an
event variable, its reaction to absence resets it to false whenever no guarded action
explicitly sets it.

Thus, the compiler has to extract from the synchronous program for every label
` a set of trigger conditions �`1; : : : ; �

`
n to determine whether this label ` has to be

set in the following step. Then, these conditions can be encoded as guarded actions
h�`1) next.`/ D truei; : : : ; h�`n) next.`/ D truei. The whole control flow is
then just the union of all sets for all labels. Hence, in the following, we describe how
to determine the activation conditions �`i for each label ` of the program.

The compilation is implemented as a bottom-up procedure that extracts the
control flow by a recursive traversal over the program structure: For example, for
a loop, we first compile the loop body and then add the loop behavior. While
descending in the recursion, we determine the following conditions and forward
them to the compilation of the substatements of a given statement S :

• strt .S/ is the current activation condition. It holds iff S is started in the current
macro step.

• abrt .S/ is the disjunction of the guards of all abort blocks which contain S .
Hence, the condition holds iff S should be currently aborted.

• susp .S/ similarly describes the suspension context: if the predicate holds, S
will be suspended. Thereby, abrt .S/ has a higher priority, i.e., if both abrt .S/
and susp .S/ hold, then the abortion takes place.

The compilation of S returns the following control flow predicates [41], which are
used for the compilation of the surrounding compound statement.

2 Quartz: A Synchronous Language for Model-Based Design . . . 39

• inst .S/ holds iff the execution of S is currently instantaneous. This condition
depends on inputs so that we compute an expression inst .S/ depending on the
current values of input, local, and output variables. In general, inst .S/ cannot
depend on the locations of S since it is checked whether the control flows
through S without being caught in S . Hence, it is assumed that S is currently not
active.

• insd .S/ is the disjunction of the labels in statement S . Therefore, insd .S/ holds
at some point of time iff the control flow is currently at some location inside
S , i.e., if S is active. Thus, instantaneous statements are never active, since the
control flow cannot rest anywhere inside.

• term .S/ describes all conditions where the control flow is currently somewhere
inside S and wants to leave S voluntarily. Note, however, that the control flow
might still be in S at the next point of time, since S may be (re)entered at
the same time, e.g., by a surrounding loop statement. The expression term .S/

therefore depends on input, local, output, and location variables. term .S/ is false
whenever the control flow is currently not inside S . In particular, term .S/ is false
for the instantaneous atomic statements.

The control flow predicates refer either to the surface or to the depth of a statement.
As it will be obvious in the following, the surface uses strt .S/ and inst .S/, while
the depth depends on abrt .S/, susp .S/, insd .S/ and term .S/. Hence, we can
divide the compilation of each statement into two functions: one compiles its surface
and the other one compiles its depth.

After these introductory explanations, we can now present the general structure
of the compilation algorithm (see Fig. 2.6). The compilation of a system consisting
of a statement S is initially started by the function ControlFlow.st; S/, which splits
the task into surface and depth parts. Abort and suspend conditions for the depth are
initially set to false, since there is no preemption context at this stage.

It remains to show how the surface and the depth of each statement are compiled.
Thereby, we forward the previously determined control flow context for a statement
S by the Boolean values st D strt .S/, ab D abrt .S/, and sp D susp .S/, while
the result contains the values of the predicates I D inst .S/, A D insd .S/, and
T D term .S/.

Let us start with the assignments of the program. Since they do not contribute
to the control flow, no guarded actions are derived from them. The computation of
the control flow predicates is also very simple: An action C is always instantaneous
inst .C / D true, never active (insd .C / D false), and never terminates (since the
control flow cannot rest inside C ; see definitions above).

The pause statement is interesting, since it is the only one that creates actions
for the control flow. The surface part of the compilation detects when a label
is activated: each time we hit a ` W pause statement, we take the activation
condition computed so far and take this for the creation of a new guarded action
setting `. The label ` can be also activated later in the depth. This is the case if the
control is currently at this label and the outer context requests the suspension. The

40 K. Schneider and J. Brandt

fun ControlFlow(st,S)
(I,C s) = CtrlSurface(st,S);
(A,T,C d) = CtrlDepth(false, false,S);
return(C s ∪C d)

fun CtrlSurface(st,S)
switch(S)
case [� : pause]

return(false,{st ⇒ next(�) = true})

case [if(s) S1else S2]
(I1,C s

1) = CtrlSurface(st∧s ,S1);
(I2,C s

2) = CtrlSurface(st∧¬s ,S2);
return(I1 ∧s ∨ I2 ∧¬s ,C s

1 ∪C s
2)

case [S1;S2]
(I1,C s

1) = CtrlSurface(st,S1);
(I2,C s

2) = CtrlSurface(st∧ I1,S2);
return(I1 ∧ I2,C s

1 ∪C s
2)

case [abort S1 when(s)]
returnCtrlSurface(st,S1)

...

fun CtrlDepth(ab,sp,S)
switch(S)
case [� : pause]

return(�,�,{�∧ sp ⇒ next(�) = true})

case [if(s) S1else S2]
(A1,T1,C d

1) = CtrlDepth(ab,sp,S1);
(A2,T2,C d

2) = CtrlDepth(ab,sp,S2);
return(A1 ∨A2,T1 ∨T2,C d

1 ∪C d
2)

case [S1;S2]
(A1,T1,C d

1) = CtrlDepth(ab,sp,S1);
st2 = T1 ∧¬(sp∨ab);
(I2,C s

2) = CtrlSurface(st2,S2);
(A2,T2,C d

2) = CtrlDepth(ab,sp,S2);
return(A1 ∨A2,T1 ∧ I2 ∨T2,C d

1 ∪C s
2 ∪C d

2)

case [abort S1 when(s)]
(A1,T1,C d

1) = CtrlDepth(ab∨s ,sp,S1);
return(A1,T1 ∨A1 ∧s ,C d

1)
...

Fig. 2.6 Compiling the control flow (excerpt)

computation of the control flow predicates reveals no surprises: ` W pause always
needs time inst ./ D false, it is active if the control flow is currently at label `
(insd ./ D `) and it terminates whenever it is active (term ./ D `).

Let us now consider a compound statement like a conditional statement. For the
surface, we update the activation condition by adding the guard. Then, the sub-
statements are compiled and the results are merged straightforwardly. The parallel
statement (not shown in the figure) is compiled similarly. A bit more interesting
is the compilation of the sequence. As already mentioned above, it implements
the stepwise traversal of the synchronous program. This is accomplished by the
surface calls in the depth. A similar behavior can also be found in the functions for
the compilation of the loops. Preemption is also rather simple: since the abortion
condition is usually not checked when entering the abort statement, it does not
have any influence and can be neglected for the compilation of the surface. In the
depth, the abort condition is just appended to the previous one. Finally, suspension
is compiled similarly.

The compilation of the control flow works in a linear pass over the syntax tree of
the program and generates a set of guarded actions of a linear size with respect to
the size of the given program.

2 Quartz: A Synchronous Language for Model-Based Design . . . 41

2.3.4 Compilation of the Data Flow

Figure 2.7 shows some of the functions which compute the data flow for a given
Quartz statement where we make use of a virtual boot label `0. The surface actions
can be executed in the current step, while the actions of the depth are enabled by
the resumption of the control flow that already rests somewhere in the statement.
For this reason, we do not need a precondition as argument for the depth data flow
compilation since the precondition is the active current control flow location itself.
The compilation of the surface of a basic statement should be clear: we take the so-
far computed precondition st as the guard for the atomic action. The depth variants
do not create any actions since statements without control flow locations do not have
depth actions.

For the conditional statement, we simply add � or its negation to the precondition
to start the corresponding substatement. As the control flow can rest in one of the
branches of an if-statement, it can be resumed from any of these branches. In the
depth, we therefore simply take the “union” of the two computations of the depth
actions.

fun DataFlow(S)
D s = DataSurface(�0,S);
Dd = DataDepth(S);
return(D s ∪Dd)

fun DataSurface(st,S)
switch(S)
case [x = t]

return{st ⇒ x = t}
case [next(x) = t]

return{st ⇒ next(x) = t}
case [if(s) S1else S2]

D s
1 = DataSurface(st∧s ,S1)

D s
2 = DataSurface(st∧¬s ,S2)

return(D s
1 ∪D s

2)

case [S1;S2]
D s

1 = DataSurface(st,S1)
D s

2 = DataSurface(st∧ inst(S1) ,S2)
return(D s

1 ∪D s
2)

case [abort S1 when(s)]
return DataSurface(st,S1)

case [weak abort S1 when(s)]
return DataSurface(st,S1)

...

fun DataDepth(S) =
switch(S)
case [x = t]

return{}
case [next(x) = t]

return{}
case [if(s) S1else S2]

Dd
1 = DataDepth(S1)

Dd
2 = DataDepth(S2)

return(Dd
1 ∪Dd

2)

case [S1;S2]
Dd

1 = DataDepth(S1)
D s

2 = DataSurface(term(S1) ,S2)
Dd

2 = DataDepth(S2)
return(Dd

1 ∪D s
2 ∪Dd

2)

case [abort S1 when(s)]
return

{g ∧¬s ⇒ C | (g ⇒ C) ∈ DataDepth(S1)}
case [weak abort S1 when(s)]

return DataDepth(S1)
...

Fig. 2.7 Compiling the data flow (excerpt)

42 K. Schneider and J. Brandt

According to the semantics of a sequence, we first execute S1. If the execution
of S1 is instantaneous, then we also execute S2 in the same macro step. Hence, the
precondition for the surface actions of S2 is ' ^ inst .S1/. The preconditions of the
substatements of a parallel statement are simply the preconditions of the parallel
statement.

In the depth, the control flow can rest in either one of the substatements S1 or S2
of a sequence S1IS2, and hence, we can resume it from either S1 or S2. If the control
flow is resumed from somewhere inside S1, and S1 terminates, then also the surface
actions of S2 are executed in the depth of the sequence. Note that the computation
of the depth of a sequence S1IS2 leads to the computation of the surface actions of
S2 as in the computation of the control flow in the previous section.

As delayed abortions are ignored at starting time of a delayed abort statement,
we can ignore them for the computation of the surface actions. Weak preemption
statements can be also ignored for the computation of the depth actions, since even
if the abortion takes place, all actions remain enabled due to the weak preemption.
For the depth of strong abortion statements, we add a conjunct :� to the guards of
all actions to disable them in case � holds.

Obviously, the compilation of the control flow (see Fig. 2.6) and the compilation
of the data flow (see Fig. 2.7) can be merged into a single set of functions that
simultaneously compile both parts of the program. Since the guards of the actions
for the data flow refer to the control flow predicates, this approach simplifies the
implementation. The result is an algorithm which runs in time O.jS j2/, since
DataSurface.S; / runs in O.jS j/ and DataDepth.S/ in O.jS j2/. The reason for
the quadratic blow-up is that sequences and loops necessarily have to generate
copies of surfaces of their substatements.

2.3.5 Local Variables and Schizophrenia

The characteristic property of local variables is their limited scope. In the context of
synchrony, which groups a number of micro steps into an instantaneous macro step,
a limited scope which does not match with the macro steps may cause problems. In
particular, this is the case if a local declaration is left and reentered within the same
macro step, e.g., when a local declaration is nested within loop statements. In such
a problematic macro step, the micro steps must then refer to the right incarnation
of the local variable since its incarnations in the old and the new scope may have
different values in one macro step.

Figure 2.8a shows a simple example. The local variable x, which is declared in
the loop body, is referenced at the beginning and at the end of the loop. In the second
step of the program, when it resumes from the label `1, all actions are executed, but
they refer to two different incarnations of x: While the assignment to x is made to
the old variable in the depth, the if-statement checks the value of the new incarnation
which is false.

While software synthesis of sequential programs can solve this problem simply
by shadowing the incarnations of the old scope, this is not possible for the

2 Quartz: A Synchronous Language for Model-Based Design . . . 43

do {
bool x;
if(x) y = 1;
�1 : pause;
x = true;

} while(true) ;

a b
do {

bool x;
if(x) y = 1;
if(a) �1 : pause;
x = true;
if(¬a) �2 : pause;

} while(true) ;

Fig. 2.8 Schizophrenic Quartz programs

synchronous MoC, since each variable has exactly one value per macro step.
Therefore, we have to generate a copy of the locally declared variable and map
the actions of the program to the corresponding copy in the intermediate code.
Furthermore, we have to create additional actions in the intermediate code that link
the copies so that the value of the new incarnation at the beginning of the scope is
eventually transported to the old one, which is used in the rest of the scope.

However, the problem can be even worse: first, whereas in the previous example
each statement always referred to the same incarnation (either the old or the
new one), the general case is more complicated as can be seen in Fig. 2.8b. The
statements between the two pause statements are sometimes in the context of the old
and sometimes in the context of the new incarnation. Therefore, these statements are
usually called schizophrenic in the synchronous languages community [4]. Second,
there can be several reincarnations of a local variable, since the scope can be
reentered more than once. In general, the number of loops, which are nested around
a local variable declaration determines an upper bound on the number of possible
reincarnations.

A challenging Quartz program containing local variables is shown on the
left-hand side of Fig. 2.9. The right-hand side of the same figure shows the
corresponding control flow graph. The circle nodes of this graph are control
flow states that are labeled with those location variables that are currently active
(including the start location `0). Besides these control flow states, there are two other
kinds of nodes: boxes contain actions that are executed when an arc toward this node
is traversed, while the diamonds represent branches that influence the following
computations. The outgoing arcs of such a node correspond to the then (solid) and
else (dashed) branch of the condition. For example, if the program is executed from
state `1 and we have :k ^ j ^ :i , then we execute the two action boxes beneath
control state `1 and additionally the one below condition node j .

As can be seen, the condition k^j ^:i executes all possible action nodes while
traversing from control node `1 to itself. The first action node belongs to the depth
of all local declarations, the second one (re)enters the local declaration of c, but
remains inside the local declarations of b and a. A new incarnation c3 is thereby
created. The node below condition node k (re)enters the local declarations of b and
c, but remains in the one of a. Hence, it creates new incarnations b2 and c2 of b

44 K. Schneider and J. Brandt

�0 : pause;
weak abort {

do {

int a;
a = 0;
I :M(a);
weak abort {

do {

int b;
b = a;
weak abort {

do {

int c;
c = b;
next(c) = f (a,b,c);
�1 : pause;
x = a;
next(a) = g(a,b,c);
next(b) = h(a,b,c);

} while(true) ;
} when(k);

} while(true) ;
} when(j);

} while(true) ;
} when(i);
�2 : pause;

�0 ⇒ c = b
�1 ∧ j ⇒ c1 = b1
�1 ∧ k ⇒ c2 = b2

�1 ⇒ c3 = b
�0 ⇒ next(c) = f (a,b,c)

�1 ∧¬i∧ j ⇒ next(c) = f (a1,b1,c1)
�1 ∧¬(i∨ j)∧ k ⇒ next(c) = f (a,b2,c2)
�1 ∧¬(i∨ j∨ k) ⇒ next(c) = f (a,b,c3)

�0

a = 0;
b = a;
c = b;

next(c) = f (a,b,c);

�1

x = a;
next(a) = g(a,b,c);
next(b) = h(a,b,c);

c3 = b;
next(c) = f (a,b,c3);

k

b2 = a;
c2 = b2;

next(c) = f (a,b2,c2);

j

a1 = 0;
b1 = a1;
c1 = b1;

next(c) = f (a1,b1,c1);

i

�2

(c,0, case(�1 ∧¬i∧ j) : c1
case(�1 ∧¬(i∨ j)∧ k) : c2
case(�1 ∧¬(i∨ j∨ k)) : c3
else : c

)

Fig. 2.9 Local declarations with multiple simultaneous reincarnations

and c, respectively. Finally, the remaining node (re)enters all local declarations and
therefore generates three incarnations a1, b1, and c1. Note that these four action
boxes can be executed at the same point of time, and therefore, the reincarnations
a1, b1, c1, b2, c2, and c3 may all exist in one macro step.

2 Quartz: A Synchronous Language for Model-Based Design . . . 45

Several solutions have been proposed for the solution of schizophrenic state-
ments [4, 35, 41, 49, 54]. Our Quartz compiler carefully distinguishes between
the different surfaces of the same schizophrenic local variable and creates fresh
incarnations for each one. Technically, this is handled by adding a counter to the
compilation functions (Figs. 2.6 and 2.7), which counts how often such a surface
has already been entered in the same reaction. Giving all technical details is beyond
the scope of this chapter. The interested reader is referred to [11, 47], where the
complete solution is described.

2.4 Semantic Analysis

The synchronous MoC abstracts from the execution order within a reaction and
postulates that all actions are executed in zero time – at least in the programmer’s
view. In practice, this means that all actions must be executed according to their
data dependencies in order to keep the illusion of zero time execution for the
programmer. However, it could happen that there is no such execution order since
there are cyclic data dependencies. These so-called causality cycles occur if the
input for an action is instantaneously modified by the output of this action or
others that were triggered by its output. From the practical side, cyclic programs
are rather rare, but they can appear and must therefore be handled by compilers. As
a consequence, causality analysis [4, 7, 13, 24, 34, 45, 48, 52] must be performed to
detect critical cyclic programs.

In general, cyclic programs might have no behavior (loss of reactivity), more than
one behavior (loss of determinism), or a unique behavior. However, having a unique
behavior is not sufficient for causality, since there are programs whose unique
behavior can only be found by guessing. For this reason, causality analysis checks
whether a program has a unique behavior that can furthermore be constructively
determined by the operational semantics of the program. To this end, the causality
analysis starts with known input variables and yet unknown local/output variables.
Then, it determines the micro steps of a macro step that can be executed with this
incomplete knowledge of the current variables’ values. The execution of these micro
steps may reveal the values of some further local/output variables of this macro step
so that further micro steps can be executed after this round. If all variables became
finally known by this fixpoint iteration, the program is a constructive one with a
unique behavior.

While causality analysis may appear to be a special problem for synchronous
languages, a closer look at the problem reveals that there are many equivalent
problems: (1) Shiple [51–53] proved the equivalence to Brzozowski and Seger’s
timing analysis in the up-bounded inertial delay model [13]. This means that a
circuit derived from a cyclic equation system will finally stabilize for arbitrary
gate delays iff the equation system is causally correct. (2) Berry pointed out that
causality analysis is equivalent to theorem proving in intuitionistic (constructive)
propositional logic and introduced the notion of constructive circuits [5]. (3) The
problem is also equivalent to type-checking in functional programs due to the

46 K. Schneider and J. Brandt

Curry-Howard isomorphism [26]. (4) Finally, Edwards reformulates the problem as
the existence of dynamic schedules for the execution of mutually dependent threads
of micro steps [20]. Hence, causality analysis is a fundamental analysis that has
already found many applications in computer science.

We will not discuss the details in this chapter. The interested reader is referred
to [45], where all details about the causality analysis performed in the context of
Quartz can be found.

2.5 Synthesis

Before presenting the synthesis procedures, we first recall our overall design flow
that determines the context of the compilation procedure. As we target the design
of embedded systems, where hardware-software partitioning and target platforms
are design decisions that are frequently changed, persistent intermediate results in
a well-defined and robust format are welcome. In our Averest system, we basically
split the design flow into two steps, which are bridged by the AIF. This intermediate
format captures the system behavior in terms of synchronous guarded actions.
Hence, complex control flow statements need no longer be considered. We refer
to compilation as the translation of source code into AIF, while synthesis means
the translation from AIF to the final target code, which may be based on a different
MoC.

Figure 2.10 shows two approaches of generating target code from a set of Quartz
modules. Modular compilation, which is shown on the left-hand side, translates each
Quartz module to a corresponding AIF module. Then, these modules are linked
on the intermediate level before the whole system is synthesized to target code.
Modular synthesis, which is shown on the right-hand side, translates each Quartz
module to a corresponding AIF module, which is subsequently synthesized to a
target code module. Linking is then deferred to the target level. While modular
synthesis simplifies the compilation (since all translation processes have to consider
only a module of the system), it puts the burden on the run-time platform or the
linker which has to organize the interaction of the target modules correctly.

Quartz Quartz Quartz

AIF AIF AIF

Target

Quartz Quartz Quartz

AIF AIF AIF

Target Target Target

Fig. 2.10 Modular compilation and modular synthesis of Quartz programs

2 Quartz: A Synchronous Language for Model-Based Design . . . 47

From our intermediate representation of guarded actions, many synthesis targets
can be thought of. In the following, we sketch the translation to different targets;
first to symbolic transition systems, which are suitable for formal verification of
program properties by symbolic model checking, second to digital hardware circuits
for hardware synthesis, third the translation to SystemC code, which can be used for
an integrated simulation of the system, and finally an automaton-based sequential
software synthesis.

2.5.1 Symbolic Model Checking

For symbolic model checking, the system generally needs to be represented by a
transition system. This basically consists of a triple .S ;I ;T / with a set of states
S , initial states I � S , and a transition relation T � S � S . Each state s
is a mapping from variables to values, i.e., s assigns to each variable a value of
its domain. As we aim for a symbolic description, we describe the initial states
and the transition relation by propositional formulas ˚I and ˚T , which are their
characteristic functions.

For the presentation of the translation, assume that our intermediate representa-
tion contains immediate and delayed actions for each variable x of the following
form:

.�1;x D �1/; : : : ; .�p;x D �p/

.�1;next(x) D �1/; : : : ; .�q;next(x) D �q/

Figure 2.11 sketches the translation of the immediate and delayed actions writing
variable x to clauses used for the description of a symbolic transition system.

The construction of a transition system is quite straightforward: The initial value
of a variable x can only be determined by its immediate actions. Hence, if one of the
guards �i of the immediate actions holds, the corresponding immediate assignment
defines the value of x. If none of the guards �i should hold, the initial value of x is
determined by its default value (which is determined by the semantics, e.g., false
for Boolean variables and 0 for numeric ones).

The transition relation determines which states can be connected by a transition,
i.e., which values the variables may have at the next point of time given values
at the current point of time. To this end, the transition relation sets up constraints
for the values at the current and the next point of time: First, also the immediate
assignments have to be respected for the current point of time, i.e., whenever a guard
�i of the immediate actions holds, the corresponding immediate assignment defines
the current value of x. If one of the guards �i of the delayed assignments hold at
the current point of time, the next value of x is determined by the corresponding
delayed assignment. Finally, if the next value of x is not determined by an action,
i.e., none of the guards �i of the immediate assignments hold at the next point of
time and neither holds one of the guards �i at the current point of time, then the next
value of x is determined by the reaction to absence.

48 K. Schneider and J. Brandt

Initx :≡

⎛
⎜⎜⎜⎜⎜⎜⎝

p∧
j=1

(g j → x = t j)∧

(
p∧

j=1

¬g j
)

→ x = Default(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

Transx :≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p∧
j=1

(g j → x = t j)∧

q∧
j=1

(c j → next(x) = p j)∧

next(
p∧

j=1

¬g j)∧
(

q∧
j=1

¬c j

)
→ next(x) = Abs(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Abs(x) :=
{
Default(x) : if x is an event variable
x : if x is a memorized variable

Fig. 2.11 Transition relation for x

The definitions given in Fig. 2.11 can be literally used to define input files for
symbolic model checkers. Causality problems do not bother in this translation, and
also write conflicts will show up as deadend states in the transition diagram and can
be checked this way by symbolic model checking.

2.5.2 Circuit Synthesis

The transition relation shown in Fig. 2.11 of the previous section can be modified so
that both the initial condition and the transition relation become equation systems
provided that there are no write conflicts between the actions of any variable x. To
explain the construction of the equations, we consider again any variable x with the
following guarded actions:

.�1;x D �1/; : : : ; .�p;x D �p/

.�1;next(x) D �1/; : : : ; .�q;next(x) D �q/

The equations for x are shown in Fig. 2.12 where an additional carrier variable
x0 is used. This carrier variable x0 has initially the default value of x, and its value at
any next point of time is determined by the delayed assignments of x. If none of the
delayed assignments is enabled, the reaction to absence is applied, i.e., next.x0/ D
Abs.x/ will hold.

2 Quartz: A Synchronous Language for Model-Based Design . . . 49

For the variable x itself, we introduce only an immediate equation where the
current value of x is defined by the immediate assignments to it, and if none of them
is enabled, we use the current value of the carrier variable to define x.

One can prove that x has this way the correct value for any point of time by
induction over time: At the initial point of time, one of the immediate assignments
will determine the initial value of x if one is enabled, which is equivalent to the
initial condition of Fig. 2.11. If none of the �i holds, we have x WD x0 WD Default.x/
which is also the case for the initial condition of Fig. 2.11.

To determine the value of x at any later point of time, note first that again the
immediate assignments can determine its value. If none of them is enabled, we have
again x WD x0. If we consider this equation from the previous point of time, it
means next.x/ D next.x0/ so that we can see that x may be determined by delayed
assignments that were enabled in the previous point of time. Finally, if none of these
were enabled either, then the reaction to absence takes place which had already
determined the value of x0 so that x WD x0 will define the value of x correctly also
in this case.

Note that the equation system as given in Fig. 2.12 has only immediate equations
for the output and local variables, while carrier variables are used to capture the
delayed assignments. Since the carrier variables are not observable outside the
module, they define the internal state together with the local variables of the program
and the control flow labels of the pause statements. Note that these equation systems
have exactly the form we assumed in the causality analysis described in Sect. 2.4.

Finally, we note that the actual synthesis of the equations is much more difficult
due to the reincarnation of local variables. Since the reincarnations do only occur in
the surface statements, and since surface statements can be executed in zero time,
the behavior of the reincarnated variables can be described by simple immediate
equations without carrier variables. However, the reaction to absence is more
complicated for the local variable that remains in the depth of a local declaration
statement: Here we have to determine which of the different surfaces has been the
latest one executed that carries then its value to the depth. Furthermore, the delayed
assignments to local variables in those reincarnated surfaces that are followed by
further reincarnations have to be disabled. The overall procedure is quite difficult
and is described in full detail in [43, 46].

init(x′) = Default(x)

next(x′) =

⎛
⎜⎜⎜⎜⎜⎝

case
c1 : p1;

...
cq : pq;

else Abs(x)

⎞
⎟⎟⎟⎟⎟⎠ x =

⎛
⎜⎜⎜⎜⎜⎝

case
g1 : t1;

...
gp : tp;

else x′

⎞
⎟⎟⎟⎟⎟⎠

Fig. 2.12 Equation system for x

50 K. Schneider and J. Brandt

2.5.3 SystemC Simulation

The simulation semantics of SystemC is based on the discrete-event model of
computation [14], where reactions of the system are triggered by events. All threads
that are sensitive to a specified set of events are activated and produce new events
during their execution. Updates of variables are not immediately visible, but become
visible in the next delta cycle.

We start the translation by the definition of a global clock that ticks in each
instant and drives all the computation. Thus, we require that the processed model
is endochronous [22, 23], i.e., there is a signal which is present in all instants of
the behavior and from which all other signals can be determined. In SystemC, this
clock is implemented by a single sc_clock at the uppermost level, and all other
components are connected to this clock. Hence, the translations of the macro steps
of the synchronous program in SystemC are triggered by this clock, while the micro
steps are triggered by signal changes in the delta cycles. For this reason, input and
output variables of the synchronous program are mapped to input signals (sc_in)
and output signals (sc_out) of SystemC of the corresponding type.

Additionally, we declare signals for all other clocks of the system. They are
inputs since the clock constraints (as given by assume) do not give an operational
description of the clocks, but can be only checked in the system. The clock calculus
for Signal [1, 22, 23] or scheduler creation for CAOS [12] aim at creating exactly
these schedulers which give an operational description of the clocks. Although not
covered in the following, their result can be linked to the system description so that
clocks are driven by the system itself.

The translation of the synchronous guarded actions to SystemC processes is
however not as simple as one might expect. The basic idea is to map guarded actions
to methods which are sensitive to the read variables so that the guarded action is re-
evaluated each time one of the variables it depends on changes. For a constructive
model, it is guaranteed that the simulation does not hang up in delta cycles.

The translation to SystemC must tackle the following two problems: (1) As
SystemC does not allow a signal to have multiple drivers, all immediate and
delayed actions must be grouped by their target variables, or equivalently, we can
produce the equations as shown in the previous section. (2) The SystemC simulation
semantics can lead to spurious updates of variables (in the AIF context), since
threads are always triggered if some variables in the sensitivity list have been
updated – even if they are changed once more in later delta cycles. As actions might
be spuriously activated, it must be ensured that at least one action is activated in each
instant, which sets the final value. Both problems are handled in a similar way as the
translation to the transition system presented in the previous section: we create an
additional variable _carrier_x for each variable x to record values from their de-
layed assignments and group all actions in the same way as for the transition system.

With these considerations, the translation of the immediate guarded actions h�)
x D �i i is straightforward: We translate each group of actions into an asynchronous
thread in SystemC, which is sensitive to all signals read by these actions (variables
appearing in the guards �i or in the right-hand sides �i). Thereby, all actions are

2 Quartz: A Synchronous Language for Model-Based Design . . . 51

Fig. 2.13 SystemC: Translation of immediate and delayed actions

implemented by an if-block except for the last one, which handles the case that
no action fires. Since the immediate actions should become immediately visible,
the new value can be immediately written to the variable with the help of a call
to x.write(: : :). Analogously, the evaluations of the guard �i and the right-hand
side of the assignment �i make use of the read methods of the other signals. The
left-hand side of Fig. 2.13 shows the general structure of such a thread.

Delayed actions h�) next.x/ D �j i are handled differently: While the right-
hand side is immediately evaluated, the assignment should only be visible in the
following macro step and not yet in the current one. Hence, they do not take part in
the fixpoint iteration. Therefore, we write their result to _carrier_x in a clocked
thread, which is triggered by the master trigger Thereby, signals changed by the
delayed actions do not affect the current fixpoint iteration and vice versa.

Figure 2.14 gives the SystemC code for the part that simulates the variables x.
Similar to the Symbolic Model Verifier (SMV) translation, we abbreviate guards
for reuse in different SystemC processes. Then, the translation of the immediate
actions writing x is straightforward; they correspond to the first two cases in method
OuterQuartz::compute_x(). The last case is responsible for setting x to its
previous value if neither of the two immediate actions fires. As already stated
above, we need to do this explicitly. To this end, the previous value of variable
x is always stored in a separate carrier variable. For variables, which are only set by
delayed actions, we can simplify the general scheme of Fig. 2.13. In this case, we
can combine the two threads as Fig. 2.14 illustrates: we only need a single variable,
which is set by this thread.

2.5.4 Automaton-Based Sequential Software Synthesis

In order to generate fast sequential code from synchronous programs, the Extended
Finite-State Machine (EFSM) representation of the program is an ideal starting

52 K. Schneider and J. Brandt

Fig. 2.14 SystemC code

point. EFSMs explicitly represent the state transition system of the control flow:
each state s represents a subset Labels.s/ � L of the control flow labels, and
edges between states are labeled with conditions that must be fulfilled to reach the
target state from the source state. EFSMs are therefore a representation where the
control flow of a program state is explicitly represented, while the data flow is still
represented symbolically (while synchronous guarded actions represent control flow
and data flow symbolically).

The guards of the guarded actions of the control flow are therefore translated
to transition conditions of the EFSM’s state transitions. The guarded actions of the
data flow are first copied to each state of the EFSM and are then partially evaluated
according to the values of the control flow labels in that EFSM state. Hence, in each
macro step, the generated code will only consider a subset D.s/ of the guarded
actions, which generally speeds up the execution (since many of them are only active
in a small number of states).

Definition 1 (Extended Finite State Machine). An Extended Finite-State Ma-
chine (EFSM) is a tuple .S; s0; T;D/, where S is a set of states, s0 2 S is the
initial state, and T � .S �C � S/ is a finite transition relation where C is the set of
transition conditions. D is a mapping S ! D , which assigns each state s 2 S a set
of data flow guarded actions D.s/ � D which are executed in state s.

To see an example of an EFSM, consider first the Quartz program shown
in Fig. 2.15. It computes the integer approximation of the euclidean length of
a N-dimensional vector v and does only make use of addition, subtraction, and

2 Quartz: A Synchronous Language for Model-Based Design . . . 53

comparison. The correctness is not difficult to see by the given invariants in the
comments:

next(x[i]) � next(y[i]) + next(p[i])
= x[i] � (y[i] � 1) + (p[i] + x[i])
= x[i] � y[i] + p[i]

next(y[0])
= y[0] + x[0] + x[0] + 3
= (x[0]+1) ^2 + 2�x[0] + 3
= x[0]^2 + 2�x[0] + 1 + 2�x[0] + 3
= x[0]^2 + 4�x[0] + 4
= (x[0]+2) ^2
= (next(x[0]) +1)^2

The corresponding EFSM of the program shown in Fig. 2.15 is shown in Fig. 2.16
with seven states. Each state is given an index and lists the guarded actions that can

Fig. 2.15 The VectorLength Quartz program

54 K. Schneider and J. Brandt

s
t
a
t
e
(
0
)
:

<
!
(
0
<
y
[
0
]
)
&
!
(
0
<
y
[
1
]
)

=
=
>

n
e
x
t
(
p
[
0
]
)

=

p
[
0
]
+
p
[
1
]
>

<
0
<
y
[
0
]

=
=
>

n
e
x
t
(
p
[
0
]
)

=

p
[
0
]
+
x
[
0
]
>

<
0
<
y
[
0
]

=
=
>

n
e
x
t
(
y
[
0
]
)

=

y
[
0
]
-
1
>

<
0
<
y
[
1
]

=
=
>

n
e
x
t
(
p
[
1
]
)

=

p
[
1
]
+
x
[
1
]
>

<
0
<
y
[
1
]

=
=
>

n
e
x
t
(
y
[
1
]
)

=

y
[
1
]
-
1
>

<
T
r
u
e

=
=
>

p
[
0
]

=

0
>

<
T
r
u
e

=
=
>

p
[
1
]

=

0
>

<
T
r
u
e

=
=
>

x
[
0
]

=

v
[
0
]
>

<
T
r
u
e

=
=
>

x
[
1
]

=

v
[
1
]
>

<
T
r
u
e

=
=
>

y
[
0
]

=

v
[
0
]
>

<
T
r
u
e

=
=
>

y
[
1
]

=

v
[
1
]
>

s
t
a
t
e
(
1
)
:

<
!
(
y
[
0
]
<
=
p
[
0
]
)

=
=
>

l
e
n

=

x
[
0
]
>

<
!
(
y
[
0
]
<
=
p
[
0
]
)

=
=
>

r
d
y

=

T
r
u
e
>

<
T
r
u
e

=
=
>

x
[
0
]

=

0
>

<
T
r
u
e

=
=
>

y
[
0
]

=

1
>

<
y
[
0
]
<
=
p
[
0
]

=
=
>

n
e
x
t
(
x
[
0
]
)

=

x
[
0
]
+
1
>

<
y
[
0
]
<
=
p
[
0
]

=
=
>

n
e
x
t
(
y
[
0
]
)

=

y
[
0
]
+
x
[
0
]
+
x
[
0
]
+
3
>

!
(
0
<
y
[
0
]
)
&
!
(
0
<
y
[
1
]
)

s
t
a
t
e
(
3
)
:

<
!
(
0
<
y
[
1
]
)

=
=
>

n
e
x
t
(
p
[
0
]
)

=

p
[
0
]
+
p
[
1
]
>

<
0
<
y
[
1
]

=
=
>

n
e
x
t
(
p
[
1
]
)

=

p
[
1
]
+
x
[
1
]
>

<
0
<
y
[
1
]

=
=
>

n
e
x
t
(
y
[
1
]
)

=

y
[
1
]
-
1
>

!
(
0
<
y
[
0
]
)
&
0
<
y
[
1
]

s
t
a
t
e
(
4
)
:

<
!
(
0
<
y
[
0
]
)

=
=
>

n
e
x
t
(
p
[
0
]
)

=

p
[
0
]
+
p
[
1
]
>

<
0
<
y
[
0
]

=
=
>

n
e
x
t
(
p
[
0
]
)

=

p
[
0
]
+
x
[
0
]
>

<
0
<
y
[
0
]

=
=
>

n
e
x
t
(
y
[
0
]
)

=

y
[
0
]
-
1
>

!
(
0
<
y
[
1
]
)
&
0
<
y
[
0
]

s
t
a
t
e
(
5
)
:

<
!
(
0
<
y
[
0
]
)
&
!
(
0
<
y
[
1
]
)

=
=
>

n
e
x
t
(
p
[
0
]
)

=

p
[
0
]
+
p
[
1
]
>

<
0
<
y
[
0
]

=
=
>

n
e
x
t
(
p
[
0
]
)

=

p
[
0
]
+
x
[
0
]
>

<
0
<
y
[
0
]

=
=
>

n
e
x
t
(
y
[
0
]
)

=

y
[
0
]
-
1
>

<
0
<
y
[
1
]

=
=
>

n
e
x
t
(
p
[
1
]
)

=

p
[
1
]
+
x
[
1
]
>

<
0
<
y
[
1
]

=
=
>

n
e
x
t
(
y
[
1
]
)

=

y
[
1
]
-
1
>

0
<
y
[
0
]
&
0
<
y
[
1
]

s
t
a
t
e
(
6
)
:

!
(
y
[
0
]
<
=
p
[
0
]
)

s
t
a
t
e
(
2
)
:

<
!
(
y
[
0
]
<
=
p
[
0
]
)

=
=
>

l
e
n

=

x
[
0
]
>

<
!
(
y
[
0
]
<
=
p
[
0
]
)

=
=
>

r
d
y

=

T
r
u
e
>

<
y
[
0
]
<
=
p
[
0
]

=
=
>

n
e
x
t
(
x
[
0
]
)

=

x
[
0
]
+
1
>

<
y
[
0
]
<
=
p
[
0
]

=
=
>

n
e
x
t
(
y
[
0
]
)

=

y
[
0
]
+
x
[
0
]
+
x
[
0
]
+
3
>

y
[
0
]
<
=
p
[
0
]

!
(
0
<
y
[
1
]
)

0
<
y
[
1
]

!
(
0
<
y
[
0
]
)

0
<
y
[
0
]

!
(
0
<
y
[
0
]
)
&
!
(
0
<
y
[
1
]
)

!
(
0
<
y
[
0
]
)
&
0
<
y
[
1
]

!
(
0
<
y
[
1
]
)
&
0
<
y
[
0
]

0
<
y
[
0
]
&
0
<
y
[
1
]

T
r
u
e

!
(
y
[
0
]
<
=
p
[
0
]
)

y
[
0
]
<
=
p
[
0
]

Fi
g

.
2

.1
6

T
he

E
FS

M
of

Ve
ct
or
Le
ng
th

Q
ua

rt
z

pr
og

ra
m

fo
r
tw
o

-d
im

en
si

on
al

ve
ct

or
s

2 Quartz: A Synchronous Language for Model-Based Design . . . 55

be enabled in that control flow state. State 0 contains thereby the surface of the
program where the initialization of variables x,y,p of the for-loop and possibly
the assignments in its while-loop are executed. In state 5, both while-loops for
computing the squares of v[0] and v[1] are active, while in state 3 and state 4, only
the one for computing the squares of v[1] and v[0] continues with the execution.
Note that these states may also execute the summation next(p[0])= p[0]+p[1]
in case the loop terminates. State 1 corresponds with label w1 and executes the
code between w1 and w2, and finally state 2 executes the code from w2 back to w2
or leaving the loop. State 6 is a final sink state that is always added for technical
reasons.

A naive way to generate the EFSM states is to take all possible 2n states and
compute the transitions from each one. However, as many states are generally not
reachable, that algorithm would always need exponential time, even for programs
that lead to compact EFSMs. Therefore, a better way to compute the EFSM is an
abstract simulation of the program according to the operational semantics of the
Quartz language.

As the control flow is explicitly enumerated, EFSMs may suffer from state-space
explosion since n control flow locations may result in 2n EFSM states. It is not only
the amount of (control flow) states that poses problems, but the guarded actions for
the data flow must be also replicated. However, for many practical examples, the
EFSM size is still manageable, and due to the performed pre-computation, it can
be optimized in many ways and can produce the fastest target code at the end. It
is straightforward to generate a sequential program from an EFSM: For example,
we can first define for every state a sequential code starting with a unique label and
ending with a goto statement to the next code fragment of the corresponding target
state.

It is important to see the difference between an EFSM and control flow
graphs used in classic compiler design. While “states” of classic control/data flow
graphs consist of assignments that are sequentially executed, states of the EFSM
contain still guarded actions that are concurrently executed within one macro step.
Moreover, transitions in the EFSM terminate a macro step of the synchronous
model, so that new values of the input variables are read on the transition. Due to
these differences, many transformations made in classic code optimization cannot
directly be applied on EFSMs for code generation of synchronous programs.

2.6 Conclusions and Future Extensions

The synchronous model of computation can perfectly model reactive systems since
its programming paradigm directly reflects the execution steps of these systems:
Within a reaction step, inputs are read, and outputs are immediately computed
as the reaction to these inputs. We derived the language Quartz from the classic
Esterel language and modified its syntax and semantics to allow a more convenient
description of hardware circuits. We also developed a formally verified compilation
to synchronous guarded actions that are used as internal representation in our design

56 K. Schneider and J. Brandt

framework Averest. Using the guarded actions, various analyses are performed, in
particular, the causality analysis, so that robust and deterministic system models
are guaranteed. For causally correct systems, we can then generate both hardware
circuits and programs, where the latter can now also be done with multiple threads.
Future extensions of the language cover clocked signals that can be absent at some
points of time which removes the need to synchronize generated software threads
between the macro steps by completely desynchronizing the threads. Moreover, the
current version of Quartz already supports hybrid systems so that one can also
model a discrete system in its physical environment, e.g., for simulation or formally
proving important safety properties.

References

1. Benveniste A, Bournai P, Gautier T, Le Guernic P (1985) SIGNAL: a data flow oriented
language for signal processing. Research report 378, Institut National de Recherche en
Informatique et en Automatique (INRIA), Rennes

2. Benveniste A, Caspi P, Edwards S, Halbwachs N, Le Guernic P, de Simone R (2003) The
synchronous languages twelve years later. Proc IEEE 91(1):64–83

3. Berry G (1992) A hardware implementation of pure Esterel. Sadhana 17(1):95–130
4. Berry G (1999) The constructive semantics of pure Esterel. http://www-sop.inria.fr/members/

Gerard.Berry/Papers/EsterelConstructiveBook.pdf
5. Berry G (2000) The Esterel v5 language primer. ftp://ftp.inrialpes.fr/pub/synalp/reports/

esterel-primer.pdf.gz
6. Berry G, Gonthier G (1992) The Esterel synchronous programming language: design, seman-

tics, implementation. Sci Comput Program 19(2):87–152
7. Boussinot F (1998) SugarCubes implementation of causality. Research report 3487, Institut

National de Recherche en Informatique et en Automatique (INRIA), Sophia Antipolis
8. Brandt J (2013) Synchronous models for embedded software. Master’s thesis, Department of

Computer Science, University of Kaiserslautern. Habilitation
9. Brandt J, Gemünde M, Schneider K, Shukla S, Talpin JP (2012) Representation of syn-

chronous, asynchronous, and polychronous components by clocked guarded actions. Des
Autom Embed Syst (DAEM). doi:10.1007/s10617-012-9087-9

10. Brandt J, Gemünde M, Schneider K, Shukla S, Talpin JP (2013) Embedding polychrony into
synchrony. IEEE Trans Softw Eng (TSE) 39(7):917–929

11. Brandt J, Schneider K (2011) Separate translation of synchronous programs to guarded
actions. Internal report 382/11, Department of Computer Science, University of Kaiserslautern,
Kaiserslautern

12. Brandt J, Schneider K, Shukla S (2010) Translating concurrent action oriented specifications
to synchronous guarded actions. In: Lee J, Childers B (eds) Languages, compilers, and tools
for embedded systems (LCTES). ACM, Stockholm, pp 47–56

13. Brzozowski J, Seger CJ (1995) Asynchronous circuits. Springer, New York/Berlin
14. Cassandras C, Lafortune S (2008) Introduction to discrete event systems, 2nd edn. Springer,

New York
15. Chandy K, Misra J (1989) Parallel program design. Addison-Wesley, Austin
16. Closse E, Poize M, Pulou J, Sifakis J, Venter P, Weil D, Yovine S (2001) TAXYS: a tool for the

development and verification of real-time embedded systems. In: Berry G, Comon H, Finkel A
(eds) Computer aided verification (CAV). LNCS, vol 2102. Springer, Paris, pp 391–395

17. Closse E, Poize M, Pulou J, Venier P, Weil D (2002) SAXO-RT: interpreting Esterel semantics
on a sequential execution structure. Electron Notes Theor Comput Sci (ENTCS) 65(5):80–94.
Workshop on synchronous languages, applications, and programming (SLAP)

http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
ftp://ftp.inrialpes.fr/pub/synalp/reports/esterel-primer.pdf.gz
ftp://ftp.inrialpes.fr/pub/synalp/reports/esterel-primer.pdf.gz
http://dx.doi.org/10.1007/s10617-012-9087-9

2 Quartz: A Synchronous Language for Model-Based Design . . . 57

18. Dill D (1996) The Murphi verification system. In: Alur R, Henzinger T (eds) Computer aided
verification (CAV). LNCS, vol 1102. Springer, New Brunswick, pp 390–393

19. Edwards S (2002) An Esterel compiler for large control-dominated systems. IEEE Trans
Comput Aided Des Integr Circuits Syst (T-CAD) 21(2):169–183

20. Edwards S (2003) Making cyclic circuits acyclic. In: Design automation conference (DAC).
ACM, Anaheim, pp 159–162

21. Edwards S, Kapadia V, Halas M (2004) Compiling Esterel into static discrete-event code. In:
Synchronous languages, applications, and programming (SLAP), Barcelona

22. Gamatie A (2010) Designing embedded systems with the SIGNAL programming language.
Springer, New York

23. Gamatié A, Gautier T, Le Guernic P, Talpin J (2007) Polychronous design of embedded real-
time applications. ACM Trans Softw Eng Methodol (TOSEM) 16(2), Article 9. http://dl.acm.
org/citation.cfm?id=1217298

24. Halbwachs N, Maraninchi F (1995) On the symbolic analysis of combinational loops in circuits
and synchronous programs. In: Euromicro conference. IEEE Computer Society, Como

25. Harel D, Naamad A (1996) The STATEMATE semantics of statecharts. ACM Trans Softw
Eng Methodol (TOSEM) 5(4):293–333

26. Howard W (1980) The formulas-as-types notion of construction. In: Seldin J, Hindley J
(eds) To H.B. Curry: essays on combinatory logic, lambda-calculus and formalism. Academic,
London/New York, pp 479–490

27. Järvinen H, Kurki-Suonio R (1990) The DisCo language and temporal logic of actions.
Technical report 11, Tampere University of Technology, Software Systems Laboratory

28. Ju L, Huynh B, Chakraborty S, Roychoudhury A (2009) Context-sensitive timing analysis
of Esterel programs. In: Design automation conference (DAC). ACM, San Francisco,
pp 870–873

29. Ju L, Khoa Huynh, B., Roychoudhury A, Chakraborty S (2010) Timing analysis of Esterel
programs on general purpose multiprocessors. In: Sapatnekar S (ed) Design automation
conference (DAC). ACM, Anaheim, pp 48–51

30. Lamport L (1991) The temporal logic of actions. Technical report 79, Digital Equipment
Cooperation

31. Li YT, Malik S (1999) Performance analysis of real-time embedded software. Kluwer,
Boston/Dordrecht

32. Logothetis G, Schneider K (2003) Exact high level WCET analysis of synchronous programs
by symbolic state space exploration. In: Design, automation and test in Europe (DATE). IEEE
Computer Society, Munich, pp 10196–10203

33. Malik S (1993) Analysis of cyclic combinational circuits. In: International conference on
computer-aided design (ICCAD). IEEE Computer Society, Santa Clara, pp 618–625.

34. Malik S (1994) Analysis of cycle combinational circuits. IEEE Trans Comput Aided Des Integr
Circuits Syst (T-CAD) 13(7):950–956

35. Poigné A, Holenderski L (1995) Boolean automata for implementing pure Esterel. Arbeitspa-
piere 964, GMD, Sankt Augustin

36. Potop-Butucaru D, de Simone R (2003) Optimizations for faster execution of Esterel programs.
In: Formal methods and models for codesign (MEMOCODE). IEEE Computer Society, Mont
Saint-Michel, pp 227–236

37. Potop-Butucaru D, Edwards S, Berry G (2007) Compiling Esterel. Springer, Boston
38. Rocheteau F, Halbwachs N (1992) Implementing reactive programs on circuits: a hardware

implementation of LUSTRE. In: de Bakker J, Huizing C, de Roever WP, Rozenberg G (eds)
Real-time: theory in practice. LNCS, vol 600. Springer, Mook, pp 195–208

39. Rocheteau F, Halbwachs N (1992) Pollux: a Lustre-based hardware design environment. In:
Quinton P, Robert Y (eds) Algorithms and parallel VLSI architectures II. Elsevier, Gers,
pp 335–346

40. Schneider K (2000) A verified hardware synthesis for Esterel. In: Rammig F
(ed) Distributed and parallel embedded systems (DIPES). Kluwer, Schloß Ehringerfeld,
pp 205–214

http://dl.acm.org/citation.cfm?id=1217298
http://dl.acm.org/citation.cfm?id=1217298

58 K. Schneider and J. Brandt

41. Schneider K (2001) Embedding imperative synchronous languages in interactive theorem
provers. In: Application of concurrency to system design (ACSD). IEEE Computer Society,
Newcastle Upon Tyne, pp 143–154

42. Schneider K (2002) Proving the equivalence of microstep and macrostep semantics. In:
Carreño V, Muñoz C, Tahar S (eds) Theorem proving in higher order logics (TPHOL). LNCS,
vol 2410. Springer, Hampton, pp 314–331

43. Schneider K (2009) The synchronous programming language Quartz. Internal report 375,
Department of Computer Science, University of Kaiserslautern, Kaiserslautern

44. Schneider K, Brandt J (2008) Performing causality analysis by bounded model checking.
In: Application of concurrency to system design (ACSD). IEEE Computer Society, Xi’an,
pp 78–87

45. Schneider K, Brandt J, Schüle T (2004) Causality analysis of synchronous programs with
delayed actions. In: Compilers, architecture, and synthesis for embedded systems (CASES).
ACM, Washington, pp 179–189

46. Schneider K, Brandt J, Schüle T (2004) A verified compiler for synchronous programs
with local declarations (proceedings version). In: Synchronous languages, applications, and
programming (SLAP), Barcelona

47. Schneider K, Brandt J, Schüle T (2006) A verified compiler for synchronous programs with
local declarations. Electron Notes Theor Comput Sci (ENTCS) 153(4):71–97

48. Schneider K, Brandt J, Schüle T, Türk T (2005) maximal causality analysis. In: Desel J,
Watanabe Y (eds) Application of concurrency to system design (ACSD). IEEE Computer
Society, Saint-Malo, pp 106–115

49. Schneider K, Wenz M (2001) A new method for compiling schizophrenic synchronous
programs. In: Compilers, architecture, and synthesis for embedded systems (CASES). ACM,
Atlanta, pp 49–58

50. Schüle T, Schneider K (2004) Abstraction of assembler programs for symbolic worst case
execution time analysis. In: Malik S, Fix L, Kahng A (eds) Design automation conference
(DAC). ACM, San Diego, pp 107–112

51. Shiple T (1996) Formal analysis of synchronous circuits. PhD thesis, University of California,
Berkeley

52. Shiple T, Berry G, Touati H (1996) Constructive analysis of cyclic circuits. In: European design
automation conference (EDAC). IEEE Computer Society, Paris, pp 328–333

53. Shiple T, Singhal V, Brayton R, Sangiovanni-Vincentelli A (1996) Analysis of combinational
cycles in sequential circuits. In: International symposium on circuits and systems (ISCAS),
Atlanta, pp 592–595

54. Tardieu O, de Simone R (2004) Curing schizophrenia by program rewriting in Esterel. In:
Formal methods and models for codesign (MEMOCODE). IEEE Computer Society, San
Diego, pp 39–48

3SysteMoC: A Data-Flow Programming
Language for Codesign

Joachim Falk, Christian Haubelt, Jürgen Teich, and
Christian Zebelein

Abstract

Computations in hardware/software systems are inherently performed concur-
rently. Hence, modeling hardware/software systems requires notions of con-
currency. Data-flow models have been and are still successfully applied in
the modeling of hardware/software systems. In this chapter, we motivate and
introduce the usage of data-flow models. Moreover, we discuss the expressive-
ness and analyzability of different data-flow Models of Computation (MoCs).
Subsequently, we present SysteMoC, an approach supporting many data-flow
MoCs based on the system description language SystemC. Besides specifying
data-flow models, SystemMoC also permits the automatic classification of each
different part of an application modeled in SysteMoC into a least expressive but
most analyzable MoC. This classification is the key to further optimization in
later design stages of hardware/software systems such as exploration of design
alternatives as well as automatic code generation and hardware synthesis. Such
optimization and refinement steps are employed as part of the SYSTEMCODE-
SIGNER design flow that uses SysteMoC as its input language.

J. Falk (�) • J. Teich
Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Erlangen, Germany
e-mail: joachim.falk@fau.de; juergen.teich@fau.de

C. Haubelt
Department of Computer Science and Electrical Engineering, Institute of Applied
Microelectronics and Computer Engineering, University of Rostock, Rostock, Germany
e-mail: christian.haubelt@uni-rostock.de

C. Zebelein
Valeo Siemens eAutomotive Germany GmbH, Erlangen, Germany
e-mail: christian.zebelein.jv@valeo-siemens.com

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_4

59

mailto:joachim.falk@fau.de;
mailto:juergen.teich@fau.de
mailto:christian.haubelt@uni-rostock.de
mailto:christian.zebelein.jv@valeo-siemens.com

60 J. Falk et al.

Acronyms

BDF Boolean Data Flow
CIC Common Intermediate Code
CPU Central Processing Unit
CSDF Cyclo-Static Data Flow
DDF Dennis Data Flow
DFG Data-Flow Graph
DSE Design Space Exploration
FIFO First-In First-Out
FSM Finite-State Machine
FunState Functions Driven by State Machines
HSCD Hardware/Software Codesign
HSDF Homogeneous (Synchronous) Data Flow
KPN Kahn Process Network
MoC Model of Computation
NDF Non-Determinate Data Flow
SDF Synchronous Data Flow
SysteMoC SystemC Models of Computation

Contents

3.1 Introduction . 60
3.2 Overview of Basic Data-Flow Models . 62

3.2.1 Data Flow. 63
3.2.2 Static Data Flow. 65
3.2.3 Dynamic Data Flow. 68

3.3 Informal Introduction to SysteMoC . 73
3.3.1 Specification of the Network Graph . 74
3.3.2 Specification of Actors . 75
3.3.3 Specification of the Communication Behavior . 77

3.4 Semantics and Execution Behavior of SysteMoC . 79
3.5 Analysis of SysteMoC Models . 82

3.5.1 Representing SDF and CSDF Actors in SysteMoC . 83
3.5.2 SDF and CSDF Semantics Identification for SysteMoC Actors 84

3.6 Hardware/Software Codesign with SysteMoC. 91
3.7 Conclusions . 94
References . 95

3.1 Introduction

Due to the rising capabilities of embedded systems, their complexity has also
increased tremendously. As a consequence, embedded systems are no longer
implemented on a single computational resource, but in the form of a com-
plex hardware/software system consisting of multiple connected heterogeneous
resources including processor cores, hardware accelerators, and complex commu-
nication infrastructure to connect all these components. Hence, languages used

3 SysteMoC: A Data-Flow Programming Language for Codesign 61

for implementing and modeling applications to be mapped to such embedded
systems need the ability to reflect and exploit the parallelism inherent in such target
architectures.

Although threads seem to be a small step from sequential computation, in fact, they
represent a huge step. They discard the most essential and appealing properties of sequential
computation: understandability, predictability, and determinism.

— From “The Problem with Threads,” by Edward A. Lee [27]

The above observation causes problems for the traditional implementation of
embedded systems via sequential programming languages, as these languages
typically handle concurrency only by using threads. Data flow, in contrast, is
a modeling paradigm well-suited for the modeling of concurrent systems by
concurrent actors that perform computation depending on the availability of tokens
carrying data transmitted between them via First-In First-Out (FIFO) channels.
Thus, data-flow models are particularly useful for modeling streaming applications
as commonly found in the multimedia or networking domain and, hence, are
a natural fit for modeling embedded systems, which should be implemented as
codesigned hardware/software systems.

Over the last decades, many data-flow Models of Computation (MoCs) have
been developed. They are usually classified according to their expressiveness, i.e.,
which kind of applications can be modeled by using a given data-flow MoC. It
can be observed that analyzability of data-flow MoCs is inversely related to their
expressiveness, i.e., there are problems which are decidable for less expressive
data-flow MoCs, but are not decidable for more expressive ones (see Fig. 3.1).
As analyzability of properties such as required bandwidth of channels, deadlock
freedom, or schedulability issues is very important in early design phases of an
embedded system, data-flow MoCs with a high analyzability are usually desirable.
For example, scheduling of actors on computational resources at compile time
(static scheduling) is usually preferred over scheduling at run time (dynamic
scheduling) in order to reduce the overhead incurred by the scheduling strategy.
However, static schedules can only be computed for data-flow MoCs with limited
expressiveness, as discussed below.

In Sect. 3.2, we give a survey and classify different data-flow models start-
ing with static data-flow models and subsequently increasing the expressiveness
of the models up to Non-Determinate Data Flow (NDF) [26]. Based on these
discussions, we will introduce the SystemC Models of Computation (SysteMoC)
modeling language [11,12] by example in Sect. 3.3. This language has strong formal
underpinnings in data-flow modeling, but with the distinction that the expressiveness
of the data-flow model used by an actor is not chosen in advance but determined
from the implementation of the actor [12, 45]. Later on, in Sect. 3.4, we will
provide a definition of the formal semantics of the language. To support modeling
of even very complex real-world applications, the SysteMoC language realizes
the NDF model. Nonetheless, to enable some SysteMoC applications to reap the
benefits of analyzability of less expressive MoCs, the SysteMoC language—in

62 J. Falk et al.

static data-flow MoCs dynamic data-flow MoCs

SDF CSDF BDF DDF KPN NDFHSDF

increased expressiveness

increased analyzability

Fig. 3.1 Depicted above is a hierarchy [40] of various data-flow MoCs. The hierarchy is
partitioned into static (light blue) data-flow MoCs and dynamic (light red) data-flow MoCs. A
detailed explanation of the three static data-flow MoCs Homogeneous (Synchronous) Data Flow
(HSDF), Synchronous Data Flow (SDF), and Cyclo-Static Data Flow (CSDF) that are well known
from literature will be given in Sect. 3.2.2. Moreover, the dynamic data-flow MoCs Boolean Data
Flow (BDF), Dennis Data Flow (DDF), Kahn Process Networks (KPNs), and Non-Determinate
Data Flow (NDF) will be discussed in Sect. 3.2.3

contrast to general design languages such as SystemC—enforces a distinction
between communication and computation of an actor. In Sect. 3.5, it will be shown
how this distinction between communication and computation can be exploited
in order to classify a SysteMoC actor into one of the static data-flow models
(light blue in Fig. 3.1) in the hierarchy of data-flow model expressiveness. Hence,
if the high expressiveness of SysteMoC is not used by a SysteMoC actor, then
analysis techniques may detect this and classify the actor into a data-flow model
of lower expressiveness but higher analyzability. The classification provides only
a sufficient criterion if a general SysteMoC actor conforms to one of the static
data-flow models. This limitation stems from the fact that the problem in general is
undecidable. The chapter concludes with an overview of the SYSTEMCODESIGNER,
a codesign framework based on SysteMoC as its design language. Here, we will
give examples how SysteMoC may not only be used to integrate with Design Space
Exploration (DSE) (More details on the DSE part within SYSTEMCODESIGNER can
be found in �Chap. 7, “Hybrid Optimization Techniques for System-Level Design
Space Exploration”.), but also subsequent hardware/software code generation in the
refinement to its final implementation.

3.2 Overview of Basic Data-Flow Models

Data flow is a modeling paradigm well-suited for the modeling of concurrent
systems by concurrently executing actors. Thus, data flow is a natural fit for
the modeling of embedded hardware/software systems where the interaction and
execution (control) of its functions is ruled by the availability of data. In the case
of control-dominated systems, the synchronous approach presented in �Chap. 2,
“Quartz: A Synchronous Language for Model-Based Design of Reactive Embedded
Systems” is more convenient for their modeling. In the following, a general

3 SysteMoC: A Data-Flow Programming Language for Codesign 63

introduction to data flow is given in Sect. 3.2.1. Moreover, the trade-off between
analyzability and expressiveness of these MoCs will be discussed. Data-flow models
can be classified into static data-flow models, known for their high analyzability
but low expressiveness, and dynamic data-flow models, known for their high
expressiveness but low analyzability. Next, three important static data-flow models
HSDF [6], SDF [28], and CSDF [3] known from literature will be recapitulated
in Sect. 3.2.2. Finally, in Sect. 3.2.3, dynamic data-flow models such as KPNs [24] as
well as usual realizations of them in the form of DDF [7] and BDF [5] are discussed.

3.2.1 Data Flow

A Data-Flow Graph (DFG) [24] is a graph consisting of vertices called actors and
directed edges called channels. Whereas actors are used to model functionality, thus
computations to be executed, channels represent data communication and storage
requiring memory for their implementation. If not otherwise stated, channel memory
is conceptually considered to be unbounded, thus representing a possibly infinite
amount of storage. Moreover, the computation of an actor is usually [7] separated
into distinct steps. These steps are called actor firings. An actor firing is an atomic
computation step that consumes a number of data items called tokens from each
incoming channel and produces a number of tokens on each outgoing channel. More
formally, a DFG is defined as follows:

Definition 1 (Data-Flow Graph). A DFG is a directed graph g D .A; C /, where
the set of vertices A represents the set of actors and the set of edges C � A � A

represents the set of channels. Additionally, a delay function delay W C ! V �

is given. (The “*”-operator is used to denote Kleene closure of a value set. It
generates the set of all possible finite and infinite sequences of values from the
value set, that is X� D [n 2 N0 W X

n. N0 denotes the set of non-negative integers,
that is f 0; 1; 2; : : : g.) It assigns to each channel .asrc; asnk/ D c 2 C a (possibly
empty) sequence of initial tokens. (In some data-flow models that abstract from
token values, the delay function may only return a non-negative integer that denotes
the number of initial tokens on the channel. In such a context, the number of initial
tokens may also be called the delay of a channel.) The set V is the set of data values
which can be carried by a token. Finally, a channel capacity can be stated via the
channel capacity function size W C ! N0 that denotes the maximal number of
tokens a channel can store.

An example of a very simple DFG according to Definition 1 is depicted in
Fig. 3.2. It consists of two actors a1 and a2 which are connected by a channel c1.
A channel has, if not otherwise stated, an infinite channel capacity, i.e., it can store
an infinite number of tokens that are in transit between the two actors connected
by the channel. For notational convenience, the src and snk functions are used to
refer, respectively, to the source actor, e.g., src.c1/ D a1, and the sink actor, e.g.,
snk.c1/ D a2, of a channel.

64 J. Falk et al.

src(c1)

Channel c1

snk(c1)

a1

a1

a1

a1

a1

a1

a2

a2

a2

a2

a2

a2

Actor a1 Actor a2

Token carrying value n1
has been produced by a1

n1

n2 n3

n1

Token carrying value n1
will be consumed by a2

a b c

d e f

c1

n2

Fig. 3.2 A DFG consisting of a single channel communicating data produced by actor a1 and
consumed by actor a2. (a) Initial state of the DFG g. (b) Token production by actor a1. (c) Token
consumption by actor a2. (d) Initial state is again reached after consumption of the token. (e) After
production of a second token by actor a1. (f) Production of a third token by a1 while actor a2 is
consuming the second token

The channel c1 enables a transmission of data values �1; �2; �3; : : : from a1 to
a2. Each data value is carried by a token. For data-flow models, a token represents
the atomic unit of data production and consumption. Tokens are generally queued
(as exemplified in Fig. 3.2b, e, f) and de-queued (Fig. 3.2c, f) on a channel in FIFO
order. Between Fig. 3.2a, b, an actor firing of actor a1 has occurred, producing a
token with value �1. Next, in Fig. 3.2c, the first actor firing of actor a2 consumes the
token and its contained data value �1. The state of a DFG is given by the number
and values of tokens on each channel as well as, possibly, the internal states of all
actors. For analysis purposes of static data-flow models, the values of these tokens
as well as the internal state of all actors may be ignored. Hence, a state equivalent
to the initial state is again reached in Fig. 3.2d. The significance of this observation
will be discussed in more detail in Sect. 3.2.2.1.

In Fig. 3.2d–f, another two tokens (�2 and �3) are produced by actor a1 and the
second token (�2) is in the process of being consumed by actor a2. A resulting
next state of the DFG after the second firing of actor a2 is not depicted in
Fig. 3.2, but consists of the DFG where only the token with value �3 remains on
the channel.

An actor is fireable (also called enabled) if and only if all the tokens the next
actor firing will consume are present on the input channels of the actor, e.g., the
actor a2 is enabled in Fig. 3.2b, c, e, f as a token, which is the only token that will
be consumed by a firing of a2, is present on the channel.

The literature on data-flow MoCs is very broad. Indeed, decades of research
[1, 3, 5–7, 11–14, 16–19, 21, 22, 24, 28, 29, 31, 33, 34, 41, 45] into its applications
have led to a multitude of different data-flow models. All of them make different
trade-offs between their expressiveness and their analyzability, e.g., with respect to
deadlock freedom, the ability to be executed in bounded memory, or the possibility
to be scheduled at compile time. In the following, the most important data-flow
MoCs are briefly reviewed, starting with those data-flow models with the least
expressiveness.

3 SysteMoC: A Data-Flow Programming Language for Codesign 65

3.2.2 Static Data Flow

Of primary interest for the expressiveness of a data-flow model are production and
consumption rates. The production rate (prod.c/) of an actor firing to a connected
channel c is the number of tokens which are produced by that actor on the channel
while firing. Consider Fig. 3.2b as an example where the first firing of actor a1
produces one token onto channel c1. Therefore, the production rate of the first
firing of actor a1 to channel c1 is one. The consumption rate (cons.c/) is defined
analogously, e.g., Fig. 3.2c depicts a situation where the first firing of actor a2
consumes one token from channel c1. Thus, the consumption rate of the first firing
of actor a2 from channel c1 is one. That is, the consumption rate of an actor firing
from a connected channel is the number of tokens which are consumed by that actor
from the channel while firing.

Now, an actor is called a static data-flow actor if its production and consumption
rates are (1) not dependent on the values of the tokens which are consumed by
the actor, (2) not dependent on the points in time at which tokens arrive on the
input channels or free places become available at the output channels, and (3)
not dependent on some random process. Thus, the communication behavior of a
static actor can be fully predicted at compile time. The consumption and production
rates of an actor are even further constrained in well-known static data-flow models,
which are presented in the following.

3.2.2.1 Homogeneous Data Flow
The simplest data-flow model is Homogeneous (Synchronous) Data Flow (HSDF).
(Note that the term synchronous in the name of two data-flow MoCs introduced
in this chapter was coined in the original paper [29], but is, unfortunately, totally
independent from the semantics of the term as used for synchronous languages that
were introduced in �Chap. 2, “Quartz: A Synchronous Language for Model-Based
Design of Reactive Embedded Systems”.) Data-flow graphs corresponding to
this data-flow model are also known as marked graphs [6] in literature. The
communication behavior of HSDF actors is constrained in such a way that each
actor firing must produce and consume exactly one token on, respectively, each
outgoing and incoming channel, i.e., 8c 2 C W cons.c/ D prod.c/ D 1. Due to
the low modeling power of the HSDF model, it is also highly analyzable; e.g., if
each actor in an HSDF has fired exactly once, then the graph will be back to its
initial state. If we assume that the DFG depicted in Fig. 3.2 is an HSDF graph, then
firing actors a1 and a2 both once will transmit one token (�1) over the channel and
lead back to the initial state (shown in Fig. 3.2a–d) where no token is present on the
channel. These two actor firings ha1; a2i realize a so-called iteration of the graph. It
is proven in [6] that an HSDF graph has such an iteration if and only if each directed
cycle of the graph contains at least one initial token. Briefly, a deadlock results in
case there exists a cycle without any initial tokens in the graph because each actor
that is part of this cycle can never fire as it awaits the production of a token by its
predecessor actor in the cycle.

66 J. Falk et al.

3
2 3
2 3

cons(c1) = 1

prod(c1) = 3
c1

c2

c3

a1 a3a2

3

3
2 3
2 3c1

c2

c

a1 a3a2
3

2 3
2 3c1

c2

c3

a1 a3a2

3
2 3
2 3c1

c2

c3

a1 a3a2

a b c

d e f
3

2 3
2 3c1

c2

c3

a1 a3a2
3

2 3

2 3c1

c2

c3

a1 a3a2

Fig. 3.3 Example of a Synchronous Data Flow graph and a sequence of actor firings realizing the
iteration of the graph. (a) Initial state of the SDF graph. (b) After firing of actor a3. (c) After firing
of actor a1. (d) After firing of actor a2. (e) After firing of actor a2. (f) After firing of actor a3 (The
next firing of actor a2 will lead back to the initial state)

3.2.2.2 Synchronous Data Flow
In the Synchronous Data Flow (SDF) [29] MoC, the communication behavior of the
actors is constrained to have consumption and production rates being constant for
all firings of an actor. Moreover, consumption and production rates for all connected
channels are assumed to be arbitrary positive integer constants. Therefore, in SDF,
the consumption and production rates can be expressed by the consumption rate
function cons W C ! N and the production rate function prod W C ! N that
specify for each channel c 2 C , respectively, the number of consumed tokens from
the channel by an actor firing of the actor snk.c/ and the number of produced tokens
onto the channel by an actor firing of the actor src.c/. (The symbol N is used to
denote the set of natural numbers, that is the set f 1; 2; 3; : : : g.)

In visual representations of SDF graphs, as usual, the consumption and produc-
tion rates are annotated at the beginnings and endings of the channel edges. An
example of an SDF graph is depicted in Fig. 3.3a. Consumption and production
rates of one, e.g., cons.c1/ D 1, are traditionally not annotated to reduce clutter.

The question arises which conditions are necessary and sufficient for the
existence of an iteration of a SDF graph. It is proven in [28] that such an iteration
can be determined by balance equations. Each balance equation corresponds to
one channel in the SDF graph. The balance equation for a channel c is given
as: 	src.c/ � prod.c/ D 	snk.c/ � cons.c/, where the variable 	src.c/ denotes the
number of actor firings of the actor producing tokens onto channel c while 	snk.c/

denotes the number of actor firings of the actor consuming tokens from channel
c. Given prod.c/ and cons.c/, the left and right sides of the equation denote the
number of tokens that have been produced and consumed by the 	src.c/ source actor
and 	snk.c/ sink actor firings, respectively. For the graph depicted in Fig. 3.3a, the
balance equations corresponding to the three channels c1 to c3 of the graphs are
as follows:

	a1 � 3 D 	a2 � 1 	a2 � 2 D 	a3 � 3 	a3 � 3 D 	a2 � 2 (3.1)

3 SysteMoC: A Data-Flow Programming Language for Codesign 67

For an iteration, both sides of the equation must balance, otherwise an iteration
would not bring the graph into the same state as it has started from. Hence, a solution
besides the trivial zero solution is a necessary condition [28] for the existence of an
iteration. If there exists such a solution for a static DFG, then this graph is called
consistent.

In Equation (3.1), the number of firings for the actors a1 to a3 are given by 	a1
to 	a3 , respectively. Using the convention established in [2], the minimum positive
integer solution to the set of balance equations, e.g., �rep D .	a1 ; 	a2 ; 	a3/ D

.1; 3; 2/, is called the repetition vector �rep of an SDF graph. The length of
this iteration is determined by summing all the entries of the repetition vector,
e.g., for the SDF graph in Fig. 3.3a, the iteration can be realized by a sequence
ha3; a1; a2; a2; a3; a2i of 	a1 C 	a2 C 	a3 D 6 actor firings as shown in Fig. 3.3a–f.

However, the existence of a repetition vector does not guarantee that a sequence
of actor firings can be found that realizes the iteration. To exemplify, the four initial
tokens of the SDF graph depicted in Fig. 3.3a are removed. This does not change
the calculation or existence of the repetition vector of the SDF graph. However,
without any initial tokens, neither actor a2 nor actor a3 can ever be fired. In general,
a necessary and sufficient criterion of the existence of the iteration is to test whether
a computed repetition vector may also execute as an iterative deadlock-free schedule
by firing each fireable actor as many times as implied by the repetition vector until
the iteration is finished or a deadlock has occurred. Note that in the general case, the
length of the iteration may be exponential in the size of the SDF graph. Hence, in
contrast to HSDF models, where the question of the existence of an iteration can be
answered in polynomial time [20], the problem is only solvable in exponential time
for SDF graphs [32].

3.2.2.3 Cyclo-Static Data Flow
An extension of the SDF model is Cyclo-Static Data Flow (CSDF). In the CSDF [3]
MoC, the communication behavior of an actor is extended to allow for cyclically
varying consumption and production rates between actor firings. The length of this
cycle is known as the number � of phases of a CSDF actor. An actor firing of a
CSDF actor is also known as a CSDF phase. To accommodate the cyclically varying
consumption and production rates, the consumption and production rate functions
have to be extended to return vectors of length � (the number of phases of the CSDF
actor consuming or producing tokens), i.e., the functions cons W C ! N

�
0 and

prod W C ! N
�
0 specify for each channel c 2 C a vector .n0; n1; : : : ; n��1/ where

each vector entry corresponds to the consumption or production rate of the CSDF
actor in the corresponding phase.

The question whether there exists an iteration can again be answered by solving
the appropriate balance equations—answering the question of the consistency of
the CSDF graph—and if the graph is consistent by testing whether the computed
repetition vector may also execute as an iterative deadlock-free schedule. For the
purpose of calculating the repetition vector, all CSDF actors can be replaced by
SDF actors with consumption and production rates derived by summing all rates in
the corresponding vectors of consumption and production rates of the CSDF actors.

68 J. Falk et al.

Hence, the balance equation for a channel c from actor asrc to actor asnk with the
respective production and consumption rates prod.c/ D .n0; n1; : : : n�src�1/ and
cons.c/ D .m0;m1; : : : m�snk�1/ is as follows:

	asrc

�src
� .n0 C n1 C : : :C n�src�1/ D

	asnk

�snk
� .m0 Cm1 C : : :Cm�snk�1/

As is the case for SDF models, the smallest positive integer solution of the balance
equations uniquely determines the (minimal) repetition vector of the CSDF graph.
Finally, the existence of a valid iteration corresponding to the repetition vector needs
to be verified as—like in SDF—the existence of the repetition vector is only a
necessary but not sufficient criterion for the existence of the iteration.

3.2.3 Dynamic Data Flow

In contrast to static data-flow models, where the consumption and production rates
cannot be influenced by the values of the consumed tokens, dynamic data-flow
actors can vary their consumption and production rates depending on the history of
the consumed tokens and also on the tokens to be consumed. Dynamic data flow
is the first introduced data-flow model where consumption and production rates
depend on the data values being consumed and produced.

3.2.3.1 Boolean Data Flow
Boolean Data Flow (BDF) [5] can be seen as an extension of the class of static data-
flow models by introducing two dynamic actor types, the switch actor and the select
actor. In the following, the notion of ports will be used interchangeably with the
channels connected to these ports. Hence, expressions like cons.i/ and prod.o/ are
used to refer to the consumption rate and production rate on the channel connected
to the respective input or output port. This enables us to depict an actor and show its
implementation in isolation, e.g., as has been used in Fig. 3.4.

Input ports of actor
a b

aswt

Output ports of actoraswt

aswti1

ot

of

ictrl

Input ports of actor asel

Output port of actorasel

aselif

it o1

ictrl

Fig. 3.4 Shown here are the BDF switch and select actors with their corresponding input and
output ports. The color scheme chosen to distinguish static and dynamic actors has been selected
according to the colors marking static and dynamic MoCs in Fig. 3.1. (a) Depiction of the switch
actor aswt in isolation. (b) Depiction of the select actor asel in isolation

3 SysteMoC: A Data-Flow Programming Language for Codesign 69

Moreover, let t (true) and f (false) denote the Boolean truth values. The switch
actor, depending on the truth value of a control token (see Fig. 3.4a) from its control
input port ictrl, forwards a token from its input port i1 to either its true (ot) or its false
(of) output port. The select actor acts in the opposite way, i.e., depending on the truth
value of a control token (see Fig. 3.4b) from its control input port ictrl, it forwards a
token from either its true (it) or its false (if) input port to its output port o1.

The usage of these two dynamic actor types together with the arithmetic
primitives enable the construction of arbitrary control flow structures. The channels
(of infinite capacity) can be used to represent an infinite memory. Simple arithmetic
operations are supported by BDF via its ability to model static actors, e.g., like
an SDF actor implementing an addition. Together with the control flow logic, a
Turing machine can be implemented by the BDF model [5]. Hence, the existence
of iterations or the problem of execution in bounded memory is in general already
undecidable for BDF graphs.

3.2.3.2 Dennis Data Flow
Dennis Data Flow (DDF) [7] is an extension of BDF by allowing all dynamic actors
that are realizable by using (blocking) read and (blocking) write communication
primitives. Code inside DDF actors is assumed to be executed sequentially, e.g., as
seen in Fig. 3.5b, c. A blocking read or write primitive is used to receive (see Lines 3
to 4) or transmit (see Lines 5 to 6) one data value on an input or output channel,
respectively. Once a blocking read or write primitive is invoked, the execution of the
actor will block until the data value has been successfully received or transmitted.
Hence, at most one blocking read or write primitive can be active at one point in
time.

All MoCs more general than BDF according to Fig. 3.1 are Turing complete.
However, one aspect of difference is the modeling power of a single actor. An

i1

o2

o1

i2

o1

o2i2

i1

i1

i2

o1

o2

c2c1

a1

a2

gγγγ

A data-flow subgraph
consisting of two HSDF
actors

1: procedure a1
2: while t do
3: n1 ← read(a1.i1)
4: n2 ← read(a1.i2)
5: write(a1.o1,n1)
6: write(a1.o2,n2)
7: end while
8: end procedure

Implementation of the
HSDF actor a1 via the
read and write operations
provided by DDF

a b c
1: procedure a2
2: while t do
3: ν1 ← read(a2.i1)
4: ν2 ← read(a2.i2)
5: write(a2.o1,n1)
6: write(a2.o2,n2)
7: end while
8: end procedure

Implementation of the
HSDF actor a2 via the
read and write operations
provided by DDF

Fig. 3.5 Depicted above (see (a)) is the subgraph g� that can be connected with input and output
ports i1, i2, o1, and o2 to an unspecified environment. The subgraph consists of two DDF actors a1
(see (b)) and a2 (see (c)) that both implement a communication behavior that corresponds to the
HSDF MoC

70 J. Falk et al.

important question here is whether it is possible to take an arbitrary connected
subgraph of a DFG, e.g., the one shown in Fig. 3.5a, and represent it as an actor
in the data-flow model. This property is called compositionality of the MoC. If a
data-flow model is compositional, then the highly desirable operation of abstraction
becomes seamlessly possible. An abstraction operation can be performed by hiding
the implementation complexity of an arbitrary connected subgraph of the model
behind the interface of an actor. If the data-flow model is compositional, then this
composite actor, which represents the subgraph, can be handled like any other actor
in the system. Otherwise, the composite actor, e.g., the actor a� that represents the
subgraph g� , is always an exception and needs special treatment.

To exemplify, we consider the question of the least expressive MoC required to
express the composite actor a� for the subgraph g� . All HSDF actors can also be
represented by DDF actors, e.g., as shown in Fig. 3.5b, c for the actors a1 and a2
of the subgraph g� . In contrast, due to the constraint that DDF actors can only use
(blocking) read to access data from their input ports, there is no composite actor
a� that corresponds to the DDF MoC. Here, the problematic situation is that the
composite actor a� has to first produce a token on either output port o1 or output
port o2 depending on whether a token arrives first at either input port i1 or input port
i2, respectively. However, due to the (blocking) read semantics of DDF, there is no
possibility to detect on which input port a token arrives first. Once an input port has
been chosen for a read access, the DDF actor cannot process any tokens from any
other input port until a token has been successfully read.

Moreover, as the MoCs HSDF, SDF, CSDF, and BDF are all less expressive
than DDF, there is also no composite actor a� that corresponds to one of these less
expressive MoCs. Hence, as the actors a1 and a2 are of the least expressive MoC
HSDF and the composite actor cannot be expressed via the DDF MoC, all MoCs up
to and including DDF are non-compositional. In contrast, as will be shown in the
next section, the composite actor a� can be expressed as the Kahn function
a�

.
One could argue that the expressiveness of a DDF actor is not a proper superset

of the expressiveness of an HSDF actor due to the issue of atomicity in the
consumption and production of tokens that is implied by the notion of firing
of an HSDF actor. In contrast, read or write communication primitives used by
DDF actors consume or produce tokens in isolation, thus allowing the firing of
other actors to interrupt a sequence of read or write communication primitives
in the DDF actor. However, if we consider DFGs containing only actors of the
expressiveness KPN and below, then the issue of atomicity is not a relevant criterion
for the functionality of a DFG due to the sequence determinate [30] nature of such
DFGs. Briefly, if a DFG is sequence determinate, then the behavior of the DFG is
independent from the sequence of actor firings that are taken to schedule the graph.
Thus, if a sequence of read or write communication primitives is interrupted by other
actor firings or not does not influence the functionality of the DFG. In conclusion,
the issue of atomicity is not relevant for the proof of non-compositionality of MoCs
DDF and below.

If atomicity should also be considered in the hierarchy of data-flow model
expressiveness, then the semantics of DDF must be extended to allow grouping of

3 SysteMoC: A Data-Flow Programming Language for Codesign 71

sequences of read or write communication primitives to be executed atomically or
not at all. Unsurprisingly, such an extension of the semantics of DDF still does not
allow a DDF actor to model the data-flow subgraph g� from Fig. 3.5a.

3.2.3.3 Kahn Process Networks
Kahn Process Networks (KPNs) are one of the oldest data-flow MoCs. The original
paper [24] of Kahn used a denotational semantics to describe the behavior of a KPN
actor. In this denotational semantics, an actor a is described by a Kahn function
a.
To exemplify, the two (identical) HSDF actors a1 and a2 in Fig. 3.5a are represented
by the two (identical) Kahn functions
a1 and
a2 given in Equation (3.2).

a1.sx; sy/ D
a2.sx; sy/ D

(
.hi; hi/ if #sx D 0 _ #sy D 0
.hhd.sx/i; hhd.sy/i/

�!a
a1.tl.sx/; tl.sy// otherwise

(3.2)

Here, a so-called signal s 2 S � V � is (a possibly infinite) sequence of values
carried by the tokens being transported over a channel, e.g., h5; 8; 7i for a sequence
of three values. The length of a signal, i.e., the number of values contained in it, will
be denoted by the #s notation, e.g., #h5; 8; 7i D 3. The hd.s/ and the tl.s/ notations
are used to access the head of a sequence and, respectively, the tail of a sequence,
i.e., the sequence without its head.

Considering Equation (3.2), we see that the Kahn function returns a tuple of
empty sequences .hi; hi/ if at least one of the input signals sx or sy is empty, i.e.,
their length is zero. Otherwise, the Kahn function is called recursively with the tails
of both input sequences, i.e.,
a1.tl.sx/; tl.sy//, and the result of this computation is
concatenated to the tuple of single value sequences containing the head of both input
sequences, i.e., .hhd.sx/i; hhd.sy/i/. To demonstrate, we perform the following
Kahn function application:

a1.h5; 8; 7i; h9; 8i/ D .hhd.h5; 8; 7i/i; hhd.h9; 8i/i/
�!

a
a1.tl.h5; 8; 7i/; tl.h9; 8i//

D .h5i; h9i/
�!

a
a1.h8; 7i; h8i/ D .h5i; h9i/
�!

a .h8i; h8i/
�!

a
a1.h7i; hi/

D .h5i; h9i/
�!

a .h8i; h8i/
�!

a .hi; hi/ D .h5iah8iahi; h9iah8iahi/

D .h5; 8i; h9; 8i/

Here, the “a”-operator is used to concatenate two sequences, and the “
�!a ”-operator

is applied to tuples of signals by pointwise extension of the “a”-operator.
In general, a Kahn function
a W Sn ! Sm transforms n value sequences on its

n input ports to m value sequences on its m output ports. All Kahn functions are
required [30] to be Scott-continuous. In practice, this means that appending values
to the input sequences of the Kahn function can only result in appending values to
the resulting output sequences, i.e., if
a.si1 ; si2 ; : : : sin / D .so1 ; so2 ; : : : som/, then

a.s

a
i1
s0i1 ; s

a
i2
s0i2 ; : : : s

a
in
s0in / D .s

a
o1
s0o1 ; s

a
o2
s0o2 ; : : : s

a
om
s0om/.

72 J. Falk et al.

si1

si2

so1

so2

sc1

sc2
n ini1

n ini2

a1

a2

gg

Start state in which Kahn
function kag

 is active

si1

si2

so1

so2

a1

a2

g

State in which the helper
function kh1 is active

a b c

si1

si2

so1

so2

a1

a2

State in which the helper
function kh2 is active

g gg

Fig. 3.6 Above (see (a)), the subgraph g� from Fig. 3.5 is depicted with the corresponding
annotations to express it as a partial KPN. Moreover, in (b) and (c) the internal states encountered
in the application of Kahn function
a�

are illustrated

The behavior of a KPN is given by the least fixed point of an equation
system that represents the connections of these actors to each other, e.g., as given
in Equations (3.3) and (3.4) for the topology shown in Fig. 3.6a. The connection
between actors a1 and a2 is provided by the signal sc1 (see Equation (3.3)) produced
by actor a1 and the signal sc2 (see Equation (3.4)) produced by actor a2. The
initial tokens �ini1 and �ini2 on the channels c1 and c2 connecting these two actors
are modeled by prepending the corresponding initial token value in front of the
corresponding signal, e.g., h�ini1i

asc1 prepends the value �ini1 in front of the values
carried by the signal sc1 .

.so1 ; sc1/ D
a1.si1 ; h�ini2i
asc2/ (3.3)

.so2 ; sc2/ D
a2.si2 ; h�ini1i
asc1/ (3.4)

It turns out that such an equation system, e.g., Equations (3.2), (3.3), and (3.4),
has a least fixed point for any input signal [30], and the function mapping the
input signal to the corresponding fixed point solution of the equation system again
represents a Kahn function. In that sense, the KPN model—in contrast to DDF
and all MoCs of lower expressive power—is compositional. Another important
characteristic emerges from this fact. The behavior of a KPN model and all MoCs of
lower expressive power, be it a complete graph or a subgraph, is independent from
the scheduling of actors, which is given by the operational implementation. Such
data-flow models are called sequence determinate [30]. However, due to the non-
compositionality of DDF, the resulting Kahn function is not generally representable
via the operational semantics of DDF.

To exemplify, the Kahn function
a�
—that is, the expression of the com-

posite actor a� as a Kahn function—for the least fixed point of the Equa-
tions (3.2), (3.3), and (3.4) is given below. This function is defined via the main
Kahn function
a�

(given in Equation (3.5)) and the two helper functions
h1 and

3 SysteMoC: A Data-Flow Programming Language for Codesign 73

h2 (given in Equations (3.6) and (3.7)) that recursively call each other. The main
Kahn function
a�

is active in the state shown in Fig. 3.6a and can call either helper
function
h1 or
h2 depending on whether a token is present at the head of either
the input signal si1 or the input signal si2 , respectively. This will lead to the states
depicted in Fig. 3.6b, c. From these states, via a call to the main Kahn function
a�

,
a transition back to the start state is performed if a token is present at the head of
input signal si2 (for helper function
h1) or input signal si1 (for helper function
h2).

a�
.si1 ; si2 / D

8̂<
:̂
.hhd.si1 /i; hi/

�!a
h1.tl.si1 /; si2 / if #si1 � 1
.hi; hhd.si2/i/

�!a
h2.si1 ; tl.si2// if #si2 � 1
.hi; hi/ otherwise

(3.5)

where
h1.si1 ; si2 / D

(
.hi; hhd.si2 /i/

�!a
a�
.si1 ; tl.si2// if #si2 � 1

.hi; hi/ otherwise
(3.6)

where
h2.si1 ; si2 / D

(
.hhd.si1/i; hi/

�!a
a�
.tl.si1 /; si2 / if #si1 � 1

.hi; hi/ otherwise
(3.7)

Data-flow models with higher expressiveness are of the Non-Determinate Data
Flow (NDF) MoC. This model as well as all previously discussed data-flow MoCs
may be specified in the SystemC-based actor-oriented language SysteMoC that will
be introduced in the next section.

3.3 Informal Introduction to SysteMoC

In this section, the SysteMoC modeling language [11, 12], a class library based
on SystemC, will be presented. In SysteMoC parlance, data-flow graphs are called
network graphs. As a running example, a network graph (see Fig. 3.7) of an
application implementing Newton’s iterative square root algorithm will be used
throughout this section. Network graphs are very similar to DFGs as introduced
in Definition 1, but are bipartite graphs consisting of channels c 2 C and actors
a 2 A. These vertices are connected via point-to-point connections between a
channel and either an actor input or an output port. This acknowledges the fact
that actors and channels must both be realized by some kind of resource and,
hence, during DSE [25] a binding of vertices to resources of an architecture has
to be explored. The network graph gsqr implements Newton’s iterative algorithm
for calculating the square roots of an infinite input sequence generated by the Src
actor a1. Here, the square root values are computed by Newton’s iterative algorithm
realized via the SqrLoop actor a2 performing error bound checking and the actors
a3 - a4 performing an approximation step. After satisfying the error bound, the result
is transported to the Sink actor a5.

In the following, we will learn how to realize a network graph by instantiating
actors and FIFO channels as well as connecting these FIFO channels with the ports

74 J. Falk et al.

Approximation
Loop Check

Approximation
Loop Body

o
2 i 2

o
1

i 1

c1 c2

c5c6

o1

i1

o
1

o
1

i 1

i 2

c4

Newton square root approximation

Actor output port o2 ∈ a4.O

c3

A
ct

or
a

3
∈

g
sq

r.
A

of
ty

pe
“A

pp
ro

x”

i1

o2

Network graph gsqr

Actor input port i1 ∈ a5.I

C
ha

nn
el

c 6
∈

g
sq

r.C

a1|Src

a5|Sink

gsqr|SqrRoot

a2|SqrLoop

de
la
y(

c 3
)
=

〈n
〉

Actors Channels

a3|Approx

a4|Dup

Fig. 3.7 The network graph gsqr [10] displayed above implements Newton’s iterative algorithm
for calculating square roots. Actors are bordered dark blue and shaded according to their MoC
(see Fig. 3.1 on page 62), while channels are depicted in green

of the actors. Next, in Sect. 3.3.2, we will study how to write the actor classes that
are instantiated in the previous step. Finally, in Sect. 3.3.3, it will be shown how to
specify the consumption and production rates exhibited by these actors via usage of
so-called actor Finite-State Machines (FSMs).

3.3.1 Specification of the Network Graph

SysteMoC is an open source C++ class library. Hence, all components mentioned in
the previous section are represented by C++ classes. As an example, we will specify
the SqrRoot C++ class that corresponds to the gsqr DFG from Fig. 3.7 in Listing 1.
All C++ classes representing DFGs must be derived from the smoc_graph base
class provided by the SysteMoC library, e.g., as is shown in Line 1. All actors of
a DFG must be instantiated in the constructor of the corresponding class, e.g., the
lines colored dark blue as is shown in Lines 3 to 7 declaring the actor member
variables that are instantiated in the constructor in Line 11. Subsequently, in the
body of the constructor, e.g., Lines 12 to 20, which are colored green, the FIFO
channels c1; c2 : : : c6 are connected to the input and output ports of these actors via
the connectNodePorts method of SysteMoC.

In the simplest case (Lines 12 to 15), the connectNodePorts method takes
two arguments: the output port o, from where the channel starts, and the input

3 SysteMoC: A Data-Flow Programming Language for Codesign 75

Listing 1 Corresponding SqrRoot [10] class for the network graph gsqr

1 class SqrRoot: public smoc_graph {
2 protected:
3 Src a1 ;
4 SqrLoop a2 ;
5 Approx a3 ;
6 Dup a4 ;
7 Sink a5 ;
8 public:
9 SqrRoot(sc_module_name name)

10 : smoc_graph(name),
11 a1 ("a1") , a2 ("a2") , a3 ("a3") , a4 ("a4") , a5 ("a5") {
12 connectNodePorts (a1 . o1 , a2 . i 1) ; // c1
13 connectNodePorts (a2 . o1 , a3 . i 1) ; // c2
14 connectNodePorts (a2 . o2 , a5 . i 1) ; // c6
15 connectNodePorts (a4 . o2 , a2 . i 2) ; // c5
16 connectNodePorts (a3 . o1 , a4 . i1 , // c4
17 smoc_fifo<double> (2)) ; // size.c4/ D 2

18 connectNodePorts (a4 . o1 , a3 . i2 , // c3
19 smoc_fifo<double> (3) // size.c3/ D 3

20 << 2 . 0) ; // delay.c3/ D h2:0i
21 }
22 };

port i , which is the destination of the channel. However, it is also possible to
explicitly parameterize the created channel c with its channel capacity of size.c/
tokens and a sequence of initial tokens delay.c/. To exemplify, consider Lines 17
and 19, where a third parameter, the channel initializer smoc_fifo<T>(n)
« initial tokens: : :, is given to the method connectNodePorts. If no
channel initializer is given, then a FIFO channel with a channel capacity of one
token and without any initial tokens is created between the output port o and the
input port i . If a channel initializer is given, then it must be parameterized with the
data type T carried by the channel and the channel capacity n in units of tokens.
If initial tokens are required, these can be provided to the channel initializer via a
sequence of “«”-operators each followed by an initial token, e.g., « �1 « �2 « : : : �n.
Consider Line 17 as an example of how to specify a FIFO channel with a channel
capacity of two tokens. In this case, the channel initializer is parameterized with the
C++ double data type, denoting that the token values carried by the channel will
be of the C++ double data type. An example for providing an initial token is given
in Line 20, where the “«”-operator is used to provide the double value 2:0 as an
initial token for the created channel between the ports a4:o1 and a3:i2.

3.3.2 Specification of Actors

Each actor in SysteMoC is represented by a C++ class, e.g., the class SqrLoop
as defined in the following Listing 2 is representing the actor a2 shown in Fig. 3.7,

76 J. Falk et al.

that is derived from the smoc_actor base class (see Listing 2 Line 1) provided
by the SysteMoC library. The input and output ports of an actor are specified by
member variables of type smoc_port_in and smoc_port_out as exemplified
in Listing 2 Lines 3 and 4, respectively. (Standard SystemC FIFO ports could not be
used as the semantics of SysteMoC FIFOs extends standard FIFO semantics by the
concept of a random-access region as shown in Fig. 3.9.) Furthermore, actors can
have member variables, e.g., the variable v declared in Line 6. The functionality
of an actor is represented by methods of the class, e.g., for the SqrLoop actor,
the Lines 8 to 11 in Listing 2. Moreover, these methods are distinguished into
actions (colored cyan), which can modify member variables, and guards (colored
brown), which are declared as constmethods and, hence, are not allowed to update
the member variables. Later, in Sect. 3.3.3, it will be discussed how these action and
guard methods are used as part of the actor FSM.

The copyStore method is responsible for forwarding the input token value on
input port i1 to the output port o1 and storing the value into the member variable
v for later replication on the output port o1 by the method copyInput. This
replication is required if the achieved accuracy by one square root iteration step
by actor a3 is below the bound determined by the guard check. On the other hand,
if the approximation is within the error bound, then the action copyApprox is
executed to forward this approximation to the output port o2.

Note that actions themselves do not control token production or consumption, but
only read or write values of input or output tokens via the syntax i[n] and o[m]
that is used in Listing 2 and Fig. 3.9 to access the nth token relative to the read
pointer, respectively, the mth token relative to the write pointer of the ring buffer
(see Fig. 3.9) that realizes the channel that is connected to the corresponding port.
The communication behavior, i.e., token production and consumption, is controlled
solely by the actor FSM as will be detailed next.

Listing 2 SysteMoC implementation of the SqrLoop actor a2

1 class SqrLoop: public smoc_actor {
2 public:
3 smoc_port_in<double> i1 , i2;
4 smoc_port_out<double> o1 , o2;
5 private:
6 double v;
7
8 void copyStore () { o1 [0] = v = i 1 [0] ; }
9 void copyInput () { o1 [0] = v ; }

10 void copyApprox () { o2 [0] = i 2 [0] ; }
11 bool check () const {return fabs (v�i 2 [0]� i 2 [0]) < 0 . 0 1 ; }
12
13 smoc_firing_state start , loop;
14 public:
15 SqrLoop(sc_module_name name);
16 };

3 SysteMoC: A Data-Flow Programming Language for Codesign 77

Fig. 3.8 The SqrLoop
actor [10] from the network
graph shown in Fig. 3.7 is
composed of a set of input
ports I and a set of output
ports O , its functionality F ,
and its FSM R. The
functionality can be further
subdivided into actions
(colored cyan) and guards
(colored brown) as used by
the FSM

fcheckfcopyInputfcopyStore

#i1 ≥ 1∧#o1 ≥ 1

#i2 ≥
1∧¬

f
check ∧

#o
1 ≥

1#i2 ≥ 1∧fcheck ∧#o2 ≥ 1

=fcopyStore

=f
copyInput

=fcopyApprox

fcopyApprox

t3

t2

t1

i2

i1 o1

o2

a2|SqrLoop

Initial state a2:R:q0 Actor FSM a2:R
Input ports a2:I = {i1, i2} Output ports a2:O= {o1,o2}

Actions and a guard of the functionality a2:F

qloopqstart

3.3.3 Specification of the Communication Behavior

The communication behavior of an actor is separated strictly from the functional
behavior of the actor on purpose. The communication behavior describes how and
under what condition tokens are consumed and produced by an actor. In SysteMoC,
the abstraction is done by representation of the communication behavior of an actor
by its actor FSM, e.g., as seen in Fig. 3.8. More formally, a SysteMoC actor can be
defined as follows:

Definition 2 (Actor [11]). An actor is a tuple a D .I;O; F;R/ containing a set of
actor input ports I and actor output ports O , the actor functionality F D Faction [
Fguard partitioned into a set of actions and a set of guards, as well as the actor FSM
R that is determining the communication behavior of the actor.

To exemplify, the methods copyStore, copyInput, and copyApprox
(see Lines 8 to 10 in Listing 2) correspond to their respective actions, i.e., fcopyStore,
fcopyInput, fcopyApprox 2 Faction. Finally, the guard fcheck 2 Fguard is represented by
the const method check declared in Line 11.

For example, in state qstart, transition t1 may be taken if there exists at least one
token on input port i1 .#i1 � 1/ and at least one free place on the FIFO connected to
output port o1 .#o1 � 1/. Once this condition is fulfilled, t1 is taken and the action
fcopyStore executed. The transition or actor firing ends with the consumption of one
token from i1 and production of one token at the output port o1 with the value
computed according to the function fcopyStore shown in Listing 2. The actor FSM

78 J. Falk et al.

Listing 3 SysteMoC implementation of the SqrLoop actor a2

1 class SqrLoop: public smoc_actor {
2 ...
3 smoc_firing_state start , loop;
4 public:
5 SqrLoop(sc_module_name name)
6 : smoc_actor(name , start),
7 i1("i1"), i2("i2"), o1("o1"), o2("o2"),
8 start("start"), loop("loop")
9 {

10 start =
11 i 1 (1) >>
12 o1 (1) >>
13 SMOC_CALL (SqrLoop : : copyStore) >> loop
14 ;
15 loop =
16 (i 2 (1) && SMOC_GUARD (SqrLoop : : check)) >>
17 o2 (1) >>
18 SMOC_CALL (SqrLoop : : copyApprox) >> start
19 |
20 (i 2 (1) && !SMOC_GUARD (SqrLoop : : check)) >>
21 o1 (1) >>
22 SMOC_CALL (SqrLoop : : copyInput) >> loop
23 ;
24 }
25 };

of the SqrLoop actor as depicted in Fig. 3.8 is constructed by the code shown in
Listing 3 Lines 10 to 23.

The states Q of the actor FSM themselves are represented by member variables
of type smoc_firing_state, e.g., the state start and loop in Line 3, that is
Q D f qstart; qloop g. The initial state of the actor FSM is determined by providing
the base class smoc_actor with the corresponding state. For the SqrLoop actor,
the initial state q0 is set in Line 6 to qstart (start).

The syntax for naming SystemC and also SysteMoC entities is demonstrated in
Lines 7 and 8, where the actor input and output ports as well as the states of the
actor FSM are named, respectively. However, in the interest of conciseness, it will
be assumed that all SystemC/SysteMoC entities are named like their declarations in
the source code shown in the following examples, but this naming will not be shown
explicitly.

The transition t1 from qstart to qloop is given in Lines 11 to 13. Here, guards are
again colored brown while actions are colored cyan. In detail, we use the syntax
i(n) and o(m) to express the condition that at least n tokens, respectively, at
least m free places must be present on the channel connected to the input port
i and the channel connected to the output port o. Methods of the class used
as actions or guard functions must be marked via usage of the SMOC_CALL or

3 SysteMoC: A Data-Flow Programming Language for Codesign 79

SMOC_GUARD macros, respectively. Transitions t2 and t3 are defined accordingly
in Lines 16 to 18 and Lines 20 to 22. As can be seen, SysteMoC—in contrast to
KPN [24] and FunState (The model was initially published [42] as State Machine
Controlled Flow Diagrams (SCF), but in later literature it is referred to as FunState,
which is a short for Functions Driven by State Machines.) [41]—distinguishes its
functions further into actions faction 2 Faction and guards fguard 2 Fguard . To
exemplify, the SqrLoop actor depicted in Fig. 3.8 is considered. This actor has
three actions Faction D ffcopyStore; fcopyInput; fcopyApprox g and one guard function
Fguard D ffcheck g. Naturally, the guard fcheck is only used in a transition guard of
the FSM R while the actions of the FSM are drawn from the set of actions Faction.

In SysteMoC, each FSM state is defined explicitly by an assignment of a list of
outgoing transitions. To exemplify, the state qstart is defined in Listing 3 Line 10
by assigning transition t1 (Lines 11 to 13) to it. If a state has multiple outgoing
transitions, e.g., state qloop with the transitions t2 (Lines 16 to 18) and t3 (Lines 20
to 22), then the outgoing transitions are joined via the “|”-operator (Line 19) and
assigned to the state variable (Line 15).

3.4 Semantics and Execution Behavior of SysteMoC

More formally, an actor FSM resembles the FSM definition from FunState [41], but
with slightly different definitions for actions and guards and defined as follows:

Definition 3 (Actor FSM [11]). The FSM R of an actor a is a tuple .Q; q0; T /
containing a finite set of states Q, an initial state q0 2 Q, and a finite set of
transitions T . A transition t 2 T itself is a tuple .qsrc; k; faction; qdst/ containing the
source state qsrc 2 Q, from where the transition is originating, and the destination
state qdst 2 Q, which will become the next current state after the execution of the
transition starting from the current state qsrc. Furthermore, if the transition t is taken,
then an action faction from the set of functions of the actor functionality a:Faction
will be executed. (We use the “:”-operator, e.g., a:Faction, for member access of
tuples whose members have been explicitly named in their definition, e.g., member
Faction of the actor a from Definition 2.) Finally, the execution of the transition t
itself is guarded by the guard k.

A transition t will be called an outgoing transition of a state q if and only if
the state q is the source state t:qsrc of the transition. Correspondingly, a transition
will be called an incoming transition of a state q if and only if the state q is the
destination state t:qdst of the transition. Furthermore, a transition is enabled if and
only if its guard k evaluates to t and it is an outgoing transition of the current state
of the actor.

An actor is enabled if and only if it has at least one enabled transition. The
firing of an actor corresponds to a non-deterministic selection and execution of one
transition out of the set of enabled transitions of the actor. In general, if multiple

80 J. Falk et al.

actors have enabled transitions, then the transition, and hence its corresponding
actor, is chosen non-deterministically out of the set of all enabled transitions in all
actors. In summary, the execution of a SysteMoC model can be divided into three
phases:

• Determine the set of enabled transitions by checking each transition in each actor
of the model. If this set is empty, then the simulation of the model will terminate.

• Select a transition t from the set of enabled transitions, and fire the corresponding
actor by executing the selected transition t , thus computing the associated action
faction.

• Subsequently, consume and produce tokens as encoded in the selected transition
t . This might enable new transitions. Go back to the first step.

In contrast to FunState [41], a guard k is more structured. Moreover, it is
partitioned into the following three components:

• The input guard which encodes a conjunction of input predicates on the
number of available tokens on the input ports, e.g., #i1 � 1 denotes an input
predicate that tests if at least one token is available at the actor input port i1.
Hence, consumption rates can be associated with each transition by the cons W
.T �I /! N0 function that determines for each transition and input port/channel
combination the number of tokens that have to be at least present to enable the
transition.

• The output guard which encodes a conjunction of output predicates on the
number of free places on the output ports, e.g., #o1 � 1 denotes an output
predicate that tests if at least one free place is available at the actor output
port o1. Thus, production rates can be associated with each transition by the
prod W .T � O/ ! N0 function that specifies for each transition and output
port/channel combination the number of free places that must be at least available
to enable the transition.

• The functionality guard which encodes a logical composition of guard functions
of the actor, e.g., :fcheck annotated to the transition t3 of the actor FSM of the
actor a2 in Fig. 3.8. Hence, the functionality guard depends on the functionality
state and the token values on the input ports.

Here, the notion of a functionality state qfunc 2 Qfunc of an actor is used.
The functionality state is an abstract representation of the C++ variables in the
real implementation of a SysteMoC actor. This functionality state is required for
notational completeness, that is for the formal definitions of action and guard
functions, i.e., faction W Qfunc � S

jI j ! Qfunc � S
jOj and fguard W Qfunc � S

jI j !

f t; f g. (The usual notation jX j is used to denote the cardinality of a set X .) Both
types of functions depend on the functionality state of their actor. Furthermore, an
action may update this state, while a guard function may not. Hence, all SysteMoC

3 SysteMoC: A Data-Flow Programming Language for Codesign 81

actor firings are sequentialized over this functionality state. Therefore, multiple
actor firings of the same actor cannot be executed in parallel. That is, in data-flow
parlance, all SysteMoC actors have a virtual self-loop with one initial token that
corresponds to qfunc 2 Qfunc. However, as the functionality state is not used for any
optimization and analysis algorithms presented in this chapter, it has been excluded
from Definition 2.

Note that the consumption and production rate functions also specify the number
of tokens that are consumed/produced on the input/output ports if a transition t is
taken. That is, 8i 2 I W cons.i; t:faction/ D cons.t; i/ ^ 8fguard contained in t:k W
cons.i; fguard / � cons.t; i/ and 8o 2 O W prod.t:faction; o/ D prod.t; o/. Hence,
for a SysteMoC model to be well formed, the number of tokens accessed on the
different input and output ports by an action t:faction associated with the transition
t as well as the guard functions fguard used in the transition guard t:k has to conform
to the consumption and production rates of the transition.

We enforce this requirement by checking that access to tokens by actions and
guards via the ports, e.g., the syntax i[n] and o[m] that is used in Fig. 3.9,
Listing 2 to access the nth token relative to the read pointer, respectively, the mth
token relative to the write pointer, does not access tokens outside the so-called
random-access region that is controlled by the actor FSM as will be explained in the
following. Hence, as only tokens inside the random-access region can be modified
by the actions or read by the guards, the actor FSM fully controls the communication
behavior of the actor.

To exemplify, we consider a simple example with just one source and one sink
actor connected by a single channel as depicted in Fig. 3.9. Here, the random-access
regions are marked by bold brown-bordered boxes.

Both actors a1 and a2 are in the process of executing their respective actions fsink

and fsrc. Thus, the guards #i1 � 3 and #o1 � 2 are satisfied, but the three tokens and
two free places are not yet consumed and produced, respectively, but only reserved
for consumption and production when execution of the actions finishes. Then, the
read and write pointers of the FIFO channels will also be advanced by the actor
FSMs by three, respective, two, tokens. Before the execution of the actions is started,
the random-access regions are sized according to the guards of the transitions that
are currently taken. During the execution of the actions, random access and update
of all data values of the tokens contained in the random-access regions—but not
outside these regions—is allowed by the executing actions.

Finally, for a SysteMoC model to be well formed, no sharing of state between
actors via global variables is allowed. This requirement cannot be enforced by
the SysteMoC library itself and is also usually not a problem in the code of
the actor itself, but in library code that is used by the actor. A discussion of
modeling library dependencies via library tasks and the problem of persistent states
inside these libraries is tackled by the Common Intermediate Code (CIC) model
that is introduced in �Chap. 29, “HOPES: Programming Platform Approach for
Embedded Systems Design”.

82 J. Falk et al.

#i1 ≥ 3.f
sink

#o1 ≥ 2

.f sr
c

q0

q1 q6

q5

c1
i1 o1

fsrc ∈ a2.Faction

int j = 4711;

o1[0] = j++;
o1[1] = j++;

fsink ∈ a1.Faction

int i = i1[1]
∗i1[2]
+i1[0];

with 6 tokens present

SysteMoC FIFO of size 11

a1.R a2.R
W

rit
e

po
in

te
r

Executes
Contro

ls siz
e

Advances Advances

Controls size
Executes

Random-access region for invocation offsink

Random-access region for invocation offsrc

R
ea

d
po

in
te

r

a1|ASink a2|ASrc

Fig. 3.9 Depicted above is a simple source-sink example that is used to explain the semantics of a
SysteMoC FIFO associated with the channel c1. The buffer memory of the channel c1 is organized
as a ring buffer with its associated read and write pointers. The buffer memory has a capacity of 11
tokens (depicted as light green cells inside the green-bordered box representing the buffer memory)
and is already filled with 6 tokens (the 6 solid black dots). From the remaining five free places, two
places have been reserved (the two black-bordered but white-filled dots) by the actor FSM a2:R

for the execution of the action fsrc. These reserved places correspond to tokens that have not yet
been associated with data values �. It is the responsibility of the action to compute the missing
data values. Finally, for each function invocation and for each channel accessed by the invoked
function, a random-access region is defined for accessing the channel. Hence, two random-access
regions (depicted as bold brown-bordered boxes) are shown in the above figure

3.5 Analysis of SysteMoC Models

SysteMoC permits modeling of non-determinate data-flow graphs. However, when
using SysteMoC models as an input to Hardware/Software Codesign (HSCD) flows,
it is advantageous for reason of analyzability to identify parts of the model, which
belong to restricted MoCs. Thanks to its formal representation of the firing behavior
of an actor by an actor FSM, MoC identification can be performed within SysteMoC
for its actors. In the following, we present the representation as well as identification
of SDF and CSDF actors. The ability of classification [12,45] serves as a distinction
between SysteMoC and Ptolemy [8,23,35] as well as ForSyDe, which is introduced
in �Chap. 4, “ForSyDe: System Design Using a Functional Language and Models
of Computation”, and similar approaches that use distinct modeling libraries for
each different MoC. For example, in Ptolemy each actor is associated with a director
which explicitly specifies the MoC under which the actor is executed. This is

3 SysteMoC: A Data-Flow Programming Language for Codesign 83

important as the data-flow model of SysteMoC is chosen in order to provide greatest
expressiveness. Hence, the analyzability of a general SysteMoC specification (e.g.,
with respect to deadlock freedom or the ability to be executed in bounded memory)
is limited. Nonetheless, only very simple actors will be classified as belonging to the
static data-flow domain. Hence, a more detailed discussion as well as identification
of BDF and DDF actors can be found in [44]. Scheduling algorithms that take
advantage of this information are provided in [5] for the BDF MoC. Optimizations
for more expressive MoCs is an ongoing topic of current research.

3.5.1 Representing SDF and CSDF Actors in SysteMoC

As SysteMoC permits modeling of quite general types of data-flow graphs, it
is also possible to represent any SDF and CSDF actor in SysteMoC. Given
a CSDF graph as defined in Definition 1 and using the ancillary definitions
of the cons and prod functions as described in Sect. 3.2.2.3, then for a given
CSDF actor a, a functionally equivalent SysteMoC actor a0 can be constructed
as follows: First, the input ports I and output ports O of the SysteMoC actor
a0 correspond to the incoming and outgoing channels of the CSDF actor a,
respectively. Assuming that this actor has � CSDF phases, then the corresponding
actor FSM R is built by generating a state for each phase of the CSDF actor, i.e.,
Q D fq0; q1; : : : q��1g, and marking the state q0 as the initial state of the FSM. Next,
these states are connected such that the resulting transitions form a single cycle, i.e.,
T D f.q0; k0; fphase0 ; q1/; .q1; k1; fphase1 ; q2/; : : : .q��1; k��1; fphase��1

; q0/g. As
an example, the resulting FSMR of the CSDF actor a3 is shown in Fig. 3.10b. Here,
the actions fphase0 ; fphase1 ; : : : fphase��1

are associated with the firing of the CSDF
actor in the corresponding phase. The token consumption and production rates
encoded by the guards k0; k1; : : : k��1 and given by the functions cons W .T � I /!
N0 and prod W .T �O/! N0 of the SysteMoC model can be directly derived from
the functions cons W C ! N

�
0 and prod W C ! N

�
0 of the CSDF graph. Remember

that we use the notion of ports interchangeably with the channels connected to these
ports. Hence, we can define the cons and prod functions of the SysteMoC model as
follows:

prod.tl ; o/ D nl where .n0; n1; : : : n��1/ D prod.o/ 8l 2 f0; 1; : : : � 	 1g; o 2 O

cons.tl ; i / D ml where .m0;m1; : : : m��1/ D cons.i/ 8l 2 f0; 1; : : : � 	 1g; i 2 I

To exemplify, for the CSDF actor a3 from Fig. 3.10c, the resulting normalized
actor FSM is shown in Fig. 3.10b. Corresponding to the first phase, transition t0
consumes one token from i1 and produces seven tokens on o1. The second phase
embodied by transition t1 consumes two tokens from i1 and produces one token on
o1. The remaining phases are derived accordingly.

84 J. Falk et al.

faction

#o1 ≥ 6/faction

q0

o1

a′
1

fphase3fphase2fphase1fphase0

#i1 ≥ 6∧o1 ≥ 2/f phase2

#i1 ≥ 1∧o1 ≥ 7/fphase0

#i1 ≥ 2∧o1 ≥ 1/fphase1
#i1 ≥ 1/fphase3

t1
t3

t2

t0

o1i1

a′
3

q0

q2q3

q1

a b

c

(1,2)

(3,2)

(2,3)
(1,2,6,1)
(7,1,2,0)

6

prod(c1) = (6)

cons(c1) = (1, 2) c3

c2

c1
a2 a3a1

Fig. 3.10 Example translations of an SDF and a CSDF actor into SysteMoC. (a) SysteMoC
realization of the SDF actor a1 from the DFG below. (b) SysteMoC realization of the CSDF actor
a3 from the DFG below. (c) Example of a CSDF graph also containing an SDF actor

3.5.2 SDF and CSDF Semantics Identification for SysteMoC Actors

In order to be able to apply MoC-specific analysis methods such as deadlock analy-
sis or generation of static schedules, it is important to recognize individual actors or
subgraphs thereof belonging to well-known data-flow models of computation such
as HSDF, SDF, and CSDF. While it is possible to transform any static data-flow
actor into a SysteMoC actor as described above, it is much more difficult to check if
a given SysteMoC actor shows SDF or CSDF semantics. It will be shown that this
can be accomplished by inspection and analysis of the actor FSM of a SysteMoC
actor.

The most basic representation of static actors encoded as actor FSMs can be
seen in Fig. 3.10. To exemplify, the SDF actor depicted in Fig. 3.10a contains only
one transition, which produces six tokens onto the actor output port o1. Clearly,
the actor exhibits a static communication behavior corresponding to the SDF MoC.
However, for the classification algorithm to be able to ignore the guard functions
used by an actor FSM, certain assumptions have to be made. It will be assumed
that given sufficient tokens and free places on the actor input and output ports, at
least one of the guards of the outgoing transitions will evaluate to true, and, hence,
there exists at least one enabled outgoing transition. This is required in order to
be able to activate the equivalent SDF or CSDF actor an infinite number of times.
It will also be assumed that an actor will consume or produce tokens every now

3 SysteMoC: A Data-Flow Programming Language for Codesign 85

and then. These assumptions are not erroneous as, otherwise, there exists an infinite
loop in the execution of the actor where a cycle of the FSM is traversed and each
transition in this cycle neither consumes nor produces any tokens. This can clearly
be identified as a bug in the implementation of the actor, similar to an action of a
transition that never terminates. For the exact mathematical definition of the above-
given requirements, see [45].

The idea of the classification algorithm is to check if the communication behavior
of a given actor can be reduced to a basic representation, which can be easily
classified into the SDF or CSDF MoC. Note that the basic representations for both
SDF and CSDF models are FSMs with a single cycle, e.g., as depicted for the CSDF
actor in Fig. 3.10b.

Yet, not all actor FSMs satisfy this condition (see Fig. 3.11). However, some of
them, e.g., Fig. 3.11b, c, still show the communication behavior of a static actor. It
can be distinguished if the analysis of the actor functionality state (see Definition 2)
is required to decide whether an actor is a static actor, e.g., Fig. 3.11c, or not, e.g.,
Fig. 3.11b. In the following, the actor functionality state will not be considered.
Therefore, the presented classification algorithm will fail to classify Fig. 3.11c
as a static actor, but will achieve the classification as static for the actor shown
in Fig. 3.11b. In that sense, the algorithm only provides a sufficient criterion for
the problem of static actor detection. A sufficient and necessary criterion cannot be
given as the problem is undecidable in the general case.

The algorithm starts by deriving a set of classification candidates solely on the
basis of the specified actor FSM. Each candidate is later checked for consistency
with the entire FSM state space via Algorithm 1 that will be explained in detail later
in this section. If one of the classification candidates is accepted by Algorithm 1,
then the actor is recognized as a CSDF actor where the CSDF phases are given by
the accepted classification candidate.

Definition 4 (Classification Candidate [45]). A possible CSDF behavior of a
given actor is captured by a classification candidate � D h�0; �1; : : : ���1i where
each � D .cons; prod/ represents a phase of the CSDF behavior and � is the number
of phases.

To exemplify, Fig. 3.10b is considered. In this case, four phases are present, i.e.,
� D 4, where the first phase (�0) consumes one token from i1 and produces seven
tokens on o1, the second phase (�1) consumes two tokens from i1 and produces one
token on o1, the third phase (�2) consumes six tokens and produces two, and the
final phase (�3) only consumes one token.

It can be observed that all paths starting from the initial actor FSM state q0 must
comply with the classification candidate. Furthermore, as CSDF exhibits cyclic
behavior, the paths must also contain a cycle. The classification algorithm will
search for such a path p D ht1; t2; : : : ; tni of transitions ti in the actor FSM starting
from the initial state q0. The path can be decomposed into an acyclic prefix path
pa and a cyclic path pc such that p D pa

a pc , i.e., pa D ht0; t1; : : : tl�1i being the

86 J. Falk et al.

q1

q0

q2

#i1 ≥ 1∧#o1 ≥ 1

#i2 ≥ 1∧#o2 ≥ 1

#o2 ≥ 1

#i2 ≥ 1

t1

t3

t2

t4
i2

o2

a2 i1

o1

q1

q0

q2

#i1 ≥ 1∧#o1 ≥ 1

#i2 ≥ 1∧#o2 ≥ 1

#i2 ≥ 1

#o2 ≥ 1

t1

t3

t2

t4
o2

i2

a3o1

i1

a b

c

q0 q1

#i2 ≥ 1∧#o2 ≥ 1∧b

#i2 ≥ 1∧#o1 ≥ 1∧¬b/b = t

#i1 ≥ 1∧#o1 ≥ 1/b = f
t1

t3

t2
i2

o1

o2

i1

Fig. 3.11 Various actor FSMs that do not match the basic representation of static actors as
exemplified in Fig. 3.10. (a) Visualized above is the actor a2 with an actor FSM that cannot be
converted to a basic representation of static actors. (b) Shown is the actor a3 containing an actor
FSM that can be converted to basic CSDF representation. (c) Shown is an actor that seems to
belong to the dynamic domain, but exhibits CSDF behavior due to the manipulation of the Boolean
variable b. Hence, leading to a cyclic execution of the transitions t1, t3, and t2 of its actor FSM

prefix and pc D htl ; tlC1; : : : tn�1i being the cyclic part, that is tl :qsrc D tn�1:qdst.
After such a path p has been found, a set of classification candidates can be derived
from the set of all nonempty prefixes fp0 v p j #p0 2 f 1; 2; : : : n gg of the path p.
(Here, the “v”-operator denotes that a sequence is a prefix of some other sequence,
e.g., h3; 1i v h3; 1i v h3; 1; 2i v h3; 1; 2; : : :i, but h3; 1i 6v h4; 1; 2i as well as
h3; 1i 6v h3i.) A classification candidate � D h�0; �1; : : : ���1i is derived from
a nonempty prefix p0 by (1) unifying adjacent transitions tj , tjC1 according to
the below given transition contraction condition until no more contractions can be
performed and (2) deriving the CSDF phases�j of the classification candidate from
the transitions tj of the contracted path computed in step (1).

Definition 5 (Transition Contraction Condition [12]). Two transitions tj and
tjC1 of a prefix path p0 can be contracted if tj only consumes tokens, i.e.,
prod.tj ; O/ D 0, or tjC1 only produces tokens, i.e., cons.tjC1; I / D 0. (For
notational brevity, the construct cons.t; I / D .ni1 ; ni2 : : : ; ni

jI j

/ D ncons is used
to denote the vector ncons of numbers of tokens consumed by taking the transition.
The equivalent notation prod.t; O/ is also used similarly for produced tokens.) The
resulting transition t 0 has the combined consumption and production rates given
as cons.t 0; I / D cons.tj ; I / C cons.tjC1; I / and prod.t 0; O/ D prod.tj ; O/ C
prod.tjC1; O/.

3 SysteMoC: A Data-Flow Programming Language for Codesign 87

Algorithm 1 Validation of a classification candidate � for the actor FSM R

1: function VALIDATECLASSCAND(�; R)
2: � D #� F Number of CSDF phases �
3: h�0; �1; : : : ���1i D � F CSDF phases �0; �1; : : : ���1

4: !0 D .0; �0:cons; �0:prod/ F Initial annotation tuple
5: queue hi F Set up the empty queue for breadth-first search
6: ann ; F Set up the empty set of annotations
7: queue queuea.R:q0/ F Enqueue R:q0
8: ann ann[f .R:q0; !0/ g F Annotate the initial tuple
9: while #queue > 0 do FWhile the queue is not empty

10: qsrc D hd.queue/ F Get head of queue
11: !src D ann.qsrc/ F Get annotation tuple for state qsrc

12: queue tl.queue/ F Dequeue head from queue
13: for all t 2 R:T where t:qsrc D qsrc do
14: if !src:cons 6� cons.t; I /_ !src:prod 6� prod.t; O/ then
15: return f F Reject � due to failed transition criterion I
16: end if
17: if !src:cons 6D cons.t; I /^ prod.t; O/ 6D 0 then
18: return f F Reject � due to failed transition criterion II
19: end if
20: !dst derive from !src and t as given by Equation (3.8)
21: if 9!0

dst W .t:qdst; !
0

dst/ 2 ann then F Annotated tuple present?
22: if !0

dst ¤ !dst then F Check annotated tuple for consistency
23: return f F Reject classification candidate �

24: end if
25: else F No tuple annotate to state t:qdst

26: ann ann[f .t:qdst; !dst/ g F Annotate tuple !dst

27: queue queuea.t:qdst/ F Enqueue t:qdst

28: end if
29: end for
30: end while
31: return t F Accept classification candidate �

32: end function

For clarification, Fig. 3.11a, b are considered and it is assumed that the path
p D ht1; t3; t4i has been found. Hence, the set of all nonempty prefixes is
f ht1i; ht1; t3i; ht1; t3; t4i g. In both depicted FSMs, the transition t2 consumes and
produces exactly as many tokens as the transition sequence ht3; t4i. However, the
transition sequence ht3; t4i in Fig. 3.11b can be contracted as t3 only consumes
tokens while transition sequence ht3; t4i in Fig. 3.11a cannot be contracted. Hence,
for Fig. 3.11b, the classification candidate � D h�0; �1i derived from the prefix
p0 D ht1; t3; t4i is as follows:

�0:cons D cons.t1; I / D .1; 0/

�0:prod D prod.t1; O/ D .1; 0/

�1:cons D cons.t3; I /C cons.t4; I / D .0; 1/

�1:prod D prod.t3; O/C prod.t4; O/ D .0; 1/

88 J. Falk et al.

On the other hand, for Fig. 3.11a, the classification candidate � D h�0; �1; �2i

derived from the prefix p0 D ht1; t3; t4i does not exhibit any contractions and is
depicted below as:

�0:cons D .1; 0/ �0:prod D .1; 0/
�1:cons D .0; 0/ �1:prod D .0; 1/
�2:cons D .0; 1/ �2:prod D .0; 0/

The underlying reasons for the transition contraction condition from Definition 5
are discussed in the following. To illustrate, the data-flow graph depicted in
Fig. 3.12a which uses two actors a2 and a3 containing the FSMs from Fig. 3.11a, b
is considered. Obviously, there exist dependencies between the transitions in a legal
transition trace of the actors a2 and a3 as shown in Fig. 3.12b.

For example, it can be seen in Fig. 3.12c that if the transition sequence ht3; t4i
of actor a3 is contracted into a single transition tc , then the resulting dependencies
of tc are exactly the same as for transition t2. This is the reason why the FSM from
Fig. 3.11b can be classified into a CSDF actor. Furthermore, the contraction is a
valid transformation as it does not change the set of possible transition sequences
of the whole data-flow graph, apart from the substitution of the transition sequence
ht3; t4i by the transition tc . This can be seen by comparing the possible transition
sequences depicted in Fig. 3.12b, c. Compacting the transition sequence ht3; t4i of
actor a3 generates the transition tc , which is inducing the data dependency that the
token produced on port o2 by the transition tc depends on the token consumed on
port i2 by the transition tc . However, the previous transition sequence ht3; t4i also
induces this data dependency as t4 can only be taken after t3.

In contrast to this, the contraction of the transition sequence ht3; t4i of actor
a2 into a transition td does introduce a new erroneous data dependency from
the consumption of a token on i2 to the production of a token on o2. The data
dependency is erroneous as the original transition sequence ht3; t4i has no such
dependency as it first produces the token on o2 before trying to consume a token
on i2. Indeed, an erroneous contraction might introduce a deadlock into the system
as can be seen in Fig. 3.12d where the transition td is part of two dependency cycles
a2:td ! a3:t2 ! a2:td and a2:td ! a3:t3 ! a3:t4 ! a2:td which are not present
in the original dependency structure depicted in Fig. 3.12b.

After the set of classification candidates has been derived from the actor FSM,
each candidate is checked for validity by Algorithm 1. The checks are performed
sequentially starting from the classification candidate derived from the shortest
prefix p0 to the candidate derived from the full path p. If a candidate is accepted
by Algorithm 1, then the actor is a CSDF actor with phases as given by the accepted
classification candidate �.

The main idea of the validation algorithm is to check a classification candidate
against all possible transition sequences reachable from the initial state of the actor
FSM. However, due to the existence of contracted transitions in the classification
candidate as well as in the actor FSM, a simple matching of a phase �j to

3 SysteMoC: A Data-Flow Programming Language for Codesign 89

q1

q0

q2

q1

q0

q2

#i1 ≥ 1∧#o1 ≥ 1

#i2 ≥ 1∧#o2 ≥ 1

#o2 ≥ 1

#i2 ≥ 1

#i1 ≥ 1∧#o1 ≥ 1

#i2 ≥ 1∧#o2 ≥ 1

#i2 ≥ 1

#o2 ≥ 1

t1

t3

t2

t4

t1

t3

t2

t4

a1|Src a4|Sink

i2 o2

o2 i2

i1 o1

a2 a3

i1o1

Shown is a DFG containing the actors a2 and a3 from Figure 3.11. Due to mutual dependencies
between the actor firings of the actors a2 and a3, actor a2 will never execute transition t2. On the
other hand, actor a3 is free to choose either the transition sequence 〈t3, t4〉 or the transition t2 in
its execution trace.

t1 t2 t1

t3 t4

t1 t2

t4

t1

t3

a3

a2

Shown are the dependencies in
the transition trace of actor a2
and a3. Two dependency cycles
are already present (marked bold
black) that cause the inability
to fire transition t2 of actor a2.

a

b c d

t1 t2 t1

t3 t4

t1 t2

t4

t1

t3

tc
a3

a2

Shown are the dependencies for
the contraction of the transition
sequence 〈t3, t4〉 of actor a3 into
the transition tc. One can observe
that no additional de-pendency
cycles have been introduced by
this contraction.

td

t1 t2 t1

t3 t4

t1 t2

t4

t1

t3

a3

a2

Shown are the dependencies
for the contraction of the
transition sequence 〈t3, t4〉 of
actor a2 into the transition td.
Thus, inducing two (marked
bold red) erroneous dependency
cycles.

Fig. 3.12 Given (see (a)) is an example DFG containing two actors a2 and a3 used to show valid
and invalid transition contractions. For this purpose, dependencies in transition sequences of both
actors are shown in (b), (c), and (d). Here, dashed lines represent dependencies induced by the
availability of data (tokens) and solid lines represent dependencies induced by the sequential nature
of the FSM. Dependency cycles in these transition traces are marked by bolding the corresponding
edges

an FSM transition is infeasible. Instead, a CSDF phase �j is matched by a
transition sequence. To keep track of the number of tokens already produced and
consumed for a CSDF phase, each FSM state qn will be annotated with a tuple
!n D .j; cons; prod/where cons and prod are the vectors of number of tokens which
are still to be consumed and produced to complete the consumption and production
of the CSDF phase �j and j denotes the CSDF phase which should be matched.

The validation algorithm starts by deriving the tuple !0 (see Line 4) for the
initial state q0 from the first CSDF phase �0 of the classification candidate �. The
algorithm uses the set ann as a function !n D ann.qn/ from an FSM state to its

90 J. Falk et al.

annotated tuple !n. Initially, the ann set is empty (see Line 6) denoting that all
function values ann.qn/ are undefined, and hence no tuples have been annotated.
The annotation of tuples starts with the initial tuple !0 D ann.q0/ for the initial
state q0 by adding the corresponding association to the ann set in Line 8.

The algorithm proceeds by performing a breadth-first search (see Lines 5, 9, 12
and 27) of all states qn of the FSM R starting from the initial state q0 (see Line 7).
For each visited state qsrc (see Line 10) its annotated tuple !src will be derived from
the set ann (see Line 11) and the corresponding outgoing transitions t of the state
qsrc (see Line 13) are checked against the annotated tuple !src (see Lines 14 to 19)
via the transition criteria as given below:

Definition 6 (Transition Criterion I [45]). Each outgoing transition t 2 Tsrc D

ft 2 T j t:qsrc D qsrcg of a visited FSM state qsrc 2 Q must consume and produce
less or equal tokens than specified by the annotated tuple !src, i.e., 8t 2 Tsrc W

!src:cons � cons.t; I / ^ !src:prod � prod.t; O/. Otherwise, the annotated tuple
!src is invalid and the classification candidate � will be rejected.

Definition 7 (Transition Criterion II [45]). Each outgoing transition t 2 Tsrc D

ft 2 T j t:qsrc D qsrcg of a visited FSM state qsrc 2 Q must not produce tokens
if there are still tokens to be consumed in that phase after the transition t has been
taken, i.e., 8t 2 Tsrc W !src:cons D cons.t; I / _ prod.t; O/ D 0. Otherwise, the
annotated tuple !src is invalid and the classification candidate � will be rejected.

Transition criterion I ensures that a matched transition sequence consumes and
produces exactly the number of tokens as specified by the CSDF phase � of the
classification candidate. Transition criterion II ensures that a transition sequence
induces the same data dependencies as the CSDF phase � of the classification
candidate. If the transition does not conform to the above transition criteria, then
the classification candidate is invalid and will be rejected (see Lines 15 and 18).
Otherwise, that is conforming to both criteria, the matched transition sequence can
be condensed via Definition 5 to the matched CSDF phase.

After the transition has been checked, the tuple !dst for annotation at the
transition destination state t:qdst is computed in Line 20 according to the equation
given below:

consleft D !src:cons 	 cons.t; I /
prodleft D !src:prod 	 prod.t; O/

j 0 D .!src:j C 1/ mod �

!dst D

�
.!src:j; consleft; prodleft/ if consleft ¤ 0 ^ prodleft ¤ 0

.j 0; �j 0 :cons; �j 0 :prod/ otherwise

(3.8)

In the above equation, consleft and prodleft denote the consumption and production
vectors remaining to match the CSDF phase�j . If these remaining consumption and
production vectors are both the zero vector, then the matching of the CSDF phase�j

3 SysteMoC: A Data-Flow Programming Language for Codesign 91

to a transition sequence has been completed. Hence, the tuple !dst will be computed
to match the next CSDF phase �.jC1/ mod � . (The notation n D l mod m for values
l 2 Z D f : : : ;	2;	1; 0; 1; 2; : : : g; m 2 N D f 1; 2; : : : g is used to denote the
common residue n 2 f 0; 1; 2; : : : m 	 1 g which is a non-negative integer smaller
than m such that l � n .mod m/.) Otherwise, the tuple !dst will use the updated
remaining consumption and production vectors as given by consleft and prodleft.

Finally, if no tuple is annotated to the destination state t:qdst, then the computed
tuple !dst is annotated to the destination state in Line 26 and the destination
state is appended to the queue for the breadth-first search in Line 27. Otherwise,
an annotated tuple is already present for the destination state (see Line 21). If
this annotated tuple !0dst and the computed tuple !dst are inconsistent, then the
classification candidate will be rejected (see Lines 21 to 23).

3.6 Hardware/Software Codesign with SysteMoC

SysteMoC is the core language of the SYSTEMCODESIGNER [15, 25] codesign
framework and HSCD flow, which is briefly outlined in Fig. 3.13. In Step 1,
the application to be implemented is written in SysteMoC. During an extraction
step (Step 2 in Fig. 3.13), the SysteMoC actors and channels as well as their
connections are automatically extracted from the SysteMoC application. As a result,
the network graph as defined in Sect. 3.3 can be used as input to the DSE of
the SYSTEMCODESIGNER flow. As a second input to DSE, the possible variety
of architectures is modeled by an architecture graph [4] that is specified by the
designer in Step 3. The architecture graph is composed of resources (shaded
orange) and edges connecting two resources that are able to communicate with each
other. Within SYSTEMCODESIGNER, resources are usually modeled at a granularity
of processors, hardware accelerators, communication buses, centralized switches
(crossbars), decentralized switches (Networks on Chip), memories. In this context,
edges of the architecture graph are interpreted as links. Finally, mapping edges
(black) are specified within Step 3 by the designer for each actor (bordered blue)
and each channel (shaded green) of the network graph. A mapping edge indicates the
option to implement and execute an actor on the resource it points to. For a channel,
the corresponding mapping edge represents the possibility to use the associated
resource as buffer for messages sent over the channel. Both graphs, i.e., network
graph and architecture graph, together with the mapping edges form a specification
graph [4] that serves as input for DSE in Step 4.

To exemplify the concept of a specification graph, we use again the network
graph implementing Newton’s iterative square root algorithm introduced in Sect. 3.3
and also depicted in Fig. 3.13 as part of the specification graph. Due to the
approximation part of the square root algorithm, actor a3 requires floating point
division. In contrast, actor a2 requires floating point multiplication to check if
the error bound is already satisfied. Considering the architecture graph, a Central
Processing Unit (CPU) rCPU, a dedicated hardware accelerator rHW for actor a3, a
memory rMEM, and two buses rP2P and rBUS can be identified. Let us assume that

92 J. Falk et al.

Specification graph
Architecture

graph
Network graph

Src a1; SqrLoop a2; Approx a3;
Dup a4; Sink a5; specify

DSE

Evolution-
ary

algorithm

Analytical
evaluators

Simulative
evaluators

SysteMoC
application
VPC-Plugin

Pareto solutions

select

write

ex
tra

ct

DSE

Code generation

Source AST

Target AST

DOM tree

Network graph

Architecture graph

al
te

rn
at

iv
es

sy
nt

he
si

ze

re
us

e

re
us

e

a1

a5

a3

a4

a2

SysteMoC application

class SqrRoot: public smoc_graph {
protected:

public:
SqrRoot(sc_module_name name)
: smoc_graph(name), … {…}

};

rP2P rCPU

rHW

rMEM rBUS

1

2
3

4

Frontend

C++ Parser

Synthesis

GeneratorFactory

GeneratorPool

Generator

Generator

…

C++-Backend

Parser Skeleton files

Pretty print

XML-Backend
Pretty print

5

6

7

objective1

ob
je

ct
iv

e2

Fig. 3.13 Overview of a codesign flow using SysteMoC as input language for design space
exploration of hardware/software alternatives as well as for subsequent code generation and
hardware synthesis of each actor called SYSTEMCODESIGNER [15, 25]

rCPU is a slow CPU that has no hardware support for floating point calculations.
Hence, floating point calculations must be emulated in software. Thus, while all
actors can be mapped to the CPU (see Fig. 3.14a), the actor a3 will perform
significantly worse on the CPU as compared to an implementation alternative
(see Fig. 3.14b) where it is mapped to its dedicated hardware accelerator rHW that
is connected to the CPU via the point-to-point link rP2P. Finally, the memory rMEM,
which is connected by the bus rBUS to the CPU, is used to provide the program
memory required by the CPU to implement the actors bound to the CPU as well as
the buffer memory required by the channels of the network graph.

3 SysteMoC: A Data-Flow Programming Language for Codesign 93

Architecture
graph

Network graph

rCPU

rMEM rBUS

a1

a5

a3

a4

a2

A mapping of actors using resource
rCPU that requires software emulation
to support floating point operations

Architecture
graph

Network graph

rP2P rCPU

rHW

rMEM rBUS

a1

a5

a3

a4

a2

A mapping of actors using all available
resources that have initially been specified
in the architecture graph

a b

Fig. 3.14 Depicted above are two possible hardware/software implementation alternatives for
Newton’s iterative square root algorithm. (a) A mapping of actors using resource rCPU that requires
software emulation to support floating point operations. (b) A mapping of actors using all available
resources that have initially been specified in the architecture graph

As discussed above, the network graph of a specification can now be im-
plemented in various ways (cf. Fig. 3.14). In DSE, different mappings of actors
and communication channels to physical resources are explored. Resources of the
architecture graph not being a target of a mapping are eliminated. As the mapping is
independent of the actual MoC, any SysteMoC application can be explored during
DSE. The DSE methodology tackles the problem of the exponential explosion of
the number of ways the desired functionality can be implemented in an embedded
system by performing an automatic optimization of the implementation of the
functionality. For a more comprehensive overview of the DSE techniques supported
within SYSTEMCODESIGNER, the interested reader is referred to �Chap. 7,
“Hybrid Optimization Techniques for System-Level Design Space Exploration”.

Moreover, the optimization needs a way to compare implementations with
each other. Within SYSTEMCODESIGNER, a simulative performance analysis is
performed for SysteMoC applications. For this purpose, a simulative evaluator [38]
is realized by parameterizing [39, 43] a given SysteMoC application in such a way
that it conforms to the design decisions taken by the DSE. This is established using
run-time configurability via the VPC-Plugin [39] or MAESTRO-Plugin [36] in
order to model the design decisions taken during DSE. As performance estimation
is done by discrete-event simulation, only average case performance can be assessed
during exploration for general SysteMoC models. Yet, if the explored network
graph is substituted by less expressive models, e.g., by a static data-flow graph, a
simple task graph, etc., then also formal model-based analysis techniques for timing,
performance, and other objectives of interest such as reliability may be selected and
added; see the box analytical evaluators in Fig. 3.13.

94 J. Falk et al.

Finally, a SysteMoC application may serve as a golden model from which virtual
prototypes for selected implementations can be derived as well via usage of a
synthesis back-end (Step 7 in Fig. 3.13) for an implementation alternative selected
by the designer (Step 6) from the output of the automatic optimization, i.e., the
set of non-dominated or even Pareto-optimal implementations. During synthesis,
actors are refined (compiled, synthesized) according to their binding. For this
purpose, SYSTEMCODESIGNER currently supports hardware synthesis based on
Cadence’s Cynthesizer. The communication is refined with respect to the chosen
model of communication, i.e., shared memory or message passing. So far [15],
only shared memory communication using shared address spaces and point-to-
point communications using hardware queue implementations are supported in the
SYSTEMCODESIGNER synthesis back-end.

An important aspect of the SYSTEMCODESIGNER flow not shown in Fig. 3.13
is the exploitation of the analysis capability of SysteMoC applications. Although
dynamic SysteMoC models can be automatically optimized and assessed by simu-
lation, an additional optimization can be performed for static actors (cf. Sect. 3.5).
SYSTEMCODESIGNER supports [37] the automatic clustering of subgraphs consist-
ing of static actors. Clustering is a transformation where a subgraph of static actors
is replaced by a single composite actor implementing a quasi-static schedule of the
clustered static actors [17, 18]. Such a transformation can reduce the scheduling
overhead resulting from dynamic scheduling significantly. For more information
about clustering cf. [9].

3.7 Conclusions

Data-flow Models of Computation (MoCs) are well suited for the modeling of many
applications that are targeted to heterogeneous hardware/software systems. Due to
the inherently concurrent behavior of actors, partitioning into hardware and software
blocks can be done at the granularity of actors. It is our recommendation therefore to
think in terms of actors when designing a system because of the natural concurrency
available in these models. However, there is a trade-off between expressiveness and
analyzability of different data-flow MoCs. In this chapter, different data-flow models
have been presented in a consistent framework. Moreover, SysteMoC, a MoC with
a very high expressiveness, has been discussed. Its most outstanding property is
the option to automatically identify if a SysteMoC actor uses this expressiveness or
if it can be classified to belong to a more restricted data-flow MoC. In the latter
case, this knowledge increases the analyzability. This advantage may be greatly
exploited also during later optimization phases as well as during code generation
and hardware synthesis from actor specifications to final hardware/software system
implementations.

3 SysteMoC: A Data-Flow Programming Language for Codesign 95

References

1. Bhattacharya B, Bhattacharyya SS (2001) Parameterized dataflow modeling for DSP systems.
IEEE Trans Signal Process 49(10):2408–2421. doi:10.1109/78.950795

2. Bhattacharyya SS, Murthy PK, Lee EA (1997) APGAN and RPMC: complementary heuristics
for translating DSP block diagrams into efficient software implementations. J Des Autom
Embed Syst 2:33

3. Bilsen G, Engels M, Lauwereins R, Peperstraete J (1996) Cyclo-static dataflow. IEEE Trans
Signal Process 44(2):397–408

4. Blickle T, Teich J, Thiele L (1998) System-level synthesis using evolutionary algorithms. Des
Autom Embed Syst 3(1):23–58

5. Buck JT (1993) Scheduling dynamic dataflow graphs with bounded memory using the token
flow model. Ph.D dissertation, Department of EECS, University of California, Berkeley.
Technical Report UCB/ERL 93/69

6. Commoner F, Holt AW, Even S, Pnueli A (1971) Marked directed graphs. J Comput Syst Sci
5(5):511–523. doi:10.1016/S0022-0000(71)80013-2

7. Dennis J (1974) First version of a data flow procedure language. In: Robinet B (ed) Pro-
gramming symposium. Lecture notes in computer science, vol 19. Springer, Berlin/Heidelberg,
pp 362–376. doi:10.1007/3-540-06859-7_145

8. Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S, Xiong
Y (2003) Taming heterogeneity – the ptolemy approach. Proc IEEE 91(1):127–144.
doi:10.1109/JPROC.2002.805829

9. Falk J (2015) A clustering-based MPSoC design flow for data flow-oriented applications. Dr.
Hut, Sternstr. 18, München. Dissertation Friedrich-Alexander-Universität Erlangen-Nürnberg

10. Falk J, Haubelt C, Teich J (2005) Syntax and execution behavior of SysteMoC. Technical
report. 04-2005, University of Erlangen-Nuremberg, Department of CS 12, Hardware-
Software-Co-Design, Am Weichselgarten 3, D-91058 Erlangen

11. Falk J, Haubelt C, Teich J (2006) Efficient representation and simulation of model-based
designs in systemC. In: Proceedings of the forum on specification and design languages (FDL
2006), pp 129–134

12. Falk J, Haubelt C, Zebelein C, Teich J (2013) Integrated modeling using finite state machines
and dataflow graphs. In: Bhattacharyya SS, Deprettere EF, Leupers R, Takala J (eds) Handbook
of signal processing systems. Springer, Berlin/Heidelberg, pp 975–1013

13. Falk J, Keinert J, Haubelt C, Teich J, Bhattacharyya SS (2008) A generalized static data flow
clustering algorithm for MPSoC scheduling of multimedia applications. In: Proceedings of the
8th ACM international conference on embedded software (EMSOFT 2008). ACM, New York,
pp 189–198. doi:10.1145/1450058.1450084

14. Falk J, Schwarzer T, Glaß M, Teich J, Zebelein C, Haubelt C (2015) Quasi-static scheduling
of data flow graphs in the presence of limited channel capacities. In: Proceedings of
the 13th IEEE symposium on embedded systems for real-time multimedia (ESTIMEDIA
2015) p 10

15. Falk J, Schwarzer T, Zhang L, Glaß M, Teich J (2015) Automatic communication-driven
virtual prototyping and design for networked embedded systems. Microprocess Microsyst
39(8):1012–1028. doi:10.1016/j.micpro.2015.08.008

16. Falk J, Zebelein C, Haubelt C, Teich J (2011) A rule-based static dataflow clustering algorithm
for efficient embedded software synthesis. In: Proceedings of the design, automation and test
in Europe (DATE 2011). IEEE, pp 521–526

17. Falk J, Zebelein C, Haubelt C, Teich J (2013) A rule-based quasi-static scheduling approach for
static Islands in dynamic dataflow graphs. ACM Trans Embed Comput Syst 12(3):74:1–74:31.
doi:10.1145/2442116.2442124

http://dx.doi.org/10.1109/78.950795
http://dx.doi.org/10.1016/S0022-0000(71)80013-2
http://dx.doi.org/10.1007/3-540-06859-7_145
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1145/1450058.1450084
http://dx.doi.org/10.1016/j.micpro.2015.08.008
http://dx.doi.org/10.1145/2442116.2442124

96 J. Falk et al.

18. Falk J, Zebelein C, Keinert J, Haubelt C, Teich J, Bhattacharyya, SS (2011) Analysis of
systemC actor networks for efficient synthesis. ACM Trans embed Comput Syst 10(2):18:1–
18:34. doi:10.1145/1880050.1880054

19. Girault A, Lee B, Lee E (1999) Hierarchical finite state machines with multiple concurrency
models. IEEE Trans Comput Aided Des Integr Circuits Syst 18(6):742–760

20. Gouda MG (1980) Liveness of marked graphs and communication and VLSI systems
represented by them. Technical report, Austin

21. Gu R, Janneck JW, Raulet M, Bhattacharyya SS (2011) Exploiting statically
schedulable regions in dataflow programs. Signal Processing Syst 63(1):129–142.
doi:10.1007/s11265-009-0445-1

22. Hsu CJ, Bhattacharyya SS (2007) Cycle-breaking techniques for scheduling synchronous
dataflow graphs. Technical report. UMIACS-TR-2007-12, Institute for Advanced Computer
Studies, University of Maryland at College Park

23. Hylands C, Lee E, Liu J, Liu X, Neuendorffer S, Xiong Y, Zhao Y, Zheng H (2004)
Overview of the ptolemy project, technical memorandum no. UCB/ERL M03/25. Technical
report, Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley

24. Kahn G (1974) The semantics of a simple language for parallel programming. In: IFIP
Congress, pp 471–475

25. Keinert J, Streubühr M, Schlichter T, Falk J, Gladigau J, Haubelt C, Teich J, Meredith M (2009)
SystemCoDesigner – an automatic ESL synthesis approach by design space exploration and
behavioral synthesis for streaming applications. Trans Des Autom Electron Syst 14(1):1:1–
1:23

26. Kosinski PR (1978) A straightforward denotational semantics for non-determinate data
flow programs. In: Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on
principles of programming languages (POPL 1978). ACM, New York, pp 214–221.
doi:10.1145/512760.512783

27. Lee EA (2006) The problem with threads. Technical report. UCB/EECS-2006-1, EECS
Department, University of California, Berkeley. The published version of this paper is in IEEE
Computer 39(5):33–42, May 2006

28. Lee EA, Messerschmitt DG (1987) Static scheduling of synchronous data flow programs for
digital signal processing. IEEE Trans Comput 36(1):24–35. doi:10.1109/TC.1987.5009446

29. Lee EA, Messerschmitt DG (1987) Synchronous data flow. Proc IEEE 75(9):1235–1245
30. Lee EA, Sangiovanni-Vincentelli AL (1998) A framework for comparing models of

computation. IEEE Trans Comput Aided Des Integr Circuits Syst 17(12):1217–1229.
doi:10.1109/43.736561

31. Parks TM (1995) Bounded scheduling of process networks. Ph.D dissertation, Department of
EECS, University of California, Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/1995/
2926.html. Technical Report UCB/ERL M95/105

32. Pino JL, Bhattacharyya SS, Lee E (1995) A hierarchical multiprocessor scheduling system
for DSP applications. In: Proceedings of the Asilomar conference on signals, systems, and
computers, vol 1, pp 122–126. doi:10.1109/ACSSC.1995.540525

33. Plishker W, Sane N, Kiemb M, Anand K, Bhattacharyya SS (2008) Functional DIF for rapid
prototyping. In: The 19th IEEE/IFIP international symposium on rapid system prototyping
(RSP 2008), pp 17–23. doi:10.1109/RSP.2008.32

34. Plishker W, Sane N, Kiemb M, Bhattacharyya SS (2008) Heterogeneous design in functional
DIF. In: Proceedings of the 8th international workshop on embedded computer systems:
architectures, modeling, and simulation (SAMOS 2008). Springer, Berlin/Heidelberg, pp 157–
166. doi:10.1007/978-3-540-70550-5_18

35. Ptolemaeus C (ed) (2014) System design, modeling, and simulation using Ptolemy II.
Ptolemy.org, Berkeley. http://ptolemy.org/systems

36. Rosales R, Glaß M, Teich J, Wang B, Xu Y, Hasholzner R (2014) Maestro – holistic actor-
oriented modeling of nonfunctional properties and firmware behavior for mpsocs. ACM Trans
Des Autom Electron Syst (TODAES) 19(3):23:1–23:26. doi:10.1145/2594481

http://dx.doi.org/10.1145/1880050.1880054
http://dx.doi.org/10.1007/s11265-009-0445-1
http://dx.doi.org/10.1145/512760.512783
http://dx.doi.org/10.1109/TC.1987.5009446
http://dx.doi.org/10.1109/43.736561
http://www.eecs.berkeley.edu/Pubs/TechRpts/1995/2926.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1995/2926.html
http://dx.doi.org/10.1109/ACSSC.1995.540525
http://dx.doi.org/10.1109/RSP.2008.32
http://dx.doi.org/10.1007/978-3-540-70550-5_18
http://ptolemy.org/systems
http://dx.doi.org/10.1145/2594481

3 SysteMoC: A Data-Flow Programming Language for Codesign 97

37. Schwarzer T, Falk J, Glaß M, Teich J, Zebelein C, Haubelt C (2015) Throughput-optimizing
compilation of dataflow applications for multi-cores using quasi-static scheduling. In: Stuijk S
(ed) Proceedings of the 18th international workshop on software and compilers for embedded
systems (SCOPES 2015). ACM, Berlin, pp 68–75

38. Streubühr M, Falk J, Haubelt C, Teich J, Dorsch R, Schlipf T (2006) Task-accurate perfor-
mance modeling in systemC for real-time multi-processor architectures. In: Gielen GGE (ed)
Proceedings of design, automation and test in Europe (DATE 2006). European Design and
Automation Association, Leuven, pp 480–481. doi:10.1145/1131610

39. Streubühr M, Gladigau J, Haubelt C, Teich J (2010) Efficient approximately-timed per-
formance modeling for architectural exploration of MPSoCs. In: Borrione D (ed) Ad-
vances in design methods from modeling languages for embedded systems and SoC’s.
Lecture notes in electrical engineering, vol 63. Springer, Berlin/Heidelberg, pp 59–72.
doi:10.1007/978-90-481-9304-2_4

40. Stuijk S, Geilen M, Theelen BD, Basten T (2011) Scenario-aware dataflow: modeling, analysis
and implementation of dynamic applications. In: Proceedings of the international conference
on embedded computer systems: architectures, modeling, and simulation (ICSAMOS 2011).
IEEE Computer Society, pp 404–411. doi:10.1109/SAMOS.2011.6045491

41. Thiele L, Strehl K, Ziegenbein D, Ernst R, Teich J (1999) FunState – an internal design
representation for codesign. In: White JK, Sentovich E (eds) ICCAD. IEEE, pp 558–565

42. Thiele L, Teich J, Naedele M, Strehl K, Ziegenbein D (1998) SCF – state machine controlled
flow diagrams. Technical report, Computer Engineering and Networks Lab (TIK), Swiss
Federal Institute of Technology (ETH), Zurich, Gloriastrasse 35, CH-8092. Technical Report
TIK-33

43. Xu Y, Rosales R, Wang B, Streubühr M, Hasholzner R, Haubelt C, Teich J (2012) A
very fast and quasi-accurate power-state-based system-level power modeling methodol-
ogy. In: Herkersdorf A, Römer K, Brinkschulte U (eds) Proceedings of the architecture
of computing systems (ARCS 2012), vol 7179. Springer, Berlin/Heidelberg, pp 37–49.
doi:10.1007/978-3-642-28293-5_4

44. Zebelein C (2014) A model-based approach for the specification and refinement of streaming
applications. Ph.D. thesis, University of Rostock

45. Zebelein C, Falk J, Haubelt C, Teich J (2008) Classification of general data flow actors into
known models of computation. In: Proceedings 6th ACM/IEEE international conference on
formal methods and models for codesign (MEMOCODE 2008), pp 119–128

http://dx.doi.org/10.1145/1131610
http://dx.doi.org/10.1007/978-90-481-9304-2_4
http://dx.doi.org/10.1109/SAMOS.2011.6045491
http://dx.doi.org/10.1007/978-3-642-28293-5_4

4ForSyDe: System Design Using a Functional
Language and Models of Computation

Ingo Sander, Axel Jantsch, and Seyed-Hosein Attarzadeh-Niaki

Abstract

The ForSyDe methodology aims to push system design to a higher level of
abstraction by combining the functional programming paradigm with the theory
of Models of Computation (MoCs). A key concept of ForSyDe is the use of
higher-order functions as process constructors to create processes. This leads
to well-defined and well-structured ForSyDe models and gives a solid base for
formal analysis. The book chapter introduces the basic concepts of the ForSyDe
modeling framework and presents libraries for several MoCs and MoC interfaces
for the modeling of heterogeneous systems, including support for the modeling
of run-time reconfigurable processes.

The formal nature of ForSyDe enables transformational design refinement
using both semantic-preserving and nonsemantic-preserving design transforma-
tions. The chapter also introduces a general synthesis concept based on process
constructors, which is exemplified by means of a hardware synthesis tool for
synchronous ForSyDe models. Most examples in the chapter are modeled with
the Haskell version of ForSyDe. However, to illustrate that ForSyDe is language-
independent, the chapter also contains a short overview of SystemC-ForSyDe.

Acronyms

ASK Amplitude Shift Key
CPS Cyber-Physical System

I. Sander (�)
KTH Royal Institute of Technology, Stockholm, Sweden
e-mail: ingo@kth.se

A. Jantsch
Vienna University of Technology, Vienna, Austria
e-mail: jantsch@ict.tuwien.ac.at

S.-H. Attarzadeh-Niaki
Shahid Beheshti University (SBU), Tehran, Iran
e-mail: h_attarzadeh@sbu.ac.ir

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_5

99

mailto:ingo@kth.se
mailto:jantsch@ict.tuwien.ac.at
mailto:h_attarzadeh@sbu.ac.ir

100 I. Sander et al.

EDA Electronic Design Automation
ForSyDe Formal System Design
HSCD Hardware/Software Codesign
MoC Model of Computation
RTL Register Transfer Level
SLD System-Level Design

Contents

4.1 Introduction . 100
4.2 The ForSyDe Modeling Framework . 102

4.2.1 Signals . 103
4.2.2 Processes . 104
4.2.3 ForSyDe Models of Computation . 109
4.2.4 Model of Computation Interfaces . 115
4.2.5 Reconfigurable Processes . 117
4.2.6 Modeling Case Study . 120

4.3 Transformational Design Refinement . 120
4.4 Synthesis of ForSyDe Models . 124

4.4.1 General ForSyDe Synthesis Concepts . 124
4.4.2 Hardware Synthesis . 125
4.4.3 ForSyDe Hardware Synthesis Tool . 126

4.5 SystemC-ForSyDe . 129
4.6 Related Work . 131
4.7 Conclusion . 134
References . 137

4.1 Introduction

Due to the ever increasing complexity of system-on-chip platforms and the con-
tinuous need for more powerful applications, industry has to cope with enormous
challenges and faces exploding verification costs when designing state-of-the-art
embedded systems. Still there are no systematic methods that can guarantee correct
and efficient implementations at reasonable costs, in particular for systems that have
to satisfy extra-functional properties like real-time behavior.

The problem is not new and well recognized. In 2007, Sangiovanni-Vincentelli
discusses the problems of System-Level Design (SLD) [51] and states that “in-
novation in design tools has slowed down significantly as we approach a limit in
the complexity of systems we can design today satisfying increasing constraints
on time-to-market and correctness. The EDA community has not succeeded as of
today in establishing a new layer of abstraction universally agreed upon that could
provide productivity gains similar to the ones of the traditional design flow (Register
Transfer Level (RTL) to GDSII) when it was first introduced.”

The Formal System Design (ForSyDe) methodology addresses these challenges
and aims at pushing the design entry to a considerably higher level of abstraction,

4 ForSyDe: System Design Using a Functional Language and Models. . . 101

Specification
Model

Transformational
Design

Refinement

Implementation
Model

Communication
Implementation

Hardware
Implementation

Software
Implementation

noitamrofsnarTnoitacifireV
Library

Mapping
Implementation Architecture

Model

Functional
Domain

Implementation
Domain

Fig. 4.1 ForSyDe system design flow [48]

by combining a formal base in form of the theory of Models of Computation
(MoCs) [30] with an elegant system modeling technique based on the functional
programming paradigm. This formal foundation enables the development of design
transformation and synthesis techniques to convert the system model into the final
implementation on a given target platform.

Figure 4.1 illustrates the ideas of the ForSyDe design flow as described in
Sander’s PhD thesis from 2003 [48]. The system design process starts with the
development of an abstract, formal and functional specification model at a high
abstraction level. The model is formal since it has a well-defined syntax and se-
mantics. Furthermore, the model is based on well-defined models of computations,
providing a clean mathematical formalism and an abstract communication model.
It is abstract and functional since a system is modeled as a mathematical function
of the input signals. This formal base of ForSyDe gives a good foundation for the
integration of formal methods.

The synthesis process is divided into two phases. First, the specification model
is refined into a more detailed implementation model by the stepwise application
of design transformations. Since the specification model and implementation model
are based on the same semantics, the same validation and verification techniques,
i.e., simulation or formal verification, can be applied to both models. Design
transformation is conducted in the functional domain. Inside the functional domain,
a system model is expressed as a function using the semantics of ForSyDe. The
second step in the synthesis phase is the mapping of the implementation model onto
a given architecture. This phase comprises activities like partitioning, allocation of
resources, and code generation. In the implementation mapping phase, the design
process leaves the functional domain and enters the implementation domain, where

102 I. Sander et al.

the design is described with “implementation-level languages,” i.e., languages that
efficiently express the details of the target architecture, such as synthesizable VHDL
or Verilog for hardware and C for software running on a microcontroller. The task
of the refinement process is to optimize the specification model and to add the
necessary implementation details in order to allow for an efficient mapping of the
implementation model onto the chosen architecture.

The objective of this book chapter is to give an overview of the current state
of the ForSyDe design methodology, where special focus is given to the modeling
framework. The whole chapter is written in a tutorial style, enabling the reader to
experiment with the ForSyDe modeling and synthesis framework. Links to more
detailed information are provided in the corresponding sections of the chapter. For
readers not familiar with the functional programming language Haskell, a short
overview of Haskell is provided in the appendix.

The chapter is structured as follows. Section 4.2 introduces the ForSyDe model-
ing framework and its key concepts, like signals, processes, process constructors,
and MoC interfaces. Several ForSyDe MoCs are introduced and exemplified
using the Haskell version of ForSyDe by concrete examples. Furthermore, the
section presents the suitability of the functional paradigm to model reconfigurable
processes, which in turn can be evolved to model adaptive systems. Finally,
Sect. 4.2 concludes with a larger modeling case study consisting of several MoCs to
illustrate the potential of the ForSyDe modeling framework. Section 4.3 introduces
the ideas of transformational design refinement inside the functional domain and
the use of the characteristic function to illustrate the consequences of semantic-
preserving and nonsemantic-preserving design transformations to the designer. The
synthesis of ForSyDe models to a target language is presented in Sect. 4.4. In
particular, the section gives the general synthesis concepts that can be applied
to any target architecture and exemplifies the general ideas by means of the
ForSyDe hardware synthesis tool, which converts synchronous ForSyDe models to
synthesizable VHDL. Section 4.5 illustrates the language independence of ForSyDe
by introducing SystemC-ForSyDe, which implements the ForSyDe semantics in an
industrial design language. Section 4.6 discusses related approaches, and finally
Sect. 4.7 concludes the paper.

4.2 The ForSyDe Modeling Framework

In ForSyDe, a system is modeled as hierarchical concurrent process network.
Processes communicate with each other only via signals. ForSyDe supports several
Models of Computation (MoCs) and allows processes belonging to different models
of computation to communicate via MoC interfaces as illustrated in Fig. 4.2. In order
to formally describe the computational model of ForSyDe, the chapter uses a similar
definition as the tagged signal model by Lee and Sangiovanni-Vincentelli [30].

The ForSyDe modeling elements are introduced and discussed in Sects. 4.2.1
and 4.2.2 using the synchronous model of computation and the Haskell implemen-
tation of the ForSyDe modeling framework, in short Haskell-ForSyDe. Section 4.2.3

4 ForSyDe: System Design Using a Functional Language and Models. . . 103

P1

P2

P3 P4

P5

MI 1

MI 2
A

B

A

B

MoC A MoC B

Process

Signal
MoC Interface

P5,1 P5,2

Fig. 4.2 A ForSyDe model is a hierarchical concurrent process network. Processes of different
models of computation can communicate with each other via MoC interfaces. The process P5 is
created through process composition of the two processes P5;1 and P5;2

contains a deeper discussion of the synchronous MoC and also introduces additional
ForSyDeMoCs. Heterogeneous ForSyDe models can be created by MoC interfaces,
which are discussed in Sect. 4.2.4. Section 4.2.5 shows the usage of functions as
signal values to model reconfigurable processes, and finally Sect. 4.2.6 concludes
the discussion of the modeling framework with a larger modeling case study. All
examples in this section have been modeled with the forsyde-shallow library,
which is available on https://github.com/forsyde/forsyde-shallow, and have been run
using version 7.10.3 of the Glasgow Haskell Compiler ghc.

It is important to point out that due to its pure functional paradigm, Haskell is
a perfect match to the ForSyDe modeling framework. Still, the ForSyDe modeling
formalism is language-independent and can be implemented in different languages.
A good example is the SystemC implementation of ForSyDe, SystemC-ForSyDe,
which is discussed in Sect. 4.5.

4.2.1 Signals

Processes communicate with each other by writing to and reading from signals. A
signal is a sequence of events, where each event has a tag and a value. Tags can
be used to model physical time, the order of events, and other key properties of the
computational model. In the ForSyDe modeling framework, a signal is modeled as
a list of events, where the tag of the event is either implicitly given by the event’s
position in the list as in the ForSyDe synchronous MoC or can be explicitly specified
as in the case of the continuous-time or discrete-time MoC. The interpretation of
tags is defined by the MoC. An identical tag of two events in different signals does
not necessarily imply that these events happen at the same time. All events in a
signal must have values of the same type. Signals are written as fe0; e1; e2; : : : g,
where ei D .ti ; vi / denotes the tag ti and the value vi of the i -th event in the signal.

https://github.com/forsyde/forsyde-shallow

104 I. Sander et al.

In general, signals can be finite or infinite sequences of events and S is the set of all
signals. The type of a signal with values of type D is denoted S.D/.

In order to distinguish ForSyDe signals from normal lists in Haskell, there is a
special data type Signal a for signals carrying values of data type a. A signal of
data type a is modeled as

data Signal a = NullS
| a :- Signal a

and

s1 = 1:-2:-3:-4:-NullS

models a signal s1 with integer values and has the data type Signal Int. The
Signal data type is isomorphic to Haskell’s list data type. The Haskell version
of ForSyDe outputs signals in a more readable form, i.e., s1 will be presented
as {1,2,3,4}. The function signal can be used to convert a Haskell list into a
ForSyDe signal, so another signal s2 can be created by

s2 = signal [10,20,30,40]

resulting in the signal {10,20,30,40}.
The signals described so far have been finite signals, but infinite signals can

be modeled in Haskell as well due to Haskell’s lazy evaluation mechanism. The
function constS creates an infinite signal of constant values.

constS x = x :- constS x

A full evaluation of the signal constS 5 would not terminate. However, finite
parts of infinite signals can be evaluated due to Haskell’s call-by-need evaluation
mechanism. The function takeS can be used for this purpose and returns the first n
values of a signal, e.g., takeS 3 (constS 5) evaluates to {5,5,5}.

4.2.2 Processes

Processes are defined as functions on signals

p W Sm ! Sn D S � S � � � � � S„ ƒ‚ …
m

! .S � S � � � � � S„ ƒ‚ …
n

/:

The set of all processes is P .
Processes are functions in the sense that for a given set of input signals, always

the same set of output signals is returned. Thus s D s0) p.s/ D p.s0/ is valid
for a process with one input signal and one output signal. Note, that this still allows
processes to have an internal state. A process does not necessarily react identical
to the same event applied at different times. But it will produce the same, possibly
infinite, output signal when confronted with identical, possibly infinite, input signals
provided it starts with the same initial state.

4 ForSyDe: System Design Using a Functional Language and Models. . . 105

Fig. 4.3 A process is
constructed by means of a
process constructor pc that
takes 0 to k side-effect-free
functions and 0 to l values as
argument

i1

im

o1

on

pc

f1 fk

v1 vl

Process
Value

Function

For processes with arbitrary number of input and output signals, the notation
can become cumbersome to read. Hence, for the sake of simplicity, this chapter
uses mostly processes with one input and one output only. This is not a lack of
generality since it is straightforward to introduce zip and unzip processes which
merge two input signals into one output signal and split one output signal into two
output signals, respectively [27]. These processes together with appropriate process
composition allow to express arbitrary behavior.

4.2.2.1 Process Constructors
Figure 4.3 illustrates the concept of process constructor, which is a key concept
in ForSyDe originating from higher-order functions in functional programming
languages. ForSyDe defines a set of well-defined process constructors, which are
used to create processes. A process constructor pc takes zero or more side-effect-
free functions f1; f2; : : : ; fk and zero or more values v1; v2; : : : ; vl as arguments
and returns a process p 2 P .

p D pc.f1; f2; : : : ; fk; v1; v2; : : : ; vl /

The functions represent the process behavior and have no notion of concurrency.
They simply take arguments and produce results. The values model configuration
parameters or the initial state of a process. The process constructor is responsible for
establishing communication with other processes via signals. It defines the time rep-
resentation, the communication interface, and the synchronization semantics. This
separation of concerns leads to an elegant mathematical formalism that facilitates
design analysis and design transformation. It is important to point out that most
programming languages do not prevent the designer from creating functions that
have side-effects, for instance by accessing a global variable inside a C-function.
Since Haskell is a pure functional language, functions are side-effect free by design,
but this property is not guaranteed in the SystemC version of ForSyDe (Sect. 4.5),
where the designer has the responsibility not to use functions with side-effect.

A set of process constructors determines a particular MoC. The concept of
process constructors ensures a systematic and clean separation of computation
and communication. A function that defines the computation of a process can
in principle be used to instantiate processes in different computational models.
However, a computational model may impose constraints on functions. For instance,

106 I. Sander et al.

the synchronous MoC requires a function to take exactly one event on each input and
to produce exactly one event for each output (Sect. 4.2.3.1). Processes belonging to a
data-flow MoC can consume and produce more than one token during each iteration,
which has to be reflected in the computation functions for data-flow processes
(Sect. 4.2.3.2).

The synchronous MoC is used to illustrate the usage of basic process construc-
tors, which can be divided into combinational and sequential process constructors.
A corresponding set of process constructors exists in the ForSyDe libraries for the
other models of computation. Due to the total order of events in the synchronous
MoC, the tag of an event is implicitly given by its position in the signal, so that
synchronous ForSyDe signals do not carry an explicit tag.

A combinational process constructor creates combinational processes, i.e.,
processes that have no internal state. The basic combinational process constructor
in the synchronous MoC is mapSY, which applies a function f to all signal values.
Thus a process twice that doubles all input values of a synchronous signal s is
modeled as

twice s = mapSY (*2) s

and can simulate the process twice with the input signal s1 as twice s1, which
yields {2,4,6,8}. An adder can be modeled by

adder s1 s2 = zipWithSY (+) s1 s2

The process constructor zipWithSY applies a function f pairwise onto two syn-
chronous signals. Hence, adder s1 s2 yields {11,22,33,44} as output signal.
The naming mapSY, zipWithSY, zipWith3SY, . . . originates from functional pro-
gramming, but to simplify for industrial designers the following aliases have been
defined in ForSyDe for combinational process constructors: combSY, comb2SY,
comb3SY, . . .

A sequential process is a stateful process, where an output value depends not
only on the current input values but also on the current state. The basic sequential
process constructor is delaySY, which creates a process that delays a synchronous
signal by one event cycle and where the current output value is given by the current
state of the process. A register process can be modeled by

register s = delaySY 0 s

Here, the first argument to delaySY , in this case 0, is the initial state of the sequential
process delaySY 0. Then register s1 creates the output signal {0,1,2,3,4},
where 0, the initial state, is the value of the initial event. More powerful sequential
processes and process constructors for finite state machines can be created by
process composition as explained in the following section.

4.2.2.2 Process Composition
New processes can be created by composition of other processes to form a
hierarchical process network. Figure 4.4 shows a model of a process counter that

4 ForSyDe: System Design Using a Functional Language and Models. . . 107

zipWithSY
nextstate

delaySY
0

mapSY
output

sinput snextstate sstate soutput

Pnextstate Pstate Poutput

counter

Fig. 4.4 The counter is modeled as concurrent process network. The process network is expressed
as set of equations

is modeled with three processes: the combinational process Pnextstate that calculates
the next state, the sequential process Pstate that holds the current state, and the
combinational process Poutput that models the output decoder. The counter shall
output the value TICK, when the state is 0, otherwise the event is absent. The
possibility of the absence of an event is a special property of the synchronous MoC.
It is modeled in ForSyDe by means of a special data type

data AbstExt a = Prst a
| Abst

expressing that an event can either be present, and then has a value, or absent.
Figure 4.4 illustrates how more complex stateful sequential processes can be

built by process composition around a basic sequential delay process that exists in
all ForSyDe MoCs. It is worth to mention, that sequential processes in ForSyDe
have a local state. However, due to its foundation in form of the theory of models
of computation [30], where processes can only share information via signals, there
is nothing like a shared global state in form of a shared variable. Since ForSyDe
processes require side-effect-free functions as arguments, ForSyDe processes are
deterministic in the sense that they will give the same output signals for the same
history of input signals.

Zero-delay feedback loops in the synchronous MoC and related MoCs can
cause causality problems, where a system specification might have no solution,
a unique solution, or several solutions. ForSyDe deals with zero-delay feedback
loops in a pragmatic way by simply forbidding it, following the same approach as
the synchronous programming language Lustre [23]. More sophisticated solutions
either calculate the least fix-point, as adopted by the synchronous languages Esterel
[7] or Quartz [52], or using a relational approach, as adopted by the synchronous
language Signal [12]. Another practical alternative is to introduce another level in
the tag system, as adopted in VHDL, which includes micro steps in form of a delta-
delay.

108 I. Sander et al.

Listing 1 System model of counter in Haskell-ForSyDe

1 module Counter where
2
3 import ForSyDe.Shallow
4
5 data Direction = UP
6 | HOLD deriving (Show)
7
8 data Clock = TICK deriving (Show)
9

10 -- Step 1: Specification of process network
11 counter s_input = s_output
12 where s_output = p_output s_state
13 s_state = p_state s_nextstate
14 s_nextstate = p_nextstate s_state s_input
15
16 -- Step 2: Selection of process constructors
17 p_nextstate = zipWithSY nextstate
18 p_state = delaySY 0
19 p_output = mapSY output
20
21 -- Step 3: Specification of leaf functions
22 nextstate state HOLD = state
23 nextstate 4 UP = 0
24 nextstate state UP = state + 1
25
26 output 0 = Prst TICK
27 output _ = Abst

A top-down design of a system model in ForSyDe is conducted in three steps:

1. The designer sketches the process network including the selection of the MoC
and the communication between the processes.

2. The designer selects suitable process constructors for all processes in the process
network, alternatively expresses a high-level process by a composition of other
processes. In Fig. 4.4, the process constructors zipWithSY and mapSY are used to
form combinational processes, while the process constructor delaySY is used to
model a process with internal state.

3. The designer formulates the arguments to the process constructors, i.e., the leaf
functions (nextstate, output) and other parameters (initial state for delaySY is 0),
to form ForSyDe processes.

Listing 1 shows the full ForSyDe model of the counter in Haskell-ForSyDe,
including data types for the input (Direction) and output signals (Clock).

Haskell is a strongly typed language and although no data types are given,
Haskell can infer the data type of the process counter to

counter :: Signal Direction -> Signal (AbstExt Clock)

4 ForSyDe: System Design Using a Functional Language and Models. . . 109

This means that counter is a function that takes an input signal with data of type
Direction and produces a signal with possibly absent events of type Clock. A
simulation of the counter in ForSyDe shows the absent events as ’_’-characters.

*Counter> counter (signal ([HOLD,UP,HOLD,UP,UP,UP,UP,HOLD,UP]))
{TICK,TICK,_,_,_,_,_,TICK,TICK,_}

4.2.3 ForSyDe Models of Computation

The Haskell-ForSyDe library supports several MoCs. The following subsections
introduce the synchronous MoC (Sect. 4.2.3.1), two data-flow MoCs (Sect. 4.2.3.2),
and finally the continuous-time MoC (Sect. 4.2.3.3). These three MoCs form a good
base for the challenging design of Cyber-Physical Systems (CPSs), which integrate
computation with physical processes [14]. The computation system consisting of
software and digital hardware is naturally modeled with data-flow MoCs and
synchronous MoC, while the physical process or plant is usually modeled with
a continuous-time MoC. Section 4.2.6 presents a case study that integrates the
presented MoCs of this section.

4.2.3.1 Synchronous Model of Computation (MoC)
The family of synchronous languages [5, 6], consisting of languages like Esterel
[7], Lustre [23], Signal [12], or Quartz [52], is based on the synchronous MoC and
uses the perfect synchrony assumption, i.e., neither computation nor communication
takes time. Timing is entirely determined by the arriving of input events because the
system processes input samples in zero time and then waits until the next input
arrives. If the implementation of the system is fast enough to process all input
before the next sample arrives, it will behave exactly as the specification model.
�Chapter 2, “Quartz: A Synchronous Language for Model-Based Design of Re-
active Embedded Systems” contains a more detailed discussion about synchronous
languages in general and the synchronous language Quartz in particular.

Synchronous processes are defined by the following specific characteristic. All
synchronous processes consume and produce exactly one event on each input or
output in each evaluation cycle, which implies a total order of all events in any
signal inside a synchronous MoC. Events with the same tag appear at the same time
instance. The set of synchronous processes is PSY
 P .

To model asynchronous or sporadic events like a reset signal, ForSyDe uses the
special value ? to model the absence of an event. A value set V that is extended
with the absent value ? is denoted V? D V [f?g. It is often practical to abstract a
non-absent value with the value >. For convenience we call an event with an absent
value an absent event and an event with a non-absent value a present event.

Figure 4.5 gives a formal definition of the set of basic process constructors and
processes, which are needed to model a system in the synchronous MoC. In other
models of computations, the set of basic process constructors is similar. Process
constructors in the synchronous domain have the suffix “SY .” Together with process
composition, this set of combinational process constructors is sufficient to model
systems inside the synchronous MoC.

110 I. Sander et al.

combSY n

f

i1

in

o

p = combSY n(f) ∈ PSY

where
o = p(i1, . . . , in)

o[k] = f(i1[k], i2[k], . . . , in[k])

delaySY
s0

i o

p = delaySY (s0) ∈ PSY

where
o = p(i)

o[k] =
{

s0 k = 0
i[k − 1] k > 0

unzipSY ni

o1

on

p = unzipSY n(f) ∈ PSY

where
(o1, . . . , on) = p(i)

i[k] = (v1[k], . . . , vn[k])
oj [k] = vj [k]

zipSY n

i1

in

o

p = zipSY n ∈ PSY

where
o = p(i1, . . . , in)

o[k] = (i1[k], i2[k], . . . , in[k])

Fig. 4.5 Formal definition of the basic process constructors combSYn, delaySY, and the basic
processes zipSY and unzipSY

A combinational process constructor combSYn takes a function f W D1 � � � � �

Dn ! E as argument and returns a process p W S.D1/ � � � � � S.Dn/ ! S.E/

with no internal state. The delay process constructor delaySY takes only one value
s0 W D as argument and produces a process p W S.D/ ! S.D/ that delays
the input signal one cycle. The supplied value is the initial value of the output
signal. The basic processes zipSYn and unzipSYn are required because a ForSyDe
process is a mathematical function, which can only have a single signal as output.
However, it is possible to model a process that has a signal of tuples as output and
convert it with the process unzipSYn into a tuple of n signals. The process zipSYn
converts a tuple of signals into a signal of tuples. Other process constructors are
defined for convenience, such as the state machine constructor mooreSYn, which
is used to model a finite state machine, where the output depends only on the
current state.

Figure 4.6 illustrates the process constructor mooreSY , which takes two func-
tions, ns and o, and a value s0 as arguments. The function ns calculates the next
state, the function o calculates the output, and the value s0 gives the initial state.
Thus instead of specifying the counter of Fig. 4.4 with an explicit process network,

4 ForSyDe: System Design Using a Functional Language and Models. . . 111

zipWithSY n+1
ns

delaySY
s0

mapSY
o

si1

sin

sns sstate so

mooreSY n(ns , o, s0)

Fig. 4.6 The process constructor mooreSYn creates a synchronous process that models a state
machine, where the output depends only on the state

the designer can use the process constructor mooreSY together with the arguments
for ns, o, and s0 to model the counter, i.e.,

counter = mooreSY nextstate output 0

This model has exactly the same behavior as the counter of Listing 1. The
ForSyDe library also includes the mealySY process constructor to model syn-
chronous Mealy FSMs, where the output depends not only on the state but on the
input signal as well.

4.2.3.2 Data-Flow Models of Computation
ForSyDe provides several libraries for data-flow models of computation. These
MoCs are untimed and there is no total order between events in two different
signals, only a partial order exists. Many data-flow models exist in the literature
ranging from models providing a high degree of expressiveness at the cost of low
analyzability, like dynamic data flow, to models providing high analyzability at the
cost of limited expressiveness, like synchronous data flow. �Chapter 3, “SysteMoC:
A Data-Flow Programming Language for Codesign” gives a very detailed overview
about the most common data-flow Model of Computation (MoC) and introduces
SysteMoC, a language to model and design data-flow systems based on SystemC.

This section will introduce two of ForSyDe’s untimed data-flow MoCs: the
untimed MoC provides a high level of expressiveness, while the synchronous data
flow (SDF) MoC provides a high level of analyzability.

The ForSyDe SDF MoC follows the definition of synchronous data flow [29].
An SDF actor is created by process constructors, which take consumption rates,
production rates, and a function as arguments and produce a process (actor) as result.
Internally, an actor process actorSDFm;n withm input and n output signals is created
by a composition of a zipWithSDFm process constructor and an unzipSDFn process.

Figure 4.7 illustrates the usage of the SDF MoC library by creating a system
that repetitively takes two tokens from an input signal and compares them with the
current maximum. The system model consists of two processes, which are created
using an actorSDF2;2 and a delaySDF process constructor. The process constructor
actorSDF2;2 takes three arguments. The first one, (2,1), gives the consumption rate
for the input signals. The second one, (2,1), gives the production rate for the output

112 I. Sander et al.

Fig. 4.7 Process network of
an SDF model that calculates
the current maximum and
discards the other values

actorSDF 2,2
(2, 1)(2, 1)

f

input discarded

newMax

delaySDF
0

2

1

1

2

1

1

signals, and the third one f gives the computation function that operates on the input
tokens. The initial value for the maximum is set to 0, given by the argument to the
delaySDF process constructor. In each iteration the current maximum is compared
with two new input values to determine a new maximum. The new maximum is fed
back to the system, while the two other values are discarded.

Listing 2 An SDF model that calculates the current maximum and discards the other
values

1 system input = (discarded, newMax)
2 where (discarded, newMax)
3 = actor22SDF (2,1) (2,1) f input curMax
4 curMax = delaySDF 0 newMax
5
6 f [a, b] [c] = [(delete newMax [a,b,c], [newMax])]
7 where newMax = maximum [a,b,c]

The corresponding ForSyDe code is given in Listing 2. The function arguments
in the SDF-MoC operate on lists and return lists as output. This can be seen in Line 6
of Listing 2, where the function f takes lists of different size as input and returns
another list with tuples of lists as output values. The standard Haskell function
delete removes an element from a list and outputs the list in reversed order. A
simulation of the process network returns the expected result in the form of a tuple
of signals. The first signal consists of the discarded values, with a changed order
due to the reversed output of the function delete, while the second signal consists
of the current maximum values.

*SDF> system (signal [1..10])
({1,0,3,2,5,4,7,6,9,8},{2,4,6,8,10})

The usage of the SDF MoC library ensures a well-defined and analyzable SDF
model, where all processes behave according to the rules of the SDF-MoC.

In contrast to the SDF MoC, the untimed MoC of ForSyDe gives a high
grade of expressiveness at the cost of losing analyzability. The reason is that

4 ForSyDe: System Design Using a Functional Language and Models. . . 113

processes in the untimed MoC base the decision on how many tokens to be
consumed and produced during an iteration on the current state of the process.
This enables to model processes that vary the consumption and production rates
during their run time. The expressiveness of the untimed MoC is best illustrated
using the process constructor mealyU, which creates a state machine of Mealy
type. The first argument is a function � that operates on the state of the process
and returns the number of tokens to be consumed in the next iteration. Listing 3
illustrates the use of the mealyU process constructor and the � -function by a tutorial
example.

Listing 3 An untimed model based on the process constructor mealyU consuming a
varying number of input tokens in each iteration

1 system = mealyU gamma nextstate output 0
2 where gamma state = state + 1
3 nextstate state xs = length xs
4 output state xs = [state]

The initial state of the system is 0 given by the last argument of the mealyU
process constructor (Line 1). Thus due to the � -function (Line 2), a single token
will be consumed in the first iteration. The next state is determined by the function
nextstate (Line 3), which is the number of the consumed tokens during an iteration,
i.e., one token in the first iteration. Thus the result of the � -function will be 2 in
the second iteration and consequently an increasing number of tokens is consumed
in following iterations. The function output outputs the current state of the process
(Line 4). The simulation below shows the expected results and stops when there are
not enough tokens in the input signal.

*Untimed> system (signal [1..100])
{0,1,2,3,4,5,6,7,8,9,10,11,12}

4.2.3.3 Continuous Time Model of Computation
The time base, i.e., the tag, for the continuous-time MoC is given by the set
of the positive real numbers, t 2 RC, allowing to model physical time. To
model continuous-time systems, ForSyDe exploits one key property of functional
programming languages: functions are first-class citizens and can be treated as
normal values. A continuous-time signal is defined as a set of sub-signals, where
each sub-signal is defined by its time interval and the function that is executed during
this time interval. A signal s1 that has the constant value 1 during the time interval
between 0 and 0.4 and the constant value 	0:5 during the time interval between 0.4
and 1.0 is modeled as

s1 = signal [SubsigCT ((\t -> 1.0), (0,0.4)),
SubsigCT ((\t -> -0.5), (0.4,1.0))]

114 I. Sander et al.

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
seconds

s1
s2

Fig. 4.8 The continuous-time signals s1 and s2 plotted (Resolution: 5 ms)

where t-> 1.0 and t-> -0.5 are the functions yielding a constant 1 or a constant
0.5, respectively. In a similar way, a continuous-time signal for a sine wave can be
constructed, and the ForSyDe library allows to model sine waves, with the function
sineWave, which takes the frequency in Hz of the sine wave as argument. The signal
s2 models a sine wave with the frequency 4 Hz during the time interval between 0
and 1.0.

s2 = sineWave 4 (0,1.0)

The signals can be plotted using the ForSyDe command plotCT’ with the desired
resolution as illustrated in Fig. 4.8. To generate the plots, plotCT’ requires an
installation of gnuplot.

plotCT’ 5e-3 [(s1, "s1"), (s2, "s2")]

Please note that due to the lazy evaluation of Haskell, ForSyDe only calculates
the results of the functions when needed, for instance to plot the graph with the
given resolution. Otherwise, functions are treated as normal values.

The process constructors in the continuous-time MoC correspond to the process
constructors in the synchronous, i.e., mapCT, zipWithCT, or delayCT. Processes are
created and composed in the same way as in the synchronous MoC. The process p1
that adds two continuous-time signals and the process p2 that multiplies two signals
are modeled as follows:

p1 = zipWithCT (+)
p2 = zipWithCT (*)

Figure 4.9 shows the plot of the operations p1 s1 s2 and p2 s1 s2.

4 ForSyDe: System Design Using a Functional Language and Models. . . 115

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
seconds

p1 s1 s2 = zipWithCT (+) s1 s2

p2 s1 s2 = zipWithCT (*) s1 s2

Fig. 4.9 Operations on the continuous-time signals s1 and s2 (Resolution: 5 ms)

4.2.4 Model of Computation Interfaces

ForSyDe supports heterogeneity through MoC interfaces, which are special types of
processes used to connect signals belonging to different MoCs. Classical examples
for practical MoC interfaces are analog-to-digital and digital-to-analog converters.
Corresponding MoC interfaces also exist in ForSyDe for the connection of the
continuous-time MoC and the synchronous MoC, in the form of ct2sy and
sy2ct. Both interfaces are inspired by practical A/D and D/A converters.

The MoC interface ct2sy corresponds to an A/D converter and is an ideal
process in the sense that is does not perform quantization of the input signal; it only
samples the input signals according to the given sample period. To model a real A/D
converter, an additional synchronous ForSyDe process quantizer is required that
takes the minimal and maximal signal values and the number of bits as input and
produces a quantized signal. There are two modes for the MoC interface sy2ct,
which corresponds to a D/A converter. In DAhold-mode, the continuous-time
output follows directly the synchronous input value for the whole sampling period,
while in DAlinear-mode, a smooth transition between two adjacent synchronous
values is done.

Listing 4 and the plot of the output signals in Fig. 4.10 illustrate the use of the
MoC interfaces between the continuous-time MoC and synchronous MoC.

The example shows the effects of both an ideal A/D converter adc_ideal
on the output signal s5 and a nonideal A/D converter adc_non_ideal with
a quantization stage by means of the output signal s6. ForSyDe provides a few
standard MoC interfaces but allows designers to write their own MoC interfaces.
These interfaces can be on all abstraction levels and might be ideal, as in the case

116 I. Sander et al.

Listing 4 Illustration of the use of MoC interfaces by means of the ct2sy and
sy2ct, which are used to model ideal and nonideal A/D converters and a D/A
converter. The output signals are plotted in Fig. 4.10

1 -- Ideal A/D-converter
2 adc_ideal = ct2sy 0.02
3 -- Non-ideal A/D-converter with quantizer
4 quantizer = mapSY (quantize (-1.0, 1.0) 4)
5 adc_non_ideal = quantizer . (ct2sy 0.02)
6 -- D/A-converter using DAhold-mode
7 dac = sy2ct DAhold 0.02
8
9 -- Sine wave as input signals

10 s4 = sineWave 1 (0,1.0)
11
12 -- Output signals : s6 is inverted for illustration purposes
13 s5 = (dac . adc_ideal) s4
14 negator = mapSY (* (-1.0))
15 s6 = (dac . negator . adc_non_ideal) s4

−1

−0.5

 0

 0.5

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
seconds

s5
s6

Fig. 4.10 The signal s5 shows the effect of the sampling period on the input sine wave, but
does not use any bit-level quantization. The signal s6 shows also the effect of quantization with
a resolution of 4 bits on a negated signal

for the standard ct2sy MoC interface, or can be nonideal as in the case of the
adc_non_ideal, which in itself is a MoC interface created by the composition
of ct2sy and the synchronous quantizer.

4 ForSyDe: System Design Using a Functional Language and Models. . . 117

reconfigSYm

i1

im

o

sf

pf = reconfigSYm
where

o = p f (s f ,(i1, . . . , im))
o[k] = s f [k](i1[k], i2[k], . . . , im[k])

Fig. 4.11 The process reconfigSYm models a reconfigurable process, where the function that the
process executes is controlled by an input signal carrying functions

4.2.5 Reconfigurable Processes

The property of functional languages, that functions are regarded as first-class
citizens, has already been used for the continuous-time MoC library. ForSyDe
exploits this key property also to model reconfigurable processes, i.e., processes that
change their behavior over time, by introducing signals carrying functions as event
values. An example is the synchronous signal sf , which has functions on numbers
as signal values.

sf D f.C/; .	/; .�/; .C/g

Figure 4.11 illustrates how a signal sf W S.D1�� � ��Dm ! E/, where the values
of the signal are functions, serves as input signal for a reconfigurable process. The
reconfigurable process pf W S.D1/�� � ��S.Dm/�S.D1�� � ��Dm ! E/! S.E/

executes always the current value, i.e., a function, of the signal sf . This means that
the reconfigurable process does not need to provide the code for different modes of
functions, because they are supplied from the outside. Reconfigurable processes can
be implemented by run-time reconfigurable hardware or software, where the new
functions can be loaded into a reconfigurable area, such as an FPGA or memory
block, during operation.

Using the classification introduced by McKinley in [36], reconfigurable ForSyDe
processes belong to the category of compositional adaptation. In contrast, most
modeling frameworks offer only parameter adaptation, where adaptivity is changed
by parameter settings or the existence of different system modes usually imple-
mented by if-then-else statements.

Reconfigurable processes can be used to create a self-adaptive process, as
illustrated in Fig. 4.12, where the executed function of the process is triggered by the
change of the values of the input or output signals. The self-adaptive process psa is
constructed as a process network consisting of a reconfigurable preconfig and another
process pcontrol that controls the functionality of the reconfigurable process preconfig.
At the highest level of abstraction, we assume adaptation to be instantaneous. Thus
the change of functionality indicated by a new value of the signal s occurs at the
same instant as the input or output values that trigger the change of the functionality
of the adaptive process.

118 I. Sander et al.

Fig. 4.12 A self-adaptive
process psa is modeled as a
process network of an
adaptive process and an
additional process. The signal
sf carries functions as values
as illustrated in Fig. 4.11

reconfigSYm

i1

im

o

Pcontrol

sf

psa

skey

genEnc genDec

encoder decoder

sencFs
Encoding
Functions

sdecFs
Decoding
Functions

sencsinput soutput

Reconfigurable Processes

Fig. 4.13 Encoder-decoder

In order to show that reconfigurability can be treated as a first-class citizen in
ForSyDe, we illustrate how the existing synchronous ForSyDe process constructor
combSYn in conjunction with the function application operator .$/ can be used to
model a synchronous reconfigurable process reconfigSYn. The function application
operator is defined as f $ x = f x and enables the application of functions on
signal values.

reconfigSY = combSY ($)
reconfig2SY = comb3SY ($)

Figure 4.13 shows a tutorial example to model run-time reconfigurability using
a synchronous system model with two reconfigurable processes. A signal is

4 ForSyDe: System Design Using a Functional Language and Models. . . 119

encoded with an encoding function and later the encoded signal is decoded with
a decoding function. The signal skey is an input to both the genEnc and genDec
processes. The processes encoder and decoder are reconfigurable processes and
have signals carrying functions as inputs. Figure 4.13 models reconfigurability at
a high abstraction level, where the reconfiguration of the reconfigurable process is
assumed to be instantaneous and does not consume any time. The corresponding
ForSyDe source code is given in Listing 5.

Listing 5 ForSyDe source code for the encoder-decoder example

1 module EncoderDecoder where
2
3 import ForSyDe.Shallow
4
5 reconfigSY fs xs = zipWithSY ($) fs xs
6
7 genEnc s_key = mapSY f s_key
8 where f x y = y + x
9

10 genDec s_key = mapSY f s_key
11 where f x y = y - x
12
13 encoder s_encFs xs = reconfigSY s_encFs xs
14
15 decoder s_decFs xs = reconfigSY s_decFs xs
16
17 system s_key s_input = (s_enc, s_output)
18 where s_output = decoder s_decFs s_enc
19 s_enc = encoder s_encFs s_input
20 s_encFs = genEnc s_key
21 s_decFs = genDec s_key\vspace*{5pt}

The simulation with the signal s_key = signal [1,4,6,1,1], which
carries the encoding keys, and an input signal s_input = signal [1,2,3,
4,5] yields the expected output

*EncoderDecoder> system s_key s_input
({2,6,9,5,6},{1,2,3,4,5})

where the output is a tuple of two signals. The first signal {2,6,9,5,6} is the
encoded signal senc and the second signal {1,2,3,4,5} is the decoded output
signal soutput.

The processes encoder and decoder in Fig. 4.13 can be further refined in
consecutive design steps to take reconfiguration time and the need for buffers into
account. This would reflect the nature of partial and run-time reconfigurable FPGAs.
For a more detailed discussion about the modeling and refinement of reconfigurable
and adaptive systems in ForSyDe, see [50].

120 I. Sander et al.

4.2.6 Modeling Case Study

To illustrate the capability of the ForSyDe modeling approach, a case study from
the European FP6 ANDRES project [25] will be used. The case study models an
Amplitude Shift Key (ASK) transceiver and combines three different MoCs: the
continuous-time MoC, the synchronous MoC, and the untimed MoC.

The structure of the system is illustrated in Fig. 4.14. A synchronous signal of
integers enters the system in (1) and is converted to a signal of bit vectors, which are
then encoded. The encoded signal is converted into a serial bit stream, before it is
converted into a continuous-time signal in (2). This signal is then modulated using
an amplitude shift key modulation and amplified before it leaves the sender of the
transceiver in (3). In order to test the system, a Gaussian noise (4) is added to the
signal resulting in a noisy signal in (5). This signal is received by the transceiver
and is converted from the continuous-time MoC to the untimed MoC. Then the
serialized signal is converted into a signal of bit vectors (6), before it is decoded and
converted to an output signal of integers (7).

The system has an inbuilt mechanism to deal with noise during transmission. In
case bit errors are detected after (6), the adaptive power controller (8) increases the
gain and the amplification of the transmitted signal will be increased in the process
adaptGain (9).

The operation of the system is visible in the simulation in Fig. 4.15. At the start
of the simulation, all input signals are either fully available to the simulator as in the
case of the synchronous input signal (1) or are defined as source processes, like in
the case of the Gaussian noise generator (4), which can produce an infinite signal
thanks to Haskell’s lazy evaluation mechanism. The simulation is data-driven and
ends when the final event in the synchronous input signal (1) has been processed.
The model contains several MoC interfaces, which define the relation between the
tag systems of the different MoCs as discussed in Sect. 4.2.4. The synchronous
input signal (1) is represented as a signal of integers. The Gaussian noise increases
between 2 and 3 ms (4). This causes a bit error in the third event of the output
signal (7). The error is detected and causes to amplify the encoded signal to be
transmitted in the following event cycle from 3 to 4 ms (3). The following event is
received correctly, which can also be seen from the noisy ASK signal in (5) and the
amplification power is lowered again to normal level.

4.3 Transformational Design Refinement

The ForSyDe design process starts with the development of an initial abstract
specification model that defines the behavior of the system as a function between
system inputs and system outputs based on the tagged signal model [30]. A central
idea of ForSyDe is to exploit the formal nature of this functional system model
for design transformation and to refine the specification model by the application of
well-defined design transformations into a lower-level implementation model, which

4 ForSyDe: System Design Using a Functional Language and Models. . . 121

C
on

tr
ol

le
r

E
nc

r/
D

ec
r

A
da

pt
iv

e

D
2A

C
on

ve
rt

er
ad

ap
t

G
ai

n

4

5
6

1
2

7

de
co

de
A

S
K

R
ec

ei
ve

r

A
2D

C
on

ve
rt

er

W
av

e
S

in
e

ge
ne

ra
te

m
ul

tC
T

m
od

ul
at

e
A

S
K

se
ria

liz
e

B
itV

ec
to

r

en
co

de
A

S
K

S
en

de
r

Tr
an

sc
ei

ve
r

P
ow

er
C

on
tr

ol
le

r

A
da

pt
iv

e

N
oi

se
ad

d
G

en
er

at
or

N
oi

se
G

au
ss

ia
n

Tr
an

sc
ei

ve
r

S
ys

te
m

N
oi

se
N

oi
sy

A
S

K
A

S
K

re
ce

iv
ed

B
itV

ec
to

r

en
co

de
dB

itV
ec

to
r

C
on

tr
ol

In
pu

t
G

ai
nP

ar
am

et
er

C
on

tr
ol

le
r

K
ey

B
itV

ec
to

r

In
te

ge
r

To

In
te

ge
r

To
B

itV
ec

to
r

de
co

de
dB

itV
ec

to
r

In
te

ge
rI

np
ut

In
te

ge
rO

ut
pu

t

B
itV

ec
to

r

C
on

tin
uo

us
T

im
e

U
nt

im
ed

(S
D

F
)

S
yn

ch
ro

no
us

D
ec

od
er

E
nc

od
er

B
it

E
rr

or
s

D
et

ec
t

de
te

ct
B

its
pa

ck
B

its

B
it

E
rr

or
R

at
eE
nc

ry
pt

io
n/

D
ec

ry
pt

io
n

K
ey

0.
00

01
A

tte
nu

at
io

n
3

8

9

Fi
g

.
4

.1
4

St
ru

ct
ur

e
of

th
e

A
SK

tr
an

sc
ei

ve
r

ex
am

pl
e

122 I. Sander et al.

(1) Synchronous Input Signal
 in = {0,1,2,3,4,5}

(4) Gaussian Noise

−0.0004

−0.0003

−0.0002

−0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 0.001 0.002 0.003 0.004 0.005 0.006
seconds

Noise

(7) Synchronous Output Signal
 out = {0,1,10,3,4,5}

(3) Transceiver Output

−5

−4

−3

−2

−1

 0

 1

 2

 3

 4

 5

 0 0.001 0.002 0.003 0.004 0.005 0.006
seconds

ASK

(5) Noisy Transceiver Input

−0.0008

−0.0006

−0.0004

−0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0 0.001 0.002 0.003 0.004 0.005 0.006

seconds

NoisyASK

Fig. 4.15 Simulation of the ASK transceiver case study

is then synthesized into the target platform (Sect. 4.4). Since both the specification
and the implementation model are based on the same ForSyDe semantics, as
described in Sect. 4.2, they can be simulated using the same testbench as long as
the specification of the inputs and outputs do not change during the refinement
process.

The transformational design refinement process requires both semantic-
preserving transformations, which do not change the meaning, i.e., the timely and
functional behavior, of the model, and nonsemantic-preserving transformations or
design decisions, which change the meaning of the model. Nonsemantic-preserving
design decisions are required to improve the efficiency of the model, for instance,
to refine an infinite buffer into a finite buffer or for data type refinement, but require
an additional verification effort.

In order to give the designer information about the implications on the behavior
of a refined process due to the application of a design transformation rule, ForSyDe
has introduced the concept of characteristic function and exemplified it for the
synchronous MoC [49]. The characteristic function FPN of a process network PN,
where

PN.i1; : : : ; im/ D .o1; : : : ; on/

4 ForSyDe: System Design Using a Functional Language and Models. . . 123

mapSY 4
(f)

i1
i2
i3
i4

o

mapSY 2
(⊗)

i1

i2

mapSY 2
(⊗)

i3

i4

mapSY 2
(⊗) o

mapSY 2
(⊗)

i1

i2

mapSY 2
(⊗)

i3

i4

mapSY 2
(⊗) o

delaySY
s0

delaySY
s0

delaySY
s0

o

BalancedTree

PipelinedTree

Fig. 4.16 Transformation of a combinational function into a balanced, pipelined tree structure
(mD 4)

expresses the functional behavior of a process network as the dependence of the
output events at tag j on the input signals, i.e.,

FPN.i1; : : : ; im; j / D ..T .o1Œj �/; V .o1Œj �/; : : : ; .T .onŒj �/; V .onŒj �///

where T .e/ denotes the tag of the event e, V .e/ denotes the value of the event e,
and sŒj � denotes the j -th event of a signal s. Thus T .oi Œj �/ and V .oi Œj �/ give the
tag and the value of the j -th event oi Œj � of the output signal oi . The characteristic
function utilizes the property of the tagged signal model that divides an event
into tag and value. This enables to compare the behavior of two different process
networks with respect to both timing (tag) and computation function (value).

Figure 4.16 illustrates transformational design refinement using the semantic-
preserving transformation rule BalancedTree and the design decision PipelinedTree
in order to convert a process network PN performing the mathematical function
f .x1; x2; : : : ; xm/ D x1 ˝ x2 ˝ � � � ˝ xm, where m D 2k I k 2 NC, into a pipelined

124 I. Sander et al.

representation PN0 that requires two input functions. The characteristic function
informs the designer about the implication of the design transformation, which in
this case is a delay of the output compared to the original process network PN by k
event cycles, i.e.,

FPN0.i1; : : : ; im; j / D FdelaySYk.s0/ıPN.i1; : : : ; im; j /I 8j � k

In other words, after this transformation, the refined process network will yield
the same output values as the original process network after a delay of k event
cycles. Thus during transformational design refinement, the characteristic function
is used to inform the designer on both changes in the timely behavior and changes
of the output values for a given design transformation rule.

The implication can be used by the designer to verify the local consequences of
the design transformation. However, a transformation like PipelinedTree also affects
the global timing of a larger process network and has to be compensated in feedback
loops or parallel paths in the global process network. This section can only give an
overview about transformational design in ForSyDe. For a more detailed discussion,
see [49] as main reference but also [45], which focuses mainly on nonsemantic-
preserving transformations and discusses the verification of design decisions at the
local level and gives a method for restoring time correctness at the global level. So
far only the concepts for design transformations have been proposed [45, 49], the
automation of the design transformation is still a topic for future work.

4.4 Synthesis of ForSyDe Models

Thanks to the well-defined structure of ForSyDe models, it is possible to give
a general scheme for the synthesis of a ForSyDe implementation model into an
implementation on a given target platform. The general synthesis flow is described
in Sect. 4.4.1 and then exemplified by hardware synthesis of ForSyDe models
belonging to the synchronous MoC in Sect. 4.4.2. The general synthesis concepts
have also been applied for software synthesis toward a single processor as part of a
case study on Hardware/Software Codesign (HSCD) [32]. Furthermore, there exists
a first version of a synthesis tool f2cc targeting GPGPUs from abstract ForSyDe
specifications where the functions are expressed in C-code [11].

Please note that this section deals with the translation of ForSyDe models into
the target implementation. The refinement of the specification model through design
transformations into the implementation model has been the topic of Sect. 4.3.

4.4.1 General ForSyDe Synthesis Concepts

ForSyDe models are structured as hierarchical concurrent process networks, where
each process is either (1) composed of other processes communicating via signals, is
(2) constructed by means of a process constructor, or is (3) a basic process. In order

4 ForSyDe: System Design Using a Functional Language and Models. . . 125

to synthesize a system model into a target implementation, synthesis rules have to
be developed for these different cases.

1. Synthesis of concurrent process networks. ForSyDe process networks commu-
nicate via signals according to a well-defined model of computation. The process
network needs to be translated into a corresponding implementation in the target
language that obeys the properties of the model of computation.

2. Synthesis of processes created by process constructors. Each process con-
structor has to be implemented into the corresponding pattern in the target
implementation. As a second step, the arguments of the process constructors, i.e.,
pure functions and values, have to be translated into the target implementation.

3. Synthesis of basic processes. Basic processes like zipSY and unzipSY need to be
implemented in the target implementation.

4.4.2 Hardware Synthesis

The general synthesis concept is illustrated by means of the synthesis of ForSyDe
system models belonging to the synchronous MoC into digital hardware, more pre-
cisely into the corresponding VHDL code. The translation of synchronous ForSyDe
models is straightforward. The synchronous MoC can be faithfully implemented in
synchronous hardware, where the total order of events is preserved by the use of
hardware clocks. Furthermore, both ForSyDe system models and VHDL models
are based on concurrent processes communicating via signals.

Figure 4.17 shows how ForSyDe processes are translated to VHDL components,
while ForSyDe signals are translated to VHDL signals.

In order to synthesize ForSyDe processes based on process constructors to the
corresponding hardware, the corresponding pattern for each process constructor
has to be identified in VHDL, and the arguments of the process constructors, pure
functions and variables have to be translated to synthesizable VHDL. Figure 4.18
shows the translation of the ForSyDe process constructors mapSY, delaySY, and

ForSyDe Model VHDL Model

P1

P2

P3

C1

C2

C3

Component Mapping

Signal Mapping

Fig. 4.17 Hardware synthesis of process networks

126 I. Sander et al.

f g

v

mooreSY

v

delaySY

f

mapSY
fHW

Register

CLK

fHW
Register

CLK
gHW

Fig. 4.18 Hardware synthesis of process constructors

mooreSY into the corresponding hardware patterns. Finally, the side-effect-free
ForSyDe functions, which are the arguments of the process constructors, are
translated into the corresponding VHDL functions.

4.4.3 ForSyDe Hardware Synthesis Tool

Based on the concepts presented in the previous sections, a hardware synthesis
back end has been developed for ForSyDe [1]. The hardware synthesis tool has
been implemented as deep-embedded domain-specific language in contrast to the
shallow-embedded version of ForSyDe discussed in Sect. 4.2, which has been
developed for simulation. In the deep-embedded version of ForSyDe, the system
knows about its own structure, and ForSyDe’s embedded compiler can operate on
the abstract syntax tree to perform different analysis and transformation activities,
such as simulation of the system or translation into a target language, e.g., VHDL
in the case of the hardware synthesis tool. Thus there is no need for external parsers
to compile a deep-embedded ForSyDe model. So far the deep-embedded version
mainly supports hardware synthesis from the synchronous MoC, but using the same
technique different back ends, like SW synthesis to C, can be developed within the
embedded compiler.

In order to get access to the internal structure of the system model, the deep-
embedded version of ForSyDe relies on several advanced Haskell techniques, which
also affects the syntax of ForSyDe system models. In particular the impact of
Template Haskell [55] is clearly visible in the definition of ForSyDe functions,
but enables that all details of the system model are known to the embedded
compiler at compile time. All examples in this section have been modeled with the
forsyde-deep library, which is available on https://github.com/forsyde/forsyde-
deep, and have been run using version 7.10.3 of the Glasgow Haskell Compiler ghc.

Listing 6 shows the synthesizable model of a counter in deep-embedded
ForSyDe. The counter consists of a single process counterProc, which is created

https://github.com/forsyde/forsyde-deep
https://github.com/forsyde/forsyde-deep

4 ForSyDe: System Design Using a Functional Language and Models. . . 127

Listing 6 A synthesizable counter in the deep-embedded version of Haskell-
ForSyDe

1 -- Enable Language Extension: Template Haskell
2 {-# LANGUAGE TemplateHaskell #-}
3
4 module CounterHW (Direction, counterSys) where
5
6 import ForSyDe.Deep
7 import Data.Int
8
9 type Direction = Bit

10
11 nextStateFun :: ProcFun (Int8 -> Direction -> Int8)
12 nextStateFun = $(newProcFun
13 [d| nextState state dir
14 = if dir == H then
15 if state < 9 then state + 1
16 else 0
17 else
18 if state == 0 then 9
19 else state - 1
20 |])
21
22 counterProc :: Signal Direction -> Signal Int8
23 counterProc = scanldSY "counterProc" nextStateFun 0
24
25 counterSys :: SysDef (Signal Direction -> Signal Int8)
26 counterSys = newSysDef counterProc "Counter" ["direction"]
27 ["number"]

as finite state machine without output decoder by means of the process constructor
scanldSY and the function argument nextStateFun. The reason for the special
syntax inside nextStateFun, i.e., $(newProcFun [d| ... |]), is the use of
Template Haskell to get access to the internal structure of the system model. Deep-
embedded ForSyDe introduces the concept of system as a new hierarchical level. A
system has a name, input and output ports, and there is full information about its
internal structure, so that functions operating on the internal structure of the system
can be defined for analysis, simulation or synthesis. An example is the simulation
command simulate that enables the simulation of a system.

*CounterHW> simulate counterSys [L,H,H,H,H,L,L,L,L]
[0,9,0,1,2,3,2,1,0]

New systems can be created by instantiation of system components and their
composition into a new system as illustrated in Listing 7, where a new system is
created through composition of the counter and a seven-segment decoder. Please
note that in order to define vectors of fixed size, which is critical for hardware

128 I. Sander et al.

systems, a new synthesizable data type for fixed-sized vectors FSVec has been
defined for ForSyDe. The size of the vector is a part of the type and given by a
data type constructor Dx, where x is the size of the vector.

Listing 7 Larger systems can be composed of instantiated components using a set
of equations

1 module CounterSystemHW where
2
3 import ForSyDe.Deep
4 import CounterHW
5 import SevenSegmentDecoderHW
6 -- omitted additional import declarations
7
8 systemProc :: Signal Direction -> Signal (FSVec D7 Bit)
9 systemProc dir = sevenSeg

10 where
11 sevenSeg = (instantiate "sevenSegDec" sevenSegDecSys)
12 counterOut
13 counterOut = (instantiate "counter" counterSys) dir
14
15 system :: SysDef (Signal Direction -> Signal (FSVec D7 Bit))
16 system = newSysDef systemProc "system" ["in"] ["out"]

Listing 8 The ForSyDe synthesis tool interacts directly with the Altera Quartus tool

1 compileQuartus_CounterSystem :: IO ()
2 compileQuartus_CounterSystem = writeVHDLOps vhdlOps system
3 where
4 vhdlOps = defaultVHDLOps{execQuartus=Just quartusOps}
5 quartusOps
6 = QuartusOps{action=FullCompilation,
7 fMax=Just 50, -- in MHz
8 fpgaFamiliyDevice=Just ("CycloneII",
9 Just "EP2C35F672C6"),

10 pinAssigs=[("in", "PIN_N25"), -- SW0
11 ("resetn", "PIN_N26"), -- SW1
12 ("clock","PIN_G26"), -- KEY[0]
13 ("out[6]","PIN_AF10"), -- HEX0[0]
14 ...
15 ("out[0]","PIN_V13")] -- HEX0[6]
16 }

The deep-embedded ForSyDe tool provides a direct link to the Altera Quartus
synthesis tool. The ForSyDe compiler generates the VHDL code and passes it
together with optional design constraints and pin assignments to Quartus, which

4 ForSyDe: System Design Using a Functional Language and Models. . . 129

generates the netlist for the circuit. Listing 8 shows the ForSyDe code for the
synthesis of the counter to an Altera DE2/35 University board.

4.5 SystemC-ForSyDe

The formal definition of ForSyDe is based on the functional programming paradigm,
so a pure functional language like Haskell is a perfect fit for ForSyDe. Nevertheless,
the ForSyDe modeling framework is language independent. To make ForSyDe
attractive for industrial designers, a SystemC version of the ForSyDe modeling
framework has been created, which follows the spirit and semantics of the formal
ForSyDe framework. This section gives a short overview about the nature of
SystemC-ForSyDe by using the synchronous counter example from Fig. 4.4. A more
detailed discussion on SystemC-ForSyDe is given in [2].

Listing 9 shows the code for the counter in SystemC-ForSyDe, which has the
same structure as the corresponding Haskell model of Listing 1. The functions for
the next state and the output need to be declared as side-effect-free functions, and are
arguments for the combinational process constructors scomb2 and scomb to create
the processes nextstate and outputdecode. Here, scomb2 and scomb are special
versions of comb2 and comb, requiring present events as inputs. Process constructors
are implemented as C++ template classes where the template parameters determine
the input/output types, and the constructor arguments are either values or functions.
The process del1 is created with the delay-process constructor. Finally, process
networks can be expressed in SystemC-ForSyDe as composite processes, which can
be regarded as netlists created by binding signals to processes through the newly
introduced concept of ports.

A SystemC-ForSyDe model is also aware of its internal structure, which means
that introspection can be used to operate on the system structure. Hence, it is
possible to extract graph representations, which can be used for subsequent phases
in the design flow, such as design space exploration or synthesis. Figure 4.19 shows
an automatically generated graphical representation of the SystemC model from
Listing 9 to illustrate the capabilities of introspection in SystemC-ForSyDe.

SystemC-ForSyDe supports a similar set of MoCs as Haskell-ForSyDe. All the
MoCs discussed in the Sect. 4.2.3 are also supported by SystemC-ForSyDe libraries,
which are publicly available from the ForSyDe web page [19].

counter

next_state
scomb2

state
delay

output
scomb

Fig. 4.19 Generated graphical representation of the counter in SystemC using the tool f2dot

130 I. Sander et al.

Listing 9 The counter example in the SystemC version of ForSyDe

1 #include <forsyde.hpp>
2
3 using namespace ForSyDe;
4
5 typedef enum Direction { up, hold } Direction;
6 typedef enum Clock { tick } Clock;
7
8 void nextstate_f(int& ns, const int& s, const Direction& in) {
9 switch (in) { case up : ns = (s + 1)

10 case hold : ns = s; break; }
11 }
12
13 void output_f(abst_ext<Clock>& out, const int& s) {
14 switch (s) { case 0 : out = abst_ext<Clock>(tick); break;
15 default : out = abst_ext<Clock>(); }
16 }
17
18 SC_MODULE(counter) {
19 // Declaration of inputs, outputs and intermediate signals
20 SY::in_port<Direction> input;
21 SY::out_port<abst_ext<Clock>> output;
22 SY::signal<int> next_state, state1, state2;
23
24 // Module architecture: constructing processes and binding
25 signals SC_CTOR(counter) {
26 // Process that computes the next state
27 auto nextstate = new SY::scomb2<int, int, Direction>
28 ("next_state", nextstate_f);
29 nextstate->iport1(state1);
30 nextstate->iport2(input);
31 nextstate->oport1(next_state);
32
33 // Sequential process that stores the state value
34 auto del1 = new SY::delay<int>("state", 0);
35 del1->iport1(next_state);
36 del1->oport1(state1);
37 del1->oport1(state2);
38
39 // Process that decodes the output
40 auto outputdecode = new SY::scomb<abst_ext<Clock>, int>
41 ("output", output_f);
42 outputdecode->iport1(state2);
43 outputdecode->oport1(output);
44 }
45 };

4 ForSyDe: System Design Using a Functional Language and Models. . . 131

4.6 Related Work

Researchers have for many years promoted methods that push the design entry to
a higher level of abstraction by the usage of formal models and transformations
in the design process. In 1997, Edwards et al. [16] expressed their beliefs “that
the design approach should be based on the use of one or more formal methods
to describe the behavior of the system at a high level of abstraction, before a
decision on its decomposition into hardware and software is taken.” Furthermore,
they stated that “the final implementation of the system should be made by using
automatic synthesis from this high level of abstraction to ensure implementations,
that are ‘correct by construction.”’ In 1998, Skillicorn and Talia discussed models of
computation for parallel architectures in [58]. They argued that “a model must hide
most of the details from programmers if they are to be able to manage, intellectually,
the creation of software” and that “as much as possible of the exact structure of the
executing program should be inserted by the translation mechanism (compiler and
run-time system) rather than by the programmer.” Furthermore, they pointed out
that “models ought to be as abstract and simple as possible.” Also Keutzer et al.
[28] stressed that “to be effective a design methodology that addresses complex
systems must start at high levels of abstraction.” They promoted “the use of formal
models and transformations in system design so that verification and synthesis can
be applied to advantage in the design methodology” and argued that “the most
important point for functional specification is the underlying mathematical model
of computation.”

Although the arguments for a more formal and disciplined design approach have
been known for a long time, there still exists no formal and systematic design
methodology that can be employed in an industrial setting. The IEEE standard
language SystemC [26] has been inspired by SpecC [15] and is implemented as C++
class library. SystemC provides a discrete-event simulation kernel, and has been
the base for several approaches towards a more formal design process. SystemC-
AMS [59], an extension of SystemC based on a timed data-flow MoC, enables
the modelling of analog and hybrid systems. HetSC [24] is based on the standard
SystemC kernel and targets heterogeneous systems. HetSC supports the designer
by a set of modeling primitives with additional supporting rules and guidelines for
different MoCs. In comparison to ForSyDe, this approach is less formal, since it
is difficult to enforce well-defined models. SysteMoC [18], which is described in
more detail in �Chap. 3, “SysteMoC: A Data-Flow Programming Language for
Codesign”, is based on SystemC and addresses dynamic data-flow applications. Sys-
teMoC’s modeling technique enables to describe both statically analyzable actors
and expressive dynamic actors. An actor is modeled as a state machine that separates
the computational part of the actor from the processing of tokens, which is modeled
as actor state machine. SysteMoC provides analysis methods operating on the actor
state machine that can detect the analyzable portion of the system model, for which

132 I. Sander et al.

powerful data-flow analysis methods exist. The Ptolemy project [17, 44] studies the
usage of well-defined MoCs for the design of heterogeneous, concurrent embedded
and cyber-physical systems. Ptolemy uses an actor-oriented model, where actors
communicate with each other by sending messages. Ptolemy introduces the concept
of director, where the director defines the semantics of the underlying set of actors
and thus specifies the MoC. Heterogeneous models can be created due to the concept
of hierarchy, where each director defines the interaction of the actors on its own
level. ForSyDe supports a generic mechanism, where each process is associated
with a MoC and where the execution of the process network is only based on data
dependences. Thus no central synchronization is required, which is a prerequisite
for efficient simulation on parallel and distributed architectures.

Several researchers have used declarative languages to address system design
from a more formal perspective. Reekie used Haskell for the modeling purpose of
digital signal processing applications, where streams are modeled as infinite lists
and processes are created by higher-order functions [46]. Reekie also proposed
semantic-preserving transformations based on equational reasoning to convert a
model into a more efficient form. The relational language Ruby has been developed
for the design of hardware circuits using a structural representation of basic
hardware components and connection patterns. This structured concept has been
extended for software to formulate a vision on HSCD [33] based on Ruby. Lava
[10] borrows many concepts from Ruby, but is embedded in the functional language
Haskell. It provides a variety of powerful connection patterns, access to formal
methods and translation to VHDL. There exist several versions of Lava: Chalmers
Lava [10], Xilinx Lava [56], and most recently Kansas Lava [22]. The goal of
Kansas Lava is to scale up the ideas in Lava to operate on larger circuits and to use
larger basic components. In contrast to the structural approach of Lava and Ruby,
Mycroft and Sharpe have taken a behavioral approach as base for the development
of the languages SAFL (statically allocated functional language) and SAFL+ [54].
Although these languages have been primarily designed for hardware design, they
have been used in [40] for HSCD. SAFL offers the application of semantic-
preserving transformations and can synthesize programs in a resource-aware style,
where functions that are called several times result in shared resources. The Hawk
[35] language, based on Haskell, addresses the modeling, simulation and verification
of microprocessors, where it exploits the formal base of Haskell. Hardware ML
(HML) [31] is based on the functional programming language Standard ML [39].
It has been designed as an alternative to VHDL with a direct mapping of the HML
constructs to the corresponding VHDL code. C
ash [3] is a functional hardware
description language that uses a subset of Haskell for the purpose of describing
hardware. Haskell functions denote components and the C
ash-compiler converts
C
ash-descriptions into the corresponding hardware implementation. There are
several approaches to generate target code for GPUs from Haskell-based domain-
specific languages. Examples are Nikola [34] and Obsidian [60].

ForSyDe has been inspired by the work of Reekie and is based on the same
modeling approach for signals and processes. The work of Mycroft and Sharp

4 ForSyDe: System Design Using a Functional Language and Models. . . 133

shares the same ambition as ForSyDe to move system design to a higher level of
abstraction, but followed a different modeling approach. Furthermore, refinement
is restricted to semantic-preserving transformations. C
ash, Lava, Ruby, and HML
are developed as languages for hardware design and operate on a lower abstraction
level than ForSyDe. Their main objective is to provide a formally sound alternative
to VHDL and Verilog. In contrast, ForSyDe addresses the modeling and design of
embedded and cyber-physical design, and views VHDL merely as a target language.
Hawk focuses on processor design with a focus on modeling and verification
of instruction set and architecture, and does not support hardware synthesis.
Furthermore, ForSyDe is the only declarative approach that is based on model of
computation theory and that provides several models of computation and MoC
interfaces.

The ForSyDe concept of process constructors is heavily influenced by the work
of Skillicorn on homomorphic skeletons [57]. The term skeleton, coined by Cole
[13] in his seminal work on algorithmic skeletons, has been used in the parallel
programming community to denote an abstract building block that has a predefined
implementation on a parallel machine. In order to obtain an implementation, the
abstract program must be composed of these skeletons. The advantage of such an
approach is that it raises the level of abstraction, because programmers program
in their language and do not even have to be aware of the underlying parallel
architecture. Specialists can be used to design the implementation of these skeletons.
Using the Bird-Meertens formalism, Bird demonstrates how to derive programs
from specifications by equational reasoning using lists [8], arrays, and trees [9] as
data types. As Skillicorn points out, implementations with guaranteed performance
can be built for computers that are based on standard topologies. Also cost measures
can be provided since the complete schedule of computation and communication is
known from the implementation of the skeleton.

The influential CIP (computer-aided, intuition-guided programming) project
investigated transformational program construction [4]. CIP follows a top-down
approach that starts with a formulation of the formal specification which is
then converted via well-defined semantic-preserving transformations into a final
program. The authors stated the following advantages of this approach in [4]: (a)
the final program is correct by construction; (b) the transitions can be described
by schematic rules and thus be reused for a whole class of problems; (c) due to
formality the whole process can be supported by the computer; (d) the overall
structure is no longer fixed throughout the development process, so that the approach
is quite flexible.

The development of a successful practical design transformation system is a
huge challenge. The transformation framework does not only need to provide a
sufficient number of transformation rules, but has also to derive a sequence of
transformations steps that yield a correct and efficient implementation. So far
transformational approaches have mainly been used for small general purpose
programming modules with a high demand on formal correctness. The prob-
lem is aggravated in the embedded systems domain, because of extra-functional

134 I. Sander et al.

design constraints and restricted resources. Most approaches for transformational
hardware design are restricted to semantic-preserving transformations [43, 53],
while ForSyDe’s support of nonsemantic transformations enables to integrate the
refinement techniques in the area of high-level synthesis [21,37] as design decisions.
The result of transformational design refinement from a high-level general purpose
language is largely dependent on the initial specification due to the very large
design space that can only partly explored [62]. The problem is of fundamental
character and also known as syntactic variance problem in high-level synthesis
[20]. The problem is naturally smaller in domain-specific languages like ForSyDe
with a smaller set of building blocks, but it cannot be eliminated still exists. A
more detailed overview on program transformation is given in [41], while [42]
concentrates on transformation techniques for functional and logical programs.

4.7 Conclusion

The ForSyDe design methodology aims at pushing system design to a higher level
of abstraction and provides means to enable a correct-by-construction design flow.
ForSyDe is based on a solid formal foundation in form of a well-defined functional
system model and a theoretical base in form of model of computation theory. The
chapter gave an overview about the key concepts in ForSyDe and illustrated its
heterogeneous system modeling using its Haskell version, which can be viewed as
a perfect match with the underlying formal framework. Furthermore, the chapter
also discussed how to convert an abstract system model into a final implementation
by transformational design refinement followed by system synthesis. The ForSyDe
framework is language-independent and can even be realized in other languages,
which has been demonstrated by the SystemC version of ForSyDe that has been
developed for industrial designers.

ForSyDe is an active research project that covers the whole design flow. In
addition to system modeling, design refinement and system synthesis, current
research focuses also on the development of a design flow for mixed-criticality
multi-processor applications sharing the same platform. Here, the underlying formal
models of computation and the concept of process constructors enable to create
analysis models from the ForSyDe system models. These analysis models can
then be used in the critical design space exploration activity to find efficient
implementations on shared multi-processor platforms. A first implementation of
the design space exploration (DSE) tool, which uses constraint programming and
takes communication on shared resources into account, is presented in [47]. Once an
efficient mapping with the corresponding schedules has been calculated by the DSE
tool, the schedule and the function arguments of the process constructors need to
be synthesized to the processors on the target platform. Future research will develop
the synthesis concepts for multi-processor platforms based on the synthesis concepts
presented in Sect. 4.4.

4 ForSyDe: System Design Using a Functional Language and Models. . . 135

Appendix: Introduction to Haskell

This section gives a short introduction to functional languages and Haskell to give
readers who are not familiar with functional programming additional background
information. For more information on Haskell, visit the Haskell home page [61].

A functional program is a function that receives the program’s input as argument
and delivers the program’s output as result. The main function of a program is
defined in terms of other functions, which can be composed of still other functions
until at the bottom of the functional hierarchy the functions are language primitives.
Haskell is a pure functional language, where each function is free from side-effects.
This means given the same inputs, which in case of ForSyDe could be a set of input
signals, a Haskell function will always produce identical outputs. Thus the whole
functional program is free from side-effects and thus behaves totally deterministic.
Since all functions are free from side-effects, the order of evaluation is only given by
data dependencies. But this means also that there may exist several possible orders
for the execution of a functional program.

Considering the function

f .x; y/ D u.h.x/; g.y//

the data dependencies imply that the functions h.x/ and g.y/ have to be evaluated
before u..h.x/; g.y// can be evaluated. However, since there is no data dependency
between the functions h and g, there are the following possible orders of execu-
tion:

• h.x/ is evaluated before g.y/;
• g.y/ is evaluated before h.x/;
• h.x/ and g.y/ are evaluated in parallel.

Thus functional programs contain implicit parallelism, which is very useful when
dealing with embedded system applications, since they typically have a considerable
amount of built-in parallelism. Of course it is also possible to parallelize imperative
languages like C++, but it is much more difficult to extract parallelism from
programs in such languages, since the flow of control is also expressed by the order
of statements.

In addition to common data types, such as Bool, Int, and Double, Haskell also
defines lists and tuples. An example for a list is [1,2,3,4] :: [Integer], which
is a list of integers. The notation “::” means “has type.” An example for a tuple,
which is a structure of different types is (’A’, 3) :: (Char, Integer) where
the first element is a character and the second one is an integer. Haskell has adopted
the Hindley-Milner type system [38], which is not only strongly typed but also
uses type inference to determine the type of every expression instead of relying
on explicit-type declarations.

136 I. Sander et al.

Haskell is based on the lambda-calculus and allows to write functions in curried
form, where the arguments are written by juxtaposition. The following Haskell
function add is written in curried form.

add :: Num a => a -> a -> a
add x y = x + y

Since ‘->’ associates from right to left, the type of add can also be read as

add :: Num a => a -> (a -> a)

This means that given the first argument, which is of a numeric type a, it returns
a function from a to a. This enables partial application of a curried function. New
functions can then be defined by applying the first argument, e.g.,

inc x = add 1
dec x = dec 1

These functions only have one argument and the following type

inc :: Num a => a -> a
dec :: Num a => a -> a

Another powerful concept in functional languages is the higher-order function,
which is adopted in ForSyDe for process constructors. A higher-order function is
a function that takes functions as argument and/or produces a function as output.
An example of a higher-order function is map, which takes a function and a list as
argument and applies (“maps”) the function f on each value in the list. The function
map is defined as follows

map f [] = [] -- Pattern 1 (empty list)
map f (x:xs) = f x : map f xs -- Pattern 2 (all other lists)

The higher-order function map uses an additional feature of Haskell, which is
called pattern matching and is illustrated by the evaluation of map (+1) [1,2,3].

map (+1) [1,2,3]
) map (+1) (1:[2,3]) Pattern 2 matches
) 1+1 : map (+1) [2,3] Evaluation of Pattern 2
) 2 : map (+1) (2:[3]) Pattern 2 matches
) 2 : 2+1 : map (+1) [3] Evaluation of Pattern 2
) 2 : 3 : map (+1) (3:[]) Pattern 2 matches
) 2 : 3 : 3+1 : map (+1) [] Evaluation of Pattern 2
) 2 : 3 : 4 : map (+1) [] Pattern 1 matches
) 2 : 3 : 4 : [] Evaluation of Pattern 2
) [2,3,4]

During an evaluation the patterns are tested from the top to the bottom. If a
pattern, the left-hand side, matches, the corresponding right-hand side is evaluated.
The expression map (+1) [1,2,3] does not match the first pattern since the list
is not empty ([]). The second pattern matches, since (x:xs) matches a list that is
constructed of a single value and a list. Since the second pattern matches, the right-
hand side of this pattern is evaluated. This procedure is repeated recursively until

4 ForSyDe: System Design Using a Functional Language and Models. . . 137

the first pattern matches, where the right-hand side does not include a new function
call. As this example shows, lists are constructed and processed from head to tail.

The higher-order function map can now be used with all functions and lists that
fulfill the type declaration for map, which Haskell infers as

map :: (a -> b) -> [a] -> [b]

Another important higher-order function is function composition, which is
expressed by the composition operator ‘.’.

(.) :: (b -> c) -> (a -> b) -> (a -> c)
f . g = \x -> f (g x)

This definition uses “lambda abstractions” and is read as follows. The higher-order
function f . g produces a function that takes a value x as argument and produces
the value f .g.x//. The expression f = (+3) . (*4) creates a function f that
performs f .x/ D 4x C 3. Function composition is extremely useful in ForSyDe
since it allows to merge processes in a structured way.

Haskell allows to define own data types using a data declaration. It allows for
recursive and polymorphic declarations. A data type for a list could be recursively
defined as

data AList a = Empty
| Cons a (AList a)

The declaration has two data constructors. The data constructor Empty constructs
the empty list and Cons constructs a list by adding a value of type a to a list. Thus
Cons 1 (Cons 2 (Cons 3 Empty)) constructs a list of numbers. The term type
constructor denotes a constructor that yields a type. In this case AList is a type
constructor. As mentioned before, the list data type is predefined in Haskell. Here
[] corresponds to Empty and : to Cons. [a] corresponds to AList a. The ForSyDe
Signal is defined in the same way as the data type AList, see Sect. 4.2.1.

References

1. Acosta A (2007) Hardware synthesis in ForSyDe. Master’s thesis, School for Informa-
tion and Communication Technology, Royal Institute of Technology (KTH), Stockholm.
KTH/ICT/ECS-2007-81

2. Attarzadeh Niaki S, Jakobsen M, Sulonen T, Sander I (2012) Formal heterogeneous system
modeling with SystemC. In: Forum on specification and design languages (FDL 2012), Vienna,
pp 160–167

3. Baaij C, Kooijman M, Kuper J, Boeijink A, Gerards M (2010) C
ash: structural descriptions
of synchronous hardware using Haskell. In: 2010 13th Euromicro conference on digital system
design: architectures, methods and tools (DSD), pp 714–721

4. Bauer FL, Möller B, Partsch H, Pepper P (1989) Formal program construction by transforma-
tions – computer-aided, intuition guided programming. IEEE Trans Softw Eng 15(2):165–180

5. Benveniste A, Berry G (1991) The synchronous approach to reactive and real-time systems.
Proc IEEE 79(9):1270–1282

6. Benveniste A, Caspi P, Edwards SA, Halbwachs N, Le Guernic P, Simone RD (2003) The
synchronous languages 12 years later. Proc IEEE 91(1):64–83

138 I. Sander et al.

7. Berry G, Gonthier G: The Esterel synchronous programming language: design, semantics,
implementation. Sci Comput Program 19(2):87–152 (1992)

8. Bird RS (1986) An introduction to the theory of lists. Technical monograph PRG-56 edn.
Oxford University Computing Laboratory

9. Bird RS (1988) Lectures on constructive functional programming. Technical Monograph PRG-
69 edn. Oxford University Computing Laboratory

10. Bjesse P, Claessen K, Sheeran M, Singh S (1998) Lava: hardware design in Haskell. In:
International conference on functional programming, Baltimore, pp 174–184

11. Blindell GH, Menne C, Sander I (2014) Synthesizing code for GPGPUs from abstract formal
models. In: Forum on specification and design languages (FDL 2014), Munich

12. Boussinot F, De Simone R (1991) The Esterel language. Proc IEEE 79(9):1293–1304
13. Cole M (1989) Algorithmic skeletons: structured management of parallel computation.

Research monographs in parallel and distributed computing. Pitman, London
14. Derler P, Lee E, Sangiovanni-Vincentelli A (2012) Modeling cyber-physical systems. Proc

IEEE 100(1):13–28
15. Dömer R, Gerstlauer A, Gajski D (2002) SpecC language reference manual, version 2.0
16. Edwards S, Lavagno L, Lee EA, Sangiovanni-Vincentelli A (1997) Design of embedded

systems: formal models, validation, and synthesis. Proc IEEE 85(3):366–390
17. Eker J, Janneck J, Lee E, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S, Xiong Y: Taming

heterogeneity – the Ptolemy approach. Proc IEEE 91(1):127–144 (2003)
18. Falk J, Haubelt C, Teich J (2006) Efficient representation and simulation of model-based

designs in SystemC. In: Proceedings of the forum on specification and design languages (FDL),
vol 6, pp 129–134

19. ForSyDe: Formal system design. https://forsyde.ict.kth.se/
20. Gajski DD, Ramachandran L (1994) Introduction to high-level synthesis. IEEE Des Test

Comput 11(4):44–54
21. Gajski DD, Dutt ND, Wu ACH, Lin SYL (1992) High-level synthesis. Kluwer Academic,

Boston
22. Gill A, Bull T, Kimmell G, Perrins E, Komp E, Werling B (2010) Introducing kansas Lava. In:

Morazán M, Scholz SB (eds) Implementation and application of functional languages. Lecture
notes in computer science, vol 6041. Springer, Berlin/Heidelberg, pp 18–35

23. Halbwachs N, Caspi P, Raymond P, Pilaud D (1991) The synchronous data flow programming
language Lustre. Proc IEEE 79(9):1305–1320

24. Herrera F, Villar E (2008) A framework for heterogeneous specification and design of
electronic embedded systems in SystemC. ACM Trans Des Autom Electron Syst 12(3):
22:1–22:31

25. Herrholz A, Oppenheimer F, Hartmann PA, Schallenberg A, Nebel W, Grimm C, Damm
M, Haase J, Brame J, Herrera F, Villar E, Sander I, Jantsch A, Fouilliart AM, Martinez M
(2007) The ANDRES project: analysis and design of run-time reconfigurable, heterogeneous
systems. In: International conference on field programmable logic and applications (FPL’07),
pp 396–401

26. IEEE Standard for Standard SystemC Language Reference Manual. IEEE Std 1666–2011
(Revision of IEEE Std 1666–2005), pp. 1–638. http://ieeexplore.ieee.org/document/6134619/

27. Jantsch A (2005) Models of embedded computation. In: Zurawski R (ed) Embedded systems
handbook. CRC Press, Boca Raton. Invited contribution

28. Keutzer K, Malik S, Newton AR, Rabaey JM, Sangiovanni-Vincentelli A (2000) System-level
design: orthogonolization of concerns and platform-based design. IEEE Trans Comput-Aided
Des Integr Circuits Syst 19(12):1523–1543

29. Lee EA, Messerschmitt DG (1987) Synchronous data flow. Proc IEEE 75(9):1235–1245
30. Lee EA, Sangiovanni-Vincentelli A (1998) A framework for comparing models of computa-

tion. IEEE Trans Comput-Aided Des Integr Circuits Syst 17(12):1217–1229
31. Li Y, Leeser M (2000) HML, a novel hardware description language and its translation to

VHDL. IEEE Trans VLSI 8(1):1–8

https://forsyde.ict.kth.se/
http://ieeexplore.ieee.org/document/6134619/

4 ForSyDe: System Design Using a Functional Language and Models. . . 139

32. Lu Z, Sander I, Jantsch A (2002) A case study of hardware and software synthesis in ForSyDe.
In: Proceedings of the 15th international symposium on system synthesis, Kyoto, pp 86–91

33. Luk W, Wu T (1994) Towards a declarative framework for hardware-software codesign. In:
Proceedings of the third international workshop on hardware/software codesign, Grenoble,
pp 181–188

34. Mainland G, Morrisett G (2010) Nikola: embedding compiled GPU functions in Haskell. In:
Proceedings of the third ACM Haskell symposium on Haskell, Haskell ’10. ACM, New York

35. Matthews J, Cook B, Launchbury J (1998) Microprocessor specification in HAWK. In:
International conference on computer languages (ICCL’98), pp 90–101

36. McKinley PK, Sadjadi SM, Kasten EP, Cheng BH (2004) Composing adaptive software. IEEE
Comput 37(7):56–64

37. Micheli GD (1994) Synthesis and optimization of digital circuits. McGraw-Hill, New York
38. Milner R (1978) A theory of type polymorphism in programming. J Comput Syst Sci 17:

348–375
39. Milner R, Tofte M, Harper R, MacQueen D (1997) The definition of standard ML – revised.

MIT, Cambridge
40. Mycroft A, Sharp R (2000) Hardware/software co-design using functional languages. In:

Proceedings of tools and algorithms for the construction and analysis of systems (TACAS).
LNCS, vol 2031. Springer, pp 236–251

41. Partsch HA (1990) Specification and transformation of programs. Springer, New York
42. Pettorossi A, Proietti M (1996) Rules and strategies for transforming functional and logic

programs. ACM Comput Surv 28(2):361–414
43. Plosila J (1999) Self-timed circuit design – the action systems approach. PhD thesis, University

of Turku, Turku
44. Ptolemaeus C (ed) (2014) System design, modeling, and simulation using Ptolemy II.

Ptolemy.org. http://ptolemy.org/books/Systems
45. Raudvere T, Sander I, Jantsch A (2008) Application and verification of local non-semantic-

preserving transformations in system design. IEEE Trans Comput-Aided Des Integr Circuits
Syst 27(6):1091–1103

46. Reekie H (1995) Realtime signal processing. PhD thesis, School of Electrical Engineering,
University of Technology at Sydney

47. Rosvall K, Sander I (2014) A constraint-based design space exploration framework for real-
time applications on MPSoCs. In: Design automation and test in Europe (DATE ’14), Dresden

48. Sander I (2003) System modeling and design refinement in ForSyDe. PhD thesis, Royal
Institute of Technology, Stockholm

49. Sander I, Jantsch A (2004) System modeling and transformational design refinement in
ForSyDe. IEEE Trans Comput-Aided Des Integr Circuits Syst 23(1):17–32

50. Sander I, Jantsch A (2008) Modelling adaptive systems in ForSyDe. Electron Not Theor
Comput Sci (ENTCS) 200(2):39–54

51. Sangiovanni-Vincentelli A (2007) Quo vadis, SLD? Reasoning about the trends and challenges
of system level design. Proc IEEE 95(3):467–506

52. Schneider K (2009) The synchronous programming language Quartz. Internal report 375,
Department of Computer Science, University of Kaiserslautern, Kaiserslautern

53. Seceleanu T (2001) Systematic design of synchronous digital circuits. PhD thesis, University
of Turku, Turku

54. Sharp R, Mycroft A (2001) A higher level language for hardware synthesis. In: Proceedings
of 11th advanced research working conference on correct hardware design and verification
methods (CHARME). LNCS, vol 2144. Springer, pp 228–243

55. Sheard T, Jones SP (2002) Template meta-programming for Haskell. ACM SIGPLAN Not
37(12):60–75

56. Singh S, James-Roxby P (2001) Lava and JBits: from HDL to bitstream in seconds. In:
Proceedings of the 9th annual IEEE symposium on field-programmable custom computing
machines, FCCM ’01, pp 91–100

http://ptolemy.org/books/Systems

140 I. Sander et al.

57. Skillicorn DB (1994) Foundations of parallel programming. Cambridge international series on
parallel computation. Cambridge University Press, Cambridge/New York

58. Skillicorn DB, Talia D (1998) Models and languages for parallel computation. ACM Comput
Surv 30(2):123–169

59. Standard SystemC AMS extensions 2.0 language reference manual (2013)
60. Svensson J, Sheeran M, Claessen K (2011) Obsidian: a domain specific embedded language

for parallel programming of graphics processors. In: Scholz SB, Chitil O (eds) Implementation
and application of functional languages. Lecture notes in computer science, vol 5836. Springer,
Berlin/Heidelberg, pp 156–173

61. The Haskell language. http://www.haskell.org
62. Voeten J (2001) On the fundamental limitataions of transformational design. ACM Trans Des

Autom Electron Syst 6(4):533–552

http://www.haskell.org

5Modeling Hardware/Software Embedded
Systems with UML/MARTE: A Single-Source
Design Approach

Fernando Herrera, Julio Medina, and Eugenio Villar

Abstract

Model-based design has shown to be a powerful approach for embedded software
systems. The Unified Modeling Language (UML) provides a standard, graph-
ically based formalism for capturing system models. The standard Modeling
and Analysis of Real-Time Embedded Systems (MARTE) profile provides
syntactical and semantical extensions required for the modeling and HW/SW
codesign of real-time and embedded systems. However, the UML/MARTE
standard is not sufficient. In addition, a modeling methodology stating how to
build a model capable to support the analysis and HW/SW codesign activities of
complex embedded systems is required. This chapter presents a UML/MARTE
modeling methodology capable to address such analysis and design activities.
A distinguishing aspect of the modeling methodology is that it supports a single-
source design approach.

Acronyms

BCET Best-Case Execution Time
BSP Board Support Package
CPS Cyber-Physical System
DSE Design Space Exploration
DSL Domain-Specific Language
EDF Earliest Deadline First
EML Execution Modeling Level
ESL Electronic System Level

F. Herrera • E. Villar
GESE Group, TEISA Department, ETSIIT, Universidad de Cantabria, Santander, Cantabria,
Spain
e-mail: fherrera@teisa.unican.es; evillar@teisa.unican.es

J. Medina (�)
Software Engineering and Real-Time Group, University of Cantabria, Santander, Cantabria, Spain
e-mail: medinajl@unican.es

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_6

141

mailto:fherrera@teisa.unican.es
mailto:evillar@teisa.unican.es
mailto:medinajl@unican.es

142 F. Herrera et al.

FPGA Field-Programmable Gate Array
GME Generic Modeling Environment
HLS High-Level Synthesis
HRM Hardware Resource Modeling
HSCD Hardware/Software Codesign
ISA Instruction-Set Architecture
M2M Model-to-Model
MARTE Modeling and Analysis of Real-Time Embedded Systems
MCS Mixed-Criticality System
MDA Model-Driven Architecture
MPSoC Multi-Processor System-on-Chip
NFP Non-Functional Property
OMG Object Management Group
OS Operating System
PIM Platform Independent Model
PVT Programmers View Time
RR Round Robin
RTOS Real-Time Operating System
SLS System-Level Synthesis
TLM Transaction-Level Model
UML Unified Modeling Language
UTP Universal Testing Profile
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VSL Value Specification Language
WCET Worst-Case Execution Time

Contents

5.1 Introduction . 143
5.2 Modeling Requirements . 144

5.2.1 Single-Source Approach . 144
5.2.2 Separation of Concerns . 146
5.2.3 Incremental Modeling . 146
5.2.4 Component-Based Functional Modeling . 147
5.2.5 Support of System-Level Design Activities . 147
5.2.6 Support of Mixed-Criticality . 148

5.3 State of the Art . 149
5.4 Single-Source Modeling Methodology . 151

5.4.1 Introductory Example: Quadcopter System . 151
5.4.2 Introduction . 152
5.4.3 Platform-Independent Model . 154
5.4.4 Platform Resources . 159
5.4.5 Platform-Specific Model . 162
5.4.6 Extra-Functional Properties and Performance Constraints 162
5.4.7 Design Space . 167
5.4.8 Modeling for Software Synthesis . 170

5 Modeling Hardware/Software Embedded Systems with. . . 143

5.4.9 Verification Environment . 171
5.4.10 Mixed-Criticality . 172
5.4.11 Modeling for Schedulability Analysis . 178

5.5 Single-Source Design Framework . 180
5.6 Conclusions . 182
References . 183

5.1 Introduction

Model-based design is a powerful approach for the design of complex embedded
systems [27]. It can be adapted to different design contexts and domains, being
compatible with methodologies like Agile [2]. The Unified Modeling Language
(UML) supports Model-Driven Architecture (MDA) [40] and provides the following
remarkable advantages:

• It is a widely spread language, known and used in different domains.
• It is an Object Management Group (OMG) standard [30].
• It provides a set of generic modeling elements, supported by a graphical syntax

and a closed set of diagrams, which enables the capture of architectural and
behavioral details.

A key of the success of UML is related to the generality of the provided modeling
elements. These elements have a simple semantics that can be easily understood
and interpreted by engineers of different domains. For instance, stating that a UML
port is a mechanism to access to/from a UML component which hides component
internals. This simple element semantics is encompassed by a simple graphical
syntax, which facilitates the comprehension and adoption of UML diagrams.

UML has been also proposed for the modeling of embedded systems. Embedded
systems have become complex. The increasing amount of silicon available in a
single-chip enables the integration of more hardware and software functions. In
close relationship, the specification and modeling tasks have become increasingly
complex. Models need to reflect systems integrating multiple applications and
diverse software platform components, e.g., embedded RTOS, middleware, drivers,
etc. Similarly, current hardware architectures rely on multi-core processors, sur-
rounded by many HW devices for communication, storage, sensing, and actuation.
In addition, several types of analysis are applied (e.g., schedulability, timed-
simulations, etc.) which require to add additional information to the model, e.g., an-
notations of extra-functional properties related to timing, memory sizes, energy, etc.

A solution is to build models integrating parts under different Domain-Specific
Languages (DSLs). However, fragmentation into DSLs limits the understanding of
the overall model (all the engineers handling the model should know all the DSLs
involved) and requires an additional effort to integrate the DSLs.

In this scenario, relying on UML has the advantage of providing a common
and comprehensive host language. UML lacks the semantics and specific ele-
ments required for tackling the Hardware/Software Codesign (HSCD) of complex

144 F. Herrera et al.

embedded systems. However, UML enables to cover this semantic lack by means of
a UML extension mechanism called profile. A UML profile provides stereotypes.
Stereotypes are applied to UML modeling elements and add them additional
attributes and domain-specific semantics. In fact, the OMG currently provides a rich
portfolio of UML profiles oriented to different domains like telecommunication,
middleware, and real time.

Among these OMG standard profiles, the Modeling and Analysis of Real-Time
Embedded Systems (MARTE) profile [29] provides a rich set of modeling elements,
sufficiently broad to cover HSCD of real-time and embedded systems. For instance,
it supports the modeling of the hardware and software platform, of the application,
of extra-functional properties, and the definition of performance and real-time
analyses.

As well as the UML and the MARTE profile, a modeling methodology is
required. The modeling methodology states how to use the language in order to build
the model of a system. It states which information have to be captured and how it
is structured and captured through the available modeling techniques, such that the
model can be processed and provides all the information required by the analysis
tools and processes related to the HW/SW codesign. All these aspects defining a
modeling methodology have to serve to its main purposes. The main purpose of
the methodology presented in this chapter is to enable the development of abstract
models which can be used as a single-source for the different activities involved in
electronic system-level design. The modeling methodology shall not fix a specific
Electronic System Level (ESL) design flow, but it has to allow that applicable
design flows can progressively enrich the model from early stages, when limited
information is available, toward an enriched model which allows the implementation
of an efficient, potentially optimal, solution.

Following, Sect. 5.2 presents the goals of the methodology. The section motivates
how these goals turn into requirements because of the need of higher design
productivity. Moreover, it precises the meaning of some of this requirements (e.g.,
single-source, incremental modeling) in the modeling context. Section 5.3 provides
an overview of related modeling approaches, showing how they partially cover
the aforementioned requirements. Then, Sect. 5.4 presents the generic UML-based
modeling techniques adopted by the methodology to cover Sect. 5.2 requirements.
Section 5.5 introduces, before the conclusions, a single-source design framework
exploiting the presented modeling methodology.

5.2 Modeling Requirements

5.2.1 Single-Source Approach

A model-driven design approach helps in analyzing and predicting the behavior
of a system from different perspectives and for different purposes. In a multi-source
approach, several models of the same system have to be developed, each one associ-
ated to a perspective, type of analysis, or design activity. However, relying on several

5 Modeling Hardware/Software Embedded Systems with. . . 145

models easily leads to extra modeling efforts, redundancies, inconsistencies, and
traceability problems. In contrast, an advanced software development methodology
like Agile adopts a single-source approach, which reduces the maintenance burden
and the traceability burden and increases consistency [2].

The same advantages motivate the proposal of a single-source approach for
modeling and design of embedded systems [7], which is sketched in Fig. 5.1.

A single model, a UML/MARTE model in this case, captures all the information
required by the many tasks involved in a modern embedded system design flow, e.g.,
reusability, verification, schedulability analysis, architectural mapping, simulation
and performance analysis, design space exploration, etc.

The left-hand side of Fig. 5.2 illustrates the multi-source approach, where two
independent models, A and B, of an embedded system are developed.

Fig. 5.1 The MARTE model as a single-source model

Fig. 5.2 Multi-source vs. single-source approach

146 F. Herrera et al.

Model A serves for analyzing timing performance. Model B is the input for
a SW synthesis process. Model A adds some timing annotations, which are not
present in model B. Model B adds target information, which is not present in model
A. However, both models should reflect the same architecture of the application.
Therefore, a double unnecessary modeling effort has been done. A consistency
check to ensure that both models A and B reflect the same architecture is required, at
least after the first development of the models and specially in a context where model
architectures can be edited. These problems exponentially grow with the number of
independent models required (in the worst case, one per design activity shown in
Fig. 5.1).

In contrast, in the single-source approach (right-hand side of Fig. 5.2), the
architectural information is captured once in the model. Then, in order to capture
models A and B, the model is extended twice: once for capturing the time
annotations required by the A model and once more for capturing the synthesis
information required by the B model. The adoption of a single-source approach is a
distinctive and remarkable aspect of the shown approach. Moreover, there are other
important characteristics which need to be preserved and adopted, as addressed in
the following sub-sections.

5.2.2 Separation of Concerns

The single-source approach centralizes the information required for the design tasks
in a single model, with the advantages discussed in the previous section. The
complex system model will have a big amount of information. In this context,
Separation-of-concerns helps to provide a structure to such information. Model
Viewpoints [22] and Perspectives [46] become essential for the modeling activity.
Viewpoints are about defining the most relevant categories of information and
about the structure the model concerning them. Perspectives are related to the
model concerns, e.g., model properties or actions performed on the model, that
shall be presented and can be accessed in the modeling framework. Combining
perspectives and viewpoints facilitates model edition. It enables the cooperation of
different modelers, which can focus on specific information of the model. It also
simplifies tools and activities around it, e.g., the model navigation performed by
code generators.

5.2.3 Incremental Modeling

In software engineering, incremental modeling refers to the delivery of a series
of releases called increments [39]. This approach enables to progressively provide
more functionality on each increment. In software modeling, increments can refer
to customizations, as well as to extensions [1].

In our single-source modeling context, incremental modeling refers to the
possibility to start by building a first model that enables a first set of analysis

5 Modeling Hardware/Software Embedded Systems with. . . 147

and design activities, and enhance it later on. Then, further modeling increments
may enable additional design activities and/or improve the results of the previously
applicable activities, e.g., enabling more accuracy in the performance assessments.
A model increment shall not prevent performing the design activities already
enabled by previous versions of the model.

5.2.4 Component-Based Functional Modeling

A software component-based approach [38] has important advantages. First, it
enables to build system functionality as a composition of existing and reusable
components. These components interact with each other only through well-defined
interfaces [32], which declare the functional services they provide and require.
Adopting a software-centric approach, i.e., assuming a default software implemen-
tation of the functionality, is also an efficient approach according to the increasing
and dominant amount of software in current embedded systems.

5.2.5 Support of System-Level Design Activities

Adoption of ESL design [4] is key in order to shorten the productivity gap [19]. ESL
design tackles the productivity gap by raising the abstraction of the starting model
and by introducing automated design activities around that system-level model. Two
main design activities are:

• Design Space Exploration (DSE): consists in the activity of exploring design
alternatives and selecting the optimal ones.

• System-Level Synthesis (SLS): consists in the generation of the implementation
from the initial model, used as a specification. It requires the decision of the
HW/SW partition and the automated generation of software, hardware, and
HW/SW interfaces.

DSE can rely on SLS. For instance, [4] highlights that one of the most important
benefits for High-Level Synthesis (HLS) is that it enables (hardware) design
exploration. The methodology in [37] enables the automated SW synthesis from
a UML/MARTE model of the binaries targeted to a multi-core heterogeneous
platform. This automation is exploited for the exploration of different software
implementation alternatives. The aforementioned approaches are applied after
HW/SW partition.

An explore-then-synthesise approach relying on performance assessment tech-
niques is also possible. Kang et al. [20] refers to DSE as the activity of exploring
design alternatives prior to implementation. Therefore, in this approach, the ex-
ploration activity is done first on the model. Performance estimations on different
model configurations, which can reflect different HW/SW partitions, serve to decide
the most convenient one. Thus the system-level synthesis is only applied on that

148 F. Herrera et al.

choice. In a UML/MARTE context, [13] showed how the model can reflect different
mappings, comprising different HW/SW partitions. It enables the generation of a
performance assessment model which, linked to a DSE tool, enabled an automated
search of the Pareto solutions set.

The automation of the DSE and SLS activities is key in order to cope with the
exploration of huge design spaces and in order to eliminate human errors both in
the exploration and implementation steps. This has motivated the development of
automated DSE, SW synthesis, and hardware HLS frameworks. The possibility
to exploit these frameworks relies on the fact of enabling an input model which
conjugates the abstraction required by ESL, with the information required for
performing these activities. This chapter shows how it is done from a UML/MARTE
model under a single-source approach.

5.2.6 Support of Mixed-Criticality

Mixed-Criticality System (MCS) have got an increasing interest [23]. MCS integrate
applications with constraints whose fulfillment has different levels of criticality and
which can share computational, memory, and communication resources. Although
there is not an unanimous convey in the meaning of criticality, it has been associated
to the impact of the occurrence of a failure [6]: e.g., safety critical when the
failure can cause injures to humans, mission critical when the failure prevents the
system to perform its expected behavior, but it does not compromise safety, and
low critical when the impact is affordable. Safety standards associate criticalities
to a set of more or less strict requirements on the development process. There
are several reasons for the highest interest in mixed-criticality systems. Reusing
existing functionalities and integrating them in the same chip or in the same platform
is an efficient way to exploit growing integration capabilities and cost-effective
platforms. However, dependability problems arise, as not all the functionalities
and performance requirements are equally important. A mixed-criticality aware
design methodology considers this differences. For instance, methodologies need
to combine real-time analysis for the safety parts with hard real-time constraints,
with other techniques employed in the optimization of soft real-time embedded
systems, e.g., based on simulation and on average-case optimization. Accordingly,
MCS models need to provide support for the emerging mixed-criticality design
methodologies. Mixed-criticality has to be reflected in system models.

The modeling scenarios which can be identified in recent MC research and in
current industrial practices related to safety standards lead to the need to associate
criticalities to different type of elements, i.e., application components, platform
resources, constrains, annotations of extra-functional properties. These criticality
annotations are used to apply mixed-criticality-specific modeling rules to feed
mixed-criticality-specific schedulability analyses, DSE flows, and development and
implementation constraints.

5 Modeling Hardware/Software Embedded Systems with. . . 149

5.3 State of the Art

There are several examples of model-based methodologies for modeling, explo-
ration, and implementation of complex embedded systems. For instance, MILAN
[5] enables a model-based approach to capture the application and the platform
(called resource model). MILAN also introduced the idea of constraint model,
which distinguishes between semantic constraints, which give composability rules,
from design constraints, which capture performance requirements. The framework
shows how a model-based approach facilitates the integration of several simulation
tools at different levels of abstraction for the estimation of the performance of the
design point by relying on a Generic Modeling Environment (GME) [35]. Koski [21]
is a design flow for Multi-Processor System-on-Chip (MPSoC) covering the design
phases from system-level modeling to Field-Programmable Gate Array (FPGA)
prototyping. System-level modeling relies on UML and separates the capture of
the application from the platform. However, this approach relies on a proprietary
profile for capturing the required semantics.

Despite the relative recent release of the standard MARTE profile, there
have been already several proposals relying on it. Gaspard2 [8, 35] is a design
environment for data-intensive applications which enables a MARTE description
of both the application and the hardware platform, including MPSoC, and
regular structures. Gaspard2 uses composite diagrams and the MARTE profile for
capturing both application and platform architectures. Gaspard2 tooling supports
the chaining of different Model-to-Model (M2M) transformation tools. This
facilitates the generation of synthesis flows and also of performance models.
Specifically, Gaspard2 supports the generation of SystemC TLM models at the
Programmers View Time (PVT) level. It enables fast simulations, which speeds up
exploration.

MoPCoM [45] is another design methodology for the design of real-time
embedded systems which supports UML and the MARTE profile for system
modeling. Specifically, MoPCoM uses the Non-Functional Property (NFP) MARTE
profile for the description of real-time properties; the Hardware Resource Modeling
(HRM) MARTE profile for platform description; and the Alloc MARTE profile
for architectural mapping. Moreover, MoPCoM defines three levels of generation.
The second level, called Execution Modeling Level (EML), targets the generation
of models for performance analysis, and it is suitable for obtaining performance
figures used in DSE iterations. However, work reported in [24] mostly focuses on the
Detailed Modeling Level (DML), intended for implementation, by enabling VHDL
code generation.

The PHARAON methodology [33] provided a solution for automatically
synthesizing models combining new communication semantics with standard
UML/MARTE real-time management features. This approach provides a flexible
and easy-to-use way to specify and explore the system’s concurrent architecture.

150 F. Herrera et al.

CoFluent methodology [18] captures application and hardware architecture by
means of composite diagrams and SysML blocks. UML activity diagrams are
used to specify application execution flows. The MARTE HRM profile is used
for capturing the HW platform. CoFluent models can be translated into executable
SystemC transaction-level models, which serves to obtain utilization, time, and
power performance metrics.

A main limitation of the previous methodologies is that the exploration of
architectural alternatives requires the edition of the UML/MARTE model and a re-
generation of the executable performance model.

In [24], a UML-MARTE-based methodology relying on activity threads is
proposed in order to reduce the effort required to capture the set of architectural
mappings. An activity thread is a UML activity diagram where each path reflects a
design alternative, that is, an architectural mapping.

In [26], a methodology for supporting designers on the evaluation of the HW/SW
partitioning solutions, specifically, to identify design points fulfilling the timing
constraints is shown. It proposes a way to depict in one set of diagrams all possible
combinations of system configurations. By means of annotation of MARTE non-
functional properties and of the application of schedulability analysis, the design
space is restricted to the design points fulfilling timing requirements. However,
this methodology does not rely on automated technologies for the estimation of
performance metrics.

These MARTE-based specification methodologies are still limited for DSE pur-
poses. The exploration of different platform architectures, of different architectural
mappings, and even a small change in a design parameter (e.g., a cache size) still
requires a manual change of the model. The COMPLEX [13] flow proposes a
single-source approach to overcome the aforementioned limitations. Moreover, the
COMPLEX framework produces a configurable performance model which avoids
the re-generation and re-compilation of a performance model for each exploration
alternative and thus a significant impact in the exploration time. This framework
also supported the capture of the output performance metrics to be used by the
objective function(s) of the DSE process within the model and of performance
constraints. Enabling the capture of the performance metrics in the model, and so
in a tool independent manner, enabled the direct relation of such metrics with the
performance constraints also captured in the model.

Modeling complexity has increased with the need to consider the modeling
of Cyber-Physical System (CPS) and Mixed-Criticality Systems (MCS). A UML-
Modelica-SysML integrated modeling environment as a ModelicaML profile inte-
grated in Eclipse is presented in [36]. Modelica is an object-oriented mathematical
language for component-oriented modeling of complex physical systems containing
components of diverse nature, e.g., mechanical, electrical, electronic, hydraulic,
thermal, control, electric power, etc. The modeling of mixed-criticality systems
in UML/MARTE has been proposed in [15, 16]. This work provides modeling
techniques which cover a number of scenarios where mixed-criticality has to be
captured.

5 Modeling Hardware/Software Embedded Systems with. . . 151

5.4 Single-Source Modeling Methodology

5.4.1 Introductory Example: Quadcopter System

Along the following sections, the main modeling techniques of the proposed single-
source methodology are presented. These modeling techniques will be presented by
taking excerpts of a model of a digital electronics system embedded in a quadcopter.
This quadcopter system, shown in Fig. 5.3, has been developed by the OFFIS
Institute for Information Technology in the context of the CONTREX project [28].
The quadcopter digital system includes:

• The data mining, radio control & telemetry, and flight control functionalities.
They are safety critical as a failure on them compromises person’s safety.

• A mission functionality, which consists in the detection and tracking through a
camera a moving ball, e.g., in a sport action, in order to track, record, and stream
that action video to a base station.

• A functionality to log monitoring and debug data.

All this functionality is implemented in a Xilinx Zynq platform, which contains
a processing system with two ARM Cortex-A9 processors. In addition, the Zynq
platform has an FPGA which allows the integration of custom logic and additional
Microblaze processors, configured without caches, for enabling more predictable
computational resources for safety critical functions. The Zynq board is integrated

Fig. 5.3 The digital electronic system of a quadcopter is used for introducing the single-source
methodology

152 F. Herrera et al.

in a board together with sensor components, motor actuators, and IO devices IO.
These components are abstracted as part of the environment in the UML/MARTE
model.

5.4.2 Introduction

The modeling methodology supports separation of concerns. At the root of the
UML/MARTE model, model information is distributed into views. Model views are
captured as UML packages decorated with a methodology-specific stereotype which
adds the view semantics. Figure 5.4 shows a diagram with the views enclosing all
the quadcopter model information.

In this methodology, model views support the separation under different con-
cerns. The model of the verification environment (verification view) is separated
from the system model (remaining views). As stated in MDA, the Platform
Independent Model (PIM) is separated from the platform model. The PIM is
captured through the data, functional and application views. Platform-dependent
information is added later. The HW resources view declares the HW components,
which can be later instanced in the architectural view. The declaration of software
platform resources (in the SW platform view) is also separated from the declaration
of hardware platform resources. Architectural information is captured through
UML composite diagrams, and separated from component declaration, which have
associated the behavioral information. The methodology follows a pragmatical and
generic approach with respect to the association of behavior to the model. Figure 5.5
shows an excerpt of the quadcopter model where source files are associated
to application components (UML artifacts allocated to the PIM component via
UML relations decorated with the MARTE «allocated» stereotype). In addition,
the methodology allows the association of paths for the sources through UML

Fig. 5.4 Model views

5 Modeling Hardware/Software Embedded Systems with. . . 153

Fi
g

.
5

.5
A

ss
oc

ia
tio

n
of

so
ur

ce
fil

es
co

nt
ai

ni
ng

th
e

be
ha

vi
or

to
PI

M
co

m
po

ne
nt

s

154 F. Herrera et al.

constraints associated to the artifacts. This mechanism is language independent and
has been exploited in the automated generation of executable performance models
and of synthesized binaries.

As Fig. 5.4 shows, building a platform-specific model depends on the PIM
model, but not the opposite. Then, incremental model development is possible.
Thus, for instance, the methodology makes possible the generation of an executable
functional model. After capturing the platform-dependent model, the generation of
a performance model or the synthesis phase is enabled. Similarly, time or energy
annotations can be added, e.g., to a hardware component, to add accuracy to the
automatically generated performance model. However, if these annotations are not
present, the generation of the performance model is still possible (default values are
used).

5.4.3 Platform-Independent Model

The methodology enables the description of a platform-independent model (PIM)
under a component-based approach.

The methodology enables a clean separation of the PIM information. Figure 5.6
shows the components of the quadcopter PIM as they are seen in the Eclipse model
explorer view.

Among the six components, the quadcopter_app component is decorated as
«system» component (it can be seen in Fig. 5.7). The PIM system component is the
top component of the PIM model hierarchy, which contains the PIM architecture,
shown in Fig. 5.7. The remaining components are PIM components, to be eventually
instanced in the PIM system component and which shall be stereotyped to be either
an active component, a passive component, or a shared variable. The MARTE
«RtUnit», «PpUnit», and «SharedComResource» stereotypes are respectively used
for that purpose. Figure 5.8 shows the application of the «RtUnit» stereotype to the
datamining (DataMiningC) and radio-control and telemetry (RCTelemetryC) com-
ponents of the quadcopter. As can be observed in Fig. 5.6, non-system components
have been enclosed in an additional UML package called AppComponents. This

Fig. 5.6 Components of the
quadcopter PIM model

5 Modeling Hardware/Software Embedded Systems with. . . 155

Fi
g

.
5

.7
Q

ua
dc

op
te

r
PI

M
ar

ch
ite

ct
ur

e

156 F. Herrera et al.

Fi
g

.
5

.8
Q

ua
dc

op
te

r
fu

nc
tio

na
lv

ie
w

ex
ce

rp
t

5 Modeling Hardware/Software Embedded Systems with. . . 157

is not required, but supported by the methodology, to structure more PIM model
information.

The architecture of the platform-independent model is captured within the PIM
system component by means of a UML composite diagram, as shown in Fig. 5.7.

The PIM system component makes instances of the PIM components as UML
properties, either active components or passive components, that is either of
«RtUnit» or «PpUnit» components. The quadcopter model only instances active
components, since all the components have internal periodic tasks. For instance,
datamining is an instance of the DataMiningC component. PIM component in-
stances are connected via channels. Channels are captured as UML port-to-port
connectors. While these connectors reflect to internal connections, the PIM archi-
tecture also contains UML connectors. In this case, they connect a port of the top
component and a port of an internal component, reflecting the delegation of the
function services or requirements across one hierarchy level.

Each port is stereotyped as a client-server port via the MARTE «ClientServer-
Port» stereotype. This stereotype has the attribute kind, of the MARTE
ClientServerKind type, which allows the methodology to state that the port has
either a provided or a required interface. In addition, the attributes provInterface
and reqInterface, both of the UML interface type, enable the specification of the
specific interface associated to the port. Such an interface has to be previously
captured as a client-server interface in the functional view. Figure 5.8 shows an
excerpt of the functional view of the quadcopter, with three interfaces.

All of them have been applied to the MARTE «ClientServerSpecification»
stereotype to identify the interfaces that can be exported by PIM components. Each
interface declares the methods that are exported at that interface. For instance, the
AttitudeIF interface declares two methods: the getAttitude method for obtaining the
attitude information from the provider component and the isAttituteValid method
for obtaining a flag stating if the attitude value that can be currently retrieved from
the component is valid. In turn, each of those methods are specified by their input
and output parameters. Both of them have to have a precisely specified type. The
data view enables the user to precise all the types to be employed in the interfaces.
Figure 5.9 shows an excerpt of the data view of the quadcopter model. This excerpt
shows the capability of the methodology to capture complex structured types, e.g.,
the attitude_type returned by the getAttitude method.

Concerning the capture of communication semantics, Fig. 5.7 reflects the sim-
plest case, where a default semantics is associated to channels. For instance, the
default semantics states that the call to the service is blocking at the initiation and
end of the service. That is, the component requiring the service, i.e., making the call,
waits for the provider component, i.e., the one implementing the called function, to
be ready for executing it, and also waits for its completion.

In addition, the methodology enables a more detailed specification of the channel
semantics. Figure 5.10 illustrates a case where the semantics of the channel used
by the overall_mon_dbg component to retrieve attitude data from the datamining
component has a user-defined semantics. For it, the UML port-to-port connector
representing the channel is stereotyped with the «channel» methodology-specific

158 F. Herrera et al.

Fi
g

.
5

.9
Q

ua
dc

op
te

r
da

ta
vi

ew
ex

ce
rp

t

5 Modeling Hardware/Software Embedded Systems with. . . 159

Fig. 5.10 Channel instance with custom semantics

Fig. 5.11 Specification of channel with custom semantics

stereotype. The «channel» stereotype provides the attribute channelType. This at-
tribute can be assigned a UML component decorated with the MARTE «Communi-
cationMedia» stereotype. This component has to be included in an additional view,
the communication view (see Fig. 5.11), and represents a channel whose semantics
can be customized by the user. In order to customize the communication semantics,
the MARTE «StorageResource» stereotype and the «ChannelTypeSpecification»
stereotype are used. The former stereotype makes possible to specify the channel
buffering capability, i.e., how many function calls can be buffered by the chan-
nel. The methodology-specific «ChannelTypeSpecification» stereotype contributes
additional attributes for configuring the channel semantics, for instance, if the com-
municating components shall synchronize at function call and at function return.

5.4.4 Platform Resources

As was mentioned, the methodology enables the specification of platform resources
in two separated views. The SW platform view is used to declare the software
resources of the platform, i.e., operative systems and drivers. Figure 5.12 shows the
software platform resources in the software platform view of the quapcopter model.
The basic SW platform resource is the Operating System (OS), which is captured
as a UML component decorated by the methodology-specific «OS» stereotype. The
only OS semantics injected by this means is used for producing performance models
based on generic RTOS models. However, more specific information is required in
other contexts. The «OS» stereotype provides the type property, which serves as a
string descriptor which uniquely identifies the target OS or RTOS in SW synthesis.
The methodology also supports a more detailed specification of the OS behavior.
This is necessary for safety critical cases, where an accurate performance analysis
also relies on an accurate modeling of the OS scheduler behavior. For it, the «OS»

160 F. Herrera et al.

Fig. 5.12 SW resources of the quadcopter platform

stereotype provides the scheduler attribute. The scheduler attribute specifies one
scheduler component, i.e., a component stereotyped with the MARTE «Scheduler»
stereotype. In turn, the «Scheduler» stereotype enables the attributes isPreemptible,
schedPolicy, schedule, and otherSchedPolicy, which enable quick and versatile
specification of scheduling policy. The schedPolicy attribute enables a synthetic
capture of the most usual scheduling policies (static scheduler, fixed priorities,
Earliest Deadline First (EDF), Round Robin (RR), etc.). The attribute isPreemptible
states that the RTOS re-schedules on release events of other application tasks.
The schedule attribute is used to configure and complete the description of the
scheduling policy when schedPolicy=TimeTableDriven. TheTimeTableDriven value
can be used in MARTE to specify both order-based schedules and time-triggered
schedules. In the former case, the schedule attribute serves to capture the execution
order, i.e., the schedule of the tasks allocated to the OS. The otherSchedPolicy
attribute is used to support other scheduling policies not covered by MARTE. In the
methodology, it is also exploited for enabling a more synthetic description capable
to preserve the single-source approach in a DSE context (an example is given in
[16]). In the quadcopter case, the SW resource view shown in Fig. 5.12 states that
the xilkernel OS has been configured with a priority-based scheduling policy.

Figure 5.13 shows the resources declared in the hardware platform view of the
quapcopter model. In this view, all the hardware platform resources to be instanced
in the hardware platform architecture shall be declared. Each platform resource
is declared through a component with a specific MARTE stereotype adding the
hardware resource semantics. For this, the HRM MARTE profile is intensively used.
As shown in Fig. 5.13, the methodology supports the modeling of computational
resources (e.g., HW processors), communication resources (e.g., buses), memory
resources (e.g. cache memories), main memories, and I/O devices. Depending on
the type of hardware component, and thus of the stereotype, different attributes are
available. None of the platform views contain any architectural information. There
is one exception in the HW resources view, which allows to directly link a set of
cache components to a processor component. The set is passed as the value of the
caches attribute of the MARTE «HwProcessor» stereotype. Each element of the
set passed to the caches attribute is a component decorated with the «HwCache»
MARTE stereotype and also declared in the HW resources view. This mechanism
has been used in the quadcopter model to simplify the capture of level 1 caches
associated to the ARM_Cortex_A9 processor components. For the same example,

5 Modeling Hardware/Software Embedded Systems with. . . 161

Fi
g

.
5

.1
3

H
W

re
so

ur
ce

s
of

th
e

qu
ad

co
pt

er
pl

at
fo

rm

162 F. Herrera et al.

the microblaze processor components declared in the HW resources view have an
empty cache attribute. The microblaze processors in the quadcopter system have no
cache since they are used to run the datamining and control functionalities, which
require more predictability due to their criticality.

5.4.5 Platform-Specific Model

As was shown in Sect. 5.4.4, the SW platform and the HW resources views declare
platform resources. They do not contain architectural information, apart from cache
resources associated to processors. The methodology supports the specification of
the SW/HW platform architecture and of the mapping of the PIM model to the
SW/HW platform through the memory space and architectural views.

The memory space view is a non-mandatory view which can be used to specify
memory spaces and the mapping of the component instances to the declared memory
spaces. This is a first mapping level, which is relevant in SW implementation. A
software process is inferred for each memory space. By default, if the user does
not specify a memory space view, an implicit one with a single memory space is
inferred, and it will be assumed that all the component instances are mapped to
the implicit memory space. Figure 5.14 reflects a case where four memory spaces
have been specified. The specification is done again within a composite diagram
associated to a system top component, called quadcopter_memspaces, captured
within the memory space view. This component is captured as a specialization of
the PIM top component. Therefore, the references to the component instances, i.e.,
telemetry, datamining, flight_alg, mission, and overall_mon_dbg, are visible and
can be used as source of the allocations.

Figure 5.15 shows the architectural view of the quadcopter system. The ar-
chitectural view captures the mapping of memory spaces to OS instances, which
effectively closes the mapping of the PIM to the SW/HW platform.

The SW/HW architecture captures the mapping of the OS instances onto the
computing elements, i.e., HW processors, and the interconnection of the different
HW elements.

As can be noticed, the mapping of memory spaces to OS instances and the
mapping of OS instances to computing elements are captured again by means of
UML abstractions with the «allocate» stereotype. Regardless of the type of source
or destination, a static mapping is captured with the same modeling technique. For
the connection of PIM component instances, hardware platform components are
linked also through UML port-to-port connectors. Summing up, the methodology
employs the same modeling techniques, to solve the same type of modeling needs,
for yielding more understandable models and an easier to learn methodology.

5.4.6 Extra-Functional Properties and Performance Constraints

The methodology supports the annotation of several types of extra-functional
properties (EFPs). These annotations are used by performance and schedulability

5 Modeling Hardware/Software Embedded Systems with. . . 163

Fi
g

.
5

.1
4

M
ap

pi
ng

of
PI

M
co

m
po

ne
nt

in
st

an
ce

s
to

m
em

or
y

pa
rt

iti
on

s

164 F. Herrera et al.

Fi
g

.
5

.1
5

Q
ua

dc
op

te
r

ar
ch

ite
ct

ur
al

vi
ew

5 Modeling Hardware/Software Embedded Systems with. . . 165

analyses. Most of them are performed in the HW resources view. Figure 5.12
illustrates several types of EFPs. For instance, the sizes of the different types of
memories and structural information of caches, i.e., number of sets, cache policies,
bus widths, frequencies for processors (and other types of hardware resources),
and I/O device bandwidths, can be stated by only relying on the different MARTE
stereotypes from the HRM profile.

Moreover, the methodology also supports the annotation of power and energy
consumption associated to HW resources. For annotating static power consumption,
the HW component is decorated with the MARTE «HW_Component» stereo-
type, which provides the staticConsumption property. Moreover, the methodology
supports the modeling of power state machines. The HW component can have
different functional modes defined by the operating frequency, source voltage,
dynamic power, and average leakage. A UML state diagram associated to the
HW component and the MARTE «mode» and «ModeTransition» stereotypes are
employed for that purpose. The «HwPowerState» stereotype introduced in [3] and
the MARTE «ResourceUsage» stereotypes are used for characterizing the static
and dynamic power consumptions of each mode. The modeling methodology also
supports the annotation of energy consumption. The annotations depend on the
modeling element. For instance, in order to annotate the energy consumed per cycle
in a processor, a cycle attribute of MARTE NFP_Energy type, and decorated with
the MARTE «NFP» stereotype, is added to the processor component. An analog
technique is used for associating energy consumptions to other components. For
buses and memories, the energy associated to an access is annotated. For caches, two
energy consumption figures are annotated, for distinguishing the hit consumption
from the miss consumption.

The methodology also allows the annotation of workloads, e.g., Worst-Case
Execution Time (WCET), average times, and Best-Case Execution Time (BCET),
to application components. Figure 5.30 in Sect. 5.4.10 illustrates such annotations
in the mixed-criticality context and how they depend on the allocation to platform
resources.

The methodology enables the specification of performance requirements. Perfor-
mance requirements are used in performance analysis and design space exploration
to check if the assessed solutions are acceptable. Similarly, implementation and
test phases should consider this information for the validation of the chosen design
alternative. Figure 5.16 illustrates a compact mechanism for performance constraint
specification, possible whenever the performance constraint is captured through a
UML property. In the case of Fig. 5.16, through a UML comment decorated with
the MARTE, «RtSpecification» stereotype is linked to the PIM component instances
of the quadcopter. The «RtSpecification» contributes the relDl stereotype, a UML
property which enables a synthetic capture of the deadline through an expression
under the MARTE Value Specification Language (VSL).

The methodology provides a mode general mechanism to express performance
constraints. It is done by means of a UML constraint decorated with the MARTE
«NFP_constraint» and «ExpressionContext» stereotypes. The latter enables the
capture of a Boolean expression written in VSL. The Boolean expression refers

166 F. Herrera et al.

Fig. 5.16 System and application performance constraints on the quadcopter

«Component»
quadcopter_system

«expressionContext»

«expressionContext»
throughput

structure

Power

{out$frame_sending.throughput(Hz,est)>=(30,Hz)}

+ cpu1

structure structure structure structure structure structure structure

+ cpu2 + cpu3 + cpu4 + axi1 + axi3axi64 : ...

{out$cpu1.power(W,est)+out$cpu2.power(w,est)+out$cpu3.power(W,est)
+out$cpu4.power(W,est)+out$axi1.power(W,est)+out$axi2.power(W,est)
+out$axi3.power(W,est)<15W}

Fig. 5.17 System and application performance constraints on the quadcopter

to at least one output performance metric. An output performance metric is a value
of an extra-functional property which should be estimated by an analysis tool after
taking the own UML/MARTE model as an input. The output performance metric
is expressed as a VSL variable with the out prefix. The output performance metric
can be general (independent on the model), e.g., overall power consumption, or
refer to a model element, e.g., a processor consumption. Figure 5.17 provides an
example on the quadcopter. The NFP constraint is linked to the processor and bus
instances referenced in the expression and whose power dissipation contributes to
the overall power consumption. Several output performance metrics are required to

5 Modeling Hardware/Software Embedded Systems with. . . 167

be calculated, i.e., the dissipation of each CPU and of the axi64, axi1, and axi3 bus
instances. Notice that the performance requirements refer to both application and
platform elements.

5.4.7 Design Space

The proposed methodology enables the description of a design space. That is,
instead of a design solution, the modeler can capture several or many design
solutions, e.g., several PSMs, in a single model, thus effectively enabling the single-
source approach for DSE. As was mentioned, this is crucial for avoiding model
re-factoring and thus enabling fast iterations during the design space exploration.

The modeling of the design space refers to two basic modeling elements:
property values annotations and architectural mappings.

The methodology supports DSE parameters. A DSE parameter is a property value
annotation which, instead of specifying a single fixed value, specifies a range of
possible values. The capture of a DSE parameter relies on VSL. The syntax of the
VSL expression capturing the DSE parameters is the following one:

$DSEParameterName = DSERangeSpecification
The “$” symbol prefixes a VSL variable and thus the DSE parameter name.

The DSERangeSpecification expresses the range of the DSE parameter, that is, all
the values that the DSEParameterName variable can have during the exploration.
The DSE parameter range can be annotated either as a collection or as an interval.
Collections are captured with the syntax DSERangeSpecification=(v1, v2, v3,
unit), where “v1, v2, v3” are the numerical values of the parameter and unit
expresses the physical unit associated the values. MARTE provides a rich set of
unit kinds to support the different extra-functional properties characterizing systems
components, e.g., frequencies, bandwidth, data size, etc. Intervals follow the syntax
“DSERangeSpecification=([vmin . . .vmax], unit)”. For a complete determination
of the exploration range, this style obliges to assume an implicit step. For an
explicit and complete determination of the DSE range, the support of the style
“DSERangeSpecification=([vmin . . .vmax , step], unit)” is proposed, which means
a minor extension of VSL. The definition of non-linear ranges is possible. For
instance, step can take the value exp2, which enables the definition of a geometrical
progression, i.e., the second value is “vminx2”, and so on.

Figure 5.18 illustrates the specification of a design space on the frequencies of the
ARM processing cores of the quadcopter HW platform. This way, the exploration
of the impact on performance depending on the selection of a Z-7020 device (which
works at 667 MHz), a Z-7015 device (works at 766 MHz), or a Z-7020 device (at
866 MHz) can be explored.

In Fig. 5.18, the DSE has been associated to the processor component declaration
(in the HW platform resources view). Therefore, once the DSE parameter value is
fixed, it is fixed for all its instances. The methodology also allows the association of
the DSE parameter to the instance properties. Therefore, if the user wants to explore
the variations on the frequency of a single ARM core, then the constraint has to be

168 F. Herrera et al.

Fig. 5.18 A DSE parameter
associated to the ARM
Cortex-A9 processor
component declaration

Fig. 5.19 A DSE parameter
associated to the ARM
Cortex-A9 processor
component declaration

Fig. 5.20 A DSE parameter associated to the period of the monitor functionality in the quadcopter
PIM

linked to that processor instance in the suitable view, i.e., in the architectural view
in this case, as illustrated in Fig. 5.19.

The DSE parameter is a powerful mechanism since it is applicable to any
property of the model, and therefore, it enables to specify the exploration of
its impact on the performance of the system. This includes also elements of
the platform-independent model. Figure 5.20 shows an example where a DSE
parameter is associated to the period of the monitor and debugging component of
the quadcopter PIM. In this example, this DSE parameter is useful to explore how
a relaxation on its refresh frequency helps in the fulfillment of time performance
constraints.

5 Modeling Hardware/Software Embedded Systems with. . . 169

Fig. 5.21 Specification of a mapping design space in the memory space view of the quadcopter

The methodology supports the modeling of configurable mappings and, for
each configurable mapping, the expression of which is the set of mappings to
be explored. This way, the single-source approach is kept, as the same model
serves to express all the mapping alternatives to be explored. A configurable
mapping is expressed through a UML comment decorated with the MARTE
«assign» stereotype. Specifically, its from and to attributes reflect a range of possible
source and destination elements, respectively. Therefore, the from and to values are
DSE parameters. Figure 5.21 shows an example of the quadcopter memory space
view which specifies the exploration of two possible mappings of the datamining
component. The «assign» comments can be present in the model together with the
«allocate» fixed mappings. In a DSE context, the «assign» comment overrides the
fixed allocation, stating the range of sources and destinations. Since the «assign»
comment in Fig. 5.21 states nothing about the mapping of the flight_alg, telemetry,
mission, and overall_mon_dbg component instances, the fixed mapping information
stated in Fig. 5.14 is used in a DSE context. In an implementation context, the fixed
allocations are used as a statement of the selected implementation.

Figure 5.21 illustrated the specification of a space of mappings in the memory
space view (from PIM components to memory spaces). The methodology enables
the modeling of configurable mappings in other levels, e.g., for the mapping of
memory spaces to platform resources in the architectural view.

Several «assign» comments can be present in the same model. The cross product
of the mapping spaces defined by each «assign» comment states the overall mapping
space of the model.

The modeling methodology supports DSE rules. DSE rules are constraints
embedding Boolean expressions which impose dependencies among the values of
the DSE parameters. DSE rules can also refer to the from and to properties of
the «assign» comments, and thus to configurable mappings. DSE rules provide an

170 F. Herrera et al.

additional expressiveness to the modeler to customize and prune a potentially huge
and redundant design space that can result out of the cross product of all the DSE
parameters and configurable mappings.

5.4.8 Modeling for Software Synthesis

The functionality associated to the model is platform independent and has no call
to a specific OS API or communication middleware. In the proposed methodology,
such type of platform-dependent code is automatically generated by a SW synthesis
tool called eSSYN [44]. As well as the associated functionality, eSSYN needs

to read PIM information, i.e., retrieved from all PIM views (data, functional and
application view). In general, the PIM information read refers to the component
partition, to the configuration of static and dynamic concurrency, to the semantics of
the communication stated among components and to timing. Taking this information
at its input, eSSYN generates all the target-dependent code to implement in
SW the specified concurrency, communication, and time semantics. Most of the
pieces of target-dependent code are component wrappers, named wrappers in
short.

The partition into components determines the structure of the generated code
and the ambits of visibility. Moreover, the mapping of the application component
instances to memory partitions is also read at software synthesis time. A software
process is inferred for each memory partition, and all functionality of PIM com-
ponents mapped to the memory partition will be integrated and in the ambit of the
inferred process.

Component attributes stating the concurrency semantics include the «RtUnit»
attributes isDynamic and main. The former states if dynamic threads are created
for attending the service calls. The latter captures the functionality to be statically
triggered, i.e., as an autonomous thread at the beginning of the execution. The
communication semantics and the mappings specified by the model have also
involvements on the inference of the dynamic concurrency of the system. While
some services can consist in a simple procedure call, the mapping to different
memory spaces (and thus to different processes) necessarily involves the inference
of dynamic threads to service the calls.

By default, a default semantics for the communications is inferred for the port-to-
port connectors, unless an explicit semantics is captured as was shown in Sect. 5.4.3.
The methodology supports the capture and annotation of additional information
which is specifically required and exploited by implementation tasks. Figure 5.22
illustrates how a channel instance can be annotated with information relevant
for the synthesis of communications. Specifically, two additional attributes of the
«channel» stereotype introduced in Sect. 5.4.3 enable to specify the communication
stack and specific communication service employed. This specification capabilities
were exploited in [37] to show how the different communication alternatives could
be rapidly implemented and its impact in performance explored.

5 Modeling Hardware/Software Embedded Systems with. . . 171

Fig. 5.22 Channel attributes exploited in software synthesis

Specific information can be also captured at lower levels for the SW synthesis
phase. It was also mentioned that the type attribute of the «OS» stereotype is
used to identify a specific target OS or RTOS distribution. In addition, the «OS»
stereotype supports the capture of a set of drivers. This information is used to build
up the so-called Board Support Package (BSP). At the HW platform modeling level,
the processor Instruction-Set Architecture (ISA) is specified through the MARTE
«HwISA» stereotype. ISA information is used for the selection of the suitable target
at the compilation phase of the synthesis flow.

5.4.9 Verification Environment

The modeling methodology enables the capture of an environment model. This
environment model is required by simulation-based performance analysis in order
to describe the external stimuli and collect the functional outputs of the system.

The environment model is separately captured in the verification view, i.e.,
enclosed in a UML package decorated with the «VerificationView» stereotype. The
environment model has a top component which instances the system components
and an arbitrary number of environment components connected to the system
component. Figure 5.23 shows the top environment component (TopEnvQuad-
copter) and the environment components (in gray). The environment model is at
a functional level, thus at the same abstraction level as the PIM. Therefore, it has
to have client-server ports compatible with the system component, as illustrated in
Fig. 5.23. Similarly as for the PIM, functionality is associated to the environment
by means of artifacts and path constraints, thus using modeling techniques familiar
to the system modeler. The functionality of environment components can invoke
libraries and tools which facilitate the environment modeling. In performance model
generation context, this functionality is not annotated. In a SW synthesis context,
this functionality embeds code dealing with environment, i.e., target-dependent code
accessing drivers.

For the identification of the top environment component and of the environment
components, the methodology relies on the Universal Testing Profile (UTP), an
OMG standard. Figure 5.24 shows the components of the verification view of the
quadcopter.

172 F. Herrera et al.

Fig. 5.23 The top environment component of the quadcopter instantiates environment compo-
nents and connects them to the instance of the system component

5.4.10 Mixed-Criticality

The proposed modeling methodology enables the association of different critical-
ities to several types of modeling elements, including value annotations of non-
functional types, constraints on extra-functional properties, application components,
and platform resource components. These techniques rely on two minor extensions
of the MARTE profile shown in Fig. 5.25. These extensions were required to support
the CONTREX metamodel [25] (�Chap. 32, “Metamodeling and Code Generation
in the Hardware/Software Interface Domain” introduces metamodeling), capable to
cover the MCS modeling. The first extension adds a criticality attribute to a NFP
constraint (left-hand side of Fig. 5.25). The criticality attribute is of integer type,
which denotes an abstract criticality level. The NFP constraint can be associated
then directly to different types of modeling elements, e.g., UML components and
UML constraints. Therefore, this extension enables the association of criticalities
to components, e.g., application and platform components, and also to constraints,
employed to capture performance requirements and contracts. The second extension
consists in enabling the annotation of a criticality value on a value annotation
(right-hand side of Fig. 5.25). Again, the criticality value is an integer, denoting
the criticality level.

These extensions support several modeling scenarios requiring mixed-criticality
modeling. Figure 5.26 illustrates the direct association of criticalities to PIM
component instances of the quadcopter. The association is performed through a
«NfpConstraint» with its criticality value annotated in the criticality attribute. Please

5 Modeling Hardware/Software Embedded Systems with. . . 173

Fi
g

.
5

.2
4

C
om

po
ne

nt
s

of
th

e
en

vi
ro

nm
en

tm
od

el
of

th
e

qu
ad

co
pt

er

174 F. Herrera et al.

Fig. 5.25 Proposed MARTE extensions for mixed-criticality modeling

Fig. 5.26 Criticalities directly associated to PIM component instances

observe that Figure 5.26 actually shows the «NfpConstraint_Contrex» stereotype.
This is provided by the methodology-specific eSSYN profile, and it is used as long
as the aforementioned MARTE extension remains as a proposal. Similarly, critical-
ities can be also directly associated to other application components, e.g., memory
spaces, and to software and platform components. Figure 5.27 shows the association
of a criticality level to the computational resources of the quadcopter platform. The
criticality associated to the application and platform component instances can then
be used according to the design context. A main application of this direct association
of criticality to PIM and platform components is the application of mapping rules
at different levels (from application component to memory spaces, from application
level to platform level), oriented to ensure a given degree of separation of resources.
Other scenarios covered by this technique is when the development process of
the components, either application or platform components, is conditioned by the
criticality level, e.g., higher criticality components require more testbenches and
more strict coding rules.

The methodology enables the association of criticalities to requirements and
specifically to performance requirements. The methodology supports the associa-
tion of criticalities to extra-functional requirements in several ways. An implicit

5 Modeling Hardware/Software Embedded Systems with. . . 175

«Component»
quadcopter_system

structure

structure structure

criticality=[2] criticality=[3]

mission_critical_resources
{}

structure structure

«nfpConstraint_Contrex»
«NfpConstraint_Contrex»

safety_critical_resources
{}

«nfpConstraint_Contrex»
«NfpConstraint_Contrex»

+ cpu1 :ARM_Cortex_A9 + cpu2 :ARM_Cortex_A9 + cpu3 :Microblaze + cpu4 :Microblaze

Fig. 5.27 Criticalities directly associated to HW computational elements

«Compount»
quadcopter_app

structure

structure structure structure

structurestructure

+ datamining : DataMiningC + flight_alg : FightAlgorithmC + telemetry : RCTelemetryC

+ overall_mon_dbg : OverallMonitorDbgC+ mission : MissionPayloadC

«rtSpecification»

«rtSpecification» «rtSpecification»

«rtSpecification»
«RtSpecification»

«RtSpecification» «RtSpecification»

«RtSpecification»
occKind=periodic(period=(2,ms))
relDl=(value=2,unit=ms,criticality=3)

occKind=periodic(period=(33.33,ms))
relDl=(33.33,ms,criticality=3)

occKind=periodic(period=(10,ms))
relDl=(10.0,ms,criticality=1)

occKind=periodic(period=(2,ms))
relDl=(value=2,unit=ms,criticality=3)

«rtSpecification»
«RtSpecification»
occKind=periodic(period=(2,ms))
relDl=(value=2,unit=ms,criticality=3)

Fig. 5.28 Criticalities associated to deadline constraints

association is supported through the previously shown direct association of crit-
icalities to components. In such a case, the methodology assumes that all the
performance constraints associated to a component with an associated criticality
inherit such a criticality. Additional techniques for associating criticalities to specific
requirements are available in case a component has more than one associated
requirement. In the constructs where the requirement on the extra-functional
property is captured as a value annotation by means of VSL expression, now it
is possible to annotate a criticality associated to the value annotation. Figure 5.28
reflects the association of the deadline requirements on the periodic tasks of the
quadcopter and the criticalities annotations on the VSL expression; such a criticality
value is associated to each specific deadline requirement.

When the performance requirement is expressed by means of a «NfpConstraint»,
e.g, as it was the case in Fig. 5.17, the extension of the «NfpConstraint» with the
criticality attribute can be used. Figure 5.29 shows the extension of the model

176 F. Herrera et al.

«Component»
quadcopter_system

«NfpConstraint_Contrex»

«NfpConstraint_Contrex»
«nfpConstraint_Contrex,expressContext»

«nfpConstraint_Contrex»
«expressionContexy»

criticality=[3]

criticality=[2]

{out$cpu1.power(W,est)+out$cpu2.power(W,est)+out$cpu3.power(W,est)
+out$cpu4.power(W,est)+out$axi1.power(w,est)+out$axi2.power(W,est)
+out$axi3.power(W,est) < 15W}

structure

structure structure structure structure

throughput
{out$frame_sending.throughput(Hz,est)>=(30,Hz)}

structure structure structure

Power

+ cpu1 + cpu2 + cpu3 + cpu4 axi64 : ... + axi1 + axi3

Fig. 5.29 Criticalities associated to system performance constraints

shown in Fig. 5.17, in order to specify the power dissipation constraint as safety
critical (criticality = 3). This is because the heating can have side effects on the
hardware executing the flight algorithm. The same technique is used to state that
the throughput requirement associated to the PIM mission component (in charge to
capture video, to detect and track an object, and to streaming the recorded action) is
mission critical (criticality = 2).

Figure 5.30 shows another modeling scenario requiring mixed-criticality annota-
tion. Schedulability theory on mixed-criticality systems rely on input models where
a set of WCETs, instead of a single one, are associated to a task. Each WCET of
the WCET set is associated to a criticality level. The proposed methodology covers
this modeling need. Figure 5.30 illustrates the annotation of different worst-case
execution times to the main application component instance. In the methodology, the
implicit semantics associates the WCET to the main functionality of the component.
The annotation relies on the execTime property of the «ResourceUsage» MARTE
stereotype. The methodology assumes that a time annotation is associated not only
to the application functionality but also to the computational resource which will run
the workload. That is, the time annotation reflects the time taken by the execution
of the application functionality in isolation conditions. Therefore, the annotation
is performed through an association between the application component and the
used computational component of the HW resource view. Specifically, such an as-
sociation is a UML use dependency decorated with the MARTE «ResourceUsage»
stereotype. The execTime property of the «ResourceUsage» is typed as a set of

5 Modeling Hardware/Software Embedded Systems with. . . 177

Fi
g

.
5

.3
0

C
ri

tic
al

iti
es

as
so

ci
at

ed
to

di
ff

er
en

tW
C

E
T

va
lu

e
an

no
ta

tio
ns

178 F. Herrera et al.

values of MARTE NFP_Duration type. Therefore, the execTime property can be
and is used for annotating several values of execution time.

In addition, the methodology supports several «ResourceUsage» associations.
This way, a single-source model provides information to trigger several schedula-
bility analyses, e.g., for different mapping alternatives. Specifically, Fig. 5.30 states
that if the flight algorithm component is mapped to a microblaze processor instance,
then the WCETs to be considered are 5.2, 3.5, and 2.4 ms for criticalities 3, 2, and
1, respectively. Notice that this technique can be used only if a single functionality
is associated to the component.

5.4.11 Modeling for Schedulability Analysis

This section shows the modeling elements and techniques used to do the validation
of timing properties by means of schedulability analysis. The goal is to ensure
real-time constraints (hence timing predictability) for critical tasks and evaluate
the unused processing capacity that can be used for other non-critical activities in
a simple way. This kind of real-time analysis is necessary when the systems are
highly complex and have critical time constraints. The modeling for schedulability
analysis is integrated in this component-based modeling methodology. The func-
tionality is broken down into the internal and provided functions of communicating
components, which in turn are mapped to the processing platform and where the
analysis of many real-time situations is possible. A real-time situation corresponds
to a workload and a platform. A workload is a set of end-to-end flows and their
related stimuli (each end-to-end flow has its associated stimuli). An end-to-end flow
describes the causal flow of actions that is triggered by external events and for which
a deadline is specified. In such an end-to-end flow or execution path, one or more
functions of one or more components can be executed. The objective of the analysis
is to ensure that the response time of all the sequences of functions executed on each
flow is smaller than the deadline associated.

For each individual function, the annotation of the worst-case and best-case
execution times (WCET/BCET) is required. WCETs are needed to get upper
bounds for response times and so to verify that the real-time requirements are
met. The knowledge of BCETs is useful to reduce jitter and minimize pessimism
in upper bounds for distributed systems [31]. The WCET and BCET of a given
piece of functionality depends on the type of processing resource executing it.
The mode of operation, and specifically, the operation frequency has also direct
impact on the execution time of the same code segment. Section 5.4.10 showed
how to annotate in the UML model different WCETs for different processor types.
The operation modes are captured by means of UML state machines, where the
operation modes are represented as UML states specified by the «Mode» MARTE
stereotype. Transitions are represented as “UML transitions”, specified by the
«ModeTransition» MARTE stereotype.

In general, WCET annotations for independent functions are needed for per-
forming schedulability analysis. However, the schedulability analysis introduced

5 Modeling Hardware/Software Embedded Systems with. . . 179

before requires more information, in particular, the workload, the stimuli patterns
that triggers the workload, the platform where it runs, and the hard real-time
requirements. Moreover, the modeling methodology shall enable the specification
of the ambit and elements of the model involved in the real-time analysis, i.e., the
functions and resources of which are really involved out of the overall model.

The schedulability analysis model is contained in a specific view package,
stereotyped as «SchedulabilityView». A real-time situation corresponding to an
execution model is included in this package and consists in one or more end-to-
end flows. The end-to-end flow is modeled as a UML activity decorated with the
«SaEndtoEndFlow» MARTE stereotype. An activity diagram is used to describe
the causal flow as a sequence of steps. In general, a step represents the usage
of resources needed at that point in the flow. Here, it is used to express the
execution time taken from the processing resource associated and the messages
sizes that are to be sent through network channels. The characteristics of the
event that triggers the end-to-end flow are annotated in the initial node of the
activity of the end-to-end flow by means of the «GaWorkLoadEvent» MARTE
stereotype. This stereotype allows to indicate the pattern of activation (e.g., periodic
or sporadic) and its parameters (e.g., period). Each step in the flow is modeled in
the activity diagram as a UML opaque action annotated with the «SaStep» MARTE
stereotype. The attribute execTime of «SaStep» is used to capture the worst and
the best execution times of the function involved. The steps may be specified at
different granularity levels depending on the knowledge available for the underlying
execution elements. At the finest granularity, steps are used on functions with known
WCET/BCET. A step can also be used to model operations that invoke other steps.
The concurRes attribute of a step is used to indicate the task it runs on, in the case of
a computational step, or the channel through which the message is sent, in the case
of a communication step. In the former case, a computation step may also model
a sequence of operations executed by the task by means of the subusage attribute.
Each operation in the subusage sequence is modeled statically by means of UML
operations stereotyped with «SaStep». Figure 5.31 shows (on the left-hand side) the
modeling of two end-to-end flows for the quadcopter case: one for the data miner
task and one for the flight algorithm task. The right-hand side of Fig. 5.31 shows the
activity diagram of one of the end-to-end flows, which illustrates the simplest way
to describe it.

Schedulability analysis requires to explicitly model the concurrent tasks the
aforementioned steps belong to, i.e., steps are mapped to those tasks through the
concurRes attribute. These tasks are specified through UML properties with the
«SchedulableResource» MARTE stereotype in the concurrency view. Figure 5.32
shows the modeling of the quadcopter tasks (one for the datamining and another
one for the flight algorithm) involved in the schedulability analysis.

In turn, these tasks are associated to the HW/SW platform resources that will
execute them by means of the host attribute of the «SchedulableResource» stereo-
type. The «SaExecHost» and «SaCommHost» MARTE stereotypes are employed
for indicating the platform resources involved in the schedulability analysis. Specif-
ically, the «SaExecHost» stereotype indicates platform component instances where

180 F. Herrera et al.

Fig. 5.31 Specification of end-to-end flows in the quadcopter

Fig. 5.32 Modeling of quadcopter tasks and their mapping to the SW/HW platform for schedula-
bility analysis

tasks can be scheduled and thus mapped and enables capturing properties such as
the range of priorities and context switching times. This way, each host attribute
of the quadcopter tasks involved in schedulability analysis, shown in Fig. 5.32, can
only point to any of the platform resources stereotyped as «SaExecHost» in the
architectural view of the quadcopter, that is, rtos1 and rtos2, shown in Fig. 5.33.

5.5 Single-Source Design Framework

The single-source modeling methodology introduced in this chapter is documented
in detail in [42]. The modeling methodology enables the production of models
which serve as an input to a tool infrastructure supporting a single-source design
approach. The CONTREX Eclipse plug-in (CONTREP) [41] is the unified, graphical
front-end of that infrastructure. As shown in Fig. 5.34, for the modeling activity,

5 Modeling Hardware/Software Embedded Systems with. . . 181

Fig. 5.33 Indication of the execution resources in the SW/HW platform architecture of the
quadcopter for schedulability analysis

Fig. 5.34 The CONTREX Eclipse plug-in takes the UML/MARTE model as an input for the
design activities which rely on different tools

CONTREP provides the eSSYN profile, which provides an implementation of
the UTP stereotypes and of a minimum set of methodology-specific extensions
employed by the modeling methodology. In addition, CONTREP also integrates a
validation tool for the detection of the violation of the modeling rules. As Fig. 5.35
reflects, as well as modeling, CONTREP enables further design activities. For room
reasons, it is not possible to illustrate here the application of a complete use case.
However, related publications have reported how the UML model served for the
generation of a functional model and for SW synthesis [37] relying on eSSYN. For
schedulability analysis, the MARTE2MAST generator [10] has been adapted for its
integration in CONTREP, and so to enable the automatic generation of the input
for the MAST tool [11]. Schedulability analysis requires also tools for obtaining
the WCETs and BCETs. In [34], simulation was used to obtain maximum observed
times as an early approach. The framework is also capable to generate a ForSyDe
executable model [14] (see �Chap. 4, “ForSyDe: System Design Using a Functional
Language and Models of Computation”) for formal functional validation. CON-
TREP also automates the generation of a fast performance model. The performance
model relies on the VIPPE tool [43], which implements advanced techniques for
fast simulation and performance assessment. Simulation is convenient for getting
accuracy and considering the dynamism of the application and of the input stimuli

182 F. Herrera et al.

Fig. 5.35 Design activities that can be launched with the CONTREX Eclipse plug-in

of the system environment, that is, for an scenario-aware assessment of the system
(�Chap. 9, “Scenario-Based Design Space Exploration”). Specifically, VIPPE
relies on host-compiled simulation (see �Chap. 19, “Host-Compiled Simulation”)
and is capable to parallelize the simulation (�Chap. 17, “Parallel Simulation”
introduces advanced parallelization techniques in a SystemC context) to exploit
multi-core host platforms.

CONTREP also automates the generation of a complete simulation-based DSE
infrastructure. As well as the performance model, files describing information
like the design space, the performance constraints, the cost functions, and the
exploration strategy, a basic input for the exploration tool coupled to the simulatable
performance model is generated. The framework is flexible and allows the user to
select from the CONTREP front-end, at a high abstraction level, among different
exploration strategies (see �Chap. 6, “Optimization Strategies in Design Space
Exploration”), exploration tools, and report options. Moreover, the framework
enables also the launch of the automated DSE process and the visualization of
results from the own graphical environment.

5.6 Conclusions

This chapter has presented the main modeling techniques of a single-source
modeling methodology relying on the UML language and the MARTE profile, both
OMG standards. These techniques enable the methodology to support separation of

5 Modeling Hardware/Software Embedded Systems with. . . 183

concerns, incremental modeling, and functional component modeling and to feed
ESL key design tasks such as design space exploration and software synthesis. All
these capabilities are mandatory for the productivity boost required by the current
complexities of modern embedded systems.

More information on the introduced methodology can be found in related
publications [12–16, 34, 37], in the methodology related website [44], and in the
CONTREX website [28].

The presented methodology maximizes the exploitation of UML and specifically
of the MARTE and UTP profiles for complex embedded system modeling. This
does not necessarily mean that these profiles are currently capable to cover all
the required concepts. In most of the cases, the methodology covers the lacks
by proposing minimal extensions to MARTE, for instance, for the annotation of
criticalities, for the description of a design space in VSL, or for the capture of the
system views. In other cases, more important extensions are required. This is the
case of embedded distributed systems description, for which CONTREX has made
also a proposal [9, 17].

Acknowledgments This chapter has been partially funded by the European FP7 611146 (CON-
TREX) project and by the Spanish TEC 2014-58036-C4-3-R (REBECCA) project. We are thankful
to the OFFIS team in CONTREX for their support and for all the documentation and material on
their quadcopter implementation. This includes the quadcopter picture of the chapter.

References

1. Alam O, Kienzle J (2013) Incremental software design modelling. In: Proceedings of the 2013
conference of the center for advanced studies on collaborative research, CASCON ’13. IBM
Corp., Riverton, pp 325–339

2. Ambler SW (2015) Single source information: an Agile best practice for effective documenta-
tion. http://agilemodeling.com/essays/singleSourceInformation.htm

3. Arpinen T, Salminen E, Hämäläinen TD, Hännikäinen M (2012) {MARTE} profile extension
for modeling dynamic power management of embedded systems. J Syst Archit 58(5):209–219.
doi:10.1016/j.sysarc.2011.01.003. Model Based Engineering for Embedded Systems Design

4. Bailey B, Martin G, Piziali A (2007) ESL design and verification: a prescription for electronic
system level methodology. Morgan Kaufmann/Elsevier, Amsterdam/Boston

5. Bakshi A, Prasanna VK, Ledeczi A (2001) Milan: a model based integrated simulation
framework for design of embedded systems. In: Proceedings of the 2001 ACM SIGPLAN
workshop on optimization of middleware and distributed systems, OM ’01. ACM, New York,
pp 82–93. doi:10.1145/384198.384210

6. Burns A, Davis R (2015) Mixed-criticality systems: a review, 6th edn. Technical report,
Department of Computer Science, University of York

7. Cabot J (2014) Single-source modeling for embedded systems with UML/MARTE. http://
modeling-languages.com/modeling-embedded-systems-uml-marte

8. Dekeyser J, Gamatie A, Atitallah R, Boulet P (2008) Using the UML profile for MARTE
to MPSoC co-design. In: 1st international conference on embedded systems and critical
applications (ICESCA’08)

9. Ebeid E, Medina J, Quaglia D, Fummi F (2015) Extensions to the UML profile for MARTE for
distributed embedded systems. In: 2015 forum on specification and design languages (FDL),
pp 1–8

http://agilemodeling.com/essays/singleSourceInformation.htm
http://modeling-languages.com/modeling-embedded-systems-uml-marte
http://modeling-languages.com/modeling-embedded-systems-uml-marte

184 F. Herrera et al.

10. Garcia A, Medina J: MARTE2MAST. http://mast.unican.es/umlmast/marte2mast/
11. Gonzalez M, Gutierrez JJ, Palencia JC, Drake JM (2001) Mast: modeling and analysis suite for

real time applications. In: 2001 13th Euromicro conference on real-time systems, pp 125–134.
doi:10.1109/EMRTS.2001.934015

12. Herrera F, Penil P, Posadas H, Villar E (2014) Model-driven methodology for the development
of multi-level executable environments. In: Haase J (ed) Models, methods, and tools for
complex chip design. Lecture notes in electrical engineering, vol 265. Springer International
Publishing, pp 145–164. doi:10.1007/978-3-319-01418-0_9

13. Herrera F, Posadas H, Peñil P, Villar E, Ferrero F, Valencia R, Palermo G (2014) The COM-
PLEX methodology for UML/MARTE modeling and design space exploration of embedded
systems. J Syst Archit 60(1):55–78. doi:10.1016/j.sysarc.2013.10.003

14. Herrera F, Peñil P, Villar E (2015) Enhancing analyzability and time predictability in
UML/MARTE component-based application models. In: Proceedings of the 18th international
workshop on software and compilers for embedded systems, FDL ’15. IEEE

15. Herrera F, Peñil P, Villar E (2015) A model-based, single-source approach to design-space
exploration and synthesis of mixed-criticality systems. In: Proceedings of the 18th international
workshop on software and compilers for embedded systems, SCOPES ’15. ACM, New York,
pp 88–91. doi:10.1145/2764967.2784777

16. Herrera F, Peñil P, Villar E (2015) UML/MARTE modelling for design space exploration
of mixed-criticality systems on top of predictable platforms. In: Jornadas de Computación
Empotrada (JCE’15)

17. Herrera F, Peñil P, Villar E (2015) Extension of the UML/MARTE network modelling
methodology in CONTREX. Technical report, University of Cantabria. http://umlmarte.
teisa.unican.es/wp-content/uploads/2016/05/ExtendedUML_MARTE_Network_Modelling_
Methodology.pdf

18. Intel (2014) Intel cofluent methodology for SysML: UML*SysML*MARTE flow for In-
tel CoFluent studio. http://www.intel.com/content/www/us/en/cofluent/cofluent-methodology-
for-sysml-white-paper.html

19. ITRS: International roadmap of semiconductors. http://www.itrs.net/
20. Kang E, Jackson E, Schulte W (2011) An approach for effective design space exploration.

In: Calinescu R, Jackson E (eds) Foundations of computer software. Modeling, development,
and verification of adaptive systems. Lecture notes in computer science, vol 6662. Springer,
Berlin/Heidelberg, pp 33–54. doi:10.1007/978-3-642-21292-5_3

21. Kangas T, Kukkala P, Orsila H, Salminen E, Hännikäinen M, Hämäläinen TD, Riihimäki
J, Kuusilinna K (2006) UML-based multiprocessor soc design framework. ACM Trans Embed
Comput Syst 5(2):281–320. doi:10.1145/1151074.1151077

22. Kruchten P (1995) Architecture blueprints—the “4+1” view model of software architecture. In:
Tutorial proceedings on TRI-Ada ’91: Ada’s role in global markets: solutions for a changing
complex world, TRI-Ada ’95. ACM, New York, pp 540–555. doi:10.1145/216591.216611

23. Lemke M (2012) Mixed criticality systems. Report from the workshop on mixed criticality
systems. Technical report, Information Society and Media Directorate-General

24. Liehr AE (2009) Languages for embedded systems and their applications. Lecture notes in
electrical engineering, vol 36. Springer Netherlands, pp 43–56. doi:10.1007/978-1-4020-9714-
0_3

25. Medina J et al (2015) CONTREX system metamodel. Technical report. https://contrex.offis.
de/home/images/publicdeliverables/Deliverable%20D2.1.1%20v1.0.pdf

26. Mura M, Murillo L, Prevostini M (2008) Model-based design space exploration for RTES with
SysML and MARTE. In: Forum on specification, verification and design languages, FDL 2008,
pp 203–208. doi:10.1109/FDL.2008.4641446

27. Nicolescu G, Mosterman P (2009) Model-based design for embedded systems. Computational
analysis, synthesis, and design of dynamic systems. CRC Press, Boca Raton

28. OFFIS (2015) CONTREX FP7 project website. https://contrex.offis.de/home/
29. OMG (2011) OMG UML profile for MARTE, modelling and analysis of real-time embedded

systems, Version 1.1. Available at www.omg.org

http://mast.unican.es/umlmast/marte2mast/
http://umlmarte.teisa.unican.es/wp-content/uploads/2016/05/ExtendedUML_MARTE_Network_Modelling_Methodology.pdf
http://umlmarte.teisa.unican.es/wp-content/uploads/2016/05/ExtendedUML_MARTE_Network_Modelling_Methodology.pdf
http://umlmarte.teisa.unican.es/wp-content/uploads/2016/05/ExtendedUML_MARTE_Network_Modelling_Methodology.pdf
http://www.intel.com/content/www/us/en/cofluent/cofluent-methodology-for-sysml-white-paper.html
http://www.intel.com/content/www/us/en/cofluent/cofluent-methodology-for-sysml-white-paper.html
http://www.itrs.net/
https://contrex.offis.de/home/images/publicdeliverables/Deliverable%20D2.1.1%20v1.0.pdf
https://contrex.offis.de/home/images/publicdeliverables/Deliverable%20D2.1.1%20v1.0.pdf
https://contrex.offis.de/home/
www.omg.org

5 Modeling Hardware/Software Embedded Systems with. . . 185

30. OMG (2015) OMG unified modeling language. Available at www.omg.org
31. Palencia JC, Gutierrez JJ, Gonzalez Harbour M (1998) Best-case analysis for im-

proving the worst-case schedulability test for distributed hard real-time systems.
In: Proceedings of the 10th Euromicro workshop on real-time systems, pp 35–44.
doi:10.1109/EMWRTS.1998.684945

32. Panunzio M, Vardanega T (2009) On component-based development and high-integrity real-
time systems. In: IEEE 19th international conference on embedded and real-time computing
systems and applications

33. Peñil P, Posadas H, Nicolás A, Villar E (2012) Automatic synthesis from UML/MARTE
models using channel semantics. In: Proceedings of the 5th international workshop on model
based architecting and construction of embedded systems, ACES-MB ’12. ACM, New York,
pp 49–54. doi:10.1145/2432631.2432640

34. Peñil P, Posadas H, Medina J, Villar E (2015) UML-based single-source approach for
evaluation and optimization of mixed-critical embedded systems. In: DCIS’15

35. Piel E, Atitallah RB, Marquet P, Meftali S, Niar S, Etien A, Dekeyser J, Boulet P (2008)
Gaspard2: from MARTE to SystemC simulation. In: Design, automation and test in Europe
(DATE 08)

36. Pop A, Akhvlediani D, Fritzson P (2007) Integrated UML and modelica system modeling
with modelicaml in Eclipse. In: Proceedings of the 11th IASTED international conference on
software engineering and applications, SEA ’07. ACTA Press, Anaheim, pp 557–563

37. Posadas H, Peñil P, Nicolás A, Villar E (2014) Automatic synthesis of embedded {SW} for
evaluating physical implementation alternatives from UML/MARTE models supporting mem-
ory space separation. Microelectron J 45(10):1281–1291. doi:10.1016/j.mejo.2013.11.003.
DCIS’12 Special Issue

38. Szyperski C (2002) Component software: beyond object-oriented programming. Addison
Wesley, London

39. TILLOO R (2015) What is incremental model in software engineering? It’s advantages
and disadvantages. Available in http://www.technotrice.com/incremental-model-in-software-
engineering

40. Truyen F (2006) The fast guide to model driven architecture – the basics of model driven
architecture. http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf

41. University of Cantabria: CONTREX Eclipse plug-in website. http://contrep.teisa.unican.es.
Accessed 04 Oct 2016

42. University of Cantabria: UML/MARTE single-source methodology website. http://umlmarte.
teisa.unican.es. Accessed: 04 Oct 2016

43. University of Cantabria: VIPPE website. http://vippe.teisa.unican.es. Accessed 04 Oct 2016
44. University of Cantabria (2016) eSSYN website. http://eSSYN.com
45. Vidal J, de Lamotte F, Gogniat G, Soulard P, Diguet JP (2009) A co-design approach for embed-

ded system modeling and code generation with UML and MARTE. In: Design, automation test
in Europe conference exhibition. DATE ’09, pp 226–231. doi:10.1109/DATE.2009.5090662

46. Woods E, Rozanski N (2005) Using architectural perspectives. In: 2014 IEEE/IFIP conference
on software architecture, vol 0, pp 25–35. doi:10.1109/WICSA.2005.74

www.omg.org
http://www.technotrice.com/incremental-model-in-software-engineering
http://www.technotrice.com/incremental-model-in-software-engineering
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://contrep.teisa.unican.es
http://umlmarte.teisa.unican.es
http://umlmarte.teisa.unican.es
http://vippe.teisa.unican.es
http://eSSYN.com

Part III
Design Space Exploration

6Optimization Strategies in Design Space
Exploration

Jacopo Panerati, Donatella Sciuto, and Giovanni Beltrame

Abstract

This chapter presents guidelines to choose an appropriate exploration algorithm,
based on the properties of the design space under consideration. The chapter de-
scribes and compares a selection of well-established multi-objective exploration
algorithms for high-level design that appeared in recent scientific literature.
These include heuristic, evolutionary, and statistical methods. The algorithms are
divided into four sub-classes and compared by means of several metrics: their
setup effort, convergence rate, scalability, and performance of the optimization.
The common goal of these algorithms is the optimization of a multi-processor
platform running a set of diverse software benchmark applications. Results show
how the metrics can be related to the properties of a target design space (size,
number of variables, and variable ranges) with a focus on accuracy, precision,
and performance.

Acronyms

ADRS Average Distance from Reference Set
ANN Artificial Neural Network
DoE Design of Experiments
DSE Design Space Exploration
EA Evolutionary Algorithm
GA Genetic Algorithm
ILP Integer Linear Program
MDP Markov Decision Process
MPSoC Multi-Processor System-on-Chip
NN Neural Network

J. Panerati (�) • G. Beltrame
Polytechnique Montréal, Montreal, QC, Canada
e-mail: jacopo.panerati@polymtl.ca; giovanni.beltrame@polymtl.ca

D. Sciuto
Politecnico di Milano, Milano, Italy
e-mail: donatella.sciuto@polimi.it

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_7

189

mailto:jacopo.panerati@polymtl.ca
mailto:giovanni.beltrame@polymtl.ca
mailto:donatella.sciuto@polimi.it

190 J. Panerati et al

PSO Particle Swarm Optimization
RSM Response Surface Modeling
SA Simulated Annealing
SoC System-on-Chip

Contents

6.1 Introduction . 190
6.2 Classification of Multi-objective DSE Strategies . 191
6.3 Multi-objective DSE Algorithms . 193

6.3.1 Heuristics and Pseudo-random Optimization Approaches 194
6.3.2 Evolutionary Algorithms . 196
6.3.3 Statistical Approaches Without Domain Knowledge 198
6.3.4 Statistical Approaches with Domain Knowledge . 198

6.4 Experimental Comparison . 200
6.4.1 Objectives . 200
6.4.2 Benchmark Applications . 200
6.4.3 Target Computing Platform. 201
6.4.4 Metrics to Evaluate Approximate Pareto Sets . 202
6.4.5 Performance of the Algorithms Under Test . 204

6.5 Discussion . 210
6.6 Existing Frameworks . 212

6.6.1 jMetal . 212
6.6.2 PaGMO/PyGMO. 213
6.6.3 MOHMLib++. 213
6.6.4 NASA. 213

6.7 Conclusions . 214
References . 214

6.1 Introduction

Given a specific software application – or a class of software Applications – the
parameters of a System-on-Chip (SoC) can be appropriately tuned to find the best
trade-offs among the figures of merit (e.g., energy, area, and delay) deemed of
interest by the designer. Design Space Exploration (DSE) is the tool by which the
optimal configuration for a given system can be found.

This parameter tuning is fundamentally an optimization problem, which gen-
erally involves the maximization (or minimization) of multiple objectives. A
consequence of having multiple objectives is that optimal solutions are, potentially,
no longer unique. A set of metrics or objective functions are used to express
the quality of a solution from different perspectives, also known as objectives.
Since multi-objective optimization problems do not have a single optimal solution,
solutions consist instead of several optima, i.e., the points that lie on the Pareto
curve [11]. These are the optimal points that are non-dominated by any other point.

To find the Pareto curve for a specific platform, the designer has to evaluate all
the possible configurations of the design space and characterize them in terms of
objective functions. This approach is known as full or exhaustive search, and it is

6 Optimization Strategies in Design Space Exploration 191

often impractical due to the large number of points in a design space and/or due
to the high cost associated with the evaluation of the objective functions (e.g., long
simulation times).

Even today, Multi-Processor Systems-on-Chips (MPSoCs) platforms are often
tuned according to designer experience or the non-systematic application of sev-
eral algorithms found in literature. For example, classical heuristic algorithms
(i.e., tabu search, simulated annealing, etc.) [28] are extremely common, as well
as techniques able to reduce the design space size [22]. The advanced hybrid
approaches in �Chap. 7, “Hybrid Optimization Techniques for System-Level
Design Space Exploration” combine metaheuristics and search algorithms to avoid
large, unfeasible areas of the design space. All these approaches need to use
simulation (or estimation) to assess the system-level metrics (i.e., the objective
functions) of the very large number of configurations they evaluate. For a review of
microarchitecture-level modeling and design methodologies for SoC, please refer to
�Chap. 27, “Microarchitecture-Level SoC Design”.

The characteristics of a design space (e.g., its size or the time required to simulate
one of its points) can certainly affect how different exploration algorithms perform
in terms of time to convergence or accuracy of results. This chapter describes and
compares 15 algorithms among the several ones that have been recently proposed in
the scientific literature for automatic DSE and multi-objective optimization. These
different approaches are dissimilar in terms of theoretical background, applicability
conditions, and overall performance. Through rigorous analysis, the advantages and
drawbacks of each method are uncovered, providing guidelines for their use in
different contexts.

In the following, Sect. 6.2 describes a partitioning of the existing literature into
four classes; Sect. 6.3 reviews the methodology of each one of the 15 algorithms that
underwent experimental comparison; Sect. 6.4 presents the experimental setup, the
framework used to compare these algorithms, and its results; Sect. 6.5 contains the
discussion of these results as well as recommendations on the use of the algorithms;
Sect. 6.6 lists some of the currently available open-source implementations of the
algorithms; finally, Sect. 6.7 draws some concluding remarks.

6.2 Classification of Multi-objective DSE Strategies

The automation of DSE can be split into two sub-problems: (a) the identification
of plausible candidate solutions (i.e., valid system configurations) and (b) the
evaluation of the metrics of interest of these solutions, in order to select the optimal
configurations.

Evolutionary Algorithms (EAs) in particular have widespread use in the area of
design space exploration. EAs discriminate and select solutions using a combination
of metrics called the fitness function. EAs are usually easy to apply and do not
require detailed knowledge of the design space to be explored, and there is a
strong theoretical background on how to assign fitness values for multi-objective
problems [9].

192 J. Panerati et al

To classify these methods, Coello [4] proposed to divide evolutionary approaches
for multi-objective optimization into three sub-classes according to the way in which
the fitness of individuals/solutions is computed: (1) algorithms using aggregating
functions, (2) algorithms using non-aggregating but non Pareto-based approaches,
and (3) Pareto-based approaches, such as the NSGA algorithm.

Broadening the scope of the analysis to also include design space exploration
methods that are not based on EAs, four different classes of algorithms for problem
(a) can be found in the literature:

• Class 1: Heuristics and pseudo-random optimization approaches attempt to
reduce the design space under scrutiny and focus the exploration on regions of
interest [10, 11]. Methodologies in this class often rely on full search or pseudo-
random algorithms to explore the selected regions. Class 1 includes algorithms
such as multi-agent optimization (e.g., Particle Swarm Optimization (PSO) [26]),
Simulated Annealing (SA), tabu search, and operations research algorithms.
Methodologies in this class often aim at drastically reducing the number of
configurations to evaluate (e.g., from the product to the sum of the number
of tunable parameters in [10]). One way to do so is, for example, to identify
sub-spaces (called clusters) into the design search space that can be efficiently
explored in an exhaustive fashion [11]. The global Pareto front can then be
reconstructed from the Pareto-optimal configurations of each partition. Because
of their simplicity, the exploration results of the algorithms in this class remain
in many cases sub-optimal.

• Class 2: Evolutionary algorithms. EAs are the most common and widely used
DSE algorithms, they apply random changes of a starting set of configurations
to iteratively improve their Pareto set of solutions. Genetic Algorithms (GAs)
belong to this category [28]. The major advantages of these algorithms are
the very limited setup effort and the fact that they do not require any specific
knowledge associated to the search space or the metrics used for the optimization.
Unfortunately, these algorithms are not guaranteed to find the optimal solutions
or even to converge to results within certain predefined quality bounds. In
practice, however, they usually perform fairly well when they are allowed to run
for a sufficiently large number of evaluations. Techniques in this class can also
be combined with exact methods. For example, in [20], DSE is translated into a
multi-objective 0–1 Integer Linear Program (ILP) problem and a pseudo-Boolean
(PB) solver is used to constrain a GA within the feasible search space.

• Class 3: Statistical approaches without domain knowledge. Methodologies
in this class extract a metamodel from the design space and use it to predict
the next configurations to evaluate [20, 21, 27, 32]. Class 3 includes those
methods that use statistics to guide their DSE. Many of the algorithms in this
class exploit a methodology called Design of Experiments (DoE) [21, 27, 32]
to characterize the sensitivity of the system to its parameters. DoE, in fact,
allows to estimate the portion of the variance of each objective metric associated
to the oscillations in a certain parameter. Heuristics or metamodels are then
developed from this sensitivity analysis and used to tune the parameters and find
the optimal configurations of the system. The work in [27] is an example of this

6 Optimization Strategies in Design Space Exploration 193

sort of approach. It uses DoE to define an initial set of experiments and create a
preliminary estimate of the target design space. Then, the exploration is further
refined iteratively using a technique called Response Surface Modeling (RSM).
Statistical methods, such as DoE, are the defining characteristics of this class,
as they allow to extract the maximum amount of information from the initial
training sets of limited size. The generated metamodels can then be used both to
find new candidate configurations as well as to evaluate them.

• Class 4: Statistical approaches with domain knowledge. These are techniques
that use predefined rules and knowledge specific to a certain design space to find
the most promising solutions [3]. The algorithms in Class 4 are characterized
by the use of built-in domain knowledge to set up a probabilistic framework to
guide the identification of new candidate solutions. The work in [3], in particular,
combines decision theory with this kind of integrated knowledge. The DSE
problem is remapped to a Markov Decision Process (MDP) [18, 30] whose
solution is the sequence of changes to apply to the tunable parameters in order
to minimize (or maximize) one of the objective performance metrics. The major
advantage of this approach is that it greatly reduces the number of times in which
the system requires to be simulated (i.e., only when uncertainty at a fork is too
large to be managed with the embedded domain knowledge).

Later in this chapter, a selection of well-established algorithms from all the
four classes and their configuration parameters are described. Then, their strengths
and weaknesses are compared in the context of the optimization of a symmetric
multi-processor platform. The results of this experiment provide guidelines for the
selection of the right DSE and multi-objective optimization algorithm, given the
characteristics of the design space.

The evaluation of the candidate solutions – problem (b) – can be tackled
either using detailed simulation [3] or simpler predictive models [14], or also a
combination of the two.

Okabe, Jin, and Sendhoff [25] reviewed several metrics for the evaluation of
solutions to multi-objective optimization problems. Their conclusion is that no
single metric is usually sufficient to quantify the quality of the Pareto set returned
by a multi-objective optimization algorithm. Similar results are also found in [35].

In our analysis, four different metrics are used to evaluate the accuracy, distri-
bution, and cardinality of the Pareto sets found by the optimization algorithms.
Moreover, the performance of the algorithms under study is quantified as the number
of evaluations needed to converge to a Pareto set.

6.3 Multi-objective DSE Algorithms

This section details 15 multi-objective optimization algorithms for DSE that are
then experimentally compared in Sect. 6.4. For each algorithm, a brief description
of inner working and its parameters are given. The reader should pay attention
to the fact that the parameters mentioned here are not the tunable parameters of
a computing platform (i.e., those that create the design space). The parameters

194 J. Panerati et al

described in this section are the configuration parameters of each algorithm and
they are important as they influence its performance and setup effort.

6.3.1 Heuristics and Pseudo-random Optimization Approaches

This section describes algorithms belonging to the first class defined in Sect. 6.2 in
detail. Half of the algorithms described in this section (MOSA, PSA, and SMOSA)
are based on SA. SA is essentially a local search characterized by the way in
which local minima are avoided: solutions that do not improve the current one can
be accepted with a given probability p, computed from a Boltzmann distribution
(parameterized by a coefficient T , called temperature).

6.3.1.1 Adaptive Windows Pareto Random Search (APRS)
The APRS algorithm is one of two novel algorithms implemented in the Multicube
Explorer framework [37]. APRS takes an initial set of design points as its approx-
imate Pareto set, then it improves this solution by randomly picking new points
from windows centered on the current points. The size of the windows is reduced
according to two factors: time (i.e., number of iterations) and quality of the points
they are created from.

6.3.1.2 Multi-objective Multiple Start Local Search (MOMSLS)
MOMSLS [16] is a heuristic method based on executing in parallel multiple local
searches starting each one of them from a different initial point. Each local search it-
self is a simpler heuristic that iteratively refines an initial random solution by looking
for better candidates in its neighborhood [30]. As a consequence, MOMSLS evalu-
ates solutions in N different neighborhoods during each one of its iteration steps.

6.3.1.3 Multi-objective Particle Swarm Optimization (MOPSO)
PSO [19] is a biologically inspired heuristic search method that mimics the
movement of a flock of birds. Candidate solutions are described by particles of
the swarm, and, at each iteration, they move a maximum of the objective function
updating their position according to a velocity vector (see Fig. 6.1) that is the linear
combination of three components:

P2

P1

P0

best solution
ever seen by P2

best solution ever
seen by thes warm

old v
W C1

C2
new v

Fig. 6.1 Example of a velocity vector update for a particle belonging to a three-particle swarm

6 Optimization Strategies in Design Space Exploration 195

• their last velocity vector (weighted by an inertial factor, W);
• the direction toward the best (e.g., with the greatest objective metric) solution

ever reached by the swarm (weighted by a social learning factor, C1);
• the direction toward the best solution ever reached by the individual particle

(weighted by a cognitive learning factor, C2).

To adapt PSO to multi-objective optimization problems, MOPSO [26] replicates the
PSO approach inN different swarms. TheseN swarms have, for objective function,
the product of the multiple objective functions, each elevated by a random exponent.
Moreover, in MOPSO, the inertial and social learning factors are set to 0. Particles
are also forced to perform a random walk with a fixed probability p to avoid local
minima.

In MOPSO implementations where the social learning factor is different from 0,
the overall performance is also influenced by the way in which the swarm “leaders”
are selected. The analysis performed in [23] shows that choosing as leaders those
particles/solutions that contribute the most to the hyper-volume of the Pareto front
usually results in the best performance.

6.3.1.4 Multi-objective Simulated Annealing (MOSA)
MOSA [36] is the multi-objective adaptation of the well-known SA technique.
In [36], there are two proposed approaches for the translation of SA into the context
of multi-objective optimization:

• probability scalarization, i.e., computing the acceptance/rejection probability of
new solutions for each performance metric and their aggregation;

• criterion scalarization, i.e., the projection of the performance metrics into a single
metric that is then used to compute the acceptance/rejection probability of the
new solution.

The approach actually implemented in MOSA [36] and tested in Sect. 6.4 is the
second one, while the first one is used by the two other SA-based algorithms
presented in the following.

6.3.1.5 Pareto Simulated Annealing (PSA)
PSA [5] proposes two different criteria to scalarize the acceptance/rejection prob-
ability of a new solution and adapt simulated annealing to multi-objective prob-
lems:

• rule C says that the rejection probability p is proportional to the largest difference
between the current and the new solution among all the performance metrics
under evaluation;

• rule SL, instead, states that p is the weighted linear combination of the
differences between the current and the new solution in all their performance
metrics.

196 J. Panerati et al

The weights used by rule SL to multiply each metric are also tuned at each iteration,
depending on whether the most recently introduced solution brought a deterioration
in that specific metric or not.

6.3.1.6 Serafini’s Multiple Objective Simulated Annealing (SMOSA)
The work in [31] enriches the discussion on the rules that can be used to com-
bine multiple performance metrics and apply SA to multi-objective optimization
problems. In [31], a new complex rule is defined as the linear composition, with
coefficients ˛ and .1 	 ˛/, of two simpler rules:

• rule P, i.e., the rejection probability p of a new solution is proportional to the
product of the differences between the current and the new solution in all their
performance metrics;

• and rule W, i.e., p is proportional to the smallest value among the differences
between the current and the new solution in all their performance metrics.

6.3.2 Evolutionary Algorithms

This section describes algorithms belonging to the second class defined in Sect. 6.2
in detail. The majority of these approaches is composed by variations of traditional
genetic algorithms. The basic way a GA works is by improving an initial set of
solutions (often randomly chosen), called population, by computing new solutions
as combinations of existing solutions X picked with a probability p proportional to
their fitness f .X/ [33].

6.3.2.1 Multiple Objective Genetic Local Search (MOGLS)
MOGLS [12] combines a typical class 2 methodology with one from class 1,
that is, genetic algorithms with a local search. Those algorithms that combine
multiple search methodologies are often referred to as “hybrid approaches.” Each
fundamental iteration step of MOGLS is composed of two sub-steps:

• first, new solutions are generated using genetic operations;
• and then, a local search is performed in the neighborhoods of these new solutions.

6.3.2.2 Ishibuchi-Murata Multi-objective Genetic Local Search
(IMMOGLS)

IMMOGLS [13] is another hybrid algorithm that combines a genetic algorithm
and a local search, just like MOGLS. In a multi-objective minimization problem,
a solution is said to be non-dominated with respect to a set of solutions, if none
of the other solutions score lower in all of the metrics one wants to minimize
(or maximize). The iteration step of IMMOGLS, as for MOGLS, consists of both
genetic operations and a local search but with three peculiar aspects:

6 Optimization Strategies in Design Space Exploration 197

• the fitness function used by the GA is a linear combination of the optimization
metrics and the weights are chosen randomly at each iteration;

• the local search is limited to a certain (random) number of neighbors k;
• at each iteration, the current population is purged of any dominated solutions

(this is referred to as an “elitist strategy”).

6.3.2.3 Non-dominated Sorting Genetic Algorithm (NSGA)
NSGA [34] is a very successful application of the genetic approach to the problem of
multi-objective optimization. The main insight regarding NSGA is the way in which
the fitness of solutions is computed. All the individual in the current population are
assigned fitness values on the basis of non-domination. All non-dominated solutions
are assigned the same fitness value.

6.3.2.4 Controlled Non-dominated Sorting Genetic Algorithm (NSGA-II)
In [6], NSGA-II – an evolution of NSGA – is introduced. NSGA-II has two main
peculiar aspects:

• NSGA-II is an elite-preserving algorithm; this means that non-dominated solu-
tions cannot ever be removed from the current population;

• the sorting of solutions by non-domination also reduces computational
complexity.

Genetic algorithms rely on several different genetic operators (mutation, crossover,
etc.) to create new solutions as shown in Fig. 6.2. Thanks to GAs robustness, even
the random selection of these operators usually leads to quality performance [24].

6.3.2.5 Pareto Memetic Algorithm (PMA)
PMA [15] is another member of the family of hybrid algorithms that combines GAs
local searches. PMA differs from MOGLS and IMMOGLS in the way it selects
the solutions for the crossover genetic operation. These are not drawn from the
current population but from another set of size T that is the results of sampling

+ +

Mutation
1-point

Crossover
2-point

Crossover

Fig. 6.2 Three of the most commonly used genetic operators: mutation, one-point, and two-point
crossover

198 J. Panerati et al

(with repetition) from the current population. The solutions that are chosen for
recombination are the two with the best fitness in this new set.

6.3.2.6 Strength Pareto Evolutionary Algorithm (SPEA)
SPEA [38] is part of the larger family of heuristic search methods called evolu-
tionary algorithms that also includes GAs. The three characteristic traits of SPEA
are:

• all the non-dominated solutions are also stored in an auxiliary set/population;
• the fitness of a solution in the current population is determined only by

comparison with the solutions in this auxiliary set [38];
• clustering is used to limit the size of the auxiliary population.

6.3.3 Statistical Approaches Without Domain Knowledge

This section describes algorithms belonging to the third class defined in Sect. 6.2 in
detail.

6.3.3.1 Response Surface Pareto Iterative Refinement (ReSPIR)
ReSPIR [27] is a DSE tool that exploits two statistical/learning methodologies
to infer the relationships between the tunable parameters of a system and its
performance metrics. The benefit of this approach is that the number of evaluations
needed to optimize a design is greatly reduced. These two pillars of ReSPIR are:

• DoE, a methodology that maximizes the information gained from a set of
empirical trials;

• and RSMs, analytical representations of a performance metric reconstructed from
the data. Several models can be applied for this problem: linear regression,
Shepard-based interpolation, Artificial Neural Networks (ANNs), etc.

The main iteration step of ReSPIR consists of using DoE to define a set of
experiments to perform, training the RSMs with the information collected, and
finally producing an intermediate Pareto set.

6.3.4 Statistical Approaches with Domain Knowledge

This section describes algorithms belonging to the fourth class defined in Sect. 6.2
in detail.

6.3.4.1 Markov Decision Process Optimization (MDP)
The approach proposed by [3] is based on a framework for sequential decision
making called Markov decision process. The components of an MDP are states,
actions, stochastic transitions from state to state, and rewards (Fig. 6.3). The solution

6 Optimization Strategies in Design Space Exploration 199

S1 A2

A1

A3

S2A2

A1

A3

p = 0.2
, r = 3

p = 0.5, r = −1

p =
0.2, r =

2

p = 0.8, r = 3

p = 0.5, r = −1

p = 0.8, r = 2

p =
0.1, r =−2

p = 0.3, r = 1

p =
0.6

, r =
1

p = 0.9, r = −2

p = 0.7, r = 1

p = 0.4, r = 1

Fig. 6.3 An MDP with two states and three actions. Each arc going from an action Ax to a state
Sy is associated with a probability p and a reward r

of an MDP is a strategy, i.e., the correct actions to perform in each one of the
states to collect the largest amount of rewards [30] in a certain time horizon. In
the formulation of [3], states are points in the design space (with their relative
performance metrics), actions are changes in the tunable parameters, and rewards
are improvements in the performance metrics. Stochastic transitions are initialized
with uniform distribution and their likelihood are then refined throughout the
execution of the algorithm. The main drawback of this approach is that it requires
knowledge of the upper and lower bounds of each performance metric as a function
of the tuning parameters. For this reason, MDP has a long setup time and cannot be
used without thorough knowledge of the system to optimize.

6.3.4.2 Multi-objective Markov Decision Process (MOMDP)
MOMDP [1] is an improved version of MDP. The main difference lies in MOMDP
novel exploration strategy. MDP, in fact, aggregated multiple performance metrics
with a scalarizing function. By changing the value taken from a parameter called ˛
(representing the weight(s) associated to each metric), it was possible to discover a
Pareto curve for multiple separate objectives.

MOMDP, instead, uses a different approach: it maximizes (or minimizes) one
of the objectives to derive a starting point and then builds the Pareto curve using a
value function that selects a point that is close to the starting point, but improving it
in at least one of the objectives. The process is repeated using the newly found point
until a full Pareto front is discovered.

MOMDP also introduces a special action, called the leap of faith, that allows to
avoid local minima by searching in the direction of high rewards, however unlikely.
This action is performed when all actions fail to improve any of the metrics.

200 J. Panerati et al

6.4 Experimental Comparison

Most class 1 and class 2 algorithm implementations can be found in the Multiple
Objective MetaHeuristics Library in C++ (MOMHLib++) [16]. Multicube Explorer
(M3Explorer) [37] also implements standard and enhanced versions of several well-
known multi-objective optimization algorithms. Multicube Explorer provides some
of the DSE algorithms in classes 1 and 3. Concerning the algorithms in class 4,
MDP and MOMDP, they are evaluated using the original source code.

6.4.1 Objectives

This experimental comparison has multiple aims. Its three most important aspects
are:

• determine the effort required to configure each algorithm for a given design space
and how the characteristics of the design space influence the choice of the most
effective exploration algorithm;

• determine the number of evaluations required by each algorithm to obtain an
approximate Pareto set that meets certain quality requirements;

• and, finally, quantify the quality of the resulting Pareto set found by each
algorithm.

A qualitative comparison of the 15 algorithms is presented in Table 6.3. Each
algorithm was tested in the context of the same design space: a symmetric multi-
processor platform running three different applications, shown in Fig. 6.4.

6.4.2 Benchmark Applications

Three applications (listed in Table 6.1) were used for testing, more specifically,
two large applications and a small benchmark, for which exhaustive search was
possible. ffmpeg, a video transcoder, was used to convert a small clip from MPEG-1
to MPEG-4, and pigz, a parallel compression algorithm, was used to compress a text
file. The small benchmark consists of an implementation of Bailey’s six-step FFT
algorithm (fft6). All applications are data-parallel and are targeted toward a homoge-
neous shared-memory multi-processor platform (N processors accessing a common
memory via bus). ffmpeg and pigz are implemented using pthreads; they create a
set of working threads equal to the number of available processors and dispatch
independent data to each thread. fft6 uses OpenMP, with loop parallelization and
static scheduling. These applications were chosen in order to display the maximum
variability in their behavior, as they use a different synchronization mechanisms
and require very different evaluation times. For situations in which it is especially
important to identify the optimal mapping of complex, multi-application workloads,

6 Optimization Strategies in Design Space Exploration 201

System Bus (latency)

PE _1
(frequency)

…

PE _2
(frequency)

PE _n
(frequency)

L1 Cache_n
(Size, Policy)

L1 Cache_2
(Size, Policy)

L1 Cache_1
(Size, Policy)

Memory (latency)

Fig. 6.4 The simulated multi-core processor architecture and its parameters (From [29])

Table 6.1 The three benchmark applications chosen to represent a significant spectrum of
workloads

Application Version Source Model Synch. Sim. Time Description

pigz 2.1 C pthreads Condition �2 m A parallel implementa-
tion of gzip

fft6 2.0 C/Fortran77 OpenMP Barrier �30 s Implementation of
Bailey’s 6-step fast
Fourier transformation
algorithm

ffmpeg 49.0.2 C pthreads semaphore �30 m A fast video and audio
converter

�Chap. 9, “Scenario-Based Design Space Exploration” explores thoroughly the
domain of scenario-based DSE.

6.4.3 Target Computing Platform

The target platform consists of a collection of ARM9 cores with private caches
and a shared memory (a comprehensive review of memory architectures and
organizations can be found in �Chap. 13, “Memory Architectures”) interconnected
by a simple system-bus model. Cache coherence is directory-based and implements
the MESI protocol. The number of processing elements varies between one
and eight. In the context of heterogeneous (e.g., big.LITTLE) multi-processor
architectures, �Chap. 8, “Architecture and Cross-Layer Design Space Exploration”

202 J. Panerati et al

Table 6.2 The platform
design space simulated using
ReSP

Parameter name Domain

of PEs {1,2,3,4,8}

PE frequency {100,200,250,300,400,500} MHz

L1 cache size {1,2,4,8,16,32} KByte(s)

Bus latency {10,20,50,100} ns

Memory latency {10,20,50,100} ns

L1 cache policy {LRU, LRR, RANDOM}

examines how cross-layer optimization and predictive models can further enhance
the DSE process.

The ReSP [2] open-source simulation environment was used to perform the
simulations, providing a set of configurable parameters, listed in Table 6.2. ReSP
provides values for execution time and power consumption, which were used as the
performance metrics for all optimization algorithms in our experiments. For more
on energy optimization, power, and thermal constraints in DSE, please refer to the
methodologies in �Chap. 10, “Design Space Exploration and Run-Time Adaptation
for Multicore Resource Management Under Performance and Power Constraints”.

The platform was explored using the parameters listed in Table 6.2 with a
resulting design space of 8640 points (It is worth noting that bus and memory
latency are not realistic parameters, but they enlarge the design space to better
test the proposed algorithm. The linear dependence with performance prevents any
strong biasing of the results.), comparable with similar works (e.g., 6144 points
in [32]) and such that the exhaustive exploration of any medium/large application
would require an unfeasibly long simulation time (e.g., roughly two months for
ffmpeg). Even the full exploration of the simple fft6 benchmark required six days
of uninterrupted simulation. To gather sufficient data for a statistical analysis, each
of the three benchmark applications was optimized ten times with each exploration
algorithm (N D 30 executions for each algorithm).

6.4.4 Metrics to Evaluate Approximate Pareto Sets

According to [35], the quality of the result of a multi-objective optimization
algorithm is twofold: (1) solutions should be as close as possible to the actual Pareto
set and (2) solutions should be as diverse as possible. Therefore, no single metric is
sufficient in assessing the quality of the discovered Pareto set.

Because of this reason, three metrics presented in [8] are used to compare the
relative quality of the approximate Pareto sets obtained by the 15 algorithms under
evaluation:

6.4.4.1 Average Distance from Reference Set
The Average Distance from Reference Set (ADRS) is used to compare the ap-
proximated Pareto sets with the best Pareto set (found combining the results of all

6 Optimization Strategies in Design Space Exploration 203

experiments). ADRS approximates the distance of the set under scrutiny from the
Pareto-optimal front and should be minimized: an algorithm with low ADRS is very
likely to have found a Pareto set that resembles the actual one.

As defined in [37], the ADRS between an approximate Pareto set � and a
reference Pareto set ˘ is computed as:

ADRS.˘;�/ D
1

j˘ j

X
�a2˘

�
min
�b2�
fı.	b;	a/g

�
(6.1)

where the ı function stands for:

ı.	b;	a/ D maxjD1;::;m

�
0;
�j .	a/ 	 �j .	b/

�j .	b/

�
(6.2)

Parameterm is the number of objectives and �i .	a/ is the value of the i -th objective
metric measured in point 	a.

6.4.4.2 Non-uniformity
Non-uniformity measures how solutions are distributed in the design space. A good
search algorithm should look at all the different regions of a design space with
equal attention. Lower non-uniformity means a more evenly distributed approximate
Pareto set that better estimates the optimal Pareto set.

Given a normalized Pareto set N�, where di is defined as the Euclidean distance
between two consecutive points (i D 1; ::; j N�j	1), and Od is the average value of all
the d ’s, non-uniformity [8] can be computed as:

j N�j�1X
iD1

jdi 	 Od j
p
m.j N�j 	 1/

(6.3)

6.4.4.3 Concentration
Concentration measures the span of each Pareto set with respect to the range of the
objectives. The lower the concentration, the higher the spread of the Pareto set and
the better coverage of the range of objectives. It is important to observe that non-
uniformity captures the behavior of a search algorithm in the design space, while
concentration looks at points in the space of objective metrics.

Given a normalized Pareto set N�, where �min
i is defined as minf�i .	a/ s:t: 	a 2

N�g and �max
i is defined as maxf�i .	a/ s:t: 	 a 2 N�g, concentration [8] can be

computed as:

mY
iD1

1

j�max
i 	 �min

i j
(6.4)

204 J. Panerati et al

6.4.5 Performance of the Algorithms Under Test

Having established the experimental context – that is, a set of benchmark applica-
tions and the target computing platform – and the performance metrics necessary to
evaluate approximate Pareto sets, this section details the obtained results.

6.4.5.1 Initial Setup Effort and Parameter Sensitivity
All the examined algorithms differ in the way they converge to an approximate
Pareto front, and the quality of their results depends on a number of different
parameters, making a fair evaluation difficult to perform. There is no common rule
for the choice of each algorithm’s parameters: these range from 4 to 12, and they can
be anything from integers to the choice of an interpolation function. The selection of
the parameters that are optimal for a specific optimization problem requires either
human expertise or the meta-exploration (also known as parameter screening) of the
algorithm parameters space, i.e., running multiple explorations while changing the
parameters to optimize the result. Either way, finding the optimal parameters usually
requires trial and error. The “Effort” column of Table 6.3 qualitatively presents the
tuning cost required by each algorithm.

Algorithms of classes 1 and 2 only require few parameters (such as population
size, mutation factors, initial temperature, etc.), and they are generally robust to
parameter choice. This means that small changes will not dramatically affect the
outcomes of the exploration, although there is no guarantee that a given parameter
choice will lead to optimal results. Their parameters (e.g., initial temperature for
MOSA and NSGA-II) have no direct link to any characteristic of the design
space and can be determined only by experience or guesswork, rendering the best

Table 6.3 A qualitative analysis of the chosen algorithms: setup effort, number of evaluations for
1% ADRS, number of Pareto points found, and scalability

Acronym Class Setup effort Evaluations Pareto points Scalability

APRS [37] 1 ? ? ? ? ? ? ?? ?

MOMSLS [16] 1 ? ? ? ? ? ? ? ?

MOPSO [26] 1 ?? ? ? ?? ? ? ? ? ? ??

MOSA [36] 1 ? ? ? ? ? ?? ? ? ? ? ? ??

PSA [5] 1 ? ? ? ? ? ? ? ? ? ??

SMOSA [31] 1 ? ? ? ? ? ? ? ??

MOGLS [12] 2 ?? ? ? ? ? ? ? ? ? ??

IMMOGLS [13] 2 ?? ? ? ? ?? ? ? ??

NSGA [34] 2 ? ? ? ? ? ? ? ? ? ??

NSGA-II [6] 2 ? ? ? ? ? ?? ? ? ? ??

PMA [15] 2 ?? ? ? ? ?? ? ? ??

SPEA [38] 2 ?? ? ? ? ? ? ? ? ? ??

ReSPIR [27] 3 ? ? ?? ?? ? ? ?? ? ? ?

MDP [3] 4 ? ? ? ? ? ? ? ??

MOMDP [1] 4 ? ? ? ? ? ? ? ? ? ? ? ?

6 Optimization Strategies in Design Space Exploration 205

combination very difficult to obtain without screening and additional evaluations.
For the comparison in this chapter, the best parameters were determined via
screening, which required running several thousand evaluations.

Algorithms like APRS have a minimal setup effort as they do not require any
special tuning and rely on pre-determined heuristics. It is worth noting that both
class 1 and 2 algorithms do not guarantee convergence to the optimal Pareto set and
require the user to specify a maximum number of iterations in addition to any other
stopping condition (e.g., when the results do not vary for more than two iterations).

Algorithms in class 3 demand a greater setup effort: the choice of proper
metamodels for the design space requires some expertise and an initial screening
(i.e., additional evaluations) to properly determine which parameters are the most
significant. Each metamodel needs specific additional parameters that are loosely
linked to the designer’s expertise of the design space. For the comparison in this
chapter, the central composite design using a Neural Network (NN) interpolator
was used, as suggested by the results in [27]. However, the NN produced results
with a very high variance, with ADRS ranging from 0 to 160%, making the use
of this interpolator impractical. The Shepard interpolation was found to be much
more effective, although it required to determine the value of a power parameter,
which expresses how jagged is the response surface of the design space. A low
value of this power parameter will produce a smooth interpolation, while a higher
value could better follow a more jagged curve, but could also introduce overfitting.
The results of [27] were effectively replicated in the considered design space using
a power of 16, which was found by parameter screening (�103 evaluations).

Finally, algorithms in class 4 require to set bounds to the effects of parameter
variations on the configuration’s metrics. The quantification of these bounds is
left to the designer’s experience or can be determined via statistical modeling.
This means detailed analysis of each design space and a large setup effort. The
main difference between MDP and MOMDP is that the former is fundamentally a
single-objective optimization algorithm. To effectively discover a Pareto set, MDP
“sweeps” the design space according to a set of scalarizing values that express the
desired trade-off between the different objective functions. To determine the size and
values of these scalarizing values for the design space under evaluation, hundreds of
additional evaluations are required. MOMDP does not require this screening phase,
and its only parameter (the accuracy
) is in fact the average simulation error and
can be chosen without effort.

It is worth noting that designer experience can reduce or remove the need for
parameter discovery activities for all the aforementioned algorithms.

6.4.5.2 Convergence Rate
For the comparison in this chapter, each algorithm’s parameters were optimally
tuned but the evaluations needed for screening and initial parameter estimation are
not accounted for. Concerning ADRS, since exhaustive search is not possible, the
reference Pareto set is the best Pareto set generated compounding all evaluations
performed by all algorithms, which covered a sizable portion of the entire design
space (around 30%).

206 J. Panerati et al

MDP

MOMDP

RESPIR

IM
MOGLS

PMA
SPEA

NSGA-II

MOSA

MOPSO
APRS

PSA

SMOSA
NSGA

MOMSLS

MOGLS

0

10

20

30
RATE OF CONVERGENCE

ex
pl

or
ed

 %
 o

f t
he

 d
es

ig
n

sp
ac

e

Fig. 6.5 The percentage of points in the design space evaluated by each algorithm for similar
levels of accuracy, that is,�1% (From [29])

Figure 6.5 shows the percentage of the design space (i.e., the number of
evaluations divided by the number of points in the design space) explored by
each algorithm in order to reach an ADRS of approximately 1% on average.
Note that it was not possible for all the algorithms to converge to the exact same
quality result, and some algorithms show high variability. In fact, SMOSA and
NSGA often do not converge to acceptable solutions. The final accuracy values
obtained are shown in Fig. 6.6. Please note that the histograms and the error bars
in Figs. 6.5, 6.6, 6.7, 6.8 and 6.9 show average values and standard deviations,
respectively, for each algorithm over 30 experiments. No negative percentage
actually resulted during the experiments.

Figure 6.5 shows that the improvement can be worth the extra setup effort for
class 3 and 4 algorithms: MDP, MOMDP, and RESPIR have a factor 10 reduction in
the number of evaluations and a much tighter convergence (i.e., smaller variance
of the results). Concerning class 2 algorithms, the performance is very similar,
with IMMOGLS appearing to have the best combination of accuracy, number of
evaluations, and variance. APRS still provides excellent results given the zero-effort
setup, although with at least twice as many evaluations when compared to class 2
algorithms.

6.4.5.3 Quality of the Approximate Pareto Set
Figure 6.7 shows the number of Pareto points found by each algorithm, normalized
by the average number found (for each benchmark).

The performance of most algorithms does not appear to show any statistically
significant difference, with the exception of RESPIR, which finds, on average, 25%
more points than all the other algorithms but with a slightly higher variance. Once

6 Optimization Strategies in Design Space Exploration 207

MDP

MOMDP

RESPIR

IM
MOGLS

PMA
SPEA

NSGA-II

MOSA

MOPSO
APRS

PSA

SMOSA
NSGA

MOMSLS

MOGLS

0

2

4

6

8
ERROR

A
D

R
S

(%
)

Fig. 6.6 Accuracy (ADRS) reached by each algorithm at convergence (From [29])

RESPIR
MOSA

MOMDP

MOPSO
SPEA

IM
MOGLS

APRS
PMA

NSGA-II
MDP

PSA

SMOSA
NSGA

MOMSLS

MOGLS

0

0.5

1

1.5

OF PARETO POINTS

ra
tio

 to
 a

vg
. P

ar
et

o
po

in
ts

Fig. 6.7 The average number of points in the approximate Pareto set found by each algorithm,
normalized with the average for each benchmark (From [29])

again, SMOSA and NSGA display the poorest results. It is worth noting that some
of the points found by RESPIR are Pareto-covered by the points found by the other
algorithms: the number of points on the actual Pareto curve is smaller than what was
found by RESPIR.

Concerning non-uniformity and concentration, all algorithms behave similarly,
satisfyingly covering the design space and without concentrating on specific

208 J. Panerati et al

IM
MOGLS

MDP

MOGLS

MOMSLS

MOSA

NSGA-II
PMA

PSA
SPEA

NSGA

SMOSA

MOMDP

MOPSO
APRS

RESPIR

0

1

2

3
NON−UNIFORMITY

no
n-

un
ifo

rm
ity

 %

Fig. 6.8 The non-uniformity of the distribution of the points found in the approximate Pareto set
found by each algorithm (From [29])

IM
MOGLS

MDP

MOGLS

MOMSLS

MOSA

NSGA-II
PMA

PSA
SPEA

NSGA

SMOSA

MOMDP

MOPSO
APRS

RESPIR

0

2

4

6

·10−7

CONCENTRATION

co
nc

en
tra

tio
n

%

Fig. 6.9 The concentration of the points found in the approximate Pareto set found by each
algorithm (From [29])

areas. Again, no statistically significant difference between the algorithms can be
observed, with the only exception of SMOSA and NSGA, which produced the
worst results as well as higher variance. Results are presented in Figs. 6.8, 6.9
and 6.10.

6 Optimization Strategies in Design Space Exploration 209

0
5

10
15

20
25

30
35

1

2

3

0.6

0.8

1

APRS (1)

IMMOGLS (2)

MDP (4)

MOGLS (2)MOMDP (4)

MOMSLS (1)

MOPSO (1)MOSA (1)

NSGA-II (2)

PMA (2)

RESPIR (3)

SPEA (2)

explored design space (%)

ADRS (%
)

ra
tio

to
av

g.
Pa

re
to

po
in

ts

Fig. 6.10 3D representation of the algorithms performance showing % of the design space
explored in order to reach convergence, the number of Pareto points (w.r.t the average number),
and the ADRS error metric (NSGA, PSA, and SMOSA are omitted because of their large ADRS).
The number after each algorithm name indicates the its class (from [29])

6.4.5.4 Scalability
The scalability column of Table 6.3 tells how an algorithm’s performance degrades
with the increasing size of the design space: more scalable algorithms can be applied
to more complex design spaces with lower effort. To test the effective scalability of
each algorithm, the size of the design space was progressively increased, starting
with three parameters and adding the remaining three one by one.

Most algorithms of classes 1 and 2 are very scalable: the number of parameters –
or the number of values per parameter – does not affect the overall result, even
though the number of additional evaluations needed grows proportionally with the
number of parameters (i.e., remains around �10–15% of the design space).

Although APRS require little setup effort, its applicability to large design spaces
cannot be guaranteed. In fact, the already very high number of evaluations required
increases exponentially with the design space size, practically limiting its use to
small design spaces with fast evaluations.

RESPIR (class 3) scales well to design spaces with many parameters, but only
if few values per parameter are present. This is due to one of the main limitations

210 J. Panerati et al

of central composite design: it can only consider three levels for each parameter,
therefore reducing the accuracy of the method in presence of many parameter
values, especially if they lead to non-linear behavior. The number of evaluations
for convergence remains �4% of the design space.

Finally, class 4 algorithms scale orthogonally with respect to class 3: they
scale well with the number of values per parameter, but not when the number
of parameters increases. While adding a parameter requires defining new bounds,
adding new values comes without effort, and the number of evaluations needed
increases less than linearly [3]. One drawback of MDP when compared to MOMDP
is that it requires the estimation of an additional parameter (˛; see [3]) when
increasing the size of the design space, which might require additional evaluations.

6.5 Discussion

Selection of the best algorithm for a particular application is not an easy task, and
it requires trading-off setup effort, scalability, expected number of simulations, and
accuracy. Looking at the result from Sect. 6.4, one can draw some general guidelines
according to the cost of each evaluation (in terms, e.g., of simulation time) and the
size of the design space.

High evaluation costs make algorithms requiring a low number of simulations
more appealing, even if they have a high upfront setup cost. On the contrary, if
evaluations have moderate costs, one might want to trade-off a higher number
of evaluations for a no-effort setup. Similarly, large design spaces favor scalable
algorithms, while smaller spaces do not justify the extra work required to apply
sophisticated algorithms.

In order to estimate the actual convergence time of an algorithm i , one must
take into consideration the design space size (jS j points), the time required by each
simulation/evaluation (Tsim seconds), the percentage of the design space explored
before reaching convergence (�i), and the setup time T setup

i of the algorithm:

T actual
i D .�i � jS j � Tsim/C T

setup
i (6.5)

The values of �i ’s are reported in Fig. 6.5. Regarding the T setup
i values, the

qualitative information in Table 6.3 was translated into a 100- to 30-h range:
observations showed that algorithms having one “effort star” can be set up in a few
minutes, while algorithms with five “effort stars” require more than a day of work.

Figure 6.11 presents four plots: the size of the design space appears on the x
axis while the time required by each simulation appears on the y axis. In each plot,
areas are labeled with the name of the most suitable algorithm according to Eq. 6.5.
Subplots (a) and (b) report the result for algorithms able to obtain ADRS of about
1%, whether domain knowledge is available (a) or not (b). Subplots (c) and (d) relax
the ADRS requirement to about 5%.

Whether or not domain knowledge is available, multi-objective multiple start
local search (MOMSLS) and adaptive windows Pareto random search (APRS) are

6 Optimization Strategies in Design Space Exploration 211

APRS (1)

IMMOGLS (2)

RESPIR (3)

MOMDP (4)

100 101 102 103 104 105 106 107
0

600

1,200

1,800

2,400

3,000

a b

c d

Si
m

ul
at

io
n

Ti
m

e
- T

si
m

 (s
)

APRS (1)

IMMOGLS (2)

RESPIR (3)

100 101 102 103 104 105 106 107
0

600

1,200

1,800

2,400

3,000

MOMSLS (1)

PSA (1)

RESPIR (3)

MDP (4)

100 101 102 103 104 105 106 107
0

600

1,200

1,800

2,400

3,000

DesignSpaceSize- |S| (#ofpoints)

Si
m

ul
at

io
n

Ti
m

e
- T

si
m

 (s
)

MOMSLS (1)

PSA (1)

RESPIR (3)

100 101 102 103 104 105 106 107
0

600

1,200

1,800

2,400

3,000

DesignSpaceSize- |S| (#ofpoints)

Fig. 6.11 Recommended algorithms for different design space size, simulation time and desired
ADRS, whether domain knowledge is available or not. The number after each algorithm name
indicates its class (From [29]). (a) ADRS � 1%, w/ domain knowledge. (b) ADRS � 1%, w/o
domain knowledge. (c) ADRS � 5%, w/ domain knowledge. (d) ADRS � 5%, w/o domain
knowledge

the most appealing solutions for small to medium design spaces with inexpensive
evaluations. As explained in Sect. 6.4, APRS is a heuristic algorithm that requires
very little setup effort, making it the ideal choice when simplicity is valued more
than raw performance. MOMSLS is considerably faster but also more likely to
produce a larger ADRS.

In large design spaces with high cost evaluations – if domain knowledge is
available – the multi-objective MDP algorithm (MOMDP) [1] clearly grants better
performance, both in terms of fast convergence to a very small ADRS and quality
of the Pareto set.

When one cannot obtain or exploit domain knowledge, the choice is split between
the very high-quality Response Surface Pareto Iterative Refinement (RESPIR) algo-
rithm and the Ishibuchi-Murata MO Genetic Local Search (IMMOGLS) algorithm.
Both these algorithms are suited for very large design spaces.

212 J. Panerati et al

Table 6.4 Recommended
algorithms for space size and
evaluation effort

Design space size w/ knowledge

Eval cost Small Medium Large

Low APRS PMA IMMOGLS

Medium PMA RESPIR RESPIR

High RESPIR MOMDP MOMDP

Design space size w/o knowledge

Eval cost Small Medium Large

Low APRS PMA IMMOGLS

Medium PMA RESPIR IMMOGLS

High RESPIR RESPIR RESPIR

However, it is worth noting that the IMMOGLS algorithm usually requires a
larger number of evaluations, therefore is not recommended when dealing with
high cost simulation. Pareto Simulated Annealing (PSA) is a valid alternative to
IMMOGLS when a larger ADRS is acceptable.

What one can conclude from Fig. 6.11 is that algorithms with small setup times
(i.e., the ones in classes 1 and 2) are especially suitable for simple problems
with relatively small design spaces and/or short simulation times. On the other
hand, complex algorithms in classes 3 and 4 usually compensate for their longer
configuration times when the exploration problem is sufficiently challenging.

These recommendations (summarized in Table 6.4) are qualitative, but do take
into account all the parameters discussed in Sect. 6.4.

6.6 Existing Frameworks

All the algorithms presented in this chapter have an open-source implementation.
There are many optimization tools that can be used or adapted for design space
exploration. It is generally advisable to use an existing, well-tested implementation
of one of these algorithms instead of going for the homebrew solution. The reason
is that the most common open-source frameworks are used by many developers, and
many of the issues and bugs have been found just by the sheer volume of users.

Most frameworks are available in the form of libraries to be used with a specific
language or development environment. In the following, examples of existing
frameworks are given, providing a short analysis of their strong and weak points.

6.6.1 jMetal

jMetal [7] is an object-oriented Java-based framework for multi-objective opti-
mization with metaheuristics. It provides 12 different multi-objective algorithms,
as well as some single-objective metaheuristics. jMetal is one of the most popular
frameworks available and has a number of advantages:

6 Optimization Strategies in Design Space Exploration 213

• It is based on Java, that is, it is platform independent and the API is easily
accessible by a programmer.

• It provides a graphical user interface and a set of test problems with quality
indicators.

• It provides support for the parallel execution for a subset of its algorithms.

The main disadvantage of jMetal arises from one of its strong points: being written
in Java, jMetal does not have optimal performance, and its parallel performance
does not scale very well. Despite this, jMetal is one of the most comprehensive
existing frameworks, and its utilization is recommended if the algorithm of interest
is present in its library.

6.6.2 PaGMO/PyGMO

PaGMO (https://github.com/esa/pagmo/) is a C++ optimization framework initially
developed by the European Space Agency for the optimization of interplanetary
trajectories. The framework focuses on novel algorithms, parallelism, and perfor-
mance. Compared to jMetal, PaGMO provides similar algorithms, but all of them
are tuned for massively parallel execution. Therefore, PaGMO has an edge in terms
of exploration performance. As jMetal, PaGMO comes with sample problems,
metrics, and extension abilities. PaGMO also has Python bindings (PyGMO), which
make it accessible with very simple scripts.

The main disadvantage of PaGMO is that despite having been in developing for
a few years, it is not as user-friendly as jMetal: the installation is only from source,
there is no graphical user interface, and its documentation incomplete. PaGMO is
therefore recommended to the more experienced programmer or to the user with
extreme need for performance.

6.6.3 MOHMLib++

The Multiple Objective MetaHeuristics Library in C++ (MOMHLib++) [16] is a
C++ library providing 15 optimization algorithms. It is not as developed or main-
tained as jMetal or PaGMO, but it has few dependencies and it is very simple to use.

MOHMLib++ has no graphical user interface, no support for massively parallel
execution, and no scripting language bindings. However, its small size and simplic-
ity are usually very attractive to an unambitious developer looking to find a quick
solution to an optimization or design exploration problem.

6.6.4 NASA

NASA (Non Ad-hoc Search Algorithm) [17] is not a collection of search algorithms
but rather a DSE framework characterized by its modularity. Because of this reason,
NASA can be used orthogonally and together with the strategies implemented, for

https://github.com/esa/pagmo/

214 J. Panerati et al

example, by MOHMLib++. The infrastructure of NASA is implemented in C++
and consists of several modules (including a search module, a feasibility checker,
a simulator, and an evaluator) that can be extended or replaced by its user in plug-
and-play fashion.

The main advantage of NASA is, indeed, its modularity. NASA allows the
designer to fully decouple important functionalities (such as the choice of a
search algorithm and the evaluation of multiple performance metrics) with the
aid of only three interface files. Moreover, NASA is already integrated with two
widely used system-level simulators – CASSE and Sesame – and it supports the
parallel exploration of design space dimensions that are deemed independent by
the designer. A shortcoming of NASA is the lack of pre-implemented search
methodologies other than a proprietary GA, making the joint use of one of the
previous frameworks a must.

6.7 Conclusions

Concluding, this chapter presented a classification and comparative analysis of 15
of the best and most recent multi-objective design exploration algorithms. The
algorithms were applied to the exploration of a multi-processor platform and they
were compared for setup effort, number of evaluations, quality of the resulting
approximate Pareto set, and scalability. The obtained results were then used as
guidelines for the choice of the algorithm best suited to the properties of a target
design space. In particular, the experiments determined the most promising algo-
rithms when considering design space size and evaluation effort. Finally, a list of
reusable, open frameworks implementing DSE optimization strategies is provided.

References

1. Beltrame G, Nicolescu G (2011, in press) A multi-objective decision-theoretic exploration
algorithm for platform-based design. In: Proceedings of design, automation and test in Europe
(DATE)

2. Beltrame G, Fossati L, Sciuto D (2009) ReSP: a nonintrusive transaction-level reflective
MPSoC simulation platform for design space exploration. IEEE Trans Comput Aided Des
Integr Circuits Syst 28(12):1857–1869

3. Beltrame G, Fossati L, Sciuto D (2010) Decision-theoretic design space exploration of
multiprocessor platforms. IEEE Trans Comput Aided Des Integr Circuits Syst 29(7):1083–
1095. doi: 10.1109/TCAD.2010.2049053

4. Coello CA (2000) An updated survey of ga-based multiobjective optimization techniques.
ACM Comput Surv 32(2):109–143. doi: 10.1145/358923.358929

5. Czyzżak P, Jaszkiewicz A (1998) Pareto simulated annealing–a metaheuristic technique for
multiple-objective combinatorial optimization. J Multi-Criteria Decis Anal 7(1):34–47. doi:
10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6

6. Deb K, Goel T (2001) Controlled elitist non-dominated sorting genetic algorithms for better
convergence. In: Zitzler E, Thiele L, Deb K, Coello Coello C, Corne D (eds) Evolutionary
multi-criterion optimization. Lecture notes in Computer Science, vol 1993. Springer, Heidel-
berg, pp 67–81. doi: 10.1007/3-540-44719-9_5

http://dx.doi.org/10.1109/TCAD.2010.2049053
http://dx.doi.org/10.1145/358923.358929
http://dx.doi.org/10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
http://dx.doi.org/10.1007/3-540-44719-9_5

6 Optimization Strategies in Design Space Exploration 215

7. Durillo JJ, Nebro AJ (2011) jMetal: a java framework for multi-objective optimization. Adv
Eng Softw 42:760–771

8. Erbas C (2006) System-level modelling and design space exploration for multiprocessor
embedded system-on-chip architectures. Amsterdam University Press, Amsterdam

9. Fonseca CM, Fleming PJ (1995) An overview of evolutionary algorithms in multiobjective
optimization. Evol Comput 3(1):1–16. doi: 10.1162/evco.1995.3.1.1

10. Fornaciari W, Sciuto D, Silvano C, Zaccaria V (2002) A sensitivity-based design space
exploration methodology for embedded systems. Des Autom Embed Syst 7(1):7–33. doi:
10.1023/A:1019791213967

11. Givargis T, Vahid F, Henkel J (2001) System-level exploration for pareto-optimal configura-
tions in parameterized systems-on-a-chip. In: 2001 IEEE/ACM international conference on
computer aided design, ICCAD 2001, pp 25–30. doi: 10.1109/ICCAD.2001.968593

12. Ishibuchi H, Murata T (1996) Multi-objective genetic local search algorithm. In: Pro-
ceedings of IEEE international conference on evolutionary computation, pp 119–124. doi:
10.1109/ICEC.1996.542345

13. Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its
application to flowshop scheduling. IEEE Trans Syst Man Cybern C Appl Rev 28(3):392–403.
doi: 10.1109/5326.704576

14. Jaddoe S, Pimentel AD (2008) Signature-based calibration of analytical system-level per-
formance models. In: Proceedings of the 8th international workshop on embedded com-
puter systems: architectures, modeling, and simulation SAMOS’08. Springer, Heidelberg,
pp 268–278

15. Jaszkiewicz A (2004) A comparative study of multiple-objective metaheuristics on the bi-
objective set covering problem and the pareto memetic algorithm. Ann Oper Res 131:135–158.
doi: 10.1023/B:ANOR.0000039516.50069.5b

16. Jaszkiewicz A, Dabrowski G (2005) MOMH: multiple objective meta heuristics. Available at
the web site http://home.gna.org/momh/

17. Jia ZJ, Bautista T, Núñez A, Pimentel AD, Thompson M (2013) A system-level infrastructure
for multidimensional MP-SoC design space co-exploration. ACM Trans Embed Comput Syst
13(1s):27:1–27:26. doi: 10.1145/2536747.2536749

18. Kaelbling LP, Littman ML, Moore AP (1996) Reinforcement learning: a survey. J Artif Intell
Res 4:237–285

19. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings IEEE international
conference on neural networks, vol 4, pp 1942–1948. doi: 10.1109/ICNN.1995.488968

20. Lukasiewycz M, Glay M, Haubelt C, Teich J (2008) Efficient symbolic multi-objective design
space exploration. In: ASP-DAC ’08: proceedings of the 2008 Asia and South Pacific design
automation conference. IEEE Computer Society Press, Seoul, pp 691–696

21. Mariani G, Brankovic A, Palermo G, Jovic J, Zaccaria V, Silvano C (2010) A correlation-
based design space exploration methodology for multi-processor systems-on-chip. In: 2010
47th ACM/IEEE design automation conference (DAC), pp 120–125

22. Mohanty S, Prasanna VK, Neema S, Davis J (2002) Rapid design space exploration of
heterogeneous embedded systems using symbolic search and multi-granular simulation.
SIGPLAN Not 37(7):18–27

23. Nebro A, Durillo J, Coello C (2013) Analysis of leader selection strategies in a multi-
objective particle swarm optimizer. In: 2013 IEEE congress on evolutionary computation
(CEC), pp 3153–3160. doi: 10.1109/CEC.2013.6557955

24. Nebro AJ, Durillo JJ, Machín M, Coello Coello CA, Dorronsoro B (2013) A study of
the combination of variation operators in the NSGA-II algorithm. In: Advances in artificial
intelligence: 15th conference of the Spanish association for artificial intelligence, CAEPIA
2013, Madrid, 17–20 Sept 2013. Proceedings. Springer, Heidelberg, pp 269–278. doi:
10.1007/978-3-642-40643-0_28

25. Okabe T, Jin Y, Sendhoff B (2003) A critical survey of performance indices for multi-objective
optimisation. In: The 2003 congress on, evolutionary computation, CEC ’03, vol 2, pp 878–
885. doi: 10.1109/CEC.2003.1299759

http://dx.doi.org/10.1162/evco.1995.3.1.1
http://dx.doi.org/{10.1023/A:1019791213967}
http://dx.doi.org/{10.1109/ICCAD.2001.968593}
http://dx.doi.org/10.1109/ICEC.1996.542345
http://dx.doi.org/10.1109/5326.704576
http://dx.doi.org/10.1023/B:ANOR.0000039516.50069.5b
http://home.gna.org/momh/
http://dx.doi.org/10.1145/2536747.2536749
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/CEC.2013.6557955
http://dx.doi.org/10.1007/978-3-642-40643-0_28
http://dx.doi.org/10.1109/CEC.2003.1299759

216 J. Panerati et al

26. Palermo G, Silvano C, Zaccaria V (2008) Discrete particle swarm optimization for multi-
objective design space exploration. In: 11th EUROMICRO conference on digital system design
architectures, methods and tools, DSD’08, pp 641–644. doi: 10.1109/DSD.2008.21

27. Palermo G, Silvano C, Zaccaria V (2009) ReSPIR: a response surface-based pareto iterative
refinement for application-specific design space exploration. IEEE Trans Comput Aided Des
Integr Circuits Syst 28(12):1816–1829. doi: 10.1109/TCAD.2009.2028681

28. Palesi M, Givargis T (2002) Multi-objective design space exploration using genetic algorithms.
In: CODES ’02: Proceedings of the tenth international symposium on hardware/software
codesign. ACM, Colorado, pp 67–72. doi: 10.1145/774789.774804

29. Panerati J, Beltrame G (2014) A comparative evaluation of multi-objective exploration
algorithms for high-level design. ACM Trans Des Autom Electron Syst 19(2):15:1–15:22. doi:
10.1145/2566669

30. Russell SJ, Norvig P (1995) Artificial intelligence: a modern approach, 1st edn. Prentice Hall,
Upper Saddle River

31. Serafini P (1994) Simulated annealing for multi objective optimization problems. In: Tzeng G,
Wang H, Wen U, Yu P (eds) Multiple criteria decision making. Springer, New York, pp 283–
292. doi: 10.1007/978-1-4612-2666-6_29

32. Sheldon D, Vahid F, Lonardi S (2007) Soft-core processor customization using the design of
experiments paradigm. In: DATE conference, pp 1–6

33. Sivanandam SN, Deepa SN (2007) Introduction to genetic algorithms, 1st edn. Springer,
Berlin/New York

34. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic
algorithms. Evol Comput 2(3):221–248. doi: 10.1162/evco.1994.2.3.221

35. Taghavi T, Pimentel AD (2011) Design metrics and visualization techniques for analyzing the
performance of moeas in DSE. In: ICSAMOS, pp 67–76

36. Ulungu E, Teghem J, Fortemps P, Tuyttens D (1999) MOSA method: a tool for solving
multiobjective combinatorial optimization problems. J Multi-Criteria Decis Anal 8(4):221–
236. doi: 10.1002/(SICI)1099-1360(199907)8:4<221::AID-MCDA247>3.0.CO;2-O

37. Zaccaria V, Palermo G, Castro F, Silvano C, Mariani G (2010) Multicube explorer: an
open source framework for design space exploration of chip multi-processors. In: 2PARMA:
proceedings of the workshop on parallel programming and run-time management techniques
for many-core architectures, Hannover

38. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271. doi:
10.1109/4235.797969

http://dx.doi.org/10.1109/DSD.2008.21
http://dx.doi.org/10.1109/TCAD.2009.2028681
http://dx.doi.org/10.1145/774789.774804
http://dx.doi.org/10.1145/2566669
http://dx.doi.org/10.1007/978-1-4612-2666-6_29
http://dx.doi.org/10.1162/evco.1994.2.3.221
http://dx.doi.org/10.1002/(SICI)1099-1360(199907)8:4<221::AID-MCDA247>3.0.CO;2-O
http://dx.doi.org/10.1109/4235.797969

7Hybrid Optimization Techniques for
System-Level Design Space Exploration

Michael Glaß, Jürgen Teich, Martin Lukasiewycz, and Felix Reimann

Abstract

Embedded system design requires to solve synthesis steps that consist of resource
allocation, task binding, data routing, and scheduling. These synthesis steps
typically occur several times throughout the entire design cycle and necessitate
similar concepts even at different levels of abstraction. In order to cope with the
large design space, fully automatic Design Space Exploration (DSE) techniques
might be applied. In practice, the high complexity of these synthesis steps
requires efficient approaches that also perform well in the presence of stringent
design constraints. Those constraints may render vast areas in the search space
infeasible with only a fraction of feasible implementations that are sparsely
distributed. This is a serious problem for metaheuristics that are popular for DSE
of electronic hardware/software systems, since they are faced with large areas
of infeasible implementations where no gradual improvement is possible. In this
chapter, we present an approach that combines metaheuristic optimization with
search algorithms to solve the problem of Hardware/Software Codesign (HSCD)
including allocation, binding, and scheduling. This hybrid optimization uses
powerful search algorithms to determine feasible implementations This avoids
an exploration of infeasible areas and, thus, enables a gradual improvement as

M. Glaß
Institute of Embedded Systems/Real-Time Systems at Ulm University, Ulm, Germany
e-mail: michael.glass@uni-ulm.de

J. Teich
Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Erlangen, Germany
e-mail: juergen.teich@fau.de

M. Lukasiewycz
Robert Bosch GmbH, Corporate Research, Renningen, Germany
e-mail: martin.lukasiewycz@de.bosch.com

F. Reimann
Audi Electronics Venture GmbH, Gaimersheim, Germany
e-mail: felix.reimann@audi.de

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_8

217

mailto:michael.glass@uni-ulm.de
mailto:juergen.teich@fau.de
mailto:martin.lukasiewycz@de.bosch.com
mailto:felix.reimann@audi.de

218 M. Glaß et al.

required for efficient metaheuristic optimization. Two methods are presented that
can be applied to both, problems with linear as well as non-linear constraints,
the latter being particularly intended to address aspects such as timeliness or
reliability which cannot be approximated by linear constraints in a sound fashion.
The chapter is concluded with several examples for a successful use of the
introduced techniques in different application domains.

Acronyms

BIST Built-In Self-Test
DPLL Davis-Putnam-Logemann-Loveland
DSE Design Space Exploration
EA Evolutionary Algorithm
E/E Electric and Electronic
ESL Electronic System Level
HSCD Hardware/Software Codesign
ILP Integer Linear Program
MoC Model of Computation
MPSoC Multi-Processor System-on-Chip
PB Pseudo-Boolean
SAT Boolean Satisfiability
SMT Satisfiability Modulo Theories

Contents

7.1 Introduction and Motivation . 218
7.2 Fundamentals and Problem Formulation . 219

7.2.1 System Model and the System-Level Synthesis Problem 220
7.2.2 Constrained Combinatorial Optimization . 225

7.3 Hybrid Optimization . 229
7.3.1 SAT Decoding: The Key Idea . 229
7.3.2 Solver . 230
7.3.3 Pseudo-Boolean Encoding of Allocation, Binding, Routing,

and Scheduling . 231
7.4 Satisfiability Modulo Theories During Decoding . 236

7.4.1 SMT Decoding: The Key Idea . 236
7.4.2 SMT Decoding Formulation . 238
7.4.3 Learning Schemes . 239

7.5 Applications . 242
7.6 Conclusion . 244
References . 245

7.1 Introduction and Motivation

The design of electronic embedded systems typically requires to solve the crucial
synthesis steps of resource allocation, task binding, data routing, and scheduling.
Those basic steps can even re-occur throughout the design cycle [30] and necessitate
similar concepts even at different levels of abstraction. Here, a major problem for

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 219

design space exploration is typically not just a vast design space, but the high
complexity of these synthesis steps (NP-complete) that becomes even more severe
in the presence of stringent design constraints. Those constraints may render many
possible system implementations infeasible, such that vast areas in the search space
are infeasible with feasible implementations populating the space only sparsely.
This is a tremendous problem for metaheuristics that are popular for Design Space
Exploration (DSE) (see �Chap. 6, “Optimization Strategies in Design Space
Exploration”), since they are faced with large areas of infeasible implementations
where no gradual improvement is possible.

This chapter describes an approach to overcome this problem. The main idea is to
employ a backtracking-based search algorithm, i.e., a Pseudo-Boolean (PB) solver,
to obtain feasible implementations only. This search algorithm is controlled by a
metaheuristic optimization technique, i.e., an Evolutionary Algorithm (EA) to (a)
enable an efficient exploration even in large and sparse search spaces and (b) search
for implementations that are optimized with respect to multiple non-functional
design objectives such as timeliness, reliability, and/or power consumption. This
combination is termed SAT decoding and can be considered a hybrid optimization
approach which is exemplified for system-level DSE of electronic hardware/soft-
ware systems in this chapter. However, the employed search algorithm is only
capable of handling linear or linearizable design constraints in a Boolean domain.

In the presence of constraints that cannot be efficiently linearized and reduced
to the Boolean domain – such as a maximum end-to-end delay of an application
with tasks mapped to multiple resources – the approach will again deliver infea-
sible implementations if these non-linear constraints are ignored. A technique to
overcome this drawback is as well presented in this chapter. The basic idea is to
integrate analysis techniques for such non-functional constraints and incrementally
determine linear constraints for the pseudo-Boolean solver. By this way, the solver
is capable of learning which implementations are infeasible. The proposed hybrid
Design Space Exploration (DSE) approach is not only applicable at the Electronic
System Level (ESL), but may be applied also at other levels of hardware and
software synthesis in embedded system design.

This chapter is structured into three main sections: Sect. 7.2 introduces required
fundamentals as well as the mathematical formulation of the synthesis problem to
be solved. Section 7.3 presents the hybrid optimization technique SAT decoding
that can consider linear constraints. An extension of SAT decoding which considers
non-linear constraints termed SMT decoding is discussed subsequently in Sect. 7.4.
Examples of applications of the introduced techniques for further reading are
presented in Sect. 7.5 before the chapter is concluded in Sect. 7.6.

7.2 Fundamentals and Problem Formulation

The first work on Hardware/Software Codesign (HSCD) can be found in [22]
which considers the problem of concurrently defining a multi-processor system’s
topology, a binding of tasks to processors, and their scheduling. Since, the problem
of allocating hardware and software components, followed by binding tasks to

220 M. Glaß et al.

either hardware or software, became known as hardware/software codesign. Many
initial works consider the codesign problem a bipartition problem, i.e., a task
is assigned either to a processor and executed as software or to one dedicated
hardware accelerator. This notion is generalized to heterogeneous hardware/soft-
ware architectures with multiple components in [29] under the term system-level
synthesis. In [1], same authors prove that this system-level synthesis problem is
an NP-complete problem. For an in-depth discussion of the historical roots of
hardware/software codesign, see �Chap. 1, “Introduction to Hardware/Software
Codesign”. For comprehensive overviews on system-level synthesis techniques,
interested readers can refer to [6, 28].

In the following sections, we introduce a well-established model for the system-
level synthesis problem which is very suitable for (networked) embedded systems.
Afterward, we also discuss the problem from an optimization perspective where
system synthesis can be considered a constrained combinatorial optimization
problem and give a brief introduction of common optimization approaches and
constraint-handling techniques.

7.2.1 System Model and the System-Level Synthesis Problem

In the following section, we introduce a formal graph-based system model and
the respective system-level synthesis problem as a variation and extension of the
original model from [1] that is proposed in [21].

7.2.1.1 System Model
A system model & termed specification is given in a graph-based fashion that
distinguishes between application (modeled as an application graph GT) and
an architecture (modeled as an architecture graph GR). The relation between
application and architecture – indicating each possible binding of a task of the
application for execution on a resource of the architecture – is modeled by means of
a set of mapping edges EM .

• The application is given by a bipartite directed graphGT .T;ET /with TDP [C .
The vertices T are either process tasks p 2 P or communication tasks c 2 C .
Each edge e 2 ET connects a vertex in P to one in C , or vice versa. Each
process task p 2 P can have multiple incoming edges since it might receive
data from multiple other process tasks. A process task can also have multiple
outgoing edges to model the sending of data to multiple process tasks. The data
itself is not directly sent to other processing tasks, but the transmission is modeled
explicitly by communication tasks. Each communication task c 2 C has exactly
one predecessor process task as the sender, since data is sent by exactly one
sender. To allow multicast communication, each communication task can have
multiple successor process tasks.

• The architecture is modeled as a directed graph GR.R;ER/. The vertices R
represent resources such as processors, memories, or buses. The directed edges
ER � R �R indicate available communication connections between resources.

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 221

Fig. 7.1 Specification with
the application graph GT on
the left, the architecture graph
GR on the right, and mapping
edges depicted dashed

• The set of mapping edges EM contains the mapping information for each
process task. Each mapping edge m D .p; r/ 2 EM indicates a possible
implementation/execution of process p 2 P on resource r 2 R.

A simple specification including application graph, architecture graph, and mapping
edges is given in Fig. 7.1: The application consists of three process tasks (p1, p2,
and p3) and one communication task (c1) that distributes the data produced by p1
to p2 and p3 in a multicast fashion. The architecture consists of two CPU resources
capable of executing process tasks (rcpu1 and rcpu2) that are connected via a channel
(rchan) that only allows a communication from rcpu1 to rcpu2 but not vice versa as
specified by the directed edge .rcpu1; rcpu2/ 2 ER. Moreover, mapping edges depict
which process task can be executed on which resources, i.e., p1 on rcpu1 and rcpu2,
p2 on rcpu2, and p3 on rcpu1 and rcpu2.

A more complex specification is given in Fig. 7.2: The application graph shown
in Fig. 7.2a consists of five process tasks and three communication tasks. The
architecture graph shown in Fig. 7.2b consists of six processors (CPUs) and two
buses that are coupled via a gateway resource. For the sake of brevity and better
visualization, we also show an architecture diagram in Fig. 7.2c where processors
are depicted as rectangles and buses are depicted as edges between processors and
(possibly) gateway components.

7.2.1.2 System-Level Synthesis
The introduced specification is the base for the following formulation of the system-
level synthesis problem:

System-level synthesis derives an implementation from a given specification
by means of an allocation of resources, a binding of process tasks to allocated
resources, a routing of communication tasks on a tree of allocated resources,
and a schedule of tasks.

222 M. Glaß et al.

Fig. 7.2 A specification with (a) application graph GT and (b) architecture graph GR with
mapping edges (not depicted) being EM D f.p1; rcpu1/, .p1; rcpu2/, .p2; rcpu5/, .p3; rcpu2/,
.p3; rcpu4/, .p4; rcpu4/, .p4; rcpu6/, .p5; rcpu1/, .p5; rcpu3/g. A more compact representation of the
modeled architecture as an architecture diagram is given in (c)

Formally, an implementation ! consists of the allocation graph G˛ that is
deduced from the architecture graph GR, the binding Eˇ as a subset of EM that
describes the mapping of the process tasks to allocated resources, the routing � that
contains a directed routing graph G�;c for each communication task c 2 C , and the
schedule function S . For an implementation to be feasible, several conditions have
to be fulfilled by the allocation, binding, routing, and scheduling:

• The allocation is a directed graph G˛.˛;E˛/ that is an induced subgraph of
the architecture graph GR. The allocation contains all resources r 2 R that
are selected for the current implementation. E˛ describes the set of allocated
communication connections that are induced from the graph GR such that
e D .r; Qr/ 2 E˛ if and only if r; Qr 2 ˛.

• The binding Eˇ � EM describes the mapping of the process tasks to allocated
resources. Here, the following requirements must be fulfilled:
– Each process task p 2 P of the application is bound to exactly one resource:

8p 2 P W jfmjm D .p; r/ 2 Eˇgj D 1 (7.1)

where j � j denotes the cardinality.
– Each process task p 2 P can only be bound to an allocated resource:

8m D .p; r/ 2 Eˇ W r 2 ˛ (7.2)

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 223

• Each communication task c 2 C is routed on a tree G�;c D .R�;c; E�;c/. The
routing must be performed such that the following conditions are satisfied:
– The directed tree G�;c is a connected subgraph of the allocation G˛ such

that

R�;c � ˛ and E�;c � E˛: (7.3)

– For each communication task c 2 C , the root ofG�;c has to equal the resource
on which the predecessor sender process task p 2 P is bound:

8.p; c/ 2 ET ;m D .p; r/ 2 Eˇ W jfeje D . Qr; r/ 2 E�;cgj D 0 (7.4)

Here, r is the resource to which the sender process task p 2 P is bound and
by requiring that the number of incoming edges to this node is 0, the node is
ensured to be the routing tree’s root.

– For each communication task c 2 C ,R�;c must contain all resources on which
any successor process task p 2 P is bound:

8.c; p/ 2 ET ;m D .p; r/ 2 Eˇ W r 2 R�;c (7.5)

• On each resource, different scheduler types may be present to schedule tasks
bound to them. Here, a general scheduling approach is considered which assigns
each mapping of a (process and communication) task a priority:

S W EM [C ! f1; : : : ; jT j C jC jg: (7.6)

In case resources either execute process tasks or route communication tasks, the
number of required priorities decreases to max.jT j; jC j/.

It is then the responsibility of the scheduler to consider the assigned priorities.
However, the following two conditions typically have to be fulfilled:
– Process task priorities are unique per resource r 2 R:

8r 2 R;m D .t; r/;m0 D .t 0; r/ 2 Eˇ;m ¤ m
0 W S.m/ ¤ S.m0/ (7.7)

– Communication task priorities are unique (since they may share several
allocated resources on their route):

8r 2 R; c; c0 2 C; c ¤ c0 W S.c/ ¤ S.c0/ (7.8)

Two implementations for the simple specification given in Fig. 7.1 are shown in
Fig. 7.3. The implementation depicted on the left is infeasible since c1 cannot be
routed to p3. The implementation depicted on the right adheres to all requirements
and is, thus, a feasible implementation. Moreover, a feasible implementation for the
more complex specification from Fig. 7.2 is given in Fig. 7.4.

224 M. Glaß et al.

Fig. 7.3 Two implementations of the specification in Fig. 7.2. Shown are two allocated resources
rcpu1 and rcpu2 as rectangles and the unidirectional communication channel rchan as a directed edge
between them. The left implementation is infeasible: Because of the unidirectional communication
channel, there exists no connected subgraph to route the communication task c1 to receiver p3. The
right implementation is feasible

Fig. 7.4 An implementation
for the specification in
Fig. 7.2. Illustrated is the
allocation G˛ , the binding Eˇ
of process tasks, and the
routing � of communication
tasks. All routings are
performed within multiple
hops using the available
bi-directional buses
rbus1; rbus2 and the gateway
rgw. The communication c1 is
of type multicast

The outlined system-level synthesis problem is typically represented by means of
the Y-chart [5] where the separation of application and architecture resulting in an
implementation forms a Y as depicted in Fig. 7.5. In general, system-level synthesis
shall obviously only deliver feasible implementations. Yet, our aim is to search for
implementations that are optimized with respect to multiple and even conflicting
design objectives. For this purpose, the Y-chart approach is extended in [1] and later
in [12] by a DSE phase that can be seen as an optimization in order to obtain high-
quality implementations. This directly brings us to the core topic of this chapter:
How to efficiently perform a DSE which has to solve the complex system-level
synthesis problem for each considered implementation? Before we come to the
introduction of the hybrid optimization technique, we briefly review optimization
techniques that are suitable for such kind of problems.

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 225

Fig. 7.5 Illustration of the Y-chart approach: An implementation shall be synthesized from a given
application graph and architecture graph. For each implementation that is considered during DSE,
resource allocation, process task binding, communication task routing, and task scheduling have
to be determined with the overall goal to determine a set of Pareto-optimal implementations

7.2.2 Constrained Combinatorial Optimization

As we have seen, whether an implementation that is deduced from a specification
is feasible requires it to fulfill the introduced constraints. Also, we can recognize
that allocation, binding, routing, and scheduling are all design steps that basically
solve combinatorial problems of assigning tasks to resources or priorities to tasks.
Thus, we can conclude that system-level synthesis as introduced falls in the class of
constrained combinatorial problems:

Definition 1 (Constrained Combinatorial Problem).

minimize f .x/

subject to:

ai .x/ � bi ;8i 2 f1; : : : ; qg with bi 2 Z

226 M. Glaß et al.

Fig. 7.6 A two-dimensional
objective space:
Pareto-optimal
implementations are depicted
light blue while dominated
implementations are depicted
light red. The area which is
dominated by Pareto-optimal
implementations is depicted
light red as well.
Multi-objective optimization
approaches try to achieve
high convergence as well as
high diversity among the
found implementations

In system-level synthesis, the objective function f is typically multi-dimensional to
consider multiple objective functions such as area, power, or timeliness that can, in
particular, be non-linear. Note that in multi-objective optimization problems, there
is generally not only one global optimum, but also a set of so-called Pareto-optimal
implementations is derived with each Pareto-optimal implementation being better
in at least one objective when compared to each other feasible implementation.
In multi-objective optimization, the notion of one implementation being better
than another is given by the concept of dominance (�), i.e., one implementation
dominates another if it is better in at least one design objective. Figure 7.6 visualizes
this in the objective space with two design objectives f1 and f2. Pareto-optimal
implementations are depicted light blue and dominated implementations light red.
Also, the areas in the objective space that are dominated by a Pareto-optimal
implementation are depicted. An indicator for the quality of a multi-objective opti-
mization approach is convergence, i.e., how close are the found implementations to
the front or Pareto-optimal implementations, and diversity, i.e., how well distributed
are the implementations in the objective space.

For this chapter, focus is not put on the handling of multiple objectives. Instead,
the main problem addressed arises from the notion of the feasible search space
Xf � X . In the general form, the search space is constrained by q so-called
constraint functions a imposed on an implementation, formulated as inequalities
ai .x/ � bi . The effect of these restrictions is sketched in Fig. 7.7: While every
point in the search space of an unconstrained combinatorial problem is feasible, the
search space Xf � X may contain significantly less or – in the extreme case – even
no feasible implementation at all.

In order to solve this problem efficiently, the search space and the types of
constraints will be restricted in the following: The search space X D f0; 1gn is
encoded as a set of two Boolean vectors. Moreover, the constraints are restricted to
a single matrix inequation as follows:

Ax � b with x 2 f0; 1gn; A 2 Z
m;n; b 2 Z

m (7.9)

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 227

Fig. 7.7 A visualization of the search space of a combinatorial problem (left) and a constrained
combinatorial problem (right) when projecting the search spaceX D f0; 1gn onto two dimensions:
In the unconstrained case, every point in the search space is a feasible implementation while in the
constrained case, large areas in the search space might not contain any feasible implementation

As can be seen, the constraints given by Ax � b have to be linear or linearizable. In
the two main parts of this chapter, we will first discuss that the introduced constraints
for allocation, binding, routing, and scheduling can be linearized and, thus, directly
be included in the search space. Afterward, we will also introduce how to take care
of constraints that cannot be linearized.

As outlined in �Chap. 6, “Optimization Strategies in Design Space Exploration”,
metaheuristic optimization techniques have become state-of-the-art to solve several
problems from the area of hardware/software codesign. This is mainly due to their
ability to consider multiple conflicting and even non-linear design objectives. In
contrast, exact approaches like Integer Linear Programs (ILPs) require the objective
function to be linear and multiple objectives are – in general (see [15]) – not
supported. However, applying metaheuristic optimization techniques to constrained
combinatorial problems as given by system-level synthesis raises a significant
problem: How to determine the set of Pareto-optimal feasible implementations and
– in case of really stringent constraints – how to even find one single feasible
implementation?

The basic idea behind the relevant metaheuristic approaches is to vary selected
(high-quality) implementations in an iterative loop and to keep the best found so
far in an archive A of non-dominated implementations. In every iteration, varied
implementations, e.g., !, are compared to the ones from the archive, e.g., Q!, and
– also depending on the concrete metaheuristic optimization technique – either
dropped in case they are dominated (�) by implementations from the archive,
i.e., ! � Q!, or the archive is updated with the new implementations. This way,
metaheuristics gradually but efficiently search for the best implementations. This
principle is depicted in Fig. 7.8. However, in the presence of stringent constraints,
Fig. 7.9 (left) outlines the effect of variation. The next feasible implementation may
be out of reach and since all surrounding implementations are infeasible, only a very
slow convergence toward the optimal implementations is achieved. In some cases,
it might even occur that not even a single feasible implementation is found.

228 M. Glaß et al.

Fig. 7.8 Principle of metaheuristic optimization approaches for hardware/software codesign:
Given a specification, the heuristic performs an iterative optimization loop where it varies
the allocation, binding, routing, and schedule to explore implementations and selects which
implementations (a) are to be dropped since they are dominated by implementations from an
archive, (b) update the archive in case they dominate implementations in the archive, and (c)
are promising candidates for variation in the next iteration. At the end, a set of optimized (near
Pareto-optimal) implementations is the output

Fig. 7.9 Varying a feasible implementation as a common concept of most metaheuristic optimiza-
tion techniques may only result in neighboring implementations that are all infeasible (left). In the
presence of a repair strategy, an infeasible implementation is modified to – if possible – become a
feasible implementation (right)

As a remedy, constraint-handling techniques have been successfully devel-
oped to apply metaheuristic optimization techniques to constrained combinatorial
problems; see [2] for a comprehensive overview. Here, we will just introduce
two main concepts: Penalty functions and repair strategies. The idea of penalty
functions [27] is to transform the constrained problem into an unconstrained
problem by deteriorating the original objective function by a penalty function. The
amount of penalization depends on the violation of constraints. A similar idea
is to leave the original objective function as is and add constraints as additional
objectives [11], e.g., minimizing the number of violated constraints. The drawbacks

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 229

of these approaches are the increased complexity of the problem by additional
objectives and a slow convergence if the feasible region is relatively small compared
to the entire search space.

For some combinatorial problems, repair algorithms or at least repair heuristics
are available that restore the feasibility of the implementation by applying certain
modifications. One well-known problem where such a solution exists is the 0/1
Knapsack Problem [32] where an infeasible implementation can be repaired by
removing items from the knapsack. The idea of the repair strategy is depicted
in Fig. 7.9 (right). Since the introduced system-level synthesis problem is NP-
complete, also a repair heuristic is, in general, NP-complete and, thus, does not
offer a conclusive alternative for our outlined problem.

The rest of this chapter introduces a solution to this problem by means of a hybrid
optimization approach.

7.3 Hybrid Optimization

This section introduces a hybrid optimization technique for system-level DSE of
embedded systems. First, the key idea of the hybrid optimization technique termed
SAT decoding – the combination of a metaheuristic with a backtracking-based
search algorithm (solver) to consider only feasible implementations during DSE – is
presented. Afterward, the main required ingredients to realize such an approach, i.e.,
(a) the branching strategy of the solver and (b) the formulation of the system-level
synthesis problem by means of pseudo-Boolean constraints, are explained.

7.3.1 SAT Decoding: The Key Idea

In the literature, one can find various hybrid optimization approaches that combine
heuristic algorithms with exact approaches, also for combinatorial problems from
diverse domains; cf. [23] for an overview. The approach discussed in the chapter
at hand termed SAT decoding [16] falls into the category of integrative hybrid
optimization approaches. Here, a metaheuristic algorithm is responsible to control
the overall optimization procedure: It controls the optimization loop and selects
implementations based on their multiple and even non-linear design objectives. In
contrast to standard metaheuristics, it does not directly vary the implementation
(i.e., allocation, binding, routing, and scheduling). Instead, it integrates a solver –
in our case a Pseudo-Boolean (PB) solver – that is only responsible to gather feasi-
ble implementations, but does not perform any optimization by itself. Following is
the key idea of SAT decoding:

In SAT decoding, instead of varying the implementation directly, the meta-
heuristic varies the branching strategy of the backtracking-based solver. This
way, only feasible implementations are obtained and are evaluated during
design space exploration.

230 M. Glaß et al.

Fig. 7.10 Principle of the SAT-decoding approach: The metaheuristic does not vary the imple-
mentation directly but rather varies the parameters �; � of the branching strategy of the employed
solver. The solver takes an encoding �& of the specification & together with the current branching
strategy and determines a feasible implementation. Each feasible implementation is then delivered
to the selection step of the metaheuristic. Note that this hybrid optimization approach only derives
feasible implementations to the metaheuristic, circumventing the outlined problems of other state-
of-the-art design space exploration approaches for system-level synthesis

Figure 7.10 shows the idea and the resulting integrative hybrid optimization
approach. The key feature of this approach is that it combines the advantages of the
metaheuristic, i.e., being able to consider multiple and non-linear design objectives,
with those of the solver, i.e., only obtaining feasible implementations. After this
informal introduction of the approach, each fundamental ingredient is presented in
a more detailed fashion in the following subsection.

7.3.2 Solver

To understand how the metaheuristic can actually control the solver to explore
the whole diversity of different implementations, we first need to understand how
the solver finds feasible implementations – or better – how it solves given search
problems in general. Thus, this subsection first introduces the so-called Pseudo-
Boolean (PB) problem and then shows how most existing solvers approach them by
means of the Davis-Putnam-Logemann-Loveland (DPLL) backtracking algorithm.

In general, the task of a PB solver is to find a variable assignment x that
satisfies a set of linear constraints, i.e., x 2 Xf as formulated in Equation (7.9).
Constraints that are given as linear inequalities and Boolean variables with integer
coefficients are known as PB constraints. Any ILP solver is also capable of solving
PB problems. But, specialized PB solvers tend to outrun ILP solvers on Pseudo-
Boolean problems because they are based on efficient backtracking algorithms.
In fact, many PB solvers are extended Boolean Satisfiability (SAT) solvers with
the capability to handle PB constraints and rely on the Davis-Putnam-Logemann-

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 231

Loveland (DPLL) algorithm [3]. To comprehend the SAT-decoding technique
requires an understanding of the main concept of the DPLL algorithm which is
outlined in Algorithm 2. The algorithm starts with a set of completely unassigned

Algorithm 2 DPLL backtracking algorithm
1: procedure SOLVE(�; �)
2: while t rue do
3: branch(�; �)
4: if CONFLICT then
5: backtrack()
6: else if SATISFIED then
7: return x
8: end if
9: end while

10: end procedure

variables. Then, the operation branch.�; �/ selects an unassigned variable xi and
assigns it the value 0 or 1 (Line 3). Which variable is selected and which value
(0 or 1) is assigned is called branching strategy. The branching strategy – which
is of key importance for the SAT-decoding approach – is guided by the vectors
� 2 f0; 1gn and � 2 R

n: Unassigned variables xi with the highest value �i are
prioritized and set to the value �i . Of course, as is common in all backtracking-
based solvers, arising conflicts are recognized and resolved (Line 4). A conflict is
recognized if any constraint is not satisfiable anymore and backtracking is triggered
(Line 5). Backtracking means that variable assignments made before are reverted.
When all variables have a variable assignment and no conflict occurs (Line 6), then
the variable assignment is a feasible solution to the specified problem and returned
(Line 7). The majority of the state-of-the-art PB solvers like SAT4J [13] are based
on the DPLL algorithm.

Knowing the algorithm of the solver, we can draw two important conclusions:
First, we can control which variable assignment, i.e., which feasible implementa-
tion, is delivered by the solver by varying the two vectors � and � of the branching
strategy. Thus, the search space of the metaheuristic in SAT decoding is not the
allocation G˛ , the binding Eˇ , the routing � , and the schedule S , but is solely given
by the two vectors � and � of the solver’s branching strategy. Second, we have to
find an encoding �& of a specification & and the introduced system-level synthesis
problem by means of pseudo-Boolean constraints such that each feasible variable
assignment x represents a feasible implementation of a given specification.

7.3.3 Pseudo-Boolean Encoding of Allocation, Binding, Routing,
and Scheduling

In the following, we present a pseudo-Boolean encoding �& of a specification & and
the system-level synthesis problem such that a solution x 2 f0; 1gn corresponds to
a feasible implementation ! according to Equations (7.1), (7.2), (7.3), (7.4), (7.5),

232 M. Glaß et al.

(7.6), (7.7), and (7.8). First, we introduce the required Boolean variables used to
formulate the linear constraints:

r
A Boolean variable for each resource r 2 R. It indicates whether the resource
is allocated r 2 ˛ (1) or not (0).

m
A Boolean variable for each mapping edge m 2 EM . It indicates whether the
mapping edge is part of the binding, i.e., m 2 Eˇ (1) or not (0).

cr

A Boolean variable for each communication task c 2 C and resource r 2 R.
It indicates whether the communication task c is routed over the resource r
(1) or not (0)

cr;�
A Boolean variable for each communication c 2 C and resource r2R. It in-
dicates at which communication step � 2 T D f1; ::; jT jg a communication
is routed over the resource. Note that communication tasks are propagated in
steps or hops, respectively.

With these variables, we can formulate the linear constraints that encode all
introduced requirements in Equations (7.1), (7.2), (7.3), (7.4), (7.5), (7.6), (7.7),
and (7.8) for a feasible implementation. First, we start with the linear constraints
regarding allocation, binding, and routing:
8p 2 P W

X
mD.p;r/2EM

m D 1 (7.10)

8m D .p; r/ 2 EM W

r 	m � 0 (7.11)

The constraints in Equations (7.10) and (7.11) ensure that each task is bound
to exactly one resource (cf. Equation (7.1)) and that this resource is allocated
(cf. Equation (7.2)). Exemplarily, we show the constraints that would result from
Equations (7.10) and (7.11) for the simple specification given in Fig. 7.1:

mp1;rcpu1 Cmp1;rcpu2 D 1

mp2;rcpu2 D 1

mp3;rcpu1 Cmp3;rcpu2 D 1

rcpu1 	mp1;rcpu1 � 0

rcpu1 	mp3;rcpu1 � 0

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 233

rcpu2 	mp1;rcpu2 � 0

rcpu2 	mp2;rcpu2 � 0

rcpu2 	mp3;rcpu2 � 0

These first constraints cover the major requirements regarding process task
binding and the allocation of the resources to execute them. The following con-
straints cover the aspect of routing data from sender to receiver and, thus, address
Equations (7.3), (7.4), and (7.5):
8c 2 C; r 2 R; .c; p/ 2 ET ;m D .p; r/ 2 EM W

cr 	m D 0 (7.12)

8c 2 C W X
r2R

cr;1 D 1 (7.13)

8c 2 C; r 2 R; .p; c/ 2 ET ;m D .p; r/ 2 EM W

m 	 cr;1 D 0 (7.14)

Equation (7.12) ensures that a communication task c is routed to each resource a
succeeding (receiving) process task is mapped to (cf. Equation (7.5)). Analogously,
the constraints in Equations (7.13) and (7.14) ensure a communication task’s
root is the resource that the preceding (sending) process task is mapped to (cf.
Equation (7.4)). Having the very basic routing constraints formulated, we need
further constraints to precisely formulate what makes a route between source and
multiple receivers feasible. First, we ensure that each communication task can only
be routed on allocated resources by Equation (7.15):
8c 2 C; r 2 R W

r 	 cr � 0 (7.15)

Additionally, Equation (7.16) ensures that a communication task may be routed only
between adjacent resources in one communication step:
8c 2 C; r 2 R; � D f2; ::; jT jg W

0
@ X
Qr2R;eD.Qr;r/2ER

cQr;�

1
A 	 cr;�C1� 0 (7.16)

It is finally required that a communication task is assigned a communication step �
if it is considered to be routed over a resource which is achieved by Equations (7.17)
and (7.18):

234 M. Glaß et al.

8c 2 C; r 2 R W

 X
�2T

cr;�

!
	 cr � 0 (7.17)

8c 2 C; r 2 R; � 2 T W

cr 	 cr;� � 0 (7.18)

Here, Equation (7.17) ensures that if cr is set to 1, the sum of cr;� variables is greater
zero which means that if the message is routed on the resource, a respective time
step has to be assigned. On the other hand, Equation (7.18) ensures that no cr;�
variable can be set to 1 unless cr is set to 1 as well.

The introduced Equations (7.10), (7.11), (7.12), (7.13), (7.14), (7.15), (7.16),
(7.17), and (7.18) are suitable to ensure a feasible allocation, binding, and
routing and, thus, a feasible implementation in case scheduling is of no
concern.

Further constraints may be added to enhance the obtained feasible implementa-
tions. First, a natural enhancement to a feasible route is to require it to be free of
(redundant) cycles. The satisfaction of Equation (7.19) avoids cycles in a route by
ensuring that a communication task can pass a resource at most once:
8c 2 C; r 2 R W

X
�2T

cr;� � 1 (7.19)

Second, an implementation benefits from not containing unused (redundant) re-
sources as they might affect design objectives such as cost, area, or power
consumption. To eliminate unused resources from the allocation, Equation (7.20)
ensures that a resource is only allocated if at least one process or communication
task is bound to or routed over it:
8r 2 R W

 X
c2C^r2R

cr

!
C

0
@ X
mD.p;r/2EM

m

1
A 	 r � 0 (7.20)

The pseudo-Boolean encoding presented so far covers the allocation, binding,
and routing.

As outlined in the definition of the system-level synthesis problem, we finally
want to support generic scheduling constraints by means of assigning priorities.
Thus, we now introduce a pseudo-Boolean encoding for task and communication
priorities; cf. Equations (7.7) and (7.8). Here, we again need to introduce Boolean
variables:

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 235

sp; Qp
A Boolean variable that indicates whether process task p 2 P has a higher
priority than task Qp 2 P (1) or not (0).

sc;Qc
A Boolean variable that indicates whether communication task c 2 C has a
higher priority than task Qc 2 C (1) or not (0).

The following constraints ensure that priorities are assigned properly. We first define
the priority assignment function for process tasks which assigns correct priorities
within tasks bound to the same resource (cf. Equation (7.7)):
8r 2 R; .p; r/; . Qp; r/ 2 EM ;p ¤ Qp W

sp; Qp C s Qp;p D 1 (7.21)

Equation (7.21) states that if process task p has a higher priority than task Qp (sp; Qp D
1), it has to be ensured that task Qp has a lower priority than task p (s Qp;p D 0). Now,
we also have to ensure transitivity, i.e., task p has a higher priority than task Qp and
task Qp than task Op. It also has to hold that task p has higher priority than task Op
which is ensured by Equations (7.22) and (7.23):
8r 2 R; .p; r/; . Qp; r/; . Op; r/ 2 EM ;p ¤ Qp ¤ Op W

sp; Qp C s Qp; Op C sp; Op � 2 (7.22)

sp; Qp C s Qp; Op C sp; Op � 2 (7.23)

Exactly the same requirements as ensured by Equations (7.21), (7.22) and (7.23)
are now imposed on the communication tasks as well. The only difference is that
– since communication tasks might share multiple buses and other communication
resources – we apply a global priority assignment; cf. Equation (7.8):
8c; Qc 2 C; c ¤ Qc W

sc;Qc C sQc;c D 1 (7.24)

8c; Qc; Oc 2 C; c ¤ Qc ¤ Oc W

sc;Qc C sQc; Oc C sc; Oc � 2 (7.25)

sc;Qc C sQc; Oc C sc; Oc � 2 (7.26)

With the above-given constraints, a unique priority assignment is achieved.
From the introduced encoding�& , a simple decode function as shown in Fig. 7.10

can be defined that derives the concrete implementation ! D decode.x/ D
.G˛;Gˇ; �; S/ from the phase of the Boolean variables in x. This is also depicted in
the decoding step shown in Fig. 7.10.

As outlined, the search space of SAT decoding consists solely of the two vectors
� and � of the branching strategy. Given the mentioned rules to determine an

236 M. Glaß et al.

encoding �& , the search space can be seamlessly derived by providing one entry
in � and � for each variable required for the encoding �& . This completes the
introduction of the basic ingredients of the SAT-decoding approach.

7.4 Satisfiability Modulo Theories During Decoding

The introduced SAT-decoding approach is capable of restricting the search space to
feasible implementations with respect to given linear constraints (cf. Definition 1)
only. However, in the area of hardware/software codesign, several objectives can
– typically – not be linearized in a sound fashion. Two prominent examples are
timeliness which requires to analyze the interference of process and communication
tasks on shared resources and reliability which is a probabilistic and combinatorial
problem itself that has to consider which combination of faults in tasks or resources
results in the system to fail. As can be imagined, transforming such complex
behaviors and interactions into a combination of linear constraints may come
at significant over-approximations or even result in practically useless results.
In this section, we therefore introduce the key idea how to also consider non-
linear constraints, followed by a formal definition of the SMT decoding technique.
Afterward, different schemes how to learn which solutions are infeasible with
respect to a set of non-linear constraints are discussed.

7.4.1 SMT Decoding: The Key Idea

The solution to the problem of considering non-linear constraints is inspired by
the concept of Satisfiability Modulo Theories (SMT); cf. [4]. Without aiming for
a complete and thorough introduction of SMT, the basic idea of SMT relevant for
hardware/software codesign is that it checks the satisfiability of a logical formula
over one or more background theories. The concept of SMT decoding [24] is
depicted in Fig. 7.11. We again use the pseudo-Boolean encoding �& that considers
a set of linear constraints as introduced in the last section. We now hand over an
implementation ! delivered by the solver to one or several background theories,
each of which decides whether the implementation is feasible (isFeasible(!))
for a set of non-linear constraints as well. In the context of hardware/software
codesign, such a background theory could, for example, be a formal timing analysis
(cf. �Chap. 23, “CPA: Compositional Performance Analysis”) or a timing sim-
ulation (cf. �Chap. 19, “Host-Compiled Simulation”) that can decide whether the
delay of an implementation meets a certain deadline. So in particular, we couple any
external analysis technique for any interesting system constraint as a background
theory to the introduced solver. In case the variable assignment does not fulfill
those constraints that are checked by the background theory, the solver will be
told to consider this variable assignment as infeasible (although it initially appeared
to be feasible considering only the set of linear constraints). This way, the solver

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 237

Fig. 7.11 Principle of the SMT decoding approach: The solver takes an encoding of the
specification together with the current branching strategy and determines a feasible implementation
! with respect to a set of linear constraints. The background theory then checks the delivered
implementation for feasibility with respect to a set of non-linear constraints. In case it is infeasible
(0), the respective variable assignment is excluded in the solver and the solver is asked for a new
implementation. This way, the solver learns over time which variable assignments violate a set of
non-linear constraints

basically learns which variable assignments are infeasible with respect to a set of
non-functional constraints over time.

Consider again the simple specification given in Fig. 7.1 and the implementation
that is feasible with respect to the linear constraints defined by system-level
synthesis depicted in Fig. 7.3 on the right. Assume we are interested in formulating
a set of additional constraints on timeliness of computed results. For example, we
formulate a deadline for the execution of the application of the simple system
shown in Fig. 7.1. Here, we employ a formal timing analysis approach as our
background theory to check whether the latency of each implementation meets
the specified deadline. As indicated in Fig. 7.12 on the left, the implementation
violates the deadline because p2 and p3 have to be executed sequentially on rcpu2

(depicted also in the Gantt chart at the bottom left). Thus, the implementation is
infeasible with respect to timeliness and this information has to be propagated to
the solver. This is achieved by combining the specification encoding �& with an
encoding x! of this implementation such that this implementation is not feasible
anymore. In the concrete example – and for the sake of brevity only considering the
mapping variables – this results in �& ^ :.mp1;rcpu1 ^ mp2;rcpu2 ^ mp3;rcpu2 /. This
can be achieved by a Boolean conjunction of the specification encoding with the
negated implementation encoding, i.e., �& ^:x! . Figure 7.12 on the right shows an
implementation that adheres to both linear constraints and the non-linear constraint
on timeliness – tasks p2 and p3 can be executed in parallel on rcpu2 and rcpu1,
respectively.

238 M. Glaß et al.

Fig. 7.12 Two implementations for the specification in Fig. 7.1 that are both feasible with respect
to the introduced set of linear constraints. Yet, the implementation shown on the left does not meet a
specified deadline because p2 and p3 have to run sequentially on rcpu2 after receiving the data from
p1 (see Gantt chart at bottom left obtained from the timing analysis). Thus, the implementation is
infeasible with respect to a constraint on timeliness. On the right, the deadline can be met because
p2 and p3 can run in parallel once both received the data from p1 (see Gantt chart at bottom right)

This way, the key idea of SAT decoding – the restriction of the search space
to feasible implementations only – can be extended to non-linear constraints as
well by means of SMT decoding. In the following subsection, we give a formal
definition of SMT decoding that completes the informal introduction given so far.
Afterward, we introduce at which points of the solving process a feasibility check
by the background theory can be applied, resulting in different learning schemes of
the solver.

7.4.2 SMT Decoding Formulation

Let ˝f � ˝ denote the subset of feasible implementations of all implementations
˝. Those feasible implementations˝f D ˝L\˝N are given by the cut set of those
implementations ˝L that are feasible with respect to the set of linear constraints
and implementations ˝N that are feasible with respect to non-linear constraints.
What we know from the previous section is that we can derive a pseudo-Boolean
encoding �& for our system-level synthesis problem that delivers ˝L. Our aim is to
derive an encoding �f for all feasible implementations ˝f which would be given as
�f D �& ^ �N . However, ˝N cannot be converted to a respective Pseudo-Boolean
(PB) encoding �N because we cannot linearize those constraints in a sound fashion.
From this problem, we can formalize the key idea of SMT decoding:

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 239

In SMT decoding, an encoding �N for the set of implementations ˝N that
are feasible with respect to a set of non-linear constraints is derived by
iteratively learning the implementations �N that are infeasible using one or
several background theories. Whenever a variable assignment x is considered

infeasible by the background theory, it is added to �N via �N
iC1
WD �N

i
_x.

SMT decoding is, thus, capable of deriving �f via �f D �& ^ :�N , i.e., the
conjunction of those implementations that are feasible with respect to a set of
linear constraints and not those that do violate any non-linear constraint.

Since SMT decoding aims at learning �N iteratively and does not require a
closed-form representation, any analysis technique can be employed to determine
whether an implementation is feasible or not. This results in a great flexibility and
applicability of SMT decoding to various aspects and problems from the area of
hardware/software codesign.

Note that this technique is even capable of covering a delicate corner case:
In case no feasible implementation exists, i.e., ˝f D ;, the SMT decoding will
iteratively eliminate infeasible implementations until the pseudo-Boolean solver
returns a contradiction. At this moment, SMT decoding has proven that no feasible
implementation exists which is neither possible for DSE approaches that solely
rely on metaheuristic optimization nor for exact approaches that may only consider
linear constraints.

7.4.3 Learning Schemes

For SMT decoding, three learning schemes have been proposed in literature: Simple
learning requires no problem-specific knowledge while early learning requires that
the specification allows to also derive partial implementations; see [24]. A third
scheme that relies on the deduction of justifications requires that enough problem-
specific knowledge is available such that the background theory can basically
derive the reason why an implementation is infeasible; see [26]. In the following
subsection, all three schemes are introduced.

7.4.3.1 Simple Learning
The simple learning scheme has already implicitly been mentioned in the introduc-
tion of SMT decoding. It is a direct implementation of the SMT decoding idea: The
solver derives a variable assignment x which is passed to the background theories. If
any of these recognizes that the respective implementation is infeasible, the variable
assignment is added to the set of infeasible implementations�N , i.e.,�N WD �N_x.

Simple learning is depicted in Fig. 7.13: The triangle shall visualize the decision
tree of the solver which is given by the Boolean variables and their phases. One path
in that tree is one concrete variable assignment x and the solver will, of course, only
consider those variable assignments that are feasible with respect to the set of linear

240 M. Glaß et al.

Fig. 7.13 The decision tree that is given from the encoding �& . The leaves of the tree denote the
set of implementations ˝L that are feasible with respect to a given set of linear constraints. In the
simple learning scheme, each complete variable assignment x or implementation !, respectively,
is checked for feasibility by the background theories. Thus, the simple learning scheme can only
eliminate individual implementations in case of infeasibility

constraints. The leaves of the tree are all variable assignments or points in our search
space that are feasible with respect to the set of linear constraints. As can be seen,
simple learning considers each point in the search space individually and checks its
feasibility; possibly forbidding it for future solving by means of learning.

The advantage of the simple learning is that the background theories can be
treated as black-box analysis approaches. The simple learning delivers complete im-
plementations, asks for feasibility using the background theories, and – if required
– eliminates a complete implementation from the search space. The drawback is
that, for large search spaces, many very similar implementations might exist that
all violate certain non-linear constraints. With simple learning, those would have
to be checked individually which might be computationally expensive. In the worst
case, no feasible implementation might exist such that simple learning becomes an
exhaustive search. Note that not only the sheer number of checked implementations
might become a problem, but also the huge number of PB constraints that are
iteratively added to �N which may become a problem for efficiently solving of
the resulting function �f.

7.4.3.2 Early Learning
The early learning scheme tries to overcome the outlined problems of the simple
learning scheme by trying to evaluate already partial implementations [24]. The
idea of early learning is depicted in Fig. 7.14. There, already a partial variable
assignment x0 which corresponds to a partial implementation !0 is checked by
the background theories for feasibility. The significant advantage arises in case
such a partial variable assignment is infeasible: Not only one implementation, but
all complete implementations that are based on the partial implementation can be
eliminated from the search space at once by �N WD �N _ x0.

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 241

Fig. 7.14 Depicted is again the decision tree given by the encoding �& . In the early learning
scheme, already a partial variable assignment x0 that represents a partial implementation !0 is
checked for feasibility by the background theories. Given the partial implementation is already
infeasible, a complete subtree of the decision tree can be eliminated, eliminating several – in the
concrete example five – implementations at once

However, opposed to the simple learning scheme, care must be taken when
applying the early learning scheme.

For early learning, it has to hold that in case a partial implementation is
infeasible, all implementations that contain this partial implementation must
be infeasible as well. This holds true if the background theory is monotonic
with respect to partial implementations.

Of course, whether this assumption holds or not heavily depends on the used
background theory: Consider, for example, our previous constraint on timeliness of
an implementation and a schedule analysis used as background theory. If already
a partial implementation violates a given deadline, it will typically hold that a
complete implementation with more workload and/or interference in the system will
also violate the deadline. For many timing analysis approaches, early learning can
be used. On the other hand, a consideration of system reliability may result in a
different situation. While a partial implementation might not satisfy a constraint
on minimal lifetime, a complete implementation might add additional redundant
resources or tasks to the system. With this redundancy, the lifetime criterion might
again be met by the complete implementation. But, as discussed in [24], a clever
and problem-specific variable ordering might allow to employ early learning at
safe points in the decision tree such that monotonicity of the background theory
is achieved.

242 M. Glaß et al.

7.4.3.3 Deducing Justifications
We recognized that the early learning scheme already offers several advantages over
the simple learning strategy but requires a monotonic background theory by deriving
partial implementations at safe points during the run of the solver. This could be
avoided by the simple learning scheme which, however, comes at the drawback of
only being able to eliminate one implementation per check. A third learning scheme
that explicitly targets this problem is based on the following idea:

The violation of a certain non-linear constraint is typically not caused by all
assigned decision variables, but only by a subset of critical decisions termed
justification.

Consider again the example of a background theory that analyzes timeliness. The
violation of a deadline is typically caused by the critical path in the implementation.
However, not all design decisions contribute to the critical path, but only a subset
of design decisions that cause interference on computation and communication
resources. The key idea of this learning scheme is to rely on background theories
that consider an implementation ! and the respective variable assignment x, check
its feasibility, and deliver the justificationex. Eliminating the justification from the
search space has the immediate effect that not only one – as in early learning –
but multiple complete subtrees can be removed from the decision tree or search
space, respectively. In particular, it eliminates all implementations that contain the
determined justification or, in other words, that include the critical decisions that will
always result in a violation of the constraint. The concept of this learning scheme is
depicted in Fig. 7.15.

Similar to the early learning scheme, it has to hold that all implementations that
contain the justification do violate the respective constraint. However, opposed to
ensuring this via a respective variable ordering and interrupting the solver, this
learning scheme only relies on the simple learning considering the solver while
it is the task of the background theory alone to determine the justification. Thus,
it can be concluded that the deduction of justifications can be considered the least
invasive and most flexible learning approach, given a respective background theory
is available.

7.5 Applications

The introduced techniques of SAT and SMT decoding may be employed to a variety
of constrained combinatorial problems, of which several are highly relevant for
hardware/software codesign at system level. In this section, we will briefly outline
some concrete applications of the introduced techniques to serve as directions
for further reading and to give evidence of the flexibility and applicability of the
underlying ideas.

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 243

Fig. 7.15 Depicted is again the decision tree given by the encoding �& . As in the simple learning
scheme, a variable assignment x that represents an implementation ! is checked for feasibility by
the background theories. But here, the background theory has the capability to derive the set of
variables and their phaseex called justification that causes the violation of non-linear constraints.
Learning this justification, not only one, but possibly multiple complete subtrees of the decision
tree can be eliminated at once

SAT decoding is successfully applied to system-level synthesis problems from
the area of Multi-Processor System-on-Chip (MPSoC) design; see, for exam-
ple, [21]. There, the focus is on the distribution of process tasks to multiple
processing units as well as hardware accelerators and also to find a specification
encoding that suits the application’s Model of Computation (MoC); see �Chap. 3,
“SysteMoC: A Data-Flow Programming Language for Codesign”. For upcoming
many-core architectures that often feature regular communication topologies such as
meshes, SAT decoding is extended to mitigate the complexity increase of the routing
in such architectures; see [10]. For many-core architectures and so-called hybrid
mapping approaches (see �Chap. 10, “Design Space Exploration and Run-Time
Adaptation for Multicore Resource Management Under Performance and Power
Constraints”), SAT decoding is used as part of the design-time DSE [31].

A particular domain where the concepts of SAT and SMT decoding are applied
is networked embedded systems as can be found in avionics, rail, industrial
automation, and automotive systems. Here, routing data over multiple different field
bus systems is one problem where SAT decoding enables a conclusive solution [17],
particularly for automotive Electric and Electronic (E/E) architectures. Besides the
integration of various applications, SAT decoding is also used to integrate additional
features such as diagnosis applications [25] like Built-In Self-Tests (BISTs) that
must not interfere with the applications yet enhance the quality of the system. SMT
decoding is applied to automotive applications with stringent real-time requirements
in [26]. The approach in [14] uses a concept similar to SMT decoding to design
automotive systems that are completely time-triggered and combines architectural
and timing optimization in a unified DSE.

244 M. Glaß et al.

SAT decoding has also been used for the design of dependable embedded systems
where dependability-enhancing techniques such as the binding of redundant process
or communication tasks are integrated directly into the specification encoding;
see, for example, [7]. The application of SMT decoding to consider dependability
constraints such as a minimal expected lifetime is discussed in [24].

Finally, modern embedded systems may not only implement a fixed set of
applications but rather enable customers to select various features and, thus, create
their individual variant of the system. Particularly in the automotive domain, variant
management requires to keep track of both the variants arising from a combination
of different applications and the underlying architecture that has to support the
different application variants in an efficient fashion. The approaches in [9] and [8]
target these problems using the SAT-decoding technique.

Availability of the techniques: The described SAT-decoding approach is pub-
licly available at [18] as part of the open-source library OPT4J [19] which can
serve as a base for the application of SAT decoding to a wide range of constraint
combinatorial problems. An open-source library termed OPENDSE is also publicly
available [20] which already combines the SAT-decoding engine of OPT4J with a
system model suitable for system-level DSE and hardware/software codesign as
introduced in this chapter.

7.6 Conclusion

This chapter introduces a hybrid optimization approach to be used during Design
Space Exploration (DSE) for system-level hardware/software codesign. The tar-
geted problem is that linear as well as non-linear constraints may render many
system implementations infeasible, such that classic DSE approaches can hardly
find high-quality implementations or – in extreme cases – cannot even find a single
feasible system implementation. The main focus of this chapter is the introduction
of a hybrid optimization approach that allows a metaheuristic optimization to derive
feasible implementations using a nested exact technique. The first method termed
SAT decoding is capable of considering linear constraints and is used to introduce
the general concept of hybrid optimization. Since hardware/software codesign at
system level typically also has to respect constraints that cannot be expressed as
linear constraints such as on timeliness, power consumption, or reliability, a second
approach is introduced that may also handle additional non-linear constraints. This
approach termed SMT decoding is capable of employing any available analysis
technique to judge whether an implementation violates a given set of non-linear
constraints or not and, thus, learns which implementations are infeasible in an
iterative but efficient way. Moreover, three different learning schemes are introduced
that either require no problem-specific knowledge at all or can significantly improve
the learning via the evaluation of partial implementations or the deduction of the
cause of a constraint violation. The chapter is concluded with examples of the
successful application of the SAT and SMT decoding approaches to different areas
such as MPSoC design and automotive systems.

7 Hybrid Optimization Techniques for System-Level Design Space Exploration 245

References

1. Blickle T, Teich J, Thiele L (1998) System-level synthesis using evolutionary algorithms. Des
Autom Embed Syst 3(1):23–58

2. Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng
191(11–12):1245–1287

3. Davis M, Logemann G, Loveland D (1962) A machine program for theorem-proving. Commun
ACM 5(7):394–397

4. De Moura L, Bjørner N (2011) Satisfiability modulo theories: introduction and applications.
Commun ACM 54(9):69–77

5. Gajski DD, Kuhn RH (1983) New VLSI tools. IEEE Comput 16(12):11–14
6. Gerstlauer A, Haubelt C, Pimentel A, Stefanov T, Gajski D, Teich J (2009) Electronic

system-level synthesis methodologies. IEEE Trans Comput Aided Des Integr Circuits Syst
28(10):1517–1530

7. Glaß M, Lukasiewycz M, Reimann F, Haubelt C, Teich J (2010) Symbolic system level
reliability analysis. In: Proceedings of the international conference on computer-aided design
(ICCAD), San Jose, pp 185–189

8. Graf S, Glaß M, Teich J, Lauer C (2014) Multi-variant-based design space exploration for
automotive embedded systems. In: Proceedings of design, automation and test in Europe
(DATE), p 6

9. Graf S, Glaß M, Wintermann D, Teich J, Lauer C (2013) IVaM: implicit variant modeling
and management for automotive embedded systems. In: Proceedings of the international
conference on hardware/software codesign and system synthesis (CODES+ISSS), p 10

10. Graf S, Reimann F, Glaß M, Teich J (2014) Towards scalable symbolic routing for multi-
objective networked embedded system design and optimization. In: Proceedings of the
international conference on hardware/software codesign and system synthesis (CODES+ISSS),
pp 2:1–2:10

11. Hernandez-Aguirre A, Botello-Rionda S, Coello Coello CA, Lizarraga-Lizarraga G, Mezura-
Montes E (2004) Handling constraints using multiobjective optimization concepts. Int J Numer
Methods Eng 59(15):1989–2017

12. Kienhuis ACJ (1999) Design space exploration of stream-based dataflow architectures –
methods and tools. Ph.D. thesis, Delft University of Technology

13. Le Berre D, Parrain A (2010) The Sat4J library, release 2.2. system description. J Satisf
Boolean Model Comput 7:59–64

14. Lukasiewycz M, Chakraborty S (2012) Concurrent architecture and schedule optimization
of time-triggered automotive systems. In: Proceedings of the international conference on
hardware/software codesign and system synthesis (CODES+ISSS), pp 383–392

15. Lukasiewycz M, Glaß M, Haubelt C, Teich J (2007) Solving multiobjective Pseudo-Boolean
problems. In: Proceedings of the international conference on theory and applications of
satisfiability testing (SAT), pp 56–69

16. Lukasiewycz M, Glaß M, Haubelt C, Teich J (2008) Efficient symbolic multi–objective design
space exploration. In: Proceedings of the Asia and South Pacific design automation conference
(ASPDAC), Seoul, pp 691–696

17. Lukasiewycz M, Glaß M, Haubelt C, Teich J, Regler R, Lang B (2008) Concurrent topology
and routing optimization in automotive network integration. In: Proceedings of the design
automation conference (DAC), Anaheim, pp 626–629

18. Lukasiewycz M, Glaß M, Reimann F Opt4J–meta-heuristic optimization framework for java.
http://www.opt4j.org/

19. Lukasiewycz M, Glaß M, Reimann F, Teich J (2011) Opt4J: a modular framework for meta-
heuristic optimization. In: Proceedings of the genetic and evolutionary computation conference
(GECCO), pp 1723–1730

20. Lukasiewycz M, Reimann F OpenDSE–open design space exploration framework. http://
opendse.sourceforge.net/

http://www.opt4j.org/
http://opendse.sourceforge.net/
http://opendse.sourceforge.net/

246 M. Glaß et al.

21. Lukasiewycz M, Streubühr M, Glaß M, Haubelt C, Teich J (2009) Combined system
synthesis and communication architecture exploration for MPSoCs. In: Proceedings of design,
automation and test in Europe (DATE), pp 472–477

22. Prakash S, Parker AC (1992) SOS: synthesis of application-specific heterogeneous multipro-
cessor systems. J Parallel Distrib Comput 16(4):338–351

23. Puchinger J, Raidl G (2005) Combining metaheuristics and exact algorithms in combinatorial
optimization: a survey and classification. In: Proceedings of the first international work-
conference on the interplay between natural and artificial computation (IWINAC), vol 3562,
pp 41–53

24. Reimann F, Glaß M, Haubelt C, Eberl M, Teich J (2010) Improving platform-based system
synthesis by satisfiability modulo theories solving. In: Proceedings of the international
conference on hardware/software codesign and system synthesis (CODES+ISSS), pp 135–144

25. Reimann F, Glaß M, Teich J, Cook A, Gómez LR, Ull D, Wunderlich HJ, Abelein U, Engelke
P (2014) Advanced diagnosis: SBST and BIST integration in automotive E/E architectures. In:
Proceedings of the design automation conference (DAC), p 8

26. Reimann F, Lukasiewycz M, Glaß M, Haubelt C, Teich J (2011) Symbolic system synthesis
in the presence of stringent real-time constraints. In: Proceedings of the design automation
conference (DAC), pp 393–398

27. Smith AE, Coit DW (1997) Penalty functions, chap. C 5.2. Institute of Physics Publishing and
Oxford University Press, Bristol

28. Teich J (2012) Hardware/software co-design: past, present, and predicting the future. Proc
IEEE 100(5):1411–1430

29. Teich J, Blickle T, Thiele L (1997) An evolutionary approach to system-level synthesis. In:
Proceedings of the international workshop on hardware/software codesign (CODES/CASHE),
pp 167–171

30. Teich J, Haubelt C (2007) Digitale hardware/software-systeme: synthese und optimierung, 2nd
edn. Springer, Heidelberg

31. Weichslgartner A, Gangadharan D, Wildermann S, Glaß M, Teich J (2014) DAARM: design-
time application analysis and run-time mapping for predictable execution in many-core
systems. In: Proceedings of the international conference on hardware/software codesign and
system synthesis (CODES+ISSS), pp 34:1–34:10

32. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study
and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271

8Architecture and Cross-Layer Design Space
Exploration

Santanu Sarma and Nikil Dutt

Abstract

The task of architectural Design Space Exploration (DSE) is extremely complex,
with multiple architectural parameters to be tuned and optimized, resulting in
a huge design space that needs to be explored efficiently. Furthermore, each
architectural parameter and/or design point is critically affected by decisions
made at lower levels of abstraction (e.g., layout, choice of transistors, etc.).
Ideally designers would like to perform DSE incorporating information and
decisions made across multiple layers of design abstraction so that the ensuing
design space is both feasible and has good fidelity. Simulation-based methods
alone can not deal with this incredibly large and complex design space. To
address these issues, this chapter presents an approach for cross-layer architec-
tural DSE that efficiently prunes the large design space and furthermore uses
predictive models to avoid expensive simulations. The chapter uses a single-
chip heterogeneous single-ISA multiprocessor as an exemplar to demonstrate
how the large search space can be covered and evaluated efficiently. A cross-
layer approach is presented to cope with the complexity by restricting the
search/design space through the use of cross-layer prediction models to avoid
too costly full system simulations, coupled with systematic pruning of the design
space to enable good coverage of the design space in an efficient manner.

Acronyms

CLDSE Cross-Layer Design Space Exploration
DoE Design of Experiments

S. Sarma (�)
University of California Irvine, Irvine, CA, USA
e-mail: santanus@uci.edu

N. Dutt
Center for Embedded and Cyber-Physical Systems, University of California Irvine, Irvine,
CA, USA
e-mail: dutt@ics.uci.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_9

247

mailto:santanus@uci.edu
mailto:dutt@ics.uci.edu

248 S. Sarma and N. Dutt

DSE Design Space Exploration
EDP Energy-Delay Product
EDSP Energy-Delay Square Product
HMP Heterogeneous Multi-core Processor
ILP Instruction-Level Parallelism
ISA Instruction-Set Architecture
RSM Response Surface Modeling
SA Simulated Annealing

Contents

8.1 Introduction . 248
8.2 Design Space Exploration of Heterogeneous Multi-core Processors 251

8.2.1 Design of Experiments . 252
8.2.2 Response Surface Models . 253

8.3 Cross-Layer Predictive Model Building Approach . 253
8.3.1 Problem Formulation . 254
8.3.2 Application and Workload Models . 256
8.3.3 Heterogeneity-Aware Task Allocation . 256
8.3.4 Predictive Modeling of Performance and Power of Different Core Types . . 258
8.3.5 Training Methodology and Benchmarks . 261
8.3.6 Selecting the HMP Configuration . 261

8.4 Case Study: Experimental Evaluation of Cross-Layer DSE of HMPs 262
8.5 Conclusions . 266
References . 267

8.1 Introduction

The task of architectural Design Space Exploration (DSE) is extremely complex,
with multiple architectural parameters to be tuned and optimized, resulting in
a huge design space. Furthermore, each architecture parameter and/or design
point is critically affected by decisions made at lower levels of abstraction (e.g.,
layout, choice of transistors, etc.). Ideally, designers would like to perform DSE
incorporating information and decisions made across multiple layers of design
abstraction so that the ensuing design space is both feasible and has good fidelity.
Simulation-based methods alone can not deal with this incredibly large and complex
design space. To address these issues, this chapter presents an approach for
cross-layer architectural DSE that efficiently prunes the large design space, and
furthermore uses predictive models to avoid expensive simulations. The chapter
uses a single-chip heterogeneous single-ISA multiprocessor system as an exemplar
to demonstrate how the large search space can be covered and evaluated efficiently.
This chapter complements other chapters in this book that give additional insights on
specific optimization and exploration strategies. For instance: Chapter 6 by Scuito
et al. describes optimization strategies for DSE; Chapter 7 by Glass et al. details
advanced hybrid DSE techniques; and Chapter 10 by Henkel et al. incorporates
power-aware run-time adaptions in DSE.

Single-chip-single-ISA-based Heterogeneous Multi-core Processors (HMPs)
are increasingly considered as an attractive design alternative to homogeneous

8 Architecture and Cross-Layer Design Space Exploration 249

multiprocessor systems because of their superior performance, power, and energy
efficiency while providing the flexibility of using the same software (binaries) and
development tools across cores for a range of applications. HMPs can effectively
address complex requirements of diverse applications by executing workloads (or
tasks) in the most appropriate core types to meet competing and conflicting objec-
tives and figures of merit (e.g., performance, power, energy, throughput, area, cost
etc.) [3, 19, 29, 30]. Since different workloads (e.g., CPU bound, integer-intensive,
floating-point intensive, memory intensive, etc.) require different resources, a key
issue is to determine and select the right types and number of cores (processing
elements) for an allocation strategy that maps the workload (or tasks) to right core
type such that the type of workload will best benefit from the given platform. The
selection of number and type of cores is not straightforward when the applications
executed by these HMPs exhibit diverse workload characteristics. When designing
such a system, a chip architect must decide how to distribute the available limited
system resources, such as area and power, among all the processor cores.

HMPs that integrate a mix of small power-efficient cores and big high-
performance cores are attractive alternatives to homogeneous multiprocessor
systems because they have the potential for higher performance and reduced power
consumption. Contemporary mobile phones have already embraced hardware core
heterogeneity, for instance, ARM’s big.LITTLE architecture [17] and NVIDIA’s
Kal-El [39] that have cores of different strengths in one cache coherence domain
with the same Instruction-Set Architecture (ISA). Architectures with more than
two core types are already a reality (e.g., NVIDIA’s Kal-El [39] that integrates
four high performance cores, one low performance core, and many GPU cores),
and this trend toward heterogeneity is only expected to grow further in the future.
Processor cores in a heterogeneous multi-core system can differ in their static
microarchitectures to dynamic behavior or modes of operation (e.g., frequency
or operating voltage). Broadly, the vast space of HMPs can be classified by core
type (strength/size/number/ISA) and heterogeneity levels. As an example, consider
Fig. 8.1 that shows a sample space of HMP architectures using a combination of
different ARM cores – ranging from big (A15) to medium (A11) to small (A7) –
that vary in their performance, power, and energy efficiency.

HMPs provide architecturally diverse cores with drastically different power-
performance trade-offs that can be exploited for system efficiency. Consequently,
HMP architectures and their DSE is an active area of research. DSE is the process
of discovering and evaluating design alternatives during system development that
enable design optimization, system integration, and rapid prototyping prior to
implementation. The main challenge of DSE for HMPs arises from the sheer size
of the design space that must be explored because a typical HMP system has a
huge number of possibilities (in the millions, if not billions), and so enumerating
every point in the design space considering different layers of the system stack is
prohibitive. Although several works have studied HMPs and their run-time systems
[2, 4, 8, 24, 29, 36, 47], the topic of DSE of HMPs is still in its infancy and needs a
principled approach as these architectures evolve in their diversity and complexity.

DSE of HMPs is critical to evaluate and architect a suitable processor platform
configuration. Selection and composition of the platform is important at the early

250 S. Sarma and N. Dutt

a b

c d

Fig. 8.1 Examples of heterogeneous architectures composition for the same die area using big
(A15), medium (A11) , and little (A7) cores

stage of the design, and a chip architect must decide how to distribute the available
limited system resources, such as area and power, among all the processor cores.
Moreover, since HMPs are inherently designed as a multilayered system, either
gross approximation or complete neglect of any layer and its features can affect
the behavior, misrepresent the intricate multilayer trade-offs and interactions, as
well as misguide the design and composition process. However, due to their diverse
and vast design space, selecting a suitable HMP configuration with different core
types within a given area-power budget is an extremely challenging task. This
complexity challenge can be overcome in an intelligent manner by (a) restricting
the search/design space and (b) using cross-layer prediction models to selectively
avoid too costly full system simulations all the time, making a good coverage of
the design space affordable. The problem of exploring and configuring an HMP
for a given system goal under system-level constraints (such as equal area or
power budget) can be cast as a cross-layer optimization problem. This chapter
illustrates an approach that jointly consider cross-layer features of the application,
operating system (task allocation strategies), and hardware architecture while
deploying computationally efficient predictive models (of performance and power)
in configuring the HMP platform resources (number and types of cores) in an
evolutionary optimization framework. The predictive cross-layer approach enables
the designer to comparatively evaluate and select the most promising (e.g., energy
and performance efficient) HMP configuration in over two order of magnitude less
simulation time compared to a full system simulation especially during the early
design and verification stages when the design space is at its largest.

8 Architecture and Cross-Layer Design Space Exploration 251

8.2 Design Space Exploration of Heterogeneous Multi-core
Processors

Design space exploration needs two important components (a) a simulation infras-
tructure to evaluate different configurations and (b) predictive models to assess the
quality of new configurations with a metric of goodness. System designers often
build performance, power, and area (PPA) models of a microarchitecture to predict
these metrics as a function of the design parameters x. These models may be often
represented as y D J .x/, where J .x/ represents a cycle accurate simulator or
empirical model fit to simulated [33, 51] or prototype system data [10]. Detailed
simulation is the most widely adopted approach in evaluating J .x/. However, the
significant computational costs of simulation often hinder the design process leading
to approaches that aim at reducing the simulation cost by either reducing the number
of simulation runs of an evaluated program [14,22,41,51] or reducing the number of
simulated architectures by building predictive models [7,9,11,20,23,31,33,40,50].
A combination of jointly reducing both program and architecture simulations is also
possible [13, 27].

Design space exploration of HMPs is much more complex and challenging than
that of homogeneous architectures since it involves reevaluating architecture and
application options along with the operating system (OS) implications [10]. A
straightforward extension of the abovementioned works is not directly applicable
for HMPs as they are targeted toward homogeneous multi-core processors without
considering the operating system. The exploration is performed using architectural
and program space parameters without considering the OS scheduling by either
using microarchitecture or cycle-accurate simulation. In order to consider the
operating system in the DSE, full system cycle-accurate architectural simulators
are indispensable tools for evaluating complicated and subtle design trade-offs with
respect to large design spaces and handling various design constraints. As an ex-
emplar, this chapter presents an extended full system cycle accurate HMP simulator
[46] based on Gem5 [6] along with the Linux OS as the infrastructure for the cross-
layer DSE. A predictive model of the full system is built, considering parameters
from all the system stacks in order to capture the HMP performance and power
characteristics. Unlike the state-of-the-art mentioned earlier that focused either on
uni-core or homogeneous multi-core processors, the predictive approach specifically
focuses on the cross-layer predictive-model-based DSE of the heterogeneous multi-
core processor while considering key parameters of the application, architecture,
and the operating system in the evaluation of the HMP configurations.

This chapter specifically presents a cross-layer approach for exploring and
configuring a HMP for a given goal under system-level constraints (such as equal
area or power budget) based on recent work [45]. Unlike the state-of-the-art
approaches, the presented approach jointly considers features of the application,
operating system (task allocation strategies), and hardware architecture while de-
ploying computationally efficient predictive models (of performance and power) in
composing the HMP platform resources (number and types of cores). The predictive
cross-layer approach enables the designer to comparatively evaluate and select the

252 S. Sarma and N. Dutt

most promising (e.g., energy and performance efficient) HMP configuration in over
two order of magnitude less simulation time especially during the early design and
verification stages when the design space is at its largest.

8.2.1 Design of Experiments

The term “experiment” [28, 37] concerns situations where we have to organize a
systematic scientific procedure to obtain some meaningful information about an
object of interest. Design of Experiments (DoE) [1, 43] is an efficient and scientific
approach that considers all factors simultaneously, applied to an experimentation
to obtain meaningful information and to determine the relationship between factors
affecting a process and the output of that process. DoE is a powerful tool that can
be used in a variety of experimental platforms where more than one input factor
is suspected of influencing an output. DoE allows for multiple input factors to be
manipulated determining their effect on a desired output. By manipulating multiple
inputs at the same time, DoE can identify important interactions that may be missed
when experimenting with one factor at a time. Likewise, DoE provides a full insight
of interaction between design elements; therefore, it helps turn any ad hoc design
process into a robust, predictable process.

The DoE methodology may involve controllable and uncontrollable input fac-
tors. Controllable input factors are those input parameters that can be modified in
an experiment while uncontrollable input factors cannot be changed. These factors
need to be recognized to understand how they may affect the output or response.
DoE provides information about the interaction of these factors and the total system
work flow, something not obtainable through testing one factor at a time while
maintaining other factors constant. Additionally, DoE shows how interconnected
factors respond over a wide range of values, without requiring the testing of all
possible values directly. Often, hypothesis testing is performed to determine the
significant factors using statistical methods in combination with orthogonal vectors
or sets of orthogonal vectors that are uncorrelated and independent [1]. Before
doing the actual experiment, experimental design requires careful consideration
of several factors such as number of factors that influence the design, fixed or
random levels of these factors, control conditions required in the design process,
sample size, number of units collected for the experiment to be generalizable,
the relevance of interactions between factors, noise, etc., for the establishment of
validity, reliability, and replicability [1]. In order to predict the output responses
for any given combination of input values, DoE fits response data to mathematical
models or predictive models. With these models, it is possible to optimize critical
responses and find the best combination of input values. As measurements are
usually subject to variation and measurement uncertainty, blocking and replication
of experiments are adopted to overcome these shortcomings. Blocking is the
arrangement of experimental units into groups consisting of units that are similar to
one another in order to avoid any unwanted variations in the input or experimental
process and thus allows greater precision in the estimation of the source of variation
under study. A randomization process is used to assign individuals at random

8 Architecture and Cross-Layer Design Space Exploration 253

to groups or to different groups in an experiment so that each individual of the
population has the same chance of becoming a part in the process. Similarly,
replication of the experiments (i.e., perform the same combination run more than
once) is done in order to identify the sources of variation, to get an estimate for the
amount of random error that could be part of the process, and to further strengthen
the experiment’s reliability and validity.

8.2.2 Response Surface Models

Response Surface Modeling (RSM) techniques allow determining an analytical
relationship or dependence between several design parameters and one or more
response variables into a mathematical framework typically to rapidly evaluate a
system-level metric. The working principle of RSM exploits a set of simulations
generated by DoE in order to obtain a predictive model that is also called a response
model. A typical RSM flow involves a training phase in which known data (or
training set) is used to identify the RSM configuration and a prediction phase in
which the RSM is used to forecast or predict unknown system response. These
predictive models can be developed using established techniques [40] such as
interpolations, linear regression, or artificial neural networks. RSM methodology
has been used extensively to study the design space exploration of homogeneous
architectures [35, 40]. The next section outlines the methodology specifically
adapted for emerging HMP architectures.

8.3 Cross-Layer Predictive Model Building Approach

This section presents a Cross-Layer Design Space Exploration (CLDSE) approach,
a methodology that allows evaluation of large architectural design spaces at different
levels of abstraction to achieve efficiency (e.g., reducing simulation time by
trimming down the large design space into a small finite set of points) and accuracy
(gradual refinement of the abstraction models). The cross-layer-based DSE for the
HMPs is motivated by the platform-based approach [26,42] with the difference that
the hardware architecture platform and the mapping strategy are varied along with
diverse spectrum of applications for given system-level constraints. The presented
methodology combines the DoE [43] and predictive model [40] techniques to
predict the quality of the nonsimulated design points thereby speeding up the
exploration process while reducing the number of required simulations. While the
DoE phase generates an initial plan of experiments used to create a coarse view
of the target design space to be explored by simulations, the predictive model –
a closed-form expression of objective (figure of merit) space as a function of the
parameter space – is useful during the DSE phase to quickly converge to the Pareto
set of the multi-objective problem without executing lengthy simulations. The
modeling and optimization techniques proposed in [33, 40] are used to iteratively
update the predictive models (as shown in Fig. 8.2) while simulating different parts
of the system stack.

254 S. Sarma and N. Dutt

Applications

Linux Kernel

Task 0

Task n
App 0

Task 0

Task n
App n

Operating
System

HMP
Platform

Benchmarks

Ev8

Ev6

Ev5 Ev4

Disk DRAM

McPAT

HPC/
Sensing

Interface

Power Perf.

Gem5

Predictive
Model (RSM)

±

App. Type, Size, etc
No of Tasks/Thread Model

Task ExecuLon Time
Task Throughput

Task AllocaLon &
Scheduling Policy/Strategy

Memory AllocaLon
Etc..

Hardware Architecture
ConfiguraLons, Performance

Events Counters
Bus SpecificaLons

Circuit/Device Scaling
Technology Parameters

Power/Energy ConsumpLon
circuit delay parameters

System Specifications
& Factors

System Perf.
System Power
System Energy

Heterogeneous Platform Simulator

DoE
Data

Regression
Fitting

Full System Stack

Fig. 8.2 Training phase: cross-layer predictive model building approach

The cross-layer predictive modeling methodology for HMP architectures is
divided in two phases. In the training phase, known data (from a training set) are
used to identify the predictive model configuration as depicted in Fig. 8.2. A special
set of benchmarks are used for coverage of the design space. On the other hand,
during the prediction phase, a predictive model is used to forecast the unknown
system response as illustrated in Fig. 8.3. The training phase of the cross-layer
predictive modeling approach captures the architectural design spaces and behaviors
at different levels of abstraction to achieve efficiency (e.g., reducing simulation
time by trimming down the large design space into a small finite set of points) and
accuracy (gradual refinement of the abstraction models). This approach, illustrated
in Fig. 8.2, is motivated by the platform-based approach [26,42] with the difference
that the hardware architecture platform and the mapping strategy are varied along
with diverse spectrum of applications for given system-level constraints. The
modeling and optimization techniques proposed in [40] are deployed to iteratively
update the predictive models (as shown in Fig. 8.2) of different parts of the system
stack as discussed in the subsequent sections.

8.3.1 Problem Formulation

Consider a shared memory HMP architecture as shown in Fig. 8.1 consisting of K
types of core represented using a set˘ = f�1; �2; : : : ; �Kg ; �i ¤ �j ;K > 1 having

8 Architecture and Cross-Layer Design Space Exploration 255

Sensors, monitors
and Observer

HMP Stack Operating Parameters HMP Predictive model

Opera&ng System

Instruc&on Set Architecture

Hardware Architecture

Network/Bus
Communica&on Architecture

Device/Circuit Architecture

SO

SI

SN

SH

SC

O
PERATIN

G
 CO

N
D

ITIO
N

Sensing and monitoring
at different Layers

Virtual Sensors / monitors
Physical Sensors/ monitors

Applica&ons SA

Predic&ve
Model

Perf.

Power

Energy

Exe. time

Fig. 8.3 Prediction phase: use of the cross-layer predictive model using features from different
layers of the stack during prediction

corresponding areas � = fa1; a2; : : : ; aKg. Let the set of all processing elements be
PE D fp1; p2; : : : :; png where pj is an instance of a core type in ˘ . The HMP
consists of the core combinations C Dfn1; n2; ::; nKg such that the total number of
processors in the HMP is n =

PK
lD1 nl , where nl is the number of processors of

type �l and the total area A D
PK

iD1 ai � ni . Let Amax, Pmax be the respective
maximum die area and allowable power consumption in the design of the HMP.
The goal is to find the HMP core combinations C such that a platform objective J
(e.g., power/energy efficiency) is optimized under system constraints (such as area
or power) as below:

Maximize
C
s:t

.J/

A � Amax

: (8.1)

As the design space for HMP composition problem in (8.1) is extremely large, a few
assumptions and approximations are made to reduce the design space. First, assume
that the number of core types K is small (<5). Second, as there is a hard constraint
on system area and power resources, the composition space of C can be reduced to a
set of feasible configurations C DfC1; C2; ::; CN g. Then the problem is to chose one
of these Ci for a given set of workloads and OS level workload allocation strategy
that optimizes the system goal J:

256 S. Sarma and N. Dutt

8.3.2 Application and Workload Models

The workload and their diversity (program phases , CPU, memory, and IO intensive
workloads) are modeled using a task-based (thread-based) model and are exposed to
the OS using the performance and power/energy characterization matrices where:

• V D fvig is the set of tasks (or interchangeably used for threads). vi stands for
task i where 1 � i � m andm is the number of tasks. Without loss of generality,
a task or group of tasks represents the workload/application. LetNi represent the
computational workload (measured in terms of number of instructions) of task vi .

• S D Œipsi� D
˚
ipsij ; 1 � i � m; 1 < j � n

�
is the average throughput matrix

(measured in terms of instructions per second) when executing the tasks on
different processors. ipsij .D IPCij �Fj / represents the average throughput when
task vi executes on processor pj and is the product of the IPCij (instruction per
cycle) and the frequency of the core Fj . The IPCij can be measured directly from
the processor’s built-in performance counters [15].

• � =
�
Ni=sij

�
D
˚
�ij ; 1 � i � m; 1 < j � n

�
is the average execution time (or the

time span) matrix. �ij is the average execution time of task vi on processor pj .
• P D Œpwi� D

˚
pwij ; 1 � i � m; 1 < j � n

�
is the average power consumption

matrix of tasks executing on different processors. pwi D fpwij ; 1 � j � ng

represents a vector of all the average powers of task vi executing on each
processor. pwij represents the average power of task vi executing on processor
pj , and it varies with time. The power consumption pwij of a task vi can be
computed by using combination of performance counters [15].

• �=
�
"ij
�
D

˚
pwij � �ij

�
is the average energy consumption defined as the

product of the average power consumption and execution time.

8.3.3 Heterogeneity-Aware Task Allocation

The task allocation problem of multi-core processors within an HMP architecture
consists of finding an optimal distribution of tasks on a set of processors PE D
fp1; p2; : : : ; png. It is assumed that each processor runs independently but can only
run one task at any instant of time. An assignment of all tasks V D fv1; v2; : : : :; vmg
to available processors PE D fp1; p2; : : : ; png a “schedule” � is represented as:

� D
˚

j ; 1 � j � n

�

j D fvi ; 1 � i � mg;8vi 2 V D fv1; v2; : : : ; vmg;

(8.2)

where
j represents the schedule of set of task for the processor pj and vi represents
a task among the set of tasks V D fv1; v2; : : : ; vmg that is mapped to processor
pj . A schedule as defined in (8.2) will result in a total execution time and power
distribution consumption as a function of the task allocation taking into account the

8 Architecture and Cross-Layer Design Space Exploration 257

Table 8.1 Heterogeneity-aware task allocation strategies for a given HMP composition

Sl No Platform
design goal

Allocation Problem
definition

Objective function Nomenclature

1 Performance
maxi-
mization
(PerfMax)

minD Find �D
9 JD is
mini-
mized

topt D minfJDg D minfmaxftj gg

JD D maxftj gI ti D
Pk

iD1 �ij

1 � j � n

tj represents total
execution time of
the tasks in pro-
cessor pj

2 Energy
mini-
mization
(Ener-
gyMin)

minE Find �E
9 JE is
mini-
mized

�opt D minfJEgI JE D
Pn

jD1 �j

�j D
Pk

iD1 "ij D
Pk

iD1 pwij :�ij I

1 � j � n

�j represents sum
of total energy
consumed by k

task in processor
pj

3 Power min-
imization
(PowerMin)

minED Find �ED
9 JED is
mini-
mized

JED D minfJE:JDg Energy delay
product

4 Energy
efficiency
maxi-
mization
(EEMax)

minED2 Find
�ED2

9 JED2 is
mini-
mized

JED2 D minfJE:J 2Dg Energy delay
square product

heterogeneity of processing elements and workload. In other words, for different
allocation strategies, the total execution time and energy consumption in the multi-
core processor system will be different. Thus, the CLDSE determines a schedule �

for the given set of tasks that meets an objective or a performance index as defined
in Table 8.1.

8.3.3.1 Optimization Methodology
Finding the optimal allocation that maximizes or minimizes the multiple objective
functions is a combinatorial problem; therefore, a solution based on brute force
search is not suitable even for a small number of cores and threads due to com-
binatorial explosion; furthermore, this problem is shown to be NP-hard [49]; thus,
polynomial time optimal solutions are not available at all. However, heuristics that
exploit specific characteristics of the problem can be adopted to reach acceptable
solutions within a reasonable amount of time. Owing to the tremendous diversity of
heuristics, a judicious choice of heuristics is critical for finding efficient solutions.
Many heuristics often converge to local minima resulting in poor results [12],
while others cannot be applied due to the nonlinear nature of the thread allocation
objective function (e.g., linear-programming-based approaches [48]). In general,
problem structure-dependent heuristics does not provide a generic solution, and
a new heuristic formulation has to be obtained for every change in the problem
structure (e.g., objective function or constraints).

A more generic approach to such optimization problems have used probabilistic
strategies such as Simulated Annealing (SA) that have demonstrated the ability to

258 S. Sarma and N. Dutt

produce close-to-globally-optimal solutions with a moderate complexity in terms
of execution time [12]. SA can easily accommodate changes in the problem
nature without significant modifications and provide tunable parameters to trade-
off computational complexity for solution quality. Furthermore, SA can also be
parallelized and distributed to control the computation complexity for extreme
scalability.

8.3.3.2 Simulated Annealing-Based Optimization
Simulated Annealing (SA) is a method for solving unconstrained and bound-
constrained optimization problems [12]. The method models the physical process of
heating a material and then slowly lowering the temperature to decrease defects, thus
minimizing the system energy. At each iteration of the SA algorithm, a new point
is randomly generated. The distance of the new point from the current point, or the
extent of the search, is based on a probability distribution with a scale proportional
to the temperature. The algorithm accepts all new points that lower the objective but
also accepts points that raise the objective with a certain probability. By accepting
points that raise the objective, the algorithm avoids being trapped in local minima
and is able to explore globally for more possible solutions. An annealing schedule
is selected to systematically decrease the temperature as the algorithm proceeds.
As the temperature decreases, the algorithm reduces the extent of its search to
converge to a minimum. The SA-based algorithm outlined in Fig. 8.4 is used as
the optimization engine for exploring the cross-layer design space of HMPs.

8.3.4 Predictive Modeling of Performance and Power of Different
Core Types

The predictive models based on RSM as described in [40, 43] are closed-form
analytical expressions suitable for predicting the quality of nonsimulated design
points. Predictive model techniques are typically introduced to decrease the time due
to the evaluation of the system-level objective function J.x/ for each architecture x.
A response surface model for the function J.x/ is an analytical function r.x/ such
that

J.x/ D r.x/C�; (8.3)

where � is the estimation error. Typically, an appropriate predictive model for J.x/ is
such that it has some desired statistical properties such as a mean of zero and small
variance. The working principle of a predictive model is to use a set of simulations
generated by DoE in order to build the response model of the system. A typical
predictive model-based flow involves a) a training phase, in which known data
(or training set) are used to identify the predictive model configuration and b) a
prediction phase, in which the predictive model is used to forecast the unknown
system response. This chapter demonstrates the use of linear regression techniques
to construct the predictive model by taking into account the interaction between the

8 Architecture and Cross-Layer Design Space Exploration 259

SA Input Params: Temperature T , Temperature schedule c, Maximum number of iterations Itermax
Input Data: HMP config C, Throughput Matrix S, Power Matrix P, Execution Time Matrix Γ , Energy Matrix X

X

Output: AllocationY

1. Set an initial solutionY =Y0
2. Obtain a new solution Y ′ == Y and randomly perturb one of the elements Y ′

ji of Y ′. The so-called Bolz-mann
generating scheme accomplishes this:

idx = j ∗m+ i

idx = [idx+
√

T × rand()] mod(n∗m)

j′ = idx mod n, i′ = (idx− j′)/m
swap(Y ′

ji,Y
′
j′ i′)

where rand() generates uniformly distributed random integer numbers.
3. Evaluate the objective function J(C, S, P,Γ ,) forY ′

4. Accept (setY =Y ′) or rejectY ′ . If the value of the objective function is lower than before the perturbation, always
accept. If it is higher, then accept according to the probabilistic rule

accept i f rand() < exp
(

E0 −Ep

T

)

where E0 −Ep is the difference in objective function values before and after the perturbation.
5. Decrease the temperature according to the cooling schedule:

T = c×T

where 0 < c < 1 is a constant.
6. The algorithm stops when the average change in the objective function is small relative to the tolerance, or when it

reaches the maximum number of iterations Itermax, otherwise, it goes back to step 2.

Fig. 8.4 Heterogeneity-aware static task allocation using SA

parameters and the quadratic behavior with respect to a single parameter using the
general model discussed in [40].

In order to concisely encapsulate the effects of performance, power, and work-
load behavior, an effective approach is required to determine and represent the
performance, power, and the energy matrices as described above. A combination of
measurement and on-line prediction is used to construct these matrices. Estimation
or the prediction of the performance and power matrices are possible as there is a
direct correlation between the behavior of different core types. The key idea behind
the estimation and prediction of execution time and power matrix relies on the
fact that the performance of a task on one core is correlatable to the performance
in another core (with the same ISA and memory hierarchy) with a good degree
of accuracy. By measuring the performance of the task in one processor, one can
predict the performance in other processors. The execution time �ij of a task vi on
the processor pj can be defined as,

�ij D
Ni

IPCij�Fj
D Ni

ipsij

IPCij D 1=CPIij :
(8.4)

260 S. Sarma and N. Dutt

Next, core specific performance (throughput) predictors are developed and then
combined to obtain performance prediction of the combined total platform. The
average throughput IPCij is for a given task vi running on processor pj is predicted
by using a linear predictor

IPCij D ˚j �X
T
ij ; (8.5)

where ˚j is constant vector of a predictive model [2, 24] and XT
ij D

Œx1i ; x2i ; ::; xqi �
T
j is a characterization vector of core architectural features and

hardware counter (cycle counters, instruction counters, performance degradation
events) values that is used to predict the performance for the core pj for the
task vi . The cross-layer features and hardware architecture counters are used in
the prediction. The following static features and dynamic hardware performance
counters are used:

• Hardware Architecture Features: Issue width (Iw/, LQ/SQ size (LSQ/, IQ
size (IQ/, ROB size (ROB/, Int/float Regs (IFR/, L1$I size (KB) (L1I /, L1$D
size (KB) (L1D/, Freq. (MHz) (F /, voltage (V), core area (a/.

• Performance Events Counters: The following events are measured that are
known to drive the performance of a core [2, 24]: mispredicted branches, which
are used to compute the branch misprediction rate (mB) and instruction/data
L1 caches and TLBs misses and hits, which are used to compute the L1
instruction miss rate (mL1I), L1 data cache miss rate (mL1D), instruction
TLB miss rate (mITLB), data TLB miss rate (mDTLB), and Context switch
counters (Cw/.

• Cycle and Instruction Counters: the following cycle counters are sampled: the
amount of busy cycles (cyBusy), idle cycles (cyIdle), and sleep cycles (cySleep)
of a core. Busy cycles represent the time a core spends doing computation, idle
cycles capture idling time due to pipeline stalls or cache misses, and sleep cycles
capture the time a core spends in a quiescent state. Furthermore, the following
instruction counters are sampled: total amount of committed instructions (Itotal),
committed load and stores (Imem), and committed branches (Ibranch).

Similarly, the power consumption of each task is computed for all the cores by
measuring the power consumption in a core and suitably scaling it by the scaling
factor among the cores using a linear predictor described below:

pwij D �j �X
T
ij ; (8.6)

where�j D Œ�1; �2; : : : ; �q�j are constant vectors obtained by fitting the data of the
benchmarks and XT

ij D Œx1i ; x2i ; ::; xqi �
T
j is the architecture feature and hardware

counter (cycle counters, instruction counters, performance degradation events).

8 Architecture and Cross-Layer Design Space Exploration 261

The computational complexity (execution time) and accuracy of the predictors for
sample benchmarks are shown in Table 8.3.

8.3.5 Training Methodology and Benchmarks

The process of training and the training data used for identifying the parameters is
fundamental for creating reasonably accurate prediction models. For this specific
approach, training of the predictive models leverages the DoE as discussed in
sub-section 8.2.1 by using existing benchmarks such as PARSEC [5], Mediabench-
II [32], SPEC 2006 [18], as well as their unique combinations; this training is
guided by DoE such that the properties of these experiments are satisfied. These
benchmarks and their combinations are used with different parameters, such as
levels of parallelization, number of threads, computational load, memory require-
ments, etc., to excite the platform from different dimensions and systematically
collect the response data for training. For instance, PARSEC benchmarks have
good Instruction-Level Parallelism (ILP) diversity and are excellent for building
predictive models that capture the computing and memory behaviors. However,
these benchmark applications are CPU bound and mostly exhibit a constant high
load, which may not be ideal for properly evaluating the impact of distinct load
contribution patterns. For this reason, a set of synthetic microbenchmarks with
attributes that reflect interactive behaviors (I/O dependent applications) and other
cross-layer attributes are created and mixed with traditional benchmark suites during
the training data collection for the predictive models [38, 46].

The use of specialized microbenchmarks [44,46] can provide further diversity to
accurately capture cross-layer characteristics. For example, in [46] a set of multi-
threaded synthetic benchmarks – interactive microbenchmarks (IMB) – enable
selective control of the workload, phasic/ bursty behavior, and interactivity (sleep
and wait periods). These IMBs can be configured to have throughput (T) and
interactivity (I) that control the sleep/wait periods for high(H), medium(M), and
low(L) values. Using this approach, a diverse combination of synthetic benchmarks
can be generated to stress various dimensions of cross-layer attributes. For instance,
the combination “HTHI” represents a high throughput and high interactivity IMB
configuration; all other combinations are similarly used in the experiments to
capture the cross-layer behavior [38, 46].

8.3.6 Selecting the HMP Configuration

Once the response surface of the system goal is formed using the predictive models,
different search heuristics can be used to find the most suitable HMP configuration.
As an example, the configuration that performed the best in most cases as the
number of threads (or load) increases can be selected by searching the feasible
configurations. Other heuristics or optimization criteria can be used to select the
configurations from the Pareto front [16, 21].

262 S. Sarma and N. Dutt

8.4 Case Study: Experimental Evaluation of Cross-Layer DSE
of HMPs

In this section, an example case study of the presented cross-layer approach is
illustrated for a contemporary heterogeneous multi-core architecture such as the
ARM big.LITTLE [17]), with the goal of quantifying the benefits of different
architectural configurations. To emulate different core types, different classes of
publicly available Alpha processor models [25,30] (Table 8.2) are used to construct
a realistic HMP model in Gem5 [6] by specifying their multilayer architectural
features. Note that the performance of the processors in terms of average IPC,
area, and power are normalized with respect to the smallest EV4 (Alpha 21064)
core. Also observe that the asymmetric increase of approximately 82� in chip area
just to double the performance of an EV8 core with respect to an EV4 core. This
asymmetry (or heterogeneity) in scaling is essentially exploited by HMPs to achieve
performance, power, and energy efficiency for a given area budget.

To illustrate the CLDSE approach, some experiments can be run by considering
chip/die area budget of four Alpha 21264 (EV6) processors as the system-level
constraint. Observe that all the possible distinct combinations with three classes
of processors (EV4, EV5, and EV6) that meet the area budget are numbered for the
37 possible candidate configurations as shown in Fig. 8.5. To represent a diverse set
of workloads, 8 Mediabench-II algorithms [32] and PARSEC benchmarks [5] are
selected as representative workloads; their execution time and power consumption
are generated using a combination of Gem5 [6] and McPAT[34], respectively, as
shown in Fig. 8.6. The performance and power values for each processor core
type are generated through full system simulation as shown in Table 8.2. To
consider the effect of varying workload and other microarchitectural effects, the
number of threads in the benchmark program are varied with different inputs in
the cycle accurate full system Gem5 simulation. Here each benchmark is viewed
as a single threaded task. The effect of diverse multi-threaded workloads on the

Table 8.2 Alpha processor cores performance, area and power [30]

Alpha
core

Issue
width

I-cache D-cache Branch
predic-
tion

MSHRs IPCa Areaa Peak
power(W)

Avg.
power(W)

Powera

EV4 2 8 KB,
DM

8 KB,
DM

2 KB, 1-
bit

2 1.00 1.00 4.97 3.73 1.00

EV5 4 8 KB,
DM

8 KB,
DM

2K-,
gshare

4 1.30 1.76 9.83 6.88 1.84

EV6 6 64 KB,
2 Way

64 KB,
2 Way

Hybrid,
2 level

8 1.87 8.54 17.8 10.68 2.86

EV8 8 64 KB,
4 Way

64 KB,
4 Way

Hybrid,
2�EV6
size

16 2.14 82.2 92.88 46.44 12.45

aNormalized versus EV4; all cores scaled to 0.1�m, at 2.1 GHz; IPC based on SPEC CPU
benchmarks

8 Architecture and Cross-Layer Design Space Exploration 263

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

of

 C
or

es

HMP Configuration #

HMP configuration for Area Budget of 4Ev6

Ev4
Ev5
Ev6
Ev8

Fig. 8.5 HMP configurations for area budget of 4�EV6. Total of 37 configurations numbered
from 1 to 37 from left to right

platform can be simulated by using PARSEC benchmarks or by gradually increasing
the number of single threaded tasks and performing the allocation for a given
platform. The combination of these benchmarks form new composite tasks (e.g.,
JPEG compression followed by AES encryption), and the execution time and power
consumption of the composite task can be computed as the sum of execution
time and power consumption of the individual benchmarks, respectively. This tests
architectural configurations with more than 100 cores (e.g., area budget of 4 EV8
results in 46,428 configuration with as many as 330 EV4 cores). With the variability
in number of tasks, the objective functions of each architectural combination with
system goal minD is shown in Fig. 8.7.

To demonstrate the ability to cover a large design space, an initial set of simula-
tions generated by DoE is used to build the response surface model of the system
for the following design objectives: make-span/delay, power, energy, Energy-Delay
Product (EDP), and Energy-Delay Square Product (EDSP) as listed in Table 8.1.
These initial simulation points are used to construct the predictive models by using
linear regression to obtain the coefficients of the expression (8.5) by performing
least square fitting of the data. Table 8.3 shows the computational complexity
(execution time) and accuracy of the predictors in comparison to a full system
simulation (over two orders of magnitude at maximum prediction error of 10%)
of the platform for some sample benchmarks. The presented CLDSE shows that
an allocation strategy that performs well with one architectural configuration does
not perform equally well for another architectural configuration and there is a rich
design space to exploit for a specific solution. The predictive models demonstrate

264 S. Sarma and N. Dutt

EV4 EV5 EV6 EV8
0

10

20

30

40

50

60

70

80
Execution Time in msec

EV4 EV5 EV6 EV8
0

100

200

300

400

500

600

700

800
Power Consumption in mW

adpcm
aes
blowfish
gsm
h263
jpeg
motion
sha

adpcm
aes
blowfish
gsm
h263
jpeg
motion
sha

Fig. 8.6 Average power and execution time for eight benchmarks for different Alpha processors

the relative merit for heterogeneous multi-core processor configurations for the
same area budget and different allocation strategies. Furthermore, the allocation
strategies are compared with a heterogeneity oblivious random allocation with
variability in number of task and the execution time as shown in Fig. 8.8. The
joint impact of considering the workload variability (with variations in number
of tasks and intra-task execution time variations) with allocation strategies shows
that almost all the HMP configuration will under-perform by as much as 50 and
70%, respectively, in terms of energy delay product (EDP) and energy delay square
product (ED2) if a heterogeneity agnostic allocation policy (e.g., random policy as
in vanilla Linux Kernel) is used. Thus, heterogeneity-aware allocation strategies are
crucial for almost any HMP platform configurations, and their impact is significant
as the system is loaded with more tasks. This approach can be used to search for
the best performing architecture (Table 8.4) as the most preferable architecture
(most frequently occurring) for different system goals using a given allocation
strategy with the given equal area budget constraints. Observe that for the given area

8 Architecture and Cross-Layer Design Space Exploration 265

Fig. 8.7 Objectives with variability in number of task for delay only task allocation strategy
(minD) using the predictive models. Lower is better

Table 8.3 Execution time and prediction model performance on Intel i7 2.4 GHz machines

Benchmarks HMP config Gem5 full system
simulation time

Prediction model
execution time

Prediction error

H.264 #1 (4 cores) >2 days < 1 s <5%

Bodytrack #2 (8 cores) >4 days < 1 s <5%

Blackscholes #10 (16 cores) >7 days < 1 s <8%

Fluidanimate #10 (16 cores) >7 days < 1 s <8%

Mix of above #36 (32 cores) >10 days < 1 s <10%

budget, the architectural combination #9(8�EV4, 5�EV5, 2�EV6) with 8 EV4
cores, 5 EV5 scores, and 2 EV6 cores has superior performance in terms of EDP
and ED2:

This section has outlined a case study demonstrating the benefits of cross-layer
design space exploration of HMPs. These preliminary studies show that much
more research is required to exploit this rich and complex space of cross-layer
optimizations for emerging heterogeneous architectures.

266 S. Sarma and N. Dutt

Fig. 8.8 DSE with predictive models: comparison of SA-based static allocation strategies with
random allocation strategy (as in vanilla Linux). Higher is better

Table 8.4 Preferred architectural composition with different system goals and allocation strate-
gies

Goals/objective JD (minD) JE (minE) JED.minED/ JED2.minED2/

CPerfMax #1 (4�EV6) #1(4�EV6) #1(4�EV6) #1(4�EV6)

CEnergyMin #37(34�EV4) #9(8�EV4,
5�EV5,
2�EV6)

#37(34�EV4) #37(34�EV4)

CPowerMin #9(8�EV4,
5�EV5,
2�EV6)

#37(34�EV4) #2(5�EV5,
3�EV6)

#2(5�EV5,
3�EV6)

CEEMax #9(8�EV4,
5�EV5,
2�EV6)

#37(34�EV4) #9(8�EV4,
5�EV5,
2�EV6)

#9(8�EV4,
5�EV5,
2�EV6)

8.5 Conclusions

Cross-layer architectural design space exploration presents significant opportunities
for architects to comparatively evaluate design choices early in the design, while
accounting for complex interactions between constraints at multiple abstraction

8 Architecture and Cross-Layer Design Space Exploration 267

levels. This chapter presented an exemplar case study for the exploration of single-
chip, single-ISA heterogeneous multi-core processors.

Recent research has highlighted the potential benefits of single-ISA hetero-
geneous multi-core processors over cost-equivalent homogeneous ones, and it is
likely that future processors will integrate cores that have the same ISA but offer
different performance and power characteristics. However, there are few efforts
that address the problem of HMP composition, constituting of different core
types. This chapter presented a cross-layer (across application, operating system,
and hardware architecture layer) approach of single-ISA heterogeneous multi-core
processors using predictive models to investigate the interactions and influence of
heterogeneity of hardware architectures (configurations, number, and types of cores)
and multi-objective allocation strategies along with diverse types of workloads
under system-level constraints (such as equal area or power budget). A versatile
and realistic approach was outlined along with clear methodology to build cross-
layer predictive models of application and system interactions that can be used in
the HMP compositions. The presented cross-layer approach quantifies the relative
merits of one architectural configuration and allocation strategy over others and
helps in selecting most promising heterogeneous architectures. The predictive cross-
layer approach enables the chip architect and designer to comparatively evaluate
and select the most promising (e.g., energy and performance efficient) HMP
configuration in over two order of magnitude less simulation time compared to a
full system simulation especially during the early design and verification stages
when the design space is at its largest. The approach embodied in this chapter
should be applicable for design space exploration of many emerging programmable
architectures.

Acknowledgments This work was partially supported by the NSF Variability Expedition award
CCF-1029783.

References

1. Anderson MJ, Whitcomb PJ (2000) Design of experiments. Wiley Online Library.
doi: 10.1002/0471238961.0405190908010814.a01.pub3. http://onlinelibrary.wiley.com/doi/
10.1002/0471238961.0405190908010814.a01.pub3/abstract. Accessed Sep 2010

2. Annamalai A, Rodrigues R, Koren I, Kundu S (2013) An opportunistic prediction-based
thread scheduling to maximize throughput/watt in amps. In: 2013 22nd international
conference on parallel architectures and compilation techniques (PACT), pp 63–72. doi:
10.1109/PACT.2013.6618804

3. Balakrishnan S et al (2005) The impact of performance asymmetry in emerging multicore ar-
chitectures. SIGARCH Comput Archit News 33(2):506–517. doi: 10.1145/1080695.1070012

4. Becchi M et al (2006) Dynamic thread assignment on heterogeneous multiprocessor architec-
tures. In: Proceedings of the 3rd conference on computing frontiers, CF ’06. ACM, New York,
pp 29–40. doi: 10.1145/1128022.1128029

5. Bienia C et al (2008) The parsec benchmark suite: characterization and architectural impli-
cations. In: Proceedings of the 17th international conference on parallel architectures and
compilation techniques. ACM, pp 72–81

http://dx.doi.org/10.1002/0471238961.0405190908010814.a01.pub3
http://onlinelibrary.wiley.com/doi/10.1002/0471238961.0405190908010814.a01.pub3/abstract
http://onlinelibrary.wiley.com/doi/10.1002/0471238961.0405190908010814.a01.pub3/abstract
http://dx.doi.org/10.1109/PACT.2013.6618804
http://dx.doi.org/10.1145/1080695.1070012
http://dx.doi.org/10.1145/1128022.1128029

268 S. Sarma and N. Dutt

6. Binkert N et al (2011) The gem5 simulator. SIGARCH Comput Archit News 39(2):1–7. doi:
10.1145/2024716.2024718

7. Chen T, Chen Y, Guo Q, Zhou ZH, Li L, Xu Z (2013) Effective and efficient microprocessor
design space exploration using unlabeled design configurations. ACM Trans Intell Syst
Technol (TIST) 5(1):20

8. Chen J et al (2009) Efficient program scheduling for heterogeneous multi-core processors. In:
46th ACM/IEEE design automation conference, 2009, DAC ’09, pp 927–930

9. Chen T, Guo Q, Tang K, Temam O, Xu Z, Zhou ZH, Chen Y (2014) Archranker: a ranking
approach to design space exploration. In: 2014 ACM/IEEE 41st international symposium on
computer architecture (ISCA). IEEE, pp 85–96

10. Chitlur N, Srinivasa G, Hahn S, Gupta P, Reddy D, Koufaty D, Brett P, Prabhakaran A, Zhao
L, Ijih N et al (2012) Quickia: exploring heterogeneous architectures on real prototypes. In:
2012 IEEE 18th international symposium on high performance computer architecture (HPCA).
IEEE, pp 1–8

11. Cook H, Skadron K (2008) Predictive design space exploration using genetically programmed
response surfaces. In: Proceedings of the 45th annual design automation conference. ACM,
pp 960–965

12. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester
13. Dubach C, Jones T, O’Boyle M (2007) Microarchitectural design space exploration using an

architecture-centric approach. In: Proceedings of the 40th annual IEEE/ACM international
symposium on microarchitecture. IEEE Computer Society, pp 262–271

14. Eeckhout L, Vandierendonck H, Bosschere K (2002) Workload design: selecting representative
program-input pairs. In: Proceedings of the 2002 international conference on parallel architec-
tures and compilation techniques. IEEE, pp 83–94

15. Ge R et al (2010) Powerpack: Energy Profiling and analysis of high-performance systems and
applications. IEEE Trans Parallel Distrib Syst 21(5):658–671. doi: 10.1109/TPDS.2009.76

16. Givargis T, Vahid F, Henkel J (2002) System-level exploration for pareto-optimal con-
figurations in parameterized system-on-a-chip. IEEE Trans Very Large Scale Integr Syst
10(4):416–422

17. Greenhalgh P (2011) Big.little processing with arm cortex-a15 & cortex-a7: improving energy
efficiency in high-performance mobile platforms. http://www.arm.com/files/downloads/big.
LITTLE_Final.pdf

18. Henning JL (2006) Spec cpu2006 benchmark descriptions. ACM SIGARCH Comput Archit
News 34(4):1–17

19. Hill M et al (2008) Amdahl’s law in the multicore era. Computer 41(7):33–38. doi:
10.1109/MC.2008.209

20. Ïpek E, McKee SA, Caruana R, de Supinski BR, Schulz M (2006) Efficiently exploring
architectural design spaces via predictive modeling. SIGPLAN Not 41(11):195–206. doi:
10.1145/1168918.1168882

21. Ipek E, McKee SA, Singh K, Caruana R, Supinski BRd, Schulz M (2008) Efficient architectural
design space exploration via predictive modeling. ACM Trans Archit Code Optim (TACO)
4(4):1

22. Jin Z, Cheng AC (2008) Improve simulation efficiency using statistical benchmark subsetting:
an implantbench case study. In: Proceedings of the 45th annual design automation conference.
ACM, pp 970–973

23. Joseph P, Vaswani K, Thazhuthaveetil MJ (2006) Construction and use of linear regression
models for processor performance analysis. In: The twelfth international symposium on high-
performance computer architecture. IEEE, pp 99–108

24. Kenzo VC et al (2012) Scheduling heterogeneous multi-cores through performance impact
estimation (PIE). In: International symposium on computer architecture, ISCA’12

25. Kessler R (1999) The alpha 21264 microprocessor. IEEE Micro 19(2):24–36. doi:
10.1109/40.755465

26. Keutzer K et al (2000) System-level design: orthogonalization of concerns and platform-
based design. IEEE Trans Comput-Aided Des Integr Circuits Syst 19(12):1523–1543. doi:
10.1109/43.898830

http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/TPDS.2009.76
http://www.arm.com/files/downloads/big.LITTLE_Final.pdf
http://www.arm.com/files/downloads/big.LITTLE_Final.pdf
http://dx.doi.org/10.1109/MC.2008.209
http://dx.doi.org/10.1145/1168918.1168882
http://dx.doi.org/10.1109/40.755465
http://dx.doi.org/10.1109/43.898830

8 Architecture and Cross-Layer Design Space Exploration 269

27. Khan S, Xekalakis P, Cavazos J, Cintra M (2007) Using predictivemodeling for cross-program
design space exploration in multicore systems. In: Proceedings of the 16th international
conference on parallel architecture and compilation techniques. IEEE Computer Society,
pp. 327–338

28. Kleijnen JP (2008) Design and analysis of simulation experiments, vol 20. Springer, New
York/London

29. Kumar R et al (2004) Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance. In: Proceedings of the 31st annual international symposium on
computer architecture, pp 64–75. doi: 10.1109/ISCA.2004.1310764

30. Kumar R et al (2005) Heterogeneous chip multiprocessors. Computer 38(11):32–38. doi:
10.1109/MC.2005.379

31. Lee BC, Brooks DM (2006) Accurate and efficient regression modeling for microarchitectural
performance and power prediction. In: ACM SIGPLAN notices, vol 41. ACM, pp 185–194

32. Lee C, Potkonjak M, Mangione-Smith WH (1997) Mediabench: a tool for evaluating
and synthesizing multimedia and communicatons systems. In: Proceedings of the 30th
annual ACM/IEEE international symposium on microarchitecture. IEEE Computer Society,
pp 330–335

33. Lee BC, Collins J, Wang H, Brooks D (2008) Cpr: composable performance regression
for scalable multiprocessor models. In: 2008 41st IEEE/ACM international symposium on
microarchitecture, 2008, MICRO-41. IEEE, pp 270–281

34. Li S et al (2009) Mcpat: an integrated power, area, and timing modeling framework for
multicore and manycore architectures. In: 42nd annual IEEE/ACM international symposium
on microarchitecture, 2009, MICRO-42, pp 469–480

35. Liu HY, Carloni LP (2013) On learning-based methods for design-space exploration with high-
level synthesis. In: Proceedings of the 50th annual design automation conference. ACM, p 50

36. Liu G et al (2013) Dynamic thread mapping for high-performance, power-efficient heteroge-
neous many-core systems. In: 2013 IEEE 31st international conference on computer design
(ICCD), pp 54–61. doi: 10.1109/ICCD.2013.6657025

37. Montgomery DC: Design and analysis of experiments. Wiley, Hoboken (2008)
38. Mück T, Sarma S, Dutt N (2015) Run-DMC: runtime dynamic heterogeneous multicore per-

formance and power estimation for energy efficiency. In: Proceedings of the 10th international
conference on hardware/software codesign and system synthesis. IEEE, pp 173–182

39. NVidia (2011) Variable SMP – a multi-core CPU architecture for low power and high
performance. http://www.nvidia.cn/content/PDF/tegra_white_papers/Variable-SMP-A-Multi-
Core-CPU-\Architecture-for-Low-Power-and-High-Performance-v1.1.pdf

40. Palermo G, Silvano C, Zaccaria V (2009) Respir: a response surface-based pareto iterative
refinement for application-specific design space exploration. IEEE Trans Comput-Aided Des
Integr Circuits Syst 28(12):1816–1829. doi: 10.1109/TCAD.2009.2028681

41. Phansalkar A, Joshi A, John LK (2007) Subsetting the spec CPU2006 benchmark suite. ACM
SIGARCH Comput Archit News 35(1):69–76

42. Pimentel A et al (2006) A systematic approach to exploring embedded system architectures at
multiple abstraction levels. IEEE Trans Computers 55(2):99 – 112. doi: 10.1109/TC.2006.16

43. Santner TJ, Notz W, Williams B (2003) The design and analysis of computer experiments.
Springer, New York

44. Sarma S (2016) Cyber-physical-system-on-chip (CPSoC): an exemplar self-aware SoC and
smart computing platform

45. Sarma S, Dutt N (2015) Cross-layer exploration of heterogeneous multicore processor
configurations. In: 2015 28th international conference on VLSI design (VLSID), pp 147–152.
doi: 10.1109/VLSID.2015.30

46. Sarma S, Muck T, Bathen LAD, Dutt N, Nicolau A (2015) Smartbalance: a sensing-driven
linux load balancer for energy efficiency of heterogeneous mpsocs. In: Proceedings of the
52nd annual design automation conference, DAC ’15. ACM, New York, pp 109:1–109:6. doi:
10.1145/2744769.2744911

47. Shelepov D et al (2009) Hass: a scheduler for heterogeneous multicore systems. SIGOPS Oper
Syst Rev 43(2):66–75. doi: 10.1145/1531793.1531804

http://dx.doi.org/10.1109/ISCA.2004.1310764
http://dx.doi.org/10.1109/MC.2005.379
http://dx.doi.org/10.1109/ICCD.2013.6657025
http://www.nvidia.cn/content/PDF/tegra_white_papers/ Variable-SMP-A-Multi-Core-CPU- Architecture-for-Low-Power-and -High-Performance-v1.1.pdf
http://www.nvidia.cn/content/PDF/tegra_white_papers/ Variable-SMP-A-Multi-Core-CPU- Architecture-for-Low-Power-and -High-Performance-v1.1.pdf
http://dx.doi.org/10.1109/TCAD.2009.2028681
http://dx.doi.org/10.1109/TC.2006.16
http://dx.doi.org/10.1109/VLSID.2015.30
http://dx.doi.org/10.1145/2744769.2744911
http://dx.doi.org/10.1145/1531793.1531804

270 S. Sarma and N. Dutt

48. Teodorescu R, Torrellas J (2008) Variation-aware application scheduling and power man-
agement for chip multiprocessors. SIGARCH Comput Archit News 36(3):363–374. doi:
10.1145/1394608.1382152

49. Vidyarthi DP et al (2009) Scheduling in distributed computing systems: analysis, design &
models, a research monogram. Springer

50. Wu W, Lee BC (2012) Inferred models for dynamic and sparse hardware-software spaces. In:
Proceedings of the 2012 45th annual IEEE/ACM international symposium on microarchitec-
ture. IEEE Computer Society, pp 413–424

51. Yi JJ, Lilja DJ, Hawkins DM (2003) A statistically rigorous approach for improving simulation
methodology. In: Proceedings of the ninth international symposium on high-performance
computer architecture, 2003, HPCA-9 2003. IEEE, pp 281–291

http://dx.doi.org/10.1145/1394608.1382152

9Scenario-Based Design Space Exploration

Andy Pimentel and Peter van Stralen

Abstract

Modern embedded systems are becoming increasingly multifunctional, and, as a
consequence, they more and more have to deal with dynamic application work-
loads. This dynamism manifests itself in the presence of multiple applications
that can simultaneously execute and contend for resources in a single embedded
system as well as the dynamic behavior within applications themselves. Such
dynamic behavior in application workloads must be taken into account during the
early system-level Design Space Exploration (DSE) of Multiprocessor System-
on-Chip (MPSoC)-based embedded systems. Scenario-based DSE utilizes the
concept of application scenarios to search for optimal mappings of a multi-
application workload onto an MPSoC. To this end, scenario-based DSE uses a
multi-objective genetic algorithm (GA) to identify the mapping with the best
average quality for all the application scenarios in the workload. In order to
keep the exploration of the scenario-based DSE efficient, fitness prediction is
used to obtain the quality of a mapping. This fitness prediction implies that
instead of using the entire set of all possible application scenarios, a small but
representative subset of application scenarios is used to determine the fitness of
mapping solutions. Since the representativeness of such a subset is dependent
on the application mappings being explored, these representative subsets of
application scenarios are dynamically obtained by means of coexploration of the
scenario subset space. In this chapter, we provide an overview of scenario-based
DSE and, in particular, present multiple techniques for fitness prediction using
representative subsets of application scenarios: a stochastic, deterministic, and
hybrid combination.

A. Pimentel (�)
University of Amsterdam, Amsterdam, The Netherlands
e-mail: a.d.pimentel@uva.nl

P. van Stralen
Philips Healthcare, Best, The Netherlands
e-mail: peter.van.stralen@philips.com

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_10

271

mailto:a.d.pimentel@uva.nl
mailto:peter.van.stralen@philips.com

272 A. Pimentel and P. van Stralen

Acronyms

ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor
DSE Design Space Exploration
ESL Electronic System Level
FIFO First-In First-Out
FS Feature Selection
GA Genetic Algorithm
JPEG Joint Photographic Experts Group
KPN Kahn Process Network
MJPEG Motion JPEG
MoC Model of Computation
MPSoC Multi-Processor System-on-Chip
SBS Sequential Backward Selection
SFS Sequential Forward Selection

Contents

9.1 Introduction . 272
9.2 Application Dynamism . 274
9.3 Scenario-Based DSE Framework . 276
9.4 Design Explorer . 278

9.4.1 System Model . 278
9.4.2 Mapping Procedure . 280
9.4.3 Exploring Mappings Using a Genetic Algorithm. 282

9.5 Subset Selector . 285
9.5.1 The Updater Thread . 286
9.5.2 Subset Quality Metric . 288
9.5.3 The Selector Thread . 291

9.6 Related Work . 295
9.7 Discussion . 296
References . 298

9.1 Introduction

To cope with the design complexities of Multi-Processor System-on-Chip
(MPSoC)-based embedded systems [15], Electronic System Level (ESL) design
[6, 12] has become a promising approach for raising the abstraction level of design
and thereby increasing the design productivity. Early design space exploration
(DSE) is an important ingredient of such ESL design, which has received significant
research attention in recent years [8, 10, 19]. The majority of all these DSE
efforts still evaluates and explores MPSoC architectures under single-application
workloads. This is, however, increasingly unrealistic since modern embedded
devices, especially in the consumer electronics domain, are nowadays highly
multifunctional and feature dynamic application workloads. For example, a mobile

9 Scenario-Based Design Space Exploration 273

phone has become a multimedia device that is not only used for calling, but it is
also connected to the Internet and has become a decent camera. With the increased
capabilities of current smartphones, they have almost the same possibilities as
desktop computers. Another trend is to make consumer devices “smart.” Smart
digital cameras are able to directly share photos on the Internet. Photos can be
edited on the camera and can also be tagged with a GPS location. Similarly, smart
televisions also enhance the functionality of the television as they not only show
an incoming video stream from a decoder but can, e.g., also show photos from a
memory card or install additional applications. This trend of smartness does not
only increase the number of applications but also the dynamism of the application
workloads on these embedded systems. For old analogue televisions with CRT,
the characteristics of the incoming video stream were exactly known: the size of
the frames, the frame rate, etc. Currently, however, these streams become more
dynamic: High-definition (HD) television may, for example, have varying frame
rates and frame sizes. Additionally, 3D television may double the number of frames
that need to be decoded.

This chapter will therefore use the concept of application scenarios [7, 17] to
introduce scenario-based DSE [28, 30]. Application scenarios are able to describe
the dynamism of embedded applications and the interaction between the different
applications on the embedded system. The concept of application scenarios is
illustrated in Fig. 9.1. An application scenario consists of two parts: an inter- and an
intra-application scenario. An inter-application scenario describes the interaction
between multiple applications, i.e., which applications are concurrently executing
at a certain moment in time. Inter-application scenarios can be used to prevent the
overdesign of a system. If some of the applications cannot run concurrently, then
there is no need of reserving resources for the situation where these applications
are running together. Intra-application scenarios, on the other hand, describe the
different execution modes (or operation modes) for each individual application. In
the example application scenario in Fig. 9.1, the left-hand side shows the selected

Fig. 9.1 An illustration of application scenarios

274 A. Pimentel and P. van Stralen

inter-application scenario. In this case, the video and the MP3 applications are
active, while the GSM application is inactive. In the middle, the intra-application
scenarios are shown. The video application can, for example, decode video using a
simple profile and an advanced simple profile. For the intra-application scenario, it
is decided to decode video using a simple profile and to play mono music with the
MP3 application. As the GSM is inactive, no operation mode needs to be selected
for the GSM application. Hence, the application scenario is the sum of the inter- and
intra-application scenarios: the video application is decoding using a simple profile,
and the MP3 application is playing music in a mono sound.

9.2 Application Dynamism

To illustrate the consequences of dynamic application behavior in terms of extra-
functional aspects (like system performance and power consumption), this section
presents a small, motivational case study in which a Motion JPEG (MJPEG)
decoder application – with different intra-application scenarios – is mapped onto
a heterogeneous bus-based MPSoC architecture with four processors and a single
shared memory. First, we have randomly picked three mappings of the MJPEG
application on our bus-based architecture. For each of these mappings, we used the
Sesame system-level MPSoC simulation framework [3, 18] to determine the fitness
values (in this case, execution time and power consumption) for each individual
intra-application scenario. The resulting fitness values of these mappings are shown
in Fig. 9.2, where the horizontal and vertical axes refer to execution time and

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022

A
v
e

ra
g

e
 P

o
w

e
r

Time

The dynamism of 3 different mappings

Scenario 0

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Scenario 9

Scenario 10

A

B

C

A

BC

A

BC

A

B

C A

BC

A

B

C

A

B

C

A

B
C

A

BC

A

B
C

A

BC

Fig. 9.2 An illustration of the dynamism of different scenarios. For three different mappings, the
fitness of each individual scenario is shown

9 Scenario-Based Design Space Exploration 275

power consumption, respectively. These values are only used to compare different
mappings and intra-application scenarios. Therefore, they do not have a unit. In this
graph, the letters A–C are the different mappings, whereas 0–10 are the different
intra-application scenarios of the MJPEG application.

Irrespective of the mapping, scenario 7 is the intra-application scenario that con-
sumes the least amount of power. The scenario with the highest power consumption,
on the other hand, depends on the mapping. For mappings A and C , scenario 0 has
the highest power consumption. In case of mapping B , however, scenario 3 has
the highest power consumption. To explain this behavior, both the scenarios and
the mappings must be analyzed. Scenario 3 involves the decoding of a frame that
has a much higher compression ratio than scenario 0. As a consequence, scenario 3
requires less communication than scenario 0. Moreover, for mapping B , the shared
bus is fully utilized, while in mappings A and C , there is still some capacity left
on the shared bus. As a result, the reduction in communication between scenarios 0
and 3 has more effect on the execution time of mapping B than it has on mappings
A and C . Although the consumed energy for scenario 3 is lower than the consumed
energy for scenario 0 for all of the three mappings, the larger difference in execution
time results in higher power consumption for mapping B .

Figure 9.2 also shows other interesting behavior with respect to scenario 6. For
example, scenario 6 with mappings A and B has the same fitness as scenario 7.
For mapping C , however, the execution time of scenario 6 is much lower than
for scenario 7. Without going into details, scenario 6 would lead to the conclusion
that mapping C consumes more power than mapping A. This conclusion contrasts
with the conclusion that can be drawn from comparing the power consumption
using the other scenarios (i.e., the power consumption of mapping C is lower than
mapping A). In a sense, scenario 6 gives a deceiving view of the quality-ordering
relation between the different mappings.

To provide more insight into this problem, the potential Pareto dominance
relations between the mappings of the experiment illustrated in Fig. 9.2 are listed in
Table 9.1. See �Chaps. 6, “Optimization Strategies in Design Space Exploration”

Table 9.1 The Pareto
dominance relations
comparing the mappings
from Fig. 9.2 for each
individual scenario. The
symbol jj stands for
incomparable fitness values

Scenario A . . . B A . . . C B . . . C Front

0 jj > > C

1 jj > jj B , C

2 jj > jj B , C

3 � > > C

4 jj > > C

5 jj > > C

6 jj jj jj A, B , C

7 jj > > C

8 jj > jj B , C

9 jj > jj B , C

10 jj > > C

276 A. Pimentel and P. van Stralen

and � 7, “Hybrid Optimization Techniques for System-Level Design Space Explo-
ration” for a discussion on Pareto dominance. In the three columns in the middle of
the list in Table 9.1, the unique mapping comparisons are shown: mapping A versus
B , mapping A versus C , and mapping B versus C . Next, for each individual intra-
application scenario, the fitness values for the different mappings are compared. In
this way, three different types of relations are obtained: (1) a mapping is equal to
or fully dominates the other mapping (�), (2) a mapping is dominated by another
mapping (>), and (3) the mappings are not comparable using the Pareto dominance
relation (jj). Finally, the last column shows the Pareto front based on the fitness
values of the specific intra-application scenario.

As a first observation, one can see that for none of the relations, it is the case
that all scenarios fully agree on the type of the relation. For the first two relations
(where mapping A is compared with mappings B and C), only one scenario differs
with respect to the relation type. In case of the comparison between mapping A
and mapping B , the fitness values for most of the scenarios determine that mapping
A is incomparable with mapping B . Only the fitness values of scenario 3 lead to
a different conclusion: mapping A dominates mapping B . Similarly, mapping C
dominates mapping A for most of the intra-application scenarios. Only the fitness
values of scenario 6 are incomparable for mappings A and C .

The problem arises with the relation between mapping B and mapping C .
Judging on 6 out of the 11 scenarios, mapping B is better than mapping C . Based
on the other five scenarios, however, one comes to the conclusion that mapping
B is incomparable with mapping C . These kinds of uncertainties complicate the
scenario-based DSE. The DSE ends up with a Pareto front, but not all the intra-
application scenarios agree on what the Pareto front should be. In the example of
Table 9.1, three different Pareto fronts are observed, from which the front with only
mapping C is the most common.

Based on the most common Pareto front with only mapping C , one could con-
clude that the set f0; 3; 4; 5; 7; 10g of intra-application scenarios is representative for
the MJPEG application. This representativeness, however, is completely dependent
on which mappings are evaluated. In case only mappings A and B would have been
taken into account, intra-application scenario 3 would have been interpreted as an
unrepresentative scenario. However, if this scenario 3 is excluded for the comparison
between mapping B and mapping C , there is no majority anymore for one of the
Pareto dominance relation types. In the next section, which introduces our scenario-
based DSE framework, we will explain how we deal with the above problem.

9.3 Scenario-Based DSE Framework

Conceptually, scenario-based DSE [28, 30] is an exploration technique for em-
bedded systems with a dynamic multi-application workload. In this chapter, an
exploration framework for scenario-based DSE is presented that aims to provide
a static mapping of a multi-application workload onto an MPSoC. The mapping
is to be used during the entire lifetime of an embedded system. Consequently, the

9 Scenario-Based Design Space Exploration 277

Application
Model

Architectural
Model

Scenario
Database

Scenario-Based
Design Space

Exploration

Candidate
Designs

Parameters

Trainer

Selector

Updater
Sample
Designs

Best
Subset

Sesame

Sesame

mp3 video

0 0 1 1 1 2 0 2 2 2 2 2 0

ChannelsProcesses

0: CPU-A
1: CPU-C
2: CPU-E

0: INTERN
1: MEM - 2
2: MEM - 3

Fig. 9.3 The exploration framework for scenario-based DSE

average behavior of the designed MPSoC must be as good as possible for all the
different application scenarios. Currently, we assume an equal likelihood for each
application scenario. The approach, however, can easily be generalized to different
probability distributions.

In this work, we assume that a multi-application workload mapping implicitly
consists of two aspects: (1) allocation and (2) binding. The allocation selects the
architectural components for the MPSoC platform architecture. Only the selected
components will be deployed on the MPSoC platform. These components include
processors, memories, and supporting interconnects like communication buses,
crossbar switches, and so on. Subsequently, the binding specifies which application
task or application communication is performed by which (allocated) MPSoC
component.

Figure 9.3 shows the exploration framework. The left part of the picture provides
a general flow, whereas the right part illustrates the scenario-based DSE in more
detail. As an input, the scenario-based DSE requires a scenario database, application
models, and an MPSoC platform architecture model. Binding is performed for
a multi-application workload, and the description of this workload is split into
two parts: (1) the structure and (2) the behavior. The structure of applications
is described using application models. For these models, the Kahn Process Net-
work (KPN) model of computation is used [11], which models applications as
a network of concurrent processes communicating via FIFO channels (see also
refer to the section “Overview of Basic Data Flow Models” in the �Chap. 3,
“SysteMoC: A Data-Flow Programming Language for Codesign”). Next to the KPN
application models, a scenario database [29] explicitly stores all the possible multi-
application workload behaviors in terms of application scenarios (i.e., intra- and
inter-application scenarios).

An important problem that needs to be solved by scenario-based DSE is the
fact that the number of possible application scenarios is too large for an exhaustive
evaluation of all – or even a restricted set of – the design points with all the scenarios
during the MPSoC DSE. Therefore, a small but representative subset of scenarios
must be selected for the evaluation of MPSoC design points. This representative

278 A. Pimentel and P. van Stralen

subset must compare mappings and should lead to the same performance ordering
as would have been produced when the complete set of the application scenarios
would have been used. However, the selection of such a representative subset is not
trivial, as was already explained in Sect. 9.2 and studied in more detail in [27]. This
is because the representative subset is dependent on the current set of mappings that
are explored. Depending on the set of mappings, a different subset of application
scenarios may reflect the relative mapping qualities of the majority of the application
scenarios.

As a result, the representative subset cannot statically be selected. For a static
selection, one would need to have a large fraction of the mappings that are going
to be explored during the MPSoC DSE. However, since these mappings are only
available during DSE, a dynamic selection method must be used. Thus, both the
set of optimal mappings and the representative subset of scenarios need to be
coexplored simultaneously such that the representative subset is able to adapt to
the set of mappings that are currently being explored.

In the scenario-based exploration framework (see Fig. 9.3), two separate com-
ponents are shown that simultaneously perform the coexploration tasks: the design
explorer searches for the set of optimal mappings, while the subset selector tries
to select a representative subset of scenarios. As these components are running
asynchronously, a shared-memory interface is present to exchange data. For the
design explorer, a sample of the current mapping population is stored in the shared
memory, whereas the subset selector makes the most representative subset available
for the fitness prediction in the design explorer. One of the main advantages of
the strict separation of the execution of the design explorer and the subset selector
is that the running time of the design explorer becomes more transparent. From a
user perspective, this is the most important component, as it will identify the set of
optimal mappings.

9.4 Design Explorer

In this section, the design explorer, the component that is responsible for identifying
promising mappings, is described. First, our system model is described. This system
model formally describes both the applications and the architecture. Next, the
system model is used to describe the complete mapping procedure that will be
applied during the search for good mappings, which has been implemented using
a Genetic Algorithm (GA).

9.4.1 System Model

Our system model is based on the popular Y-chart design approach [13] which
implies that we separate application models and architecture (performance) models
while also recognizing an explicit mapping step (or layer) to map application tasks
onto architecture resources [24]. The system model has been implemented in the
Sesame system-level MPSoC simulation framework [3,18], as illustrated in Fig. 9.4.

9 Scenario-Based Design Space Exploration 279

Fig. 9.4 The different layers
in the Sesame model and their
connections

Sample EncodeQuality

A
pp

lic
at

io
n

La
ye

r
A

rc
hi

te
ct

ur
e

La
ye

r

Mapping Layer

CPU-A

CPU-E

MEM
2B

U
S

D

A B

C

For a more detailed discussion of the Sesame framework, we also refer the interested
reader to chapter �Chap. 30, “DAEDALUS: System-Level Design Methodology
for Streaming Multiprocessor Embedded Systems on Chips”. The system model
formalizes each of the application, mapping, and architecture layers:

Application (model) layer The application model describes each individual ap-
plication as a Kahn Process Network (KPN) [11]. A KPN is formally defined
as a directed graph GK.V;EK/. The vertexes V are the process nodes. In
Fig. 9.4, an example application model is depicted in which the set V is
equal to {SAMPLE, ENCODE, QUALITY}. The communication channels of the
application are represented by directed edges EK D V � V . If, for example,
(SAMPLE, QUALITY) is defined in EK , it means that there is a communication
channel from SAMPLE to QUALITY.

Architecture (model) layer The architecture is represented by a directed graph
GR.R;ER/. In this case, the set R contains the architectural components
like processors, communication buses, crossbar switches, FIFO buffers, and
memories. Edges ER D R � R, on the other hand, describe the communication
links in the architecture.
There are three types of architectural elements: (1) processors, (2) buffers, and (3)
interconnects. The processors RP
 R are architectural elements that are capa-
ble of executing processes. BuffersRB
 R are the FIFO buffers/memories used
for the communication between the different processors. If two communicating
processes are mapped onto the same processor, the communication may also be
done internally. This is only possible when a processor supports internal commu-
nication. If a processor p 2 RP supports internal communication, a buffer b 2
RB is added to the architecture. Additionally, the buffer is connected to enable

280 A. Pimentel and P. van Stralen

reading and writing of data: .p; b/ 2 ER ^ .b; p/ 2 ER. Finally, the set of inter-
connects RI
 R is purely meant to connect the various system components.
In the example of Fig. 9.4, the architectural processors RP consist of CPU-A and
CPU-E. Next, the FIFO buffers in the architecture are MEM-2 and CPU-E. This
means that CPU-E supports internal communication. Finally, the BUS belongs
to the set of interconnects. There are eight edges in the architecture. Six of these
links are connected to the bus (for reading and writing). Additionally, the internal
communication buffer of CPU-E is connected to the processor for reading and
writing. In this example, all communication links are bidirectional.

Mapping Layer The mapping layer connects the application layer to the
architecture layer. Hence, it contains only edges: computation edges and
communication edges. Computation mapping edges EX assign KPN processes
to the architectural resources. To be precise, the edge .v; p/ 2 EX assigns KPN
process v 2 V to processor p 2 RP . A KPN process can only be mapped on
processing elements that are feasible of running that task:

.v; p/ 2 EX ” Feasible.p; v/ (9.1)

This allows for modeling processors that range from general-purpose processors
(i.e., those processors p 2 RP for which holds that 8v 2 V W Feasible(p; v)) to
processors that are able to perform only a limited set of tasks like, e.g., ASICs.
Here, we would like to note that it is also possible to map multiple KPN processes
onto a single processor if the (modeled) processor type allows this (e.g., in the
case of a general-purpose processor, ASIP, etc.). The communication is mapped
using communication edges EC . A communication edge .c; b/ maps FIFO
channel c 2 EK to FIFO buffer b 2 RB .

9.4.2 Mapping Procedure

While the application and the architecture layers are predefined before a DSE
is started, the mapping layer is the part of the MPSoC design that needs to be
optimized. As discussed before, the mapping consists of two steps: allocation
and binding. Allocation can reduce the resource usage of the MPSoC design,
whereas the binding maps all processes and channels on the allocated resources.
The procedure is as follows:

Allocation First, the architecture resources are selected to use in the allocation ˛.
All types of architecture resources are selected at once: ˛P D ˛ \ RP , ˛B D
˛ \RB , and ˛I D ˛ \RI . More precisely, the allocation ˛ contains a subset of
resources such that ˛ � R:

 X
r2˛

area.r/

!
� MAX_AREA (9.2)

9 Scenario-Based Design Space Exploration 281

Hence, Eq. 9.2 implies that the total area of the allocated resources may not be
larger than the maximal area of the chip. Part of the system model is also the
feasibility of the mapping: for each of the processes, there must be at least one
processor that is capable of executing the specific process. This is defined as
follows:

8v 2 V W jp 2 ˛P W Feasible.p; v/j � 1 (9.3)

Once the allocation ˛ is known, a set of potential communication paths D
.˛P � ˛B � ˛P / can be defined:

 D f.p1; b; p2/ W PATH˛.p1; b/ ^ PATH˛.b; p2/g (9.4)

The set of communication paths is the set of paths such that (W) there is a path
from processor p1 to buffer b and a path from buffer b to processor p2 (Eq. 9.4).
This path may span multiple resources as long as they are allocated:

PATH˛.r1; r2/ WD.r1; r2/ 2 ER_ (9.5a)

9ri 2 ˛I W .r1; ri / 2 ER ^ PATH˛.ri ; r2/ (9.5b)

The PATH function is recursively defined. There is a path between resources
r1 and r2 if there is a direct connection between them (Eq. 9.5a). An interconnect
ri can also be used as part of the path. In this case, there must be a direct con-
nection between resource r1 and interconnect ri and a path between interconnect
ri and resource r2 (Eq. 9.5b). An allocation is only valid if there is at least one
communication path between each set of processors:

8p1; p2 2 ˛P W 9.p1; b; p2/ 2 (9.6)

By enforcing at least a single communication path between each set of proces-
sors, the automatic exploration of mappings is guaranteed to find at least one
valid mapping. As will be explained later, the procedure randomly picks the
processors after which one of the communication paths is selected.

Binding Binding maps all the KPN process nodes onto the allocated resources.
There are two steps: (1) computational binding and (2) communication binding.
Computational binding ˇX maps the processes onto the processors such that
ˇX 2 EX :

8v 2 V W jfp W .v; p/ 2 ˇX ^ p 2 ˛P gj D 1 (9.7)

Equation 9.7 enforces that each process v is mapped on exactly one allocated
processor p. After the computational binding, the communication binding can
be done. Recall from Eq. 9.6 that we have enforced that between each set of
processors, at least one communication path is present in . Therefore, for each

282 A. Pimentel and P. van Stralen

communication channel in the application, a communication path in the allocated
architecture can be selected. More strictly, for each communication channel in the
application, an architectural buffer is selected such that ˇC 2 EC :

8.v1; v2/; b 2 ˇC W.v1; p1/ 2 ˇX^ (9.8a)

.v2; p2/ 2 ˇX^ (9.8b)

.p1; b; p2/ 2 (9.8c)

8c 2 EK W jfb W .c; b/ 2 ˇC gj D 1 (9.9)

Multiple conditions must be enforced. First, the architectural buffer b on which
the communication channel .v1; v2/ of an application is mapped must be a valid
communication path. This means that processes v1 and v2 must be mapped on
processors p1 and p2 (Eq. 9.8a and 9.8b) and that .p1; b; p2/ is within the set
of communication paths (Eq. 9.8c). Processor p1 and processor p2 do not
necessarily need to be different as both of the processes in the communication
link may be mapped onto the same processor. Next, all communication channels
c (which is a tuple of the two communication processes) must be mapped on
exactly one buffer (Eq. 9.9).

A mapping m is the combination of an allocation ˛ and the bindings ˇX and ˇC .
It is only valid if all the preceding constraints (Eqs. 9.2, 9.3, 9.6, 9.7, and 9.9) are
fulfilled.

9.4.3 Exploring Mappings Using a Genetic Algorithm

Our aim is to optimize the mapping of an embedded system. Hence, the space of
possible mappings must be explored as efficiently as possible. For this purpose, an
NSGA-II-based multi-objective GA [4] is used (see also �Chap. 6, “Optimization
Strategies in Design Space Exploration”). Figure 9.5 shows the chromosome design
for exploring the mapping space. The mapping chromosome consists of two parts:
(1) a KPN process part and (2) a KPN communication channel part. Within these
parts, all of the applications are encoded consecutively. The gene values encode the
architecture components on which the elements of the applications are mapped: the
KPN processes are mapped onto processors, and the KPN channels are mapped onto
memories. A special memory is the internal memory, as was previously explained.

The example chromosome in Fig. 9.5 has 11 genes. Five genes are dedicated to
the processes, and six genes are dedicated to the communicational channels. As
there are three potential processors, the gene value for the KPN process part is
between 0 and 2. For the memories, there are three possibilities: two memories and
a reserved entry for the internal memory. In this way, the binding to architectural
components is encoded for all of the processes and channels. The first process gene

9 Scenario-Based Design Space Exploration 283

P
la

tfo
rm

Encoded Mapping

Mapping Chromosome
Kahn process part

MP3

0 0 1
Video

1 1

Kahn channel part

MP3

0 2 1 1 2
Video

0

MPSoC

CPU-A

CPU-E

MEM-2

MEM-3

Sample Encode

Quality
Control

Decode

Display

Sample->Encode

Decode->Display Sample->Quality

Encode->Quality

Quality->Encode

Quality->Sample

MPSoC

CPU-A

CPU-E CPU-C

MEM-2 MEM-3

0

1 2

1 2

MP3

EncodeSample

Quality
Control

0 1

2

0

1 2

34

Video

Decode

Display

3

4

5

Application

Architecture

Fig. 9.5 Chromosome representation of a mapping. Both the gene sequence is shown and the
mapping that is encoded by the gene sequence

of the MP3 application, for example, has gene value 0. Looking at the platform,
gene 0 is the SAMPLE process. This process is mapped on the first processor: CPU-
A. Similarly, the channel 4 (QUALITY ! SAMPLE) is mapped on MEM-3. The
complete encoded mapping is illustrated in Fig. 9.5.

The NSGA-II GA is an elitist selection algorithm that applies non-dominated
sorting to select the offspring individuals. Non-dominated sorting ranks all the
design points based on their dominance depth [2]. Conceptually, the dominance
depth is obtained by iteratively removing the Pareto front from a set of individuals.
After each iteration, the rank is incremented. An example is shown in Fig. 9.8c.
The main reason for choosing an NSGA-II-based GA is because of its use of
the dominance depth for optimization. As will be discussed in Sect. 9.5.2, the
dominance depth can easily be used for rating the quality of the representative subset
of scenarios.

The dominance of the individuals is based on their fitness. As discussed before,
the predicted fitness is used instead of the real fitness. Let S be the total set of
scenarios and QSj the representative subset of scenarios at time step j . The fitness
objectives of a mapping m are as follows:

F .m/ D
1

jS j

X
s2S

.time.m; s/; energy.m; s/; cost.m// (9.10)

QF QSj .m/ D
1

j QSj j

X
s2 QSj

.time.m; s/; energy.m; s/; cost.m// (9.11)

284 A. Pimentel and P. van Stralen

Design
Explorer

Export
Population

Read

Evaluation

Selection

Reproduction

Init

F̃S̃j

S̃j

Fig. 9.6 The genetic algorithm for the design explorer extended with the required steps to
communicate with the subset selector. The steps that are emphasized involve communication

Given the mapping m and the application scenario s, the functions time.m; s/
for execution time and energy.m; s/ for energy consumption are evaluated using
the Sesame system-level MPSoC simulation framework. The cost of a mapping is
independent of the scenario and can be determined statically by adding up the costs
of the individual elements within the allocation ˛. There is an important difference
between the real fitness F and the estimated fitness QF QSj . The real fitness uses
all possible application scenarios to determine the fitness, whereas the estimated
fitness only uses a (representative) subset of the scenarios (QSj � S). As a result,
the real fitness is independent of the current generation. The predicted fitness,
on the other hand, may vary over the different generations. The fitness QF QSj is

only valid for generation j as the representative subset QSjC1 may change over
time.

In order to update the representative subset of scenarios between the generations,
the GA of the design explorer must be extended to support the communication
between the design explorer and the subset selector. This extension is shown in
Fig. 9.6. Before any individual (i.e., mapping) can be evaluated, the currently most
representative subset of scenarios QSj must be acquired. Using the representative
subset of scenarios, the design explorer can quickly predict the fitness of all the
individuals in the population. This means that depending on the number of changed
scenarios in the representative subset of scenarios since the previous generation,
the parent population also must be partially reevaluated. This predicted fitness is
used to select the individuals for the next generation. In case the scenario subset
is representative, the decisions made by the NSGA-II selector are similar to those
where the real fitness would have been used. If this is not the case, the scenario
subset should be improved. For this purpose, the selected population is exported to
the subset selector. Finally, reproduction is performed with the selected individuals.
During reproduction, a new population of individuals is generated for usage in the
next generation.

9 Scenario-Based Design Space Exploration 285

9.5 Subset Selector

To work properly, the design explorer requires a representative subset of application
scenarios. The better the fitness prediction in the design explorer, the better the
outcome of the scenario-based DSE is. Therefore, the subset selector is responsible
for selecting a subset of scenarios. This subset selection is not trivial. First of all,
there are a potentially large number of scenarios to pick from. This leads to a huge
number of possible scenario subsets. On top of that, the scenario subset cannot be
selected statically as the representativeness of the scenario subset is dependent of
the current set of mappings. This set of mappings is only available at run time.
Therefore, the scenario subset is selected dynamically.

At the end of the previous section, it was already explained that the design
explorer communicates its current mapping population to the subset selector. This
set of mappings can be used to train the scenario subset such that it is representative
for the current population in the design explorer. As the population of the design
explorer slowly changes over time, the subset will change accordingly. The overview
of the scenario-based DSE (see Fig. 9.3) shows that the subset selector contains
two threads of execution: the selector thread and the updater thread. Figure 9.7
shows these threads in more detail. The updater thread obtains the mapping
individuals from the design explorer and updates the training set Ti of application
mappings. This set of training mappings is used by the selector thread for selecting
a representative subset of scenarios. The most representative subset of scenarios is
exported to the design explorer.

In the remainder of this section, we provide a detailed overview of the subset
selector. Before doing so, however, we will first describe the updater thread that is
responsible for updating the trainer. Next, the metric used to judge the quality of the

Select Candidates

Evaluate New
Trainer Mappings

Import Population
Design Explorer

Select Training
Mappings

Export Most
Representative Subset

Get Trainer

Search Representative
Subset

InitInit

Updater Thread

Trainer

Selector Thread

Fig. 9.7 The design of the subset selector

286 A. Pimentel and P. van Stralen

scenario subsets is described. The final subsection will show how the subset quality
metric is used within the selector thread to select scenario subsets.

9.5.1 The Updater Thread

During the search of a representative subset of scenarios, it is crucial to have a set of
training mappings Ti . Without a set of exhaustively evaluated mappings, one cannot
judge if the predicted fitness of a scenario subset makes a correct prediction. As a
training mapping is evaluated for all scenarios, it is relatively expensive to evaluate
a mapping that needs to be added to the trainer. Therefore, it is important that the
training mappings are selected carefully. Figure 9.7 illustrates the trainer update
from Ti to TiC1. The steps are as follows:

Import Population Design Explorer: To keep the training set Ti up to date
with the mapping population in the design explorer, the current design explorer
population gj is imported.

Select Candidates: The current population is used to update the list of candidate
mappings CiC1:

maximize
CiC1

X
m2CiC1

last_gen.m/

subject to (1) CiC1 � Ci [gj

(2) CiC1 \ Ti D ;

(3) jCiC1j � C_SIZE

While updating the candidate mappings, there are three conditions. First, the
new set of candidate mappings is the union of the previous set of candidate
mappings and the population gj that was just received from the design explorer.
Secondly, condition (2) makes sure that all the candidate mappings are not
yet in the trainer. Using these two conditions, the procedure selects a set of
candidate mappings that is new to the trainer. Still, the first two conditions
do not provide any control on the size of the set of candidate mappings. As
the selection of training mappings involves computational overhead, the size
of the set of candidate mappings must be limited as well. Therefore, condition
(3) makes sure that the size of the set of candidate mappings is not larger than
the predefined constant C_SIZE. As the optimization goal is to maximize the
sum of the last generation that each of the training mappings was used (as
returned by the function last_gen), the most recently used mappings will be
kept in the set of candidate mappings (these have the highest value for last
used generation). Additionally, the optimization of the total sum tries to get
the number of candidate mappings as large as possible: the least recently used
candidate mappings will be removed until the set of candidate mappings is
smaller or equal to C_SIZE. In this way, the representative subset of scenarios
can be optimized to predict the fitness of the current population of the design
explorer.

9 Scenario-Based Design Space Exploration 287

Select Training Mappings: For each of the candidate mappings, the predicted
fitness using the currently most representative subset of scenarios is obtained. For
the candidate mappings that have just been imported from the design explorer,
this should not require any new Sesame simulations (the population is quite likely
evaluated using the same representative subset). For older candidate mappings,
some computational overhead may be required for the partial reevaluation of
the mapping fitness. Together with the mappings in the current trainer Ti , an
estimated Pareto front QPj is obtained.
The main goal of the representative subset is to correctly identify good mappings.
Therefore, the trainer will focus on the mappings that are the closest to the
Pareto front. Any mapping may have a fitness that is hard to predict (a mapping
with a high quality or a mapping with a poor quality), but the scenario-based
DSE only suffers from high-quality mappings that have an incorrectly predicted
fitness. As long as both the real and predicted fitness of a mapping are bad, it
does not really matter how bad the predicted fitness is. However, it is still an
issue if the predicted quality of a mapping is poor, whereas the real quality is
good. In this case, the mapping will not be added to the trainer. Although this
is undesirable, without exhaustively evaluating the candidate mappings, these
kinds of incorrect predictions cannot be detected. As the exhaustive evaluation
is expensive, the gain in the trainer quality does not outweigh the additional
computational overhead that is required to identify the high-quality mappings
where the predicted mapping quality is low. Over time the predicted ordering of
the mappings near the predicted Pareto front will be improved. Likely, this will
also improve the prediction of other mapping individuals.
Therefore, the k new training mappings Mc are selected from the set of
candidate mappings CiC1 by optimizing the distance to the estimated Pareto
front:

minimize
Mc

X
m2Mc

min
mp2 QPj

	
d
	
QF QSj .mp/; QF QSj .m/

subject to (1) Mc � CiC1

(2)jMc j D min.jCiC1j; k/

The mappings are ordered on their normalized Euclidean distance to the closest
mapping in the estimated Pareto front QPj . Here, the normalized Euclidean
distance d between solutions x1 and x2 (with f being the fitness function and n
the number of optimization objectives) is defined as:

fi .x/ D
fi .x/ 	 f

min
i

f max
i .x/ 	 f min

i

d .x1; x2/ D

vuut nX
iD1

.fi .x1/ 	 fi .x2//2

288 A. Pimentel and P. van Stralen

The normalized distance translates all the objectives to a range between 0 and 1.
For this purpose, the minimal (f min

i) and maximal value (f max
i) for the objective

must be known. From the candidate mappings (condition 1), the k mappings are
selected (condition 2) that are the closest to the estimated Pareto front.

Evaluate New Training Mappings: The mappings that are selected are exhaus-
tively evaluated using Sesame. For this purpose, a separate pool of Sesame
workers is used (just as the design explorer has a pool of Sesame workers). Once
the real fitness is known, the mappings can be used to generate trainer TiC1 out of
trainer Ti . Before the new training mappings are added, the trainer is truncated to
fit the new training mappings. This is done in such a way that the trainer always
contains real Pareto front P :

minimize
TiC1

X
m2TiC1

min
mp2P

	
d
�
F .mp/; F .m/

�

subject to (1) TiC1 � Ti

(2) jTiC1j D min.jTi j;T_SIZE 	 jMc j/

The truncated new trainer is a subset of the old trainer (condition 1), and it does
not exceed the predefined trainer size. If trainer mappings must be discarded,
the mappings that are the furthest from the real Pareto front are removed. This
is done because of the second purpose of the trainer: at the end of the scenario-
based DSE, it contains the best mappings that are found over time with their real
fitness. Hence, we assume that the maximal trainer size is picked in such a way
that it is significantly larger than the size of the Pareto front P . After truncation,
the next trainer can be finalized: TiC1 D TiC1 [Mc .

9.5.2 Subset Quality Metric

Having a set of training mappings is not sufficient for judging the quality of the
scenario subsets. To determine the actual quality of a subset of representative
scenarios, we use the misclassification rate metric. The misclassification rate counts
the number of ranks that is predicted incorrectly. Before we go into the definition
of the misclassification rate, we first take a look into the Pareto ranking [31]. There
are several approaches to rank individuals using the Pareto dominance relations, but
in this chapter, we only focus on two of those: Boolean ranking and Goldberg’s
ranking (also called non-dominated sorting).

The ranking schemes are visualized in Fig. 9.8. Goldberg’s ranking approach uses
the dominance depth of the individuals. This is the same approach as the NSGA-
II selector. Boolean ranking, on the other hand, follows a more simple approach:
if the solution is non-dominated, the rank is one; otherwise the rank is two. As
the design explorer uses an NSGA-II-based GA, it may be straightforward to use
Goldberg’s ranking scheme for the misclassification rate. The Boolean ranking,

9 Scenario-Based Design Space Exploration 289

2

2

1 2

2

1 2

2

2

2

2

2

f1

f2

cation

2

22

2

2

1 2

2

2

2

2

2

f1

f2

2

2

1 2

3

1 3

3

4

4

4

3

f1

f2

cation

3

32

2

4

1 4

3

5

5

5

4

f1

f2

a b

c d

Fig. 9.8 A set of Pareto fronts showing the effect of a small error in the prediction (as shown with
the dashed arrow) on the misclassification rate using the Boolean and Goldberg’s ranking scheme.
(a) Boolean ranking, real fitness. (b) Boolean ranking, predicted fitness. (c) Goldberg’s ranking,
real fitness. (d) Goldberg’s ranking, predicted fitness

however, can be obtained more efficiently than the Goldberg’s ranking. On top of
that, the misclassification rate may be deceiving when Goldberg’s ranking is used.

In Fig. 9.8, an example of such a deceiving case is given. The used trainer
consists of 12 training mappings. Figure 9.8a, c show the exact fitness of the training
mappings, whereas Fig. 9.8b, d show the predicted fitness of a specific scenario
subset. This scenario subset provides a relatively good prediction: 11 out of the 12
training mappings are predicted correctly (the circular mappings). The incorrectly
predicted training mapping (the square mapping) is slightly off as shown by a dashed
arrow. Due to the incorrect prediction, the square mapping seems to be dominated
by the leftmost training mapping. For both ranking schemes, the rank of the square
mapping becomes ranked second instead of first. In case of the Boolean ranking, this
is the only rank that is incorrect. For Goldberg’s ranking, however, all the training
mappings that are dominated by the square mapping are also incremented by one.
As a result, the Goldberg’s ranking has a misclassification rate of 3

4
, whereas the

290 A. Pimentel and P. van Stralen

Boolean ranking has a misclassification rate of 1
12

. Our example clearly shows that
a high-quality mapping that is incorrectly ranked can affect all of its dominated
solutions. However, as the main purpose of scenario-based DSE is that the Pareto
front is predicted correctly, it is not a problem that the poor mappings are incorrectly
ranked.

This is exactly what is determined with Boolean ranking. Each rank is based
on the correct prediction of a non-dominated individual. A formal definition of the
Boolean ranking is given in the following equation:

relF 0.m1;m2/ WD

8̂̂<
ˆ̂:
1 F 0.m1/ dominates F 0.m2/

	1 F 0.m2/ dominates F 0.m1/

0 else

(9.12)

rankF 0.m; T / WD

(
2 9m0 2 T .relF 0.m0; m/ D 1/

1 else
(9.13)

Equation 9.12 formally defines the Pareto dominance between two mappings m1

and m2. The mappings are evaluated using fitness function F 0. This can be the real
fitness F but also the predicted fitness QF QS . In this case, the scenario subset QS is used
to predict the fitness of the mappings.

Based on the relF 0 function, the rankF 0 is defined. This function ranks mappingm
given trainer T (see Eq. 9.13). In case any of the mappings in the trainer dominates
the mapping, the rank is equal to two. Otherwise, the mapping is Pareto optimal,
and the rank is equal to one. Given the ranking function, the misclassification rate
can be defined:

rrank. QS; T / WD
jfm 2 T W rankF .m; T / ¤ rank QF

QS
.m; T /gj

jT j
(9.14)

The rate of misclassified Boolean ranks is too coarse grained to be used in
isolation. In contrast to, e.g., Spearman’s rank correlation [26], a lower misclassifi-
cation rate is always better (the more non-dominated individuals that are correctly
identified, the better). However, the probability of an equal misclassification rate is
quite likely.

In this case, the number of misclassified relations is used as a tiebreaker. The
number of misclassified relations can be defined quite straightforwardly:

rrel. QS; T / WD
jfm1;m2 2 T W relF .m1;m2/ ¤ rel QF

QS
.m1;m2/gj

jT j2
(9.15)

By definition, when the number of misclassified relations is zero, the number
of misclassified ranks is also zero. For the other cases, the number of misclassified

9 Scenario-Based Design Space Exploration 291

D

C
B I

G

A

H

J

F

E

f1

f2

A <
< < < <
< < < <

<

B C D E F G H I J

B
C

D
E

F
G

H
I

2 Mispredicted Relations

DC
B I

G

A

H

J

F

E

f1

f2

A >
< < < <
< < < <

>

B C D E F G H I J

B
C

D
E

F
G

H
I

J
C

B

I
G

E

H

D

F

A

f1

f2

A <

< < < <
<

B C D E F G H I J

B
C

D
E

F
G

H
I

4 Mispredicted Relations

a b c

Fig. 9.9 A larger number of misclassified relations do not strictly correlate with the Pareto front
quality. The Pareto front in (c) has more mispredicted relations than the front in (b), but the error
ratio with respect to the real front is better. (a) Real. (b) 50% error ratio. (c) 0% error ratio

relations can suffer from the same problem as we showed with Goldberg’s ranking.
An example is shown in Fig. 9.9. Figure 9.9a shows the real Pareto front, where
the fronts of Fig. 9.9b, c are obtained using a predicted fitness. The first prediction
(Fig. 9.9b) only has two mispredicted relations (A $ E and D $ J), whereas
the second prediction (Fig. 9.9c) has four mispredicted relations. Still, the Pareto
front of the first prediction is only correct for 50% (E and J are not Pareto
optimal). The second prediction, which is worse according to the number of
misclassified relations, correctly identifies the Pareto front. As we are using the
number misclassified relations as a subordinate metric, and not as a main metric,
this is no problem in our case. Figure 9.9b has a misclassification rate of 20% that
is worse than the misclassification rate of 0% in Fig. 9.9c.

9.5.3 The Selector Thread

The selector thread uses the subset quality metrics to select the representative subset
of scenarios. More specifically, the goal of the selector thread is as follows:

minimize
QS

rrank
�
QS; T

�
W minimize

QS

rrel
�
QS; T

�
(9.16)

As discussed in the previous subsection, the main goal is to optimize the quality
of the predicted ranking. In the case of ties, the number of mispredicted relations will
determine which of the scenario subsets is the best. Whenever a better representative
subset is found, the subset is shared with the design explorer in order to improve its
fitness prediction. The subset may be of any size, as long as it does not exceed
a user-defined limit. This means that a smaller subset that has a better or equal

292 A. Pimentel and P. van Stralen

representativeness is preferable to a larger counterpart (the smaller the subset is, the
faster the fitness prediction is).

This leaves us with the question of how to dynamically search for the representa-
tive subset of scenarios. In [28], it was shown that a random pick of scenarios does
not result in a representative subset of scenarios. In the following subsections, we
describe three different techniques for this searching process, using (1) a genetic
algorithm, (2) a feature selection algorithm, and (3) a hybrid combination of both a
genetic algorithm and feature selection.

9.5.3.1 GA-Based Search for Scenario Subset
Our first subset selection technique uses a genetic algorithm (GA) to select the
representative scenario subsets. The GA of the subset selector is somewhat similar
to the GA in the design explorer: a population of individuals is evolved over time
in order to find the individual with the highest fitness. In order to describe the
individual, a chromosome is used that enumerates the scenarios that are contained
in the scenario subset. This chromosome, as illustrated in Fig. 9.10, is simply a
sequence of integers that refer to scenarios from the scenario database. As the length
of the chromosome is equal to the limit of the scenario subset size, the scenario
subset can never become too large. Smaller scenario subset sizes are achieved in
two ways: (1) scenarios may be used more than once within the same chromosome
and (2) there is a special value for an unused slot in the scenario subset.

Scenario subsets can change size as an effect of the mutation or crossover that
is applied during the search of a GA. The evolutionary process uses mutation and
crossover to prepare individuals for the next generation of scenario subsets. Where
the mutation replaces the scenarios in the subset one by one with other scenarios,
the crossover partly exchanges the scenarios of two subsets. Only the successful
modifications will make it to the next generation, leading to a gradual improvement
of the representative subset of scenarios.

This approach has several benefits. First, the computational overhead is relatively
small. Most time is spent in judging the quality of the scenario subsets and
modifying the population of scenario subsets. Additionally, selecting scenario
subsets for the next generation is relatively cheap. Apart from the low computational
overhead, the search can also quickly move through the total space of scenario

Subset Chromosome

Representative subset

Scenarios

3 12 18 9 3

Encoded Subset

Scenario
3

Scenario
18

Scenario
9

Scenario
12

Scenario
Database

Fig. 9.10 Chromosome representation of a subset. Both the gene sequence is shown and the
representative subset of scenarios that is encoded by the gene sequence

9 Scenario-Based Design Space Exploration 293

subsets. Due to crossover and mutation, the scenario subset can quickly change, and
the alternatives can be evaluated and explored. This also means that local optima
can easily be avoided. A local optimum is a solution that is clearly better than all
closely related solutions. A small change of a local optimum does typically not
result in a better subset, but the local optimum may still be much worse than the
global optimal solution. As a genetic algorithm always has a small probability that
the scenario subsets are changed significantly in the next generation, there is always
a probability that the search will escape from the local optimum.

Unfortunately, this is also the downside of the approach. Just when the search
comes close to the optimal solution, the mutation can quickly move the search into
a completely different direction. Although the likeliness of this all depends on the
choice of parameters such as mutation and crossover probability, it may be quite
hard to pick the parameters in such a way that the search space is completely
explored in the promising regions. Elitism in GAs assures that the points close
to the local optimum will be retained as part of the population, but not that the
neighborhood of each solution is carefully explored.

9.5.3.2 FS-Based Search for Scenario Subset
It would be better if the approach was less dependent on the choice of the parameters
of the search algorithm. The Feature Selection (FS) technique has less parameters,
and it basically performs a guided search that tries to improve a single scenario
subset step by step. There are many different feature selection techniques, each
giving a different trade-off between computational overhead and its quality. In fact,
the feature selection techniques with the lowest computational overhead actually
use a GA. In our case, we have chosen to use the dynamic sequential oscillating
search [25] as, in general, it provides better classifiers (i.e., the scenario subset that
classifies the non-dominated mapping individuals), with a moderate computational
overhead.

Figure 9.11 illustrates the dynamic oscillating search. The most fundamental part
of the algorithm is the up- and downswing. These swings are named according to
their effect on the size of the scenario subset. Where the upswing will modify the
subset by first adding a number of scenarios to the subset and then removing the
same number of scenarios, the downswing will first remove scenarios before new
scenarios are added again. This explains the name of the upswing and downswing:

SBS (-)

SFS (+) U
p

 S
w

in
g

D
o

w
n

 S
w

in
g

X'k = Xk

+=.5

=1

F(Xk) F(X'k)

F(Xk)>F(X'k)

Xk = X'k

Initial
Subset

Xk

Xk+
Xk

Xk

Xk

Xk- X'k = Xk

+=.5

=1

F(Xk) F(X'k)

F(Xk)>F(X'k)

Xk = X'k

Fig. 9.11 An illustration of feature selection by means of the dynamic oscillation search
procedure

294 A. Pimentel and P. van Stralen

in case of the upswing, the size of the subset swings upward, and for a downswing,
it swings downward. For adding and removing scenarios, the Sequential Forward
Selection (SFS) and Sequential Backward Selection (SBS) are used. These
techniques will iteratively add or remove a scenario in the most optimal way. This
means that SFS will increase the scenario subset size by iteratively adding the
most optimal scenario. This most optimal scenario is determined by trying out all
possible scenarios from the scenario database, and the scenario that results in the
best scenario subset will be added to the larger subset. Similarly, the SBS will
iteratively choose the optimal scenario to remove from the scenario subset. This
means that all the scenarios that can be removed from the scenario subset are tried
and the scenario removal that results in the best scenario subset will be applied.

As simple as it sounds, it makes the computational overhead of the swings largely
dependent on the number of scenarios that are added or removed. The number of
possibilities will grow linearly with respect with the number of scenarios that are
added and removed during the swing. For each scenario that is added, all scenarios
in the scenario database must be analyzed. Since this leads to a quick increase of
computational overhead once the swings become larger, the size of the swing (or ı
as used in Fig. 9.11) is initialized to one and slowly increased. During the search,
the up- and downswing are alternated, and whenever both the up- and downswing
do not result in a better scenario subset, the size of the swing is incremented by one.
This can be seen in Fig. 9.11, at the cases where F .Xk/ � F .X 0k/. The subset X 0k
is the current best subset, and the subset Xk is the subset that is obtained after the
up- or downswing. As a higher value for the function F means a better scenario
subset, the case where F .Xk/ � F .X 0k/ is an unsuccessful attempt to improve the
scenario subset by a swing. Therefore, the currently best subset is restored, and the
size of the swing is increased by 0:5. The value 0:5 is used to increment the swing
by one after two unsuccessful swings: the number of scenarios that are added is the
truncated integer value of ı. Of course, the swing can also be successful: in that
case, the current best subset X 0k is updated, and the swing size is reset to one.

In a sense, the dynamic oscillating search is a kind of hill climbing technique. It
oscillates the size of the scenario subset by exhaustively exploring all possibilities
to change the scenario subset. Whenever a better subset is found, the current best
representative subset is updated. Important to realize is that the current best subset
can also be updated during a swing. As SFS and SBS analyze the quality of the
scenario subset for each scenario that is added, it can be the case that a better
representative subset is found during the swing. If the size of this subset is smaller
than the maximal size, the currently most representative subset is updated and sent
to the design explorer.

The FS method is more directed than the GA, and, therefore, it will only move
closer to the optimal scenario subset. Unfortunately, this comes at a price: the FS is
much more sensitive to local optima than the GA approach.

9.5.3.3 A Hybrid Approach for Searching Scenario Subsets
Ideally, we want to combine the strengths of the GA and the FS approaches. The
hybrid approach (as shown in Fig. 9.12) tries to achieve this by alternating the GA

9 Scenario-Based Design Space Exploration 295

Fig. 9.12 The hybrid subset
selection approach that
alternates between a GA and
a FS algorithm

Genetic
Search

Feature
Selection

Best undone subset

Improved subset

and the FS methods. During the search for the representative subset, a GA will
quickly prune the design space of potential scenario subsets, whereas the FS will
thoroughly search the small neighborhood around the high-quality scenario subsets
that are found by the GA. The tricky point is the moment of alternation. When one
of the methods starts to converge, the other method should be activated.

At first sight, the feature selection may be interpreted as a custom variation
operator for the GA, but this is absolutely not the case. Both the GA and the FS will
keep state over time, and, thus, if the same subset is sent to the FS more than once,
the oscillating search will be continued where it stopped in the previous invocation.

As the GA keeps a population of scenario subsets and the FS only works on a
single scenario subset, it must be determined which scenario subset from the GA
population is sent to the FS selection method. The most obvious method is to send
the most representative subset from the GA to the FS. This can, however, not be
done indefinitely. If the same subset is sent to the FS too often, the hybrid approach
will again be susceptible for getting stuck in local optima as all the effort of the FS
will be spent on the same subset. Therefore, the amount of effort spent by the FS
to improve a single scenario subset is limited. If the FS has spent sufficient time on
the same scenario subset (this time can be spread over multiple invocations of the
FS), the subset is done, and it will not be sent to the FS anymore. So, the subset is
only sent if it is“unfinished”: the size of the swing in the oscillating search does not
exceed a predefined maximal margin. This margin is chosen in such a way that the
computational overhead of a single swing is still acceptable.

9.6 Related Work

In recent years, much research has been performed on high-level modeling and
simulation for MPSoC performance evaluation as well as on GA-based DSE [5, 8].
However, the majority of the work in this area still evaluates and explores systems
under a single, fixed application workload. Some research has been initiated on
recognizing workload scenarios [7,17] and making DSE scenario aware [16,32]. In
[7], for example, different single-application scenarios are used for DSE. Another
type of scenario is the use-case. A use-case can be compared with what we call

296 A. Pimentel and P. van Stralen

inter-application scenarios, and consequently, a use-case describes which applica-
tions are able to run concurrently. Examples of frameworks utilizing use-cases for
mapping multiple applications are MAMPS [14] and the work of Benini et al. [1].
MAMPS is a system-level synthesis tool for mapping multiple applications on a
FPGA, whereas Benini et al. use logic programming to reconfigure an embedded
system when a new use-case is detected. Another way of describing the use of
multiple applications is a multimode multimedia terminal [9], in which the inter-
application behavior is captured in a single, heterogeneous Model of Computation
(MoC) combining dataflow MoCs and state machine MoCs.

9.7 Discussion

Scenario-based DSE efficiently explores the mapping of dynamic multi-application
workloads on an MPSoC platform. Crucial for the efficiency of such mapping
exploration is the subset selector that dynamically selects the fitness predictor
for the design explorer. This fitness predictor is a subset of application scenarios
that is used by the design explorer to quickly identify the non-dominated set of
MPSoC mappings. In this chapter, we have given a detailed description of how the
representativeness of a scenario subset can be calculated and which techniques can
be used to select the fitness predictor (i.e., the subset of scenarios).

The three different fitness prediction techniques that were presented are (1) a
genetic algorithm (GA), (2) a feature selection (FS) algorithm, and (3) a hybrid
method (HYB) combining the two aforementioned approaches. A genetic algorithm
is capable of quickly exploring the space of potential scenario subsets, but due to its
stochastic nature, it is susceptible to missing the optimal scenario subsets. This is not
the case with the feature selection algorithm as it more systematically explores the
local neighborhood of a scenario subset. Unfortunately, this approach is relatively
slow and can suffer from local optima. The solution is to combine these approaches
in the hybrid approach, leading to a fitness prediction technique that can quickly
prune the design space, can thoroughly search the local neighborhood of scenario
subsets, and is less susceptible to local optima.

To give a feeling of the performance of the three different fitness prediction
techniques, Fig. 9.13 shows the results of a scenario-based DSE experiment in
which the three techniques are compared for three different subset sizes (1, 4, and
8% of the total number of application scenarios). In this experiment, the mapping
of ten applications with a total of 58 processes and 75 communication channels
is explored. The multi-application workload consists of 4607 different application
scenarios in total. The target platform is a heterogeneous MPSoC with four general-
purpose processors, two ASIPs and two ASICs, all connected using a crossbar
network. In this experiment, we have measured the required exploration time for
the scenario-based DSE to identify a satisfying mapping. After all, the faster the
DSE can provide results that match the requirement of the user, the better it is. For
this purpose, a DSE of 100 min is performed for all three subset selector approaches.
The results have been averaged over nine runs. To determine the efficiency of the

9 Scenario-Based Design Space Exploration 297

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

1% 4% 8%

N
or

m
al

iz
ed

 D
is

ta
nc

e
to

 O
pt

im
al

 F
ro

nt

Subset Size

Quality of the DSE
HYB

GA
FS

Fig. 9.13 Quality of the DSE for the different subset selection approaches. The quality is
determined based on the distance between the estimated Pareto front and the optimal front

multi-objective DSE, we obtain the distance of the estimated Pareto front (execution
time versus energy consumption of mapping solutions) to the optimal Pareto front.
For this purpose, we normalized execution time and energy consumption to a range
from 0 to 1. As the optimal Pareto front is not exactly known since the design space
is too large to exhaustively search it, we have used the combined Pareto front of all
our experiments for this.

When increasing the subset size, two effects will occur: (1) the larger the subset,
the more accurate the fitness prediction in the design explorer is and (2) the larger
the subset, the longer it takes to obtain the fitness of a single mapping causing a
slower convergence of the search. This can be seen in Fig. 9.13. The GA and the
FS subset selection have worse results when the subset becomes larger (the smaller
the distance, the better). The hybrid selector, however, shows a somewhat different
effect. With a subset size of 4%, it is able to benefit from a subset with a higher
accuracy. The slower convergence only starts to effect the efficiency for the 8%
subset. Comparing the different methods, the hybrid method shows the best results.
The only exception is for the 1% subset. In this case, the GA is still able to search
the smaller design space of possible subsets. Still, the result of the hybrid method
at 4% is better than the result of the GA at 1%. With the larger subset sizes, the
hybrid method can exploit both the benefits of the feature selection and the genetic
algorithm.

For more extensive experimental evaluations of scenario-based DSE, and the
different fitness prediction techniques in scenario-based DSE in particular, we
refer the interested reader to [28, 30]. These studies compare scenario-based DSE
with regular DSE in the context of multi-application workloads. Moreover, they

298 A. Pimentel and P. van Stralen

scrutinize the quality of the mapping solutions obtained by the different variants
of scenario-based DSE as well as the efficiency with which these solutions are
obtained.

The scenario-based DSE presented in this chapter aims at providing a static
mapping of a multi-application workload onto an MPSoC. Evidently, the application
dynamism as captured by application scenarios can of course also be exploited at
run time to dynamically optimize the embedded system according to the application
workload at hand. For example, in [20–23] as well as in �Chap. 10, “Design
Space Exploration and Run-Time Adaptation for Multicore Resource Management
Under Performance and Power Constraints”, various approaches are proposed for
adaptive MPSoC systems that allow for such dynamic system optimization. These
methods typically consist of two phases: A design-time stage performs DSE to find
an optimal mapping for each application. At run time, the occurrence of different
application scenarios is detected, after which the system can be reconfigured
by dynamically adapting the application mapping. This could, e.g., be done by
merging the pre-optimized mappings of each separate, active application in the
detected application scenario to form a first-order mapping for the entire scenario.
Subsequently, this first-order mapping can then be further optimized by using run-
time mapping optimization heuristics [22].

References

1. Benini L, Bertozzi D, Milano M (2008) Resource management policy handling multiple use-
cases in MPSoC platforms using constraint programming. In: Logic programming, Udine.
Lecture notes in computer science, vol 5366, pp 470–484

2. Coello CAC, Lamont GB, Veldhuizen DA (2007) Alternative metaheuristics. In: Coello Coello
CA, Lamont GB, Van Veldhuizen DA (eds) Evolutionary algorithms for solving multi-objective
problems. Genetic and evolutionary computation, 2nd edn. Springer, New York

3. Coffland JE, Pimentel AD (2003) A software framework for efficient system-level performance
evaluation of embedded systems. In: Proceedings of the SAC 2003, pp 666–671

4. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

5. Erbas C, Cerav-Erbas S, Pimentel AD (2006) Multiobjective optimization and evolutionary
algorithms for the application mapping problem in multiprocessor system-on-chip design.
IEEE Trans Evol Comput 10(3):358–374

6. Gerstlauer A, Haubelt C, Pimentel A, Stefanov T, Gajski D, Teich J (2009) Electronic
system-level synthesis methodologies. IEEE Trans Comput-Aided Des Integr Circuits Syst
28(10):1517–1530

7. Gheorghita SV et al (2009) System-scenario-based design of dynamic embedded systems.
ACM Trans Des Autom Electron Syst 14(1):1–45

8. Gries M (2004) Methods for evaluating and covering the design space during early design
development. Integr VSLI J 38(2):131–183

9. Ha S, Lee C, Yi Y, Kwon S, Joo YP (2006) Hardware-software codesign of multimedia
embedded systems: the peace approach. In: Proceedings of the IEEE international conference
on embedded and real-time computing systems and applications, pp 207–214

10. Jia Z, Bautista T, Nunez A, Pimentel A, Thompson M (2013) A system-level infrastructure
for multidimensional MP-SoC design space co-exploration. ACM Trans Embed Comput Syst
13(1s):27:1–27:26

9 Scenario-Based Design Space Exploration 299

11. Kahn G (1974) The semantics of a simple language for parallel programming. In: Proceedings
of the IFIP congress 74. North-Holland Publishing Co.

12. Keutzer K, Newton A, Rabaey J, Sangiovanni-Vincentelli A (2000) System-level design:
orthogonalization of concerns and platform-based design. IEEE Trans Comput-Aided Des
Integr Circuits Syst 19(12):1523–1543

13. Kienhuis B, Deprettere EF, van der Wolf P, Vissers KA (2002) A methodology to design
programmable embedded systems: the Y-chart approach. In: Embedded processor design
challenges. LNCS, vol 2268. Springer, Berlin/New York, pp 18–37

14. Kumar A, Fernando S, Ha Y, Mesman B, Corporaal H: Multiprocessor systems synthesis for
multiple use-cases of multiple applications on FPGA. ACM Trans Des Autom Electron Syst
13(3):1–27 (2008)

15. Martin G (2006) Overview of the MPSoC design challenge. In: Proceedings of the design
automation conference (DAC’06), pp 274–279

16. Palermo G, Silvano C, Zaccaria V: Robust optimization of SoC architectures: a multi-scenario
approach. In: Proceedings of the IEEE workshop on embedded systems for real-time
multimedia (2008)

17. Paul JM, Thomas DE, Bobrek A (2006) Scenario-oriented design for single-chip heteroge-
neous multiprocessors. IEEE Trans Very Large Scale Integr Syst 14(8):868–880

18. Pimentel A, Erbas C, Polstra S (2006) A systematic approach to exploring embedded system
architectures at multiple abstraction levels. IEEE Trans Comput 55(2):99–112

19. Piscitelli R, Pimentel A (2012) Design space pruning through hybrid analysis in system-level
design space exploration. In: Proceedings of DATE’12, pp 781–786

20. Quan W, Pimentel AD (2013) An iterative multi-application mapping algorithm for heteroge-
neous MPSoCs. In: Proceedings of ESTIMedia’13, pp 115–124

21. Quan W, Pimentel AD (2013) A scenario-based run-time task mapping algorithm for MPSoCs.
In: Proceedings of DAC’13, pp 131:1–131:6

22. Quan W, Pimentel AD (2015) A hybrid task mapping algorithm for heterogeneous MPSoCs.
ACM Trans Embed Comput Syst 14(1):14:1–14:25

23. Schor L, Bacivarov I, Rai D, Yang H, Kang SH, Thiele L (2012) Scenario-based design flow
for mapping streaming applications onto on-chip many-core systems. In: Proceedings of
CASES’12, pp 71–80

24. Singh AK, Shafique M, Kumar A, Henkel J (2013) Mapping on multi/many-core systems:
survey of current and emerging trends. In: Proceedings of DAC’13, pp 1:1–1:10

25. Somol P, Novovicova J, Grim J, Pudil P (2008) Dynamic oscillating search algorithm for
feature selection. In: Proceedings of the international conference on pattern recognition (ICPR
2008), pp 1–4

26. Spearman C (1904) The proof and measurement of association between two things. Am J
Psychol 15(1):72–101

27. van Stralen P (2014) Applications of scenarios in early embedded system design space
exploration. PhD thesis, Informatics Institute, University of Amsterdam

28. van Stralen P, Pimentel AD (2010) Scenario-based design space exploration of MPSoCs. In:
Proceedings of IEEE international conference on computer design (ICCD’10)

29. van Stralen P, Pimentel AD (2010) A trace-based scenario database for high-level simulation
of multimedia mp-socs. In: Proceedings of SAMOS’10

30. van Stralen P, Pimentel AD (2013) Fitness prediction techniques for scenario-based design
space exploration. IEEE Trans Comput-Aided Des Integr Circuits Syst 32(8):1240–1253

31. van Veldhuizen DA, Lamont GB (2000) Multiobjective evolutionary algorithms: Analyzing the
state-of-the-art. Evol Comput 8(2):125–147

32. Zaccaria V, Palermo G, Castro F, Silvano C, Mariani G (2010) Multicube explorer: an open
source framework for design space exploration of chip multi-processors. In: Proceedings of
the international conference on architecture of computing systems (ARCS), pp 1–7

10Design Space Exploration and Run-Time
Adaptation for Multicore Resource
Management Under Performance and Power
Constraints

Santiago Pagani, Muhammad Shafique, and Jörg Henkel

Abstract

This chapter focuses on resource management techniques for performance or
energy optimization in multi-/many-core systems. First, it gives a comprehensive
overview about resource management in a broad perspective. Secondly, it
discusses the possible optimization goals and constraints of resource man-
agement techniques: computational performance, power consumption, energy
consumption, and temperature. Finally, it details the state-of-the-art techniques
on resource management for performance optimization under power and thermal
constraints, as well as for energy optimization under performance constraints.

Acronyms

DPM Dynamic Power Management
DSE Design Space Exploration
DSP Digital Signal Processor
DTM Dynamic Thermal Management
DVFS Dynamic Voltage and Frequency Scaling
EOH Extremal Optimization meta-Heuristic
EWFD Equally-Worst-Fit-Decreasing
GIPS Giga-Instruction Per Second
GPP General-Purpose Processor
ILP Instruction-Level Parallelism
IPC Instructions Per Cycle
IPS Instruction Per Second
ISA Instruction-Set Architecture
ITRS International Technology Roadmap for Semiconductors
LTF Largest Task First

S. Pagani (�) • M. Shafique • J. Henkel
Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany
e-mail: pagani@kit.edu; shafique@kit.edu; henkel@kit.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_11

301

mailto:pagani@kit.edu; shafique@kit.edu; henkel@kit.edu

302 S. Pagani et al.

MPSoC Multi-Processor System-on-Chip
NoC Network-on-Chip
QoS Quality of Service
SCC Single Chip Cloud computer
SFA Single Frequency Approximation
SoC System-on-Chip
TDP Thermal Design Power
TLP Thread-Level Parallelism
TSP Thermal Safe Power

Contents

10.1 Introduction . 302
10.1.1 Centralized and Distributed Techniques . 304
10.1.2 Design-Time Decisions and Run-Time Adaptations 305
10.1.3 Parallel Applications . 306

10.2 Optimization Goals and Constraints . 307
10.2.1 Computational Performance . 307
10.2.2 Power and Energy Consumption . 309
10.2.3 Temperature . 313
10.2.4 Optimization Knobs . 316

10.3 Performance Optimization Under Power Constraints . 317
10.3.1 Traditional Per-Chip Power Constraints . 318
10.3.2 Efficient Power Budgeting: Thermal Safe Power . 318

10.4 Performance Optimization Under Thermal Constraints . 320
10.4.1 Techniques Based on Thermal Modeling . 321
10.4.2 Boosting Techniques . 322

10.5 Energy Optimization Under Performance Constraints . 324
10.6 Hybrid Resource Management Techniques . 328
References . 329

10.1 Introduction

In the past decade, single-core processors have reached a practical upper limit with
respect to their maximum operational frequency, mostly due to power dissipation.
This has motivated chip manufacturers to shift their focus toward designing
processors with multiple cores which operate at lower frequencies than their single-
core counterparts, such that they can potentially achieve the same computational
performance while consuming less power. Furthermore, computational performance
demands of modern applications have substantially increased and can no longer
be satisfied only by increasing the frequency of a single-core processor or by
customizing such a processor. In other words, modern computing systems require
processors with multiple cores in the same chip (expected to increase in number
every year, as shown in Fig. 10.1), which can efficiently communicate with each
other and provide increased parallelism. The main idea is therefore to consider an
application as a group of many small tasks, such that these tasks can be executed in
parallel on multiple cores and thus meet the increased performance demands [1].

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 303

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
26

0

1,000

2,000

3,000

4,000

5,000

6,000

0

10

20

30

40

50

60

N
um

be
r

of
 P

ro
ce

ss
in

g
E

le
m

en
ts

T
ot

al
 L

og
ic

 a
nd

 M
em

or
y

Si
ze

(n
or

m
al

iz
ed

 t
o

20
11

)
Number of Processing Elements

Total Logic Size (normalized to 2011)

Total Memory Size (normalized to 2011)

Fig. 10.1 System-on-Chip (SoC) consumer portable design complexity trends [24]. The figure
shows the expected total logic and memory sizes (normalized to 2011), as well as the expected
number of processing elements to be found in future SoCs, as predicted by ITRS in 2001

Aside for motivating the use of multi-core processors, the continuous increasing
performance demands and power budget constraints have led to the emergence of
heterogeneous multi-core processors composed by more than one type of core,
where each core type has different performance and power characteristics [62].
The distinct architectural features of the different types of cores can be potentially
exploited in order to meet both the functional and nonfunctional requirements (e.g.,
computational performance, power consumption, temperature, etc.). This makes
heterogeneous multi-core and many-core systems a very promising alternative
over their homogeneous counterpart, where an application may witness large
improvements in power and/or performance when mapped to a suitable type of
core, as also discussed in �Chap. 8, “Architecture and Cross-Layer Design Space
Exploration”.

Furthermore, as nanotechnology evolves, it is expected that in upcoming years
thousands of cores will be integrated on the same chip [24]. Such a large number
of cores need a Network-on-Chip (NoC) based on an efficient and scalable
interconnection infrastructure for core-to-core communication (as also discussed in
�Chap. 15, “Network-on-Chip Design”). To efficiently manage these processors,
we need sophisticated resource and power management techniques, which can be
categorized as “centralized or distributed” (with respect to their view of the system
and information exchange during the management decision), and as “design time
or run time” (with respect to the time of the decision making algorithms). Resource
and power management techniques are responsible for mapping threads/tasks to
specific resources on the chip (i.e., cores of different types, accelerators, remote
servers, etc.), migrating threads/tasks at run time, managing the power modes of the
resources (active, clock gated, sleep, power gated, etc.), selecting the voltage and
frequency levels of the resources, etc. Considering all these management options
leads to a very large design space from which to choose. For example, when
executing N threads/tasks on a system with M cores, in which each core can run
at F different voltage/frequency levels, there are MN C FM possible mapping

304 S. Pagani et al.

and voltage/frequency combinations. According to the desired goals and given
constraints, the appropriate combination can be therefore selected applying Design
Space Exploration (DSE). Furthermore, most run-time techniques (and also several
design-time techniques) considerably limit the design space in order to reduce the
execution time of the management decisions.

10.1.1 Centralized and Distributed Techniques

Centralized techniques assume to have (or be able to obtain) a global view of
the system. Namely, a centralized resource management technique would require
to know what applications are being executed throughout the chip, in how many
threads, mapped to which specific cores, executing at what voltage and frequency
level, their power consumption, etc. With this information, a centralized technique
can potentially arrive to very efficient resource management decisions. However,
if such detailed information is not known by the centralized manager a priori
(most likely scenario in real systems), then it needs to be transmitted through
the corresponding communication infrastructure, requiring high communication
bandwidths. This is the main reason why centralized techniques are generally not
scalable, where scalability is defined as the ability of a technique to remain within
feasible computation and communication constraints when the problem size grows
(i.e., when we have an increasing number of cores on a processor). Therefore,
centralized techniques are well suited for processors with a limited number of cores.

In practice however, a more realistic assumption, in terms of latency and
communication bandwidth, is to assume that every core is restricted to a local view
of the system where only information of the immediate surrounding neighborhood
is known at any given time. This can be easily achieved by having cores periodically
communicate with their neighbors, keeping the communication load distributed
throughout the chip. In this way, the resource management decisions are made in
a distributed fashion, where small groups of cores conduct local optimization,
maintaining scalability. This local optimization is managed differently depending
on the considered distributed technique. For example, each core could manage
itself individually after exchanging information with other cores, or contrarily, some
cores could act as local managers and make decisions that affect a small group of
neighboring cores. In either case, the challenge for distributed techniques is to make
high-quality resource management decisions with respect to the chosen optimization
goal with such limited local information.

In summary, mainly due to scalability issues, distributed techniques are
better suited for large multi-/many-core systems than centralized techniques.
Specifically, in distributed systems:

(continued)

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 305

• The communication load is balanced throughout the processor, avoiding
communication bottlenecks in the central manager.

• The computational complexity of the each distributed (local) resource
management decision is much smaller than the complexity of a centralized
decision, and therefore the problem size is decoupled from the total number
of cores in the chip.

10.1.2 Design-Time Decisions and Run-Time Adaptations

Resource management and power management methodologies based on design-
time decisions require to have advance knowledge of the applications to execute
and their requirements, as well as an estimation of their characteristics (execution
time, power consumption, etc.). Naturally, they have a global view of the system
and are therefore generally implemented in a centralized manner. Furthermore, the
execution time of design-time optimization algorithms is not of major importance,
as long as it remains below reasonable limits (e.g., in terms of minutes or hours
and not months or years). On the other hand, methodologies based on run-
time adaptations only have information of the current application queue (i.e., list
of applications ready for execution) and requirements. Moreover, the execution
time of run-time optimization algorithms (also known as on-the-fly algorithms)
contributes to the overall application execution time, and therefore, it is vital that
they have a short execution time. Given that having a global knowledge of the
system can potentially consume a high communication bandwidth and also requires
considerable time, run-time methodologies are usually restricted to a local view
of the system where only information of the immediate surrounding neighbor-
hood may be available and are therefore generally implemented in a distributed
manner.

In more detail, methodologies based on design-time decisions:

• Have a global view of the system.
• Do not have stringent timing constraints and therefore can involve complex

dynamic programming algorithms [25, 44], integer linear programming [26],
time-consuming heuristics (e.g., simulated annealing [33, 40] or genetic algo-
rithms [11]), or a large DSE.

• Can generally result in higher quality decisions than run-time methodologies.
• Require previous knowledge (or predictions) of the system behavior, which is not

always feasible to obtain a priori.
• Cannot adapt to changes in the system behavior, for example, the insertion of a

new application unknown at design time.

306 S. Pagani et al.

Contrarily, methodologies based on run-time (or on-the-fly) adaptations:

• Only have information of the current application queue and requirements.
• Generally, restricted to a local view of the system having only information of the

immediate surrounding neighborhood.
• Optimization decisions require a short execution time.
• Trade quality in order to reduce the communication bandwidth and the execution

time.
• Generally implemented using (probably distributed) lightweight heuristics.
• Can adapt to changes in the system behavior, for example, to take advantage of

dynamic workload variations of the applications (as also discussed in �Chap. 9,
“Scenario-Based Design Space Exploration”, e.g., early completions, perfor-
mance requirement changes, etc.) or to execute new applications unknown at
design time (even after the delivery of the system to the end-user).

• Can adapt to hardware changes after the production of a System-on-Chip (SoC),
for example, permanent hardware failures or core degradations due to aging
effects.

Finally, aside from design-time or run-time algorithms, there exist hybrid
methodologies which partially rely on results previously analyzed at design time
and also on run-time adaptations [50, 56, 59, 60, 63, 68]. Namely, based on design-
time analysis of the applications (stored on the system for a specific platform),
lightweight heuristics can make very efficient run-time decisions that adapt to
the system behavior (current applications on the ready queue, available system
resources, desired performance, etc.). Such techniques still suffer from some of the
downsides of design-time methods, for example, knowing all potential applications
to be executed at design time such that they can be properly analyzed on the desired
platform. Nevertheless, they can generally result in better resource management
decisions than design-time algorithms (as they can adapt to the current system
behavior) and than on-the-fly heuristics (as they can make more informed decisions
or require less time to evaluate certain alternatives).

10.1.3 Parallel Applications

For an application to be executed in a multi-/many-core system, the application has
to be parallelized (or partitioned) into multiple threads/tasks that can be concurrently
executed on different cores. Although far from a solved problem, there exist some
state-of-the-art application parallelization tools [7, 34] that can be used to take care
of the task partitioning and manual analysis, involving finding a set of tasks, adding
the required synchronization and inter-task communication to the corresponding
tasks, management of the memory hierarchy, verifying the parallelized code in order
to ensure a correct functionality [35], etc.

A task binding process is also required for the case of heterogeneous platforms,
such that the system can know which tasks can be mapped to which type of cores

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 307

and with what cost [61]. Namely, depending on the underlying architecture, it is
possible that not all tasks can be mapped to all core types, for example, a task
requiring a floating point unit may not be mapped to a core that does not have such
a unit. Moreover, the binding process must analyze the implementation costs (e.g.,
performance, power consumption, and resource utilization) of every task on all the
types of cores that support each task, such as a General-Purpose Processor (GPP), a
Digital Signal Processor (DSP), or some reconfigurable hardware.

10.2 Optimization Goals and Constraints

There are several possible optimization goals and constraints for resource man-
agement techniques: computational performance, power consumption, energy con-
sumption, and temperature. For example, a system could choose to maximize
the computational performance under a power or temperature constraint, while
another system would prefer to minimize energy consumption under performance
constraints.

10.2.1 Computational Performance

In few words, computational performance refers to how fast and efficiently can the
system execute a given set of applications. It can be measured in many different
ways, for example, application’s execution time, throughput, Instructions Per Cycle
(IPC), Instruction Per Second (IPS), normalized speed-up factor with respect to a
known reference, etc. Generally, IPC and IPS are not well-suited metrics to use in
heterogeneous systems, as different types of cores might have different Instruction-
Set Architectures (ISAs) or require a different number of instructions to finish the
same amount of work.

Maximizing the overall system performance (generic term which can, e.g.,
refer to maximizing the summation of the weighted throughput of all appli-
cations, minimize the longest execution time among all applications, etc.)
is generally the most commonly pursued optimization goal. Nevertheless,
for applications with hard real-time deadlines, meeting the deadlines can be
formulated as satisfying certain performance requirements, and therefore for
such cases performance is considered as a constraint.

The execution time of an application (or the resulting performance of the
application) will depend on how the application is executed, for example, in how
many threads the application is parallelized in, the types of cores to which the
application is mapped to, the execution frequency, the utilization of shared resources

308 S. Pagani et al.

(caches, NoC, etc.) by other applications, etc. The application’s characteristics also
play a major role in its execution time, for example, its Instruction-Level Parallelism
(ILP) or its Thread-Level Parallelism (TLP) have a direct impact in how well an
application scales with respect to frequency and the number of threads, respectively.
Applications with high ILP generally scale well with increasing frequencies, while
applications with high TLP generally scale better when parallelized in many
threads. For example, Fig. 10.2 shows the execution time and speed-up factors
of three applications from the PARSEC benchmark suite [3] with respect to the
frequency when executing a single thread. Similarly, Fig. 10.3 shows the execution
time and speed-up factors of the same application with respect to the number of
parallel threads when executing at 2GHz. From the figures, we can observe that
the impact of the frequency and the number of parallel threads on the speed-up
factors are entirely application dependent and that the application’s performance
will eventually stop scaling properly after a certain number of threads, known as the
parallelism wall.

0 1 2 3 4
0

10

20

30

Frequency [GHz]

Ex
ec

ut
io

n
Ti

m
e

[s
] canneal

x264
bodytrack

0 1 2 3 4
0

5

10

15

20

Frequency [GHz]

Sp
ee

d-
up

Fa
ct

or

canneal
x264
bodytrack

Fig. 10.2 Execution time and speed-up factors with respect to frequency based on simulations
conducted on gem5 [4] for three applications from the PARSEC benchmark suite [3] executing
a single thread on an out-of-order Alpha 21264 core. The speed-up factors are normalized to the
execution time of each application running at 0:2GHz

16 32 48 64

10

20

30

Number of Parallel Threads

Ex
ec

ut
io

n
Ti

m
e

[s
]

canneal
x264
bodytrack

16 32 48 64
1

2

3

Number of Parallel Threads

Sp
ee

d-
up

Fa
ct

or

canneal
x264
bodytrack

Fig. 10.3 Execution time and speed-up factors based on simulations conducted on gem5 [4] and
Amdahl’s law for three applications from the PARSEC benchmark suite [3] executing at 2GHz on
an out-of-order Alpha 21264 core. The speed-up factors are normalized to the execution time of
each application running a single thread

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 309

10.2.2 Power and Energy Consumption

Power consumption is in nature an instantaneous metric which changes through
time. Particularly, a core executing a certain thread of an application will consume
different amounts of power at different time instants and application phases.
For example, Fig. 10.4 illustrates the power consumption results of simulations
conducted with Sniper [5] and McPAT [31], for a PARSEC bodytrack application
executing four parallel threads on a quad-core Intel Nehalem cluster running at
2:2GHz. The power consumption values observed on a specific core at a given point
in time depend on several parameters, e.g., the underlying architecture of the core,
the technology scaling generation, the mode of execution of the core (e.g., active,
idle, or in a low-power mode), the selected voltage/frequency levels for execution,
the temperature on the core (for leakage power thermal dependency), the application
phase begin executed, etc.

Generally, as detailed in [17], the power consumption of a CMOS core can be
modeled as formulated in Equation (10.1):

P D ˛ � C
app
eff � V

2
dd � f C Vdd � Ileak .Vdd; T /C Pind (10.1)

where ˛ represents the activity factor (or utilization) of the core, C app
eff represents

the effective switching capacitance of a given application, Vdd represents the supply

0
2
4
6

Core 1

Po
w

er
[W

]

0
2
4
6

Core 2

Po
w

er
[W

]

0
2
4
6

Core 3

Po
w

er
[W

]

0 50 100 150 200 250 300
0
2
4
6

Core 4

Time [ms]

Po
w

er
[W

]

Fig. 10.4 Power consumption results of simulations conducted using Sniper [5] and McPAT [31],
for a PARSEC bodytrack application with simmedium input, executing four parallel threads at
2:2GHz on a quad-core Intel Nehalem cluster

310 S. Pagani et al.

voltage, f represents the execution frequency, Ileak represents the leakage current
(which depends on the supply voltage and the core’s temperature T), and Pind

represents the independent power consumption (attributed to keeping the core in
execution mode, i.e., the voltage-/frequency-independent component of the active
power consumption). Moreover, in Equation (10.1), ˛ � C app

eff � V
2

dd � f represents
the dynamic power consumption, while Vdd � Ileak .Vdd; T / represents the leakage
power consumption. Hence, if a core is clock gated, it still consumes leakage and
indirect power. On the other hand, cores can also be set to some low-power mode
(e.g., sleep or power-gated), each mode with an associated power consumption and
different latencies for entering and leaving each low-power mode.

With respect to the voltage and frequency of the core, in order to stably
support a specific frequency, the supply voltage of the core has to be adjusted
above a minimum value. This minimum voltage value is frequency dependent,
and higher frequencies require a higher minimum voltages. Furthermore, as shown
by Pinckney et al. [49], the relation between the frequency and the corresponding
minimum voltage can be modeled according to Equation (10.2):

f D k �
.Vdd 	 Vth/

2

Vdd
(10.2)

where Vth is the threshold voltage and k is a fitting factor. Expressed in other words,
the physical meaning of Equation (10.2) is that for a given supply voltage, there is
a maximum stable frequency at which a core can be executed, and running at lower
frequencies is stable but power/energy inefficient. Therefore, if the system runs
at the corresponding power-/energy-efficient voltage and frequency pairs, we can
derive a linear relationship between voltage and frequency and thus arrive at a cubic
relation between the frequency and the dynamic power consumption. Figure 10.5
uses Equation (10.2) to model the minimum voltages necessary for stable execution
on a 28 nm x86-64 microprocessor [14], and Fig. 10.6 shows how the power model
from Equation (10.1) fits average power consumption results from McPAT [31]
simulations for an x264 application from the PARSEC benchmark suite [3].

0.5 1.0 1.5
0
1
2
3
4

Equation (2)

Values from [14]

Vth

NTC region
Near-Threshold

STC region
Traditional DVFS

Boosting
region

Voltage [V]

Fr
eq

ue
nc

y
[G

H
z]

Fig. 10.5 Frequency and voltage relation modeled with Equation (10.2) for the experimental
results of a 28 nm x86-64 microprocessor developed in [14]

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 311

0 1 2 3 4
0

5

10

15

20

Power model from Equation (1)

Experimental results

Frequency [GHz]

A
ve

ra
ge

 p
ow

er
 [W

]

Fig. 10.6 Experimental results for a 22 nm out-of-order Alpha 21264 core, based on our
simulations conducted on gem5 [4] and McPAT [31] for an x264 application from the PARSEC
benchmark suite [3] running a single thread, and the derived power model from Equation (10.1)

Voltage Frequency
0. 73 V 301 .48 MHz
0. 75 V 368 .82 MHz
0. 85 V 569 .45 MHz
0. 94 V 742 .96 MHz
1. 04 V 908 .92 MHz
1. 14 V 1077 .11 MHz
1. 23 V 1223 .37 MHz
1. 32 V 1303 .79 MHz

Voltage Frequency
0.70 V 25 .38 W
0.80 V 37 .26 W
0.91 V 50 .76 W
1.00 V 70 .73 W
1.05 V 91 .25 W
1. 10 V 110 .15 W
1. 14 V 125 .27 W
1. 21 V 161 .99 W
1. 28 V 201 .40 W

a b c

0.2 0.4 0.6 0.8 1 1.2 1.4

1

2

3

4

5

Frequency [GHz]

A
ve

ra
ge

 P
ow

er
 [W

]

Experimental results [19]
Model from Equation (1)

Fig. 10.7 Experimental results for the 48-core system developed in [19] and the power model
from Equation (10.1). (a) Frequency vs. voltage [19] (b) Power vs. voltage [19] (c) Power model
for a single core

Similarly, we can also use Equation (10.1) to model the experimental re-
sults from a research paper on Intel’s Single Chip Cloud computer (SCC) [19],
which developed a many-core system that integrates 48 cores. The work in
[19], presents a relationship between the minimum voltages necessary for stable
execution when running the cores at different frequencies, as well as average power
consumption values for the entire chip when executing computational intensive
applications running at the maximum allowed frequency for a given voltage, and
these results are summarize in Fig. 10.7a, b. Therefore, we can fit the power
model from Equation (10.1) based on the values of these two tables, such that
the power consumption on individual cores can be modeled as illustrated in
Fig. 10.7c.

Energy is the integration of power over time, and thus, when plotted, the energy
consumed between two time points is equivalent to the area below the power curve
between the two time points. Therefore, energy is associated with a time window, for
example, an application instance. Figure 10.8 presents average power consumption
and energy consumption examples for one instance of some applications from the

312 S. Pagani et al.

0 1 2 3 4
0

5

10

15

20

Frequency [GHz]

Av
er

ag
e

Po
w

er
[W

]

x264
bodytrack
canneal

0 1 2 3 4
0

5

10

15

20

Frequency [GHz]

En
er

gy
[J

]

x264
bodytrack
canneal

Fig. 10.8 Average power and energy values based on simulations in gem5 [4] and McPAT [31]
for one instance of three applications from the PARSEC benchmark suite [3] executing a single
thread on an out-of-order Alpha 21264 core

PARSEC benchmark suite [3] executing a single thread on an out-of-order Alpha
21264 core.

Previous work in the literature [27, 42] has shown that there exists a critical
frequency for every application executing on a certain type of core which mini-
mizes the energy consumption for execution. Namely, although executing at slow
frequencies reduces the power consumption (due to the cubic relationship between
dynamic power consumption and the frequency), it also prolongs the execution
time of an application. Therefore, the critical frequency represents the frequency
for which the energy savings achieved by reducing the power consumption (mainly
savings in dynamic energy) are less significant than the corresponding increases in
the energy consumption for prolonging the execution time (mainly due to leakage
effects). In simple terms, this means that executing an application below its critical
frequency for the corresponding type of core is not energy efficient, and it should
hence be preferably avoided, even if it reduces the power consumption and meets the
performance and timing constraints. The examples in Fig. 10.8 show the presence
of such discussed critical frequency, where we can see that executing an application
below 0:4GHz (0:2GHz in the figure) consumes more energy than executing it at
0:4GHz.

Minimizing the overall energy consumption under timing (performance)
constraints is a common optimization goal for real-time mobile systems, in
which prolonging the battery lifetime is of major importance. Furthermore,
on other battery-operated systems for which we can estimate the elapsed
time between charging cycles (e.g., mobile phones), energy could also be
used as a constraint, such that the system optimizes (maximizes) the overall
performance under the battery’s energy budget. Contrarily, it is very rare to
optimize for power consumption, and thus power is mostly considered as a
constraint, for example, to run the system under the given Thermal Design
Power (TDP).

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 313

10.2.3 Temperature

Whenever some part of the chip is consuming power, it is also generating heat.
Given that excessively high temperatures on the chip can cause permanent failures
in transistors, maintaining the temperature throughout the chip below a certain
threshold is of paramount importance. This issue is even more significant in
modern chips due to voltage scaling limitations, which lead to increasing power
densities across technology scaling generations and the so-called dark silicon
problem [17, 37], that is, all parts of a chip cannot be simultaneously active at
full speed. The use of a cooling solution (e.g., the combination of the thermal
paste, the heat spreader, the heat sink, the cooling fan, etc.) and Dynamic Thermal
Management (DTM) techniques is employed for such a purpose. DTM techniques
are generally reactive (i.e., only become active after the critical temperature is
reached or exceeded) and may power-down cores, gate their clocks, reduce their
supply voltage and execution frequency, boost-up the fan speed, etc. Nevertheless,
DTM techniques are generally aimed at avoiding the chip from overheating, not
to optimize its performance. An abstract example of a DTM technique based on
voltage and frequency scaling is presented in Fig. 10.9.

Although there exist some work which aims at reducing the peak temperature
under performance constraints or at minimizing the thermal gradients in
the chip, temperature is mostly considered as a constraint rather than a
goal. Furthermore, thermal constraints tend to be the biggest limiting factor
for performance optimization, especially in modern computing platforms in
which power densities are ever increasing.

TimeTe
m

pe
ra

tu
re Critical Temperature

Hysteresis time/Control period

TimeFr
eq

ue
nc

y

Time

V
ol

ta
ge

Fig. 10.9 Example of a DTM technique based on voltage and frequency scaling

314 S. Pagani et al.

The most widely adopted models used for thermal modeling in electronics
are RC thermal networks, which are based on the well-known duality between
thermal and electrical circuits [20]. In an RC thermal network, thermal conductances
interconnect the thermal nodes among each other. Furthermore, there is a thermal
capacitance associated with every thermal node that accounts for the transient
effects in the temperatures, but there is no thermal capacitance associated with the
ambient temperature as it is considered to be constant for long periods of time. The
power consumption of cores and other elements corresponds to heat sources. In
this way, the temperatures throughout the chip can be modeled as a function of the
ambient temperature, the power consumptions inside the chip, and by considering
the heat transfer among neighboring thermal nodes.

An example of a simplified RC thermal network for a chip with two cores is
presented in Fig. 10.10. In the figure, T1 and T2 are voltages that represent the
temperatures on core 1 and core 2, respectively. Voltages T3 and T4 represent the
temperatures on the heat sink immediately above the cores. Current supplies p1 and
p2 represent the power consumptions on each core. The thermal conductances bc,
bc-hs, bhs, and gamb account for the heat transfer among the thermal nodes. Finally,
the thermal capacitances of thermal node i are represented by capacitor ai . By using
Kirchoff’s first law and linear algebra for the example in Fig. 10.10, we can derive
a system of first-order differential equations as:

p1

p2

a1

a2

T1

T2

bc

bc-hs

bc-hs

a3

a4

T3

T4

bhs

gamb

gamb

Tamb

Fig. 10.10 Simple RC thermal network example for two cores (Figure from [46]), where we
consider that cores are in direct contact with the heat sink and being the only connection between
cores and the ambient temperature. A more detailed example would consider more layers between
a core and the heat sink, for example, the ceramic packaging substrate, the thermal paste, and the
heat spreader; and there would be more paths leading to the ambient temperature, for example,
through the circuit board

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 315

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
:

p1 	 .T1 	 T3/ bc-hs C .T2 	 T1/ bc 	 a1
dT1
dt
D 0

p2 	 .T2 	 T4/ bc-hs 	 .T2 	 T1/ bc 	 a2
dT2
dt
D 0

.T1 	 T3/ bc-hs C .T4 	 T3/ bhs 	 a3
dT3
dt
	 .T3 	 Tamb/ gamb D 0

.T2 	 T4/ bc-hs 	 .T4 	 T3/ bhs 	 a4
dT4
dt
	 .T4 	 Tamb/ gamb D 0:

The system of first-order differential equations can be rewritten in matrix and vector
form as:

2
666664

bc-hs C bc 	bc 	bc-hs 0

	bc bc-hs C bc 0 	bc-hs

	bc-hs 0 bc-hs C bhs C gamb 	bhs

0 	bc-hs 	bhs bc-hs C bhs C gamb

3
777775

2
664
T1
T2
T3
T4

3
775

C

2
664
a1 0 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a4

3
775
2
664
T 01
T 02
T 03
T 04

3
775 D

2
664
p1
p2
0

0

3
775C Tamb

2
664
0

0

gamb

gamb

3
775 :

Therefore, RC thermal networks can serve as mathematical expressions to model
the temperatures on the chip. In condensed matrix and vector form, the system of
first-order differential equations of an RC thermal network is expressed as:

AT0 C BT D PC TambG;

where for a system with N thermal nodes, Tamb denotes the ambient temperature,
matrix A D

�
ai;j

�
N�N

holds the values of the thermal capacitances (generally a
diagonal matrix, since thermal capacitances are modeled to ground), matrix B D�
bi;j

�
N�N

contains the values of the thermal conductances between vertical and
lateral neighboring nodes (in

�
Watt

Kelvin

�
), column vector T D ŒTi �N�1 represents the

temperature on each node, column vector T0 D
�
T 0i
�
N�1

represents the first-order
derivative of the temperature on each node with respect to time, column vector P D
Œpi �N�1 contains the values of the power consumption on every node, and column
vector G D Œgi �N�1 contains the values of the thermal conductance between every
node and the ambient temperature. In practice, the RC thermal network model of a
chip and cooling solution can be modeled through profiling or by using a modeling
tool like HotSpot [20].

316 S. Pagani et al.

10.2.4 Optimization Knobs

In order to achieve the abovementioned optimization goals under the corre-
sponding constraints, efficient resource management techniques are required. Such
techniques, however, are based on some basic hardware and software methods
(commonly present in standard chip designs) which are used and exploited as
optimization knobs. Among such optimization knobs, the most commonly used
are thread-level selection, thread-to-core mapping and run-time task migration,
Dynamic Power Management (DPM), and Dynamic Voltage and Frequency Scaling
(DVFS). Specifically:

• Thread-level selection refers to selecting an appropriate level of parallelism for
every application, which depending on the TLP of each application can have a
major impact in the resulting performance, as seen in Sect. 10.2.1.

• Thread-to-core mapping involves to which specific core a thread is mapped to,
both in terms of the type of core and the physical location of the core in the chip.
In other words, the type of core to which a thread is mapped to is very important.
Nevertheless, the selection of the physical location of the core is also a nontrivial
issue, as this will have an impact on the performance (due to communication
latencies among cores, potential link congestions, and the utilization of the shared
resources) and also on the resulting temperature distribution (due to the heat
transfer among cores, potentially creating or avoiding hotspots).

• Run-time task migration is simply the ability to migrate a task/thread from
one core to another, at run-time. When migrating tasks at run-time, binary
compatibility of tasks needs to be considered, given that, for example, different
cores might have different ISAs, or a software task may be migrated to a
reconfigurable fabric as a hardware implementation. Furthermore, it is also
important to consider the non-negligible migration overheads, which could
potentially result in larger performance penalties than benefits when applying
too frequent migrations. For example, depending on the memory hierarchy, both
instruction and data cache will experience many misses after a task is migrated
from one core to another.

• Dynamic Power Management (DPM) refers to the dynamic power state
selection of cores. For example, cores could be set to execution (active) mode,
or they could be set to a low-power mode (e.g., clock gated, sleep, power gated,
etc.). Every low-power mode has an associated power consumption and different
latencies for entering and leaving each mode.

• Dynamic Voltage and Frequency Scaling (DVFS) refers to the ability to
dynamically scale the voltage and/or frequency of a single core or a group of
cores. Depending on the chip, voltage scaling and frequency scaling could be
available at a per-core level, there could be only one global voltage and frequency,
or it could be managed by groups of cores (i.e., clusters or voltage/frequency
islands). For example, in Intel’s Single Chip Cloud computer (SCC) [23], cores

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 317

are clustered into groups of eight cores that share the same voltage (dynamically
set at run time), while the frequency of the cores can be selected every two cores,
such that we can have up to four different frequencies inside each cluster of eight
cores sharing a voltage.

10.3 Performance Optimization Under Power Constraints

As explained in Sect. 10.2, maximizing the overall system performance is generally
the most commonly pursued optimization goal. In regard to the constraints, some
resource management techniques consider power consumption, others consider
temperature, and some consider both power and temperature. Furthermore, with
respect to the power consumption, every system will have a physical power
constraint which can, for example, be determined by the wire thickness or the
supply voltage. Nevertheless, it is also very common to use power constraints
as abstractions that allow system designers to indirectly deal with temperature.
Namely, running the system under a given power constraint should presumably
avoid violations of the thermal constraints. In line with such a concept, a power
constraint aimed as a thermal abstraction is considered to be safe if satisfying it
guarantees no thermal violations, and it is considered to be efficient if it results in
temperatures that are not too far away from the critical temperature. Figure 10.11
shows an abstract example of a safe and efficient power budget, in which the
maximum temperature throughout the chip remains just below the critical value
when the system does not exceed the power budget.

The motivation for this approach is mainly to simplify the problem, given that
proactive resource management techniques that directly deal with temperature
are potentially more complex than those that only deal with power, mostly due
to the heat transfer among cores and transient thermal effects.

Power Budget

Po
w

er
[W

]

Critical Temperature

Time

Te
m

pe
ra

tu
re

[◦
C

] Max. Chip Temperature
Power Consumption

Fig. 10.11 Abstract example of a safe and efficient power budget

318 S. Pagani et al.

10.3.1 Traditional Per-Chip Power Constraints

The most common scheme in this direction (i.e., to have a power constraint as a
thermal abstraction) is to use TDP as a per-chip power constraint, and there are
several works in the literature aiming at performance optimization for such scenarios
[30, 37, 52, 55].

Muthukaruppan et al. [37] propose a control-based framework that attempts
to obtain the optimal trade-off between performance and power consumption, for
homogeneous multi-core systems, while using TDP as a per-chip power constraint.
DVFS and task migrations are used at different levels, specifically, at a task level, at
a cluster level, and on the chip controllers. The controllers are coordinated such that
they can throttle down the power consumption in case TDP is violated and to map
tasks to cores in order to optimize the overall performance.

Also for overall performance optimization on homogeneous systems, Raghu-
nathan et al. [52] try to exploit process variations between cores as a means for
choosing the most suitable cores for every application. Their results show that,
mostly due to the proportional increment of the process variations, the performance
efficiency can potentially be increased along with the increase in the dark silicon
area.

Sartori and Kumar [55] focus on maximizing many-core processor throughput for
a given peak power constraint. It proposes three design-time techniques: mapping
the power management problem to a knapsack problem, mapping it to a genetic
search problem, and mapping it to a simple learning problem with confidence
counters. These techniques prevent power from exceeding the given constraint and
enable the placement of more cores on a die than what the power constraint would
normally allow.

Kultursay et al. [30] build a 32-core TFET-CMOS heterogeneous multi-core
processor and present a run-time scheme that improves the performance of appli-
cations running on these cores, while operating under a given power constraint. The
run-time scheme combines heterogeneous thread-to-core mapping, dynamic work
partitioning, and dynamic power partitioning.

However, using a single and constant value as a power constraint, either
at a per-chip or per-core level, for example, TDP, can easily result in
thermal violations or significantly underutilized resources on multi-/many-
core systems. This effect and a solution are discussed in Sect. 10.3.2.

10.3.2 Efficient Power Budgeting: Thermal Safe Power

For a system with 16 cores (simple in-order Alpha 21264 cores in 45 nm, simulated
with McPAT [31]) and HotSpot’s default cooling solution [20], Fig. 10.12 shows

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 319

2 4 6 8 10 12 14 16
60

80

100

120

140

Number of Simultaneously Active Cores

M
ax

.T
em

pe
ra

tu
re

[◦
C

]

129.0W per-chip
90.2W per-chip
58.7W per-chip
8.06W per-core

Fig. 10.12 Maximum steady-state temperature among all cores (DTM deactivated) as a function
of the number of active cores, when using different single and constant per-chip and per-core power
budgets

the maximum temperature among all cores (in the steady state, for concentrated
mappings, and with DTM deactivated) as a function of the number of simultane-
ously active cores when using several traditional per-chip or per-core power budgets.
Assuming that the critical temperature in this case is 80 ıC, the figure shows that (for
these specific concentrated mappings) there is only one point for each power budget
in which the maximum temperature on the chip matches the critical value. For the
other number of active cores, the temperature is either below or above the threshold,
meaning that the power budget was not efficient or that it was not safe, respectively.

Therefore, the Thermal Safe Power (TSP) [47] power budget concept is
introduced, proposing a safe and efficient alternative. The idea behind TSP is to
have a per-core power constraint that depends on the number of active cores, rather
than considering a single and constant value. Executing cores at power levels that
satisfy TSP can result in a higher overall system performance when compared to
traditional per-chip and per-core power budgeting solutions while maintaining the
temperature throughout the chip below the critical value. Based on the RC thermal
network of a given chip and its cooling solution, TSP can be computed at design
time in order to obtain safe power constints for the worst-case mappings (namely,
concentrated mappings promoting hotspots) as shown in the example in Fig. 10.13a,
thus allowing the system to make thread-level selection decisions independent of the
thread-to-core mapping. Furthermore, TSP can also be computed at run time for a
(given) specific mapping of active cores, such that the system can further optimize
the power budget for dispersed core mappings, for example, as shown in Fig. 10.13b.

Generally, as the number of active cores increases, the TSP power constraints
decrease (as seen in Fig. 10.14), which in turn translates to executing cores at
lower voltage and frequency levels. In this way, TSP derives a very simple relation
between the number of active cores in a processor and their (application dependent)
maximum allowed voltage and frequency levels for execution.

The major limitation with the techniques discussed in this section (both tradi-
tional power constraints and TSP) is that power is generally not easily measured
in practical systems, mainly due to the lack of per-core power meters. In order to

320 S. Pagani et al.

55.8◦C 55.9◦C 55.6◦C 54.9◦C

58.1◦C 58.5◦C 57.9◦C 56.1◦C

78.5◦C 79.2◦C 77.7◦C 57.8◦C

79.2◦C 80.0◦C 78.5◦C 58.0◦C

12.74 W 12.74 W 12.74 W

12.74 W 12.74 W 12.74 W

79.9◦C 60.6◦C 80.0◦C 60.1◦C

59.7◦C 60.4◦C 61.2◦C 80.0◦C

60.5◦C 79.8◦C 60.4◦C 60.6◦C

80.0◦C 60.5◦C 59.7◦C 79.9◦C

14.64 W 14.64 W

14.64 W

14.64 W

14.64 W 14.64 W

50

60

70

80

[◦C]

a b

Fig. 10.13 Example of TSP for two different mappings for a maximum temperature of 80 ıC
(Figure from [46]). Top numbers are the power consumptions of each active core (boxed in black).
Bottom numbers are the temperatures in the center of each core. Detailed temperatures are shown
according to the color bar. (a) Concentrated mapping example with 6 active cores. (b) Distributed
mapping example with 6 active cores

4 8 12 16
0
5

10
15
20
25a b

Number of Active Cores

Po
w

er
[W

] TSPworst cases

4 8 12 16
0

50

100

150

Number of Active Cores

Po
w

er
[W

]

TSPworst cases

Fig. 10.14 Example of TSP for the worst-case core mappings. Per-chip values are estimated by
multiplying per-core values with the number of active cores. (a) Per-core budget. (b) Estimated
per-chip budget

address this issue, there are some works in the literature that attempt to estimate
power consumption by measuring performance counters and core utilization [32].
Otherwise, extensive design-time application profiling with potential run-time
refinement is required to estimate the power consumption of different applications
running on different types of cores.

10.4 Performance Optimization Under Thermal Constraints

A different approach is to avoid using a power constraint as a thermal abstraction
(as discussed in Sect. 10.3) and rather deal with temperature directly, either through
thermal models or by using thermal sensors.

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 321

Using thermal models that rely on power estimations (as seen in Sect. 10.2.3)
merely adds complexity to the problem (by considering the heat transfer among
cores and the transient temperature effects), and it does so by maintaining the same
issues with regard to how power consumption can be estimated in practice. Although
this might look as a downside, the motivation for using these techniques instead of
those presented in Sect. 10.3 is to avoid possible pessimistic or unsafe scenarios
that can exist when using power constraints as thermal abstractions. Furthermore,
these techniques can be proactive in nature, and we discuss them in more detail in
Sect. 10.4.1.

Techniques that directly measure temperature by using thermal sensors can
potentially be more accurate and easier to implement, as it is very common to find
many thermal sensors in modern processors, to the point of possibly having one
thermal sensor for every core in the chip. In this way, techniques that rely on thermal
sensors can avoid the need for power consumption estimation tools. Nevertheless,
the problem with these techniques is that it is very hard to do proactive thermal
management without having thermal models. Therefore, they are generally reactive
techniques which exploit the available thermal headroom, commonly also known as
boosting, as discussed in Sect. 10.4.2.

10.4.1 Techniques Based on Thermal Modeling

Khdr et al. [28] propose a design-time dark silicon-aware resource management
technique based on dynamic programming, called DsRem, which attempts to
distribute the processors resources among different applications. Based on extensive
application profiling, DsRem determines the number of active/dark cores and their
voltage/frequency levels by considering the TLP and ILP characteristics of the
applications, in order to maximize the overall system performance. Specifically,
DsRem will attempt to map applications with high TLP by using a large number
of cores executing at low voltage/frequency levels while mapping applications with
high ILP to a small number of cores executing at high voltage/frequency levels.
Applications that exhibit both high TLP and high ILP will potentially be mapped to a
large number of cores executing at high voltage/frequency levels whenever possible.

Another work in the literature proposes a variability-aware dark silicon manager,
called DaSiM [58]. In order to optimize the system performance under a thermal
constraint, the idea behind DaSiM is to exploit the so-called dark silicon patterning
in tandem with the core-to-core leakage power variations. Different dark silicon
patterns denote different spatiotemporal decisions for the power state of the cores,
namely, which cores to activate and which to put in low-power mode. These patterns
directly influence the thermal profile on the chip due to improved heat dissipa-
tion, enabling to activate more cores to facilitate high-TLP applications and/or
boosting certain cores to facilitate high-ILP applications. In order to enable run-
time optimizations, DaSiM employs a lightweight run-time temperature prediction
mechanism that estimates the chip’s thermal profile for a given candidate solution.

322 S. Pagani et al.

Hanumaiah et al. [16] propose a thermal management technique based on RC
thermal networks which attempts to minimize the latest completion time among
the applications. This technique first derives an optimal solution by using convex
optimization, which has a high time complexity and is therefore only suited
for design-time decisions. Nevertheless, the structure of certain matrices in the
convex optimization formulation can be exploited in order to have an approximate
solution which is 20 times faster than the convex optimization approach. The
implementation of such a technique for run-time adaptations is however debatable,
as the experiments in [16] show that it may require more than 15ms to compute the
voltage and frequency levels of each core, which is generally not fast enough for
run-time usage in multi-/many-core systems.

Pagani et al. [48] presents seBoost, a run-time boosting technique (see
Sect. 10.4.2) based on analytical transient temperature estimation on RC thermal
networks [45]. This technique attempts to meet run-time performance requirement
surges, by executing the cores mapped with applications that require boosting at
the specified voltages and frequencies while throttling down the cores mapped
with application of lower priority. The performance losses of the low-priority
applications are minimized by choosing the throttling down levels such that the
critical temperature is reached precisely when the boosting interval is expected
to expire. Furthermore, in order to select the throttle down levels of the cores
mapped with the low-priority applications, seBoost performs a Design Space
Exploration (DSE) but limiting the number of evaluated combinations by using a
binary search like approach proportional to the nominal voltage/frequency operation
levels on every core. A limitation of seBoost is that it assumes that the thread to
core is given as an input, that is, it requires mapping decisions to be known a
priori. Therefore, similar to the boosting techniques later explained in Sect. 10.4.2,
seBoost needs to rely on another resource management technique to do the thread-
level selection of applications and the mapping of threads to cores, such that it can
then handle the boosting decisions and exploit the available thermal headroom.

10.4.2 Boosting Techniques

Boosting techniques have been widely adopted by chip manufacturers in commer-
cial multi-/many-core systems, mostly because they provide the ability to exploit
the existing thermal headroom in order to optimize the performance of a group
of cores at run-time. Basically, by using DVFS, boosting techniques allow the
system to execute some cores at high voltage and frequency levels during short
intervals of time, even if this means exceeding standard operating power budgets
(e.g., TDP), such that the system can optimize its performance under a thermal
constraint. Given that executing at high voltage and frequency levels increases the
power consumption in the chip, boosting techniques will incur in increments to
the chip’s temperature through time. Because of this increase in the temperature,
once any part of the chip reaches a critical (predefined) temperature, the system
should return to nominal operation (requiring some cool-down time before another

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 323

boosting interval is allowed) or use a closed loop control-based technique in order
to oscillate around the critical temperature (allowing the boosting interval to be
prolonged indefinitely) [48].

Boosting techniques generally do not aim at selecting the number of threads in
which to parallelize applications, to make thread-to-core mapping decisions,
or to migrate tasks between cores. Therefore, they are mostly well suited to ex-
ploit any available thermal headroom left by some other resource management
technique (e.g., a thread-level selection and thread-to-core mapping technique
based on a pessimistic per-chip power budget), in order to increase the system
performance at run-time.

Intel’s Turbo Boost [6, 8, 21, 22, 53] allows for a group of cores to execute at
high voltage and frequency levels whenever there exists some headroom within
power, current, and temperature constraints. In other words, when the temperature,
power, and current are below some given values, the cores boost their voltage and
frequency in single steps (within a control period) until it reaches a predetermined
upper limit according to the number of active cores. Similarly, when either the
temperature, power, or current exceeds the constraints, the cores reduce their voltage
and frequency in single steps (also within a control period) until the corresponding
constraints are satisfied or until the nominal voltage and frequency levels are
reached. Although boosting to very high voltage and frequencies has an undesired
effect on the power consumption (due to the cubic relationship between frequency
and dynamic power consumption), Turbo Boost exploits the thermal capacitances of
the thermal model knowing that, although there will be a temperature increase, this
increase will require some time to reach the critical temperature rather than reach
it immediately after the change in power. Figure 10.15 shows an example of Turbo

30

50

70

90

0 0.1 0.2 0.3 0.4 0.5

74

76

78

80

Pe
rf

or
m

an
ce

[G
IP

S]

Time [seconds]

Te
m

pe
ra

tu
re

[◦
C

]

Maximum Temperature [◦C] x264 [GIPS] bodytrack [GIPS]

Fig. 10.15 Turbo Boost [6] example. The red line shows the maximum temperature among all
cores (left axis). The performance of the applications is measured in Giga-Instruction Per Second
(GIPS)

324 S. Pagani et al.

Boost’s behavior based on simulations conducted in gem5 [4], McPAT [31], and
HotSpot [20] for executing two applications from the PARSEC benchmark suite [3]
in a multi-core processor with 16 out-of-order Alpha 21264 cores (each application
running eight parallel dependent threads, one thread per core), under a temperature
constraint of 80 ıC.

Computational sprinting [51] is another boosting technique which proposes
optimizing performance at run time via parallelism, by activating cores that are
normally off (i.e., power gated) during short bursts of time (typically shorter
than 1 s). Due to the cubic relationship between frequency and dynamic power
consumption, computational sprinting intentionally discourages boosting through
DVFS. Contrarily, it is motivated by the (ideally) linear relationship between
performance and power expected when the system activates several cores at the
same voltage and frequency levels. However, although this is a very valid point,
the latency for waking up cores from low-power modes and the correspondent
thread migrations can potentially result in significant overheads, especially when
taking into consideration the short duration of the sprinting periods. Because of
this, Turbo Boost will generally result in a higher overall system performance than
computational sprinting.

10.5 Energy Optimization Under Performance Constraints

Energy-efficient scheduling and power management to minimize the overall energy
consumption for homogeneous multi-core systems has been widely explored for
real-time embedded systems with per-core DVFS, for example, [2, 9, 10, 36, 65].
Chen and Thiele [10] present a theoretical analysis of the Largest Task First
(LTF) strategy, proving that, in terms of energy consumption, using LTF for task
mapping results in solutions with approximation factors (particularly, the analytical
worst-case ratio between the optimal solutions and the algorithms of interest)
that depend on the hardware platforms. Moreover, [10, 65] propose polynomial-
time algorithms that derive task mappings which attempt to execute cores at their
critical frequency. For the special case in which there are uniform steps between
the available core frequencies and also negligible leakage power consumption (a
very restricting assumption), the work in [36] presents an algorithm that requires
polynomial time for computing the optimal voltage and frequency assignments.
Nevertheless, although having per-core DVFS can be very energy-efficient, Herbert
and Marculescu [18] conducts extensive VLSI circuit simulations suggesting that
it suffers from complicated design problems, making it costly for implementation.
Therefore, assuming global DVFS, or DVFS at a cluster level (i.e., groups of cores
or voltage/frequency islands), is much more realistic for practical systems, as seen
in [23, 54].

For homogeneous systems with one global supply voltage and frequency, also
referred to as global DVFS, Yang et al. [66] provide energy optimization solutions
for systems with negligible leakage power consumption and frame-based real-time
tasks (all tasks have the same arrival time and period). These are both very restricting

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 325

assumptions, and, therefore, the work in [12, 57] relaxes them in order to consider
periodic real-time tasks (tasks have different arrival times and periodicity) with
non-negligible leakage power consumption and non-negligible overhead for turning
cores to low-power modes. Specifically, Seo et al. [57] proposes to dynamically
balance the task loads of multiple cores and efficiently select the number of
active cores, such that the power consumption for execution is minimized and the
leakage power consumption for low workloads is reduced. Devadas and Aydin [12]
first decide the number of active cores, and the voltage and frequencies of such
cores are decided in a second phase. However, [12] does not provide theoretical
analysis for the approximation factor of their proposed approach in terms of energy
optimization. Furthermore, the basic ideas of [12] are used in [41] to theoretically
derive the approximation factor, in terms of energy minimization, of the so-
called Single Frequency Approximation (SFA) scheme. SFA is a simple strategy
for selecting the DVFS levels on individual clusters. Particularly, after the tasks
are assigned to clusters and cores, SFA uses a single voltage and frequency for
all the cores in the cluster, specifically, the lowest DVFS level that satisfies the
timing constraints of all tasks mapped to the cluster. Given that different tasks are
assigned to different cores, not all cores in a cluster will have the same frequency
requirements to meet the timing constraints. Therefore, the DVFS level of the cluster
is defined by the core with the highest frequency demand in the cluster. Figure 10.16
presents an example of a cluster with four cores using SFA. The analysis of SFA is
extended in [42] and [43] in order to consider the task partitioning phase.

For homogeneous systems with multiple clusters of cores sharing their voltage
and frequency, there exist several heuristic algorithms [15, 29, 39, 44, 64], and

0

1

0

1

Time [s]

Frequency [GHz]
Core 1:

0

1

0

1

Time [s]

Frequency [GHz]
Core 2:

0

1

0

1

Time [s]

Frequency [GHz]
Core 3:

0 2 4 6 8 10
0

1

0 2 4 6 8 10
0

1

Time [s]

Frequency [GHz]
Core 4:

Fig. 10.16 SFA example for a cluster with four cores. The hyper-period of all tasks (i.e., the
least common multiple among all periods of all tasks) is 10 s. To meet all deadlines, the frequency
demand of the cores are 0:2, 0:4, 0:6, and 0:8GHz. Hence, the single frequency is set to 0:8GHz.
In order to save energy, cores go individually to sleep when there is no workload on their ready
queues

326 S. Pagani et al.

also an optimal dynamic programming solution [44], among which [13, 39, 44, 64]
use SFA to choose the voltage and frequency of individual clusters. Particularly,
Kong et al. [29] present a heuristic which first chooses the number of active
clusters and then partitions the tasks by using the LTF task partitioning strategy.
The task model used in [29] is later extended in [15] in order to consider shared
resources and a synchronized version of LTF that considers that only one task can
access specific resources at any given time instant. An Extremal Optimization meta-
Heuristic (EOH) that considers a task graph and the communication costs among
tasks is presented in [39], with the limitation that only one task can be assigned
to each core. A heuristic based on genetic algorithms is presented in [64], where
the energy consumption is gradually optimized in an iterative process through the
selection, crossover, and mutation operations.

The work in [44] presents an optimal dynamic programming algorithm for given
task sets (i.e., the tasks are already partitioned into cores, but the specific cores are
not yet selected), called DYVIA, and suggests to use LTF for the task partitioning
phase. Specifically, the authors of [44] first prove that when the average power
consumption of different tasks executing at a certain DVFS level are equal or very
similar and when the highest cycle utilization task sets in every cluster are given (i.e.,
when the DVFS levels of operation for every cluster are known), then the optimal
solution will assign the highest cycle utilization task sets to the clusters running
at the lowest possible DVFS levels, while still guaranteeing that the deadlines of all
tasks are satisfied, as illustrated in Fig. 10.17. Furthermore, based on such a property,
the DYVIA algorithm is able to reduce the number of combinations evaluated during
its internal Design Space Exploration (DSE). For example, for a system with three
clusters and three cores per cluster, if when finding the task sets to be assigned to
cluster 3 we assume that the highest cycle utilization task set (i.e., T12) is always
assigned to cluster 3, there are in total

�
8
2

�
D 28 possible combinations for selecting

the other two task sets to be assigned to cluster 3. However, as shown in the example

T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1

a

b

c

Fig. 10.17 Examples of possible task set assignments, for a chip with four clusters and three
cores per cluster, where the task sets are increasingly ordered according to their cycle utilization.
The figure shows the three possible assignments when the highest cycle utilization task sets in
the clusters are T4, T6, T9, and T12 (boxed in gray), for which [44] proves that combination (a)
minimizes the energy consumption

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 327

Combination 1: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 2: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 3: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 4: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 5: T9 T8 T7 T6 T5 T4 T3 T2 T1

Combination 6: T9 T8 T7 T6 T5 T4 T3 T2 T1

Fig. 10.18 Example of the potentially optimal combinations evaluated by the DYVIA algo-
rithm [44], for a system with three clusters and three cores per cluster, where the task sets
are increasingly ordered according to their cycle utilization. Each combination corresponds to
the possible task sets to assign in cluster 3, for which DYVIA evaluates the resulting energy
consumption, returning the minimum energy among all evaluated cases. In the figure, the task
sets assigned to cluster 3 in a combination are boxed in green, and the resulting subproblems are
colored in gray

in Fig. 10.18, for such case, DYVIA is able to reduce the design space, such that it
only needs to evaluate six potentially optimal combinations in order to find the
optimal assignment for cluster 3. DYVIA then finds the optimal assignment for
cluster 2 by solving the associated subproblems.

There are several works focusing on heterogeneous systems with per-core
DVFS. For example, Yang et al. [67] present a dynamic programming approach
that uses trimming by rounding, in which the rounding factor can trade quality (in
terms of energy optimization) of the derived solution with the total execution time
of the algorithm.

There is also some work focusing on energy optimization for the more general
model of heterogeneous multi-core systems with clusters of cores sharing their
voltage and frequency, for example, [13, 38]. Muthukaruppan et al. [38] present
a distributed framework based on price theory which attempts to minimize the
overall power consumption, not the overall energy. Therefore, with the existence of
critical frequencies, such a framework may fail to minimize the energy consumption
when executing at very low frequencies (even when all performance constraints are
satisfied). Moreover, this approach is not well suited for real-time systems, as it
does not guaranty that all real-time tasks meet their deadlines, and only a best effort
can be accomplished. Elewi et al. [13] propose a task partitioning and mapping
scheme called Equally-Worst-Fit-Decreasing (EWFD), which attempts to balance
the total utilization in every cluster. However, EWFD is an overly simplistic heuristic
that assumes that executing different tasks on a given core type and frequency
consumes equivalent power, which is not true in real systems as already observed in
Fig. 10.8.

328 S. Pagani et al.

10.6 Hybrid Resource Management Techniques

Sharifi et al. [59] propose a joint temperature and energy management hybrid
technique for heterogeneous Multi-Processor Systems-on-Chips (MPSoCs). In
case that the system becomes underutilized, the technique focuses on energy
minimization while satisfying the performance demands and thermal constraints.
When the performance demands of the applications become higher, satisfying
the thermal constraints has higher priority than minimizing energy, and thus the
proposed technique applies a thermal balancing policy. This work includes a design-
time application profiling phase that characterizes possible incoming tasks. It also
derives different DVFS levels that balance the temperature throughout the chip for
several performance demands. Then, at run-time, the technique integrates DVFS
(including the design-time analysis) with a thread-to-core assignment strategy that
is performance and temperature aware. When the performance demands can be
satisfied only in some cores, the technique chooses which cores to power gate in
order to minimize energy.

Ykman-Couvreur et al. [68] present a hybrid resource management technique
for heterogeneous systems that aims at maximizing the overall Quality of Service
(QoS) under changing platform conditions. In the design-time phase, by using an
automated design-space exploration tool, the technique derives a set of Pareto-
optimal application configurations under given QoS requirements and optimization
goals. Then, the run-time resource management dynamically switches between the
predefined configurations evaluated at design-time.

Singh et al. [60] present a hybrid management technique for mapping
throughput-constrained applications on generic MPSoCs. The technique first
performs design-time analysis of the different applications in order to derive
multiple resources/cores vs. throughput trade-off points, therefore performing all
the compute intensive analysis and leaving a minimum pending computation for the
run-time phase. The run-time mapping strategy then selects the best point according
to the desired throughput and available resources/cores.

Schor et al. [56] present a scenario-based technique for mapping a set of
applications to a heterogeneous many-core system. The applications are specified as
Kahn process networks. A finite state machine is used to coordinate the execution
of the applications, where each state represents a scenario. During design-time
analysis, the technique first precomputes a set of optimal mappings. Then, at run-
time, hierarchically organized controllers monitor behavioral events and apply the
precomputed mappings to start, stop, resume, and pause applications according
to the finite state machine. In order to handle architectural failures, the technique
allocates spare cores at design-time, such that the run-time controllers can move
all applications assigned to a faulty physical core to a spare core. Given that this
does not require additional design-time analysis, the proposed technique has a high
responsiveness to failures.

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 329

Acknowledgments This work was partly supported by the German Research Foundation (DFG)
as part of the Transregional Collaborative Research Centre Invasive Computing [SFB/TR 89] http://
invasic.de.

References

1. Al Faruque MA, Krist R, Henkel J (2008) ADAM: run-time agent-based distributed application
mapping for on-chipcommunication. In: Proceedings of the 45th IEEE/ACM design automa-
tion conference (DAC), pp 760–765. doi:10.1145/1391469.1391664

2. Aydin H, Yang Q (2003) Energy-aware partitioning for multiprocessor real-time systems. In:
Proceedings of 17th international parallel and distributed processing symposium (IPDPS),
pp 113–121

3. Bienia C, Kumar S, Singh JP, Li K (2008) The PARSEC benchmark suite: characterization
and architectural implications. In: Proceedings of the 17th international conference on parallel
architectures and compilation techniques (PACT), pp 72–81

4. Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower DR,
Krishna T, Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill MD, Wood DA (2011) The
gem5 simulator. ACM SIGARCH Comput Archit News 39(2):1–7

5. Carlson TE, Heirman W, Eyerman S, Hur I, Eeckhout L (2014) An evaluation of high-
level mechanistic core models. ACM Trans Archit Code Optim (TACO) 11(3):28:1–28:25.
doi:10.1145/2629677

6. Casazza J (2009) First the tick, now the tock: intel microarchitecture (Nehalem). White paper,
Intel Corporation

7. Ceng J, Castrillon J, Sheng W, Scharwächter H, Leupers R, Ascheid G, Meyr H, Isshiki T,
Kunieda H (2008) MAPS: an integrated framework for MPSoC application parallelization.
In: Proceedings of the 45th IEEE/ACM design automation conference (DAC), pp 754–759.
doi:10.1145/1391469.1391663

8. Charles J, Jassi P, Ananth NS, Sadat A, Fedorova A (2009) Evaluation of the Intel core i7 turbo
boost feature. In: IISWC, pp 188–197

9. Chen JJ, Hsu HR, Kuo TW (2006) Leakage-aware energy-efficient scheduling of real-time
tasks in multiprocessor systems. In: Proceedings of the 12th IEEE real-time and embedded
technology and applications symposium (RTAS), pp 408–417

10. Chen JJ, Thiele L (2010) Energy-efficient scheduling on homogeneous multiprocessor plat-
forms. In: Proceedings of the ACM symposium on applied computing (SAC), pp 542–549

11. Choi J, Oh H, Kim S, Ha S (2012) Executing synchronous dataflow graphs on a SPM-based
multicore architecture. In: Proceedings of the 49th IEEE/ACM design automation conference
(DAC), pp 664–671. doi:10.1145/2228360.2228480

12. Devadas V, Aydin H (2010) Coordinated power management of periodic real-time tasks on
chip multiprocessors. In: Proceedings of the international conference on green computing
(GREENCOMP), pp 61–72

13. Elewi A, Shalan M, Awadalla M, Saad EM (2014) Energy-efficient task allocation techniques
for asymmetric multiprocessor embedded systems. ACM Trans Embed Comput Syst (TECS)
13(2s):71:1–71:27

14. Grenat A, Pant S, Rachala R, Naffziger S (2014) 5.6 adaptive clocking system for improved
power efficiency in a 28nm x86-64 microprocessor. In: IEEE international solid-state circuits
conference digest of technical papers (ISSCC), pp 106–107

15. Han JJ, Wu X, Zhu D, Jin H, Yang L, Gaudiot JL (2012) Synchronization-aware energy man-
agement for vfi-based multicore real-time systems. IEEE Trans Comput (TC) 61(12):1682–
1696

http://invasic.de
http://invasic.de
http://dx.doi.org/10.1145/1391469.1391664
http://dx.doi.org/10.1145/2629677
http://dx.doi.org/10.1145/1391469.1391663
http://dx.doi.org/10.1145/2228360.2228480

330 S. Pagani et al.

16. Hanumaiah V, Vrudhula S, Chatha KS (2011) Performance optimal online DVFS and task
migration techniques for thermally constrained multi-core processors. Trans Comput Aided
Des Integr Circuits Syst (TCAD) 30(11):1677–1690

17. Henkel J, Khdr H, Pagani S, Shafique M (2015) New trends in dark silicon. In: Proceed-
ings of the 52nd ACM/EDAC/IEEE design automation conference (DAC), pp 119:1–119:6.
doi:10.1145/2744769.2747938

18. Herbert S, Marculescu D (2007) Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors. In: Proceedings of the international symposium on low power electronics and
design (ISLPED), pp 38–43

19. Howard J, Dighe S, Vangal S, Ruhl G, Borkar N, Jain S, Erraguntla V, Konow M, Riepen
M, Gries M, Droege G, Lund-Larsen T, Steibl S, Borkar S, De V, Van Der Wijngaart
R (2011) A 48-core IA-32 processor in 45 nm CMOS using on-die message-passing and
DVFS for performance and power scaling. IEEE J Solid State Circuits 46(1):173–183.
doi:10.1109/JSSC.2010.2079450

20. Huang W, Ghosh S, Velusamy S, Sankaranarayanan K, Skadron K, Stan MR (2006) HotSpot:
a compact thermal modeling methodology for early-stage VLSI design. IEEE Trans VLSI Syst
14(5):501–513. doi:10.1109/TVLSI.2006.876103

21. Intel Corporation (2007) Dual-core intel xeon processor 5100 series datasheet, revision 003
22. Intel Corporation (2008) Intel turbo boost technology in Intel CoreTM microarchitecture

(Nehalem) based processors. White paper
23. Intel Corporation (2010) SCC external architecture specification (EAS), revision 0.98
24. International technology roadmap for semiconductors (ITRS), 2011 edition. www.itrs.net
25. Jahn J, Pagani S, Kobbe S, Chen JJ, Henkel J (2013) Optimizations for configuring and

mapping software pipelines in manycore. In: Proceedings of the 50th IEEE/ACM design
automation conference (DAC), pp 130:1–130:8. doi:10.1145/2463209.2488894

26. Javaid H, Parameswaran S (2009) A design flow for application specific heterogeneous
pipelined multiprocessor systems. In: Proceedings of the 46th IEEE/ACM design automation
conference (DAC), pp 250–253. doi:10.1145/1629911.1629979

27. Jejurikar R, Pereira C, Gupta R (2004) Leakage aware dynamic voltage scaling for real-time
embedded systems. In: Proceedings of the 41st design automation conference (DAC), pp 275–
280

28. Khdr H, Pagani S, Shafique M, Henkel J (2015) Thermal constrained resource man-
agement for mixed ILP-TLP workloads in dark silicon chips. In: Proceedings of
the 52nd ACM/EDAC/IEEE design automation conference (DAC), pp 179:1–179:6.
doi:10.1145/2744769.2744916

29. Kong F, Yi W, Deng Q (2011) Energy-efficient scheduling of real-time tasks on cluster-based
multicores. In: Proceedings of the 14th design, automation and test in Europe (DATE), pp 1–6

30. Kultursay E, Swaminathan K, Saripalli V, Narayanan V, Kandemir MT, Datta S (2012) Perfor-
mance enhancement under power constraints using heterogeneous CMOS-TFET multicores.
In: Proceedings of the 8th international conference on hardware/software codesign and system
synthesis (CODES+ISSS), pp 245–254

31. Li S, Ahn JH, Strong R, Brockman J, Tullsen D, Jouppi N (2009) McPAT: an integrated
power, area, and timing modeling framework for multicore and manycore architectures. In:
Proceedings of the 42nd annual IEEE/ACM international symposium on microarchitecture
(MICRO), pp 469–480

32. Li Y, Henkel J (1998) A framework for estimation and minimizing energy dissipation
of embedded hw/sw systems. In: Proceedings of the 35th ACM/IEEE design automation
conference (DAC), pp 188–193. doi:10.1145/277044.277097

33. Lin LY, Wang CY, Huang PJ, Chou CC, Jou JY (2005) Communication-driven task binding for
multiprocessor with latency insensitive network-on-chip. In: The 15th Asia and South Pacific
design automation conference (ASP-DAC), pp 39–44. doi:10.1145/1120725.1120739

34. Mallik A, Marwedel P, Soudris D, Stuijk S (2010) MNEMEE: a framework for memory
management and optimization of static and dynamic data in MPSoCs. In: Proceedings of
the international conference on compilers, architectures and synthesis for embedded systems
(CASES), pp 257–258. doi:10.1145/1878921.1878959

http://dx.doi.org/10.1145/2744769.2747938
http://dx.doi.org/10.1109/JSSC.2010.2079450
http://dx.doi.org/10.1109/TVLSI.2006.876103
www.itrs.net
http://dx.doi.org/10.1145/2463209.2488894
http://dx.doi.org/10.1145/1629911.1629979
http://dx.doi.org/10.1145/2744769.2744916
http://dx.doi.org/10.1145/277044.277097
http://dx.doi.org/10.1145/1120725.1120739
http://dx.doi.org/10.1145/1878921.1878959

10 Design Space Exploration and Run-Time Adaptation for Multicore : : : 331

35. Martin G (2006) Overview of the MPSoC design challenge. In: Proceedings
of the 43rd IEEE/ACM design automation conference (DAC), pp 274–279.
doi:10.1109/DAC.2006.229245

36. Moreno G, de Niz D (2012) An optimal real-time voltage and frequency scaling for uniform
multiprocessors. In: Proceedings of the 18th IEEE international conference on embedded and
real-time computing systems and applications (RTCSA), pp 21–30

37. Muthukaruppan T, Pricopi M, Venkataramani V, Mitra T, Vishin S (2013) Hierarchical power
management for asymmetric multi-core in dark silicon era. In: DAC, pp 174:1–174:9

38. Muthukaruppan TS, Pathania A, Mitra T (2014) Price theory based power management for het-
erogeneous multi-cores. In: Proceedings of the 19th international conference on architectural
support for programming languages and operating systems (ASPLOS), pp 161–176

39. Nikitin N, Cortadella J (2012) Static task mapping for tiled chip multiprocessors with multiple
voltage islands. In: Proceedings of the 25th international conference on architecture of
computing systems (ARCS), pp 50–62

40. Orsila H, Kangas T, Salminen E, Hämäläinen TD, Hännikäinen M (2007) Automated memory-
aware application distribution for multi-processor system-on-chips. J Syst Archit 53(11):795–
815. doi:10.1016/j.sysarc.2007.01.013

41. Pagani S, Chen JJ (2013) Energy efficiency analysis for the single frequency ap-
proximation (SFA) scheme. In: Proceedings of the 19th IEEE international conference
on embedded and real-time computing systems and applications (RTCSA), pp 82–91.
doi:10.1109/RTCSA.2013.6732206

42. Pagani S, Chen JJ (2013) Energy efficient task partitioning based on the single frequency
approximation scheme. In: Proceedings of the 34th IEEE real-time systems symposium
(RTSS), pp 308–318. doi:10.1109/RTSS.2013.38

43. Pagani S, Chen JJ, Henkel J (2015) Energy and peak power efficiency analysis for the single
voltage approximation (SVA) scheme. IEEE Trans Comput Aided Des Integr Circuits Syst
(TCAD) 34(9):1415–1428. doi:10.1109/TCAD.2015.2406862

44. Pagani S, Chen JJ, Li M (2015) Energy efficiency on multi-core architectures with multiple
voltage islands. IEEE Trans Parallel Distrib Syst (TPDS) 26(6):1608–1621. doi:10.1109/T-
PDS.2014.2323260

45. Pagani S, Chen JJ, Shafique M, Henkel J (2015) MatEx: efficient transient and peak
temperature computation for compact thermal models. In: Proceedings of the 18th design,
automation and test in Europe (DATE), pp 1515–1520

46. Pagani S, Khdr H, Chen JJ, Shafique M, Li M, Henkel J (2016) Thermal safe power: efficient
thermal-aware power budgeting for manycore systems in dark silicon. In: The dark side of
silicon. Springer

47. Pagani S, Khdr H, Munawar W, Chen JJ, Shafique M, Li M, Henkel J (2014) TSP: thermal safe
power – efficient power budgeting for many-core systems in dark silicon. In: The international
conference on hardware/software codesign and system synthesis (CODES+ISSS), pp 10:1–
10:10. doi:10.1145/2656075.2656103

48. Pagani S, Shafique M, Khdr H, Chen JJ, Henkel J (2015) seBoost: selective boosting for
heterogeneous manycores. In: Proceedings of the 10th IEEE/ACM international conference
on hardware/software codesign and system synthesis (CODES+ISSS), pp 104–113

49. Pinckney N, Sewell K, Dreslinski RG, Fick D, Mudge T, Sylvester D, Blaauw D (2012)
Assessing the performance limits of parallelized near-threshold computing. In: 49th design
automation conference (DAC), pp 1147–1152

50. Quan W, Pimentel AD (2015) A hybrid task mapping algorithm for heterogeneous MPSoCs.
ACM Trans Embed Comput Syst (TECS) 14(1):14:1–14:25. doi:10.1145/2680542

51. Raghavan A, Luo Y, Chandawalla A, Papaefthymiou M, Pipe KP, Wenisch TF, Martin MMK
(2012) Computational sprinting. In: Proceedings of the IEEE 18th international symposium on
high-performance computer architecture (HPCA), pp 1–12

52. Raghunathan B, Turakhia Y, Garg S, Marculescu D (2013) Cherry-picking: exploiting process
variations in dark-silicon homogeneous chip multi-processors. In: DATE, pp 39–44

53. Rotem E, Naveh A, Rajwan D, Ananthakrishnan A, Weissmann E (2012) Power-management
architecture of the Intel microarchitecture code-named sandy bridge. IEEE Micro 32(2):20–27

http://dx.doi.org/10.1109/DAC.2006.229245
http://dx.doi.org/10.1016/j.sysarc.2007.01.013
http://dx.doi.org/10.1109/RTCSA.2013.6732206
http://dx.doi.org/10.1109/RTSS.2013.38
http://dx.doi.org/10.1109/TCAD.2015.2406862
http://dx.doi.org/10.1109/TPDS.2014.2323260
http://dx.doi.org/10.1145/2656075.2656103
http://dx.doi.org/10.1145/2680542

332 S. Pagani et al.

54. Samsung Electronics Co., Ltd.: Exynos 5 Octa (5422). www.samsung.com/exynos
55. Sartori J, Kumar R (2009) Three scalable approaches to improving many-core throughput for a

given peak power budget. In: International conference on high performance computing (HiPC),
pp 89–98

56. Schor L, Bacivarov I, Rai D, Yang H, Kang SH, Thiele L (2012) Scenario-based design flow
for mapping streaming applications onto on-chip many-core systems. In: Proceedings of the
15th international conference on compilers, architectures and synthesis for embedded systems
(CASES), pp 71–80. doi:10.1145/2380403.2380422

57. Seo E, Jeong J, Park SY, Lee J (2008) Energy efficient scheduling of real-time tasks
on multicore processors. IEEE Trans Parallel Distrib Syst (TPDS) 19(11):1540–1552.
doi:10.1109/TPDS.2008.104

58. Shafique M, Gnad D, Garg S, Henkel J (2015) Variability-aware dark silicon management in
on-chip many-core systems. In: Proceedings of the 18th design, automation and test in Europe
(DATE), pp 387–392

59. Sharifi S, Coskun AK, Rosing TS (2010) Hybrid dynamic energy and thermal management in
heterogeneous embedded multiprocessor SoCs. In: Proceedings of the Asia and South Pacific
design automation conference (ASP-DAC), pp 873–878

60. Singh AK, Kumar A, Srikanthan T (2011) A hybrid strategy for mapping multiple throughput-
constrained applications on MPSoCs. In: Proceedings of the 14th international conference
on compilers, architectures and synthesis for embedded systems (CASES), pp 175–184.
doi:10.1145/2038698.2038726

61. Smit L, Smit G, Hurink J, Broersma H, Paulusma D, Wolkotte P (2004) Run-time mapping
of applications to a heterogeneous reconfigurable tiled system on chip architecture. In:
Proceedings of the IEEE international conference on field-programmable technology (FPT),
pp 421–424. doi:10.1109/FPT.2004.1393315

62. Tan C, Muthukaruppan T, Mitra T, Ju L (2015) Approximation-aware scheduling on het-
erogeneous multi-core architectures. In: The 20th Asia and South Pacific design automation
conference (ASP-DAC), pp 618–623

63. Weichslgartner A, Gangadharan D, Wildermann S, GlaßM, Teich J (2014) DAARM: design-
time application analysis and run-time mapping for predictable execution in many-core
systems. In: Proceedings of the international conference on hardware/software codesign and
system synthesis (CODES+ISSS), pp 34:1–34:10. doi:10.1145/2656075.2656083

64. Wu X, Zeng Y, Han JJ (2013) Energy-efficient task allocation for VFI-based real-time multi-
core systems. In: Proceedings of the international conference on information science and cloud
computing companion (ISCC-C), pp 123–128

65. Xu R, Zhu D, Rusu C, Melhem R, Mossé D (2005) Energy-efficient policies for embedded
clusters. In: Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on languages,
compilers, and tools for embedded systems (LCTES), pp 1–10

66. Yang CY, Chen JJ, Kuo TW (2005) An approximation algorithm for energy-efficient schedul-
ing on a chip multiprocessor. In: Proceedings of the 8th design, automation and test in Europe
(DATE), pp 468–473

67. Yang CY, Chen JJ, Kuo TW, Thiele L (2009) An approximation scheme for energy-efficient
scheduling of real-time tasks in heterogeneous multiprocessor systems. In: Proceedings of the
12th design, automation and test in Europe (DATE), pp 694–699

68. Ykman-Couvreur C, Hartmann PA, Palermo G, Colas-Bigey F, San L (2012) Run-time
resource management based on design space exploration. In: Proceedings of the 8th
IEEE/ACM/IFIP international conference on hardware/software codesign and system synthesis
(CODES+ISSS), pp 557–566. doi:10.1145/2380445.2380530

www.samsung.com/exynos
http://dx.doi.org/10.1145/2380403.2380422
http://dx.doi.org/10.1109/TPDS.2008.104
http://dx.doi.org/10.1145/2038698.2038726
http://dx.doi.org/10.1109/FPT.2004.1393315
http://dx.doi.org/10.1145/2656075.2656083
http://dx.doi.org/10.1145/2380445.2380530

Part IV
Processor, Memory,

and Communication Architecture Design

11Reconfigurable Architectures

Mansureh Shahraki Moghaddam, Jae-Min Cho, and Kiyoung Choi

Abstract

Reconfigurable architecture is a computer architecture combining some of the
flexibility of software with the high performance of hardware. It has configurable
fabric that performs a specific data-dominated task, such as image processing
or pattern matching, quickly as a dedicated piece of hardware. Once the task
has been executed, the hardware can be adjusted to do some other task. This
allows the reconfigurable architecture to provide the flexibility of software
with the speed of hardware. This chapter discusses two major streams of
reconfigurable architecture: Field-Programmable Gate Array (FPGA) and Coarse
Grained Reconfigurable Architecture (CGRA). It gives a brief explanation of the
merits and usage of reconfigurable architecture and explains basic FPGA and
CGRA architectures. It also explains techniques for mapping applications onto
FPGAs and CGRAs.

Acronyms

ALAP As Late As Possible
ALM Adaptive Logic Module
ALU Arithmetic-Logic Unit
ASAP As Soon as Possible
ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor
ASMBL Advanced Silicon Modular Block
CCE Configuration Cache Element
CDFG Control-/Data-Flow Graph
CGRA Coarse Grained Reconfigurable Architecture

M.S. Mansureh (�) • J.-M. Cho • K. Choi
Department of Electrical and Computer Engineering, Seoul National University, Seoul,
Korea
e-mail: mansureh@dal.snu.ac.kr; jaemincho@dal.snu.ac.kr; kchoi@dal.snu.ac.kr

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_12

335

mailto:mansureh@dal.snu.ac.kr; jaemincho@dal.snu.ac.kr; kchoi@dal.snu.ac.kr

336 S.M. Mansureh et al.

CLB Configurable Logic Block
DFG Data-Flow Graph
DPR Dynamic Partial Reconfiguration
DRAA Dynamically Reconfigurable ALU Array
DRESC Dynamically Reconfigurable Embedded System Compiler
DSP Digital Signal Processor
EGRA Expression Grained Reconfigurable Array
EMS Edge Centric Modulo Scheduling
ESL Electronic System Level
FDS Force-Directed Scheduling
FPGA Field-Programmable Gate Array
FSM Finite-State Machine
GOPS Giga Operations Per Second
GPP General-Purpose Processor
HLS High-Level Synthesis
II Initiation Interval
ILP Integer Linear Program
IMS Iterative Modulo Scheduling
IOE I/O Element
I/O Input/Output
LAB Logic Array Block
LE Logic Element
LLVM Low-Level Virtual Machine
LS List Scheduling
LUT Look-Up Table
MRRG Modulo Resource Routing Graph
NoC Network-on-Chip
NRE Non-Recurring Engineering
PE Processing Element
PLL Phase Locked Loop
QEA Quantum-inspired Evolutionary Algorithm
RCM Reconfigurable Computing Module
RF Register File
RTL Register Transfer Level
SDF Synchronous Data Flow
SIMD Single Instruction, Multiple Data
SIMT Single Instruction, Multiple Threads
SPKM Split & Push Kernel Mapping
SPMD Single Program, Multiple Data
SPM Scratchpad Memory
STMD Single Thread, Multiple Data
VLIW Very Long Instruction Word
VLSI Very-Large-Scale Integration

11 Reconfigurable Architectures 337

Contents

11.1 Why Reconfigurable Architectures? . 337
11.2 FPGA Architecture . 340

11.2.1 Building Blocks . 341
11.2.2 Partial Reconfiguration in FPGA . 347

11.3 CGRA Architecture . 350
11.3.1 Building Blocks . 351
11.3.2 Reconfiguration in CGRAs . 356

11.4 Mapping onto FPGAs . 357
11.4.1 Allocation . 360
11.4.2 Scheduling . 360
11.4.3 Binding . 361
11.4.4 Technology Mapping . 361

11.5 Mapping onto CGRAs . 362
11.5.1 ILP-Based Mapping Approaches . 364
11.5.2 Heuristic-Based Approaches . 365
11.5.3 FloRA Compilation Flow: Case Study . 366

11.6 Conclusions . 370
References . 370

11.1 Why Reconfigurable Architectures?

General-Purpose Processors (GPPs) are programmable but not good in terms of
performance (or execution time) when compared to Application-Specific Integrated
Circuits (ASICs). ASICs are specialized circuits providing large amount of paral-
lelism and thus allowing high performance implementation, but only for a specific
application. An ASIC can contain just the right mix of functional units for a
particular application and thus can be made fast and compact. They can make
a very dense chip, which typically translates to high scalability. As technology
has improved over the years, the maximum complexity (and hence functionality)
possible in an ASIC has grown from several thousand gates to over millions of
gates. But ASICS are not an economic choice for many embedded applications
due to higher Non-Recurring Engineering (NRE) cost and longer time to market,
except for very large volume applications. Reconfigurable computing systems like
FPGAs and CGRAs as an intermediate architecture can provide both performance
and flexibility. The performance is from the parallelism of the architecture, and
the flexibility is from the configurability of the architecture. While FPGAs provide
fine-grained (gate level) reconfigurability, CGRAs provide coarse-grained (register
transfer level) reconfigurability.

The world of multimedia processing and telecommunication stack is character-
ized by increasing speed and performance needs. The required raw compute power
has been fed by the ever increasing transistor densities enabled by innovations
in the Very-Large-Scale Integration (VLSI) domain. However, this growth has to
take into account increasing process/voltage/temperature variations, shorter time
to market, and higher NRE cost. That is, it is required to achieve both higher

338 S.M. Mansureh et al.

performance and more efficient design/manufacturing at the same time. These
two conflicting requirements have made reconfigurable architectures a popular
alternative implementation platform.

FPGA is the first successful reconfigurable architecture. The most popular
SRAM-based FPGAs contain many programmable logic blocks that can be repro-
grammed many times after manufacturing, although some FPGAs such as the one
using the antifuse technology can be programmed only once. It can be used as a test
bed to prototype a design before going for a final ASIC design. In this way, FPGAs
can be reprogrammed as needed until the design is finalized. The ASIC can then be
manufactured based on the FPGA design.

Since an FPGA is basically an array of gates, it also provides a large amount of
parallelism and thus allows high performance implementation. Actually, the design
phases of FPGAs and ASICs are quite similar except that ASICs lack post-silicon
flexibility. ASICs require new fabrication for a new application, and thus fail to
satisfy the market’s critical time-to-market needs, and are, by definition, unable
to satisfy the need for greater flexibility [96]. FPGAs are more flexible with the
ability to rapidly implement or reprogram the logic. The general flexibility of an
FPGA results in time-to-market advantages since it allows fast implementation of
new functions as well as easy bug fixes. One thing to note, however, is that an
ASIC is designed to be fully optimized to a specific application or a function.
Compared to ASICs, FPGAs consume more power, take more area, and provide
lower performance but have much lower NRE cost. Thus FPGAs are in general
much more cost-effective than ASICs for low production volumes.

The increase of logic in an FPGA has enabled larger and more complex
algorithms to be programmed into the FPGA. Furthermore, algorithms can be
parallelized and implemented on multiple FPGAs resulting in highly parallel
computing. The attachment of such an FPGA to a modern CPU over a high speed
bus, like PCI express, has enabled the configurable logic to act more like an
accelerator rather than a peripheral. This has brought reconfigurable computing
into the high-performance computing sphere. Of course, the use of FPGAs requires
creating the hardware design, which is a costly and labor-intensive task, although
the vendors typically provide IP cores for common processing functions [13].

The reconfiguration granularity of CGRAs is larger than that of FPGAs. CGRAs
typically have an array of simple Processing Elements (PEs), where the PEs are
connected with each other through programmable interconnects. The functionality
of each PE is also programmable. Compared to FPGAs, CGRAs have significant
reduction in area and energy consumption due to much less amount of configuration
memory, switches, and interconnects for programming. Furthermore, because of the
low overhead of reconfiguration, CGRAs offer dynamic reconfiguration capabilities,
which is not easy for FPGAs. That makes CGRAs attractive for area-constrained
designs.

Processors are considered to be most flexible in that any kind of application with
complicated control and data dependencies can be easily compiled and mapped onto
the architecture. However, realizing the flexibility requires a rich set of instructions
and the supporting hardware, which incurs a significant overhead in terms of area
cost and power consumption. Moreover, with a single GPP, it is difficult to exploit

11 Reconfigurable Architectures 339

the parallelism in the application because of the complexity in the architecture.
There have been abundant researches and developments to enhance the performance
of GPPs by exploiting parallelism; actually, there have been startling progresses in
architectures supporting instruction-level parallelism such as superscalar and Very
Long Instruction Word (VLIW) architectures. However, it seems no longer possible
to make such a progress in that direction due to the rapid growth of area cost and
power consumption (area cost or number of transistors is less a concern today,
but it still matters in many applications that consider cost, form factor, leakage
current, etc.). GPPs, Digital Signal Processors (DSPs), and Application-Specific
Instruction-set Processors (ASIPs) (For the details of ASIP, refer to �Chap. 12,
“Application-Specific Processors”.) belong to this category, although DSPs and
ASIPs are in general less flexible than GPPs.

On the other hand, a new architecture has come to importance, named as
multi-core or many-core architecture depending on the number of processor cores
integrated on a chip. The processor cores are connected by a bus, or by a Network-
on-Chip (NoC) when there are too many cores to be connected by a bus. Such an
architecture can exploit task-level parallelism through proper scheduling of tasks,
while exploiting instruction-level parallelism available in a task if the processor
cores are capable of doing it. Although such an architecture can better exploit
parallelism with a better scalability, the processor cores are still very expensive,
and the on-chip communications incur additional costs in terms of area and power
consumption.

Different applications place unique and distinct demands on computing re-
sources, and applications that work well on one processor architecture will not
necessarily map well to another; this is true even for different phases of a
single application. As yet another architecture, GPUs are inexpensive, commodity
parallel devices with huge market penetration. They have already been employed
as powerful accelerators for a large number of applications including games and
3D physics simulation. The main advantages of a GPU as an accelerator stem
from its high memory bandwidth and a large number of programmable cores with
thousands of hardware thread contexts executing programs in a Single Program,
Multiple Data (SPMD) (The model of GPUs executing the same kernel code on
multiple data is called differently in the literature. Examples other than SPMD
include Single Instruction, Multiple Data (SIMD), Single Instruction, Multiple
Threads (SIMT), and Single Thread, Multiple Data (STMD).) fashion. GPUs are
flexible and relatively easy to program using high-level languages and APIs which
abstract away hardware details. Changing functions in GPUs can be done simply
via rewriting and recompiling code. However, this flexibility comes at a cost. For
the flexibility, GPUs rely on the traditional von Neumann architecture that fetches
instructions from memory, although the SPMD model can execute many threads
in parallel to process many different data with a single-thread program fetch.
Thus, when the application cannot generate many threads having the same program
sequence, the architecture may result in waste of resources and inefficiency in terms
of area cost and power consumption. Figure 11.1 briefly expresses the positioning
of reconfigurable architectures in terms of efficiency versus flexibility compared to
other technologies/architectures including ASIC, GPP, and others.

340 S.M. Mansureh et al.

Flexibility
(Programmability,Reconfigurability overhead)

E
ffi

ci
en

cy
(P

er
fo

rm
an

ce
/P

ow
er

co
ns

um
pt

io
n/

A
re

a)
ASIC

FPGA

CGRA

ASIP

Domain Specific
DSP, GPU, etc.

GPP

Fig. 11.1 Comparison between implementation platforms [20]

11.2 FPGA Architecture

Field-Programmable Gate Arrays (FPGAs) went far beyond the peripheral position
in early days and are now occupying central positions in highly complex systems.
Over the 30 years, FPGAs have increased capacity by more than a factor of 10,000
and increased speed by a factor of 100. Cost and energy consumption per unit
function have also decreased by more than a factor of 1,000 [105]. An FPGA device
provides millions of logic cells, megabytes of block memory, thousands of DSP
blocks, and gigahertz of clock speed [72]. FPGAs are getting more complex with
the advances in semiconductor technology and are now found in various systems,
such as network, television, automobiles, etc., due to their merits compared to
other state-of-the-art architectures. For example, an Altera Arria 10 FPGA [2] with
DSP blocks that support both fixed and floating-point arithmetic can perform up
to 1 TFLOPS [57]. An FPGA platform with four Virtex-5 FPGAs [114] offers
performance comparable to a CPU or a GPU with 2.7–293 times better energy
efficiency on the BLAS benchmark [46].

Also, since FPGAs have the capability of reconfiguration, multiple applications
can be implemented on a small device, and thus the gap between FPGAs and ASIC
designs in terms of area and power can be reduced [28]. FPGA has also established
a large area of research on self-adaptive hardware systems. Self-adaptive hardware
systems are capable of exchanging, updating, or extending hardware functionality
during run time.

11 Reconfigurable Architectures 341

11.2.1 Building Blocks

FPGAs contain a large amount of logic elements and interconnects among them.
There are also interconnects for clock distribution. The bitstream of configuration
data is downloaded into an FPGA to configure the logic elements and the intercon-
nects to implement a required behavior on the FPGA.

11.2.1.1 Logic Elements
The types of Logic Elements (LEs) are different depending on the manufacturing
companies. Most common LE types are registers, Look-Up Table (LUT), block
RAMs, and DSP units. Modern FPGAs combine such logic elements into a
customized building block for architectural scalability. For example, the LUTs
in Xilinx 7 series FPGA [113] can be configured as either a 6-input LUT with
one output or two 5-input LUTs with separate outputs but common addresses or
logic inputs. Each 5-input LUT output can optionally be registered in a flip-flop.
Figure 11.2 shows a simplified diagram of a sub-block (dotted box) consisting of
an LUT, two flip-flops, and several multiplexers. The logic circuit from Cin to Cout
in the diagram is used to build a carry chain for an efficient implementation of an
adder/subtracter. Four copies of such a sub-block form a slice (dashed box); thus a
slice contains four LUTs and eight flip-flops in total together with multiplexers and
carry logic. Among the eight flip-flops in a slice, four (one per LUT) can optionally
be configured as latches. Two slices form a Configurable Logic Block (CLB); each
slice in a CLB is connected to a switch matrix as shown in Fig. 11.3. One of the
reasons for this specific CLB structure, which is common to Spartan-6 and Virtex-6,
is to simplify design migration from the Spartan-6 and Virtex-6 families to the 7
series devices [115].

As shown in Fig. 11.4, the CLBs are arranged in columns in the 7 series
FPGAs (see Fig. 11.3) to form the Advanced Silicon Modular Block (ASMBL)
architecture, which uses flip-chip packaging to place pins anywhere (not only along
the periphery). With the architecture, the number of I/O pins can be increased
arbitrarily without increasing the array size as shown in Fig. 11.5 [112]. It also
enhances on-chip power and ground distribution by allowing power and ground
lines to be placed at proper locations in the chip as shown in Fig. 11.6. The ASMBL
architecture enables an FPGA platform to optimize the mixture of resource columns
to an application domain. In Fig. 11.4, for example, applications in domain A require
lots of logic, some memory blocks, and small number of DSP blocks, and thus
they fit well with platform A since it has a mixture of columns optimized to such
applications. Each CLB block can be configured as a look-up table, distributed
RAM, or a shift register.

Altera Stratix V FPGA [4] devices use a building block called enhanced Adaptive
Logic Module (ALM) to implement logic functions more efficiently. The enhanced
ALM has a fracturable LUT with eight inputs, two dedicated embedded adders, and
four dedicated registers as shown in Fig. 11.7. The ALM in Stratix V packs 6% more

342 S.M. Mansureh et al.

Set/
Reset

Din

Clock
Clock

Enable

Look-Up
Table
(LUT)

O6

O5

DoutM

DoutQ

Cout

Dout

DSR
Q

CE

DSR
Q

CE

A6
A5
A4
A3
A2

Set/
Reset

Din

Clock
Clock

Enable

Look-Up
Table
(LUT)

O6

O5

DoutM

DoutQ
A1

A6
A5
A4
A3
A2
A1

Cin

Dout

DSR
Q

CE

DSR
Q

CE

Cout

Cin

Slice

Sub-block

Sub-block

Fig. 11.2 Sub-blocks in a slice

logic compared to the previous-generation ALM found in Stratix IV devices. An
ALM can implement some 7-input LUT-based function, any 6-input logic function,
two independent functions with a smaller-sized LUT (such as two independent 4-
input LUT-based functions), and two independent functions that share some inputs
as shown in Fig. 11.8; this is the reason for calling LUT as a fracturable LUT.
This enables Stratix V devices to maximize core performance at higher core logic
utilization and provide easier timing closure for register-rich and heavily pipelined
designs.

11.2.1.2 Interconnects
In Xilinx UltraScale architecture [72], extra connectivity (bypass connections shown
in Fig. 11.9) eliminates the need to route through an LUT to gain access to the

11 Reconfigurable Architectures 343

Fig. 11.3 CLB block diagram

associated flip-flops. The flip-flops in the CLB of the architecture benefit from
several flexibility enhancements such as inversion attributes. The inversion attributes
are used to change the active polarity of each pin. When set to 1, it changes the
pin to behave active-low rather than active-high. Having more control signals with
increased flexibility provides the software with additional flexibility to use all the
resources within each CLB in the architecture.

Old FPGA generations have used central clock spine to distribute the various
clocks throughout the FPGA. As a result, clock skew always grows larger when
clock sources are away from the center of the device. In Xilinx UltraScale
architecture, segmented clock networks allow the center of clock network of a logic
block to be placed at the geometric center of the logic block. This technique reduces
the clock skew and also improves the performance. The clock segments can also
switch on and off when needed. This scheme eliminates unnecessary transistor
switchings and reduces the amount of power required to run the on-chip clock
networks.

The high-performance Altera Stratix architecture also consists of vertically
arranged LEs, memory blocks, DSP blocks, and Phase Locked Loops (PLLs) that
are surrounded by I/O Elements (IOEs) as depicted in Fig. 11.10. Speed-optimized
interconnects and low-skew clock networks provide connectivity between these

344 S.M. Mansureh et al.

Fig. 11.4 Xilinx ASMBL architecture

Fig. 11.5 Column-based I/O, enabled by flip-chip packaging technology

11 Reconfigurable Architectures 345

Fig. 11.6 Power and ground distribution in traditional and ASMBL architecture

Fig. 11.7 Altera ALM block diagram

structures for data transfer and clock distribution. Stratix FPGAs are based on the
MultiTrack interconnect with DirectDrive technology [84]. The MultiTrack inter-
connect consists of continuous, performance-optimized routing lines of different
lengths used for communication within and between distinct design blocks. It also
gives more accessibility to any surrounding Logic Array Block (LAB) with much
fewer connections, thus improving performance and reducing power. MultiTrack
interconnect structure also provides accessing up to 22 clock domains per region.
Each Stratix device features up to 16 global clock networks. The DirectDrive
technology is a deterministic routing technology, which simplifies the system
integration stage of block-based designs by eliminating the often time-consuming
system re-optimization process that typically follows design changes and additions.

346 S.M. Mansureh et al.

Fig. 11.8 Fracturability of an Altera ALM

A6
A5
A4
A3
A2

DinX

Look-Up Table
(LUT)

O6

O5A1

D SR
Q

CE

D SR
Q

CE
DinI

Bypass

Fig. 11.9 Direct connections to flip-flops bypassing LUT

11 Reconfigurable Architectures 347

Fig. 11.10 Stratix device architecture

Fig. 11.11 Static partial reconfiguration

11.2.2 Partial Reconfiguration in FPGA

Partial reconfiguration is a feature of modern FPGAs that allows reconfiguration
of only a part of the logic fabric of an FPGA. Normally, reconfiguring an FPGA
requires it to be held in reset while an external controller reloads a design onto it.
Partial reconfiguration allows for critical parts of the design to continue operating
while a controller either on the FPGA or off of it loads a partial design into a
reconfigurable module. Partial reconfiguration can also be used to save space for
multiple designs by only storing the partial designs that change between designs.
Partial reconfiguration of FPGAs is a compelling design concept for general purpose
reconfigurable systems for its flexibility and extensibility. Partial reconfiguration
can be divided into two groups: dynamic partial reconfiguration [68, 97] and static
partial reconfiguration.

In static partial reconfiguration, the device is not active during the reconfiguration
process. In other words, while the partial data is sent into the FPGA, the rest of the
device is stopped and brought up after the configuration is completed, as shown
in Fig. 11.11. Dynamic Partial Reconfiguration (DPR), also known as active partial

348 S.M. Mansureh et al.

Fig. 11.12 Dynamic partial reconfiguration

reconfiguration, permits to change a part of the device while the rest of an FPGA is
still running as illustrated in Fig. 11.12. Nowadays, Xilinx and Altera FPGA vendors
support DPR technique in their products [29,69]. The technique can be used to allow
the FPGA to adapt to changing hardware algorithms, improve fault tolerance, and
achieve better resource utilization. DPR is especially valuable where devices operate
in a mission critical environment that cannot be disrupted while some subsystems
are being redefined. Placing reconfigurable modules for the partial reconfiguration
can be done in different styles such as island, slot, or grid style [28]; depending on
the style, a different DPR technique is used. Not all the techniques are supported by
FPGA vendors such as Xilinx and Altera, but there are active researches on handling
such techniques.

11.2.2.1 Island-Style Reconfiguration
As shown in Fig. 11.13, there are different configuration styles depending on the
arrangement of the regions for partial reconfiguration. In the island-style approach,
the configurable region is capable of hosting one reconfigurable module exclusively
per island. A system might provide multiple islands, but if a module can only run on
a specific island, it is called single-island style [54]. If modules can be relocated to
different islands, it is called multiple-island style. While the island style can be ideal
for systems where only a few modules are swapped, it typically suffers from waste of
logic resources due to internal fragmentation in most applications. It happens when
modules with different resource requirements exclusively share the same island. For
example, if a large module taking a big island is replaced by a smaller one, there will
be a waste of logic resources in the reconfigurable region. To alleviate the problem,
one can reduce the size of each island, but in that case, a large module may not
fit into an island. However, hosting only one module per island makes it simple to
determine where to place a module.

11.2.2.2 Slot-Style Reconfiguration
The island-style reconfiguration suffers from a considerable level of internal
fragmentation. We can improve this by tiling reconfigurable regions into slots. This
results in a one-dimensional slot-style reconfiguration as shown in Fig. 11.13b. In
this approach, a module occupies a number of tiles according to its resource re-
quirements, and multiple modules can be hosted simultaneously in a reconfigurable
region. Figure 11.13 shows how the tiling influences the spatial packing of modules
into a reconfigurable region. In general, however, partial reconfiguration should also
consider packing of modules in the time domain. In order to improve the utilization

11 Reconfigurable Architectures 349

Fig. 11.13 Different placement styles of reconfigurable modules. (a) Island style. (b) Slot style.
(c) Grid style

Fig. 11.14 Packing of modules into a system using slot-style reconfiguration. (a) Island style.
(b) Slot style

of the reconfigurable resources by the slot-style reconfiguration [55], modules
can be made relocatable to different slots. This is similar to the multiple-island
reconfiguration. Figure 11.14 gives an example of how module relocation helps to
better fit modules into a reconfigurable region over time. Tiling the reconfigurable
region is considerably more complex as the system has to provide communication to
and from the reconfigurable modules as well as the placement of the modules. The
placement should also consider that FPGA resources are in general heterogeneous.
For example, there are different primitives like logic, memory, and arithmetic blocks
on the fabric as we mentioned in the last section. Moreover, depending on the
present module layout, a tiled reconfigurable region might not provide all free tiles
as one contiguous area, which is called external fragmentation. Such an external
fragmentation can be removed by defragmenting the module layout which is called
compaction.

11.2.2.3 Grid-Style Reconfiguration
The internal fragmentation of a reconfigurable region that is tiled with one
dimensional slots can still be large. In particular, the dedicated multiplier and
memory resources can be affected much by this since a module typically needs
only a few among many resources arranged in columns on the FPGA fabric. Thus

350 S.M. Mansureh et al.

M7

M6M5M4

M3M2M1 M1

time
1 2 3

M2

M3

M1 M1

M7

M6

M5M4

a b

Fig. 11.15 Grid style module packing. (a) Task graph. (b) Space-time packing

it is beneficial if another module can use the remaining resources by tiling the
vertical slots in Fig. 11.13b in horizontal direction. This results in a two-dimensional
grid-style reconfiguration [53] as shown in Fig. 11.15b. The implementation and
management of such a system is even more complex than the slot-style reconfigura-
tion approach. Note that it requires a communication architecture that can carry out
the communication of the modules with the static part of the system and also the
communication between reconfigurable modules, and the communication must be
established within a system at run time in the absence of sophisticated design tools.
Together with the time domain, the two-dimensional grid style placement becomes a
three-dimensional packing problem as visualized in Fig. 11.15. The packing should
perform scheduling while satisfying the constraints on resource availability and the
dependency between the modules. This packing, considering also fragmentation,
has to be managed at run time.

11.3 CGRA Architecture

Coarse Grained Reconfigurable Architectures (CGRAs), also known as coarse
grained reconfigurable arrays, emerged in 1990s targeting DSP applications [30].
Whereas FPGAs feature bitwise logic in the form of LUTs and switches, CGRAs
feature more energy-efficient and area-conscious wordwide PEs, Register Files
(RFs), and their interconnections. The cycle-by-cycle reconfigurability of CGRAs
along with multiple-bit data-paths has made them superior to FPGAs for repeti-
tive, computation-intensive tasks consisting of various word-level data-processing
operations. Wider data-paths in CGRAs allow more efficient implementation of
complex operators in silicon. Also the feature of cycle-by-cycle reconfigurability
allows customizing the PEs and their connections for every computation and
communication, making the performance closer to that of ASIC for word-level
operations. Compared to FPGAs, CGRAs have lower delay characteristics and less
power consumption. They have much shorter reconfiguration time (cycle level),
and thus much more flexible like a programmable processor. On the other hand,
gate-level reconfigurability is sacrificed, and thus they are less efficient for bit-level
operations.

11 Reconfigurable Architectures 351

RaPiD [30], one of the first CGRAs, was developed in 1996. It is a linear array
of cells, where each cell comprises of two 16-bit integer ALUs, a 16-bit integer
multiplier, six registers, and three small local memories. The interconnections
between the functional units are made by segmented buses. It works on 16-bit
signed/unsigned fixed-point data. The two 16-bit ALUs in each cell can make a
pipelined 32-bit ALU. It runs at 100 MHZ frequency and can perform a sustained
rate of 1.6 Giga Operations Per Second (GOPS). Of course, more recent CGRAs can
operate at much higher clock frequencies, provide higher power efficiency, and have
more PEs in the array [102]. There are plenty of CGRAs designed and implemented
in the last two decades; RaPiD, MATRIX [78], Chimaera [41], Raw [110], Garp
[42], MorphoSys [100], REMARC [79], CHESS [70], HSRA [106], PipeRench
[34], DReAM [8], AVISPA [65], PACT XPP [98], ADRES [73], DAPDNA-2
[99], MORA [58], Chameleon [101], SmartCell [67], FLoRA [62], ReMAP [111],
SYSCORE [92], and EGRA [5] are some of THE well-known CGRAs reported to
date. A detailed review can be found in survey papers by Hartenstein [39], Todman
et al. [104], Choi [20], Tehre et al. [103], and Chattopadhyay [12]. One thing to
note is that, in some CGRAs such as ADRES or SRP [51], the architectures work in
two modes: CGRA mode and VLIW mode. In such architectures, the VLIW mode
executes the control intensive part of the application.

11.3.1 Building Blocks

The main part of CGRA is an array of PEs, RFs, and their interconnections. The
array is connected to data and configuration memories as well as a host processor.
A PE is basically a unit that performs ALU operations mostly for executing inner-
most loop kernels. Typically, a PE has its own registers to save temporary data.
The host processor may be a VLIW processor (e.g., ADRES), a DSP processor
(e.g., Montium), or a general-purpose microprocessor (e.g., MOLEN) to execute
non-loop or outer loop code. It also controls the reconfiguration of the array.
Data memory works as a communication medium between PE array and the host.
Reconfiguration bitstreams reside in the configuration memory and are fed to the
array for reconfiguration. The reconfiguration can be done every cycle if the required
array behavior changes cycle by cycle. Otherwise, the current configuration can stay
in the array for a while without any reconfiguration. Figure 11.16 shows the block
diagram of FloRA as a sample CGRA.

11.3.1.1 Processing Elements
CGRAs mostly consist of a 2D (e.g., 8�8) array of cells (PEs) although RaPiD has
a linear (1D) array of cells. A cell usually implements a single execution stage but
may also include an entire execution unit (RaPiD) or can even be a general-purpose
processor (Raw). Figure 11.17a, b show the difference in computing cells between
FPGA and CGRA; while a basic cell in FPGA can execute a bit-level operation, the
same in CGRA can execute a word-level operation.

352 S.M. Mansureh et al.

Fig. 11.16 FloRA block diagram

FPGA

LUT

A B

A
B

a

CGRA

32-bit ALU

B A

E C D

F

A

B C D

E F

b

EGRA

Cluster of ALUs

A B

A
B

c

Fig. 11.17 Operation granularity comparison among (a) FPGA, (b) CGRA and (c) EGRA [5]

11 Reconfigurable Architectures 353

PE0 PE1 PE2 PE3

PE4 PE5 PE6 PE7

PE8 PE9 PE10 PE11

PE12 PE13 PE14 PE15

homogeneous

PE0 PE1 PE2 PE3

PE4 PE5 PE6 PE7

PE8 PE9 PE10 PE11

PE12 PE13 PE14 PE15

heterogeneous

ba

Fig. 11.18 Homogeneous vs. heterogeneous CGRAs

Although some CGRAs have different names for the computing cells, each
cell is commonly called a processing element or a PE in short. PEs in different
CGRAs support different set of operations (e.g., 16 instructions for CHESS). The
number of PEs in a CGRA array varies from 16 in SRP to 64 in FloRA and
even more to 24 rows of 16 cells in ReMAP. The PEs are either homogeneous
or heterogeneous. While the homogeneity provides a uniform architecture and thus
is easier to use, the heterogeneity targets better resource utilization and therefore
less power and area consumption. CGRAs such as MORA, MorphoSys, REMARC,
and SYSCORE are homogeneous as shown in Fig. 11.18a. Each PE has an ALU,
a multiplier, and a register file and is configured through a 16- or 32-bit context
word [100]. On the other hand, BilRC, MATRIX, XPP, and SRP are heterogeneous
(Fig. 11.18b). Some PEs in SRP support scalar operations while some other support
vector operations as well. Besides that, the type and number of operations are
not the same among different PEs in SRP. Another aspect of heterogeneity is in
accessing the data memory by using read and write operations; only a few PEs,
called load/store PEs have access to the data memory [49]. For example, a CGRA
array may have one load/store PE per row, while one or two PEs per row may
provide multiplications [38]. A heterogeneous architecture may allow normal PEs
to share expensive resources (like multipliers), which leads to less area and energy
consumption [90]. The sample heterogeneous CGRA illustrated in Fig. 11.18b has
three different kinds of PEs in the array. For example, PE0, PE1, PE2, and PE3
can be load/store PEs; PE4, PE7, PE12, and PE15 can contain expensive functional
units; other PEs are normal ones.

In architectures like FloRA [38], each PE contains its own RF. But in some other
CGRAs like SRP, a register file is shared among a number of PEs. PipeRench,
FloRA [44], and SRP are among a few CGRAs that their PEs support floating-
point operations besides the integer operations. MorphoSys is a CGRA architecture
that works in a SIMD format and is also appropriate for systolic array kind of

354 S.M. Mansureh et al.

Fig. 11.19 Branch predicate
techniques in FloRA

path

PE
add

R
1

R
1

#1
sub

R
1

R
1

#1

add
R

2
R

2
#1

sub
R

2
R

2
#1

...

...

if path
instructions

else path
instructions

operations. Predicated execution in some new CGRAs such as SRP and FLoRA
enables accelerated execution of control flows on a CGRA. Figure 11.19 shows the
implementation of predicated executions in FloRA [38].

Raw [110] is another architecture in this category. The main element in the array
is called a tile, which contains instruction and data memories, an arithmetic logic
unit, registers, configurable logic, and a programmable switch that supports both
dynamic and compiler-orchestrated static routing. On the other hand, Garp [42]
is something between FPGA and CGRA, having 2-bits wide operations for the
logic blocks. Template Expression Grained Reconfigurable Array (EGRA) [5] in
Fig. 11.17c is another example of a coarse-grained array. RAC, a complex cell at
the heart of the arithmetic in EGRA, supports efficient computation of an entire
sub-expression, as opposed to a single operation. In addition, RACs can generate
and evaluate branch conditions and be connected either in a combinational or
a sequential mode. Figure 11.17c illustrates how a complete expression can be
mapped to a cell in EGRA.

The processing element in the reMORPH array is a tile built using DSP and
RAM blocks which are already available in an FPGA platform for ALUs and local
data/code memories, respectively. Each tile can implement arithmetic and logic
operations along with direct and indirect addressing to the data in memory. This
enables complete C style loops to be executed on a PE. Memory locations are reused
to store the intermediate results. In each iteration, the same set of instructions can
be executed by updating the base addresses of the registers to read new data using
register indirect addressing. As the reconfiguration of reMORPH array is done at
the task level, it is sometimes considered as a many-core architecture rather than a
CGRA.

11.3.1.2 Interconnects
In general, CGRAs execute only loops; therefore, they need to be coupled to
a host processor. While the array executes the kernel loops, the host processor
can execute other parts of the application. Therefore, interconnections in CGRAs
can be discussed in two different levels: intra-connections and inter-connections.

11 Reconfigurable Architectures 355

Inter-connections define the connections between the array and the host processor,
and intra-connections define connections among PEs in the array.

Figure 11.16 shows that a PEs array is connected to the host processor using a
common bus, which also connects the PEs array to the main memory. However, the
array is connected to its own data memory using direct connections. On the other
hand, in some other architectures like ADRES, there is no separate host processor,
but part of the array works in a VLIW mode for the role of the host processor.

As the intra-connection, which defines the connections inside a PE array,
segmented buses are used among the functional units in RapiD. The most common
connection topology in a 2D array of PEs is a mesh connecting a PE to its four
nearest neighbors (Fig. 11.20a). Such a mesh is the base interconnection topology
in architectures like MorphoSys and ADRES. Figure 11.20 illustrates some other
interconnection topologies among PEs including next hop (Fig. 11.20b), buses
(Fig. 11.20c), and extra (Fig. 11.20d). Some CGRAs combine mesh interconnects
with next-hope connections to provide more routing capabilities among PEs

Shared RF

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a
Shared RF

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b

Shared RF

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

c

Shared RF

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

d

Fig. 11.20 Basic interconnects that can be combined [25]. (a) Nearest neighbor. (b) Next hop.
(c) Buses. (d) Extra

356 S.M. Mansureh et al.

Fig. 11.21 FloRA interconnect network [76]

(e.g., FloRA). Horizontal and/or vertical buses are other common interconnects
among PEs in some architectures as shown in Fig. 11.21 [25]. While Fig. 11.20
shows examples of flat interconnection, there are CGRAs with a hierarchical
structure supporting multi-level interconnects among PEs. As an example, the PE
array in SRP has a 2-level hierarchical interconnect topology. A cluster of PEs
form a minicore with a full connection between them. Besides that there is a full
connection between minicores [51].

In CGRAs with shared resources and heterogeneous PEs, the connections be-
tween PEs and shared resources can follow different topology than the connections
between PEs of same or different type. But in most CGRAs, PEs in a row or column
share the same resources. In heterogeneous architectures, The load/store PEs may
follow the same connection topology as other PEs but they have separate dedicated
connections to the ports of the data memory.

11.3.2 Reconfiguration in CGRAs

The reconfigurability of CGRA arrays can be categorized into static reconfiguration,
partially dynamic reconfiguration, and fully dynamic reconfiguration.

KressArray is a statically reconfigurable CGRA. In the architecture, the array is
configured before a loop is entered. So the mapping is spatial and no reconfiguration

11 Reconfigurable Architectures 357

takes place during the loop execution. In such architectures each resource is assigned
a single task for executing the loop. Therefore, the associated compiler performs
task mapping and data routing, which is similar to the place & route process in
FPGA. The spatial mapping in such CGRAs leads to less power consumption, but a
large loop cannot be mapped onto the array.

ADRES, Silicon Hive, and MorphoSys support fully dynamic reconfiguration.
In such architectures, One full reconfiguration takes place for every execution
cycle. Therefore, more than one task can be assigned to a resource during the
loop execution lifetime and thus the loop size is not a problem. In this case, the
CGRA is treated as a 3D spatial-temporal array, with time (or cycles) as the third
dimension. The power consumption of the configuration memories is one drawback
for these architectures. SIMD structure of MorphoSys decreases power consumption
overhead by fetching one configuration code for all the PEs in a row (or a column).
Another technique to reduce power consumption overhead is to pipeline the current
configuration of a column to the next column for the next execution cycle [48].
Compressing configuration memory content is another solution to reducing power
consumption as well as required memory capacity [86].

PACT and RaPiD feature a partial dynamic reconfiguration, such that part of the
configuration bitstream is downloaded to the array statically while the other part is
invoked and downloaded onto the array dynamically by using a sequencer. PACT
CGRA can initiate events to invoke (partial) reconfiguration [25].

11.4 Mapping onto FPGAs

Traditional mapping of an application onto an FPGA is at the logic level mostly
involving technology mapping of logic operations to FPGA logic blocks. As the
systems become more complex, however, it is preferred to start the design process
at a higher abstraction level such as Electronic System Level (ESL), where high-
level programming languages such as C, C++, or SystemC are used to describe
the system behavior and then the High-Level Synthesis (HLS) technique is used to
automatically generate the Register Transfer Level (RTL) structure that implements
the behavior. Figure 11.22 describes the HLS flow.

The compilation, which is the first step of the flow, transforms the input
behavioral description into a formal representation. This first step may include
various code optimizations such as false data dependency elimination, dead-code
elimination, and constant folding. The formal model produced by the compilation
exhibits the data and control dependencies between the operations. Data depen-
dencies can be easily represented with a Data-Flow Graph (DFG) in which nodes
represent operations and the directed arcs between the nodes represent the input,
output, and temporary variables for data dependencies. Such a simple representation
does not support branches, loops, and function calls and thus it is extended by adding
control dependencies to obtain Control-/Data-Flow Graph (CDFG). There are
various ways of combining data flow and control flow into a CDFG. For example,
a CDFG can be a hierarchical graph where each node is a DFG that represents a

358 S.M. Mansureh et al.

Fig. 11.22 High-level
synthesis (HLS) procedures

basic block and edges between the nodes represent control dependencies. Once the
CDFG has been built, additional analyses or optimizations can be performed mostly
focusing on loop transformations including loop unrolling, loop pipelining, loop
fission/fusion, and loop tiling. These techniques are used to optimize the latency
or the throughput. To the optimized CDFG, a typical HLS process applies three
main steps, namely, allocation, scheduling, and binding. We will discuss those steps
in the following subsections. Several HLS tools have been developed for FPGAs
targeting specific applications. GAUT is a high-level synthesis tool that is designed
for DSP applications [24]. GAUT synthesizes a C program into an architecture with
a processing, communication, and memory unit. It requires the user supply specific
constraints, such as the pipeline initiation interval. ROCCC is an open-source HLS
tool that can create hardware accelerators from C [108]. ROCCC is designed to
accelerate kernels that perform repeated computation on streams of data such as
FIR filters in DSP applications. ROCCC supports advanced optimizations such as
systolic array generation, temporal common subexpression elimination, and it can
generate Xilinx PCore modules to be used with a Xilinx MicroBlaze processor [77].

11 Reconfigurable Architectures 359

vo id FIR (s h o r t ∗y , s h o r t c [N] , s h o r t x) {
. . .
acc =0;
Shif t_Accum_Loop : f o r (i =N−1; i >=0; i−−){

i f (i ==0){
s h i f t _ r e g [0]= x ;
d a t a = x ;

}
e l s e {

s h i f t _ r e g [i]= s h i f t _ r e g [i − 1] ;
d a t a = s h i f t _ r e g [i] ;

}
acc += d a t a∗c [i] ; ;

}
∗y=acc ;

}

Fig. 11.23 FIR filter C code

Shift_Register

yRegister

x

c

start

reset
FSM Block RAM

(RAMB36)
c_addr

done

shift_reg_ctr

X

+

MAC (DSP48E)

Clock signals are omitted

Fig. 11.24 FIR filter block diagram generated by Xilinx Vivado HLS tool

Xilinx developed the Vivado HLS tool [109] based on AutoPilot (a commercial
version of xPilot [17]), a product of AutoESL which was acquired by Xilinx. It
uses a Low-Level Virtual Machine (LLVM) [59] compilation infrastructure and
optimizes various parameters such as interconnect delays, memory configurations,
and I/O ports/types for different implementation platforms. It can automatically
generate RTL code from an untimed or partially timed C, C++, or SystemC
description. Figure 11.23 shows an example of C code for an FIR filter with a 16-
bit wide data path, and Fig. 11.24 shows the RTL block diagram generated by the
Vivado HLS tool from the C code.

The LegUp [11] is an open-source HLS framework that aims to provide the
performance and energy benefits of hardware, while retaining the ease-of-use
associated with software. LegUp automatically compiles a standard C program
to target a hybrid FPGA-based software/hardware system-on-chip, where some

360 S.M. Mansureh et al.

program segments execute on an FPGA-based 32-bit MIPS soft processor and other
program segments are automatically synthesized into FPGA circuits – hardware
accelerators – that communicate and work in tandem with the soft processor.
LegUp also uses LLVM compiler framework for high-level language parsing and
its standard compiler optimizations.

11.4.1 Allocation

Allocation defines the type and the number of hardware resources (functional
units, storage, or connectivity components) needed to implement the behavior while
satisfying the design constraints. Depending on the HLS tool, some components
may be added during scheduling or binding [23]. For example, functional units such
as adders or multipliers can be added during scheduling or binding if the given
performance constraint cannot be met with the allocated resources. The components
are selected from the RTL component library. It is important to select at least
one component for each operation type used in the behavioral specification. The
library must also include component characteristics such as area, delay, and power
consumption.

11.4.2 Scheduling

Scheduling algorithms automatically assign control steps to operations subject
to design constraints. These algorithms can be classified into two types: exact
algorithms and heuristics. Exact algorithms like the one based on Integer Linear
Program (ILP) [33, 43] provide an optimal schedule but take prohibitively long
execution time in most practical cases. To cater to the execution time issue, various
algorithms based on heuristics have been developed. For example, an algorithm
may make a series of local decisions, each time selecting the single best operation-
control step pairing without backtracking or look-ahead. So it may miss the globally
optimal solution, but can quickly produce a result that is sufficiently close to the
optimum and thus acceptable in practice. Examples of basic heuristic algorithms
for HLS include As Soon as Possible (ASAP), As Late As Possible (ALAP), List
Scheduling (LS), and Force-Directed Scheduling (FDS).

FDS and LS are constructive heuristic algorithms, and the quality of the results
may be limited in some cases. To further improve the quality, an iterative method
can be applied to the result of constructive method. In [87], for example, they adopt
the concept of Kernighan and Lin’s heuristic method for solving the graph-bisection
problem [45] to reschedule operations into an earlier or later step iteratively until
maximum gain is obtained. There are many other iterative algorithms for the
resource constrained problem including genetic algorithm [7], tabu search [6, 94],
simulated annealing [10, 19], and graph theoretic and computational geometry
approaches [3].

11 Reconfigurable Architectures 361

11.4.3 Binding

Every operation in the specification or CDFG must be bound to one of the functional
units capable of executing the operation. If there are several units with such
capability, the binding algorithm must optimize this selection. Each variable that
carries values from an operation to another operation across cycles (or control steps)
must be bound to a storage unit. In addition, each data transfer from component
to component must be bound to a connection unit such as a bus or a multiplexer.
Ideally, high-level synthesis estimates the connectivity delay and area as early as
possible so that later steps of HLS can better optimize the design. An alternative
approach is to specify the complete architecture during allocation so that initial floor
planning results can be used during binding and scheduling.

There are many algorithms proposed, but some of the basic ones include clique
partitioning, left-edge algorithm, and iterative refinement. In the clique partitioning-
based binding [83], the operations and variables are modeled as a graph. Cong and
Smith [14] present a bottom-up clustering algorithm based on recursive collapsing
of small cliques in a graph. Kurdahi and Parker [56] solved the register binding
problem for a scheduled data-flow graph by using the left-edge algorithm. Chen
and Cong [18] propose the k-cofamily-based register binding algorithm targeting
multiplexer optimization problem.

11.4.4 Technology Mapping

Most modern FPGA devices contain programmable logic blocks that are based
on a K-input look-up table (K-LUT) where a K-LUT contains 2K truth table
configuration bits so it can implement any K-input function. Thus, any logic circuit
can be implemented with one K-LUT, provided that the circuit has only one output
and the number of inputs is not larger than K; the internal complexity of the circuit
does not matter.

The number of LUTs needed to implement a given circuit determines the size
and cost of the FPGA-based realization. Thus one of the most important phases of
the FPGA CAD flow is the technology mapping step that maps a circuit description
into a LUT network presented in the target FPGA architecture, while minimizing the
number of LUTs used for the mapping and the critical path delay. The process of
technology mapping is often treated as a covering problem. For example, consider
the process of mapping a circuit onto a network of LUTs as illustrated in Fig. 11.25.
Figure 11.25a illustrates the original gate-level circuit and a possible covering with
three 5-LUTs. Figure 11.25b illustrates a different mapping of the circuit through
overlapped covering. In the mapping, the gate labeled X is duplicated and covered
by both LUTs. Gate duplication like this example is often necessary to minimize the
number of LUTs used for the mapping [22].

There are several methods for technology mapping including graph-based and
LUT-based methods. Chen et al. [16] introduce graph-based FPGA technology
mapping for delay optimization. As a preprocessing phase of this work, a general

362 S.M. Mansureh et al.

X

LUT

LUT LUT

a

X X

LUT

b

LUT

Fig. 11.25 Technology mapping as a covering problem. (a) Gate-level circuit and mapping. (b)
Better mapping with duplication

algorithm called DMIG transforms an arbitrary n-node network into a network
consisting of at most two-input gates with only an O(1) factor increase in network
depth. A matching-based technique that minimizes area without increasing network
delay is used in the post-processing phase. Cong and Minkovich [21] present LUT-
based FPGA technology mapping for reliability. As device size shrinks to the
nanometer range, FPGAs are increasingly prone to manufacturing defects, and it
is important to have the ability to tolerate multiple defects. One common defect
point is in the LUT configuration bits, which are crucial to the correct operation of
FPGAs. This work presents an error analysis technique that efficiently calculates
the number of critical bits needed to implement each LUT. It allows the design to
function correctly when implemented on a faulty FPGA.

11.5 Mapping onto CGRAs

Despite the enormous computation power, the performance of CGRAs critically
hinges on a smart compiler and mapping algorithm. The target applications of
these architectures often spend most of their time executing a few time-critical loop
kernels. So the performance of the entire application may be improved considerably
by mapping these loop kernels onto an accelerator. Moreover, these computation-
intensive loops often exhibit a high degree of inherent parallelism. This makes it
possible to use the abundant computation resources available in CGRAs. The pro-
grammer or the compiler for a CGRA may find these computation-intensive loops
through profiling and/or analysis and directs the computation-intensive segments to
CGRA and control-intensive part to the host processor.

The first compilation attempts were focused on ILP but failed to better exploit
the parallelism than VLIW [74]. Success of software pipelining techniques encour-
aged researches to examine modulo scheduling. Modulo scheduling is a software

11 Reconfigurable Architectures 363

pipelining technique used in VLIW to improve parallelism by executing different
loop iterations in parallel. The objective of modulo scheduling is to engineer a
schedule for one iteration of the loop such that the same schedule is repeated at
regular intervals with respect to intra- and inter-iteration dependencies and resource
constraints. This interval is termed Initiation Interval (II), essentially reflecting the
performance of the scheduled loop. It is determined by several parameters, and the
reader is directed to [95] for the details.

Modulo scheduling on coarse-grained architectures is a combination of three
subproblems: placement, routing, and scheduling. Placement determines on which
PE to place one operation. Scheduling determines in which cycle to execute that
operation. Routing connects the placed and scheduled operations according to their
data dependencies [25, 74]. In the worst case, II is equal to the schedule length
(iteration length), and in the best case, it is equal to one, which means that the entire
loop is mapped onto the CGRA at once (static mapping). In case of II�2, PEs need
to be reconfigured several times to execute the entire loop.

Dynamically Reconfigurable Embedded System Compiler (DRESC) [74] uses
a modulo scheduling algorithm based on simulated annealing [52]. It begins with
a random placement of operations on the PEs, which may not be a valid modulo
schedule. Operations are then moved between PEs until a valid schedule is achieved.
The random movement of operations in the simulated annealing technique can result
in a long convergence time for loops with modest numbers of operations [89]. SPR
[31] is a mapping tool that uses Iterative Modulo Scheduling (IMS), besides using
simulated annealing placement with a cooling schedule inspired by VPR [9] as well
as PathFinder [71] and QuickRoute [66] for pipelined routing.

To have a better mapping, it is required to consider scheduling, placement, and
routing at the same time. Graph-based algorithms [74, 75, 116, 117] are able to do
the job just by modeling CGRA as a graph including time as the third dimension.
Therefore, the mapping problem becomes mapping the loop kernel DFG onto the
CGRA Modulo Resource Routing Graph (MRRG). Figure 11.26 shows how a loop
kernel DFG is mapped onto the CGRA, where three subsequent iterations of the
DFG are mapped. As shown in this example, II is 2 while the schedule length is 4.

1
4 23

a

a b

c d

ef

g

b

b
a

b
dc

e
f

g

Time

t

t+1

t+2

t+3

sc
he

du
le

le
ng

th
=

4

c

b

f
ea

d
g bc

b
f

ea

d
g

bc

Time

t

t+1

t+2

t+3

II
=

2
II

=
2 sc

he
du

le
le

ng
th

=
4

d

Fig. 11.26 Mapping example [35]

364 S.M. Mansureh et al.

Figure 11.26d shows that the same PE which is doing operation “b” in cycle “i,”
acts as routing PE in cycle “i+1,” to route operation “b” to cycle “i+2.” In this way,
assigning some PEs for routing provides more connectivity for the communications
between nodes of a DFG.

One of the parameters defining II is the recurrence-constrained lower bound. Oh
et al. [85] introduced a recurrence cycle-aware scheduling technique for CGRAs.
Their modulo scheduler groups operations belonging to a recurrence cycle into a
clustered node and then computes a scheduling order for those clustered nodes.
Deadlocks that arise when two or more recurrence cycles depend on each other
are resolved by using heuristics that favor recurrence cycles with long recurrence
delays. Whereas previous approaches had to sacrifice either compilation speed or
quality of the result, this is no longer necessary with the recurrence cycle-aware
scheduling technique. Traditional schedulers are node-centric in that the focus is
assigning operations to PEs. The straightforward adaptation of this approach is
operation placement followed by operand routing to determine if the assignment
is feasible. Park et al. [89] have shown that node-centric approaches are poor for
CGRA. They proposed an Edge Centric Modulo Scheduling (EMS) approach. This
approach focuses on mapping edges instead of nodes.

Shared resources [47], data memory limitation [26, 49], and register file dis-
tribution (REGIMap [36]) are also important constraints that must be considered
for the mapping of a DFG onto a CGRA. ILP can be used to obtain an optimal
solution to a mapping problem considering such constraints. However, since the ILP
approach is slow in general, it is used to obtain an optimal solution for problems of
small size; the solution is used to check the quality of other heuristic-based (non-
ILP) approaches. We briefly introduce some of the ILP-based and heuristic-based
mapping approaches in Sects. 11.5.1 and 11.5.2, respectively.

In cases that there is not enough space to map all the loop kernels of the
application, some decision has to be made to find more eligible kernels. Lee et al.
[64] have proposed a kernel selection algorithm. If the memory requirement of
the application is larger than the available Scratchpad Memory (SPM) size, kernel
selection is performed based on detailed statistics such as run-time and buffer-access
information of each kernel. Otherwise, all the kernels are mapped to the CGRA.

11.5.1 ILP-Based Mapping Approaches

There have been a few approaches to ILP formulation of the problem of mapping an
application to a CGRA. Ahn et al. [1] have formulated the mapping problem in ILP
for the first time. Their approach consists of three stages: covering, partitioning, and
laying-out. In the covering stage, a kernel tree is transformed to the configuration
tree such that each node of the configuration tree represents a configuration for each
PE and can cover and execute one or more operations. The partitioning stage splits
the configuration tree to clusters such that each cluster is mapped to one distinct
column of the CGRA in laying-out stage. The authors have targeted optimal vertical
mapping with the minimum total data transfer cost among the rows of PEs.

11 Reconfigurable Architectures 365

Fig. 11.27 Split & Push heuristic in SPKM [116]

Yoon et al. [117] have developed a graph-based ILP formulation. Then they have
used Split & Push Kernel Mapping (SPKM) heuristic to solve the mapping problem
within a feasible time. Figure 11.27 shows how the Split & Push Kernel Mapping
Algorithm works. It assigns the entire DFG into one PE and then starts splitting it
horizontally and vertically. The link between the non-neighboring PEs is fulfilled by
using routing PEs. Their formulation takes into account many architectural details
of CGRA and leads to minimum number of rows.

Lee et al. [63] have proposed an approach that covers not only integer operations
but also floating-point operations implemented by simply using two neighboring
tiles. Besides their ILP formulation, they have developed a fast heuristic mapping
algorithm considering Steiner points. Details are given in Sect. 11.5.3.

As already mentioned, there are CGRAs like Raw [110] and reMORPH [80, 93]
that provide reconfigurations at the task level rather than instruction level. Moghad-
dam et al. [81, 82] have presented an ILP-based optimal framework to map an
application in the form of a task graph onto a tile-based CGRA. They have integrated
scheduling, placement, and routing into one mapping problem. The formulation
benefits from the reconfigurability feature of the target platform; a large application
having more tasks than the number of PEs or even multiple applications can be
mapped to the platform.

11.5.2 Heuristic-Based Approaches

There are many heuristic-based mapping approaches for CGRAs including EMS
[89], EPIMap [35], and graph-minor approach [15]. We review some of the most
referenced ones here.

Lee et al. [60] have developed a generic architecture template, called the
dynamically reconfigurable ALU array Dynamically Reconfigurable ALU Array
(DRAA). Their mapping approach goes through the following three levels: PE level,
line level, and plane level. In the PE level, a DFG is extracted. In the line level, nodes
of the DFG are grouped such that each group can be assigned to a distinct row of
PEs. And finally in the plane level, the lines are stitched together to form a plane.
They take into account the data reuse patterns in loops of DSP algorithms as part of
their approach.

366 S.M. Mansureh et al.

Park et al. [88] have presented their modulo graph embedding. Modulo graph
embedding is also a modulo scheduling technique for software pipelining. They
have modelled the architecture using an MRRG. Their MRRG has only II layers,
which makes the problem space smaller, and therefore the mapping algorithm
converges to the solution faster. They have later [89] presented an EMS approach,
which specifically targets routing of data instead of placement of operations.

Galanis et al. [32] have presented a priority-based mapping algorithm. This
algorithm assigns an initial priority to each operation of the DFG. This priority is
inversely proportional to the mobility, which is the difference between ALAP and
ASAP schedule times. The operations residing on the critical path will be scheduled
first.

Hanataka et al. [40] have presented a modulo scheduling algorithm that takes
into account “resource reservation” and “scheduling” separately. They have used
a resource usage aware relocation algorithm. Their approach uses a compact 3D
architecture graph similar to the MRRG used in [88]. This graph is only II times as
large as the original two-dimensional graph.

Dimitroulakos et al. [27] have presented an efficient mapping approach where
scheduling and register allocation phases are performed in one single step. They
have also incorporated modulo scheduling with back tracking in their approach.
Their mapping approach minimizes memory bandwidth bottleneck. They have tried
to maximize the ILP using a new priority scheme and few heuristics. Their solution
covers a large range of CGRAs. They have also developed a simulation framework.

Oh et al. [85] have proposed a scheduling technique that is aware of data
dependencies caused by inter-iteration recurrence cycles. Therefore, operations in
a recurrence cycle are clustered and considered as a single node. The operations in a
recurrence cycle are handled as soon as all predecessors of the clustered node have
been scheduled. They have also proposed a modification in the target architecture to
further improve the quality of their scheduling approach.

Lee et al. [61] have proposed a mapping approach based on high-level synthesis
techniques. They have used loop unrolling and pipelining techniques to generate
loop parallelized code to improve the performance drastically.

Patel et al. [91] benefit from systolic mapping techniques in their scheduler. They
prepare an Synchronous Data Flow (SDF) graph for the application; they rearrange
the graph for systolic mapping, schedule the SDF graph, and then prepare a CDFG
for each node of the SDF graph. As the last step, they generate topology matrix and
delay matrix which are used for the final systolic mapping.

Kim et al. [50] have proposed a memory-aware mapping technique for the first
time. They have also proposed efficient methods to handle dependent data on a
double-buffering local memory, which is necessary for recurrent loops.

11.5.3 FloRA Compilation Flow: Case Study

FloRA consists of a Reconfigurable Computing Module (RCM) for executing loop
kernel code segments and a general-purpose processor for controlling the RCM, and

11 Reconfigurable Architectures 367

these units are connected with a shared bus. The RCM consists of an array of PEs,
several sets of data memories, and a configuration memory [47]. Figure 11.16 shows
FloRA containing a 8�8 reconfigurable array of PEs and internal structure of a PE.
Each PE is connected to the nearest neighboring PEs: top, bottom, left, and right.
The size of the array can be optimized to a specific application domain.

The area-critical resources (such as multipliers) are located outside the PEs and
shared among a set of PEs. Each area-critical resource is pipelined to curtail the
critical path delay, and its execution is initiated by scheduling the area-critical
operation on one of the PEs that share this area-critical resource. Thus, each PE
can be dynamically reconfigured either to perform arithmetic and logical operations
with its own Arithmetic-Logic Unit (ALU) in one clock cycle or to perform multiply
or division operations using the shared functional unit in several clock cycles
with pipelining. Resource pipelining further improves loop pipelining execution by
allowing multiple operations to execute simultaneously on one pipelined resource.
Furthermore, pipelining together with resource sharing increases the utilization of
these area-critical units. Data memory consists of three banks: one connected to the
write bus and the other two connected to the read buses. The connections can also
be reconfigured. Each PE has its local Configuration Cache Element (CCE). Each
CCE has several layers, so the corresponding PE can be reconfigured independently
with different contexts.

FloRA supports floating-point operations by allotting a pair of PEs: one for
mantissa and the other for exponent. Mapping a floating-point operation onto the
PE array with integer operations may take many layers of cache. If a kernel consists
of a multitude of floating-point operations, then mapping it onto the array easily
runs out of the cache layers, causing costly fetch of additional context words
from the main memory. Instead of using multiple cache layers to perform such a
complex operation, some control logic is added to the PEs so that the operation can
be completed in multiple cycles but without requiring multiple cache layers. The
control logic can be implemented with a small Finite-State Machine (FSM) that
controls the PE’s existing data path for a fixed number of cycles [44].

Lee et al. have presented two mapping approaches for FloRA: (1) an optimal
approach using ILP and (2) a fast heuristic approach using Quantum-inspired
Evolutionary Algorithm (QEA). Both approaches support integer-type applications
as well as floating-point-type applications. These mapping algorithms adopt HLS
techniques that handle loop-level parallelism by applying loop unrolling and loop
pipelining techniques. The overall compilation flow is given in Fig. 11.28. The first
step is partitioning, which generates two C codes one for the RISC processor and
the other for the CGRA.

The code segments for the RISC processor are statically scheduled and the
corresponding assembly code is generated with a conventional compiler. The code
segments for the RCM (generally loop kernels) are converted to a CDFG using the
SUIF2 [107] parser. During this process, loop unrolling maximizes the utilization
of the PEs. Then HLS techniques are used for the scheduling and binding on one
column of PEs. Each column of the CGRA executes its own iteration of the loop to
implement loop pipelining.

368 S.M. Mansureh et al.

Fig. 11.28 Overall design flow for application mapping onto FloRA [63]

The main objective of the mapping problem is to map a given loop kernel to the
CGRA such that the total latency is minimized while satisfying several constraints.
Lee et al. have formulated the problem using ILP. ILP-based application mapping
yields an optimal solution. However, it takes an unreasonably long execution time
to find a solution, making it unsuitable for large designs or for design space
exploration. Therefore, they defined a fast heuristic mapping algorithm considering
Steiner points. Their heuristic is based on a mixture of two algorithms: List
Scheduling and QEA.

11.5.3.1 List Scheduling
First, List Scheduling algorithm topologically sorts the vertices from the sink to
the source. If a vertex has a longer path to the sink, then it gets a higher priority.
From the sorted list, the algorithm selects and schedules the vertex with the highest
priority if all the predecessor vertices have been scheduled and the selected vertex is

11 Reconfigurable Architectures 369

reachable from all the scheduled predecessor vertices through the interconnections
available in the CGRA. If the vertex is a floating-point vertex, the algorithm checks
to see if neighbor PEs are busy, since executing a floating-point operation requires
a pair of PEs for several cycles. Mapping a vertex onto a PE considers interconnect
constraint and shared resource constraint. If there is no direct connection available
for implementing a data dependency between two PEs, a shortest path consisting of
unused PEs which work as routers is searched. Another constraint to be considered
is the constraint set by sharing area-critical functional units. For example, if there is
only one multiplier shared among the PEs in a row, two multiply operations cannot
be scheduled successively but should wait for N (number of PEs in a row) cycles
after scheduling one multiply operation, since the multiplier must be used by other
PEs in the same row for loop pipelining. In this case, the second multiply operation
may need to wait with proper routing of the input data.

11.5.3.2 QEA
QEA is an evolutionary algorithm that is known to be very efficient compared to
other evolutionary algorithms [37]. The QEA starts from the List Scheduling result
as a seed and attempts to further reduce the total latency. Starting the QEA with a
relatively good initial solution tends to reach a better solution sooner than starting it
with a random seed. When the schedule and binding of all vertices are determined,
it tries to find the routing paths among the vertices – the routing may need to use
unused remaining PEs – to see if these schedule and binding results violate the
interconnect constraint. In this routing phase, the quality of the result depends on the
order of edges to be routed. Thus the priority of edges for the ordering is determined
as follows.

• Edges located in the critical path are assigned higher priority.
• Among the edges located in the critical path, edges that have smaller slack

(shorter distance) receive higher priority.
• If a set of edges have the same tail vertex, then the set of edges becomes a group

and the priority of this group is determined by the highest priority among the
group members.

According to the above priority, a list of candidate edges is made and a shortest
path for each edge is found in the order of priority with the Dijkstra’s algorithm. In
this routing phase, a Steiner tree (instead of a spanning tree) for multiple writes from
a single source is considered. The heuristic algorithm for finding a Steiner tree tries
to find a path individually for each outgoing edge from the source. If some paths
use the same routing PE, it becomes a Steiner point. Although this approach may
not always find an optimal path, it gives good solutions in most of the cases if not
all. Indeed, experimental results show that the approach finds optimal solutions for
97% of the randomly generated examples. Table 11.1 compares the result obtained
by the heuristic algorithm for the butterfly addition example with the optimum result
obtained by the ILP formulation.

370 S.M. Mansureh et al.

Table 11.1 Experimental
result of butterfly addition
example

Latency Mapping time
(cycle) (s)

ILP
Spanning tree 5 1022
Steiner tree 4 965

Heuristic
Spanning tree 5 13
Steiner tree 4 9

11.6 Conclusions

Reconfigurable architecture provides software-like flexibility as well as hardware-
like performance. Depending on the granularity of configuration, we can consider
two types of reconfigurable architecture: fine-grained reconfigurable architecture
like FPGA and CGRA. In this chapter, we have surveyed various architectures for
FPGAs and CGRAs. We have also surveyed various approaches to mapping appli-
cations to the architectures. Compared to pure hardware design or pure software
design, there are more opportunities in utilizing such reconfigurable architectures
since they support hardware reconfiguration which is controlled by software (For
general trade-offs between hardware and software, refer to �Chap. 1, “Introduction
to Hardware/Software Codesign”.). For example, FPGAs can be better utilized
by dynamic partial reconfiguration, which has been mentioned in this chapter.
However, such opportunities have not been very well investigated and still require
more researches together with the researches on better architectural supports.

References

1. Ahn M, Yoon J, Paek Y, Kim Y, Kiemb M, Choi K (2006) A spatial mapping algorithm for
heterogeneous coarse-grained reconfigurable architectures. In: Proceedings of the design,
automation and test in Europe, DATE ’06, vol 1, p 6

2. Altera arria 10 FPGA. www.altera.com. Accessed 28 Nov 2015
3. Aletà A, Codina JM, Sánchez J, González A (2001) Graph-partitioning based instruction

scheduling for clustered processors. In: Proceedings of the 34th annual ACM/IEEE interna-
tional symposium on microarchitecture, MICRO 34. IEEE Computer Society, Washington,
DC, pp 150–159

4. Altera stratix v FPGA. www.altera.com. Accessed 28 Nov 2015
5. Ansaloni G, Bonzini P, Pozzi L (2011) EGRA: a coarse grained reconfigurable architectural

template. IEEE Trans Very Large Scale Integr (VLSI) Syst 19(6):1062–1074
6. Baar T, Brucker P, Knust S (1999) Tabu search algorithms and lower bounds for the resource-

constrained project scheduling problem. In: Voss S, Martello S, Osman I, Roucairol C (eds)
Meta-heuristics. Springer US, pp 1–18. doi: 10.1007/978-1-4615-5775-3_1

7. Bean JC (1994) Genetic algorithms and random keys for sequencing and optimization. ORSA
J Comput 6(2):154–160. doi: 10.1287/ijoc.6.2.154, http://dx.doi.org/10.1287/ijoc.6.2.154

8. Becker J, Glesner M (2000) Fast communication mechanisms in coarse-grained dynamically
reconfigurable array architecture. In: The 2000 international conference on parallel and
distributed processing techniques and applications (PDPTA’2000), Las Vegas

www.altera.com
www.altera.com
http://10.1007/978-1-4615-5775-3_1
http://10.1287/ijoc.6.2.154
http://dx.doi.org/10.1287/ijoc.6.2.154

11 Reconfigurable Architectures 371

9. Betz V, Rose J (1997) VPR: a new packing, placement and routing tool for FPGA research. In:
Proceedings of the 7th international workshop on field-programmable logic and applications,
FPL ’97. Springer, London, pp 213–222

10. Bouleimen K, Lecocq H (2003) A new efficient simulated annealing algorithm for the
resource-constrained project scheduling problem and its multiple mode version. Eur J Oper
Res 149(2):268–281. doi: 10.1016/S0377-2217(02)00761-0. Sequencing and Scheduling

11. Canis A, Choi J, Aldham M, Zhang V, Kammoona A, Anderson JH, Brown S, Czajkowski
T (2011) LegUp: high-level synthesis for FPGA-based processor/accelerator systems. In:
Proceedings of the 19th ACM/SIGDA international symposium on field programmable gate
arrays, FPGA ’11. ACM, New York, pp 33–36. doi: 10.1145/1950413.1950423

12. Chattopadhyay A (2013) Ingredients of adaptability: a survey of reconfigurable processors.
VLSI Des 2013:10:10–10:10

13. Che S, Li J, Sheaffer J, Skadron K, Lach J (2008) Accelerating compute-intensive applications
with GPUs and FPGAs. In: Proceedings of the symposium on application specific processors,
SASP 2008, pp 101–107

14. Chen D, Cong J (2004) Register binding and port assignment for multiplexer optimization.
In: Proceedings of the 2004 Asia and South Pacific design automation conference, ASP-DAC
’04. IEEE Press, Piscataway, pp 68–73

15. Chen L, Mitra T (2014) Graph minor approach for application mapping on CGRAs. ACM
Trans Reconfig Technol Syst 7(3):21:1–21:25

16. Chen KC, Cong J, Ding Y, Kahng A, Trajmar P (1992) Dag-map: graph-based FPGA
technology mapping for delay optimization. IEEE Des Test Comput 9(3):7–20. doi:
10.1109/54.156154

17. Chen D, Cong J, Fan Y, Han G, Jiang W, Zhang Z (2005) xPilot: a platform-based behavioral
synthesis system. SRC TechCon 5

18. Chen D, Cong J, Fan Y, Wan L (2010) LOPASS: a low-power architectural synthesis system
for FPGAs With interconnect estimation and optimization. IEEE Trans VLSI Syst 18(4):
564–577

19. Cho JH, Kim YD (1997) A simulated annealing algorithm for resource constrained project
scheduling problems. J Oper Res Soc 48(7):736–744

20. Choi K (2011) Coarse-grained reconfigurable array: architecture and application mapping.
IPSJ Trans SystLSI Des Methodol 4:31–46. doi: 10.2197/ipsjtsldm.4.31

21. Cong J, Minkovich K (2010) Lut-based FPGA technology mapping for reliability. In:
Proceedings of the 47th design automation conference, DAC ’10. ACM, New York, pp 517–
522. doi: 10.1145/1837274.1837401

22. Cong J, Wu C, Ding Y (1999) Cut ranking and pruning: enabling a general and efficient
FPGA mapping solution. In: Proceedings of the 1999 ACM/SIGDA seventh international
symposium on field programmable gate arrays, FPGA ’99. ACM, New York, pp 29–35. doi:
10.1145/296399.296425

23. Coussy P, Gajski D, Meredith M, Takach A: An introduction to high-level synthesis. IEEE
Des Test Comput 26(4):8–17 (2009). doi: 10.1109/MDT.2009.69

24. Coussy P, Lhairech-Lebreton G, Heller D, Martin E (2010) Gaut–a free and open source high-
level synthesis tool. In: IEEE DATE

25. De Sutter B, Raghavan P, Lambrechts A (2010) Coarse-grained reconfigurable array archi-
tectures. In: Bhattacharyya SS, Deprettere EF, Leupers R, Takala J (eds) Handbook of signal
processing systems. Springer, Boston, pp 449–484. doi: 10.1007/978-1-4419-6345-1_17

26. Dimitroulakos G, Galanis MD, Goutis CE (2005) Alleviating the data memory bandwidth
bottleneck in coarse-grained reconfigurable arrays. In: 2005 IEEE international conference
on application-specific systems, architecture processors (ASAP’05), pp 161–168. doi:
10.1109/ASAP.2005.12

27. Dimitroulakos G, Georgiopoulos S, Galanis MD, Goutis CE (2009) Resource aware mapping
on coarse grained reconfigurable arrays. Microprocess Microsyst 33(2):91–105

28. Dirk K (2012) Partial reconfiguration on FPGAs: architectures, tools and applications.
Springer, New York

http://10.1016/S0377-2217(02)00761-0
http://10.1145/1950413.1950423
http://10.1109/54.156154
http://10.2197/ipsjtsldm.4.31
http://10.1145/1837274.1837401
http://10.1145/296399.296425
http://10.1109/MDT.2009.69
http://10.1007/978-1-4419-6345-1_17
http://10.1109/ASAP.2005.12

372 S.M. Mansureh et al.

29. Dynamic reconfiguration in Stratix IV devices (2014). Accessed 27 Nov 2015
30. Ebeling C, Cronquist D, Franklin P (1996) Rapid – reconfigurable pipelined datapath. In:

Hartenstein R, Glesner M (eds) Field-programmable logic smart applications, new paradigms
and compilers. Lecture notes in computer science, vol 1142. Springer, Berlin/Heidelberg,
pp 126–135

31. Friedman S, Carroll A, Van Essen B, Ylvisaker B, Ebeling C, Hauck S (2009) SPR: an
architecture-adaptive cgra mapping tool. In: Proceedings of the ACM/SIGDA international
symposium on field programmable gate arrays, FPGA ’09. ACM, New York, pp 191–200.
doi: 10.1145/1508128.1508158

32. Galanis M, Dimitroulakos G, Goutis C (2006) Mapping DSP applications on
processor/coarse-grain reconfigurable array architectures. In: Proceedings 2006 IEEE
international symposium on circuits and systems, ISCAS 2006, p. 4

33. Garfinkel RS, Nemhauser GL (1972) Integer programming, vol 4. Wiley, New York
34. Goldstein S, Schmit H, Budiu M, Cadambi S, Moe M, Taylor R (2000) Piperench: a

reconfigurable architecture and compiler. Computer 33(4):70–77
35. Hamzeh M, Shrivastava A, Vrudhula S (2012) EPIMap: using epimorphism to map applica-

tions on CGRAs. In: Proceedings of the 49th annual design automation conference, DAC ’12.
ACM, New York, pp 1284–1291

36. Hamzeh M, Shrivastava A, Vrudhula S (2013) REGIMap: register-aware application mapping
on coarse-grained reconfigurable architectures (CGRAs). In: 2013 50th ACM/EDAC/IEEE
design automation conference (DAC), pp 1–10. doi: 10.1145/2463209.2488756

37. Han KH, Kim JH (2004) Quantum-inspired evolutionary algorithms with a new termination
criterion, H/sub/spl epsi//gate, and two-phase scheme. IEEE Trans Evol Comput 8(2):156–
169. doi: 10.1109/TEVC.2004.823467

38. Han K, Ahn J, Choi K (2013) Power-efficient predication techniques for acceleration of
control flow execution on CGRA. ACM Trans Archit Code Optim 10(2):8:1–8:25. doi:
10.1145/2459316.2459319

39. Hartenstein R (2001) A decade of reconfigurable computing: a visionary retrospective. In:
Proceedings of the design, automation and test in Europe, Conference and Exhibition 2001,
pp 642–649

40. Hatanaka A, Bagherzadeh N (2007) A modulo scheduling algorithm for a coarse-grain
reconfigurable array template. In: IEEE international parallel and distributed processing
symposium, IPDPS 2007, pp 1–8

41. Hauck S, Fry T, Hosler M, Kao J (2004) The chimaera reconfigurable functional unit. IEEE
Trans Very Large Scale Integr (VLSI) Syst 12(2):206–217

42. Hauser J, Wawrzynek J (1997) Garp: a mips processor with a reconfigurable coprocessor. In:
Proceedings of the 5th annual IEEE symposium on field-programmable custom computing
machines, 1997, pp 12–21

43. Hwang CT, Lee JH, Hsu YC (1991) A formal approach to the scheduling problem in high
level synthesis. IEEE Trans Comput-Aided Des Integr Circuits Syst 10(4):464–475. doi:
10.1109/43.75629

44. Jo M, Lee D, Han K, Choi K (2014) Design of a coarse-grained reconfigurable architecture
with floating-point support and comparative study. Integr {VLSI} J 47(2):232–241. doi:
10.1016/j.vlsi.2013.08.003

45. Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell
Syst Tech J 49:291–307

46. Kestur S, Davis J, Williams O (2010) Blas comparison on FPGA, CPU and GPU. In:
2010 IEEE computer society annual symposium on VLSI (ISVLSI), pp 288–293. doi:
10.1109/ISVLSI.2010.84

47. Kim Y, Kiemb M, Park C, Jung J, Choi K (2005) Resource sharing and pipelining in coarse-
grained reconfigurable architecture for domain-specific optimization. In: Design, automation
and test in Europe, vol 1 pp 12–17 . doi: 10.1109/DATE.2005.260

48. Kim Y, Mahapatra RN, Park I, Choi K (2009) Low power reconfiguration technique for
coarse-grained reconfigurable architecture. IEEE Trans Very Large Scale Integr (VLSI) Syst
17(5):593–603. doi: 10.1109/TVLSI.2008.2006039

http://10.1145/1508128.1508158
http://10.1145/2463209.2488756
http://10.1109/TEVC.2004.823467
http://10.1145/2459316.2459319
http://10.1109/43.75629
http://10.1016/j.vlsi.2013.08.003
http://10.1109/ISVLSI.2010.84
http://10.1109/DATE.2005.260
http://10.1109/TVLSI.2008.2006039

11 Reconfigurable Architectures 373

49. Kim Y, Lee J, Shrivastava A, Paek Y (2011) Memory access optimization in compilation
for coarse-grained reconfigurable architectures. ACM Trans Des Autom Electron Syst
16(4):42:1–42:27. doi: 10.1145/2003695.2003702

50. Kim Y, Lee J, Shrivastava A, Yoon J, Cho D, Paek Y (2011) High throughput data mapping for
coarse-grained reconfigurable architectures. IEEE Trans Comput-Aided Des Integr Circuits
Syst 30(11):1599–1609

51. Kim C, Chung M, Cho Y, Konijnenburg M, Ryu S, Kim J (2012) ULP-SRP: Ultra low power
samsung reconfigurable processor for biomedical applications. In: 2012 international confer-
ence on field-programmable technology (FPT), pp 329–334. doi: 10.1109/FPT.2012.6412157

52. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science
220(4598):671–680. doi: 10.1126/science.220.4598.671

53. Koch D, Beckhoff C, Teich J (2009) Minimizing internal fragmentation by fine-grained
two-dimensional module placement for runtime reconfigurable systems. In: 17th annual
IEEE symposium on field-programmable custom computing machines (FCCM 2009). IEEE
Computer Society, pp 251–254

54. Koch D, Beckhoff C, Tørrison J (2010) Advanced partial run-time reconfiguration on
spartan-6 fpgas. In: 2010 international conference on field-programmable technology (FPT),
pp 361–364

55. Koch D, Beckhoff C, Wold A, Torresen J (2013) Easypr – an easy usable open-source
PR system. In: 2013 international conference on field-programmable technology (FPT),
pp 414–417

56. Kurdahi F, Parker A (1987) Real: a program for register allocation. In: 24th conference on
design automation, pp 210–215. doi: 10.1109/DAC.1987.203245

57. Langhammer M, Pasca B (2015) Floating-point DSP block architecture for FPGAs. In:
Proceedings of the 2015 ACM/SIGDA international symposium on field-programmable gate
arrays, FPGA ’15. ACM, New York, pp 117–125. doi: 10.1145/2684746.2689071

58. Lanuzza M, Perri S, Corsonello P, Margala M (2007) A new reconfigurable coarse-grain
architecture for multimedia applications. In: 2007 second NASA/ESA conference on adaptive
hardware and systems, AHS 2007, pp 119–126

59. Lattner C (2002) LLVM: an infrastructure for multi-stage optimization. Master’s thesis,
Computer Science Department, University of Illinois at Urbana-Champaign, Urbana. http://
llvm.org/pubs/2002-12-LattnerMSThesis.pdf

60. Lee Je, Choi K, Dutt ND (2003) An algorithm for mapping loops onto coarse-grained
reconfigurable architectures. SIGPLAN Not 38(7):183–188

61. Lee G, Lee S, Choi K (2008) Automatic mapping of application to coarse-grained recon-
figurable architecture based on high-level synthesis techniques. In: Proceedings of the
international SoC design conference, ISOCC ’08, vol 01, pp I–395–I–398

62. Lee D, Jo M, Han K, Choi K (2009) Flora: coarse-grained reconfigurable architecture with
floating-point operation capability. In: 2009 international conference on field-programmable
technology, FPT 2009, pp 376–379

63. Lee G, Choi K, Dutt N (2011) Mapping multi-domain applications onto coarse-grained
reconfigurable architectures. IEEE Trans Comput-Aided Des Integr Circuits Syst 30(5):637–
650

64. Lee H, Nguyen D, Lee J (2015) Optimizing stream program performance on cgra-based
systems. In: Proceedings of the 52nd annual design automation conference, DAC ’15. ACM,
New York, pp 110:1–110:6

65. Leijten J, Burns G, Huisken J, Waterlander E, van Wel A (2003) AVISPA: a massively parallel
reconfigurable accelerator. In: Proceedings of the 2003 international symposium on system-
on-chip, pp 165–168

66. Li S, Ebeling C (2004) Quickroute: a fast routing algorithm for pipelined architectures. In:
Proceedings of the 2004 IEEE international conference on field-programmable technology,
pp 73–80. doi: 10.1109/FPT.2004.1393253

67. Liang C, Huang X (2008) Smartcell: a power-efficient reconfigurable architecture for data
streaming applications. In: 2008 IEEE workshop on signal processing systems, SiPS 2008,
pp 257–262

http://10.1145/2003695.2003702
http://10.1109/FPT.2012.6412157
http://10.1126/science.220.4598.671
http://10.1109/DAC.1987.203245
http://10.1145/2684746.2689071
http://llvm.org/pubs/2002-12-LattnerMSThesis.pdf
http://llvm.org/pubs/2002-12-LattnerMSThesis.pdf
http://10.1109/FPT.2004.1393253

374 S.M. Mansureh et al.

68. Lie W, Feng-yan W: Dynamic partial reconfiguration in FPGAs. In: 2009 third international
symposium on intelligent information technology application, IITA 2009, vol 2, pp 445–448
(2009)

69. Lysaght P, Blodget B, Mason J, Young J, Bridgford B (2006) Invited paper: enhanced
architectures, design methodologies and cad tools for dynamic reconfiguration of Xilinx
FPGAs. In: FPL, pp 1–6. IEEE

70. Marshall A, Stansfield T, Kostarnov I, Vuillemin J, Hutchings B (1999) A reconfigurable
arithmetic array for multimedia applications. In: Proceedings of the 1999 ACM/SIGDA
seventh international symposium on field programmable gate arrays, FPGA ’99. ACM, New
York, pp 135–143

71. McMurchie L, Ebeling C (1995) Pathfinder: a negotiation-based performance-driven router
for FPGAs. In: Proceedings of the third international ACM symposium on field-
programmable gate arrays, FPGA ’95, pp 111–117. doi: 10.1109/FPGA.1995.242049

72. Mehta N (2015) Ultrascale architecture: highest device utilization, performance, and scalabil-
ity, WP455 (v1.2), October 29, 2015

73. Mei B, Vernalde S, Verkest D, De Man H, Lauwereins R (2003) Adres: an architecture with
tightly coupled vliw processor and coarse-grained reconfigurable matrix. In: Cheung PYK,
Constantinides G (eds) Field programmable logic and application. Lecture notes in computer
science, vol 2778. Springer, Berlin/Heidelberg, pp 61–70

74. Mei B, Vernalde S, Verkest D, De Man H, Lauwereins R (2003) Exploiting loop-level
parallelism on coarse-grained reconfigurable architectures using modulo scheduling. In:
Proceedings of the conference on design, automation and test in Europe – DATE ’03, vol 1.
IEEE Computer Society, Washington, DC, p 10296

75. Mei B, Vernalde S, Verkest D, Lauwereins R (2004) Design methodology for a tightly coupled
vliw/reconfigurable matrix architecture: a case study. In: Proceedings of the 2004 design,
automation and test in Europe conference and exhibition, vol 2, pp 1224–1229

76. Mei B, Lambrechts A, Mignolet JY, Verkest D, Lauwereins R (2005) Architecture exploration
for a reconfigurable architecture template. IEEE Des Test Comput 22(2):90–101

77. MicroBlaze processor: MicroBlaze soft processor core (2012). http://www.xilinx.com/
products/design-tools/microblaze.html

78. Mirsky E, DeHon A (1996) Matrix: a reconfigurable computing architecture with configurable
instruction distribution and deployable resources. In: Proceedings of the IEEE symposium on
FPGAs for custom computing machines, pp 157–166

79. Miyamori T, Olukotun K (1998) Remarc: reconfigurable multimedia array coprocessor. In:
IEICE transactions on information and systems E82-D, pp 389–397

80. Moghaddam MS, Paul K, Balakrishnan M (2013) Design and implementation of high per-
formance architectures with partially reconfigurable cgras. In: 2013 IEEE 27th international
parallel and distributed processing symposium workshops PhD forum (IPDPSW), pp 202–
211. doi: 10.1109/IPDPSW.2013.121

81. Moghaddam MS, Paul K, Balakrishnan M (2014) Mapping tasks to a dynamically
reconfigurable coarse grained array. In: 2014 IEEE 22nd annual international sym-
posium on field-programmable custom computing machines (FCCM), pp 33–33. doi:
10.1109/FCCM.2014.20

82. Moghaddam M, Balakrishnan M, Paul K (2015) Partial reconfiguration for dynamic mapping
of task graphs onto 2d mesh platform. In: Sano K, Soudris D, Hübner M, Diniz PC (eds)
Applied reconfigurable computing. Lecture notes in computer science, vol 9040. Springer,
pp 373–382

83. Moon J, Moser L (1965) On cliques in graphs. Isr J Math 3(1):23–28. doi:
10.1007/BF02760024

84. MultiTrack interconnect in Stratix III devices (2009)
85. Oh T, Egger B, Park H, Mahlke S (2009) Recurrence cycle aware modulo scheduling for

coarse-grained reconfigurable architectures. SIGPLAN Not 44(7):21–30
86. Park S, Choi K (2011) An approach to code compression for CGRA. In: 2011

3rd Asia symposium on quality electronic design (ASQED), pp 240–245. doi:
10.1109/ASQED.2011.6111753

http://10.1109/FPGA.1995.242049
http://www.xilinx.com/products/design-tools/microblaze.html
http://www.xilinx.com/products/design-tools/microblaze.html
http://10.1109/IPDPSW.2013.121
http://10.1109/FCCM.2014.20
http://10.1007/BF02760024
http://10.1109/ASQED.2011.6111753

11 Reconfigurable Architectures 375

87. Park IC, Kyung CM (1991) Fast and near optimal scheduling in automatic data path synthesis.
In: 28th ACM/IEEE design automation conference, pp 680–685

88. Park H, Fan K, Kudlur M, Mahlke S (2006) Modulo graph embedding: mapping applications
onto coarse-grained reconfigurable architectures. In: Proceedings of the 2006 international
conference on compilers, architecture and synthesis for embedded systems, CASES ’06.
ACM, New York, pp 136–146

89. Park H, Fan K, Mahlke SA, Oh T, Kim H, Kim HS (2008) Edge-centric modulo scheduling
for coarse-grained reconfigurable architectures. In: Proceedings of the 17th international
conference on parallel architectures and compilation techniques, PACT ’08. ACM, New York,
pp 166–176

90. Park JJK, Park Y, Mahlke S (2013) Efficient execution of augmented reality applications on
mobile programmable accelerators. In: 2013 international conference on field-programmable
technology (FPT), pp 176–183. doi: 10.1109/FPT.2013.6718350

91. Patel K, Bleakley CJ (2010) Systolic algorithm mapping for coarse grained reconfigurable
array architectures. In: Proceedings of the 6th international conference on reconfigurable
computing: architectures, tools and applications, ARC’10, pp 351–357. Springer, Berlin/Hei-
delberg

92. Patel K, McGettrick S, Bleakley CJ (2011) Syscore: a coarse grained reconfigurable
array architecture for low energy biosignal processing. In: 2011 IEEE 19th annual
international symposium on field-programmable custom computing machines (FCCM),
pp 109–112

93. Paul K, Dash C, Moghaddam M (2012) reMORPH: a runtime reconfigurable architecture. In:
2012 15th Euromicro conference on digital system design (DSD), pp 26–33

94. Pinson E, Prins C, Rullier F (1994) Using tabu search for solving the resource-constrained
project scheduling problem. In: Proceedings of the 4th international workshop on project
management and scheduling, Leuven, pp 102–106

95. Rau BR (1994) Iterative modulo scheduling: an algorithm for software pipelining loops. In:
Proceedings of the 27th annual international symposium on microarchitecture, MICRO 27.
ACM, New York, pp 63–74. doi: 10.1145/192724.192731

96. Salefski B, Caglar L (2001) Re-configurable computing in wireless. In: Proceedings of 2001
design automation conference, pp 178–183

97. Sanchez E, Sterpone L, Ullah A (2014) Effective emulation of permanent faults in asics
through dynamically reconfigurable FPGAs. In: 2014 24th international conference on field
programmable logic and applications (FPL), pp 1–6

98. Sato T, Watanabe H, Shiba K (2005) Implementation of dynamically reconfigurable processor
dapdna-2. In: 2005 IEEE VLSI-TSA international symposium on VLSI design, automation
and test (VLSI-TSA-DAT), pp 323–324

99. Sato T, Watanabe H, Shiba K: Implementation of dynamically reconfigurable processor
dapdna-2. In: 2005 IEEE VLSI-TSA international symposium on VLSI design, automation
and test (VLSI-TSA-DAT), pp 323–324 (2005)

100. Singh H, Lee MH, Lu G, Kurdahi F, Bagherzadeh N, Chaves Filho E (2000) Morphosys:
an integrated reconfigurable system for data-parallel and computation-intensive applications.
IEEE Trans Comput 49(5):465–481

101. Smit GJM, Kokkeler ABJ, Wolkotte PT, Hölzenspies PKF, van de Burgwal MD, Heysters PM
(2007) The chameleon architecture for streaming DSP applications. EURASIP J Embed Syst
2007(1):1–10

102. SYSTEMS T (2016) Coarse-grained reconfigurable architecture. http://www.trentonsystems.
com/blog/intel-cpu-computing/moores-law-pushing-processor-technology-to-14-
nanometers/

103. Tehre V, Kshirsagar R (2012) Survey on coarse grained reconfigurable architectures. Int J
Comput Appl 48(16):1–7. Full text available

104. Todman T, Constantinides G, Wilton S, Mencer O, Luk W, Cheung P (2005) Reconfigurable
computing: architectures and design methods. IEE Proc Comput Digital Tech 152(2):193–207

105. Trimberger S (2015) Three ages of FPGAs: a retrospective on the first thirty years of FPGA
technology. Proc IEEE 103(3):318–331

http://10.1109/FPT.2013.6718350
http://10.1145/192724.192731
http://www.trentonsystems.com/blog/intel-cpu-computing/moores-law-pushing-processor-technology-to-14-nanometers/
http://www.trentonsystems.com/blog/intel-cpu-computing/moores-law-pushing-processor-technology-to-14-nanometers/
http://www.trentonsystems.com/blog/intel-cpu-computing/moores-law-pushing-processor-technology-to-14-nanometers/

376 S.M. Mansureh et al.

106. Tsu W, Macy K, Joshi A, Huang R, Walker N, Tung T, Rowhani O, George V, Wawrzynek J,
DeHon A (1999) HSRA: high-speed, hierarchical synchronous reconfigurable array. In: Pro-
ceedings of the 1999 ACM/SIGDA seventh international symposium on field programmable
gate arrays, FPGA ’99. ACM, New York, pp 125–134

107. University S (2016) SUIF compiler system. http://suif.stanford.edu/
108. Villarreal J, Park A, Najjar W, Halstead R (2010) Designing modular hardware ac-

celerators in C with ROCCC 2.0. In: 2010 18th IEEE annual international sympo-
sium on field-programmable custom computing machines (FCCM), pp 127–134. doi:
10.1109/FCCM.2010.28

109. Vivado HLS: Xilinx Vivado Design Suite, Inc. (2012). http://www.xilinx.com/products/
design-tools/vivado.html

110. Waingold E, Taylor M, Srikrishna D, Sarkar V, Lee W, Lee V, Kim J, Frank M, Finch P,
Barua R, Babb J, Amarasinghe S, Agarwal A (1997) Baring it all to software: raw machines.
Computer 30(9):86–93

111. Watkins MA, Albonesi DH (2010) ReMAP: a reconfigurable heterogeneous multicore
architecture. In: Proceedings of the 2010 43rd annual IEEE/ACM international symposium
on microarchitecture, MICRO ’43. IEEE Computer Society, Washington, DC, pp 497–508

112. Xcell Journal Issue 52:. http://www.xilinx.com/publications/archives/xcell/Xcell52.pdf
113. Xilinx 7 series FPGA. www.xilinx.com. Accessed 27 Nov 2015
114. Xilinx (2012) Virtex 5 FPGA user guide
115. Xilinx (2014) 7 series FPGAs configurable logic block
116. Yoon JW, Shrivastava A, Park S, Ahn M, Jeyapaul R, Paek Y (2008) SPKM: a novel

graph drawing based algorithm for application mapping onto coarse-grained reconfigurable
architectures. In: 2008 Asia and South Pacific design automation conference, pp 776–782.
doi: 10.1109/ASPDAC.2008.4484056

117. Yoon J, Shrivastava A, Park S, Ahn M, Paek Y (2009) A graph drawing based spatial mapping
algorithm for coarse-grained reconfigurable architectures. IEEE Trans Very Large Scale
Integr (VLSI) Syst 17(11):1565–1578

http://suif.stanford.edu/
http://10.1109/FCCM.2010.28
http://www.xilinx.com/products/design- tools/vivado.html
http://www.xilinx.com/products/design- tools/vivado.html
http://www.xilinx.com/publications/archives/xcell/Xcell52.pdf
www.xilinx.com
http://10.1109/ASPDAC.2008.4484056

12Application-Specific Processors

Tulika Mitra

Abstract

General-Purpose Processors (GPPs) and Application-Specific Integrated Circuits
(ASICs) are the two extreme choices for computational engines. GPPs offer
complete flexibility but are inefficient both in terms of performance and energy.
In contrast, ASICs are highly energy-efficient, provide the best performance at
the cost of zero flexibility. Application-specific processors or custom processors
bridge the gap between these two alternatives by bringing in improved power-
performance efficiency within the familiar software programming environment.
An application-specific processor architecture augments the base instruction-set
architecture with customized instructions that encapsulate the frequently occur-
ring computational patterns within an application. These custom instructions are
implemented in hardware enabling performance acceleration and energy benefits.
The challenge lies in inventing automated tools that can design an application-
specific processor by identifying and implementing custom instructions from
the application software specified in high-level programming languages. In
this chapter, we present the benefits of application-specific processors, their
architecture, automated design flow, and the renewed interests in this class of
architectures from energy-efficiency perspective.

Acronyms

ALU Arithmetic-Logic Unit
ASIC Application-Specific Integrated Circuit
BERET Bundled Execution of REcurring Traces
CAD Computer-Aided Design
CCA Configurable Compute Accelerator
CFG Control-Flow Graph

T. Mitra (�)
Department of Computer Science, School of Computing, National University of Singapore,
Singapore, Singapore
e-mail: tulika@comp.nus.edu.sg

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_13

377

mailto:tulika@comp.nus.edu.sg

378 T. Mitra

CFU Custom Functional Unit
CIS Custom Instruction-Set
DFG Data-Flow Graph
DISC Dynamic Instruction-Set Computer
DSP Digital Signal Processor
FPGA Field-Programmable Gate Array
GPP General-Purpose Processor
GPU Graphics Processing Unit
ILP Integer Linear Program
IR Intermediate Representation
ISA Instruction-Set Architecture
ISEF Stretch Instruction-Set Extension Fabric
MAC Multiply-Accumulator
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
PFU Programmable Functional Unit
PRISC Programmable Instruction-Set Processor
RAM Random-Access Memory
RISC Reduced Instruction-Set Processor
RISPP Rotating Instruction-Set Processing Platform
SFU Specialized Functional Unit
VLIW Very Long Instruction Word

Contents

12.1 Introduction . 379
12.2 Architectural Overview and Design Flow. 382

12.2.1 Application-Specific Processor Architecture . 382
12.2.2 Design Flow. 384

12.3 Custom Instructions Identification and Selection . 387
12.3.1 Formal Definitions . 387
12.3.2 Enumeration of MISO Patterns . 390
12.3.3 Exhaustive Enumeration of All Valid Patterns . 390
12.3.4 Exhaustive Enumeration of All Maximal Convex Patterns 393
12.3.5 Enumeration of Maximum Weighted Convex Patterns 395
12.3.6 Custom Instructions Selection . 395

12.4 Run-Time Customization . 397
12.4.1 Explicit Run-Time Customization . 398
12.4.2 Implicit Run-Time Customization . 403

12.5 Custom Instructions for General-Purpose Computing . 404
12.6 Conclusions . 405
References . 406

12 Application-Specific Processors 379

12.1 Introduction

Over the years, the General-Purpose Processors (GPPs) has been established as
the de facto choice for execution engine. Microprocessors – single chip GPPs –
were invented in 1971 and have enjoyed unprecedented performance growth aided
by technology scaling (Moore’s law [47] for transistor density) and microarchi-
tectural innovations (out-of-order execution, branch prediction, speculation, cache
memory) [53]. GPPs are designed to support a wide range of applications through
software programmability at reasonable power-performance point. The software is
the key here to provide application-specific functionality or specialization.

The generic nature of GPPs is also the reason behind their inefficiency, both in
terms of power and performance [30]. The GPPs need to support a comprehensive
Instruction-Set Architecture (ISA) as the abstraction and interface to the software.
But processing a computation expressed in a generic ISA involves significant
overhead in the front end of the processor pipeline – such as instruction fetch,
instruction decode, and register access – that does not contribute toward the core
computations, which are the arithmetic or logical operations.

At the other end of the spectrum, we have the Application-Specific Integrated
Circuits (ASICs) as the completely specialized execution engines. ASICs can
provide unprecedented power-performance benefits compared to the GPPs as they
completely eliminate the instruction processing overhead and only perform the
required computations. But the efficiency comes at the cost of flexibility as
ASICs does not provide any programmability (hence the name non-programmable
accelerators for computations implemented in an ASIC). Any change in the
application incurs complete redesign and fabrication cost. Thus ASICs are only
suitable for critical computational kernels, such as video encoding/decoding, whose
performance per watt requirements cannot be met through the GPPs.

The domain-specific processors offer an interesting design choice between the
two extreme alternative of GPPs and ASICs. Graphics Processing Units (GPUs)
and Digital Signal Processors (DSPs) are well-established examples of domain-
specific processors. The ISA and the microarchitecture are carefully designed to
accommodate the applications in a specific domain. Thus domain-specific proces-
sors attempt to balance specialization with programmability. Still these processors
cannot possibly cover all the application domains, and programming them is not as
straightforward as GPPs.

In this chapter, we will focus on an interesting and compelling alternative called
the application-specific processors or custom processors [34]. We will use the
terms application-specific processors and custom processors interchangeably in
this chapter. An application-specific processor is a general-purpose programmable
processor that has been configured and extended with respect to a particular
application or application domain [24]. Configurability refers to the ability to select
and set the size of different microarchitectural features such as number and types

380 T. Mitra

of functional units, register file size, instruction and data cache size, associativity,
etc. according to the characteristics of the application domain. For example, if
an application does not use floating-point operations, the floating-point functional
units can be eliminated from the underlying microarchitecture. Optimal setting of
the configuration parameters for an application domain is a complex design space
exploration problem [38] that has been investigated thoroughly [20, 29, 51] in the
past decade.

However, in this chapter, we will focus on the extensibility part of the application-
specific processors where the instruction-set architecture of the general-purpose
processor is augmented with application-specific Instruction-set extensions, also
known as the custom instructions . The custom instructions capture the key
computation fragments or patterns within an application. The custom instructions
are added to the base ISA of the general-purpose processor. The computation
corresponding to each custom instruction is synthesized as a Custom Functional
Unit (CFU), and all the CFUs are included in the processor’s data path alongside
existing functional units, such as Arithmetic-Logic Units (ALUs), multipliers, and
so on. The front end of the processor pipeline, for example, the decode stage, needs
to be suitably changed to take in these new instructions. Similarly, the compiler and
associated software tool chain are modified to support the custom instructions such
that a new application can exploit additional instructions in the ISA. As a custom
instruction combines a number of base instructions, it amortizes the front-end
processing overhead. Moreover, the synthesis process of the CFU can be optimized
so that the operations within a CFU can be parallelized and chained together to offer
a very competitive critical path delay that is far shorter than the sum of the delays
of the individual operations. These factors together lead to substantially improved
performance and energy efficiency for application-specific processors compared
to the GPPs. Thus, application-specific processors offer an easy and incremental
path toward specialization, while still staying within the comfortable and familiar
software programming environment of the GPPs.

Initially, application-specific processors were enthusiastically and successfully
adopted in the embedded systems domain. They are an excellent match for this
domain because an embedded system is designed to provide a well-defined set of
functionalities throughout its lifetime. Thus the custom instructions can be con-
structed to accelerate the specific computations involved in providing the required
functionality. The focus at that time has been on the automated design of the custom
instructions. More concretely, given an application, how do we automatically
enumerate the potential custom instructions (custom instructions enumeration) and
choose the appropriate ones under area, energy, and/ or performance constraints
(custom instructions selection)? A flurry of research activity in the past 15 years on
design automation of custom processors has made significant advances, even though
some open problems and challenges still remain unresolved. A number of processor
vendors have offered commercial customizable processor along with the complete
automation tool chain to enumerate, select, and synthesize the custom instructions,
followed by the synthesis of the application-specific processor including the custom
instructions, and the compiler to fully realize the potential of the custom instructions

12 Application-Specific Processors 381

from software with minimal engagement from the programmers. The Xtensa
customizable processors from Tensilica [39] are the best examples of this design
paradigm. In general, however, the interest in application-specific processors has
been primarily restricted to the embedded systems area till very recently.

In the past five years or so, a number of technological challenges have brought
the application-specific processors to the forefront even in the general-purpose
and high-performance computing domains. First, the energy efficiency rather than
performance has increasingly become the first-class design goal [48] for any system,
be it battery-powered embedded and mobile platforms, or high-performance servers
with continuous access to electrical power sockets. Second, the failure of Dennard
scaling [19] back in around 2005 has had a devastating effect on the microprocessor
design. As power per transistor does not scale any more with feature scaling
from one technology generation to another, increasing transistor density following
Moore’s law leads to increasing power density for the chip. Thus the core has to
operate at a frequency that is lower than the default frequency enabled through
technology scaling, so as to keep the power density of the chip within acceptable
limits. Moreover, complex microarchitectural features have long ceased to provide
any further performance improvements [50] as we have hit the instruction-level
parallelism wall [67] and the memory wall [69]. This loss of frequency scaling
and microarchitectural enhancement have kept the single-core performance at a
standstill for the past ten years or so. Instead, the abundance of on-chip transistors
as per Moore’s law has been employed to build multi- or even many-core chips
consisting of identical general-purpose processor cores [22]. The multi-cores are
perfect match for applications with high thread-level parallelism. But the sequential
fragment of the application still suffers from poor single-core performance and
thereby limits the performance potential of the entire application according to
Amdahl’s law [3].

More importantly, though, multi-core scaling is also coming to an end in the
near future [21]. As we increase the number of core on chip, the failure of Dennard
scaling implies that the total chip power increases. But the packaging and cooling
solutions are not sufficient to handle this increasing chip power. Thus we can have
more core on chip; but we can only power on a subset of these cores to meet the
chip power budget. This phenomenon has been termed dark silicon [43], where
a significant fraction of the chip remains unpowered or dark. The dark silicon
era naturally leads to the design of heterogeneous multi-core architectures [44]
rather than the homogeneous multi-core designs prevalent today. Depending on the
applications executing on the architecture, only the cores that are well suited for the
current workload can be switched on at any point in time, leading to performance-
and energy-efficient computing [61]. In other words, the cheap silicon area (that
would have remained unused anyway due to limited power budget) is being traded
to add execution engines that will be used sparingly and judiciously. Thus, the dark
silicon era has automatically paved the way for specialized cores and have generated
renewed interest in application-specific or custom processors [11, 62].

The objectives and challenges in designing application-specific processors are
somewhat different, though, for embedded computing systems and general-purpose

382 T. Mitra

high-performance computing systems. First, unlike embedded systems that execute
only a fixed set of applications throughout its lifetime, general-purpose computing
systems encounter a diverse set of workloads that may be unknown at design
time. So, while we can profile the applications and design the best set of custom
instructions to accelerate the embedded workload, the same approach is not feasible
in general-purpose systems. This leads to the design of custom instructions that are
somewhat parameterized and can be reused across workloads [65]. Another possible
direction is the design of custom functional units or a flexible fabric that can be
reconfigured to support a varied set of custom instructions [32]. Second, custom
instruction enumeration in the context of embedded systems has been generally
restricted to computations and has mostly excluded storage elements inside a custom
instruction. The implication of this choice is that custom instructions are small
and the gain in performance comes from repeated occurrence – either statically
in the program code or dynamically due to its presence in a loop body – of the
same custom instructions. But the performance gain and energy improvement are
still modest with small custom instructions compared to the potential when large
custom instructions are formed combining computations with storage elements and
without any restrictions in terms of input/output operands [30, 71]. Thus bigger
custom instructions with storage elements are recommended for general-purpose
high-performance computing systems.

The rest of the chapter is organized as follows. We will start off with a
brief overview of the architecture of the application-specific processors and the
corresponding design automation flow. This will be followed by detailed discussion
on custom instructions enumeration and selection algorithms. We will next present
customizable architectures with dynamic or reconfigurable custom instructions
and the necessary algorithms to identify custom instructions and exploit such
architectures. Finally, we will provide a quick review of recent attempts to bring
customization to general-purpose computing platforms.

12.2 Architectural Overview and Design Flow

In this section, we provide an overview of the application-specific processor
architecture and the corresponding design flow.

12.2.1 Application-Specific Processor Architecture

The generic architecture of an application-specific processor or custom processor
is shown in Fig. 12.1. The instruction-set architecture of the base processor is
modified to include the application-specific instructions or custom instructions.
A custom instruction encapsulates a frequently occurring computational pattern
involving a number of basic operations (see Fig. 12.1b). Each custom instruction
is implemented as a CFU. The pipeline data path of the base processor core is
augmented with the CFUs alongside existing functional units (ALU, multiplier,

12 Application-Specific Processors 383

Fig. 12.1 Architecture of an application-specific processor with two CFUs

load/store units, etc.) and are treated the same way as shown in Fig. 12.1a. The
CFUs can access the input and output operands stored in the register file just
like regular functional units. Thus a custom instruction can be fetched, decoded,
and dispatched to the respective CFU just like normal instructions. The biggest
advantage of custom instructions is the improved latency and decreased power
consumption to execute the computational pattern. For example, in Fig. 12.1b, the
custom instruction consists of three basic operations (two AND and one OR). In the
base processor core, this computation pattern requires fetch, decode, and execution
of three instructions. This is reduced to only one custom instruction immediately
saving the fetch, decode, dispatch time, and energy. More importantly, as the custom
instruction is synthesized in hardware, the implementation can take advantage of
parallelism. For example, the two AND operations can be executed in parallel. Also
the critical path now consists of AND-OR operation. If the critical path can fit inside
the cycle time of the base processor, the CFU can execute the custom instruction
in one clock cycle. This is the case when the clock cycle time of the processor
is determined by a complex operation such as Multiply-Accumulator (MAC) or
even addition operation whereas the basic operations on the critical path are much
simpler (such as logical operations) such that multiple of them can be chained
together in a single cycle. If the critical path exceeds the cycle time, then the
CFU will execute the custom instruction in multiple cycles (possible pipelined),
say N , where N D .cri t ical path latency/=.clock period/. Still, N is likely
much less than M , the minimum number of cycles required to execute the basic
operations in the computational pattern individually. A positive side effect of the
custom instructions approach is the increased code density and hence reduced code
size, which is an important issue in embedded systems. A custom instruction also
reduces the number of register accesses significantly as the intermediate results (the
results of the AND operations) need not be written back and read from the register
file. In the example pattern in Fig. 12.1b, the custom instruction needs four register
reads and one register write as opposed to six register reads and three register writes
for the original three instruction sequence.

A custom instruction may require more input and output operands compared to
the typical two-input, one-output basic Reduced Instruction-Set Processor (RISC)
instructions. Yu and Mitra [71] showed experimentally that the performance
potential of custom instructions improves with increasing number of input and

384 T. Mitra

output operands. Later, Verma et al. [66] proved that under fairly weak assumptions,
increasing the number of nodes in a pattern (which typically results in increased
input/output operands) can never lead to reduced speedup. But supporting more
input and output operands within the framework of normal processor pipeline
requires some additional support from the underlying microarchitecture and the
ISA, which will be discussed in Sect. 12.3.4. The maximum number of input and
output operands supported per custom instruction in an architecture defines the
custom instruction identification algorithm for that architecture.

12.2.2 Design Flow

The main design effort in tailoring an extensible processor is to define the custom
instructions for a given application to meet certain design goals. Identifying suitable
custom instructions is essentially a hardware-software partitioning problem that
divides the computations between the software execution (using base instructions)
and hardware execution (using custom instructions). Various design constraints
must be satisfied in order to deliver a viable system, including performance,
silicon area cost, power consumption, and architectural limitations. This problem
is frequently modeled as a single-objective optimization where a certain aspect is
optimized (e.g., performance), while the other aspects are considered as constraints.

The generic design flow for application-specific processors is presented in
Fig.12.2. The input to this design flow is the reference software implementation
of the application written in a high-level programming language such as C or C++.
In the application-specific processor design flow, the compiler performs additional
steps toward customizing the base processor core: identifying the computational
patterns that can potentially serve as custom instructions, selecting a subset of these
patterns under various constraints to maximize the objective function, and finally
synthesizing the new CFUs and generating the binary executables under the new
instruction set. This automated hardware-software codesign approach ensures that
large programs can be explored and the software programmers can easily adapt to
the design flow without in-depth hardware knowledge.

In a generic compiler, high-level language statements are first transformed by
the compiler front end to an Intermediate Representation (IR). Various machine-
independent optimizations are carried out on the IR. Then, the back end of the
compiler generates binary executables for the target processor by binding IR objects
to actual architectural resources: operations to instructions, operands to registers
or memory locations, and concurrencies and dependencies to time slots, through
instruction binding, register allocation, and instruction scheduling, respectively.
Various machine-dependent optimizations are also performed in the back end. The
custom instruction identification, selection, and binary executable generation with
custom instructions are all performed in the back end on the IR.

The IR consists of a Control-Flow Graph (CFG) and a Data-Flow Graph (DFG)
(also called a data-dependency graph). The CFG is a graph structure where the nodes
are the basic blocks – sequence of instructions with a single-entry and single-exit

12 Application-Specific Processors 385

Fig. 12.2 The design flow for application-specific processors [52]

386 T. Mitra

Fig. 12.3 Control-flow graph and data-flow graph

point. The edges among the basic block represent control-flow transfer from one
basic block to another through conditional statements, loops, function calls, etc. For
each basic block, the computation within a basic block is captured by a DFG where
the nodes represent the operations and the edges represent dependency among the
operations. Figure 12.3 shows an example of CFG and DFG corresponding to a code
segment. In the base processor, each operation in the DFG typically corresponds
to an instruction in the ISA. However, a custom instruction can cover a cluster of
operations and is hence captured as a subgraph of the DFG.

Normally, custom instructions identification is restricted to the DFG within
each basic block. However, basic blocks are usually quite small consisting of
only few instructions. Thus there is limited opportunity to extract large custom
instructions within basic blocks and obtain significant performance improvement.
A limit study by Yu and Mitra [71] showed significant benefit in identifying custom
instructions across basic block boundaries. Thus it is essential to create larger blocks
containing multiple basic blocks, for example, traces, superblocks, and hyperblocks,
and provide architectural support to for these extended blocks. In that case, the DFG
can be built for these larger blocks.

The custom instruction identification is essentially a subgraph enumeration
problem. For each DFG, the computational patterns that satisfy certain constraints
are enumerated as potential custom instruction candidates. If a pattern appears
multiple times either within the same basic block or different basic blocks, these are
considered as different instances of the same computation pattern. This step builds a
library of potential candidate patterns. The next step evaluates the different patterns
and selects a subset that optimizes certain goals under the different constraints.
This step requires profiling data. The application is profiled on the base processor
with representative input data sets. The profiling identifies the hot spots where
most of the computation time is spent, and these hot spots are ideal candidates
for implementation as custom instructions and may benefit from faster execution
on CFUs. The performance benefit of each pattern combined with the frequency
of execution of that pattern from profiling information is used in the custom
instructions selection process.

12 Application-Specific Processors 387

Finally, the selected patterns are passed on to the last step of the design
framework. Each selected pattern is synthesized in hardware as a CFU, and the
CFUs are added to the data path of the processor. The processor control is modified
to accommodate these new instructions. The new instructions are acknowledged in
the instruction binding stage of the compiler either by simple peephole substitution
or by the pattern matcher to produce an executable that exploits the custom
instructions.

12.3 Custom Instructions Identification and Selection

We start off this section by first presenting the terminology and definitions related
to custom instructions identification from a data-flow graph.

12.3.1 Formal Definitions

The custom instructions are identified on the data-flow graphs corresponding to
the basic blocks of a program. A DFG G is a directed acyclic graph that captures
the flow of data within a basic block. The set of nodes or vertices V .G/ represent
the operations, while the set of edges E.G/ represent the flow of data among the
operations. An edge e D .u; v/ where e 2 E.G/, u; v 2 V .G/ denotes a data
dependency from u to v where v can execute only after u completes execution.
Figure 12.4 shows a data-flow graph consisting of the blue and the red nodes.

Each graph G is also associated with a supergraph GC that contains additional
nodes V C and edges EC. The additional nodes V C represent the input and output
variables of the basic block, while the additional edges EC connect the nodes in
V C to the nodes in V .G/. The green nodes in Fig. 12.4 correspond to the additional

Fig. 12.4 Data-flow graph

5

1 2

4 3

0

LD
DFG

388 T. Mitra

nodes to create the supergraph corresponding to the DFG. The DFG requires three
input variables and three output variables.

Given an edge e D .u; v/, the node u is called the immediate predecessor of node
v, while v is the immediate successor of u. Let us define IP red.v/ D fuj.u; v/ 2
E.G/g and ISucc.v/ D fuj.v; u/ 2 E.G/g as the immediate predecessor set and
immediate successor set of node v, respectively. The in-degree and out-degree of
node v are jIP red.v/j and jISucc.v/j, respectively. A path v0 vn is a sequence
hv0; v1; : : : ; vni of nodes where vi 2 V .G/ for 0 � i � n such that .vi ; viC1/ 2
E.G/ for 0 � i � .n 	 1/. We define predecessor set P red.v/ as the set of nodes
that can reach v through a path in the graph, i.e., P red.v/ D fuju v 2 Gg.
Similarly, we define successor set Succ.v/ as the set of nodes that can be reached
from v through a path in the graph, i.e., Succ.v/ D fujv u 2 Gg.

A source node in the supergraph GC has no predecessor (zero in-degree), while
a sink node has no successor (zero out-degree). The source nodes represent the
input operands (including immediate operands), while the sink nodes represent the
output operands corresponding to the DFG. Together the source nodes and the sink
nodes correspond to V C. The remaining nodes V .G/ are the internal nodes of the
data-flow graph that represent the operations (arithmetic and logical operations,
load/store, etc.) supported by the ISA of the baseline processor. The green nodes
in Fig. 12.4 are the source and sink nodes, while the blue and red nodes are the
internal nodes of the data-flow graph.

A custom instruction or a pattern C is a subgraph of the DFG G induced by the
set of vertices C � V .G/. The subgraph consists of vertices V .C / � V .G/ and
edges f.u; v/ 2 E.G/ju; v 2 V .C /g. For example, the set of vertices f0; 1; 2g form
a pattern. A node u is an input of pattern C if u … V .C /, v 2 V .C /, and there exists
an edge .u; v/ 2 E.GC/. Similarly, a node u is an output of pattern C if u 2 V .C /,
v … V .C /, and there exists an edge .u; v/ 2 E.GC/. Let In.C / and Out .C /
be the set of input and output nodes of pattern C , respectively. The input nodes
represent the input values or variables used by the custom instruction, while the
output nodes present values produced by the custom instruction that will be used by
other operations, either in G or in another basic block. Many architectures impose
constraints on the number of inputs and outputs per custom instruction, known as
the I/O constraint. The nodes 3; 4; LD are the input and nodes 0; 1; 2 are all output
corresponding to the pattern f0; 1; 2g in Fig. 12.4.

An architecture may impose restrictions on the kind of operations that may
be included as part of a custom instruction. Most architectures do not allow
memory operations (load/store) and control operations (branch) to be part of
custom instructions. A node is valid if it can be part of a custom instruction;
otherwise it is invalid. By definition, the source and the sink nodes are not part
of custom instructions and hence are invalid. Internal nodes can be invalid too if
the corresponding operation cannot be accommodated within a custom instruction.
For example, the red node in Fig. 12.4 corresponds to a load operation, and it is an
invalid node in addition to the green source/sink nodes. Let X.G/ 2 V .G/ be the
set of internal invalid nodes of the DFG.

12 Application-Specific Processors 389

The following special patterns are of interest in custom instructions enumeration
problem.

Connected pattern A pattern C is connected if for any pair of nodes u; v 2 V .C /
in the pattern, there exists a path between u and v within the pattern in the
undirected graph that underlies the directed induced subgraph of C . f0; 1; 2g is
a connected pattern in Fig. 12.4.

Disjoint pattern A pattern is disjoint if it is not connected. A disjoint pattern
consists of two or more connected patterns. The pattern f3; 4; 5g is a disjoint
pattern consisting of two connected patterns f4g and f3; 5g.

MISO pattern A pattern C with only one output (jOut .C / D 1j) is called a
Multiple Input Single Output (MISO) pattern. Clearly, a MISO pattern should
be a connected pattern. f3; 5g is a MISO pattern with 3 as the output. Note that
f0; 1; 2g is not a MISO pattern as it has three outputs.

MIMO pattern A pattern with multiple input and multiple output is called a
Multiple Input Multiple Output (MIMO) pattern. We can further distinguish
between connected MIMO pattern and disjoint MIMO pattern.

Convex pattern A pattern C is convex if any intermediate node t on any path in
the DFG G from a node u 2 V .C / to a node v 2 V .C / belongs to C , i.e.,
t 2 V .C /. A pattern is non-convex if there exist at least one path in the DFG
G from a node u 2 V .C / to a node v 2 V .C / that contains an intermediate
node t 2 V .G/nV .C /. A non-convex pattern is infeasible because it cannot be
executed as a custom instruction in an atomic fashion. The pattern f0; 1; 2; 4g is
a non-convex pattern because there is a path from 4 to 0 that contains the invalid
LD node.

Valid pattern A pattern C is a valid custom instruction candidate if (a) the pattern
does not contain any invalid node V .C /\X.G/ D �, (b) the pattern is convex,
and (c) the pattern satisfies the I/O constraints imposed by the architecture, i.e.,
In.C / � Nin and Out .C / � Nout where Nin and Nout are the maximum
number of inputs and outputs allowed per custom instruction, respectively.

Maximal valid pattern A pattern C is a maximal valid pattern if it is a valid
pattern, and there is no v 2 V .G/ n V .C / such that the subgraph induced
by the set of vertices .V .C / [v/ is a valid pattern. For example, f0; 1; 2; 3; 5g
is a maximal valid pattern.

We will primarily concentrate on techniques to enumerate connected patterns as
the disjoint patterns can be easily constructed from the connected patterns.

In the context of pattern enumeration, it is useful to define topologically sorted
level of the nodes in the directed acyclic graph G. Each node in V .G/ that is
only connected to the source nodes V C has level 0. The level of any other node
level.v/ D l if the longest path (in terms of number of edges) from some source
node to v is of length lC1. We can also define the order of the nodes inG according
to the topological sort; if G contains an edge e D .u; v/, then v should appear after

390 T. Mitra

u in this topologically sorted order. In the example DFG of Fig. 12.4, nodes 4; 5
belong to level 0, node 3 belongs to level 1, and nodes 1; 2 belong to level 2, and
node 0 belongs to level 3. A topologically sorted order for the valid nodes of the
DFG is 5; 4; 3; 2; 1; 0.

12.3.2 Enumeration of MISO Patterns

The simplest custom instruction enumeration problem is the one of identifying max-
imal MISO (MaxMISO) patterns. A linear-time algorithm to identify MaxMISO
patterns has been presented in [2]. Note than a MaxMISO pattern has a single
output. So it is efficient to start with the sink nodes and proceed level by level to
the source nodes. We initialize a MaxMISO pattern C D fvg with any node v
that has only one output. We can then iteratively add in the predecessors’ nodes
IP red.v/ at the next level to the pattern C as long as u 2 IP red.v/ does
not contribute a new output to the pattern or u is an invalid node (u 2 X). The
process can continue with the predecessors of the newly added nodes in the pattern
till we have no more predecessors to consider. As the intersection of MaxMISOs
should be empty, i.e., two MaxMISOs cannot overlap, it is easy to see that the
algorithm will have linear time. In contrast, Cong et al. [18] identify all valid
MISO patterns. This problem, in the most general case, has exponential complexity
because each node can potentially be included or excluded from a candidate pattern.
Thus, Cong et al. [18] impose restrictions on number of input operands and/or area
constraint to limit the number of candidate patterns resulting in efficient pattern
generation.

12.3.3 Exhaustive Enumeration of All Valid Patterns

The exhaustive enumeration of all possible valid connected patterns of a DFG G

under the convexity and a specified I/O constraint is quite challenging. At first
glance, in the worst case, the number of possible patterns can be .2jV .G/j as each
vertex can be either included or excluded to form a pattern. But closer examination
of the problem reveals that most of the patterns are not valid due to convexity and/or
I/O constraints. Chen at al. [13] and Bonzini and Pozzi [9] have proven that the
number of such valid patterns for a graph G with bounded in-degree (which is true
for data-flow graphs of programs) is at most jV .G/jNinCNout . If the I/O constraint is
quite tight, then the enumeration is fast. A number of algorithms have been proposed
in the literature to solve this problem efficiently. Gutin et al. [28] have designed an
algorithm with worst-case complexity ofO.jE.G/j�N2

in�.nCjV .G/j
Nout //where

n is the number of valid patterns. This bound is theoretically optimal if the number
of valid patterns n is asymptotically smaller than jV .G/jNinCNout . As a follow-up
work, Reddington et al. [59] have proposed a version of this algorithm that has
jV .G/jNinCNoutC1 worst-case complexity, but runs much faster in practice. At the

12 Application-Specific Processors 391

point of this writing, the algorithm by Reddington et al. [59] is known to be the
fastest algorithm in practice for exhaustive enumeration of all valid convex patterns
under I/O constraints.

In the following, we present a few representative algorithms so that the readers
can better appreciate the problem and the possible solutions.

12.3.3.1 Search-Tree-Based Enumeration Algorithm
We present the first and the simplest algorithm proposed for this purpose by Atasu
et al. [7,55], which is based on a search tree. It has been later shown by Reddington
and Atasu [58] that the search-tree-based exhaustive algorithm has worst-case
complexity of jV .G/jNinCNoutC1, which is quite close to the theoretical complexity.

The main insight behind the search-tree-based algorithm is that if a pattern C is
not convex, then adding in the nodes that appear in lower levels in G (according
to the topological sort) compared to the nodes in C would not make the resulting
pattern convex. For example, the pattern f0; 1; 3g in Fig. 12.4 is non-convex.
Including the nodes 4 and 5 to this pattern will not remove the non-convexity.

Similarly, if a pattern C violates the output constraint, then adding in the nodes
that appear in lower levels in G (according to the topological sort) compared to the
nodes in C would not decrease the number of output operands. For example, the
pattern f0; 1; 2g in Fig. 12.4 requires three output operands. Adding the nodes that
are at lower level in topological sort 3; 4; 5 to this pattern will not reduce the number
of output operands of the resulting pattern. In other words, we can easily prune away
all such patterns without examining them explicitly. This effective pruning of the
search space leads to the efficiency of the algorithm.

The search tree is a binary tree of nodes that represent the possible patterns.
The root represents an empty pattern. The nodes are added in this tree in reverse
topological order. Let the order of the nodes of G in reverse topological order by
v1; v2; : : : vjV .G/j. The branches at level i corresponds to including (the 0-branch) or
excluding (the 1-branch) the node vi in the pattern. The pattern along the 0-branch is
the same as the parent node and can be ignored. The search tree can be constructed
in this manner till we examine the node vV .G/ at level jV .G/j. Figure 12.5 shows
the search tree corresponding to the DFG in Fig. 12.4. The shaded regions represent
the pruned design space.

1 0

1

1

1

1

1

1

11 1 1 1 1 1

11

1 1 1

1 1 1 1 1 1

1 1

1 1

1 1

1 1

1

1

1 111

1 1 1 1 11 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1

00

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0

Empty
Operation 0

Operation 1

Operation 2

Operation 3

Operation 4

Operation 5

11

11

11

11

1111 11

0

0

00 00 00 00

0

11 11

11 0

00 001

11 0

11

11

001

11 11

11 1100 00

11

1100

11

1

11

1100

11

1100

11

1100

11

1100

Fig. 12.5 Search tree for pattern enumeration

392 T. Mitra

As mentioned earlier, the complexity of the search is reduced by employing
the convexity and the output constraint. Suppose that the output constraint has
been violated at a pattern. Then adding the nodes that appear later in the reverse
topological order cannot possibly reduce the number of outputs for the pattern.
Similarly, if the convexity constraint is violated, then it is not possible for the pattern
to regain feasibility by adding the nodes that appear later in the reverse topological
order. Therefore, when we reach a search tree node where either the convexity
constraint or the output constraint is violated, the subtree rooted at that node can
be completely eliminated from the search space.

Clearly, the search-tree-based exhaustive algorithm can prune based on the output
constraint, but it cannot prune based on the input constraint. Each pattern simply
needs to be checked for violation of the input constraint. Later, Pozzi et al. [55]
extended the algorithm in [7] to include a simple input check. This input check is
based on the observation that if a source node or an invalid node is the input to a
pattern, then it is a permanent input and cannot be absorbed by adding in additional
nodes to the pattern. Moreover, if an ancestor node of a pattern has been considered
and excluded (0-branch), then the ancestor node also becomes a permanent input for
the pattern. So if a pattern at a node in the search tree violates the input constraint
based on the permanent inputs, then the subtree rooted at that node can also be
eliminated. This new pruning criteria reduces the search space of the algorithm
further.

12.3.3.2 Hierarchical Algorithm
The search-tree-based enumeration algorithm generates all the patterns within a
single step. In contrast, Yu and Mitra [72, 73] proposed a multi-step algorithm that
proceeds to generate all the feasible patterns in a hierarchical fashion. It breaks up
the pattern generation process into three steps corresponding to cone, connected
MIMO, and disjoint MIMO patterns. Cones are special kinds of patterns. A cone is
a rooted DAG in the data-flow graph such that either there is a path from the root
node r to every other node in the cone (downCone.r/) or there is a path from every
other node to the root node (upCone.r/). An upCone.r/ is a MISO pattern if it
has only one output. For example, f3; 5g is an upCone rooted at 3 and it is also MISO
pattern, but f0; 1; 2g is an upCone rooted at 1 although it is not a MISO pattern. The
pattern f1; 2; 3g is a downCone rooted at 3.

The first step generates upCones and downCones. Recall that a MISO pattern
is a upCone with only one output node. Therefore, the first step implicitly
generates all the MISO patterns. The second step combines two or more cones
to generate connected MIMO patterns, and finally the third step combines two or
more cones/MIMO patterns to generate disjoint MIMO patterns. The hierarchical
algorithm is based on the intuition that it is advantageous to separate out connected
and disjoint MIMO pattern generation. The reason is the following. On the one
hand, connected MIMO pattern generation algorithm does not need to consider
nodes that are far apart and have no chance of participating in a connected pattern
together. Therefore, the design space is reduced considerably. On the other hand,
lots of infeasible patterns are filtered out during connected pattern generation step

12 Application-Specific Processors 393

and are not considered subsequently during disjoint pattern generation step. Thus
the separation of concerns speeds up the algorithm substantially.

Theorem 1. Any connected MIMO pattern C with In.C / input operands and
Out .C / output operands can be generated by combining convex upCones with at
most In.C / input operands or convex downCones with at most Out .C / output
operands.

In other words, it is possible to generate any feasible connected MIMO patterns
by combining one or more cones. For example, the pattern {1, 2, 3, 5} in Fig. 12.4
can be generated by combining upCone.3/ D f3; 5g with downCone.3/ D
f1; 2; 3g. The above theorem provides a key search space reduction technique by
excluding some combination of cones. Specifically, to generate all the connected
MIMO patterns, the hierarchical algorithm only needs all upCones that satisfy con-
vexity/input constraints and all downCones that satisfy convexity/output constraints.
This allows the algorithm to prune aggressively.

Theorem 2. Any connected component Ci of a feasible disjoint patternDi must be
a feasible connected pattern.

This theorem states that a feasible disjoint pattern can be generated from one or
more feasible connected patterns. The possible combination of feasible patterns is
much smaller than that of arbitrary patterns, resulting in more efficient enumeration.

12.3.4 Exhaustive Enumeration of All Maximal Convex Patterns

The I/O constraint restricts the size of the valid patterns as either the input or
the output constraint gets easily violated with increasing number of nodes in a
pattern. Pothineni et al. [54] first proposed to relax the I/O constraint. It is well
known that the speedup potential grows with increasing number of input and output
nodes for the patterns [71]. Pothineni et al. observed that the convexity constraint is
immutable, along with the exclusion of the invalid nodes in a pattern. They wanted
to observe the limits of performance potential without I/O constraints. Later Verma
et al. [66] formally proved that it is sufficient to consider only the maximal convex
patterns.

Definition 1. A speedup model is monotonic, if for any two convex patterns C1
and C2

.V .C1/ � V .C2// H) .Speedup.C1/ � Speedup.C2//

Let SW _latency.C / and HW _latency.C / be the latency for software and
hardware implementation of a pattern, respectively. Then Verma et al. [66] proved
the following theorem.

394 T. Mitra

Theorem 3. The speedup model for pattern generation for RISC proces-
sor is monotonic, under the assumption that for any convex pattern C ,
SW _latency.C / � HW _latency.C /.

The theorem indicates that under fairly weak assumptions, increasing the number
of nodes in a pattern can never reduce the speedup. Consequently, the optimal
pattern will also be the maximal pattern, and it is sufficient to enumerate only the
maximal convex patterns.

However, the relaxed I/O constraint implies that the custom functional unit has
to somehow obtain all the input and output operands from the register file. Cong
et al. [17] proposed a shadow register file to overcome the limited bandwidth from
the main register file. Jayaseelan and Mitra [36] leveraged the data forwarding or
bypassing logic in the processor pipeline to supply additional operands to the CFU.
Pozzi and Ienne [56] suggested distributing the register file accesses over multi-
cycle, pipelined execution of the pattern in the CFU. This approach is known as
I/O serialization in the literature. A number of algorithms [1, 4, 56, 66] have been
proposed to appropriately schedule the I/O over multiple cycles to ensure that the
convex pattern can be implemented in practice.

Pothineni et al. [54] defined the incompatibility graph as the first step toward
solving the maximal convex pattern enumeration problem. Let x 2 X.G/ be an
invalid node in the DFGG. Clearly, any node a 2 P red.x/ cannot be involved with
any node b 2 Succ.x/ in a pattern because it will violate the convexity constraint.
This is because there will be a path from a to b that involves the node x and the
node x cannot be included in any pattern, violating convexity. Thus the cluster
of nodes in P red.x/ is incompatible with the cluster of nodes Succ.x/. Similar
incompatibility can be defined between predecessor and successor nodes of each
invalid node. For example, in Fig. 12.4, f0g and f4g are incompatible clusters. Then
we can define the incompatibility graph as an undirected graph where there is an
edge between each pair of incompatible cluster. Any convex pattern cannot include
the incompatibility edges. Therefore, enumerating maximal convex subgraphs of G
is equivalent to enumerating the maximal independent sets in the incompatibility
graph (A set of vertices in a graph is independent if for every pair of vertices, there
is no edge connecting the two. A maximal independent set is one which is not a
proper subset of any independent set.). The maximal independent sets for the DFG in
Fig. 12.4 are f0; 1; 2; 3; 5g and f4; 1; 2; 3; 5g. Verma et al. [66] proved an equivalent
result by defining a cluster graph, which is the complement of the incompatibility
graph, and hence the maximal convex subgraphs can be enumerated by enumerating
the maximal cliques in the cluster graph.

In general, this problem has exponential time complexity in the worst case,
because the number of maximal independent sets of a graph with n nodes is upper
bounded by 3n=3 [46]. But due to the clustering performed w.r.t. each invalid node
in constructing the incompatibility graph, Atasu et al. [6] showed that the number
of maximal convex patterns is O.2jX.G/j/ where X.G/ is the set of invalid nodes
in the DFG G and can be enumerated in as many computational steps. Moreover,
Reddington and Atasu [58] have proved that no polynomial-time maximal convex

12 Application-Specific Processors 395

pattern enumeration algorithm can exist. But by carefully choosing the order of
clustering of the nodes, the enumeration can be performed quite effectively [5,6,40].

12.3.5 Enumeration of Maximum Weighted Convex Patterns

We can associate a weight with each vertex in the DFG. For example, the weight
weight.v/ of a node v can correspond to the software latency SW _latency.v/
of the operation corresponding to the node. Then the weight of a pattern C can
be defined as

P
v2V .C / weight.v/. A pattern C is called the maximum (weighted)

convex pattern if it is the maximal convex pattern with the maximum weight.
As mentioned earlier, it is not possible to design polynomial-time algorithm to

enumerate all possible maximal convex patterns (as there can be exponential number
of them present in a graph). But the problem of finding the maximum convex
pattern is equivalent to finding the maximum independent set in the compatibility
graph [58], and there exist polynomial-time solutions for this problem by further
converting it into a minimum flow problem in a network.

Given a polynomial-time solution for the maximum convex pattern problem, we
can design an iterative algorithm that identifies the maximum convex pattern in each
iteration, removes those nodes from the DFG, and then repeats the process for the
remaining nodes. Such an algorithm can cover the vertices of the DFG with a set of
nonoverlapping convex patterns and has been demonstrated to generate high-quality
custom instructions [5].

Recently, Giaquinta et al. [23] have studied the maximum weighted convex
pattern identification problem under I/O constraint. This problem is useful when
the maximal or maximum convex subgraphs might be too big to be realized in
practice through I/O serialization. Including the I/O constraint from the beginning
can generate feasible patterns that are implementable. At the same time, identifying
maximum convex patterns under relatively large I/O constraint is more tractable
than the original exhaustive enumeration of all convex patterns under I/O constraints
discussed earlier. This problem requires first identifying the maximal convex
patterns and then searching for the maximum weighted patterns from among this set.

12.3.6 Custom Instructions Selection

Given the set of candidate patterns, we need to first identify the identical subgraphs
using graph isomorphism algorithm. All the identical subgraphs map to a single
CFU or custom instruction; that is, a custom instruction has multiple instances.
The execution frequencies of custom instruction instances are different and result in
different performance gains. The selection process attempts to cover each original
instruction in the code with zero/one custom instruction to maximize performance.
Zero custom instruction covering an original instruction means that the original
instruction is not included in any custom instruction. The selection of the custom
instructions can be optimal or nonoptimal (heuristic). One way to optimally select

396 T. Mitra

the custom instructions is by modeling it as an Integer Linear Program (ILP) and
solve the ILP using an efficient ILP solver. The problem can also be solved optimally
using dynamic programming or branch-and-bound methods.

12.3.6.1 Optimal Solution Using ILP
The ILP formulation presented here was originally proposed in [37] and then mod-
ified to this particular context in [37]. Let N be the number of custom instructions
identified during the first step defined byC1 : : : Cn. A custom instructionCi can have
ni different instances occurring in the program code denoted by ci:1 : : : ci:ni . Each
instance has execution frequency given by fi:j . LetRi be the area requirement of the
custom instruction Ci and Pi be the performance gain obtained by implementing Ci
in custom functional unit as opposed to software (given in number of clock cycles).
The binary variable si:j is equal to 1 if custom instruction instance ci:j is selected
and 0 otherwise. The following objective function maximizes the total performance
gain using custom instructions:

max W
NX
iD1

niX
jD1

.si:j � Pi � fi:j /

The objective function has to be optimized under the constraint that a static
instruction can be covered by at most one custom instruction instance. If custom
instruction instances ci1:j1 : : : cik :jk can all potentially cover a particular static
instruction, then

si1:j1 C : : :C sik :jk � 1

In order to model the area constraint or the constraint on the total number of
custom instructions, the variable Si is defined. Si is a binary variable that is equal
to 1 if Ci is selected and 0 otherwise. Si is defined in terms of si:j .

Si D 1 if
niX
jD1

si:j > 0

D 0 otherwise

However, the above equation is not a linear one. The following equivalent linear
equations can model the constraint.

niX
jD1

si:j 	 U � Si � 0

niX
jD1

si:j C 1 	 Si > 0

where U is a large constant greater than max.ni /.

12 Application-Specific Processors 397

If R is the total area budget for all the CFUs, then

NX
iD1

.Si �Ri/ � R

Similarly, if M is the constraint on the total number of custom instructions, then

NX
iD1

Si �M

12.3.6.2 Other Approaches
As the ILP-based custom instruction selection may become computationally expen-
sive for large number of custom instruction instances, heuristic selection algorithms
are more practical. One idea is to assign priorities to the custom instruction
instances. The instances are chosen starting with the highest priority one. In
addition, any search heuristic such as genetic algorithm, simulated annealing,
hill climbing, etc. can be applied for this problem. While most approaches con-
sider single-objective optimization, the custom instruction selection exposes an
interesting multi-objective optimization as well. Bordoloi et al. [10] proposed a
polynomial-time approximation algorithm that can help the designers explore the
area-performance trade-off for multi-objective optimization. The approach approxi-
mates the (potentially exponential size) set of points on the area-performance Pareto
curve with only a polynomial number of points such that any point in the original
Pareto curve is within � distance (the value of � is decided by the designer) from at
least one of the selected points. Custom instruction selection problem has also been
considered in the context of real-time systems [31, 45].

12.4 Run-Time Customization

Application-specific processor design as presented so far is quite promising. But it
has a drawback that a new application-specific processor has to be designed and
fabricated for at least each application domain, if not for each application. This
is because a processor customized for one application domain may fail to provide
any tangible performance benefit for a different domain. Soft core processors with
extensibility features synthesized in Field-Programmable Gate Arrays (FPGAs)
(e.g., Altera Nios [49], Xilinx MicroBlaze [60]) somewhat mitigate this problem
as the customization can be performed post-fabrication. Still, customizable soft
cores suffer from lower frequency and higher energy consumption issues because
the entire processor (and not just the CFUs) is implemented in FPGAs. Apart from
cross-domain performance problems, extensible processors are also limited by the
amount of silicon available for the implementation of the CFUs. As embedded
systems progress toward highly complex and dynamic applications (e.g., MPEG-4

398 T. Mitra

video encoder/decoder, software-defined radio), the silicon area constraint becomes
a primary concern. Moreover, for highly dynamic applications that can switch
between different modes (e.g., run-time selection of encryption standard) with
unique custom instructions requirements, a customized processor catering to all
scenarios will clearly be a suboptimal design.

Run-time adaptive application-specific processors offer a potential solution to
all these problems. An adaptive custom processor can be configured at run time to
change its custom instructions and the corresponding CFUs. Clearly, to achieve run-
time adaptivity, the CFUs have to be implemented in some form of reconfigurable
logic. But the base processor is implemented in ASIC to provide high clock
frequency and better energy efficiency. As CFUs are implemented in reconfigurable
logic, these extensible processors offer full flexibility to adapt (post-fabrication) the
custom instructions according to the requirement of the application running on the
system and even midway through the execution of the application. Such adaptive
custom processors can be broadly classified into two categories:

• Explicit Reconfigurability: This class of processors needs full compiler or
programmer support to identify the custom instructions, synthesize them, and
finally cluster them into one (or more) configuration that can be switched at
run time. In other words, custom instructions are generated off-line, and the
application is recompiled to use these custom instructions.

• Implicit Reconfigurability: This class of processors does not expose the extensi-
bility feature to the compiler or the programmer. In other words, the extensibility
is completely transparent to the user. Instead, the run-time system identifies the
custom instructions and synthesizes them while the application is running on the
system. These systems are more complex, but may provide better performance
as the decisions are taken at run time.

12.4.1 Explicit Run-Time Customization

In this subsection, we focus on extensible processors that require extensive compiler
or programmer intervention to achieve run-time reconfigurability.

Programmable Instruction-Set Processor (PRISC) [57] is one of the very first
architectures to introduce CFU reconfigurability. The architecture supports a set
of configurations, where each configuration corresponds to a computational kernel
or custom instruction. There can be only one active configuration at any point
in time. However, the CFU can be reconfigured at run time to support different
configurations during the execution of an application or different applications.
The temporal reconfigurability gives the illusion of a large CFU as multiple
configurations can be supported using the same silicon, but it comes at the cost
of reconfiguration overhead.

The CFU in PRISC is called Programmable Functional Unit (PFU). The PFU
however is restricted in the sense that it can support only two input operands and
one output operand. Thus the PFU cannot support large custom instructions that can

12 Application-Specific Processors 399

potentially provide significant performance benefit. Moreover, each configuration
can only include one custom instruction. This effectively restricts PRISC to use
only one custom instruction per loop body because it is expensive to reconfigure
within a loop body to support multiple instructions.

OneChip [35] reduces the reconfiguration overhead by allowing multiple config-
urations to be stored in the PFU, but only one configuration can be active at any
point of time. Unfortunately, OneChip does not provide enough details regarding
how the programmers can specify or design the custom instructions that will be
mapped onto the PFU.

Both PRISC and OneChip allow only one custom instruction per configuration.
This decision leads to high reconfiguration overhead specially if multiple custom
instructions need to be supported within a computational kernel executing fre-
quently, such as the loop body. This restriction is lifted in the next set of architecture
that enables both spatial and temporal reconfiguration. That is, multiple custom
instructions can be part of a single configuration. This combination of spatial and
temporal reconfiguration is a powerful feature that can significantly reduce the
reconfiguration overhead.

The Chimaera [70] architecture is one of the first works to consider both
temporal and spatial configuration of the custom functional units. The architec-
ture is inspired by PRISC as it tightly couples reconfigurable functional unit
(RFU) with a superscalar pipeline. But a crucial difference is that Chimaera
RFU can use up to nine input registers to produce the result in one destination
register. The architecture, however, suffers from inadequate compiler support.
The compiler can automatically map a cluster of base instructions into custom
instructions. However, the Chimaera compiler lacks support for spatial and temporal
reconfiguration of custom instructions so as to fully exploit run-time reconfigura-
tion.

The Stretch S6000 [25] architecture is a commercial processor that follows this
trend of spatial and temporal reconfiguration. Figure 12.6 shows the Stretch S6000
engine that incorporates Tensilica Xtensa LX dual-issue Very Long Instruction
Word (VLIW) processor [39] and the Stretch Instruction-Set Extension Fabric
(ISEF). The ISEF is a software-configurable data path based on programmable
logic. It consists of a plane of arithmetic/logic units (AU) and a plane of multiplier
units (MU) embedded and interlinked in a programmable, hierarchical routing
fabric. This configurable fabric acts as a functional unit to the processor. It is built
into the data path of the base processor and resides alongside other traditional
functional units. The programmer-defined application-specific instructions (called
extension Instructions) need to be implemented in the ISEF. One or more custom
instructions are combined into a configuration, and the compiler generates multiple
such configurations. When an extension instruction is issued, the processor checks
if the corresponding configuration containing the extension instruction is loaded
into the ISEF. If not, the configuration is automatically and transparently loaded
prior to the execution of the custom instruction. ISEF provides high data bandwidth
to the core processor through 128-bit wide registers. In addition, 64KB embedded
RAM is included inside ISEF to store temporary results of computation. With all

400 T. Mitra

Local Memory System

32KB
I-Cache

32KB
D-Cache

64KB
Dual port RAM

Execution Unit

32-bit Register

FPU ALU

ISEF
IRAM

Xtensa LX Dual-Issue VLIW

32-bit Register 128-bit Wide Register

Fig. 12.6 Stretch S6000 data path [25]

these features, a single custom instruction can potentially implement a complete
inner loop of the application. The Stretch compiler also fully unrolls any loop with
constant iteration counts.

Most reconfigurable application-specific processors use a traditional reconfig-
urable fabric to implement the custom instructions or a configuration consisting of
multiple custom instructions, for example, Stretch S6000 [25] architecture. This
approach has the advantage of flexibility but suffers from computational ineffi-
ciency. Just-in-time customizable (JiTC) [12] architecture reconciles the conflicting
demands of performance and flexibility in extensible processor. The key innovation
in this architecture is a Specialized Functional Unit (SFU) tightly integrated into the
processor pipeline. The SFU is a multistage accelerator that has been purpose-built
to execute most common computational patterns across a range of representative
applications in a single cycle. The SFU can be reconfigured on a per cycle basic
to support different custom instructions in different cycles. The JiTC compiler
identifies the appropriate custom instructions, generates the configuration bitstream
for each such instruction to be implemented on the SFU, and replaces the selected
patterns in the software binary with custom instructions. The JiTC core can thus
provide near-ideal performance of an extensible processor with very little silicon
area dedicated for customization. The JiTC core has recently been employed
in a low-power many-core architecture [63] for wearables to enable low-cost
application-specific customization at run time.

12.4.1.1 Partial Reconfiguration
So far the architecture presented requires full reconfiguration, that is, the entire
fabric is reconfigured to support the next configuration. This can result in wasted

12 Application-Specific Processors 401

reconfiguration cost specially when there is overlap between two consecutive
custom instructions. That is, only a subset of custom instructions from the current
configuration should be replaced with new custom instructions. Partial reconfigura-
tion comes to rescue in this situation as it provides the ability to reconfigure only part
of the reconfigurable fabric. With partial reconfiguration, idle custom instructions
can be removed to make space for the new instructions. Moreover, as only a part of
the fabric is reconfigured, it saves reconfiguration cost.

Dynamic Instruction-Set Computer (DISC) [68] is one of the earlier attempts
in designing an extensible processor to provide partial reconfiguration feature.
DISC implements each instruction of the instruction set as an independent circuit
module. Thus the individual instruction modules can be paged in and paged
out onto the reconfigurable fabric in a demand-driven manner. Moreover, the
circuit modules are relocatable. If needed, an existing module can be moved
to a different place inside the fabric so as to create enough contiguous free
space to accommodate the incoming instruction module. The drawback of DISC
system is that both the base and the custom instructions are implemented in the
reconfigurable logic leading to performance loss. On the other hand, the host
processor remains severely underutilized as its only task is resource allocation and
reconfiguration.

Extended instruction set RISC (XiRisc) [41] follows this line of development to
couple a VLIW data path with a run-time reconfigurable hardware. The architecture
can support four source operands and two destination operands for each custom
instruction. One of the interesting developments in XiRisc is that the reconfigurable
hardware can hold internal states for several cycles reducing the register pressure
on the base processor. However, XiRisc did not include configuration caching
leading to higher reconfiguration overhead. Also like most early reconfigurable
application-specific processor, XiRisc lacked compiler support to automate the
custom instruction design and reconfiguration process.

Molen [64] is an interesting polymorphic processor that incorporates an arbitrary
number of reconfigurable functional units. This allows the architecture to execute
two more independent custom instructions in parallel in the reconfigurable logic. To
support the functionality of the reconfigurable fabric, eight custom instructions are
added to the instruction set. Molen requires a new programming paradigm where
general-purpose instructions and hardware descriptions of custom instructions co-
exist in a program. Molen compiler automatically generates optimized binary code
from applications specified in C programming language with pragma annotation
for custom instructions. The architecture hides the reconfiguration cost through
scheduling where the configuration corresponding to a custom instruction is pre-
fetched before the instruction is executed.

12.4.1.2 Compiler Support
Compiler support is instrumental in ensuring greater adoption of application-
specific processors by software designers. Unfortunately, as mentioned earlier,
most of the run-time reconfigurable application-specific processors suffer from

402 T. Mitra

Hot Loops
Detection

CIS versions
Generation

Hot Loop Trace
Generation

Datapath SynthesisSoftware Loops

Partitioning

Bit Stream
for Each Config

Application in C

Fig. 12.7 Compiler framework for run-time adaptive extensible processors [33]

inadequate compiler assistance. The burden falls entirely on the programmer to
select appropriate the custom instructions and cluster them into one or more
configurations. Choosing an appropriate set of custom instructions for an application
itself is a difficult problem as discussed in Sect. 12.3. Run-time reconfiguration
introduces the additional complexity of the temporal and spatial partitioning of the
selected custom instructions into a set of configurations.

Huynh et al. [33] developed an efficient compilation framework that takes in
as input an application specified in ANSI-C and automatically selects appropriate
custom instructions as well as bundles them together into one or more configurations
as shown in Fig. 12.7. First, a profiling step identifies and extracts a set of compute-
intensive candidate loop kernels from the application. For each candidate loop, one
or more Custom Instruction-Set (CIS) versions are generated (e.g., by changing
loop unrolling factor) differing in performance gain and area trade-offs. The control
flows among the hot loops are captured in the form of a loop trace obtained through
profiling. The hot loops with multiple CIS versions and the loop trace are fed to the
partitioning algorithm that decides the appropriate CIS version and configuration
for each loop. The algorithm models the temporal partitioning of the custom
instructions into different configurations as a k-way graph partitioning problem.
A dynamic programming-based pseudo-polynomial-time algorithm determines the
spatial partitioning of the custom instructions within a configuration. The selected
CIS versions to be implemented in hardware pass through a data-path synthesis tool
generating the bitstream corresponding to each configuration. These bitstreams are
used to configure the reconfigurable fabric at run time. The source code is modified
to exploit the new custom instructions while the remaining code executes on the
base processor.

12 Application-Specific Processors 403

12.4.2 Implicit Run-Time Customization

We now proceed to describe extensible processors that are reconfigured transpar-
ently by the run-time system.

Configurable Compute Accelerator (CCA) [15] enables transparent instruction-
set customization support through a plug-and-play model that can integrate different
accelerators into a predesigned and verified processor core at run time. The
compiler framework comprises of static identification of subgraphs for execution
on CCA [16]. This is supplemented with run-time selection of custom instructions
to be synthesized to CCA. First, the program is analyzed to identify the most
frequent computation patterns (custom instructions) to be mapped onto CCA. These
patterns are replaced by function calls in the binary code. At run time, when the
function corresponding to a custom instruction is encountered for the first time, it
executes in the base processor pipeline. But, in parallel, the architecture determines
the CCA configuration required for this particular custom instruction. When the
same function is encountered again in the future, it can execute on the CCA using
the generated configuration.

Unlike CCA that requires compiler-architecture cooperation, the WARP [42]
architecture has been designed with completely transparent instruction-set cus-
tomization in mind. WARP processor consists of a base core, an on-chip profiler,
WARP-oriented FPGA, and an on-chip Computer-Aided Design (CAD) module.
An application starts executing on the base processor. The on-chip profiler identifies
the critical hot-spot kernels (loops) during the execution of the application. These
kernels are then passed onto the riverside on-chip CAD (ROCCAD) tool chain
through the on-chip CAD module. ROCCAD tool chain decompiles the application
binary into high-level representation that is more suitable for synthesis. Next, the
partitioning algorithm determines the most suitable loops to be implemented in
FPGA. For the selected kernels, ROCCAD uses behavioral and register transfer level
(RTL) synthesis to generate appropriate hardware descriptions. Finally, ROCCAD
configures the FPGA using just-in-time FPGA compilation tools that optimizes
the hardware description and performs technology mapping followed by place and
route to map the hardware description onto the reconfigurable fabric. Finally, the
application binary is updated to be used to kernels mapped onto the FPGAs.

A unique approach toward run-time customization is proposed in the Rotating
Instruction-Set Processing Platform (RISPP) [8] architecture. RISPP introduces
the notion of atoms and molecules where atom is the basic data path, while a
combination of atoms creates custom instruction molecule. Atoms can be reused
across different custom instruction molecules. RISPP reduces the overhead of
partial reconfiguration substantially through an innovative gradual transition of
the custom instructions implementation from software into hardware. At compile
time, only the potential custom instructions (molecules) are identified, but these
molecules are not bound to any data path in hardware. Instead, a number of possible
implementation choices are available including a purely software implementation.
At run time, the implementation of a molecule can gradually “upgrade” to hardware

404 T. Mitra

as and when the atoms it needs become available. If no atom is available for a
custom instruction, it will be executed in the base processor pipeline using the
software implementation. RISPP requires fast design space exploration at run time
to combine appropriate atoms and evaluate trade-offs between performance and
area of the custom instructions implementations. A greedy heuristic selects the
appropriate implementation for each custom instruction.

12.5 Custom Instructions for General-Purpose Computing

As mentioned earlier, the design goals for specialization in the context of general-
purpose applications are somewhat different. The added custom instructions should
support a large number of computations (some unknown at design time) so that only
a few of them are sufficient to cover significant fraction of execution of a diverse set
of applications.

An example of this approach is the specialized processors called quasi-specific
cores (QsCores) proposed by Venkatesh et al. [65]. QsCores have been proposed
in the context of dark silicon era where the cheap silicon area can be traded in
to accommodate few QSCores. Each QsCore is an application-specific processor
that can accelerate a set of computations through custom instructions. The main
insight here is that there exist nearly identical code fragments within and across
applications. These “similar” code fragments can be represented by a single
computational pattern that is implemented as a custom instruction, thereby leading
to reuse. Unlike the computation patterns we introduced before, QsCores support
large hot spot containing hundreds of instructions, complex control flows, and
irregular memory accesses as a single pattern as prescribed by Hameed et al. [30].
This enables the QsCores to be an order of magnitude more energy-efficient than
general-purpose cores. In the general form of this architecture, a general-purpose
processor core is coupled with a number of QsCores – each accelerating different
computations – to create a heterogeneous tiles. The entire chip consists of a number
of heterogeneous tiles, each responsible for different workloads.

A different approach is taken by Govindaraju et al. [26] where the main
idea is to dynamically specialize the hardware according to the phases within an
application. They introduce dynamically specialized data paths called DYnamically
Specialized Execution Resource (DySER) blocks. The DySER blocks are similar
to the CFUs and are integrated in the processor pipeline as additional functional
units. Each block is a heterogeneous array of computational units interconnected
with a circuit-switched mesh network; but unlike QsCores, there is no memory
access involved within DySER block. A DySER block uses specific computational
units (arithmetic and logical operations) depending on the common instruction mix
of the applications. By interconnecting these operations through the network, a
computational pattern can be mapped to the DySER block. The compiler partitions
the application into phases, identifies the most frequently executed paths within each
phase, and then maps the computations corresponding to each of these paths on

12 Application-Specific Processors 405

DySER blocks. Note that the identification of computational patterns as discussed
in Sect. 12.3 has been restricted to within basic blocks, but Yu and Mitra had
quantized the benefit of crossing basic blocks boundaries and generating custom
instructions spanning multiple basic blocks along hot paths [71]. DySER reaps
these benefits through a concrete architectural design and implementation. There
are some similarities between DySER and coarse-grained reconfigurable arrays
(CGRAs) [14]. But the main difference is that CGRAs accelerate complete loops,
while DySER focuses on computation within a hot path and does not support control
flow or load/store that is required to map an entire loop. The other difference lies
in using computational units that are decided based on instruction mix rather than
generic functional units used in CGRAs and the use of circuit-switched network.
The main strength of DySER is that the same specialized hardware can accelerate
different applications and diverse domains through dynamic specialization.

Gupta et al. [27] proposed a configurable coprocessor called Bundled Execution
of REcurring Traces (BERET) that can leverage recurring instruction sequences in
a program’s execution. The instruction sequence may include intervening control
instructions because of the irregularity of general-purpose code. Essentially each
sequence is a hot trace that forms a loop, but is much shorter compared to the
original unstructured loop body. Similar to other application-specific processor
approaches for general-purpose computing, BERET also aims to support multiple
applications. The architecture is based on the observation that the hot trace can
be broken down into a sequence of subgraphs that can execute sequentially, while
exploiting parallelism and chaining within subgraph to improve performance (as
is common in any custom instruction). The concept of subgraph is called bundled
execution model in this approach. The observation and insight is that many subgraph
structures or patterns are common within as well as across applications. Therefore,
if the architecture supports some common subgraphs, any hot trace can be mapped
to a series of these subgraphs for acceleration.

12.6 Conclusions

In this chapter, we presented the current state of the art in the application-specific
processor design. The application-specific processors, also known as customizable
processors or specialized cores, present an exciting alternative in today’s energy-
constrained design space. We discussed the opportunities and challenges presented
by this special class of processors and the progress made in automated design
of such cores over the last decade. The renewed interest in application-specific
processors for general-purpose computing and even supercomputing domain have
opened up interesting new research directions, both in terms of architecture and
compiler, that we hope will be pursued extensively in the coming decade.

Acknowledgments This work was partially supported by Singapore Ministry of Education
Academic Research Fund Tier 2 MOE2014-T2-2-129.

406 T. Mitra

References

1. Ahn J, Choi K (2013) Isomorphism-aware identification of custom instructions with i/o
serialization. IEEE Trans Comput-Aided Des Integr Circuits Syst 32(1):34–46

2. Alippi C, Fornaciari W, Pozzi L, Sami M (1999) A dag-based design approach for reconfig-
urable VLIW processors. In: Proceedings of the conference on design, automation and test in
Europe. ACM, p 57

3. Amdahl GM (1967) Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the spring joint computer conference, 18–20 Apr
1967. ACM, pp 483–485

4. Atasu K, Dimond RG, Mencer O, Luk W, Özturan C, Diindar G (2007) Optimizing instruction-
set extensible processors under data bandwidth constraints. In: Design, automation & test in
Europe conference & exhibition, DATE’07. IEEE, pp 1–6

5. Atasu K, Luk W, Mencer O, Özturan C, Dündar G (2012) Fish: fast instruction synthesis for
custom processors. IEEE Trans Very Large Scale Integr (VLSI) Syst 20(1):52–65

6. Atasu K, Mencer O, Luk W, Özturan C, Dündar G (2008) Fast custom instruction identification
by convex subgraph enumeration. In: International conference on application-specific systems,
architectures and processors, ASAP 2008. IEEE, pp 1–6

7. Atasu K, Pozzi L, Ienne P (2003) Automatic application-specific instruction-set extensions
under microarchitectural constraints. Int J Parallel Program 31(6):411–428

8. Bauer L, Shafique M, Kramer S, Henkel J (2007) Rispp: rotating instruction set processing
platform. In: Proceedings of the 44th annual design automation conference. ACM, pp 791–796

9. Bonzini P, Pozzi L (2007) Polynomial-time subgraph enumeration for automated instruction
set extension. In: Proceedings of the conference on design, automation and test in Europe.
EDA Consortium, pp 1331–1336

10. Bordoloi UD, Huynh HP, Chakraborty S, Mitra T (2009) Evaluating design trade-offs in
customizable processors. In: 46th ACM/IEEE design automation conference, DAC’09. IEEE,
pp 244–249

11. Borkar S, Chien AA (2011) The future of microprocessors. Commun ACM 54(5):67–77
12. Chen L, Tarango J, Mitra T, Brisk P (2013) A just-in-time customizable processor. In: 2013

IEEE/ACM international conference on computer-aided design (ICCAD). IEEE, pp 524–531
13. Chen X, Maskell DL, Sun Y (2007) Fast identification of custom instructions for extensible

processors. IEEE Trans Comput-Aided Des Integr Circuits Syst 26(2):359–368
14. Choi K (2011) Coarse-grained reconfigurable array: architecture and application mapping.

IPSJ Trans Syst LSI Des Methodol 4:31–46
15. Clark N, Blome J, Chu M, Mahlke S, Biles S, Flautner K (2005) An architecture framework

for transparent instruction set customization in embedded processors. In: Proceedings of the
32nd international symposium on computer architecture (ISCA’05). IEEE Computer Society,
pp 272–283

16. Clark N, Kudlur M, Park H, Mahlke S, Flautner K (2004) Application-specific processing
on a general-purpose core via transparent instruction set customization. In: 37th international
symposium on microarchitecture, MICRO-37 2004. IEEE, pp 30–40

17. Cong J, Fan Y, Han G, Jagannathan A, Reinman G, Zhang Z (2005) Instruction set extension
with shadow registers for configurable processors. In: Proceedings of the 2005 ACM/SIGDA
13th international symposium on field-programmable gate arrays. ACM, pp 99–106

18. Cong J, Fan Y, Han G, Zhang Z (2004) Application-specific instruction generation for con-
figurable processor architectures. In: Proceedings of the 2004 ACM/SIGDA 12th international
symposium on field programmable gate arrays. ACM, pp 183–189

19. Dennard RH, Gaensslen FH, Rideout VL, Bassous E, LeBlanc AR (1974) Design of Ion-
implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits
9(5):256–268

12 Application-Specific Processors 407

20. Dubach C, Jones T, O’Boyle M (2007) Microarchitectural design space exploration using an
architecture-centric approach. In: Proceedings of the 40th annual IEEE/ACM international
symposium on microarchitecture. IEEE Computer Society, pp 262–271

21. Esmaeilzadeh H, Blem E, St Amant R, Sankaralingam K, Burger D (2011) Dark silicon and
the end of multicore scaling. In: International symposium on computer architecture (ISCA)

22. Geer D (2005) Chip makers turn to multicore processors. Computer 38(5):11–13
23. Giaquinta E, Mishra A, Pozzi L (2015) Maximum convex subgraphs under i/o constraint for

automatic identification of custom instructions. IEEE Trans Comput-Aided Des Integr Circuits
Syst 34(3):483–494

24. Gonzalez RE (2000) Xtensa: a configurable and extensible processor. IEEE Micro 20(2):60–70
25. Gonzalez RE (2006) A software-configurable processor architecture. IEEE Micro 26(5):42–51
26. Govindaraju V, Ho CH, Sankaralingam K (2011) Dynamically specialized datapaths for

energy efficient computing. In: 2011 IEEE 17th international symposium on high performance
computer architecture (HPCA). IEEE, pp 503–514

27. Gupta S, Feng S, Ansari A, Mahlke S, August D (2011) Bundled execution of recurring traces
for energy-efficient general purpose processing. In: Proceedings of the 44th annual IEEE/ACM
international symposium on microarchitecture. ACM, pp 12–23

28. Gutin G, Johnstone A, Reddington J, Scott E, Yeo A (2012) An algorithm for finding input–
output constrained convex sets in an acyclic digraph. J Discret Algorithms 13:47–58

29. Halambi A, Grun P, Ganesh V, Khare A, Dutt N, Nicolau A (2008) Expression: a language
for architecture exploration through compiler/simulator retargetability. In: Design, automation,
and test in Europe. Springer, The Netherlands, pp 31–45

30. Hameed R, Qadeer W, Wachs M, Azizi O, Solomatnikov A, Lee BC, Richardson S, Kozyrakis
C, Horowitz M (2010) Understanding sources of inefficiency in general-purpose chips. In:
ACM SIGARCH computer architecture news, vol 38, no 3. ACM, pp 37–47

31. Huynh H, Mitra T (2007) Instruction-set customization for real-time embedded systems. In:
Proceedings of the conference on design, automation and test in Europe. EDA Consortium,
pp 1472–1477

32. Huynh HP, Mitra T (2009) Runtime adaptive extensible embedded processors–a survey. In:
International workshop on embedded computer systems. Springer, Berlin/Heidelberg, pp 215–
225

33. Huynh HP, Sim JE, Mitra T (2007) An efficient framework for dynamic reconfiguration
of instruction-set customization. In: Proceedings of the 2007 international conference on
compilers, architecture, and synthesis for embedded systems. ACM, pp 135–144

34. Ienne P, Leupers R (2006) Customizable embedded processors: design technologies and
applications. Academic Press

35. Jacob JA, Chow P (1999) Memory interfacing and instruction specification for reconfigurable
processors. In: Proceedings of the 1999 ACM/SIGDA seventh international symposium on
field programmable gate arrays. ACM, pp 145–154

36. Jayaseelan R, Liu H, Mitra T (2006) Exploiting forwarding to improve data bandwidth of
instruction-set extensions. In: Proceedings of the 43rd annual design automation conference.
ACM, pp 43–48

37. Kastner R, Kaplan A, Memik SO, Bozorgzadeh E (2002) Instruction generation for hybrid
reconfigurable systems. ACM Trans Des Autom Electron Syst (TODAES) 7(4):605–627

38. Kathail V, Aditya S, Schreiber R, Rau BR, Cronquist DC, Sivaraman M (2002) Pico:
automatically designing custom computers. Computer 35(9):39–47

39. Leibson S (2006) Designing SOCs with configured cores: unleashing the tensilica Xtensa and
diamond cores. Academic Press

40. Li T, Sun Z, Jigang W, Lu X (2009) Fast enumeration of maximal valid subgraphs for custom-
instruction identification. In: Proceedings of the 2009 international conference on compilers,
architecture, and synthesis for embedded systems. ACM, pp 29–36

408 T. Mitra

41. Lodi A, Toma M, Campi F, Cappelli A, Canegallo R, Guerrieri R (2003) A VLIW processor
with reconfigurable instruction set for embedded applications. IEEE J Solid-State Circuits
38(11):1876–1886

42. Lysecky R, Stitt G, Vahid F (2004) Warp processors. In: ACM transactions on design
automation of electronic systems (TODAES), vol 11, no 3. ACM, pp 659–681

43. Merritt R (2009) ARM CTO: power surge could create ‘dark silicon’. EE Times, Oct 2009.
44. Mitra T (2015) Heterogeneous multi-core architectures. Inf Media Technol 10(3):383–394
45. Mitra T, Yu P (2005) Satisfying real-time constraints with custom instructions. In: Third

IEEE/ACM/IFIP international conference on hardware/software codesign and system synthe-
sis, CODES+ ISSS’05. IEEE, pp 166–171

46. Moon JW, Moser L (1965) On cliques in graphs. Israel J Math 3(1):23–28
47. Moore GE et al (1965) Cramming more components onto integrated circuits
48. Mudge T (2000) Power: a first class design constraint for future architectures. In: International

conference on high-performance computing. Springer, pp 215–224
49. Nios I (2009) Processor reference handbook
50. Palacharla S, Jouppi NP, Smith JE (1997) Complexity-effective superscalar processors. In:

Proceedings of the 24th annual international symposium on computer architecture (ISCA’97),
Denver. ACM, New York, pp 206–218. doi: 10.1145/264107.264201

51. Palermo G, Silvano C, Zaccaria V (2005) Multi-objective design space exploration of
embedded systems. J Embed Comput 1(3):305–316

52. Pan Y (2008) Design methodologies for instruction-set extensible processors. Ph.D. thesis,
National University of Singapore

53. Patterson D, Hennessy JL (2012) Computer architecture: a quantitative approach. Elsevier
54. Pothineni N, Kumar A, Paul K (2007) Application specific datapath extension with distributed

i/o functional units. In: Proceedings of the 20th international conference on VLSI design,
Bangalore

55. Pozzi L, Atasu K, Ienne P (2006) Exact and approximate algorithms for the extension of
embedded processor instruction sets. IEEE Trans Comput-Aided Des Integr Circuits Syst
25(7):1209–1229

56. Pozzi L, Ienne P (2005) Exploiting pipelining to relax register-file port constraints of
instruction-set extensions. In: Proceedings of the 2005 international conference on compilers,
architectures and synthesis for embedded systems. ACM, pp 2–10

57. Razdan R (1994) Prisc: programmable reduced instruction set computers. Ph.D. thesis, Harvard
University Cambridge

58. Reddington J, Atasu K (2012) Complexity of computing convex subgraphs in custom
instruction synthesis. IEEE Trans Very Large Scale Integr (VLSI) Syst 20(12): 2337–2341

59. Reddington J, Gutin G, Johnstone A, Scott E, Yeo A (2009) Better than optimal: fast
identification of custom instruction candidates. In: International conference on computational
science and engineering, CSE’09. vol 2. IEEE, pp 17–24

60. Rosinger HP (2004) Connecting customized ip to the microblaze soft processor using the fast
simplex link (fsl) channel. Xilinx Application Note

61. Shafique M, Garg S, Mitra T, Parameswaran S, Henkel J (2014) Dark silicon as a challenge
for hardware/software co-design. In: Conference on hardware/software codesign and system
synthesis (CODES)

62. Shalf JM, Leland R (2015) Computing beyond moore’s law. Computer 48(12):14–23
63. Tan C, Kulkarni A, Venkataramani V, Karunaratne M, Mitra T, Peh LS (2016) Locus: low-

power customizable many-core architecture for wearables. In: Proceedings of the international
conference on compilers, architecture, and synthesis for embedded systems (CASES)

64. Vassiliadis S, Wong S, Gaydadjiev G, Bertels K, Kuzmanov G, Panainte EM (2004) The molen
polymorphic processor. IEEE Trans Comput 53(11):1363–1375

65. Venkatesh G, Sampson J, Goulding-Hotta N, Venkata SK, Taylor MB, Swanson S (2011)
Qscores: trading dark silicon for scalable energy efficiency with quasi-specific cores. In:
Proceedings of the 44th annual IEEE/ACM international symposium on microarchitecture.
ACM, pp 163–174

http://dx.doi.org/10.1145/264107.264201

12 Application-Specific Processors 409

66. Verma AK, Brisk P, Ienne P (2007) Rethinking custom ise identification: a new processor-
agnostic method. In: Proceedings of the 2007 international conference on compilers, architec-
ture, and synthesis for embedded systems. ACM, pp 125–134

67. Wall DW (1991) Limits of instruction-level parallelism. In: Proceedings of the fourth interna-
tional conference on architectural support for programming languages and operating systems
(ASPLOS IV), Santa Clara. ACM, New York, pp 176–188. doi: 10.1145/106972.106991

68. Wirthlin MJ, Hutchings BL (1995) A dynamic instruction set computer. In: IEEE symposium
on FPGAs for custom computing machines. Proceedings. IEEE, pp 99–107

69. Wulf WA, McKee SA (1995) Hitting the memory wall: implications of the obvious. ACM
SIGARCH Comput Archit News 23(1):20–24

70. Ye ZA, Moshovos A, Hauck S, Banerjee P (2000) CHIMAERA: a high-performance archi-
tecture with a tightly-coupled reconfigurable functional unit. In: ACM SIGARCH computer
architecture news, vol 28, no 2. ACM, pp. 225–235

71. Yu P, Mitra T (2004) Characterizing embedded applications for instruction-set extensi-
ble processors. In: Proceedings of the 41st annual design automation conference. ACM,
pp 723–728

72. Yu P, Mitra T (2004) Scalable custom instructions identification for instruction-set extensible
processors. In: Proceedings of the 2004 international conference on compilers, architecture,
and synthesis for embedded systems. ACM, pp 69–78

73. Yu P, Mitra T (2007) Disjoint pattern enumeration for custom instructions identification. In:
International conference on field programmable logic and applications, FPL 2007. IEEE,
pp 273–278

http://dx.doi.org/10.1145/106972.106991

13Memory Architectures

Preeti Ranjan Panda

Abstract

In this chapter we discuss the topic of memory organization in embedded
systems and Systems-on-Chips (SoCs). We start with the simplest hardware-
based systems needing registers for storage and proceed to hardware/software
codesigned systems with several standard structures such as Static Random-
Access Memory (SRAM) and Dynamic Random-Access Memory (DRAM). In
the process, we touch upon concepts such as caches and Scratchpad Memories
(SPMs). In general, the emphasis is on concepts that are more generally found in
SoCs and less on general-purpose computing systems, although this distinction is
not very clearly defined with respect to the memory subsystem. We touch upon
implementations of these ideas in modern research and commercial scenarios.
In this chapter, we also point out issues arising in the context of the memory
architectures that become exported as problems to be addressed by the compiler
and system designer.

Acronyms

ALU Arithmetic-Logic Unit
ARM Advanced Risc Machines
CGRA Coarse Grained Reconfigurable Architecture
CPU Central Processing Unit
DMA Direct Memory Access
DRAM Dynamic Random-Access Memory
GPGPU General-Purpose computing on Graphics Processing Units
GPU Graphics Processing Unit
HDL Hardware Description Language
PCM Phase Change Memory

P.R. Panda (�)
Department of Computer Science and Engineering, Indian Institute of Technology Delhi,
New Delhi, India
e-mail: panda@cse.iitd.ac.in

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_14

411

mailto:panda@cse.iitd.ac.in

412 P.R. Panda

SoC System-on-Chip
SPM Scratchpad Memory
SRAM Static Random-Access Memory
STT-RAM Spin-Transfer Torque Random-Access Memory
SWC Software Cache

Contents

13.1 Motivating the Significance of Memory . 412
13.1.1 Discrete Registers . 413
13.1.2 Organizing Registers into Register Files . 413
13.1.3 Packing Data into On-Chip SRAM. 416
13.1.4 Denser Memories: Main Memory and Disk . 416
13.1.5 Memory Hierarchy . 418

13.2 Memory Architectures in SoCs . 419
13.2.1 Cache Memory . 419
13.2.2 Scratchpad Memory . 421
13.2.3 Software Cache . 422
13.2.4 Memory in CGRA Architectures . 424
13.2.5 Hierarchical SPM. 425

13.3 Commercial SPM-Based Architectures . 426
13.3.1 ARM-11 Memory System. 426
13.3.2 Local SPMs in CELL. 427
13.3.3 Programmable First-Level Memory in Fermi . 428

13.4 Data Mapping and Run-Time Memory Management . 428
13.4.1 Tiling/Blocking . 429
13.4.2 Reducing Conflicts . 430

13.5 Comparing Cache and Scratchpad Memory . 432
13.5.1 Area Comparison . 432
13.5.2 Energy Comparison . 432

13.6 Memory Customization and Exploration . 435
13.6.1 Register File Partitioning . 435
13.6.2 Inferring Custom Memory Structures . 436
13.6.3 Cache Customization and Reconfiguration . 436

13.7 Conclusions . 438
References . 439

13.1 Motivating the Significance of Memory

The concept of memory and storage is of fundamental importance in hardware/-
software codesign; it exhibits itself in the earliest stages of system design. Let us
illustrate the ideas starting with the simplest examples and then proceed to more
complex systems. With increasing system complexity, we go on to understand some
of the larger trade-offs and decision-making processes involved.

Figure 13.1a shows a simple specification involving arrays and loops written in
a programming language or Hardware Description Language (HDL), with some
details such as type declaration omitted. Figure 13.1b shows a possible fully
parallel implementation when the statement is synthesized into hardware, with four

13 Memory Architectures 413

Fig. 13.1 (a) Code with loop and array (b) Hardware implementation

Arithmetic-Logic Units (ALUs). Such a specification may represent combinational
logic without sequential/memory elements, as it does not involve the storage of
the operands or result. Thus, in its simplest form, system implementation need not
involve any memory. Note that an equivalent software implementation could consist
of a sequence of addition and branch instructions, whose execution does involve
registers and memory.

13.1.1 Discrete Registers

Memory elements are inferenced if we slightly modify the implementation scenario.
Let us assume that there is a resource constraint of only two ALUs for implementing
the specification of Fig. 13.1a. Now, we need to sequentialize the ALU computations
over time so that the ALUs can be reused. This leads to registers being required
in the implementation, with the computation being spread out over multiple clock
cycles: aŒ0�CbŒ0� and aŒ2�CbŒ2� are performed in the first cycle, and aŒ1�CbŒ1� and
aŒ3�CbŒ3� are performed in the second cycle. Since the ALU outputs have different
values at different times, a more appropriate interface consists of registers connected
to the ALU outputs. The select signals of the multiplexers, and load signals of the
registers, would have to be generated by a small controller/FSM that asserts the right
values in each cycle.

13.1.2 Organizing Registers into Register Files

The example of Fig. 13.1 was a simple instance of a specification requiring memory
elements in its hardware translation. Discrete registers were sufficient for the
small example. However, such an implementation does not scale well as we deal
with larger amounts of data in applications. The interconnections become large
and unstructured, with hard to predict area and delay behavior. For simplicity of
implementation, the discrete registers are usually grouped into register files (RFs).

Figure 13.3 shows an alternative hardware arrangement with registers grouped
into one common structure. The multiplexers, select lines, and load lines of Fig. 13.2
are now replaced with an addressing mechanism consisting of an address buses, data

414 P.R. Panda

Fig. 13.2 Discrete registers in hardware implementations. Load lines are load0 to load3. Mux
select lines are s0 to s3

Fig. 13.3 Architecture with
registers grouped into register
files

buses, and an internal address decoder structure that connects the data bus to the
appropriate internal register. The ALU is now connected to the data buses instead
of being directly connected to the registers [12]. The multiplexer and decoder
structures highlighted as ports in Fig. 13.3 represent the peripheral hardware that
is necessary to make the register file structure work. In other words, the register file
does not consist of merely the storage cells; the multiplexing and decoding circuits
do represent an area and power overhead here also, but the structure is more regular
than in the discrete register case.

This abstraction of individual registers into a larger register file structure repre-
sents a fundamental trade-off involving memories in system design. The aggregation
into register files is necessary for handling the complexity involving the storage and
retrieval of large amounts of data in applications. One drawback of arranging the

13 Memory Architectures 415

Fig. 13.4 Parallel access to register files (a) 6-port register file (b) 12-port register file

data in this way is that we have lost the ability to simultaneously access all the
data, since the data bus can carry only one piece of data at any time. This leads to
sequentialization of data accesses, which could impact performance severely.

To work around the sequential access problem, register files are organized to have
multiple ports, each port consisting of an independent set of address and data buses,
and control signals to indicate the operation (read, write, etc.). Figure 13.4a shows
an architecture with two ALUs and a register file. In order to keep the ALUs busy,
we should be able to read four operands simultaneously and also write two results
back to the register file. This imposes a requirement for a total of six register file
ports.

Extending the architecture to permit four simultaneous ALU operations, we
observe from Fig. 13.4b that twelve ports are needed in the register file. Larger
number of ports has the associated overhead of larger area, access times, and power
dissipation in the register file. The peripheral multiplexing and decoding circuit
increases correspondingly with the increased ports, leading to larger area and power
overheads. Since the increased delays affect all register file accesses, the architecture

416 P.R. Panda

should be carefully chosen to reflect the requirements of the application. Alternative
architectures that could be considered include splitting the register file into multiple
banks, with each bank supporting a smaller number of ports. This has the advantage
of faster and lower power access from the individual register file banks, while
compromising on connectivity – all ALUs can no longer directly access data from all
storage locations. Such trade-offs have been investigated in the context of clustered
VLIW processors in general-purpose computing and also influence on-chip memory
architecture choices in System-on-Chip (SoC) design. Simultaneous memory access
through multiple ports also raises the possibility of access conflicts: a write request
to a location through one port may be issued simultaneously with a write or read
request to the same location through a different port. Such conflicts need to be
resolved externally through an appropriate scheduling of access requests.

13.1.3 Packing Data into On-Chip SRAM

Registers and register files are the closest memory elements to computation
hardware, making them the most quickly accessible storage. Fast access also implies
an inherent constraint on their sizes – typical register files can store 16, 32, or
64 data words, which can sometimes extend to a few hundreds. When we need
to process larger amounts of data, we have to incorporate other structures such as
Static Random-Access Memory (SRAM). Register files and SRAMs are usually
distinguished by the relative sizes and number of ports. SRAMs can accommodate
hundreds of kilobytes of on-chip storage. Large SRAMs also have correspondingly
fewer ports because the basic cell circuit for providing connectivity to a large
number of ports does not scale well for large sizes, and the memory would incur
large area, performance, and power overheads.

Figure 13.5 shows possible configurations where SRAM is integrated into SoC.
In Fig. 13.5a the data bus of the SRAM is directly connected to ALUs, while in
Fig. 13.5b the ALU is connected only to the register file, with the register file serving
as the interface to the SRAM; data is first transferred from the SRAM to the register
file before being operated upon by the ALUs. It is possible to consider discrete
registers also here, instead of register files. Being denser, the SRAMs can store more
data per unit area than the register files. However, the larger SRAMs also exhibit
longer access times, which leads to a memory hierarchy as a natural architectural
choice.

13.1.4 Denser Memories: Main Memory and Disk

The need for larger capacities in data storage leads to the incorporation of other
memory structures as part of the hierarchy. Main memory and disks are the
next architectural components that complete the hierarchy, with higher capacity
and correspondingly higher access times. Modern main memories are usually
implemented using Dynamic Random-Access Memory (DRAM), although other

13 Memory Architectures 417

Fig. 13.5 (a) Data in SRAM
(b) Hierarchically arranged
register file and SRAM

memory technologies such as Phase Change Memory (PCM) and Spin-Transfer
Torque Random-Access Memory (STT-RAM) have appeared on the horizon re-
cently [14, 19, 21, 36].

The essential difference between register files and SRAM on one hand, and
DRAM on the other, is that in the former, data is stored as long as the cells are
powered on, whereas in DRAM the data, which is stored in the form of charge on
capacitors, is lost over a period of time due to leakage of charge from the capacitors.
To ensure storage for longer periods, the DRAM cells need to be refreshed at
intervals. Note that nonvolatile memory technologies such as PCM and STT-RAM,
referred to above, do not need to be refreshed in this way. However, they have other
associated issues, which are discussed in more detail in �Chap. 14, “Emerging and
Nonvolatile Memory”.

Figure 13.6 shows a simplified DRAM architecture highlighting some of the
major features. The address is divided into a row address consisting of the higher-
order bits and a column address consisting of the lower-order bits. A row decoder
uses the row address to select a page from the core storage array and copy it to
a buffer. A column decoder uses the column address to select the word at the
right offset within the buffer and send it to the output data bus. If subsequent

418 P.R. Panda

Fig. 13.6 DRAM architecture

Fig. 13.7 Memory hierarchy may include disk

accesses occur to data within the same page, then we could skip the row decode
stage and retrieve data directly from the buffer using only the column decode stage
[30], employing what is referred to as an open-page policy. DRAMs have been
architected around this central principle over the decades, although a large number
of other structural details and management policies (including a close-page policy
where the page is closed right after an access – a strategy that is useful when
locality is weak) have been added. DRAM is generally incorporated as an off-chip
component, although sometimes integrated on-chip with logic.

The final memory level in SoCs could include some form of nonvolatile storage
such as solid-state disk (SSD, shown in Fig. 13.7). Occurring at a level beyond main
memory, disk storage is often necessary when larger amounts of data need to be
stored, for longer periods of time. The underlying technology is often flash-memory-
based SSD.

13.1.5 Memory Hierarchy

System designers have to make a choice between the different types of memories
discussed above, with the general trend being that smaller memories are faster,

13 Memory Architectures 419

whereas larger memories are slower. The common solution is to architect the
memory system as a hierarchy of memories with increasing capacities, with the
smallest memory (registers and register files) located closest to the processing units
and the largest memory (DRAM and disk) lying farthest. This way, the processing
units fetch the data from the closest memory very fast. There is also the requirement
that the performance should not be overwhelmed by excessive accesses to the large
memories.

Fortunately, the important concept of locality of reference, an important property
exhibited by normal computing algorithms, plays an important role in this decision.
Spatial locality refers to the observation that if a memory location is accessed,
locations nearby are likely to be also accessed. This derives, for example, from (non-
branch) instructions being executed as sequences, located in consecutive memory
locations. Similarly, arrays accessed in loops also exhibit this property. Temporal
locality refers to the observation that if a memory location is accessed, it is
likely to be accessed again in the near future. This property can be related to
instruction sequences executed multiple times in a loop and also data variables such
as loop indices referenced multiple times within a short span of time, once in each
iteration.

The locality property provides compelling motivation to organize the memory
system as a hierarchy. If frequently accessed data and instructions can be stored/-
found in levels of the memory located closer to the processor, then the average
memory access times would decrease, which improves performance (and also power
and energy). Within this general philosophy, a large number of combinations and
configurations exist, making the overall memory architecture decision a complex
and challenging process in hardware/software codesign.

13.2 Memory Architectures in SoCs

In Sect. 13.1 we reviewed the major technologies used in memory subsystems.
These components are used to evolve different architectural blocks that are com-
monly used, depending on the requirements of the application. On-chip memories
are dominated by different configurations of caches and scratchpad memories.

13.2.1 Cache Memory

Cache memory is a standard architectural block in the on-chip memory hierarchy.
Designed to exploit the temporal and spatial locality properties exhibited by
programs and data in typical applications, caches are SRAM-based structures that
attempt to retain a copy of recently accessed information so that when it is required,
the data is delivered from the cache instead of further levels of the hierarchy, thereby
saving time and energy. Spatial locality is exploited by prefetching a block or line

420 P.R. Panda

Fig. 13.8 Read operation in
direct-mapped cache

of data when a single word is accessed, so that when adjacent words are accessed,
they can be found in the cache. Temporal locality is exploited by implementing an
appropriate replacement policy that attempts to retain relatively recently accessed
data in the cache [12]. Caches are usually implemented using SRAM technology,
but other technologies such as embedded DRAM and STT-RAM have also been
explored for implementing caches [17].

Figure 13.8 shows a high-level block diagram of a direct-mapped cache. In this
design, each address of the next memory level is mapped to one location in the
cache. Since each cache level is smaller than the next level, a simple mapping
function consisting of a subset of the address bits is used for determining the cache
location from a given memory location. Consequently, several memory locations
could map to the same cache location. When memory data is accessed, a cache line
(consisting of four words from the Data memory shown in Fig. 13.8) is fetched and
stored in the cache location to which the memory address maps. The higher-order
address bits are also stored in the tag field of the cache to identify where the line
came from. When a new address is presented to the cache, the higher-order address
bits are compared with those stored at the corresponding location in the tag memory,
and if there is a match (causing a cache hit), the data is delivered from the cache line
itself. If there is no match (causing a cache miss), then the data has to be fetched
from the next memory level.

The cache structure can be generalized to permit the same data to possibly reside
in one of several cache locations. This permits some flexibility in the mapping
and helps overcome limitations of the direct-mapped cache arising out of multiple
memory addresses conflicting at the same cache location. The standard architecture
for implementing this is a set-associative cache, with each line mapping to any of a
set of locations. Figure 13.9 outlines the block diagram of a four-way set-associative
cache, in which a cache line fetched from the memory can reside in one out of four

13 Memory Architectures 421

Fig. 13.9 Read operation in four-way set-associative cache

cache ways. The higher-order address bits are compared simultaneously with four
tags, and if there is a match, a word from the corresponding way is delivered by the
cache. If none of the tags match, then we have a cache miss, and a line is fetched
from the next memory level. The decision of which line should be replaced in the
set is taken by the replacement policy that might usually favor replacing the line that
was accessed furthest in the past.

13.2.2 Scratchpad Memory

Scratchpad Memory (SPM) refers to simple on-chip memory, usually implemented
with SRAM, that is directly addressable and where decisions of transfer to and from
the next memory level are explicitly taken in software instead of implicitly through
hardware replacement policies, as in caches [29]. Figure 13.10 shows a logical
picture of the memory address map involving both SPM and cache. The caches are
not visible in the address map because the cache storage decisions are not explicitly
made in software. The SPM physically resides at roughly the same level as the
cache, and its data is not accessed through the cache [28,32]. Although traditionally
implemented in SRAM technology, other technologies such as STT-RAM are being
considered for denser SPM implementation [37].

Scratchpad memory is actually simpler than caches because there is no need
to include tags, comparators, implementation of replacement policies, and other
control information. This makes it smaller, lower power, and more predictable,

422 P.R. Panda

Fig. 13.10 Scratchpad memory address map

which makes it suitable for use in real-time and low-power systems. However, it
does increase the work done in software (either by the developer, if done manually,
or the compiler, if automated) because data transfers have to be explicitly performed
in software.

Scratchpad memory could be integrated into system designs in a variety of ways,
either independently or in conjunction with other memory structures. Figure 13.11
illustrates some such configurations. In the architecture of Fig. 13.11a, the local first-
level memory consists of only SPM, which holds both instructions and data. The
concept of a cache could still be useful, however, and a cache could be emulated
within the SPM (Sect. 13.2.3). A Direct Memory Access (DMA) engine acts as
the interface between the SPM and external memory. The DMA is responsible for
transferring a range of memory data between different memories – in this case,
between SPM and the next level. In Fig. 13.11b, the architecture supports both local
SPM and hardware cache. In such systems, decisions have to be made for mapping
code and data to either SPM or cache. Other variations are possible – for example,
in Fig. 13.11c the local memory could be dynamically partitioned between SPM and
cache.

13.2.3 Software Cache

Software Cache (SWC) refers to cache functionality being emulated in software
using an SPM with no hardware cache support as the underlying structure. The tag
structures discussed in Sect. 13.2.1 are still conceptually present, so they need to be
separately stored in the same memory, and comparisons have to be implemented in
software.

The working of a software cache is illustrated in Fig. 13.12. The SWC imple-
mentation consists of a cache line data storage and tag storage area.

13 Memory Architectures 423

Fig. 13.11 Different architectural configurations for scratchpad memory (a) Local memory
consists of only SPM. No hardware cache. (b) Local memory with both hardware cache and SPM
(c) Dynamically configurable partition between local cache and SPM

424 P.R. Panda

Fig. 13.12 Software caches: emulating caches in software

1. In Step 1, the index bits are extracted from the address to generate the address of
the relevant tag within the SPM.

2. In Step 2, the tag is from the memory, with the four words corresponding to the
four tag fields of the four-way set-associative cache.

3. In Step 3, the tags are compared against the tag bits of the address to determine
a cache hit.

4. If a hit results, then the SPM address of the cache line is computed in Step 4.
5. As the final step, the data is fetched and delivered.

The emulation is relatively slow and energy inefficient compared to the hardware
cache and, hence, should be judiciously used, for those data for which it is
difficult to perform the static analysis required for SPM mapping [5, 7]. Efficient
implementation of the software cache routines – such as a cache read resulting in a
hit – used in the CELL library cause a roughly 5X performance overhead (six cycles
for SPM access vs. 32 cycles for software cache access) (Sect. 13.3.2).

13.2.4 Memory in CGRA Architectures

We examine some of the on-chip memory architectures in some commercial
and research SoCs and processors. Some of the designs are application
specific or domain specific, while others are designed for broader applicability
but still under restricted thread organization structures that do not apply to
general-purpose software applications with random control structures. Such

13 Memory Architectures 425

Fig. 13.13 Multiple SPMs in CGRA architecture

applications are more relevant to systems-on-a-chip rather than general-purpose
computing.

The ADRES architecture [1] is a CGRA of processor cores and memories where
the number of cores and memories is customizable for a specific application domain.
The architecture is vector oriented, with a register file being connected to both the
configurable array of vector processors (four in Fig. 13.13) and a VLIW processor
that handles the control flow. In the instance of Fig. 13.13, there are two SPM
blocks with wide vector interfaces to the register file. A significant responsibility
lies on the system designer for utilizing such systems efficiently, which translates
to challenging new problems for the compiler. The number of Central Processing
Unit (CPU) cores and SPM instances has to be decided after a careful evaluation of
the system throughput requirements and energy constraints. The compiler support
also needs to accommodate the specialized architectures so that the application can
benefit from it.

13.2.5 Hierarchical SPM

Figure 13.14 shows another instance of a processor system where a large number
of independent SPMs are organized hierarchically into different memory levels [3].
Each individual core contains, apart from an ALU and register file, a level-1 SPM as
well as hardware cache. Each block contains several such cores, along with a control
processor with a level-2 SPM. Several such blocks exchange data through a shared
memory in the form of a level-3 SPM. Finally, the entire chip is connected to a global
shared memory implemented as a level-4 SPM. Such memory organizations have
the ability to tremendously simplify multiprocessor architecture by not requiring
complex cache coherence protocols but also need to rely on extensive support of
sophisticated parallel programming environments and compiler analysis.

426 P.R. Panda

Fig. 13.14 Hierarchically organized SPM

13.3 Commercial SPM-Based Architectures

In this section we examine a few commercial architectures with interesting on-
chip memory structures including scratchpad memory, in addition to conventional
caches. These architectures have been used in a wide variety of applications with
diverse requirements and constraints, ranging from low-power embedded systems to
high-end gaming platforms and high-performance machines. We exclude general-
purpose processors with conventional cache hierarchies.

13.3.1 ARM-11 Memory System

The Advanced Risc Machines (ARM) processor architecture family has been
extensively used in embedded systems-on-chip. Figure 13.15 shows the local
memory architecture of the ARM-11 processor, consisting of both hardware cache
and SPM [2]. Data delivered from the memory subsystem could be routed from one
of several sources: one of four memory banks corresponding to the four-way cache,

13 Memory Architectures 427

Fig. 13.15 The ARM-11 local memory architecture

Fig. 13.16 Memory
organization in the CELL
processor

the SPM, and the write buffer associated with the cache. The selection of the data
source is done by examining the address range, the write buffer locations, and the
cache tags.

13.3.2 Local SPMs in CELL

The CELL processor [20], shown in Fig. 13.16, is a multiprocessor system consist-
ing of eight digital signal processing engines connected over a ring network, each
with a large local SPM storage intended for both instructions and data. There is no
local hardware cache, and there is library support for software caches. At a higher
level, a PowerPC [22] processor is used for control functions, with a regular level-2
hardware cache, which, in turn, interfaces with external DRAM.

428 P.R. Panda

Fig. 13.17 Memory in the Fermi processor

13.3.3 Programmable First-Level Memory in Fermi

In the Fermi architecture [25] which represents the Graphics Processing Unit
(GPU) class of designs (Fig. 13.17), each streaming multiprocessor consists of
several processing cores with a shared data memory consisting of both SPM
and hardware cache. The second-level cache is common to all the processors
and interfaces with external DRAM. The architecture also supports the dynamic
reconfiguration of the local memory into partitions of different SPM vs. cache sizes,
depending on the requirements of the application. Although originally targeted at the
graphics rendering application, architectures in this family have also been used for
other applications with similar data-parallel properties, known as General-Purpose
computing on Graphics Processing Units (GPGPU) applications [26].

13.4 Data Mapping and Run-Time Memory Management

The presence of advanced memory-related features requires a corresponding au-
tomated analysis functionality for exploiting the features efficiently. Conventional
cache-oriented compiler analysis is sometimes applicable for these scenarios,
but new mechanisms are typically necessary targeting the specialized memory
structures. When data transfers are no longer automatically managed in hardware,
the most fundamental problem that arises is the decision of where to map the

13 Memory Architectures 429

data from among all the memory structure choices available. Techniques have
been developed to intelligently map data and instructions in SPM-based systems
[6, 9, 15, 16, 38].

A major advantage of caches, from a methodology point of view, is the simplicity
of their usage. Application executables that are compiled for one architecture with
a given cache hierarchy also perform well for an architecture with a different cache
structure. In principle, applications do not need to be recompiled and reanalyzed
when the cache configuration changes in a future processor generation, although
several cache-oriented analyses indeed rely on the knowledge of cache parameters.
However, the other memory structures such as SPM would need a careful reanalysis
of the application when the configuration is modified.

13.4.1 Tiling/Blocking

The conventional tiling or blocking optimization refers to the loop transformation
where the standard iteration space covering array data is rearranged into tiles or
blocks, to improve cache performance – this usually results in better temporal
locality [8, 18, 33].

Figure 13.18 illustrates the tiling concept on a simple one-dimensional array,
where the data is stored in main memory and needs to be fetched first into SPM
for processing. Assuming no cache, the fetching and writing back of data have to
be explicitly managed in software. For the code in Fig. 13.18a, the tiled version
shown in Fig. 13.18b divides the array into tiles of size 100 and copies the tiles
into array AA located in SPM (using the MoveToSPM routine). The inner loop now
operates on the data in the SPM. If the data were modified, the tile would also need
to be written back before proceeding to the next tile. The process is illustrated in
Fig. 13.18c.

A generalization of the simple tiling concept is illustrated in Fig. 13.19a. Here, a
two-dimensional array is divided into 2D tiles. In the classical tiling optimization,

Fig. 13.18 The tiling/blocking transformation (a) original code (b) tiled code (c) tiling and SPM

430 P.R. Panda

Fig. 13.19 Tiling multidimensional data (a) in data caches and (b) in scratchpad memory

the loop iteration space is modified so that the computation is first performed in
one tile before proceeding to another. The tile height and width are carefully chosen
such that the tile size is less than the data cache size, and also, elements within a tile
exhibit minimal cache conflicts between themselves.

The tiling idea can be extended to SPM, where each tile is first fetched into the
SPM for processing (Fig. 13.19b). All processing then takes place on SPM data,
leading to a lower power solution because each access to the SPM is more energy
efficient than the corresponding access to a hardware cache of similar capacity.
Figure 13.20 shows an example of a tiled matrix multiplication targeted at SPM
storage. Tiles of data are moved into the SPM using the READ_TILE routine before
being processed. The iteration space is divided into a six-deep nested loop. This
general principle is followed in SPM-based storage, where data is first fetched into
the relatively small SPM, and actual processing is then performed on SPM data. The
overhead of fetching data into the SPM is usually overcome by the energy-efficient
accesses to the SPM.

13.4.2 Reducing Conflicts

A slightly different example of data mapping and partitioning is shown in Fig. 13.21.
The array access pattern for the code shown in Fig. 13.21 is illustrated in Fig. 13.21b
for the first two iterations of the j -loop. We observe that the mask array is small and

13 Memory Architectures 431

Fig. 13.20 Tiled matrix multiplication

Fig. 13.21 (a) Convolution code (b) Data accesses in the first two iterations (c) SPM mapping

is accessed a large number of times. In comparison, the source array is large with
the accesses exhibiting good spatial locality. It is possible that the two arrays would
conflict in the cache if the cache is small. A good data mapping decision would be

432 P.R. Panda

to store the mask array in SPM and access source through the cache [31]. Another
strategy illustrated in Fig. 13.21c is to fetch tiles from source and dest arrays into
SPM for processing.

13.5 Comparing Cache and Scratchpad Memory

The quality of memory mapping decisions is closely related to the appropriate
modeling of the cache and SPM parameters. Suitable high-level abstractions are
necessary so that the impact of mapping decisions can be quickly evaluated. In this
section we present a comparison of caches and SPM with respect to the area and
energy parameters. There is no explicit access time comparison because these are
similar for both; cache access times are dominated by the data array access time,
which is also present in SPM.

13.5.1 Area Comparison

Caches are associated with an area overhead compared to SPM because of the tag
array that is used for managing the cache. Figure 13.22 shows a comparison of the
areas of SPM and a direct-mapped cache, for different memory capacities ranging
from 8 to 128 KB, assuming a 32-byte line size and 32 nm process technology using
the popular CACTI cache modeling tool [23]. For the same capacity, we observe a
10–32% additional area for the cache, compared to SPM.

13.5.2 Energy Comparison

We compare the energy dissipation of caches and SPM by first outlining a simple
energy model of the memories expressed in terms of the different components. Since

Fig. 13.22 Comparison of
SPM and cache areas for
different memory capacities

13 Memory Architectures 433

the mapping process may also result in conflict misses in the cache, we also study the
variation of the memory energy with the conflict miss ratio, in addition to standard
parameters such as memory capacity.

13.5.2.1 Energy Model for Tiled Execution
Table 13.1 shows a simplified model of the dynamic energy dissipation components
of cache-based and SPM-based systems, when an O.n3/ algorithm such as matrix
multiplication is executed with an n� n tile. Column 1 lists the energy components
in the memories.

• The computation remains identical in both cases, so the associated energyEComp
is assumed to be equal.

• The dynamic energy dissipated during each memory accesses is higher in caches
because of the additional energyEDyn�Tag dissipated in the tag array, apart from
that in the data array (EDyn�Data). The SPM’s dynamic memory energy is limited
to the data array energy EDyn�Data. To generate the total dynamic memory
energy, the per-access energy values are multiplied by n3, which is assumed to
be the number of memory accesses required for the tile’s processing.

• When the memories are idle, leakage energy is dissipated. The common data
array causes a leakage energy ELeak�Data in both SPM and cache. The cache
dissipates an additional ELeak�Tag due to the tag array.

• Finally, the data transfer overheads need to be carefully considered; they are
sensitive to specific processor and memory architectures. The simple energy
expressions for these overheads given in Table 13.1 highlight an important
consideration: it is usually more energy efficient to fetch larger chunks of
consecutive data from the main memory, instead of smaller chunks (the chunk
size is also called burst length for main memory accesses). For the SPM, we
assume a DMA architecture in which the n � n tile is fetched into the SPM by
n DMA transfers of length n each. Each DMA transfer, fetching n elements,
dissipates EDMA.n/. In contrast, the data transfers triggered by cache misses are
of size L, the cache line size, which is expected to be much smaller than n.

Table 13.1 Data cache vs. scratchpad memory energy comparison for computing an O.n3/

algorithm on an n� n tile. Cache line size = L. f is the conflict miss ratio

Energy
component SPM Data cache Description

Computation EComp EComp Computation stays fixed

Dynamic energy
EDyn�Data �
n3 .EDyn�DataCEDyn�Tag/�n

3
Tag access causes extra dy-
namic energy in cache

Leakage energy ELeak�Data ELeak�Data CELeak�Tag

Tag array causes extra leak-
age energy in cache when idle

Data transfer
overheads EDMA.n/� n EMiss.L/� .

n2

L
C n3f /

Longer burst in DMA is
more energy efficient. Con-
flicts cause extra cache misses

434 P.R. Panda

Since all the tile data has to be fetched to the cache, there would be an estimated
n2

L
compulsory misses, each leading to an energy dissipation of EMiss.L/.

EDMA.n/ for transferring a tile row of n elements is expected to be smaller than
EMiss.L/ �

n
L

, the corresponding cache energy.
Capacity misses in the cache (occurring due to insufficient cache size) are

avoided by choosing an appropriate tile size, but conflict misses (occurring due
to limitations of the mapping function, in spite of sufficient space) may not be
completely avoided and lead to an additional n3f misses, where f is the conflict
miss ratio (defined as the number of conflict misses per access).

13.5.2.2 Sensitivity to Memory Capacity
Figure 13.23 shows a comparison of the per-access read energy for SPM and a
direct-mapped cache, for different memory capacities ranging from 8 to 128 KB,
assuming a 32-byte line size and 32nm process technology [23]. For the same
capacity, we observe a 5–10% additional access energy for the cache, compared
to SPM.

13.5.2.3 Sensitivity to Conflict Misses
Let us study the impact of one of the parameters identified in Table 13.1 – the
conflict misses in tiling. As observed in Table 13.1, tiling may cause overheads in
the cache if the memory accesses are subject to conflict misses. What is the extent
of this overhead?

Figure 13.24 plots a comparison between the dynamic energy of the SPM and
data cache for different miss ratios between 0 and 7% in a 50 � 50 tile (i.e.,
n D 50). We have ignored leakage and computation energy values and have
assumed a 10% extra energy due to the tag array (EDyn�Tag D 0:1�EDyn�Data); a
2X and 4X overhead for DMA (per-word) and cache miss (per word), respectively.
That is, EDMA.n/ D 2n�EDyn�Data and EMiss.L/ D 4L�EDyn�Data. We notice
that the memory energy overhead rises significantly as the miss ratio increases and
amounts to an increase of 40% over the SPM energy for a 7% conflict miss ratio.

Fig. 13.23 Comparison of
SPM and cache dynamic
energy for different memory
capacities

13 Memory Architectures 435

Fig. 13.24 Comparison of SPM and cache dynamic energy for different conflict miss ratios for
50� 50 tile

This illustrates the importance of the appropriate mapping decision, which should
ideally be implemented through a systematic procedure that estimates the benefits
and cost overheads for different data mapping possibilities.

13.6 Memory Customization and Exploration

In addition to the diverse memory structures in SoC architectures, there is often
the opportunity to customize the architecture for a single application or domain
of applications. For example, the size and number of caches, register files, and
SPMs could be customized. This process requires an exploration phase that involves
iterating between architectural possibilities and compiler analysis to extract the best
performance and power from each architectural instance [4, 11, 32, 35, 39]. Fast
estimators are necessary to help converge on the final architecture.

13.6.1 Register File Partitioning

The register file could be an early candidate for application specific customization.
The RF size could be determined based on application requirements. Further, from
the application behavior, we could determine that a small set of registers need to be
frequently accessed, whereas other data in the register file might not be accessed as
frequently. This knowledge could be exploited by dividing the RF into two physical
partitions, one smaller than the other (Fig. 13.25). If most accesses are routed to
the smaller RF partition, the overall energy consumption could be smaller than
the standard RF architecture where a larger RF is accessed for every register data
access [24].

436 P.R. Panda

Fig. 13.25 Partitioning the register file. Uneven partitioning can lead to energy efficiency if the
majority of accesses are to the smaller partition

13.6.2 Inferring Custom Memory Structures

Generalizing the register imbalance observed above, we could have a small range
of memory addresses being relatively heavily accessed, leading to an analogous
situation where the small range could be mapped to a small physical memory,
which could lead to overall energy efficiency. Such a situation could be detected
either by a compiler analysis or an execution profile of the application. This is
illustrated in Fig. 13.26. The graph in Fig. 13.26a shows that a small range dominates
the memory accesses. This could lead to an architectural possibility indicated in
Fig. 13.26b, where this range of addresses is stored in a separate small memory.
Memory accesses lying in this range could be more energy efficient because the
access is made to a much smaller physical memory module [27]. The overhead of
the range detection needs to be factored here. Custom memory structures could
also be inferred by a data locality compiler analysis in loop nests, leading to
relatively heavily accessed arrays being mapped to separate memory structures so
as to improve overall energy efficiency [28].

13.6.3 Cache Customization and Reconfiguration

The presence of caches sometimes leads to opportunities for configuring the local
memory in several ways. Caches themselves have a large number of parameters that

13 Memory Architectures 437

Fig. 13.26 (a) Profile of memory accesses (b) Memory architecture derived from profile

Fig. 13.27 Partitioning local
memory between SPM and
cache

could be tuned to the requirements of an application. Further, the coexistence of
caches with other structures such as SPM expands the scope for such customization.

One exploration problem that comes up in this context is to divide a given
amount of local memory space into cache and SPM. The best partitioning would be
application dependent, and a compiler analysis of the application behavior would
help determine the best partition. As Fig. 13.27 indicates [31], both extremes of
all cache and all SPM may not be the best because different application data
access patterns are suitable for different memory types. The best partition may lie
somewhere in between [5, 31].

With processors such as Fermi permitting dynamic local memory reconfiguration
(Sect. 13.3.3), the partitioning between cache and SPM could also be performed
during the application execution, with different partitions effected during differ-
ent application phases. Apart from size, possibilities also exist for dynamically
reconfiguring other cache parameters such as associativity and management policy.
Dynamic adjustment of cache associativity may help identify program phases where
some ways can be turned off to save power. In Fig. 13.28a, the four-way cache has
all four banks active at time t1, but two ways are turned off at t2 [40]. When a

438 P.R. Panda

Fig. 13.28 Cache way configuration. (a) Ways shut down to save power (b) Dynamic allocation
of ways to cores

cache is shared among several processor cores, an active management policy could
exclusively allocate different sets of ways to different cores, with the objective of
maximizing overall throughput. In Fig. 13.28b each core is allocated one exclusive
way at time t1, but at t2, three ways are allocated to core c1, while the other way is
shared among the remaining three cores [13, 34]. Such a decision could result from
an analysis of the loads presented to the shared cache by the four cores. Application-
specific analysis could also reveal possibilities for improving the cache mapping
function [10].

13.7 Conclusions

In this chapter we reviewed some of the basics of memory architectures used in
hardware/software codesign. While the principles of memory hierarchies used in
general-purpose processors are relatively well defined, systems-on-chip tend to use
a wide variety of different memory organizations according to the requirements
of the application. Nevertheless, the architectures can be classified into a few
conceptual classes such as registers, register files, caches, and scratchpad memories,
instanced and networked in various ways. Codesign environments give rise to the
possibility of integrating both the memory architecture as well as the application
data mapping into the memory, leading to exciting technical challenges that require
a fast exploration of the large number of configurations and mapping possibilities.
As memory technologies continue to evolve, the problem of selecting and exploiting
memory architectures continues to be relevant and expands in scope because of the

13 Memory Architectures 439

different trade-offs associated with memories with very different properties. As the
technology marches forward, the integration of nonvolatile memories into system
design poses very interesting new and exciting problems for the designer. This topic
is discussed further in �Chap. 14, “Emerging and Nonvolatile Memory”.

Acknowledgments The author acknowledges Lokesh Siddhu for generating the data for memory
configurations reported in Figs. 13.23 and 13.24.

References

1. Aa TV, Palkovic M, Hartmann M, Raghavan P, Dejonghe A, der Perre LV (2011) A multi-
threaded coarse-grained array processor for wireless baseband. In: IEEE 9th symposium on
application specific processors SASP, San Diego, 5–6 June 2011, pp 102–107

2. ARM Advanced RISC Machines Ltd (2006) ARM1136JF-S and ARM1136J-S, Technical
Reference Manual, r1p3 edn

3. Carter NP, Agrawal A, Borkar S, Cledat R, David H, Dunning D, Fryman JB, Ganev I,
Golliver RA, Knauerhase RC, Lethin R, Meister B, Mishra AK, Pinfold WR, Teller J,
Torrellas J, Vasilache N, Venkatesh G, Xu J (2013) Runnemede: an architecture for ubiquitous
high-performance computing. In: 19th IEEE international symposium on high performance
computer architecture HPCA, Shenzhen, 23–27 Feb 2013, pp 198–209

4. Catthoor F, Wuytack S, De Greef E, Balasa F, Nachtergaele L, Vandecappelle A (1998) Cus-
tom memory management methodology: exploration of memory organisation for embedded
multimedia system design. Kluwer Academic Publishers, Norwell, USA

5. Chakraborty P, Panda PR (2012) Integrating software caches with scratch pad memory. In:
Proceedings of the 15th international conference on compilers, architecture, and synthesis for
embedded systems, pp 201–210

6. Chen G, Ozturk O, Kandemir MT, Karaköy M (2006) Dynamic scratch-pad memory man-
agement for irregular array access patterns. In: Proceedings of the conference on design,
automation and test in Europe DATE, Munich, 6–10 Mar 2006, pp 931–936

7. Chen T, Lin H, Zhang T (2008) Orchestrating data transfer for the CELL/BE processor.
In: Proceedings of the 22nd annual international conference on supercomputing, ICS ’08,
pp 289–298

8. Coleman S, McKinley KS (1995) Tile size selection using cache organization and data layout.
In: Proceedings of the ACM SIGPLAN’95 conference on programming language design and
implementation (PLDI), pp 279–290

9. Francesco P, Marchal P, Atienza D, Benini L, Catthoor F, Mendias, JM (2004) An integrated
hardware/software approach for run-time scratchpad management. In: Proceedings of the 41st
annual design automation conference, DAC’04, pp 238–243

10. Givargis T (2003) Improved indexing for cache miss reduction in embedded systems. In:
Proceedings of the 40th design automation conference, pp 875–880

11. Grun P, Dutt N, Nicolau A (2003) Memory architecture exploration for programmable
embedded systems. Kluwer Academic Publishers, Boston

12. Hennessy JL, Patterson DA (2003) Computer architecture: a quantitative approach, 3rd edn.
Morgan Kaufmann Publishers Inc., San Francisco

13. Jain R, Panda PR, Subramoney S (2016) Machine learned machines: adaptive co-optimization
of caches, cores, and on-chip network. In: 2016 design, automation & test in Europe,
pp 253–256

14. Jog A, Mishra AK, Xu C, Xie Y, Narayanan V, Iyer R, Das CR (2012) Cache revive:
architecting volatile STT-RAM caches for enhanced performance in CMPs. In: Design
automation conference (DAC), pp 243–252. doi: 10.1145/2228360.2228406

http://dx.doi.org/10.1145/2228360.2228406

440 P.R. Panda

15. Kandemir MT, Ramanujam J, Irwin MJ, Vijaykrishnan N, Kadayif I, Parikh A (2001) Dynamic
management of scratch-pad memory space. In: Proceedings of the 38th design automation
conference, pp 690–695

16. Kandemir MT, Ramanujam J, Irwin MJ, Vijaykrishnan N, Kadayif I, Parikh A (2004)
A compiler-based approach for dynamically managing scratch-pad memories in embedded
systems. IEEE Trans CAD Integr Circuits Syst 23(2):243–260

17. Komalan MP, Tenllado C, Perez JIG, Fernández FT, Catthoor F (2015) System level exploration
of a STT-MRAM based level 1 data-cache. In: Proceedings of the 2015 design, automation &
test in Europe conference & exhibition DATE, Grenoble, 9–13 Mar 2015, pp 1311–1316

18. Lam MS, Rothberg EE, Wolf ME (1991) The cache performance and optimizations of blocked
algorithms. In: ASPLOS-IV proceedings - fourth international conference on architectural
support for programming languages and operating systems, pp 63–74

19. Li H, Chen Y (2009) An overview of non-volatile memory technology and the implication for
tools and architectures. In: Design, automation test in Europe conference exhibition (DATE),
pp 731–736

20. Liu T, Lin H, Chen T, O’Brien JK, Shao L (2009) Dbdb: optimizing DMA transfer for the
CELL BE architecture. In: Proceedings of the 23rd international conference on supercomput-
ing, pp 36–45

21. Liu Y, Yang H, Wang Y, Wang C, Sheng X, Li S, Zhang D, Sun Y (2014) Ferroelectric
nonvolatile processor design, optimization, and application. In: Xie Y (ed) Emerging memory
technologies. Springer, New York, pp 289–322. doi: 10.1007/978-1-4419-9551-3_11

22. May C, Silha E, Simpson R, Warren H (1994) The PowerPC architecture: a specification for a
new family of RISC processors, 2 edn. Morgan Kaufmann, San Francisco, USA

23. Muralimanohar N, Balasubramonian R, Jouppi NP (2009) CACTI6.0: A tool to model large
caches. Technical Report HPL-2009-85, HP Laboratories

24. Nalluri R, Garg R, Panda PR (2007) Customization of register file banking architecture for low
power. In: 20th international conference on VLSI design, pp 239–244

25. NVDIA Corporation (2009) NVIDIA’s Next Generation CUDA Compute Architecture: Fermi
26. Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn A, Purcell TJ (2007)

A survey of general-purpose computation on graphics hardware. Comput Graphics Forum
26(1):80–113

27. Panda PR, Silpa B, Shrivastava A, Gummidipudi K (2010) Power-efficient system design.
Springer, US

28. Panda PR, Catthoor F, Dutt ND, Danckaert K, Brockmeyer E, Kulkarni C, Vandecappelle A,
Kjeldsberg PG (2001) Data and memory optimization techniques for embedded systems. ACM
Trans Design Autom Electr Syst 6(2):149–206

29. Panda PR, Dutt ND, Nicolau A (1997) Efficient utilization of scratch-pad memory in embedded
processor applications. In: European design and test conference, ED&TC ’97, Paris, 17–20 Mar
1997, pp 7–11

30. Panda PR, Dutt ND, Nicolau A (1998) Incorporating DRAM access modes into high-level
synthesis. IEEE Trans CAD Integr Circuits Syst 17(2):96–109

31. Panda PR, Dutt ND, Nicolau A (1999) Local memory exploration and optimization in
embedded systems. IEEE Trans CAD Integr Circuits Syst 18(1):3–13

32. Panda PR, Dutt ND, Nicolau A (1999) Memory issues in embedded systems-on-chip. Kluwer
Academic Publishers, Boston

33. Panda PR, Nakamura H, Dutt ND, Nicolau A (1999) Augmenting loop tiling with data
alignment for improved cache performance. IEEE Trans Comput 48(2):142–149

34. Qureshi MK, Patt YN (2006) Utility-based cache partitioning: a low-overhead, high-
performance, runtime mechanism to partition shared caches. In: 39th annual IEEE/ACM
international symposium on microarchitecture, pp 423–432

35. Ramo EP, Resano J, Mozos D, Catthoor F (2006) A configuration memory hierarchy for fast
reconfiguration with reduced energy consumption overhead. In: 20th international parallel and
distributed processing symposium IPDPS

http://dx.doi.org/10.1007/978-1-4419-9551-3_11

13 Memory Architectures 441

36. Raoux S, Burr G, Breitwisch M, Rettner C, Chen Y, Shelby R, Salinga M, Krebs D, Chen SH,
Lung H, Lam C (2008) Phase-change random access memory: a scalable technology. IBM J
Res Dev 52(4.5):465–479. doi: 10.1147/rd.524.0465

37. Rodríguez G, Touriño J, Kandemir MT (2014) Volatile STT-RAM scratchpad design and data
allocation for low energy. ACM Trans Archit Code Optim (TACO) 11(4):38:1–38:26

38. Steinke S, Wehmeyer L, Lee B, Marwedel P (2002) Assigning program and data objects to
scratchpad for energy reduction. In: Design, automation and test in Europe, pp 409–415

39. Wuytack S, Diguet JP, Catthoor F, Man HJD (1998) Formalized methodology for data reuse:
exploration for low-power hierarchical memory mappings. IEEE Trans Very Larg Scale Integr
Syst 6(4):529–537

40. Zhang C, Vahid F, Yang J, Najjar W (2005) A way-halting cache for low-energy high-
performance systems. ACM Trans Archit Code Optim 2(1):34–54

http://dx.doi.org/10.1147/rd.524.0465

14Emerging and Nonvolatile Memory

Chun Jason Xue

Abstract

In recent years, Non-Volatile Memory (NVM) technologies have emerged as
candidates for future computer memory. Nonvolatility, the ability of storing in-
formation even after powered off, essentially differentiates them from traditional
CMOS-based memory technologies. In addition to the nonvolatility, NVMs are
also favored because of their low leakage power, high density, and comparable
read speed compared with volatile memories. However, there are challenges
to efficiently utilize NVMs due to the high write cost and potential endurance
issues. In this chapter, we first introduce representative NVM technologies
including their physical construction for data storage, as well as characteristics,
and then summarize recent work aiming to exploring NVMs’ characteristic to
optimize their behaviors.

Acronyms

CMOS Complementary Metal-Oxide-Semiconductor
DRAM Dynamic Random-Access Memory
DWM Domain Wall Memory
FeRAM Ferro-electric Random-Access Memory
MTJ Magnetic Tunnel Junction
NMOS Negative-type Metal-Oxide-Semiconductor
NVM Non-Volatile Memory
PCM Phase Change Memory
RRAM Resistive Random-Access Memory
SRAM Static Random-Access Memory
STT-RAM Spin-Transfer Torque Random-Access Memory
WL Word Line

C.J. Xue (�)
City University of Hong Kong, Hong Kong, Hong Kong
e-mail: jasonxue@cityu.edu.hk

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_15

443

mailto:jasonxue@cityu.edu.hk

444 C.J. Xue

Contents

14.1 Introduction . 444
14.2 Classification of Emerging Nonvolatile Memories . 445

14.2.1 Spin-Transfer Torque Random-Access Memory . 445
14.2.2 Resistive Random-Access Memory . 446
14.2.3 Domain Wall Memory . 446
14.2.4 Ferro-electric Random-Access Memory . 447
14.2.5 Phase Change Memory . 447

14.3 On-Chip Memory and Optimizations . 448
14.3.1 STT-RAM as On-Chip Cache . 448
14.3.2 Other NVMs as On-Chip Memory . 450

14.4 Hybrid Main Memory and Optimizations . 451
14.4.1 PCM as Main Memory Architecture . 451
14.4.2 PCM/DRAM Hybrid Memory Overview. 451
14.4.3 DRAM-as-Cache Architecture . 452
14.4.4 Parallel Hybrid Architecture . 454

14.5 Conclusion . 455
References . 455

14.1 Introduction

With the continuously increasing scalability, traditional CMOS-based memories are
facing great challenges. Taking Dynamic Random-Access Memory (DRAM) as
an example, the limited scalability and large leakage power make it undesirable
for next-generation main memory. Emerging Non-Volatile Memories (NVMs)
are proposed to take this challenge in future computing systems due to several
promising advantages. First, NVMs have high scalability. For example, Phase
Change Memory (PCM), a representative NVM, has been demonstrated in a 20 nm
device prototype and is projected to scale to 9 nm, while manufacturable solutions
for scaling DRAM beyond 40 nm are unknown [1, 22, 44]. Second, NVMs have
a much larger storage density. In addition to scalability, the feasibility of storing
multiple bits in one NVM cell further enlarges the density. Third, NVMs are
nonvolatile, indicating that data will not be lost even the memory is out of power
supply.

However, NVMs are commonly associated with large programming cost and
possible endurance issues. As a result, new management and optimization policies
should be proposed to efficiently utilize NVMs in computer and embedded systems.
These policies should fully exploit the physical characteristics of NVMs, which are
significantly different from volatile memories, and also tune their behaviors to fit
into the memory hierarchy.

14 Emerging and Nonvolatile Memory 445

14.2 Classification of Emerging Nonvolatile Memories

Emerging nonvolatile memory includes Spin-Transfer Torque Random-Access
Memory (STT-RAM), Resistive Random-Access Memory (RRAM), Domain Wall
Memory (DWM), Ferro-electric Random-Access Memory (FeRAM), PCM, and so
on. Various technologies differ in cell size, endurance, access speed, leakage, and
dynamic power, making them fit different levels in memory hierarchy. The detailed
characteristics are summarized in Table 14.1. In the following, the specific physical
rationality of each representative NVM is introduced.

14.2.1 Spin-Transfer Torque Random-Access Memory

The information carrier of STT-RAM is a Magnetic Tunnel Junction (MTJ) [74].
Each MTJ contains two ferromagnetic layers and one tunnel barrier layer. One
of the ferromagnetic layers (reference layer) has fixed magnetic direction, while
the other one (free layer) can change its magnetic direction by an external
electromagnetic field or a spin-transfer torque. If the two ferromagnetic layers
have different directions, the MTJ resistance is high, indicating a “1” state; if the
two layers have the same direction, the MTJ resistance is low, indicating a “0”
state. The STT-RAM cell structure is composed of one Negative-type Metal-Oxide-
Semiconductor (NMOS) transistor as the access device and one MTJ as the storage
element, as shown in Fig. 14.1. The MTJ is connected in series with the NMOS

Table 14.1 Characteristics of different memory technologies [13, 18, 30, 35, 58, 63, 78]

STT-RAM RRAM DWM FeRAM PCM

Cell size (F 2) 6–50 4–10 �2 �10 4–12

Write endurance 4� 1012 1011 1016 1014 108–109

Speed (R/W) Fast/slow Fast/slow Fast/slow Fast/slow Fast/very slow

Leakage power Low Low Low Low Low

Dynamic energy (R/W) Low/high Low/high Low/high Low/high Medium/high

Fig. 14.1 An illustration of a
“1T1J” STT-RAM cell [65]

446 C.J. Xue

transistor. The NMOS transistor is controlled by the wordline (WL) signal. When a
write operation happens, a large positive voltage difference is established for writing
“0”s or a large negative one for writing “1”s. The crystalline amplitude required to
ensure a successful status reversal is called the threshold current. The current is
related to the material of the tunnel barrier layer, the writing pulse duration, and the
MTJ geometry [12]. STT-RAM has been widely used for designing caches due to
its comparatively faster access and higher endurance than other types of NVM.

14.2.2 Resistive Random-Access Memory

Figure 14.2 shows the cell structure of RRAM. An RRAM with unipolar switching
uses an insulating dielectric [26]. When a sufficiently high voltage is applied, a
filament or conducting path is formed in the insulating dielectric. After this, by
applying suitable voltages, the filament may be set (which leads to a low resistance)
or reset (which leads to a high resistance) [35]. Compared to Static Random-Access
Memory (SRAM), an RRAM cache has high density, comparable read latency, and
much smaller leakage energy. However, the limitation of RRAM is its low write
endurance of 1011 [21] and high write latency and write energy. For example, a
typical 4 MB RRAM cache has a read latency of 6–8 ns and a write latency of
20–30 ns [14].

14.2.3 Domain Wall Memory

DWM works by controlling domain wall (DW) motion in ferromagnetic nanowires
[58]. The ferromagnetic wire can have multiple domains which are separated by
domain walls. These domains can be individually programmed to store a single bit
(in the form of a magnetization direction), and thus, DWM can store multiple bits
per memory cell. Logically, a DWM macro-cell appears as a tape, which stores
multiple bits and can be shifted in either direction, as shown in Fig. 14.3. The
challenge in using DWM is that the time consumed in accessing a bit depends on its
location relative to the access port, which leads to nonuniform access latency and

BL

WL

SLResistance
changing
element Upper electrode

Tantalum oxide

Lower electrode

Fig. 14.2 The cell structure of RRAM [2]

14 Emerging and Nonvolatile Memory 447

electron flow electron flow

current flow

domain moving direction

M M

old wall position new wall position

Fig. 14.3 The cell structure of DWM [77]

Fig. 14.4 The cell structure
of FRAM with 1T-1C
design [3]

n np

Word Line

FerroelectricFerroelectricLine
Bit Ferroelectric

makes the performance dependent on the number of shift operations required per
access. Compared to other NVMs, DWM is less mature and is still in research and
prototype phase.

14.2.4 Ferro-electric Random-Access Memory

A FeRAM cell contains materials with two stable polarization states, which can
switch from one state to another if an external strong electric field is applied [32].
Figure 14.4 shows a popular design of a ferroelectric memory cell. This 1T-1C
design uses one ferroelectric capacitor to store the information [10]. When we need
to read a specific ferroelectric capacitor in a 1T-1C cell, a poled reference cell is
used. By measuring the voltage/current between the capacitor and the reference
cell, the stored value can be determined. The superiority of FeRAM includes
nearly unlimited operation cycles, ultrashort access time and easy integration to
Complementary Metal-Oxide-Semiconductor (CMOS) technology.

14.2.5 Phase Change Memory

Figure 14.5 shows the schematic of PCM memory array and cells. PCM exploits
the large resistance contrast between amorphous and crystalline states in the
chalcogenide alloy (GST) material. The amorphous phase tends to have high
electrical resistivity, while the crystalline phase exhibits a low resistivity, sometimes

448 C.J. Xue

Fig. 14.5 The cell structure
of PCM [37]

three or four orders of magnitude lower [44]. The amorphous and crystalline states
can be transferred to each other by programming the cell into high/low resistance
levels, achieved by heating the PCM cell to be with various amorphous-GST and
crystalline-GST portions.

14.3 On-Chip Memory and Optimizations

In this section, the utilization of NVM as on-chip memory is summarized. First,
the optimizations of on-chip caches using NVM are discussed, and then the on-chip
memory for embedded systems are explored in the context of NVM.

SRAM, which has been typically used as on-chip cache, faces the problems of
large leakage power and limited scalability. It is reported that, with ever-increasing
required cache size, cache will occupy 90% of the chip area with tremendous
fraction of chip power in future CMOS generations if consisted of SRAM [46].
Thus NVMs such as STT-RAM, RRAM, and DWM are proposed to serve as on-
chip caches [35]. The write speed of NVM should be optimized when it is applied
as L1 cache; the density and access energy are more important when it is used
for L2 or lower-level caches [17]. Motivated by these requirements, researches
have been conducted to build appropriate cache architecture, develop NVM-oriented
optimizations, and revisit cache management policies to achieve high-performance
low-power and dense on-chip caches.

14.3.1 STT-RAM as On-Chip Cache

STT-RAM is the mostly recommended alternative of traditional SRAM. The
challenges to apply STT-RAM lie in its high programming cost and endurance. In
this section, optimizations for access efficiency, endurance, as well as density are
summarized.

14 Emerging and Nonvolatile Memory 449

14.3.1.1 Optimizations for Access Efficiency
Many researches focus on the latency and energy reduction of write operations in
STT-RAM.

The nonvolatility of STT-RAM cells can be relaxed by cutting the planar
area [52] or reducing the number of programming cycles [19, 28], by which the
writes can be faster and energy efficient, however, with a shorter data retention
time. The retention time should be guaranteed to be smaller than inter-write time;
otherwise, additional refreshes are necessary [55]. STT-RAM cell sizing is studied
for the impact on overall computing system performance, showing that different
computing workloads may have conflicting expectations on memory cell sizing
[64]. Leveraging MTJ device switching characteristics, the authors further propose
an STT-RAM architecture design method that can make STT-RAM cache with
relatively small memory cell size perform well over a wide spectrum of computing
benchmarks [64]. Early write termination is proposed to save programming energy
by terminating write operations once it confirmed that the data to write are the
same with the old values [76]. Instead of read-before-write, this strategy senses
the old data during the write process and thus does not induce latency overhead.
Based on the observation that a large fraction of data written to L2 cache are
“all-zero-data,” flags are employed to label these words to avoid being written
and read [20]. Accurate data can be constructed by unlabeled words and zero
flags.

In hybrid caches consisting of both SRAM and STT-RAM, cache partitioning
is explored in [49] to determine the amount of SRAM and STT-RAM ways by
exploiting the performance advantage of SRAM and high density of STT-RAM.
A dynamic reconfiguration scheme which determines the portion of SRAM and
STT-RAM is proposed in [7] for access energy saving. Data migrations aiming to
minimize the number of writes to STT-RAM can reduce the cache energy [40].

14.3.1.2 Optimizations for Endurance
Wear leveling in STT-RAM aims to balance the number of writes across different
physical regions so that the cache endurance can be prolonged. The basic idea is to
swap write-intensive regions with those rarely written ones. Wear leveling can be
conducted with various granularites. A concept of cache color containing a number
of sets is developed as the granularity for data swapping in [50]. The mapping
between physical regions and cache colors is periodically remapped, with the
objective of mapping the mostly written region to cache colors with the least number
of writes. In a set-level wear leveling [6], cache sets are reorganized through XOR
operation between changing remap register and set indexes in order to balance writes
across cache sets. As an intra-set weal leveling, WriteSmoothing [36] logically
divides the cache sets into multiple modules. For each module, it collectively records
number of writes in each way for any of the sets. WriteSmoothing then periodically
makes most frequently written ways in a module unavailable to shift the write
pressure to other ways in the sets of the module. A coding scheme for STT-RAM
last-level cache is proposed based on the concept of value locality in [67]. The

450 C.J. Xue

switching probability in cache can be reduced by swapping common patterns with
limited weight codes to make writes less often as well as more uniform. This belongs
to bit-level wear leveling.

In hybrid caches consisting of both SRAM and STT-RAM, similar wear leveling
strategies can be modified and applied to balance writes among the whole cache
space, such as data swapping between SRAM and STT-RAM [27,30]. Prementioned
early write termination [76], write mode selection [19, 28], and write reductions
[5, 20, 45] also benefit the cache endurance.

14.3.1.3 Optimizations for Density
Three-dimensional die stacking increases transistor density by vertically integrating
multiple dies with a high-bandwidth, high-speed, and low-power interface [35].
Using 3D die stacking, dies of even different types can be stacked. Several
researchers discuss 3D stacking of NVM caches [30, 49, 53, 54, 63]. For exam-
ple, an STT-RAM cache and CMP logic can be designed as two separate dies
and stacked together in a vertical manner [53]. One benefit of this is that the
magnetic-related fabrication process of STT-RAM may not affect the normal
CMOS logic fabrication. Three-dimensional stacking also enables shorter global
interconnect, lower interconnect power consumption, and smaller footprint [35].
Cell sizing can also potentially improve the cache density by shrinking STT-RAM
cells.

14.3.2 Other NVMs as On-Chip Memory

RRAM and DWM can also be applied as on-chip caches. Compared with
STT-RAM, the endurance of RRAM is more serious based on the report that
RRAM can withstand 1011 writes while STT-RAM can withstand 4 � 1012. Thus
there are researches focusing on the endurance enhancement of RRAM at the levels
of both inter-set and intra-set [34, 61]. Since DMW exploits the shift of access port
to access data, the optimizations of DMW include hiding the shifting time [60] and
reduce the shift cost [56, 59].

NVMs can also be used in embedded systems as on-chip memory, such as
nonvolatile flip-flops [62], Flash, and FeRAM [4]. A novel usage of NVM in
embedded systems is to back up volatile program execution states upon power
failures, so that it can be resumed after being recharged. In this scenario, the
backup efficiency directly affects system performance and energy consumption.
Nonvolatile flip-flops are connected to each volatile cell for efficient backup in
[62], which is suitable for registers. Contents to back up can be reduced to achieve
high performance and energy efficiency [29, 73]. Hybrid on-chip memory with
Flash and FeRAM leads to a promising tradeoff between system performance and
price [4].

14 Emerging and Nonvolatile Memory 451

14.4 Hybrid Main Memory and Optimizations

In this section, the utilization of hybrid PCM/DRAM as main memory is sum-
marized. Firstly, the architecture of pure-PCM working as the main memory is
developed by a few works. Then the hybrid DRAM/PCM memory architecture
overview is presented. Next, we summarize the research works on two different
hybrid architectures.

14.4.1 PCM as Main Memory Architecture

As emerging nonvolatile memory technologies, several researches have tried to
replace DRAM with nonvolatile memory like PCM, as a candidate of the main
memory. The work [23, 75] firstly developed the architecture-level studies on using
PCM to implement main memory. [23] proposed to use narrow rows and multiple
buffers to improve write coalescing and perform partial writes. [75] took advantage
of redundant bit writes to eliminate unnecessary writes to PCM and perform
dynamic memory mapping at memory controller to achieve wear-out leveling.

Based on the proposed architecture, some works have been proposed to address
different issues of PCM when working as the memory, including improving
endurance [23, 41, 42, 75], improving write latency by reducing the writes of bits
to PCM [8, 15, 23, 66, 70, 72, 75], and preventing malicious wear-outs [48].

However, pure PCM-based main memory has many challenging issues such as
slow latency and limited endurance to be used as the main memory. To overcome
these limitations, the hybrid main memory is proposed instead, which is constructed
using both PCM and DRAM. The following sections introduce the hybrid memory
architecture and summarize the techniques used in the hybrid memory.

14.4.2 PCM/DRAM Hybrid Memory Overview

In the hybrid PCM and DRAM memory, the DRAM can help improve the slow
write performance of PCM and also increases the lifetime of PCM by “absorbing”
the write-intensive operations to PCM. As shown in Fig. 14.6, two different
architectures have been proposed for the hybrid memory system. For the first
architecture, as depicted in Fig. 14.6a, DRAM is regarded as an upper-level cache
to the main memory, which only consists of PCM, to combine the short latency of
DRAM with large capacity of PCM. When a memory access happens, the DRAM
cache is checked firstly, and the PCM will be accessed only under the cache miss.
In this architecture, the DRAM cache is invisible to the operating system. All the
operations to the DRAM cache are managed by the memory controller. Qureshi
et al. [42] showed that a small DRAM cache, which is 3% size of the PCM storage,
can make up the latency gap between DRAM and PCM.

452 C.J. Xue

Fig. 14.6 Hybrid memory
architectures consisting of
both PCM and DRAM [25].
(a) DRAM-as-cache hybrid
architecture. (b) Parallel
hybrid memory architecture

In the second memory architecture, as shown in Fig. 14.6b, both of PCM and
DRAM memory are directly connected to memory controller in parallel with each
other and thus share the single memory physical space. The operating system
can determine the page allocation and memory management strategy to improve
the performance, energy saving, and endurance. Dhiman et al. [11] proposed the
write-frequency-guided page placement policy to perform uniform wear leveling
across all PCM pages, while migrating write-intensive pages to DRAM to improve
performance.

In the following sections, we summarize the research works about the hybrid
DRAM and PCM memory system.

14.4.3 DRAM-as-Cache Architecture

In the DRAM-as-Cache architecture, DRAM works as a cache to serve the memory
requests at low latency with low energy cost and high endurance. On the other hand,
PCM works as a large background main memory to exploit low standby power as
well as the low costs, but the write operations should be reduced because of the
limited endurance and high write latency. The key challenge in the design of such
a hybrid memory system lies in the following aspects: what is the caching/paging
scheme to the DRAM-PCM architecture, in terms of different objectives, including
power, performance, capacity, endurance, etc., and what data should be cached in
DRAM to best exploit the advantages and overcome the disadvantages of hybrid
system.

14.4.3.1 Caching/Paging Schemes to the Hybrid Architecture
A series of works have proposed different caching/paging schemes to the hybrid
architecture to minimize the write operations in PCM for the benefits of both PCM
endurance and performance and reduce the refreshes of DRAM to explore further
energy saving.

Qureshi et al. [42] firstly proposed to increase the size of main memory by using
PCM as main memory and using DRAM as a cache to PCM. They developed the

14 Emerging and Nonvolatile Memory 453

Lazy-Write scheme based on the proposed memory model to minimize the write
operations to PCM by only writing the pages fetched from hard disk to DRAM
cache. Intra-page wear leveling is also applied in PCM to swap cache lines to
achieve uniform writing of lines within pages to further improve the endurance.
Experimental results show that the hybrid memory can improve 3� latency and
reduce 5� page faults because of the increase in main memory size, compared to
the pure-DRAM memory and achieve 3� endurance improvement compared to the
pure-PCM memory.

Ferreira et al. [15] proposed write-back minimization scheme with new cache
replacement policies and PCM-aware swap algorithm for wear leveling, while
avoiding unnecessary writes. Zhang and Li [71] employed the PCM to implement
the 3D-stacked memory systems to exploit the low standby power feature of PCM
and proposed an OS-level paging scheme that takes into account the memory
reference characteristics and migrated the hot-modified pages from PCM to DRAM.
In this way, the lifetime degradation of PCM is alleviated, and the energy efficiency
of the memory system is also improved.

To reduce the energy consumption of the hybrid system, Park et al. [38] proposed
to decay the contents in DRAM. In this way, the clean, old data in DRAM are
evicted, while the dirty data are written back to PCM and then evicted. Thus the
evicted rows do not need refresh operations, and the energy consumption of the
hybrid memory can be reduced compared to the DRAM-only memory. A long-term
dirty data write-back scheme is further developed to minimize the PCM writes.

14.4.3.2 What Data Should Be Cached in DRAM
The work in [68, 69] mainly proposed an answer to the question “what data should
be placed in DRAM cache.” Yoon et al. observed that PCM and DRAM have the
same latency to access their row buffers, while the write latency is much higher in
PCM than in DRAM when accessing the content which is not stored in the row
buffer. For the sake of performance and PCM endurance, the access to PCM when
the row buffer miss happens should be avoided. With this observation, Yoon et al.
proposed to put those rows of data that are likely to miss in the row buffer and
also likely to be reused in DRAM cache. Further, their technique uses a caching
policy such that the pages that are written frequently are more likely to stay in
DRAM.

Meza et al. [33] propose a technique for efficiently storing and managing the
metadata (such as tag, replacement-policy information, valid, and dirty bits) for data
in a DRAM cache at a fine granularity. They observed that in DRAM cache storing
metadata in the same row as their data can exploit DRAM row buffer locality, and it
also reduces the access latency from two row buffer conflicts (one for the metadata
and another for the datum itself). Based on this observation, they proposed to put
the metadata for recently accessed rows in a small row buffer to the DRAM cache.
Since metadata needed for data with temporal or spatial locality is cached on chip,
it can be accessed with the similar latency as an SRAM tag store, while providing
better energy efficiency than using a large SRAM tag store.

454 C.J. Xue

14.4.4 Parallel Hybrid Architecture

In the parallel hybrid architecture, both DRAM and PCM are used as the main
memory. This architecture reduces the power budget because large portion of main
memory is replaced by PCM.

In the hybrid memory, write-intensive accesses to PCM should be minimized due
to its high write latency and lifetime limitation. Several works proposed to migrate
write-intensive data/pages from PCM to DRAM to reduce the write accesses to
PCM.

Dhiman et al. [11] proposed a hybrid main memory system that exposes both
DRAM and PCM to software (operating system). If the number of writes to a
particular PCM page exceeds a certain threshold, the contents of the page are copied
to another page (either in DRAM or PCM), thus facilitating PCM wear leveling,
while movement of hot pages to DRAM leads to saving of energy due to faster and
more energy-efficient DRAM accesses.

Work in [43] suggested a management policy that monitors program access
patterns and migrates hot pages to DRAM while keeping cold pages in PCM.
In this way, the write-intensive operations are avoided, and thus the performance
and energy saving are improved. Park et al. [39] proposed the main memory
management mechanism of the operating system for the hybrid main memory.
They proposed the migration scheme using access bits and power-off technique of
DRAM chunk to mitigate background power consumption. Seok et al. [47] proposed
a migration-based page caching technique for PCM-DRAM hybrid main memory
system. Their technique aims to overcome the problem of the long latency and
low endurance of PCM. For this, read-bound access pages are kept in PCM, and
write-bound access pages are kept in DRAM. Their technique uses separate read
and write queues for both PCM and DRAM and uses page monitoring to make
migration decisions. Write-bound pages are migrated from PCM to DRAM, and
read-bound pages are migrated from DRAM to PCM. The decision to migrate is
taken as follows: when a write access is hit and the accessed page is in PCM write
queue, it is migrated. Similarly, if a read access is hit and the accessed page is in the
DRAM read queue, it is migrated.

Dynamically migrating data between DRAM and PCM can reduce the writes to
PCM, but will bring energy cost and performance delay to the system. To handle the
problem, reducing frequent page migration between PCM and DRAM is targeted at
work [51]. Shin et al. proposed to store the page information and let it be visible
to the operating system. With the information, page migration granularity can be
dynamically changed based on whether the migration of pages is heavy. Heavy
migration implies that pages which have similar access properties can be grouped
to reduce the migration frequency.

Instead of dynamically migrating data between DRAM and PCM, a series of
work [9, 16, 31] assumed that memory accessing patterns are given or can be
predicted and proposed data allocation schemes in the hybrid memory to optimize
different objectives. Choi et al. [9] developed the page-level allocation technique to

14 Emerging and Nonvolatile Memory 455

obtain the optimal performance, with well-designed proportion of DRAM’s size to
PCM’s and proportion of DRAM’s useful space to PCM’s. Lee et al. [24] proposed
a memory management algorithm which makes use of the write frequency as well
as the recency of write references to accurately estimate future write references. The
proposed scheme, which is applied on the parallel hybrid architecture, is compared
to the scheme on DRAM-as-Cache architecture and is shown to be better in memory
writes reduction. Liu et al. [31] developed variable-level partition schemes on
the hybrid main memory to achieve the tradeoff between energy consumption
and performance when the memory accesses and variables are given by the data-
flow graph. Fu et al. [16] targeted at minimizing the energy consumption of the
hybrid memory system while meeting the performance constraint and proposed a
parallelism- and proximity-based variable partitioning scheme.

For task scheduling, Tian et al. [57] present a task-scheduling-based technique
for addressing the challenges of hybrid DRAM/PCM main memory. They study
the problem of task scheduling, assuming that a task should be entirely placed in
either PCM bank or DRAM bank. Their approach works for different optimization
objectives such as (1) minimizing the energy consumption of hybrid memory for a
given PCM and DRAM size and given PCM endurance, (2) minimizing the number
of writes to PCM for a given PCM and DRAM size and given threshold on energy
consumption, and (3) minimizing PCM size for a given DRAM size, given threshold
on energy consumption and PCM endurance.

14.5 Conclusion

In this chapter, emerging and nonvolatile memories and the state-of-the-art tech-
nologies in this area are introduced. A classification of different kinds of NVMs are
firstly presented. Each NVM is introduced with a brief description to its features.
Next, based on different objectives, several optimizations for memory architecture
are introduced when NVM is working as on-chip cache and on-chip memory.
Finally, we introduce that when NVM is working as the off-chip main memory,
it is a widely used method to utilize both NVM and DRAM and combine them as a
hybrid memory system. In the hybrid main memory, DRAM can be used either as a
cache to the NVM main memory or as one of the memory partitions of the system.
For both of the hybrid architecture, we present a series of schemes for performance
and energy optimizations.

References

1. International Technology Roadmap for Semiconductors, 2007
2. https://www.semiconportal.com/en/archive/news/news-by-sin/130823-sin-panasonic-reram-

production.html
3. http://loto.sourceforge.net/feram/doc/film.xhtml#(4)
4. http://www.alldatasheet.com/datasheet-pdf/pdf/465689/TI1/MSP430.html

https://International Technology Roadmap for Semiconductors
https://www.semiconportal.com/en/archive/news/news-by-sin/130823-sin-panasonic-reram-production.html
https://www.semiconportal.com/en/archive/news/news-by-sin/130823-sin-panasonic-reram-production.html
http://loto.sourceforge.net/feram/doc/film.xhtml#(4)
http://www.alldatasheet.com/datasheet-pdf/pdf/465689/TI1/MSP430.html

456 C.J. Xue

5. Ahn J, Choi K (2012) Lower-bits cache for low power STT-RAM caches. In: International
symposium on circuits and systems (ISCAS), pp 480–483

6. Chen Y, Wong WF, Li H, Koh CK, Zhang Y, Wen W (2013) On-chip caches built on multilevel
spin-transfer torque RAM cells and its optimizations. J Emerg Technol Comput Syst 9(2):16:1–
16:22. doi:10.1145/2463585.2463592

7. Chen YT, Cong J, Huang H, Liu B, Liu C, Potkonjak M, Reinman G (2012) Dynamically
reconfigurable hybrid cache: an energy-efficient last-level cache design. In: Design, automation
test in Europe conference exhibition (DATE), pp 45–50. doi:10.1109/DATE.2012.6176431

8. Cho S, Lee H (2009) Flip-n-write: a simple deterministic technique to improve PRAM
write performance, energy and endurance. In: Proceedings of the 42nd annual IEEE/ACM
international symposium on microarchitecture, MICRO 42. ACM, pp 347–357

9. Choi JH, Kim SM, Kim C, Park KW, Park KH (2012) Opamp: evaluation framework for
optimal page allocation of hybrid main memory architecture. In: Proceedings of the 2012
IEEE 18th international conference on parallel and distributed systems, ICPADS’12. IEEE
Computer Society, pp 620–627

10. Dawber M, Rabe KM, Scott JF (2005) Physics of thin-film ferroelectric oxides. Rev Mod Phys
77:1083–1130. doi:10.1103/RevModPhys.77.1083

11. Dhiman G, Ayoub R, Rosing T (2009) PDRAM: a hybrid PRAM and DRAM main memory
system. In: Proceedings of the 46th annual design automation conference, DAC’09. ACM,
pp 664–469

12. Diao Z, Li Z, Wang S, Ding Y, Panchula A, Chen E, Wang LC, Huai Y (2007) Spin-transfer
torque switching in magnetic tunnel junctions and spin-transfer torque random access memory.
J Phys 19(16):13

13. Dong X, Wu X, Sun G, Xie Y, Li H, Chen Y (2008) Circuit and microarchitecture evaluation
of 3d stacking magnetic RAM (MRAM) as a universal memory replacement. In: Design
automation conference (DAC), pp 554–559

14. Dong X, Xu C, Xie Y, Jouppi N (2012) Nvsim: a circuit-level performance, energy, and area
model for emerging nonvolatile memory. IEEE Trans Comput-Aided Des Integr Circuits Syst
(TCAD) 31(7):994–1007

15. Ferreira AP, Zhou M, Bock S, Childers B, Melhem R, Mossé D (2010) Increasing PCM main
memory lifetime. In: Proceedings of the conference on design, automation and test in Europe,
DATE’10. European Design and Automation Association, pp 914–919

16. Fu C, Zhao M, Xue CJ, Orailoglu A (2014) Sleep-aware variable partitioning for energy-
efficient hybrid PRAM and DRAM main memory. In: Proceedings of the 2014 international
symposium on low power electronics and design, ISLPED’14. ACM, pp 75–80

17. Guo X, Ipek E, Soyata T (2010) Resistive computation: avoiding the power wall with low-
leakage, STT-MRAM based computing. In: International symposium on computer architecture
(ISCA), pp 371–382

18. Inoue IH, Yasuda S, Akinaga H, Takagi H (2008) Nonpolar resistance switching of
metal/binary-transition-metal oxides/metal sandwiches: homogeneous/inhomogeneous transi-
tion of current distribution. Phys Rev B 77:035,105. doi:10.1103/PhysRevB.77.035105

19. Jog A, Mishra AK, Xu C, Xie Y, Narayanan V, Iyer R, Das CR (2012) Cache revive:
architecting volatile STT-RAM caches for enhanced performance in CMPs. In: Design
automation conference (DAC), pp 243–252. doi:10.1145/2228360.2228406

20. Jung J, Nakata Y, Yoshimoto M, Kawaguchi H (2013) Energy-efficient spin-transfer torque
RAM cache exploiting additional all-zero-data flags. In: International symposium on quality
electronic design (ISQED), pp 216–222

21. Kim YB, Lee SR, Lee D, Lee CB, Chang M, Hur JH, Lee MJ, Park GS, Kim CJ, Chung Ui,
Yoo IK, Kim K (2011) Bi-layered RRAM with unlimited endurance and extremely uniform
switching. In: Symposium on VLSI technology (VLSIT), pp 52–53

22. Lee BC, Ipek E, Mutlu O, Burger D (2009) Architecting phase change memory as a scalable
DRAM alternative. In: Proceedings of the 36th annual international symposium on computer
architecture (ISCA), pp 2–13

http://dx.doi.org/10.1145/2463585.2463592
http://dx.doi.org/10.1109/DATE.2012.6176431
http://dx.doi.org/10.1103/RevModPhys.77.1083
http://dx.doi.org/10.1103/PhysRevB.77.035105
http://dx.doi.org/10.1145/2228360.2228406

14 Emerging and Nonvolatile Memory 457

23. Lee BC, Ipek E, Mutlu O, Burger D (2009) Architecting phase change memory as a scalable
DRAM alternative. SIGARCH Comput Archit News 37(3):2–13

24. Lee S, Bahn H, Noh SH (2011) Characterizing memory write references for effi-
cient management of hybrid PCM and DRAM memory. In: Proceedings of the
2011 IEEE 19th annual international symposium on modelling, analysis, and simulation
of computer and telecommunication systems, MASCOTS’11. IEEE Computer Society,
pp 168–175

25. Lee S, Bahn H, Noh SH (2014) Clock-dwf: a write-history-aware page replacement al-
gorithm for hybrid PCM and DRAM memory architectures. IEEE Trans Comput 63(9):
2187–2200

26. Li H, Chen Y (2009) An overview of non-volatile memory technology and the implication for
tools and architectures. In: Design, automation test in Europe conference exhibition (DATE),
pp 731–736

27. Li Q, Li J, Shi L, Xue CJ, He Y (2012) Mac: migration-aware compilation for STT-RAM based
hybrid cache in embedded systems. In: International symposium on low power electronics and
design (ISLPED), pp 351–356

28. Li Q, Li J, Shi L, Zhao M, Xue C, He Y (2014) Compiler-assisted STT-RAM-based hybrid
cache for energy efficient embedded systems. IEEE Trans Very Large Scale Integr (VLSI) Syst
22(8):1829–1840

29. Li Q, Zhao M, Hu J, Liu Y, He Y, Xue CJ (2015) Compiler directed automatic stack
trimming for efficient non-volatile processors. In: Annual design automation conference
(DAC), pp 183:1–183:6

30. Li Y, Chen Y, Jones AK (2012) A software approach for combating asymmetries of non-volatile
memories. In: International symposium on low power electronics and design (ISLPED),
pp 191–196

31. Liu T, Zhao Y, Xue CJ, Li M (2011) Power-aware variable partitioning for dsps with hybrid
PRAM and DRAM main memory. In: Proceedings of the 48th design automation conference,
DAC’11. ACM, pp 405–410

32. Liu Y, Yang H, Wang Y, Wang C, Sheng X, Li S, Zhang D, Sun Y (2014) Ferroelectric
nonvolatile processor design, optimization, and application. In: Xie Y (ed) Emerging memory
technologies. Springer New York, pp 289–322. doi:10.1007/978-1-4419-9551-3_11

33. Meza J, Chang J, Yoon H, Mutlu O, Ranganathan P (2012) Enabling efficient and scalable
hybrid memories using fine-granularity DRAM cache management. IEEE Comput Archit Lett
11(2):61–64

34. Mittal S, Vetter J, Li D (2014) Lastingnvcache: a technique for improving the lifetime of non-
volatile caches. In: IEEE computer society annual symposium on VLSI (ISVLSI), pp 534–540.
doi:10.1109/ISVLSI.2014.69

35. Mittal S, Vetter J, Li D (2015) A survey of architectural approaches for managing embedded
DRAM and non-volatile on-chip caches. IEEE Trans Parallel Distrib Syst 26(6):1524–1537

36. Mittal S, Vetter JS, Li D (2014) Writesmoothing: improving lifetime of non-volatile caches
using intra-set wear-leveling. In: Proceedings of the 24th edition of the Great Lakes symposium
on VLSI (GLSVLSI), pp 139–144

37. Papandreou N, Pozidis H, Pantazi A, Sebastian A, Breitwisch M, Lam C, Eleftheriou E
(2011) Programming algorithms for multilevel phase-change memory. In: IEEE international
symposium on circuits and systems (ISCAS), pp 329–332

38. Park H, Yoo S, Lee S (2011) Power management of hybrid DRAM/PRAM-based main
memory. In: Proceedings of the 48th design automation conference, DAC’11. ACM, pp 59–64

39. Park Y, Shin DJ, Park SK, Park KH (2011) Power-aware memory management for hybrid main
memory. In: 2011 The 2nd international conference on next generation information technology
(ICNIT), pp 82–85

40. Quan B, Zhang T, Chen T, Wu J (2012) Prediction table based management policy for STT-
RAM and SRAM hybrid cache. In: International conference on computing and convergence
technology (ICCCT), pp 1092–1097

http://dx.doi.org/10.1007/978-1-4419-9551-3_11
http://dx.doi.org/10.1109/ISVLSI.2014.69

458 C.J. Xue

41. Qureshi MK, Karidis J, Franceschini M, Srinivasan V, Lastras L, Abali B (2009) Enhancing
lifetime and security of PCM-based main memory with start-gap wear leveling. In: Proceedings
of the 42nd annual IEEE/ACM international symposium on microarchitecture, MICRO 42.
ACM, pp 14–23

42. Qureshi MK, Srinivasan V, Rivers JA (2009) Scalable high performance main memory system
using phase-change memory technology. In: Proceedings of the 36th annual international
symposium on computer architecture, ISCA’09. ACM, pp 24–33

43. Ramos LE, Gorbatov E, Bianchini R (2011) Page placement in hybrid memory systems. In:
Proceedings of the international conference on supercomputing, ICS’11. ACM, pp 85–95

44. Raoux S, Burr G, Breitwisch M, Rettner C, Chen Y, Shelby R, Salinga M, Krebs D, Chen SH,
Lung H, Lam C (2008) Phase-change random access memory: a scalable technology. IBM J
Res Dev 52(4.5):465–479. doi:10.1147/rd.524.0465

45. Rasquinha M, Choudhary D, Chatterjee S, Mukhopadhyay S, Yalamanchili S (2010) An energy
efficient cache design using spin torque transfer (STT) RAM. In: International symposium on
low power electronics and design (ISLPED), pp 389–394

46. Rogers BM, Krishna A, Bell GB, Vu K, Jiang X, Solihin Y (2009) Scaling the bandwidth
wall: challenges in and avenues for CMP scaling. In: International symposium on computer
architecture (ISCA), pp 371–382

47. Seok H, Park Y, Park KH (2011) Migration based page caching algorithm for a hybrid main
memory of DRAM and PRAM. In: Proceedings of the 2011 ACM symposium on applied
computing, SAC’11. ACM, pp 595–599

48. Seong NH, Woo DH, Lee HHS (2010) Security refresh: prevent malicious wear-out and
increase durability for phase-change memory with dynamically randomized address mapping.
SIGARCH Comput Archit News 38(3):383–394

49. Sharifi A, Kandemir M (2011) Automatic feedback control of shared hybrid caches in 3D
chip multiprocessors. In: International conference on parallel, distributed and network-based
processing (PDP), pp 393–400

50. Sharifi A, Kandemir M (2013) Using cache-coloring to mitigate inter-set write variation in
non-volatile caches. In: Iowa State University, Ames, Technical report

51. Shin DJ, Park SK, Kim SM, Park KH (2012) Adaptive page grouping for energy efficiency in
hybrid PRAM-DRAM main memory. In: Proceedings of the 2012 ACM research in applied
computation symposium, RACS’12. ACM, pp 395–402

52. Smullen C, Mohan V, Nigam A, Gurumurthi S, Stan M (2011) Relaxing non-volatility for
fast and energy-efficient STT-RAM caches. In: International symposium on high performance
computer architecture (HPCA), pp 50–61

53. Sun G, Dong X, Xie Y, Li J, Chen Y (2009) A novel architecture of the 3D stacked MRAM
l2 cache for CMPS. In: International symposium on high performance computer architecture
(HPCA), pp 239–249

54. Sun G, Kursun E, Rivers JA, Xie Y (2013) Exploring the vulnerability of CMPS to soft
errors with 3D stacked nonvolatile memory. J Emerg Technol Comput Syst 9(3):22:1–22:22.
doi:10.1145/2491679

55. Sun Z, Bi X, Li HH, Wong WF, Ong ZL, Zhu X, Wu W (2011) Multi retention level
STT-RAM cache designs with a dynamic refresh scheme. In: International symposium on
microarchitecture (MICRO), pp 329–338

56. Sun Z, Wu W, Li H (2013) Cross-layer racetrack memory design for ultra high density and low
power consumption. In: Design automation conference (DAC), pp 1–6

57. Tian W, Zhao Y, Shi L, Li Q, Li J, Xue CJ, Li M, Chen E (2013) Task allocation on nonvolatile-
memory-based hybrid main memory. IEEE Trans Very Large Scale Integr Syst 21(7):
1271–1284

58. Venkatesan R, Kozhikkottu V, Augustine C, Raychowdhury A, Roy K, Raghunathan A
(2012) Tapecache: a high density, energy efficient cache based on domain wall memory. In:
International symposium on low power electronics and design (ISLPED), pp 185–190

59. Venkatesan R, Kozhikkottu V, Augustine C, Raychowdhury A, Roy K, Raghunathan A
(2012) Tapecache: a high density, energy efficient cache based on domain wall memory. In:
International symposium on low power electronics and design (ISLPED), pp 185–190

http://dx.doi.org/10.1147/rd.524.0465
http://dx.doi.org/10.1145/2491679

14 Emerging and Nonvolatile Memory 459

60. Venkatesan R, Sharad M, Roy K, Raghunathan A (2013) DWM-tapestri – an energy efficient
all-spin cache using domain wall shift based writes. In: Design, automation & test in Europe
conference & exhibition (DATE), pp 1825–1830

61. Wang J, Dong X, Xie Y, Jouppi N (2013) i2wap: improving non-volatile cache lifetime by
reducing inter- and intra-set write variations. In: International symposium on high performance
computer architecture (HPCA2013), pp 234–245. doi:10.1109/HPCA.2013.6522322

62. Wang Y, Liu Y, Li S, Zhang D, Zhao B, Chiang MF, Yan Y, Sai B, Yang H (2012) A 3us
wake-up time nonvolatile processor based on ferroelectric flip-flops. In: Proceedings of the
ESSCIRC (ESSCIRC), pp 149–152

63. Wu X, Li J, Zhang L, Speight E, Rajamony R, Xie Y (2009) Hybrid cache architecture with
disparate memory technologies. In: Proceedings of the 36th annual international symposium
on computer architecture (ISCA), pp 34–45

64. Xu W, Sun H, Wang X, Chen Y, Zhang T (2011) Design of last-level on-chip cache using
spin-torque transfer RAM (STT RAM). IEEE Trans Very Large Scale Integr (VLSI) Syst
19(3):483–493

65. Xue CJ, Zhang Y, Chen Y, Sun G, Yang JJ, Li H (2011) Emerging non-volatile memories: op-
portunities and challenges. In: Proceedings of international conference on hardware/software
codesign and system synthesis (CODES+ISSS), pp 325–334

66. Yang BD, Lee JE, Kim JS, Cho J, Lee SY, gon Yu B (2007) A low power phase-change random
access memory using a data-comparison write scheme. In: IEEE international symposium on
circuits and systems, ISCAS’07, pp 3014–3017

67. Yazdanshenas S, Pirbasti M, Fazeli M, Patooghy A (2014) Coding last level STT-RAM cache
for high endurance and low power. Comput Archit Lett 13(2):73–76

68. Yoon H (2012) Row buffer locality aware caching policies for hybrid memories. In:
Proceedings of the 2012 IEEE 30th international conference on computer design, ICCD’12.
IEEE Computer Society, pp 337–344

69. Yoon H, Meza J, Harding R, Ausavarungnirun R, Mutlu O (2011) Dynrbla: a high-performance
and energy-efficient row buffer locality-aware caching policy for hybrid memories. SAFARI
Technical Report No. 2011–005

70. Yun J, Lee S, Yoo S (2012) Bloom filter-based dynamic wear leveling for phase-change RAM.
In: Proceedings of the conference on design, automation and test in Europe, DATE’12. EDA
Consortium, pp 1513–1518

71. Zhang W, Li T (2009) Exploring phase change memory and 3D die-stacking for power/thermal
friendly, fast and durable memory architectures. In: Proceedings of the 2009 18th international
conference on parallel architectures and compilation techniques, PACT’09. IEEE Computer
Society, pp 101–112

72. Zhao M, Jiang L, Shi L, Zhang Y, Xue C (2015) Wear relief for high-density phase change
memory through cell morphing considering process variation. IEEE Trans Comput-Aided Des
Integr Circuits Syst 34(2):227–237

73. Zhao M, Li Q, Xie M, Liu Y, Hu J, Xue CJ (2015) Software assisted non-volatile register
reduction for energy harvesting based cyber-physical system. In: Design, automation & test in
Europe conference & exhibition (DATE), pp 567–572

74. Zhao W, Belhaire E, Mistral Q, Chappert C, Javerliac V, Dieny B, Nicolle E (2006) Macro-
model of spin-transfer torque based magnetic tunnel junction device for hybrid magnetic-cmos
design. In: IEEE international behavioral modeling and simulation workshop, pp 40–43

75. Zhou P, Zhao B, Yang J, Zhang Y (2009) A durable and energy efficient main memory using
phase change memory technology. SIGARCH Comput Archit News 37(3):14–23

76. Zhou P, Zhao B, Yang J, Zhang Y (2009) Energy reduction for STT-RAM using early write
termination. In: International conference on computer-aided design (ICCAD), pp 264–268

77. Zhu JG (2008) Magnetoresistive random access memory: the path to competitiveness and
scalability. Proc IEEE 96(11):1786–1798. doi:10.1109/JPROC.2008.2004313

78. Zwerg M, Baumann A, Kuhn R, Arnold M, Nerlich R, Herzog M, Ledwa R, Sichert C, Rzehak
V, Thanigai P, Eversmann BO (2011) An 82�A/MHz microcontroller with embedded feram
for energy-harvesting applications. In: International solid-state circuits conference (ISSCC),
pp 334–336

http://dx.doi.org/10.1109/HPCA.2013.6522322
http://dx.doi.org/10.1109/JPROC.2008.2004313

15Network-on-Chip Design

Haseeb Bokhari and Sri Parameswaran

Abstract

Continuous transistor scaling has enabled computer architecture to integrate
increasing numbers of cores on a chip. As the number of cores on a chip and
application complexity has increased, the on-chip communication bandwidth
requirement increased as well. Packet-switched network on chip (NoC) is
envisioned as a scalable and cost-effective communication fabric for multi-core
architectures with tens and hundreds of cores. In this chapter we focus on on-chip
communication architecture design and introduce the reader to some essential
concepts of NoC architecture. This is followed by a discussion on the commonly
used power-saving techniques used for NoCs and the drawbacks and limitations
of these techniques. We then concentrate on performance optimization through
intelligent mapping of applications on multi-core architectures. We conclude the
chapter with a discussion of various application-specific on-chip interconnect
design methods.

Acronyms

CMOS Complementary Metal-Oxide-Semiconductor
CMP Chip Multi-Processor
DOR Dimension Ordered Routing
DRAM Dynamic Random-Access Memory
DVFS Dynamic Voltage and Frequency Scaling
IP Intellectual Property
MPSoC Multi-Processor System-on-Chip
NI Network Interface
NoC Network-on-Chip
SoC System-on-Chip
TDMA Time-Division Multiple Access

H. Bokhari (�) • S. Parameswaran
University of New South Wales (UNSW), Sydney, NSW, Australia
e-mail: hbokhari@cse.unsw.edu.au; sridevan@cse.unsw.edu.au

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_16

461

mailto:hbokhari@cse.unsw.edu.au
mailto:sridevan@cse.unsw.edu.au

462 H. Bokhari and S. Parameswaran

Contents

15.1 On-Chip Interconnect Architecture . 462
15.1.1 Bus-Based SoC Architectures . 464
15.1.2 Crossbar-on-Chip Interconnect . 465
15.1.3 Network-on-Chip Interconnect . 466

15.2 Defining Features of Network on Chip . 467
15.2.1 Topology . 467
15.2.2 Routing . 470
15.2.3 Flow Control . 471
15.2.4 Router Microarchitecture . 471
15.2.5 Network Interface . 473
15.2.6 Performance Metrics . 475

15.3 Overview of Recent Academic and Commercial NoCs . 476
15.4 NoC Power Optimization . 477
15.5 Communication-Aware Mapping . 479
15.6 Application-Specific Communication Architecture . 480
15.7 Conclusion . 483
References . 483

15.1 On-Chip Interconnect Architecture

Every multi-core chip has two major on-chip components: processing elements
(core) and other non-processing elements such as communication and memory
architecture (uncore) [27]. Although high transistor density enables computer archi-
tects to integrate tens to hundreds of cores in a chip, the main challenge is to enable
efficient communication between such a large number of on-chip components. The
on-chip communication architecture is responsible for all memory transactions and
I/O traffic and provides a dependable medium for inter-processor data sharing.
The performance of on-chip communication plays a pivotal role in the overall
performance of the multi-core architecture. The advantage of having multiple high-
performance on-chip processors can easily be overturned by an underperforming
on-chip communication medium. Hence, providing a scalable and high-performance
on-chip communication is a key research area for multi-core architecture
designers [17]. The main challenges faced by interconnect designers are:

• Scalable communication for tens of cores: It is fair to state that the performance of
processing elements in multi-core chips can be communication constrained [17].
Due to ever-increasing improvement in processing capabilities, it is quite pos-
sible to have a wide gap between the data communication rate and the data
consumption rate. With tens of on-chip components, it is not possible to have
single-cycle communication latency between components placed at the far ends
of a chip. Furthermore, with a large number of on-chip components, the on-chip
interconnect is expected to support multiple parallel communication streams.

• Limited power budget: In 1974, Dennard predicted that the power density of
transistor will remain constant as we move into lower node sizes. This is known
as Dennard’s scaling law [37]. However, in the last decade or so, researchers

15 Network-on-Chip Design 463

have observed that the transistor’s power cannot be reduced at the same rate as
the area. Therefore, we are facing a situation where we have an abundance of
on-chip transistors but do not have enough power to switch all these transistor at
the same time, due to power and thermal constraints. Therefore, increasing the
power efficiency of all on-chip components has become the main prerequisite to
continue Moore’s scaling. The on-chip communication architecture can consume
roughly 19% of total chip power in a modern multi-core chip [35]. Therefore, it
is a challenging task to design a power-efficient on-chip interconnect that can still
satisfy the latency and bandwidth requirements of current and future applications.

• Heterogeneous applications: A modern multi-core chip is expected to exe-
cute a large set of diverse applications. Each application can interact with
computing architecture in a unique way; hence, the communication latency
and bandwidth requirement can vary across different applications [32]. For
example, an application with a large memory footprint is expected to regularly
generate cache misses and can hence be classified as a communication-bound
application. The performance of such applications is highly correlated with the
efficiency of interconnect. On the other hand, an application with a smaller
memory footprint is expected to be processor bound and agnostic to on-chip
interconnect properties. Therefore, on-chip interconnects are often designed for
worst-case scenarios (memory-bound applications in this case) and can therefore
be inefficient for processor-bound applications. The situation is aggravated when
both memory- and processor-bound applications are executed at the same time.

• Selecting interconnect performance metrics: A major shortcoming in previ-
ous research is classifying the on-chip interconnect performance in terms of
application-agnostic metrics such as transaction latency and memory bandwidth,
instead of application-level performance metrics such as execution time and
throughout [31, 70]. Therefore a major challenge is extracting the correct metric
to evaluate different possible interconnect architecture design points for a given
set of applications.

• Chip design cost: The cost of designing a multi-core chip has been increasing
alarmingly due to high NRE cost (NRE Cost: Nonrecurring engineering cost.
The term is used to classify the cost associated with researching, prototyping,
and testing a new product.) associated with small node sizes. A major portion of
total chip cost is reserved for design verification and testing. Therefore, designers
are expected to reuse previously designed and verified on-chip interconnects for
new chip designs to reduce cost. With a multitude of interconnect architectures
available, it is important to incorporate time-efficient design space exploration
tools in research phase to select the most suitable interconnect for a given set of
target applications.

• Interconnect reliability: With reducing node size, the concerns about the relia-
bility of the digital circuits are on the rise. Any unexpected change in operating
conditions such as supply voltage fluctuation, temperature spikes, or a random
alpha particle collision can cause erratic behavior in the output of a circuit. A
soft error in on-chip interconnect can result in erroneous application output or
system deadlock if the control data is corrupted. Multi-core systems are finding

464 H. Bokhari and S. Parameswaran

their ways into reliability-critical applications such as autonomous driving cars
and medical equipment. Therefore designers are expected to integrate varying
levels of reliability features in on-chip interconnect under given power and area
constraints.

• Codesign of memory hierarchy and on-chip interconnect: In modern multi-
core architectures, on-chip memory hierarchy is closely coupled with on-chip
interconnect architecture. In fact, for shared memory architectures, on-chip
communication is the major factor in deciding the performance of memory
hierarchy (cache, Dynamic Random-Access Memory (DRAM) controllers, etc.).
Therefore interconnect designers are often faced with the challenge of exploring
the combined design space of memory hierarchy and on-chip interconnect.

15.1.1 Bus-Based SoC Architectures

Traditionally, system-on-chip (SoC) designs used a very simple on-chip intercon-
nect such as ad hoc point-to-point connections or buses. The bus-based architecture
is perhaps the oldest on-chip interconnect standard in the computer industry and
is still used in many System-on-Chip (SoC) applications [87]. The simplicity of
protocol and hence low gate cost are possibly the main reasons that bus-based
architectures have dominated all other available on-chip interconnect options. For
a small number of on-chip components, bus interconnect is easier to integrate
due to simple protocol design and is efficient in terms of both power and silicon
cost. In bus-based architectures, multiple components interact using a single data
and control bus, hence providing a simple master-slave connection. Arbitration is
required when multiple masters try to communicate with a single slave, giving rise
to resource contention. Hence the scalability of bus-based architecture in terms
of performance is questionable in large SoC-based designs [61]. Some classic
design techniques for bus-based SoCs proposed in [34, 41] use worst-case bus
traffic to design optimal architecture. Kumar et al. [57] have given a detailed
study of the scalability and performance of shared bus-based Chip Multi-Processor
(CMP) architectures. They concluded that a bus-based interconnect network can
significantly affect the performance of cache-coherent CMPs.

Several improvements to traditional bus-based interconnect architectures have
been proposed. ARM Ltd., AMBA Architecture [1], IBM CoreConnect Archi-
tecture [3], and Tensilica PIF Interface [5] are few examples of the widely used
advanced bus-based communication medium. All of these architectures provide
several advanced functionalities like burst-based data transfers, multi-master arbitra-
tion, multiple outstanding transactions, bus locking, and simultaneous asynchronous
and synchronous communication. However, Rashid et al. [91] have analytically
showed that even advanced bus-based architectures like AMBA are outperformed
by modern Network-on-Chip (NoC)-based communication architectures in terms of
performance. However, the same study shows that designers are still inclined toward
AMBA-based on-chip interconnects due to the area and energy overhead of modern
NoC designs. SoC designers have a keen interest in fair comparison of various

15 Network-on-Chip Design 465

Fig. 15.1 Evolution of on-chip interconnect

commercial bus architectures; however, the performance of on-chip interconnects
greatly depends on each application’s traffic pattern, bus microarchitecture, and
system parameters [67].

The simplicity of the bus-based architecture design, predictable access latency,
and low area overhead are the key selling points. However, beyond a small number
of cores, the performance of the bus interconnect degrades significantly [83].

15.1.2 Crossbar-on-Chip Interconnect

Single shared bus architecture is evidently slower in the case of multiple master-
slave data transactions. The prime bottleneck is the single shared medium and
latency due to arbitration among many master interfaces (Fig. 15.1). Therefore, the
first approach to design a scalable on-chip interconnect was adaption of crossbar
topology. A crossbar is a matrix switch fabric that connects all the inputs with all
the outputs enabling multiple communication connections (Fig. 15.1). The idea has
been borrowed from the telecommunication industry where such architectures have
been successfully used for four decades in telephony applications [82].

The same concept of multiple communication channels was implemented in the
SoC design industry by combining multiple shared buses to form an all-input-all-
output connection matrix. The concept is also known as hierarchal bus or multilayer
bus. STBus [53] is perhaps the best-known commercial bus architecture that
inherently supports crossbar architectures. A design methodology for AMBA-based
cascaded bus architecture is provided by Yoo [104]. Yoo et al. have experimented
with integrating 90 IP blocks in a single crossbar-based SoC design. Similarly,
authors in [72] have provided a complete design methodology for designing an

466 H. Bokhari and S. Parameswaran

application-specific crossbar architecture using the STBus protocol. They claim
significant performance improvements over standard single-bus architectures. The
most interesting crossbar implementation is the interconnect system for IBM
Cyclops64 architecture. Each Cyclops64 crossbar connects 80 custom processors
and about 160 memory banks. With single transaction latency of seven cycles and
bandwidth comparable to state-of-the-art NoC architecture, Cyclops64 intercon-
nects is perhaps the most advanced practical crossbar design for the SoC domain.

Researchers have been arguing over the scalability of crossbar-based intercon-
nect architecture due to the nonlinear relation between the number of the ports and
latency and wire cost [107]. However, recent experiments from [82] show that a
128�128 port crossbar in a 90 nm technology is feasible. They have benchmarked
their crossbar design against state-of-the-art mesh-based NoC design and concluded
that the crossbar design matched NoC architectures in terms of latency, bandwidth,
and power consumption. However, the design complexity is prohibitively high due
to complex wire layouts.

15.1.3 Network-on-Chip Interconnect

Following Moore’s law of available on-chip transistor resources, we are looking
beyond having thousands of cores on a single chip. It has been predicted that
the performance of such kilo-core Multi-Processor System-on-Chip (MPSoC) will
be communication architecture dependent [16]. Traditional bus-based architectures
cannot scale beyond a few tens of IP blocks, and there is a need to provide a more
scalable and protocol invariant communication architecture.

The solution to the scalability problem of bus-based architectures was found in
the form of network-on-chip architectures [29, 58]. NoC inherently supports the
general trend of highly integrated SoC design and provides a new de facto standard
of on-chip communication design. The basic idea of NoC has been adapted from the
well established structure of computer networks. In particular, the layered service
architecture of computer networks has been well adapted in NoC to provide a
scalable solution. In a NoC architecture, data is converted into packets, and these
packets traverse number of hops (switches or routers) based on a predefined routing
technique. The key advantages of using NoC as the on-chip interconnect are:

• NoCs inherently support multiple communication paths through a combination
of physically distributed routers and links, which greatly increases the available
on-chip data bandwidth. This enables different cores to exchange data in parallel
without any central arbitration. This makes NoC an ideal candidate interconnect
for supporting increasing communication needs of multi-core chips with tens
and hundreds of cores. Multiple communication paths between given source and
destination cores give NoC an inherent fault tolerance. In case of permanent error
in the router or link on a given path, data can be rerouted through an alternate path
between source and destination cores.

15 Network-on-Chip Design 467

• NoC architectures use short electric wires that have highly predictable electric
properties. Compared to bus interconnect, smaller drive transistors are required
to switch short wires between routers. This helps to improve the energy/bit metric
of interconnects. Moreover, due to shorter wire delays, NoCs can be switched
at higher frequencies than buses and crossbars without any significant increase
in power. Deep sub-micron semiconductor manufacturing introduces integrity
issues in wires. Having shorter wires reduces the probability of manufacturing
faults and hence improve the production yield. The predictable electric properties
of short wires also help in reducing design verification cost.

• NoCs follow a modular design paradigm by allowing reuse of existing hardware
Intellectual Property (IP) blocks. For most designs, NoCs can be easily scaled
for different number of cores and applications by simply instantiating multiple
copies of existing designed and verified router IPs. This reduces the overall
complexity of the chip design process.

• NoCs provide a clear boundary between computation and communication. On-
chip components (memory controllers, processing cores, hardware IPs, etc.) can
have different communication protocols (AXI, AHB, etc.) which are converted
to a standard packet format through the help of protocol convertors. Therefore,
data communication between on-chip components is agnostic of communication
protocol used by different components. This is a useful feature for designing
heterogeneous SoCs with hardware components selected from different IP
vendors.

15.2 Defining Features of Network on Chip

NoC-based MPSoC designs have attracted attention of researchers for the last
decade. The defining features of NoC design are router design, routing algorithms,
buffer sizing, flow control, and network topology. We will discuss them in more
detail.

15.2.1 Topology

A NoC consists of routers and communication channels. NoC topology defines
the physical layout of the routers and how these routers are connected with each
other using the communication channels. The selection of NoC topology can have a
significant effect on multi-core performance, power budget, reliability, and overall
design complexity. For example, if the average number of hops between nodes is
high, packets have to travel longer and hence network latency will be high. Similarly,
if a topology requires very long physical links, designers have to make an effort to
ensure timing closure for longer links. Moreover, topologies that allow diverse paths
between nodes can potentially provide higher bandwidth and also prove to be more

468 H. Bokhari and S. Parameswaran

reliable in the case of faulty links. Therefore, when designing NoC-based multi-core
systems, the first decision is to choose the NoC topology [83].

NoC topologies can be classified as direct and indirect topologies [83]. In direct
topologies, each on-chip component such as core or memory, is connected with a
router, and therefore each router is used to inject or eject traffic from the network. In
indirect topologies, the on-chip components are connected only to terminal routers,
whereas the other routers only forward the traffic [83]. The degree parameter of a
router defines the number of neighboring routers and on-chip component to which
the router has links. The degree parameter defines the number of input/output ports
in each router. Note that the complexity of router microarchitecture increases with
an increase in the degree of router.

Figure 15.2 shows three commonly used direct topologies ring, mesh, and torus.
The ring is the simplest topology to implement in terms of silicon area and design
complexity. The degree of each router in ring interconnect is 3 (two neighbor
router + one local resource (core, memory, etc.)). The drawback of ring topology
is performance scalability. The number of hops between two nodes in worst-case
scenarios is proportional to N: the number of nodes in the topology. Furthermore,
rings provide limited bandwidth and are less reliable due to poor path diversity.
Therefore, rings become impractical for multi-core chips with more than 8–16
nodes [8].

Mesh and torus topologies solve the scalability problems of ring topology, albeit
at a cost of higher degree routers and possibly more complex VLSI layout. Each
router in a mesh topology has a degree of 5, except for the routers on the border.
Torus can be classified as an enhanced form of mesh with wrap around links between
border routers. These links use router ports that are not required to implement mesh
topology. The wraparound links in torus reduce the average number of hops and

a

b c

Fig. 15.2 Well known direct topologies. (a) Ring. (b) Mesh. (c) Torus

15 Network-on-Chip Design 469

Fig. 15.3 2-ary 3-fly Butterfly topology

Fig. 15.4 3 Tier Fat Tree topology

provide better bisection bandwidth. The worst-case number of hops is
p
N C 1 for

torus and 2
p
N	1 for mesh. In mesh, all communication links are short and equal in

size. However, for torus wraparound links are considerably longer and need special
attention for timing closure.

Two classical examples of indirect networks, butterfly and fat tree are shown
in Figs. 15.3 and 15.4, respectively. The important feature of butterfly topology is
that the hop distance between any source-destination node pair is fixed (three in the
topology shown in Fig. 15.3). The router has degree 2 (two input and two output
ports), resulting in low-cost routers. However, the number of routers is greater than
the number of SoC components. The two main disadvantages of butterfly topologies
are single communication path between a given source-destination pair resulting in
low bandwidth and low link fault tolerance and more complex wire layout due to
uneven link lengths. The fat tree topology provides higher bandwidth and excellent
diversity of possible routing paths. However, these qualities come at a cost of silicon
area (more routers) and complex wire layout.

In addition to these regular topologies, application-specific MPSoCs are often
designed on top of NoCs with customized topologies [20]. The data traffic patterns

470 H. Bokhari and S. Parameswaran

are often known at design time, and therefore a communication graph can be
extracted from the application specifications [12, 89]. The communication graph
combined with knowledge of the physical mapping of SoC components can be
used to create a topology that meets certain performance, energy, or area constraints
[13, 20, 95].

15.2.2 Routing

The routing algorithm defines the sequence of routers between source and destina-
tion nodes that a data packet will traverse. The quality of the routing algorithm is
determined by the average packet latency and power consumption. A good routing
algorithm evenly distributes the traffic across all the routers and maximizes the
saturation throughput of the network. Power can be optimized by keeping the
routing circuit simple and keeping the number of hops traveled by data packets
low [83].

Deterministic routing is the simplest routing scheme and is widely used in
NoCs. For a given source and destination pair, data packets always travel through a
predefined set of routers. Dimension Ordered Routing (DOR) for mesh is a common
example of deterministic routing. In XY routing for mesh, depending on the physical
location of the source and destination pair, the packet always travels first in the X
(horizontal) direction and then in the Y (vertical) direction. However, deterministic
routing can cause traffic hotspots in the case of an asymmetrical communication
pattern between nodes [63, 83].

Oblivious routing is superior to deterministic routing in terms of path selection.
For a given source-destination pair, oblivious routing can select one of many possi-
ble routes. However, this decision is taken without any knowledge of the network’s
current traffic condition. One example for oblivious routing is ROMM [76]. In the
ROMM routing scheme for mesh, an intermediate node is selected at random on
minimal paths between source and destination, and the data packet is first sent to
the intermediate node and from there to the destination using a deterministic routing
algorithm.

Adaptive routing is the most robust routing scheme, as it uses global knowledge
about the current network traffic state to select the optimal path [63]. Adaptive
routing distributes the traffic node across different network routers and hence
maximally utilize the network bandwidth. However, implementing adaptive routing
increases the design complexity of the routers [83]. Moreover, there is always a
limitation on how much global knowledge can be forwarded to each router, hence
limiting the effectiveness of the routing scheme [63].

In addition to standard routing schemes, MPSoC designers often use application-
specific routing schemes for NoCs [22, 28, 79]. Application communication graphs
can be analyzed to extract information about data volume and criticality. This infor-
mation can be used to design routing algorithms that minimize the communication
latency [79].

15 Network-on-Chip Design 471

15.2.3 Flow Control

Flow control determines how data is transferred between different routers in a
NoC. Specifically, flow control dictates the buffer and link allocation schemes. The
design objective for flow control architecture is to minimize the buffer size and
hence silicon area and power of routers and to keep the network latency low. In
packet-switched NoCs, a data message is broken into a predefined packet format.
A network packet size can be further broken and serialized into multiple flits. The
size of flit normally equals physical channel width [83]. Additional information is
added to each flit to indicate header, body, and tail flit. The routing and other control
information can either be added only to the header flit or it can be added to each flit
depending on implementation.

In store-and-forward flow control [30], before forwarding the packet to the next
node, the router waits until the whole packet has been transmitted into its local
buffer. This means that the input buffer must have enough space to store the whole
packet, which can increase router area and power consumption. This scheme also
increases the communication latency, as packets spend a long time at each node just
waiting for buffering, although the output port might be free.

Virtual cut-through [54] improves on store-and-forward flow control by allowing
a packet to be routed to the next router even before the whole packet arrives at
the current router. However, the packet is only forwarded if the downstream router
has enough buffer space to store the complete packet. This means that buffer size
remains the same as in the case of store-and-forward flow control with improvement
in per-hop latency.

Wormhole routing [90] is a more robust scheme, as it allocates buffer space at the
granularity of flit, opposed to the virtual cut-through and store-and-forward scheme
which allocates buffers at the granularity of packet. As soon as flit of a packet arrives
at an input port, it can be forwarded even if only one flit space is available in the
input port of the next router (and output channel is not allocated). The wormhole
flow control scheme results in low-area routers, and it is therefore widely used in
most on-chip networks [83]. The term wormhole implies that a single packet can
span multiple routers at the same time. The main downside of this scheme is that
the multiple links can be blocked at the same time in case the header flit of a multiple
flit packet is blocked in one of the routers on the communication path.

15.2.4 Router Microarchitecture

The key building block of NoC is the router. The router’s microarchitecture
dictates the silicon area, the power, and, most importantly, the performance of
the NoC. The maximum frequency at which a router can operate depends on the
complexity of the logic used in the router microarchitecture, which in turn translates
into higher-level performance metrics such as network latency and maximum
achievable bandwidth. The complexity of the router’s microarchitecture depends
on the network topology (degree), flow control method, and routing algorithms. For

472 H. Bokhari and S. Parameswaran

Fig. 15.5 Wormhole router architecture

example, a complex adaptive routing algorithm can be used to improve the worst-
case network bandwidth, but it will result in increased area and power.

Figure 15.5 shows the overall architecture of a packet switch wormhole
router [38]. The basic building blocks of a wormhole router are input buffer, route
computation, switch allocators, and crossbar switch. Input buffers store flits when
they arrive in the router and keep them stored until they are forwarded to the next
router. The route computation unit calculates the output port for the header flit
stored at the head of each input buffer, depending on the routing algorithm. The
switch allocator arbitrates between different packets contending for the same output
ports. The crossbar switch is logically a set of muxes that route flits from the input
port to the output port. The data from the crossbar is stored in output buffers which
can be as simple as flip-flops. The input buffers also propagate the buffer occupancy
status to neighboring routers to implement flow control [38].

15.2.4.1 Progress of a Packet in a Wormhole Router
The incoming flit is first stored in the input buffer (Buffer Write (BW) stage). If
the flit at the front of the input buffer is the header flit, the route computation unit
calculates the output port required to send the packet to its destination and asserts
the port request signal to the switch allocator (route computation (RC) stage). In
modern routers, the switch allocator consists of multiple port arbiters, one for each
output port. Each output arbiter chooses one of the multiple input requests for a
given output port. When an output port is allocated to an input port, the specific
output port is locked until the whole packet (tail flit) has crossed the crossbar switch.
Before doing anything further, the switch allocator checks if the downstream router
has enough space to store the outgoing flit. If the buffers are full at the downstream
routers, the switch allocator blocks the packet transmission. However, if buffer space
is available, switch allocator sets the proper select lines for the crossbar switch and

15 Network-on-Chip Design 473

also instructs the input buffer to remove the flit at the front. This whole process is
called the switch allocation (SA) stage. On getting a valid signal and output port
selection from the switch allocator, the crossbar switch transfers the flit from the
input port to the output port (switch traversal ST stage). The flit from the output
port of the router then travels over wire links to get latched in the input buffer of the
downstream router (link traversal (LT) stage). Note that the header flit of a packet
goes through all stages discussed here. The body and tail flit, however, skip the RC
and SA stages, as the output had already been reserved by the header flit.

15.2.4.2 Optimization and Logic Synthesis of Routers
Executing all router stages in a single cycle can be achieved at a lower frequency
because the cumulative logic delay of stages can be long. Single-cycle operation
might require a higher supply voltage depending on the target frequency which can
increase the power consumption. Therefore, most of the high-performance routers
are often pipelined [30, 38]. However, increasing the number of pipeline stages
increases the per-hop latency and hence the overall network latency. The number of
pipeline stages also depends on the sophistication of the RC, SA, and ST stages.

In commonly used pipelined routers, the LT and BW are done in one cycle,
and RC, SA, and ST are executed in the next cycle. However in the case of more
complex router architectures, the second pipeline stage can be further divided into
RCCSA and ST pipeline stages. The pipeline stages can affect the area and power
consumption [11]. Using fewer pipeline stages results in more stringent latency
constraints for logic synthesis, and hence the synthesis tool has to insert larger
gates with lower delays. Larger logic gates have higher dynamic and leakage power.
Pipeline stages on the other hand can reduce the gate sizes; however, the overall
area may increase due to addition of the pipeline flip-flops [11]. Therefore, the
logic synthesis of routers is a classic power-performance-area tradeoff problem
[11, 38, 81].

15.2.5 Network Interface

Router is the main building block of NoC and carries the burden of routing
the packets across network. Network Interface (NI) on the other hand acts as a
bridge between hardware IP blocks and NoC. Figure 15.6 shows an example of
NI signaling scheme. NI converts IP block’s communication protocol to NoC’s
packet format and performs associated housekeeping operations. The communi-
cation protocol can vary across IP vendors. For example, most of the ARM IPs
normally support AXI protocol [6], whereas Xtensa processors use PIF protocol [5].
Therefore, NIs actually enable the modular property of NoC by letting different IP
communicate seamlessly irrespective of their communication protocol. An example
MPSoC that contains IPs from different vendors is shown in Fig. 15.7. To enable
maximum flexibility to system designers, commercial NoC vendors provide support
for multiple communication protocols. For example, Sonics [4] supports AXI and
OCP protocols, and Arteris [7] supports AMBA, PIF, BVCI, and OCP protocols.

474 H. Bokhari and S. Parameswaran

Fig. 15.6 Network interface (NI)

Fig. 15.7 Heterogeneous
MPSoC with IPs from
different vendors

Microarchitecture of the NI depends on the programming model selected for
SoC [36]. For example, Tilera iMesh on-chip interconnect network [103] supports
both MPI [62] and shared memory [105] programming models. iMesh enables
parallel operation of these programming models by integrating separate NIs and
NoCs for both of these programming models.

Researchers have proposed integrating various advance features in NI design
with primary focus on quality-of-service (QoS) services. Radulescu et al. [85]
proposed a NI design that integrates QoS services for shared memory MPSoCs, with
support for both guaranteed and best-effort services. Mishra et al. [70] proposed
keeping track of vital application information such as cache miss rate and executed
instructions in NI to support fair QoS among heterogeneous applications. Similarly
Chen et al. [25] monitor application cache miss rate and other processing core’s
information in NI logic to implement NoC power optimization.

15 Network-on-Chip Design 475

15.2.6 Performance Metrics

As described earlier in chapter, there are number of possible customizable features
in a NoC. Therefore, it is important to discuss metrics that are often used to assess
the NoC’s performance.

NoC performance is often evaluated using network latency and throughput [30].
An example latency versus traffic injection rate is shown in Fig. 15.8. The latency
is defined as average time it takes for packets to travel between source-destination
pairs in NoC. Network latency can calculated as sum of latency experienced at each
hop (router). The zero-load latency metric defines the lower bound on latency when
there are no other traffic in the network. However, as traffic is introduced in the
NoC at a higher rate, packets travel slower in the network due to channel contention.
The saturation throughput point is defined as injection rate at which packet latency
becomes prohibitively large. Some research also define saturation throughput as
the injection rate at which the average network latency is roughly three times the
zero-load latency [50]. As a rule of thumb, designers aim to minimize the zero-load
latency and maximize the saturation throughput. In the absence of real applications,
latency and throughput are commonly used to evaluate different NoC architecture
using different synthetic traffic patterns [64].

Although latency and throughput are easier to evaluate, researchers argue that
these metrics may be misleading for assessing impact of NoC on overall system
performance. Mishra et al. [70] showed that some applications are network latency
sensitive, whereas some applications are bandwidth sensitive. Therefore, using
application-level metrics such as execution time and average memory access latency
is a better way to evaluate NoC performance. Similarly Chen et al. [25] showed
that the impact of NoC latency on application’s performance depends on other

Fig. 15.8 Latency and throughput metrics for NoC

476 H. Bokhari and S. Parameswaran

application-level metrics such as cache miss rate. This is the reason that recent works
on NoC power optimization consider application-level metrics instead of network-
level metrics [23, 25, 44].

15.3 Overview of Recent Academic and Commercial NoCs

Tilera iMesh on-chip interconnect network [103] is an example of NoC designed
for homogeneous multi-core chips. The iMesh interconnect architecture has been
used in the commercial TilePro64 multi-core chip. The latest 72-core Tilera GX
chip [2] also uses the same NoC design. The proposed NoC architecture is different
from other academic and commercially available on-chip architectures in terms of
the number of physical NoC. iMesh provides five different physical NoC channels:
two of these networks are used for memory access and management tasks, while the
rest are user accessible. The motivation is that future integrated circuits will have
enough silicon resources to integrate more than one NoC per chip.

The next-generation SPARC M7 processor combines three different NoC topolo-
gies for the on-chip interconnect [84], ring-based request network, point-to-point
network for response messages, and mesh for data packets. The M7 processor uses
a shared distributed cache model. The request ring network is used to broadcast the
cache requests to all cores in the system. The point-to-point network is only used
when adjacent cores share data. The mesh data network is built using ten port routers
and is used primarily to stream data from memory controllers to local cache.

Anton2 is a special-purpose supercomputer for performing molecular dynamic
simulations. The building block of the supercomputer is Anton ASIC which contains
a number of special-purpose hardware units for numerical calculations [101].
Anton2 ASIC uses a 4 � 4 2D mesh for connecting on-chip components, whereas
the chips are connected with each other using a 3D torus. The novel feature of the
communication architecture is that the same set of routers are used for both intra-
and inter-chip communication. About 10% of the total ASIC area is dedicated to
on-chip communication.

SMART (single-cycle multi-hop asynchronous repeated traversal) NoC from
MIT is another interesting low-latency on-chip communication architecture [56].
Authors observed that a data bit can travel 9–11 hops in a single clock cycle at
1GHz for 45 nm silicon technology. Based on this observation, they propose a NoC
architecture where data can be transferred across physically distant mesh nodes in
a single cycle by bypassing multiple routers. This reduces the latency of multi-hop
mesh NoC. The proposed architecture is reported to improve the performance of
PARSEC and SPLASH-2 benchmarks by an average of 26% for private L2 cache
and 49% for shared L2 cache architectures.

Æthereal [42] is probably one of the best-known academic NoC architecture.
Even at the time of conception, Æthereal supported different IP communication
protocols such as AXI and OCP. In addition to baseline best-effort NoC ser-
vices, Æthereal also supports building predictable on-chip communication though
time-division multiplexed circuits [43]. This enables building SoCs for system

15 Network-on-Chip Design 477

with hard real-time performance requirements such as braking system in an
automobile. A more comprehensive discussion on real-time NoCs is presented
in �Chap. 16, “NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality
Applications”.

Intel used a mesh-based NoC for an 80-core TeraFlop experimental chip [46].
The mesh NoC uses five stage pipelined routers designed for 5 GHz frequency. This
results in 1 ns per-hop latency. According to experiments conducted on the research
chip, the NoC consumed about 28% of total chip power although it consumed 17%
of total chip area.

Intel has also introduced a 48-core mesh NoC-based multi-core chip called
single-chip cloud computer (SCC) [47]. The target frequency for the NoC was set at
2 GHz with 1:1V supply voltage. The router is four-stage pipelined and uses virtual
cut-through flow control. To mitigate the problem with higher NoC power from
the previous 80-core chip, Intel opted for a DVFS scheme for NoC. The NoC was
organized as a 6 � 6 mesh so that two compute cores share a single router. These
techniques helped to reduce the share of NoC power to 10%.

There are two well-known commercial NoC IP providers, Sonics [4] and
Arteris [7]. Both Sonics and Arteris provide various predesigned NoC IPs for
commonly used processor IPs such as ARM and Xtensa. Furthermore, both of
them provide design tools that can be used to optimize the NoC IP for various
design objectives such as power, area, performance, quality of service (QoS), and
reliability. It is anticipated that hardware developers will be using third-party NoCs
to reduce both design cost and development time [20].

15.4 NoC Power Optimization

As more cores are integrated on a chip, the on-chip interconnect’s complexity
increases and so does its power. Computer architects always want to keep the
on-chip interconnect’s power low so that processing elements and memory hier-
archy can use a larger share of power [17]. Although NoC provides the scalable
communication for multi-core chips, it can consume valuable power. For example,
Daya et al. [35] report that NoC in their 36-core SCORPIO experimental chip
consumes 19% of the total chip power. Similarly NoC consumes 28% of total power
in Intel’s TeraFlop chip [46]. With limited power budgets constraining multi-core
scaling [39], employing power-saving techniques for NoCs is an active research
topic.

Over the years, various voltage-scaling-based solutions have been investigated
for reducing NoC dynamic power. Shang et al. [92] presented the pioneering
work on Dynamic Voltage and Frequency Scaling (DVFS) for on-chip links. The
scheme uses usage history of links to predict their future utilization. Based on this
prediction, a certain voltage and frequency (VF) level is selected for each link.
Bogdan et al. [14] proposed a DVFS scheme for spatially and temporally varying
workloads. The proposed DVFS scheme worked at the granularity of individual
routers. Based on fractal modeling of workloads, the scheme selected an appropriate

478 H. Bokhari and S. Parameswaran

VF level for each router. Mishra et al. [69] proposed per-router frequency tuning in
response to changes in network workload to manage power and performance. Based
on the optimization goal, the frequency of the routers is increased to relieve network
congestions and improve performance, or the frequency is decreased to meet certain
network power constraints. Ogras et al. [78] described a framework for fine-grain
VF selection for VF-island-based NoCs. The scheme first statically allocates VF
level to each NoC router and then uses the run-time network information for fine-
tuning the assigned VF level. All these works base their DVFS schemes on network
metrics such as packet latency, injection rate, queue occupancy, and network
throughput. Researchers [26,44] argue that by neglecting higher-level performance
metrics such as application execution time, these schemes can result in nonoptimal
results. Therefore, work by Chen et al. [44] and Hesse and Enright [44] based their
DVFS schemes on the actual execution delay faced by applications due to DVFS
for NoCs. Zhan et al. [106] explored the problem of per-router DVFS schemes for
streaming applications. They developed an analytical model to statically predict
the effect of VF scaling on application throughput. Depending on application to
core mapping, routers on the critical communication path are operated at lower
frequency.

Since the ratio of leakage power to total chip power is increasing with transis-
tor scaling, researchers have been exploring leakage power techniques. Through
experiments with realistic benchmarks, Chen [23] reported that the router’s static
power share is 17.9% at 65 nm, 35.4% at 45 nm, and 47.7% at 32 nm. As discussed
earlier in this chapter, power gating is often used to save the static power of on-chip
components [48]. Soteriou and Peh [94] proposed power gating at the link level.
They used the channel utilization history to select links that can be switched off with
minimal impact on performance. As switching off some links results in irregular
topologies, they proposed an adaptive routing algorithm to avoid the switched off
links. Matsutani et al. [66] proposed adding low-frequency virtual channel buffers
that can be power gated at run time to save leakage power. An ultra fine-grain power
gating for NoC routers is proposed in [65]. They used special cell libraries where
each Complementary Metal-Oxide-Semiconductor (CMOS) gate has a power gate
signal. Therefore, the power for each router component such as input buffer, switch
allocator, and crossbar can be individually turned on or off, based on the network
activity. This helped to save leakage power by 78.9%. However, the main drawback
of this technique is the complexity of including special power gate circuitry in
each CMOS gate. The additional power circuitry also increases the router area.
Kim et al. [55] proposed a fine-grain buffer management scheme for NoC routers.
In the scheme, depending on network traffic load, the size of the input buffers was
increased or decreased at run time. The unused buffer slots were power gated to
save leakage power. However, this scheme only targeted buffer leakage power and
neglected other router components. Parikh et al. [80] proposed performing power
gating at the granularity of the data-path segment which consists of an input buffer,
crossbar mux, and output link. In the router parking [88] scheme, routers for cores
that are not under use are switched off, and the traffic is routed around the switched
off routers through new routing paths that are calculated at run time.

15 Network-on-Chip Design 479

The main problem with the previous proposals for power gating is the per-
formance overhead due to wakeup latency. Chen and Pinkston [24] proposed
overlaying a standard mesh NoC with a low-cost ring network. If a packet arrives at
a router and the router is switched off, the packet is routed through the ring network
which is always switched on. Das et al. [33] proposed to divide wider mesh NoCs
into four smaller NoCs for efficiency. Additional NoCs are only switched on if the
network load exceeds a certain limit and the unused NoC planes remain switched
off. In this network connectivity is ensured.

As buffers in routers consume a considerable share of dynamic and leakage
power, researchers have also explored using bufferless NoCs. The first effort in this
direction was the BLESS router [71]. The idea is that instead of storing the flit in
router, the flit is routed even in a direction that does not result in a minimal path. This
means that even with some misrouting, the flit will eventually reach its destination.
Therefore this scheme is applicable for routers with the number of output ports
equal or higher than the number of input ports. The deadlock and livelock condition
is avoided by allocating a channel to the oldest flit first. To improve some of
the shortcomings of BLESS router, CHIPPER [40] was introduced. Both BLESS
and CHIPPER show potential in reducing network power. However there are two
concerns with bufferless NoCs. First, the deflection routing causes packets to take
non-minimal routes resulting in longer packet delays. The effect of network delays is
more significant for memory-intensive applications. Secondly, the bufferless routing
results in out-of-order arrival of the flits which increases the complexity of the NI.

15.5 Communication-Aware Mapping

While designing an MPSoC-based system, it is not uncommon to have fixed
specifications for the underlying hardware. Therefore, in such cases, it is the
responsibility of the system programmer to use the available hardware resources
efficiently. The situation is even more complex in the case of heterogeneous
MPSoC architecture with NoC interconnect. Over the years, many techniques have
been proposed for effectively mapping a given application on a target MPSoC
architecture. Studying the mapping problem for NoC-based MPSoC architectures
has been a key area of research. The unique data communication capabilities of
NoC-based architectures demand a smart communication-aware mapping strategy
[19, 28, 59, 73]. It is important to analyze both NoC’s architectural properties and
run-time network contention while estimating the run time of a given application.
Embedded system designers are expected to tweak the application mapping to
maximize the performance while meeting the hard time-to-market limits [99, 100].
There is no single technique to map applications on a given MPSoC. The mapping
problem is further complicated due to the presence of many different MPSoC
architectures. Therefore, the common practice is to rebuild the mapping strategy
for every application-architecture combination [68, 74, 75, 97].

Application mapping was an area of interest for researchers working in parallel
computing and supercomputing [15]. Their idea was to map the applications that

480 H. Bokhari and S. Parameswaran

share the data as close as possible to reduce the network latency. This naive idea
is also applicable in the case of CMPs where mapping the application has to take
into account the underlying on-chip interconnect architecture. Similarly, the choice
of shared memory architecture and message passing interface heavily influences the
mapping algorithms.

The mapping solutions proposed in the literature can be broadly divided into
two categories (1) static mapping and (2) dynamic run-time mapping. Each class of
mapping algorithm has its advantages and disadvantages. Static mapping is useful
when applications to be executed are known at design time [18,77,98,108]. System
designers can formulate an optimal or near-optimal solution for such scenarios.
On the other hand, run-time mapping algorithms allocate resources to application
on the fly. These algorithms give a better mapping solution in cases where the
application behavior is unknown at design time or system characteristics such as
network congestion can change rapidly [9, 10, 45].

In the case of embedded systems, applications to be executed are known at design
time. Therefore, static mapping techniques result in better system performance [86].
Unfortunately, most of the mapping problems prove to be NP-hard problems with
only near-optimal solution [93]. However, heuristic-based algorithms have also
been proposed, which reduce the time required to solve these NP-hard problems
[93, 97]. TDMA-based NoCs are used for predictable systems. The expected
traffic for a given link can be estimated using analytical modeling or simulations.
Through proposed algorithms, it is then possible to map a given processor-processor
communication in an allotted time slot. This not only improves the network
congestion but also makes the system predictable [102, 109].

Some researchers have provided solutions where the mapping and partitioning
problem of NoC-based embedded systems are dealt with as a combined problem.
Although these solutions require a very strict analytical model for application, the
final software and hardware are highly optimized in area footprint, power, and
performance [59, 60]. It has been observed that a generalized MPSoC architecture
might eventually fail to cover the design requirements of a particular real-time
embedded system. Therefore, the option of highly customized hardware for a
particular set of applications has also been widely explored.

15.6 Application Specific Communication Architecture
for MPSoCs

Over the years, researchers have analyzed that flat communication and memory
architectures are not sufficient for designing high-performance application-specific
MPSoC architectures. Moreover, the quest for low-power, low-cost embedded
system has forced designers to optimize the system. Therefore, it is anticipated that
highly optimized hardware and software designs will include customized memory
and on-chip network designs in the future [99].

Customizing the communication architectures at system level and gate level
not only improves the system performance; it also results in energy-efficient

15 Network-on-Chip Design 481

design. By eliminating the logic overhead, the leakage and static power loss
of the system can be significantly reduced [72]. It has been shown that some
MPSoC applications actually do not need highly complex network architectures
like NoC, and simple bus-based architecture can essentially meet the performance
requirements. Therefore, it is important to avoid overkill by intelligently designing
communication architectures that give optimal solutions without incurring area
overhead [51].

The idea of application-specific communication architectures is more interesting
in the case of NoC. Inherently, NoC architectures are highly customizable, and
designers can tweak a variety of parameters of the architecture to meet performance,
cost, and energy constraints. �-pipes is perhaps the first project that provided
a library-based approach to NoC design [96]. The selection of optimal on-chip
communication architectures is nontrivial. Therefore, an effort has been made
to introduce library-oriented design space exploration where the designer has
several configurations to choose from. Designers can then use analytical modeling
or simulations to select the best communication architectures [49]. The same
idea has also been explored by Jeremy and Parameswaran [21] by developing a
library of NoC components with the help of analytical power and performance
modeling. Another interesting project that was targeted toward low-power NoC-
based embedded MPSoC was AEthereal network on chip [42]. The significance of
these projects is the flexibility provided to the designer to quickly explore the various
possible optimizations for a given application. These optimizations can provide up
to 12 times improvement in performance while reducing the area cost by 25 times
when compared with flat communication architectures [51].

Bertozzi et al. [13] have proposed a NoC synthesis tools called NetChip based
on �-pipes [96] NoC library. Figure 15.9 shows an example on how applica-
tion specifications are translated into NoC architecture. The first step is collect
application and map it on multiple components (cores, memory, etc.). The next
step is extract data bandwidth requirement from the application to core mapping.
Based on communication requirement, tool automatically explores different NoC
topologies and other associated architecture parameters such as routing scheme. In
the final step, the tool automatically generates SystemC models for selected NoC
components for simulations and synthesis.

Similarly, the option to integrate different communication architectures in a
single design has also been studied extensively. Murali et al. [72] proposed a
complete design method for application-specific crossbar synthesis. They use the
traffic pattern of the application to design a communication architecture that is
a combination of packet-oriented crossbars and bus. Bus-based architectures are
simple but offer less performance. The crossbar-based architectures are more
complex but provide better throughput. Therefore, Murali et al. combined the two
communication architectures while keeping the gate cost low and fulfilling the
performance requirements.

All the techniques referred to above improve the performance of on-chip
communication in terms of aggregate on-chip bandwidth and average data latency,
which are not suitable metrics for streaming applications executing on MPSoCs. In

482 H. Bokhari and S. Parameswaran

de
m

ux

a
b

c
d

16
16

31
3

pa
dd

in
g 31

3
94

50
0

35
3

16
vl

d
ru

n
le

 d
ec

in
v

sc
an

st
rip

e
m

em

vo
p

m
em

iq
u

ua
nt

id
ct

ar
m

vo
pm

pa
d

sm
em

vo
pr

up
s

am
p

iq
u

an
t

ac
dc

is
ca

n
rld

vl
d

rld
vo

pm
vl

d

ar
m

vo
pr

up
s

am
p

id
ct

ac
dc

is
ca

n
pa

d
sm

em

pa
d

vo
p

re
cup

sa
m

p35
3

36
2

35
7

27
36

2
36

2

49

16

A
rm

id
ct

iq
ua

n

ac
dc

pr
ed

30
0 16

50
0

70

94

31
3

31
3

ID
C

T
iQ

ua
nt

st
rip

e
m

em
or

y

A
C

/D
C

pr
ed

ic
tio

n
35

7

49
27

36
2

36
2

30
0

up
sa

m
p

V
O

P
re

co
ns

tr

in
ve

rs
e

sc
an

36
2

70

ru
n

le
ng

th
de

co
de

r

V
ar

.
le

ng
th

de
co

de
r

V
O

P
m

em
or

y
A

R
M

Fi
g

.
1

5
.9

A
pp

lic
at

io
n-

sp
ec

ifi
c

N
oC

de
si

gn
ex

am
pl

e
fr

om
[1

3]
fo

rV
O

PD
ap

pl
ic

at
io

n.
(a

)V
O

PD
bl

oc
k

di
ag

ra
m

,(
b)

V
O

PD
gr

ap
h

w
ith

ba
nd

w
id

th
re

qu
ir

em
en

ts
m

en
tio

ne
d

in
m

b/
s,

(c
)

m
es

h
m

ap
pi

ng
,a

nd
(d

)
to

ru
s

m
ap

pi
ng

15 Network-on-Chip Design 483

the case of streaming MPSoCs, application-level throughput or latency of the system
is the most important performance metric [52]. Thus, it is important to incorporate
system-level performance constraints in the design flow for an application-specific
on-chip network [12].

15.7 Conclusion

In this chapter we introduced readers to some basic concepts of NoC architecture
and motivated the use of NoC architecture for large-scale SoC designs. We presented
examples of NoC designs from commercial chips and academia to show the current
trends in NoC design. Given the increasing interest in reducing power consumption
of SoC components, we presented various power optimization techniques proposed
over the recent years. We then discussed some of the recent research work on
optimizing performance using intelligent application mapping on MPSoCs. In the
end, we explored how on-chip interconnect can be designed for application-specific
MPSoCs.

References

1. ARM AMBA Interconnect Specification. http://www.arm.com/products/system-ip/amba-
specifications.php

2. EZChip TileGX Multicore Architecture. http://www.tilera.com/products/?ezchip=585&
spage=614

3. IBM CoreConnect Bus Technology. http://www.xilinx.com/products/intellectual-property/
dr_pcentral_coreconnect.html

4. Sonics. http://www.sonicsinc.com/
5. Xtensa Processors. http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
6. AMBA AXI and ACE Protocol Specification (2013) http://infocenter.arm.com/help/index.

jsp?topic=/com.arm.doc.ihi0022e/index.html
7. Arteris NoC (2015) http://www.arteris.com/
8. Aisopos K (2012) Fault tolerant architectures for on-chip networks. PhD Thesis, Princeton

University
9. Al Faruque M, Krist R, Henkel J (2008) Adam: run-time agent-based distributed application

mapping for on-chip communication. In: 45th ACM/IEEE design automation conference,
DAC 2008, pp 760–765

10. Al Faruque MA, Krist R, Henkel J (2008) ADAM: run-time agent-based distributed appli-
cation mapping for on-chip communication. In: Proceedings of the 45th IEEE/ACM design
automation conference (DAC), pp 760–765. doi:10.1145/1391469.1391664

11. Becker DU (2012) Efficient microarchitecture for network-on-chip routers. Ph.D. thesis,
Stanford University

12. Beraha R, Walter I, Cidon I, Kolodny A (2010) Leveraging application-level requirements
in the design of a NoC for a 4g SoC – a case study. In: Design, automation test in Europe
conference exhibition (DATE), pp 1408–1413. doi:10.1109/DATE.2010.5457033

13. Bertozzi D, Jalabert A, Murali S, Tamhankar R, Stergiou S, Benini L, De Micheli G (2005)
NoC synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE
Trans Parallel Distrib Syst 16(2):113–129

14. Bogdan P, Marculescu R, Jain S, Gavila R (2012) An optimal control approach to power
management for multi-voltage and frequency islands multiprocessor platforms under highly

http://www.arm.com/products/system-ip/amba-specifications.php
http://www.arm.com/products/system-ip/amba-specifications.php
http://www.tilera.com/products/?ezchip=585&spage=614
http://www.tilera.com/products/?ezchip=585&spage=614
http://www.xilinx.com/products/intellectual-property/dr_pcentral_coreconnect.html
http://www.xilinx.com/products/intellectual-property/dr_pcentral_coreconnect.html
http://www.sonicsinc.com/
http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://www.arteris.com/
http://dx.doi.org/10.1145/1391469.1391664
http://dx.doi.org/10.1109/DATE.2010.5457033

484 H. Bokhari and S. Parameswaran

variable workloads. In: 2012 sixth IEEE/ACM international symposium on networks on chip
(NoCS), pp 35–42. doi:10.1109/NOCS.2012.32

15. Bokhari SH (1981) On the mapping problem. IEEE Trans Comput 30(3):207–214
doi:10.1109/TC.1981.1675756

16. Borkar S (2007) Thousand core chips: a technology perspective. In: Proceedings of the 44th
design automation conference. ACM, pp 746–749

17. Borkar S, Chien AA (2011) The future of microprocessors. Commun ACM 54(5):67–77.
doi:10.1145/1941487.1941507

18. Braun TD, Siegel HJ, Beck N, Bölöni LL, Maheswaran M, Reuther AI, Robertson JP, Theys
MD, Yao B, Hensgen D et al (2001) A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed computing systems. J Parallel
Distrib comput 61(6):810–837

19. Castrillon J, Tretter A, Leupers R, Ascheid G (2012) Communication-aware mapping of KPN
applications onto heterogeneous MPSoCs. In: Proceedings of the 49th design automation
conference, DAC’12. ACM, New York, pp 1266–1271. doi:10.1145/2228360.2228597

20. CHAN J (2007) Energy-aware synthesis for networks on chip architectures. Ph.D. thesis,
UNSW

21. Chan J, Parameswaran S (2004) Nocgen: a template based reuse methodology for networks
on chip architecture. In: 17th international conference on VLSI design, 2004. Proceedings.
pp 717–720. doi:10.1109/ICVD.2004.1261011

22. Chao HL, Chen YR, Tung SY, Hsiung PA, Chen SJ (2012) Congestion-aware scheduling
for NoC-based reconfigurable systems. In: Design, automation test in Europe conference
exhibition (DATE), pp 1561–1566. doi:10.1109/DATE.2012.6176721

23. Chen L (2014) Design of low-power and resource-efficient on-chip networks. Ph.D. thesis,
University of Southern California

24. Chen L, Pinkston TM (2012) Nord: node-router decoupling for effective power-gating of
on-chip routers. In: Proceedings of the 45th annual IEEE/ACM international symposium
on microarchitecture, MICRO’12. IEEE Computer Society, Washington, DC, pp 270–281.
doi:10.1109/MICRO.2012.33

25. Chen X, Xu Z, Kim H, Gratz P, Hu J, Kishinevsky M, Ogras U (2012) In-network
monitoring and control policy for DVFS of CMP networks-on-chip and last level caches.
In: 2012 sixth IEEE/ACM international symposium on networks on chip (NoCS), pp 43–50.
doi:10.1109/NOCS.2012.12

26. Chen X, Xu Z, Kim H, Gratz PV, Hu J, Kishinevsky M, Ogras U, Ayoub R (2013)
Dynamic voltage and frequency scaling for shared resources in multicore processor designs.
In: Proceedings of the 50th design automation conference, DAC’13. ACM, New York,
pp 114:1–114:7. doi:10.1145/2463209.2488874

27. Cheng HY, Zhan J, Zhao J, Xie Y, Sampson J, Irwin MJ (2015) Core vs. uncore: the heart
of darkness. In: 2015 52nd ACM/EDAC/IEEE design automation conference (DAC). IEEE,
pp 1–6

28. Chou CL, Marculescu R (2008) Contention-aware application mapping for network-on-chip
communication architectures. In: IEEE international conference on computer design, ICCD
2008, pp 164–169. doi:10.1109/ICCD.2008.4751856

29. Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In:
Design automation conference, 2001. Proceedings. IEEE, pp 684–689

30. Dally WJ, Towles BP (2004) Principles and practices of interconnection networks. Elsevier
31. Das R (2010) Application-aware on-chip networks. Ph.D. thesis, The Pennsylvania State

University
32. Das R, Ausavarungnirun R, Mutlu O, Kumar A, Azimi M (2013) Application-to-core

mapping policies to reduce memory system interference in multi-core systems. In: 2013 IEEE
19th international symposium on high performance computer architecture (HPCA2013),
pp 107–118. doi:10.1109/HPCA.2013.6522311

http://dx.doi.org/10.1109/NOCS.2012.32
http://dx.doi.org/10.1109/TC.1981.1675756
http://dx.doi.org/10.1145/1941487.1941507
http://dx.doi.org/10.1145/2228360.2228597
http://dx.doi.org/10.1109/ICVD.2004.1261011
http://dx.doi.org/10.1109/DATE.2012.6176721
http://dx.doi.org/10.1109/MICRO.2012.33
http://dx.doi.org/10.1109/NOCS.2012.12
http://dx.doi.org/10.1145/2463209.2488874
http://dx.doi.org/10.1109/ICCD.2008.4751856
http://dx.doi.org/10.1109/HPCA.2013.6522311

15 Network-on-Chip Design 485

33. Das R, Narayanasamy S, Satpathy SK, Dreslinski RG (2013) Catnap: energy pro-
portional multiple network-on-chip. In: Proceedings of the 40th annual interna-
tional symposium on computer architecture, ISCA’13. ACM, New York, pp 320–331.
doi:10.1145/2485922.2485950

34. Daveau JM, Ismail TB, Jerraya AA (1995) Synthesis of system-level communication by an
allocation-based approach. In: Proceedings of the 8th international symposium on system
synthesis. ACM, pp 150–155

35. Daya BK, Chen CHO, Subramanian S, Kwon WC, Park S, Krishna T, Holt J, Chandrakasan
AP, Peh LS (2014) Scorpio: a 36-core research chip demonstrating snoopy coherence on
a scalable mesh NoC with in-network ordering. In: 2014 ACM/IEEE 41st international
symposium on computer architecture (ISCA). IEEE, pp 25–36

36. Jerraya AA, Wolf W (2005) Multiprocessor systems-on-chips. The Morgan Kaufmann series
in systems on silicon. Morgan Kaufmann. ISBN:0-12385-251-X

37. Dennard RH, Gaensslen FH, Rideout VL, Bassous E, LeBlanc AR (1974) Design of Ion-
implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits
9(5):256–268

38. Dimitrakopoulos G, Psarras A, Seitanidis I (2015) Microarchitecture of network-on-chip
routers. Springer

39. Esmaeilzadeh H, Blem E, St.Amant R, Sankaralingam K, Burger D (2011) Dark silicon
and the end of multicore scaling. In: 38th annual international symposium on computer
architecture (ISCA), pp 365–376

40. Fallin C, Craik C, Mutlu O (2011) Chipper: a low-complexity bufferless deflection router.
In: 2011 IEEE 17th international symposium on high performance computer architecture
(HPCA), pp 144–155. doi:10.1109/HPCA.2011.5749724

41. Gasteier M, Glesner M (1996) Bus-based communication synthesis on system-level. In: 9th
international symposium on system synthesis, 1996. Proceedings. IEEE, pp. 65–70

42. Goossens K, Hansson A (2010) The AEthereal network on chip after ten years: goals,
evolution, lessons, and future. In: Proceedings of the 47th design automation conference,
DAC’10. ACM, New York, pp 306–311. doi:10.1145/1837274.1837353

43. Hansson A, Wiggers M, Moonen A, Goossens K, Bekooij M (2008) Applying dataflow anal-
ysis to dimension buffers for guaranteed performance in networks on chip. In: Proceedings of
international symposium on networks on chip (NOCS). IEEE Computer Society, Washington,
DC, pp 211–212

44. Hesse R, Jerger NE (2015) Improving DVFS in NoCs with coherence prediction. In: 2015
9th IEEE/ACM international symposium on networks on chip (NoCS)

45. Hölzenspies PKF, Hurink JL, Kuper J, Smit GJM (2008) Run-time spatial mapping of
streaming applications to a heterogeneous multi-processor system-on-chip (MPSoC). In:
Proceedings of the conference on design, automation and test in Europe, DATE’08. ACM,
New York, pp 212–217. doi:10.1145/1403375.1403427

46. Hoskote Y, Vangal S, Singh A, Borkar N, Borkar S (2007) A 5-GHz mesh interconnect for a
TeraFlops processor. IEEE Micro 27(5):51–61

47. Howard J, Dighe S, Vangal S, Ruhl G, Borkar N, Jain S, Erraguntla V, Konow M, Riepen
M, Gries M, Droege G, Lund-Larsen T, Steibl S, Borkar S, De V, Van Der Wijngaart
R (2011) A 48-core IA-32 processor in 45 nm CMOS using on-die message-passing and
DVFS for performance and power scaling. IEEE J Solid-State Circuits 46(1):173–183.
doi:10.1109/JSSC.2010.2079450

48. Hu Z, Buyuktosunoglu A, Srinivasan V, Zyuban V, Jacobson H, Bose P (2004) Microarchitec-
tural techniques for power gating of execution units. In: Proceedings of the 2004 international
symposium on low power electronics and design. ACM, pp 32–37

49. Huang PK, Hashemi M, Ghiasi S (2008) System-level performance estimation for
application-specific MPSoC interconnect synthesis. In: Symposium on application specific
processors, SASP 2008, pp 95–100. doi:10.1109/SASP.2008.4570792

http://dx.doi.org/10.1145/2485922.2485950
http://dx.doi.org/10.1109/HPCA.2011.5749724
http://dx.doi.org/10.1145/1837274.1837353
http://dx.doi.org/10.1145/1403375.1403427
http://dx.doi.org/10.1109/JSSC.2010.2079450
http://dx.doi.org/10.1109/SASP.2008.4570792

486 H. Bokhari and S. Parameswaran

50. Iordanou C, Soteriou V, Aisopos K (2014) Hermes: architecting a top-performing fault-
tolerant routing algorithm for networks-on-chips. In: 2014 IEEE 32nd international
conference on computer design (ICCD). IEEE, pp 424–431

51. Jan Y, Jóźwiak L (2012) Communication and memory architecture design of application-
specific high-end multiprocessors. VLSI Des 2012:12:12–12:12. doi:10.1155/2012/794753

52. Javaid H, He X, Ignjatovic A, Parameswaran S (2010) Optimal synthesis of latency and
throughput constrained pipelined MPSoCs targeting streaming applications. In: 2010
IEEE/ACM/IFIP international conference on hardware/software codesign and system syn-
thesis (CODES+ISSS), pp 75–84

53. Jerraya A, Wolf W (2005) Multiprocessor systems-on-chips. Electronics & electrical. Morgan
Kaufmann. http://books.google.com.au/books?id=7i9Z69lrYBoC

54. Kermani P, Kleinrock L (1979) Virtual cut-through: a new computer communication switch-
ing technique. Comput Netw (1976) 3(4):267–286

55. Kim G, Kim J, Yoo S (2011) Flexibuffer: reducing leakage power in on-chip network routers.
In: 2011 48th ACM/EDAC/IEEE design automation conference (DAC), pp 936–941

56. Krishna T, Chen CHO, Kwon WC, Peh LS (2014) Smart: single-cycle multihop traversals
over a shared network on chip. IEEE Micro 34(3):43–56

57. Kumar R, Zyuban V, Tullsen DM (2005) Interconnections in multi-core architectures:
understanding mechanisms, overheads and scaling. In: 32nd international symposium on
computer architecture, ISCA’05. Proceedings. IEEE, pp 408–419

58. Kumar S, Jantsch A, Soininen JP, Forsell M, Millberg M, Oberg J, Tiensyrja K, Hemani A
(2002) A network on chip architecture and design methodology. In: IEEE computer society
annual symposium on VLSI, 2002. Proceedings. IEEE, pp 105–112

59. Le Beux S, Bois G, Nicolescu G, Bouchebaba Y, Langevin M, Paulin P (2010) Combining
mapping and partitioning exploration for NoC-based embedded systems. J Syst Archit
56(7):223–232. doi:10.1016/j.sysarc.2010.03.005

60. Le Beux S, Nicolescu G, Bois G, Bouchebaba Y, Langevin M, Paulin P (2009) Optimizing
configuration and application mapping for MPSoC architectures. In: NASA/ESA conference
on adaptive hardware and systems, AHS 2009, pp 474–481. doi:10.1109/AHS.2009.35

61. Lee HG, Chang N, Ogras UY, Marculescu R (2007) On-chip communication architecture
exploration: a quantitative evaluation of point-to-point, bus, and network-on-chip approaches.
ACM Trans Des Autom Electron Syst (TODAES) 12(3):23

62. Ly D, Saldana M, Chow P (2009) The challenges of using an embedded MPI for hardware-
based processing nodes. In: International conference on field-programmable technology, FPT
2009, pp 120–127. doi:10.1109/FPT.2009.5377688

63. Ma S, Enright Jerger N, Wang Z (2011) DBAR: an efficient routing algorithm to support
multiple concurrent applications in networks-on-chip. In: Proceedings of the 38th annual
international symposium on computer architecture, ISCA’11. ACM, New York, pp 413–424.
doi:10.1145/2000064.2000113

64. Mahadevan S, Angiolini F, Storgaard M, ndahl Olsen RG, SparsøJ (2005) A network traffic
generator model for fast network-on-chip simulation. In: Proceedings of design, automation
and test in Europe conference and exhibition (DATE). Mahadevan05.pdf

65. Matsutani H, Koibuchi M, Ikebuchi D, Usami K, Nakamura H, Amano H (2011) Perfor-
mance, area, and power evaluations of ultrafine-grained run-time power-gating routers for
CMPs. IEEE Trans Comput-Aided Des Integr Circuits Syst 30(4):520–533. doi:10.1109/T-
CAD.2011.2110470

66. Matsutani H, Koibuchi M, Wang D, Amano H (2008) Adding slow-silent virtual channels for
low-power on-chip networks. In: Second ACM/IEEE international symposium on networks-
on-chip, NoCS 2008, pp 23–32. doi:10.1109/NOCS.2008.4492722

67. Medardoni S (2009) Driving the network-on-chip revolution to remove the interconnect
bottleneck in nanoscale multi-processor systems-on-chip. Ph.D. thesis, Università degli studi
di Ferrara

68. Mirzoyan D, Akesson B, Goossens K (2014) Process-variation aware mapping of best-effort
and real-time streaming applications to MPSoCs. ACM Trans Embed Comput Syst (TECS)
13(61):61:1–61:24

http://dx.doi.org/10.1155/2012/794753
http://books.google.com.au/books?id=7i9Z69lrYBoC
http://dx.doi.org/10.1016/j.sysarc.2010.03.005
http://dx.doi.org/10.1109/AHS.2009.35
http://dx.doi.org/10.1109/FPT.2009.5377688
http://dx.doi.org/10.1145/2000064.2000113
http://Mahadevan05.pdf
http://dx.doi.org/10.1109/TCAD.2011.2110470
http://dx.doi.org/10.1109/NOCS.2008.4492722

15 Network-on-Chip Design 487

69. Mishra A, Das R, Eachempati S, Iyer R, Vijaykrishnan N, Das C (2009) A case for dynamic
frequency tuning in on-chip networks. In: 42nd annual IEEE/ACM international symposium
on microarchitecture, MICRO-42, pp 292–303

70. Mishra AK, Mutlu O, Das CR (2013) A heterogeneous multiple network-on-chip design:
an application-aware approach. In: Proceedings of the 50th annual design automation
conference, DAC’13. ACM, New York, pp 36:1–36:10. doi:10.1145/2463209.2488779

71. Moscibroda T, Mutlu O (2009) A case for bufferless routing in on-chip networks. SIGARCH
Comput Archit News 37(3):196–207. doi:10.1145/1555815.1555781

72. Murali S, Benini L, De Micheli G (2007) An application-specific design methodology for
on-chip crossbar generation. IEEE Trans Comput-Aided Des Integr Circuits Syst 26(7):1283–
1296. doi:10.1109/TCAD.2006.888284

73. Murali S, Coenen M, Radulescu A, Goossens K, De Micheli G (2006) Mapping and
configuration methods for multi-use-case networks on chips. In: Asia and South Pacific
conference on design automation, 6pp. doi:10.1109/ASPDAC.2006.1594673

74. Murali S, Coenen M, Rădulescu A, Goossens K, De Micheli G (2006) A methodology for
mapping multiple use-cases on to networks on chip. In: Proceedings of design, automation
and test in Europe conference and exhibition (DATE). European Design and Automation
Association, 3001 Leuven, pp 118–123

75. Nejad AB, Goossens K, Walters J, Kienhuis B (2009) Mapping KPN models of streaming
applications on a network-on-chip platform. In: Proceedings of annual workshop on circuits,
systems and signal processing (ProRisc)

76. Nesson T, Johnsson SL (1995) ROMM routing on mesh and torus networks. In: Proceedings
of the seventh annual ACM symposium on parallel algorithms and architectures. ACM,
pp 275–287

77. Nikitin N, Cortadella J (2012) Static task mapping for tiled chip multiprocessors with multiple
voltage islands. In: Proceedings of the 25th international conference on architecture of
computing systems (ARCS), pp 50–62

78. Ogras UY, Marculescu R, Marculescu D, Jung EG (2009) Design and management of voltage-
frequency island partitioned networks-on-chip. IEEE Trans Very Large Scale Integr (VLSI)
Syst 17(3):330–341

79. Palesi M, Holsmark R, Kumar S, Catania V (2006) A methodology for design of application
specific deadlock-free routing algorithms for NoC systems. In: Proceedings of the 4th
international conference on hardware/software codesign and system synthesis. ACM, pp 142–
147

80. Parikh R, Das R, Bertacco V (2014) Power-aware NoCs through routing and topology
reconfiguration. In: 2014 51st ACM/EDAC/IEEE design automation conference (DAC).
IEEE, pp 1–6

81. Park S, Krishna T, Chen CH, Daya B, Chandrakasan A, Peh LS (2012) Approaching the
theoretical limits of a mesh NoC with a 16-node chip prototype in 45 nm soi. In: Proceedings
of the 49th annual design automation conference, DAC’12. ACM, New York, pp 398–405.
doi:10.1145/2228360.2228431

82. Passas G, Katevenis M, Pnevmatikatos D (2012) Crossbar NoCs are scalable beyond 100
nodes. IEEE Trans Comput-Aided Des Integr Circuits Syst 31(4):573–585

83. Peh L, Jerger N (2009) On-chip networks (synthesis lectures on computer architecture).
Morgan and Claypool, San Rafael

84. Phillips S (2014) M7: next generation sparc. In: Hot chips: a symposium on high performance
chips

85. Rădulescu A, Dielissen J, Goossens K, Rijpkema E, Wielage P (2004) An efficient
on-chip network interface offering guaranteed services, shared-memory abstraction, and
flexible network programming. In: Proceedings of design, automation and test in Eu-
rope conference and exhibition (DATE), vol 2. IEEE Computer Society, Washington, DC,
pp 878–883

86. Salamy H, Ramanujam J (2012) An effective solution to task scheduling and memory
partitioning for multiprocessor system-on-chip. IEEE Trans Comput-Aided Des Integr
Circuits Syst 31(5):717–725. doi:10.1109/TCAD.2011.2181848

http://dx.doi.org/10.1145/2463209.2488779
http://dx.doi.org/10.1145/1555815.1555781
http://dx.doi.org/10.1109/TCAD.2006.888284
http://dx.doi.org/10.1109/ASPDAC.2006.1594673
http://dx.doi.org/10.1145/2228360.2228431
http://dx.doi.org/10.1109/TCAD.2011.2181848

488 H. Bokhari and S. Parameswaran

87. Salminen E, Lahtinen V, Kuusilinna K, Hamalainen T (2002) Overview of bus-based system-
on-chip interconnections. In: IEEE international symposium on circuits and systems, ISCAS
2002, vol 2. IEEE, pp II–372

88. Samih A, Wang R, Krishna A, Maciocco C, Tai C, Solihin Y (2013) Energy-efficient inter-
connect via router parking. In: 2013 IEEE 19th international symposium on high performance
computer architecture (HPCA2013), pp 508–519. doi:10.1109/HPCA.2013.6522345

89. Seiculescu C, Murali S, Benini L, De Micheli G (2009) NoC topology synthesis for
supporting shutdown of voltage islands in SoCs. In: 46th ACM/IEEE design automation
conference, DAC’09, pp 822–825

90. Seiculescu C, Murali S, Benini L, De Micheli G (2010) A method to remove deadlocks in
networks-on-chips with wormhole flow control. In: Proceedings of the conference on design,
automation and test in Europe. European Design and Automation Association, pp 1625–
1628

91. Shafik RA, Rosinger P, Al-Hashimi BM (2008) MPEG-based performance comparison
between network-on-chip and AMBA MPSoC. In: 11th IEEE workshop on design and
diagnostics of electronic circuits and systems (DDECS) 2008, pp 1–6

92. Shang L, Peh LS, Jha N (2003) Dynamic voltage scaling with links for power opti-
mization of interconnection networks. In: The ninth international symposium on high-
performance computer architecture, HPCA-9 2003. Proceedings, pp 91–102. doi:10.1109/H-
PCA.2003.1183527

93. Singh AK, Shafique M, Kumar A, Henkel J (2013) Mapping on multi/many-core systems:
survey of current and emerging trends. In: Proceedings of the 50th IEEE/ACM design
automation conference (DAC), pp 1:1–1:10. doi:10.1145/2463209.2488734

94. Soteriou V, Peh LS (2007) Exploring the design space of self-regulating power-aware on/off
interconnection networks. IEEE Trans Parallel Distrib Syst 18(3):393–408. doi:10.1109/T-
PDS.2007.43

95. Srinivasan K, Chatha KS (2006) A low complexity heuristic for design of custom
network-on-chip architectures. In: Proceedings of the conference on design, automa-
tion and test in Europe: Proceedings. European Design and Automation Association,
pp 130–135

96. Stergiou S, Angiolini F, Carta S, Raffo L, Bertozzi D, De Micheli G (2005) Xpipes lite: a
synthesis oriented design library for networks on chips. In: Design, automation and test in
Europe, 2005. Proceedings, vol 2, pp 1188–1193. doi:10.1109/DATE.2005.1

97. Stuijk S (2007) Predictable mapping of streaming applications on multiprocessors. Ph.D.
thesis, Eindhoven University of Technology

98. Stuijk S, Basten T, Geilen M, Corporaal H (2007) Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs. In: 44th ACM/IEEE design automation
conference, DAC’07, pp 777–782

99. Teich J (2012) Hardware/software codesign: the past, the present, and predicting the future.
Proc IEEE 100(Special Centennial Issue), 1411–1430. doi:10.1109/JPROC.2011.2182009

100. Thiele L, Bacivarov I, Haid W, Huang K (2007) Mapping applications to tiled multiprocessor
embedded systems. In: International conference on application of concurrency to system
design, pp 29–40. doi:10.1109/ACSD.2007.53

101. Towles B, Grossman J, Greskamp B, Shaw DE (2014) Unifying on-chip and inter-node
switching within the Anton2 network. In: 2014 ACM/IEEE 41st international symposium
on computer architecture (ISCA). IEEE, pp 1–12

102. Weichslgartner A, Gangadharan D, Wildermann S, GlaßM, Teich J (2014) DAARM: design-
time application analysis and run-time mapping for predictable execution in many-core
systems. In: Proceedings of the international conference on hardware/software codesign and
system synthesis (CODES+ISSS), pp 34:1–34:10. doi:10.1145/2656075.2656083

103. Wentzlaff D, Griffin P, Hoffmann H, Bao L, Edwards B, Ramey C, Mattina M, Miao CC,
Brown III JF, Agarwal A (2007) On-chip interconnection architecture of the tile processor.
IEEE Micro 27(5):15–31. doi:10.1109/MM.2007.89

http://dx.doi.org/10.1109/HPCA.2013.6522345
http://dx.doi.org/10.1109/HPCA.2003.1183527
http://dx.doi.org/10.1145/2463209.2488734
http://dx.doi.org/10.1109/TPDS.2007.43
http://dx.doi.org/10.1109/DATE.2005.1
http://dx.doi.org/10.1109/JPROC.2011.2182009
http://dx.doi.org/10.1109/ACSD.2007.53
http://dx.doi.org/10.1145/2656075.2656083
http://dx.doi.org/10.1109/MM.2007.89

15 Network-on-Chip Design 489

104. Yoo J, Lee D, Yoo S, Choi K (2007) Communication architecture synthesis of cascaded
bus matrix. In: Asia and South Pacific, design automation conference, ASP-DAC’07. IEEE,
pp 171–177

105. Yoo S, Rha K, Cho Y, Kung J, Choi K (2002) Performance estimation of multiple-cache
IP-based systems: case study of an interdependency problem and application of an extended
shared memory model. In: International workshop on hardware/software codesign (CODES)

106. Zhan J, Stoimenov N, Ouyang J, Thiele L, Narayanan V, Xie Y (2013) Designing energy-
efficient NoC for real-time embedded systems through slack optimization. In: Proceedings of
the 50th annual design automation conference. ACM, p 37

107. Zhang YP, Jeong T, Chen F, Wu H, Nitzsche R, Gao GR (2006) A study of the on-chip
interconnection network for the IBM Cyclops64 multi-core architecture. In: IEEE parallel
and distributed processing symposium (IPDPS)

108. Zhu J, Sander I, Jantsch A (2010) Constrained global scheduling of streaming applications on
MPSoCs. In: 2010 15th Asia and South Pacific design automation conference (ASP-DAC),
pp 223–228. doi:10.1109/ASPDAC.2010.5419892

109. Zimmer C, Mueller F (2012) Low contention mapping of real-time tasks onto TilePro64 core
processors. In: Proceedings of the 2012 IEEE 18th real time and embedded technology and
applications symposium, RTAS’12. IEEE Computer Society, Washington, DC, pp 131–140.
doi:10.1109/RTAS.2012.36

http://dx.doi.org/10.1109/ASPDAC.2010.5419892
http://dx.doi.org/10.1109/RTAS.2012.36

16NoC-Based Multiprocessor Architecture
for Mixed-Time-Criticality Applications

Kees Goossens, Martijn Koedam, Andrew Nelson,
Shubhendu Sinha, Sven Goossens, Yonghui Li, Gabriela Breaban,
Reinier van Kampenhout, Rasool Tavakoli, Juan Valencia,
Hadi Ahmadi Balef, Benny Akesson, Sander Stuijk, Marc Geilen,
Dip Goswami, and Majid Nabi

Abstract

In this chapter we define what a mixed-time-criticality system is and what its
requirements are. After defining the concepts that such systems should follow,
we described CompSOC, which is one example of a mixed-time-criticality
platform. We describe, in detail, how multiple resources, such as processors,
memories, and interconnect, are combined into a larger hardware platform, and
especially how they are shared between applications using different arbitration
schemes. Following this, the software architecture that transforms the single
hardware platform into multiple virtual execution platforms, one per application,
is described.

Acronyms

AHB Advanced High-performance Bus
ASIC Application-Specific Integrated Circuit
AXI Advanced eXtensible Interface
BD Budget Descriptor
CCSP Credit-Controlled Static Priority
CDC Clock Domain Crossing
CM Communication Memory
DLMB Data Local Memory Bus
DMA Direct Memory Access

K. Goossens (�) • M. Koedam • A. Nelson • S. Sinha • S. Goossens • Y. Li • G. Breaban •
R. van Kampenhout • R. Tavakoli • J. Valencia • H.A. Balef • B. Akesson • S. Stuijk •
M. Geilen • D. Goswami • M. Nabi
Eindhoven University of Technology, Eindhoven, The Netherlands
e-mail: k.g.w.goossens@tue.nl; m.l.p.j.koedam@tue.nl; a.t.nelson@tue.nl; s.sinha@tue.nl;
s.l.m.goossens@tue.nl; yonghui.li@tue.nl; g.breaban@tue.nl; j.r.v.kampenhout@tue.nl;
r.tavakoli@tue.nl; j.valencia@tue.nl; h.ahmadi.balef@tue.nl; k.b.akesson@tue.nl; s.stuijk@tue.nl;
m.c.w.geilen@tue.nl; d.goswami@tue.nl; m.nabi@tue.nl

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_17

491

mailto:k.g.w.goossens@tue.nl
mailto:m.l.p.j.koedam@tue.nl
mailto:a.t.nelson@tue.nl
mailto:s.sinha@tue.nl
mailto:s.l.m.goossens@tue.nl
mailto:yonghui.li@tue.nl
mailto:g.breaban@tue.nl
mailto:j.r.v.kampenhout@tue.nl
mailto:r.tavakoli@tue.nl
mailto:j.valencia@tue.nl
mailto:h.ahmadi.balef@tue.nl
mailto:k.b.akesson@tue.nl
mailto:s.stuijk@tue.nl
mailto:m.c.w.geilen@tue.nl
mailto:d.goswami@tue.nl
mailto:m.nabi@tue.nl

492 K. Goossens et al.

DMAMEM DMA Memory
DMEM Data Memory
DRAM Dynamic Random-Access Memory
ELF Executable and Linkable Format
ET Execution Time
ETSCH Extended TSCH
FBSP Frame-Based Static Priority
FIFO First-In First-Out
FPGA Field-Programmable Gate Array
GALS Globally Asynchronous Locally Synchronous
ILMB Instruction Local Memory Bus
IMEM Instruction Memory
I/O Input/Output
IP Intellectual Property
IPB Intellectual Property Block
KPN Kahn Process Network
MAC Media Access Control
MMIO Memory-Mapped I/O
MPSoC Multi-Processor System-on-Chip
NI Network Interface
NoC Network-on-Chip
PLB Processor Local Bus
RR Round Robin
RT Response Time
RTOS Real-Time Operating System
SI Scheduling Interval
SoC System-on-Chip
SPI Serial Peripheral Interface
SRAM Static Random-Access Memory
TDM Time-Division Multiplexing
TFT Thin-Film Transistor
TIFU Timer, Interrupt, and Frequency Unit
TSCH Time-Synchronised Channel Hopping
TTA Transport-Triggered Architecture
UART Universal Asynchronous Receiver/Transmitter
VEP Virtual Execution Platform
WCET Worst-Case Execution Time
WCRT Worst-Case Response Time

Contents

16.1 Introduction and Requirements . 493
16.2 Concepts for a Mixed-Time-Criticality Platform . 494
16.3 Hardware Architecture . 497

16.3.1 Generic Master IP Block . 498

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 493

16.3.2 Generic Slave IP Block and Memory Tile . 498
16.3.3 Processor Tile . 501
16.3.4 Network-On-Chip . 503
16.3.5 Peripherals . 504
16.3.6 Memory Map . 504
16.3.7 Atomicity . 505
16.3.8 No Synchronization Hardware . 506
16.3.9 Conclusions . 507

16.4 Software Architecture . 507
16.4.1 Microkernel and RTOS . 510
16.4.2 Drivers . 512
16.4.3 Virtual Resources and Their Management . 514
16.4.4 Synchronization Libraries and Programming Models 516
16.4.5 System Application and Application Loading . 522
16.4.6 Conclusions . 523

16.5 Example CompSOC Platform Instance . 524
16.6 Related Work . 526
16.7 Conclusions . 527
References . 527

16.1 Introduction and Requirements

Electronics is pervasive: it enables applications and functions that we have come to
expect from appliances as diverse as cars, planes, mobile phones, fridges, and light
switches. At the heart of these appliances are Systems-on-Chips (SoCs) that execute
the applications. Traditionally, each SoC executed one application, but to reduce
cost, multiple applications are increasingly executed on the same SoC. Different
applications have different requirements, such as high performance, varying degrees
of real time, and safety. In this chapter, we focus on mixed-time-criticality systems,
i.e., those featuring a combination of applications with and without real-time
requirements, respectively. We do not consider other, equally important, criticality
aspects, such as safety or resilience. Applications with real-time requirements can
be as diverse as motor management, braking, or vehicle stability in a car or wired
and wireless communication stacks in mobile phones or computers. This type of
applications should always finish computations before given deadlines to ensure
correctness and/or safety. In contrast, applications such as a graphical user interface
or file management should be responsive to the user but do not have real-time
requirements. Audio and video analysis, e.g., for night vision in a car, and media
playback are an intermediate category where deadlines should generally be met but
may occasionally be missed.

In this chapter, we will define a mixed-criticality platform, i.e., a general tem-
plate, for systems that execute multiple applications with different time criticalities.
Given the examples of (non)-real-time applications, we can state the requirements
for such platforms.

494 K. Goossens et al.

1. Guaranteed worst-case performance for real-time applications. We call this
predictability, by which we mean that the Worst-Case Response Time (WCRT)
of an application can be computed at design time. The Worst-Case Response
Time is what has to be guaranteed, but it is usually advantageous to additionally
minimize the actual Response Time (RT).

2. As good as possible, actual-case performance for non-real-time applications.
Unlike real-time applications, the worst-case response time is not relevant and
may not even exist. The average or actual response time should therefore be
minimized instead.

3. The absence of interference between applications. The guaranteed or best-
possible performance has to be guaranteed for each real-time and non-real-time
application, even though they share the same platform (resources). To be able
to do this independently per application, we additionally require that the actual
execution time of an application is independent of other applications. It then
follows that worst-case execution and response times are independent too. We
call this composability. It helps to isolate (software) faults of applications,
increasing robustness. Perhaps more importantly, it allows each application
to be developed, tested, and deployed independently, which is required for
certification. It also eases upgrading part of a system, without having to retest
or recertify the system as a whole.

In this chapter, we describe the CompSOC platform, which is an example of
a mixed-criticality platform that meets all the requirements. First, we define the
concepts that underpin the CompSOC platform but which are common to many
of mixed-criticality platforms (discussed in Sect. 16.6). We describe the hardware
architecture of CompSOC in Sect. 16.3 and the software architecture in Sect. 16.4.
An example usage of the CompSOC platform is given in Sect. 16.5. We conclude in
Sect. 16.7.

16.2 Concepts for a Mixed-Time-Criticality Platform

First we need to introduce some terminology. An application is an independent
(possibly cyclic) graph of communicating tasks. Tasks use platform resources,
such as processors, memories, Direct Memory Accesss (DMAs), and interconnect.
We model this with the notion of a requestor, e.g., a software task requesting
computation from a processor, communication from the Network-on-Chip (NoC),
or storage from a memory. Each requestor uses only one resource. A requestor
generates requests, such as computing a function or a memory transaction. As
illustrated in Fig. 16.1a, resources serve requestors in discrete uninterrupted units
called service units, and a request consists of one or more service units (possibly
infinitely many). The execution of a service unit by a resource takes an actual
Execution Time (ET), which is less than or equal to its Worst-Case Execution
Time (WCET) if it exists (i.e., it is finite). The WCET of a requestor is equal to
the largest WCET of its requests. A resource is predictable if all service units have

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 495

resource

RT

ET

requests

atom.

atom.

finite-size
request
(atom)

responses

delay

delay

responses
A

execution

execution

execution

wait

wait

wait

SI

RT
ET

Time View on Execution and Response TimesArchitecture View on Execution and Response Times

a b arrive start finish

atom.

atom.

WCRT
re

qu
es

to
rs

service
unit

Fig. 16.1 Terminology. (a) Request, response, service unit, execution and response time, arbitra-
tion (A in the figure), and resource. The atom and atomizer will be discussed in Sect. 16.3.2. (b)
Arrival, start, finish, and scheduling interval

a WCET. A resource is composable if the response and the execution time of every
request of an application do not change when also executing any number of requests
of different applications on the resource.

A resource is shared if it executes requests of multiple requestors, which may
belong to different applications. The execution time of a service unit does not
take into account waiting time for other service units from the same or different
requestors. Instead, this is captured by its actual response time and its Worst-Case
Response Time (WCRT). (As before, we say the WCRT exists if it is finite. The
WCRT of a requestor is equal to the largest WCRT of its requests.) The waiting
time depends on the arbitration employed to determine the order of execution of
the service units of the different requestors, shown by A in Fig. 16.1a. Possible
arbitration policies include Round Robin (RR), Time-Division Multiplexing (TDM),
Credit-Controlled Static Priority (CCSP) [5], Frame-Based Static Priority (FBSP)
[2], etc., each with their own characteristics and (dis)advantages which we will

discuss later. An arbiter is predictable if all requests have a WCRT (i.e., it is finite),
assuming that their ETs are finite. (Thus, even with a predictable arbiter, a request
may have no (i.e., infinite) WCRT if the resource is unpredictable.) Similarly, an
arbiter is composable if the response and the response time of every request of an
application do not change when also executing any number of requests of different
applications on the resource.

The resource requirements of a requestor are specified using a budget. A
requestor can use a resource only after its budget has been reserved. A resource
may be idle, i.e., no service unit is executed. This may occur if not all of its capacity
has been reserved or if a requestor does not use all of its reservation. Arbitration is
work conserving if the resource is not idle whenever a service unit is waiting to be
executed.

Figure 16.1b illustrates the Scheduling Interval (SI) of a resource as the
time between accepting successive service units, and its reciprocal (service units
per second) defines the throughput. Resources are often pipelined, and then the
reciprocal of the scheduling interval defines a higher throughput than the reciprocal

496 K. Goossens et al.

of the execution time. From the response times of individual requests (executing on
processors, interconnect, or accessing memories), it must be possible to compute the
performance (worst-case response time, throughput, etc.) of a real-time application
as a whole. As an example, [37] illustrates how to do this using the dataflow model
of computation.

Given the terminology, these are the seven concepts on which we base our mixed-
time-criticality platform:

1. Budgets. Reserving part of a resource for a requestor belonging to an application
according to its budget results in a virtual resource. Only then can a requestor use
the resource.

2. Predictability. Arbitration between requestors of a real-time application must
be predictable. Predictable arbitration ensures that a virtual resource offered by
a single resource has a minimum guaranteed performance as specified in the
budget. Arbitration is preferably work conserving such that requestors of an
application can use each other’s unused capacity.

3. Composability. Arbitration between requestors of different applications must be
composable: the behavior of one application must not be affected by the behavior
of other applications. Composable arbitration ensures that (the performance
of) a virtual resource is independent of other virtual resources on the same
resource. This implies that the arbitration cannot be work conserving because
then (variable) execution times of one application could affect the response time
of other applications.

4. Scalability. Decouple resources as much as possible. Logically, this means that
each resource arbitrates locally, with a suitable service unit and arbiter to enforce
the reserved budgets. This disallows synchronization hardware, such as mutexes,
locks, and semaphores, as we will discuss in Sect. 16.3.8. Physically, decoupling
requires that all hardware Intellectual Property Blocks (IPBs) use independent
clocks because in modern Multi-Processor Systems-on-Chips (MPSoCs), it is no
longer possible to use a single clock. This is called the Globally Asynchronous
Locally Synchronous (GALS) design style. Logical and physical decoupling im-
prove scalability by avoiding centralized and tightly synchronized architectures.

5. Finite scheduling interval. As a consequence of Bullet 3, resources that are
shared by multiple applications must ensure that no (service unit of a) requestor
can indefinitely block others from using the resource. This is achieved with a
finite scheduling interval, implemented either by chopping (possibly infinitely
large) requests into service units with a finite WCET or else by preempting the
resource within a finite time.

6. Efficient arbitration. If possible, avoid arbitration on a resource; e.g., a DMA
is cheap enough to just replicate. Otherwise, at least one level of composable
arbitration is required to arbitrate between requests belonging to different
applications as well as between requests of the same application. (If a resource
is used by only one application, then only one level of arbitration is needed,
which must be predictable at most.) Preferably, two levels of arbitration are used:
the first level to separate different applications and the second level to separate

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 497

requests of the same application. The former must be composable, and the latter
predictable. For each resource, we will discuss in depth what kind of arbitration
it can efficiently support.

7. Efficient resource sharing. As an optimization, the scheduling interval should
be as small as possible. This allows interleaving the service of requestors as
finely as possible and reduces response times [57]. How small the scheduling
interval (and service units) can be depends strongly on the resource.

The above ingredients can be combined in the concept of a Virtual Execution
Platform (VEP) per application. This means that an application’s budget is reserved
on all of the platform resources it requires, creating a smaller virtual platform
on which it executes. A VEP is composable, i.e., independent of other VEPs
and applications running therein. Within a VEP, an application may use its own
programming model, arbitration, and so on, as long as it complies with the
requirements outlined above. The CompSOC platform is an operational prototype
implementing the concepts just described. It is our running example, as we go
through the details in the remainder of this chapter. In the next section, we describe
the hardware components of the CompSOC platform, followed by the software stack
in Sect. 16.4. We discuss related work in Sect. 16.6 before concluding in Sect. 16.7.

16.3 Hardware Architecture

MPSoCs contain multiple processors with local and shared memories. The proces-
sor’s local memories are always on-chip Static Random-Access Memory (SRAM),
close to the processor. Nonlocal memories shared between processors may be
on-chip SRAM but often include off-chip Dynamic Random-Access Memory
(DRAM). The latter has a much larger capacity (number of bits) than the on-
chip memory, but at the cost of a longer execution time. Processors reach shared
memories using a communication infrastructure, which is increasingly a NoC. A
NoC is a miniature version of the Internet in the sense that communication is
concurrent, is distributed, and is either packet based or circuit switched. In this
section, we introduce the CompSOC hardware platform. It not only fits the generic
MPSoC description, it also addresses all the requirements listed in Sect. 16.1. As a
result, it can run multiple applications of different criticalities at the same time.

The CompSOC platform consists of multiple tiles interconnect by a NoC. Tile
types are master tiles, slave tiles, or a mix and include processor tiles, memory
tiles, peripheral tiles, etc. In the following sections, we discuss each component
in turn. Regarding terminology, an IPB, such as a memory, processor, or DMA,
may have zero or more master and slave ports. Master ports initiate requests, i.e.,
read and write transactions, using a standard communication protocol, such as
Processor Local Bus (PLB), Advanced High-performance Bus (AHB), or Advanced
eXtensible Interface (AXI). Slave ports accept requests, and the slave executes them,
possibly returning a response. In the following, we will shorten “master (slave) port
on an IPB” to just “master (slave) IPB.”

498 K. Goossens et al.

In the following sections, we will introduce master and slave IPBs, followed by
processor tile that is a hybrid master-slave IPB. Described next is how all IPBs
use distributed shared memory to communicate and how this is implemented by
the NoC and the memory map. Finally, we will discuss atomic and synchronized
communication.

16.3.1 Generic Master IP Block

A master IPB initiates read or write transactions that are to be transported by the
NoC to a slave IPB for execution. The generic architecture of a master IPB is shown
in the middle of Fig. 16.2. As will be explained in more detail in Sect. 16.3.6, ports
on the NoC are connected pair-wise: only one slave IPB can be reached from a
master single port. For this reason, a master IPB requires a NoC port for each
slave it communicates with. The multiplexer labeled M3 determines to which slave
a transaction is bound, depending on the transaction address. Any responses are
interleaved in the order of the requests by the (de)multiplexer M3, before being
returned to the master IPB [21]. The multiplexer and the master IPB may be
programmed using the rightmost slave port on the tile.

16.3.2 Generic Slave IP Block and Memory Tile

Memory tiles only contain one slave resource that accepts requests from multiple
requestors. Although we describe the architecture of the memory tile, it is essentially
the same as that of any generic shared slave IPB. Each requestor has a dedicated
NoC port on the tile, as illustrated by the general slave tile on the left in Fig. 16.2.
Requests take the form of transactions, using, e.g., the PLB or AXI protocol. It is
possible to read or write one or more words of 4 bytes, with a byte mask applied
to each word in the transaction. Note, however, that in theory transactions can be
infinitely long and that they can take a long (or even infinite) time to arrive. It may
thus not be possible to buffer an entire transaction (request). For this reason, an
atomizer chops incoming requests into complete fixed-size aligned requests (also
called atoms). Note that even though these requests have a finite size, their execution
time may be infinite; consider, for example, a while(1); request.

16.3.2.1 Arbitration
When a service unit is complete, it is ready to be scheduled by the arbiter, according
to some policy. If the slave is only used by a single non-real-time application, then
any arbitration policy may be used; if it is a real-time application, then the policy
must be predictable for a WCRT, such as RR, TDM, or CCSP. However, it is likely
that slaves such as SRAM are used by multiple applications. In this case, the actual
execution times of service units of different applications must be independent. TDM
is a simple arbiter that achieves this [18], but it is also possible to use any predictable
arbiter (RR, CCSP, etc.) in combination with delay blocks [3]. A delay block, shown

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 499

sl
av

e

at
om

.

de
la

y

at
om

.

de
la

y

m
as

te
r

pr
oc

.

IM
E

M

D
M

E
M

D
M

A
-

M
E

M

C
M

E
M

TI
FU

D
M

A

V

sh
el

l
sh

el
l

C
D

C
C

D
C

ro
ut

er

A sh
el

l

C
D

C

sh
el

l

C
D

C

sh
el

l

C
D

C

sh
el

l

C
D

C

sh
el

l
sh

el
l

C
D

C

sh
el

l

C
D

C

ro
ut

er

ro
ut

er
ro

ut
er

C
P

M

M
3

A

M1

ne
tw

or
k

in
te

rfa
ce

ne

tw
or

k
in

te
rfa

ce

ne
tw

or
k

in
te

rfa
ce

ne
tw

or
k

in
te

rfa
ce

ne

tw
or

k
in

te
rfa

ce
N

I

C
D

C
C

D
C

C
D

C

M
2

M

V

M
3

sh
el

l

C
N

C
N

C

N

Fi
g

.
1

6
.2

E
xa

m
pl

e
C

om
pS

O
C

ha
rd

w
ar

e
pl

at
fo

rm
in

st
an

ce
.A

rr
ow

s
po

in
tf

ro
m

a
m

as
te

r
(i

ni
tia

to
r)

po
rt

to
a

sl
av

e
(t

ar
ge

t)
po

rt
.D

as
he

d
ar

ro
w

s
in

di
ca

te
co

nt
ro

l
co

nn
ec

tio
ns

to
pr

og
ra

m
ar

bi
te

rs
,m

em
or

y
m

ap
s,

an
d

IP
B

s.
A

is
an

ar
bi

te
r,

C
is

a
co

nt
ro

lc
on

ne
ct

io
n,

an
d

M
ar

e
m

em
or

y
m

ap
s

500 K. Goossens et al.

in the slave tile of Fig. 16.2, only releases a response from the slave at the WCRT,
cf. Fig. 16.1. Since the WCRT takes into account the worst-case interference from
other applications, the delay block enforces a response time that is independent from
other applications.

When arbitration has to be composable, predictable arbiters (RR, CCSP, etc.)
with a delay block may offer more flexibility than a composable arbiter (TDM).
In particular, since TDM inversely couples throughput and response time, a small
WCRT is only possible with large budget, which the requestor may not need.
Especially for memories that are loaded heavily, such as DRAM (see below), over-
reservation may not be acceptable. On the other hand, TDM has the advantage
that it is easier to reprogram the budget of a single application without affecting
other running applications [18]. Resources that have small service units, such as
memories, require arbitration to be implemented in hardware. It is then not practical
to use a two-level arbiter that is composable between applications and predictable
within an application, because it requires fixing the number of requestors per
application in the hardware, which is expensive and inflexible.

The arbiter in the tile, the delay block, and the IPB may all be programmable,
which is done by write transactions on the tile’s slave port, which is then demulti-
plexed with a fixed memory map (M in Fig. 16.2) to the appropriate block.

16.3.2.2 SRAM
SRAM is the prototypical slave IPB. The service unit is usually as small as one
word, which necessitates a fast (and thus simple) hardware arbiter. SRAMs are often
shared within a single application, e.g., Communication Memory (CM), and round
robin arbitration is then used. To share between applications, atomizers are required,
and usually service units of a single word and a RR arbiter are used.

�Chapter 13, “Memory Architectures” gives more information about general
SoC memory hierarchies.

16.3.2.3 DRAM
A DRAM tile has the same structure as an SRAM tile, but the DRAM itself
has quite different characteristics. In particular, its service units are more com-
plex [1, 4, 9, 17, 30]. Reading and writing in a DRAM require sending a number
of commands (activate, read/write, precharge, refresh). For a reasonable efficiency,
it is required to use bursts of data, typically with a length of eight words for most
contemporary DDR memories, and then pipeline the DRAM commands to a single
DRAM bank and/or across multiple DRAM banks. A traditional (non-real-time)
DRAM controller schedules commands dynamically as service units arrive, using
an open-page policy [4]. It is hard to analyze the execution time of each service
unit because the time between successive DRAM commands varies a lot, depending
whether the data that is accessed is in a bank that is open (activated) or not.

For this reason, CompSOC’s real-time Raptor memory controller uses a close-
page policy that ensures that the ET of a service unit is predictable [13] or even con-
stant [18]. The memory commands for the service units have to be programmed into
the memory controller, using the rightmost dotted line in the slave tile of Fig. 16.2.

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 501

With a predicable ET of a service unit, the execution time of a service unit
can still depend on the preceding service unit, e.g., depending on whether it
was a read or a write. This can be prevented by scheduling memory commands
differently, resulting in composable service units that have a constant execu-
tion time. It has been shown in [18] that composable service units can be
used with several generations of DRAM memories with a negligible impact on
performance.

The DRAM is usually a heavily loaded resource and used by multiple appli-
cations. It is possible to use predictable service units with a predictable arbiter
(e.g., RR, CCSP) and delay blocks (recall that the constant WCRT eliminates
all interference) [3]. Alternatively, composable service units may be used, with a
composable arbiter (TDM) [18], with the advantages and disadvantages discussed
in the previous section.

16.3.3 Processor Tile

Having introduced basic master and slave tiles, we now discuss the processor tile,
which is a mix of both. As shown on the right of Fig. 16.2, it contains a processor
(in our prototype, a Microblaze or ARM Cortex M0) with an Instruction Memory
(IMEM) and a Data Memory (DMEM). The memories are usually tightly coupled
(i.e., have a single-cycle access time) using Instruction Local Memory Bus (ILMB)
and Data Local Memory Bus (DLMB) busses.

There are no caches in the tile, because it must be possible to compute the WCET
of a task on the processor if predictability is required. We do not use caches because
the WCET would then not only depend on the processor but also on the time for
cache misses. It is possible to take into account the WCET of the interconnect and
remote (off-tile) memories to compute remote memory accesses [23]. However,
we decided to keep the architecture and performance analysis simple and not
use caches. A second, more important reason to omit caches is to adhere to
Concept 1 of budgets: the WCRT of a task on a processor then only depends on
the budget of the processor on which it runs. This allows the WCRT of all tasks
to be computed independently of other tasks and of how their communication and
storage are mapped on the platform. Performance analysis is thus compositional,
i.e., consisting of independent smaller analyses. This simplifies the design and
verification flow [14].

A processor cannot access remote memories directly. Otherwise, similarly to
caches, the WCET of a task would depend on read and write transactions to a remote
memory, i.e., the arbitration in the NoC and remote memory. Additionally, since
sharing a processor between applications must be composable, its service units are
enforced by preemption through interrupts, as explained in Sect. 16.4.1. However,
since simpler processors, such as Microblaze and ARM Cortex M0/3/4, do not allow
read and write transactions to be interrupted, the interrupt service latency could be
very long. By using a DMA to access remote memories, the data transfer between
local and remote memories is executed independently and concurrently with the

502 K. Goossens et al.

processor. The task that programmed the DMA can be interrupted in a few cycles
and swapped out, for an efficient implementation of composable sharing of the
processor.

The execution time of a task on the processor may depend on tasks that executed
before it, due to the processor’s internal state. For example, when the processor
implements branch prediction, the predictor state is not automatically reset between
task switches. Cache pollution is another example, although we already eliminated
it by excluding the use of caches. Since composability requires that the execution
time of an application is independent of other applications (running earlier or
concurrently), we ensure that the processor is reset to a neutral state [14] between
application switches by resetting the branch predictor state. For caches, it would
be enough to flush them between task switches. In general, an instruction to reset
the processor’s entire internal state would make it easier to make it predictable and
composable.

As already mentioned, and shown in Fig. 16.2, a processor uses DMAs to read
or write data in a remote memory. Each DMA connects to a port of a DMA
Memory (DMAMEM). The DMAMEM connects with another port to the processor
DLMB (other options are discussed in [34]). Using two ports on the memory avoids
arbitration between the processor and the DMA, which would necessitate changing
the single-cycle turn around DLMB bus to a slower PLB bus. (When using an ARM
processor, these would be AHB or AXI busses.) The DMA has a Memory-Mapped
I/O (MMIO) port on the PLB, through which it is programmed to either copy data
from the DMAMEM to a remote memory accessed over the NoC or vice versa. The
DMA has a NoC connection to each remote memory. Since it is cheap, a DMA
is not shared between applications to avoid interference. Although it may be used
(sequentially) by different tasks of the same application, avoiding this simplifies the
computation of the WCET of a task by eliminating interference from other tasks.

A remote memory can be the shared DRAM, a shared SRAM on the NoC, or
an SRAM in another (remote) tile. The latter is a CM: the DMA can copy from
the local DMAMEM into a CM of another processor tile, or vice versa. The CM
has two ports, for the same reason the DMAMEM does. If multiple remote DMAs
can access the same CM, a multiplexer with an arbiter is required (labeled A in
Fig. 16.2, cf. Sect. 16.3.2).

Execution on the processor can be preempted with interrupts. This is required
as soon as multiple applications run on the processor because applications should
run in an interleaved fashion, not consecutively. The service unit of a processor is
a TDM slot (or time slice), generally lasting 20,000 cycles or more. To achieve
composability, tasks must be preempted at the end of each TDM slot, after exactly
the same number of clock cycles. For this, a Timer, Interrupt, and Frequency Unit
(TIFU) is attached to the processor. It can generate interrupts at precise moments in
time and halt (clock gate) the processor until precise moments in time. The interrupt
and clock lines from the TIFU to the processor are shown in Fig. 16.2 to and from
the TIFU. The TIFU can also change the frequency at which the processor can run
for power management [38], shown by the clock domain in white. Section 16.4.1
describes how the TIFU is used to preempt and arbitrate the applications and tasks
within an application on a processor.

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 503

The processor tile is the most complex because the composable service units
require preemption and decoupling the processor from other IPBs (in particular,
remote memories). This requires the TIFU, multiple local memories, some with
their own arbitration, and DMAs.

16.3.4 Network-On-Chip

The NoC allows all IPBs to communicate. �Chapter 15, “Network-on-Chip
Design” contains a thorough introduction to NoC technology. From a real-time
perspective, the NoC is problematic because it is a resource that is made of
smaller components, namely, routers and Network Interface (NI), that are distributed
spatially. A single centralized arbiter is thus not feasible, and each router and NI has
an independent local arbiter. As a result, a service unit that enters the network may
be delayed at each router that takes local decisions based on its local state only.
This makes it very hard to compute the end-to-end response time and throughput
due to contention and congestion. The CompSOC platform uses the synchronous
daelite NoC [49], which is derived from the mesochronous Aethereal NoC [22].
The asynchronous Argo NoC [27] is based on the latter. The common underlying
concept is to use a single global TDM arbiter for the entire NoC but to implement it
in a distributed way. The routers are synchronized such that service units (flits) never
arrive at the same link at the same time, thus eliminating all contention. Without
contention, routers require no arbiters and no buffers (except for pipelining), making
them very fast and cheap [15]. Service units only wait at the edge of the NoC,
in the NIs [45]. To offer real-time timing guarantees, the global TDM schedule is
programmed at run time, to offer connections, i.e., resource budgets, from a master
IPB initiating transactions to a slave IPB executing transactions.

As illustrated in Fig. 16.2, the slave, master, and processor tiles, and the NoC
operate in independent clock domains, which are straddled by the Clock Domain
Crossing (CDC) blocks. The CDCs are functionally transparent, and we will not
discuss them further. The NoC thus implements the GALS paradigm, which is
essential for scalability (Concept 4).

The four components [21] of the NoC are illustrated in Fig. 16.2, and we
described them following the bold arrows from a master IPB to a slave IPB and
back. First, transactions from a master IPB may go to multiple slaves according to
its memory map, discussed in more detail in the next section. To implement the
memory map, a programmable demultiplexer sends each request to the connection
to the right memory and interleaves responses in the right order. Second, the protocol
shell serializes each transaction to a stream of data words, without any particular
structure. This allows multiple IPB protocols, such as AHB and AXI, to be sent
over the same NoC. Third, NIs preempt the data stream into service units (flits)
that are injected in the NoC according to the TDM schedule. Finally, routers just
move flits around, without contention and hence without arbitration. When a flit
arrives at its destination NI, the constituent words are given to the protocol shell
that reconstitutes the transaction in the right protocol.

504 K. Goossens et al.

Intuitively, the real-time performance of the NoC, in particular the WCRT and
throughput of a connection are easily computed by looking at the number of slots
reserved for the connection and the total number of slots in the TDM table. However,
an additional complication is that NI buffers are finite and slave IPBs do not
necessarily accept incoming transactions immediately. To avoid dropping data, NIs
use end-to-end flow control, which must be modeled in the WCRT calculation [24].

The service unit of the NoC is a flit, and the protocol shells together with the NIs
preempt larger transactions into flits. The NoC uses single-level TDM arbitration
between flits of the same as well as different applications to eliminate costly per-
application or per-connection buffers in the router. Although two-level arbitration is
possible, it makes routers larger and slower [15].

16.3.5 Peripherals

Many peripheral tiles are simple non-shared slave tiles. For example, a Universal
Asynchronous Receiver/Transmitter (UART), Serial Peripheral Interface (SPI), or
audio peripheral is usually not shared between multiple requestors. As a result, they
can be hooked up directly to the NoC, with only a slave port, and delay blocks
and arbitration are not required. A processor usually accesses the peripheral directly
(using its DMA), usually polling for data or writing data into the peripheral’s local
buffer.

As an example of a complex peripheral, the inter-NoC bridge [33] links the NoC
on the Field-Programmable Gate Array (FPGA)/Application-Specific Integrated
Circuit (ASIC) to a NoC on another FPGA/ASIC or even to another computer. It
acts as both slave and master. As a slave, it receives data from the local NoC over
multiple connections to be sent to the remote NoC. As a master, it produces data
on multiple connections that came from the remote NoC. Given TDM arbitration in
the NoCs, the bridge uses TDM arbitration too. However, its service unit depends
on the medium over which the NoCs are connected. We used an Ethernet Media
Access Control (MAC) with Xilinx RocketIO with large Ethernet packets for high
data efficiency, but at the cost of a large scheduling interval and WCRT. The inter-
NoC bridge is programmable and thus also has MMIO slave ports.

16.3.6 Memory Map

All the components that we have described until now communicate with each other
using transactions. A transaction can read or write in a memory at a given address or
address range. Additionally, IPBs and their tiles can often be programmed by writing
into memory-mapped register. Similarly, data input or output is often performed
through memory-mapped buffers.

The CompSOC platform implements distributed shared memory. It is distributed
in the sense that there are multiple memories in the same 32-bit memory map,
and shared because multiple IPBs can access a given memory. The memory map

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 505

defines in which memory each of the 32-bit addresses is located. It is implemented
in several places. First, hardwired demultiplexers. The demultiplexer (labeled M1
in Fig. 16.2) is the local DLMB bus in the processor tile. It is hardwired with the
address ranges of the IMEM, DMEM, CM, and DMAMEM memories in the local
tile. The demultiplexer labeled M2 is similarly hardwired and decodes the local PLB
peripheral bus. Finally, the demultiplexers labeled M decode the MMIO transactions
to program a slave and its arbiter and delay blocks.

Second, the programmable demultiplexers M3 and NoC connections define
the remainder of the memory map. Given an address, the former first selects a
NoC connection, and the latter then delivers the transaction to the memory (more
generally, IPB), as illustrated by the thicker lines from the master IPB to the slave
IPB. Note that the routers and NIs implement part of the memory map, but they have
no knowledge of transactions or memory addresses: they just implement point-to-
point connections to transport data (requests, as it happens) from master IPBs to
slave IPBs and vice versa (responses). This simplifies the NoC, making it faster. It
also enables multiple memory maps to coexist in the same platform. For example,
multiple processors may boot from (their) address 0, which is mapped in different
memories for different processors. This is useful when processors run different Real-
Time Operating Systems (RTOSs) or are heterogeneous.

There are no NoC connections after a reset, and IPBs cannot communicate with
each other at all. The memory map (multiplexers M3 and NoC connections) is
programmed using the NoC itself at run time, using a bootstrap procedure [20,49]. A
privileged processor sets up NoC connections one by one and programs the memory
map(s), offering a secure boot procedure. It directly programs the NoC using
the dotted control line CP in Fig. 16.2. Some memory-map multiplexers may be
hardwired, e.g., M. All others (M3), including those of the DMAs of all processors,
are programmed over the NoC using control lines CN [21]. Programming a memory
map is predictable and composable.

16.3.7 Atomicity

The NoC allows master IPBs to communicate using distributed shared memory.
When (a task on) an IPB sends data to a shared memory, it is important that
it has been written completely before it is read by another IPB. However, high-
performance communication protocols, such as AXI, limit the atomicity of trans-
actions to a single byte. It is hence not possible to send more than a single byte
atomically without further precautions.

The CompSOC platform addresses atomicity at several levels. First, the hardware
reads and writes 32-bit words atomically to all data memories and memory-mapped
IPBs. Second, recall that each resource has a minimum service unit that is executed
atomically, i.e., without interruption or preemption by other service units (they may
be pipelined though). Transactions that read or write more than a service unit, or
are not aligned, are chopped into multiple service units that may be arbitrarily
interleaved with service units of other requestors. The minimum service unit of

506 K. Goossens et al.

SRAM is a single 32-bit word, and that of a DDR3 DRAM typically eight words.
Thus, an IPB can atomically access data in a memory, as long as it is no larger than
one service unit.

Regarding atomicity of computation, the service unit of a processor that runs
multiple tasks is a time slice (Sect. 16.4.1). The task that runs is interrupted and pre-
empted (swapped out) for another task at the end of each slice. Since interrupts can
occur after each instruction, only a single instruction is atomically executed from
a software perspective. Traditionally, atomicity is extended to multiple instructions
(called a critical region) by disabling the interrupt before the critical region and
reenabling it at the end. However, critical regions increase the . In the worst case,
a non-real-time application enters but never exits a critical region, so claiming a
shared resource forever. To avoid this, we do not allow critical regions in application
code. We will return to this topic in Sect. 16.4.1.

Although atomic transactions are essential, they are not enough to safely
communicate data. Data may be (atomically) overwritten before it has been read,
for example. This will be addressed in the synchronization Sect. 16.4.4.

16.3.8 No Synchronization Hardware

According to the scalability Concept 4, most MPSoCs are based on the GALS
paradigm. Each IPB or tile operates synchronously on its own clock but is
asynchronous with other IPB or tiles, as discussed in the NoC Sect. 16.3.4. The
TIFU in each processor tile provides local timers, but they are not synchronized with
each other and may drift arbitrarily. Since there is no global clock or notion of time,
pure time-triggered synchronization (whereby the parties wait until a specific time)
is not possible. All synchronization strategies used in CompSOC, later described in
Sect. 16.4.4, are therefore based on data synchronization.

We implement data synchronization based only on atomicity of read and write
transactions. We do not use processor instructions, such as a test-and-set, or load-
linked and store-conditional, or dedicated hardware for locks or mutexes. Test-and-
set (and similar) instructions work by locking the path from the processor to the
memory from the read (test) to the write (set) instruction. This is not scalable and
infeasible when the processor and memory are connected by a distributed and shared
interconnect, such as a NoC. Load-linked and store-conditional instructions work
without locking the interconnect but require a processor with support for them, as
well as a memory that keeps track of changes to its memory locations, which is not
standard.

Locks and mutexes also require dedicated hardware, which we do not (wish to)
have. They have an additional problem, namely, that when a resource is shared
between multiple applications, it should never be locked by a single application,
because that violates composability. At best a lock per application can be used,
making sure that the resource is aware which requestor belongs to which application.
However, in our platform, the NoC, SRAM, and DRAM have simple and fast single-
level arbiters that do not distinguish between different applications.

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 507

The NoC and memory maps allow only atomic communication of memory ser-
vice units. In Sect. 16.4.4, we describe how CompSOC offers safe communication
and synchronization in software.

16.3.9 Conclusions

CompSOC is an example of a platform that supports running multiple applications
with different time criticalities. In this section, we described the basic components
comprising the CompSOC platform and justified the design choices for those
components in accordance with the high-level concepts of the previous section.

In particular, each shared resource (i.e., processor, NoC, SRAM, DRAM, some
of the peripherals) offers a service unit that is atomically executed with a known
WCET. Requests are chopped into, or rounded up to, one or more service units.

Next, the arbitration policy is essential. To share a resource between (requestors
of) non-real-time applications only, any arbitration policy may be used. However,
to share a resource with requestors of multiple real-time applications, the resource
arbitration must be predictable. This makes it possible to compute the WCRT
from the individual WCETs and the predictable arbitration policy. If a resource
is shared between real-time and non-real-time applications, which may not have
a finite WCET, then arbitration must at least be composable between applications,
and be predictable for requestors of the same real-time application. This can be
implemented with a single-level composable arbiter (e.g., NoC, DRAM) or with
a two-level arbiter (composable between applications, predictable or not within
each application) as done on the processor (explained in Sect. 16.4.1). Composable
arbitration can be implemented with TDM (e.g., NoC, processor, DRAM) or with
any predictable arbiter plus delay blocks (e.g., SRAM, DRAM). Many predictable
arbiters are available, such as RR, TDM, CCSP, or FBSP. Which one is used
depends on the characteristics of the resource, such as cost of preemption and
buffering, and the real-time requirements of the requestors.

16.4 Software Architecture

The CompSOC hardware platform contains computation, communication, and
storage resources. Almost all can be shared between multiple requestors, and almost
all can be (re)programmed at run time. The CompSOC software extends the single
hardware platform to offer multiple Virtual Execution Platforms (VEPs). A VEP
is an execution platform that is a subset of the CompSOC hardware platform, in
terms of time (e.g., time multiplexing a processor) or space (e.g., non-shared DMA
or a region in a memory). Each application runs in its own VEP, which is created,
loaded, started, and possibly stopped and deleted, at run time. A CompSOC platform
can run multiple VEPs concurrently, without any interference between them, i.e.,
composably.

508 K. Goossens et al.

To implement VEPs, the CompSOC software is constructed in a number of
layers, as shown in Fig. 16.3. From the lower to higher layers, we have:

1. A microkernel or RTOS to share a resource with a software arbiter. Software
arbitration is only used for the processor, since the service unit of all other
resources is too small to be managed in software.

2. A driver library is used to program, load, start, use, and stop a virtual resource.
3. The resource requirements of requestor are specified using a budget. Reserving

part of a resource for a requestor according to its budget results in a virtual
resource. Most resources may be programmed to be shared in time and/or
space. A VEP is a hierarchical virtual resource, made up of, for example, a
region of DRAM, some NoC connections, and several virtual processor tiles.
A virtual processor tile is again a hierarchical virtual resource, consisting of
several memory regions, DMAs, and a virtual processor. The budget management
(BM) library is used to reserve and release virtual resources, and thus keeps
track of who has been reserved what part of the resource (TDM slots, memory
regions, etc.).

4. The resource driver and budget management libraries comprise the resource
management library.

5. When an application runs within its VEP, its tasks will need to synchronize
and communicate, according to some model of computation. We offer several
programming models or models of computation (threads, dataflow, Kahn Process
Network (KPN), time-triggered) that are implemented using more primitive
communication (barriers, FIFOs, sampling).

6. A bundle contains the code and data of an application together with the
specification of the VEP it requires to run.

7. The system application manages a CompSOC platform. It uses the resource
management library to create and remove VEPs and uses the bootloader library
to start and stop applications.

8. Finally, an application programmer creates applications using one of the sup-
ported programming models or model of computation. He or she develops
and validates the application in a VEP, which is either given up front or
codefined with the application. The application is deployed as a bundle, i.e., the
application’s code (ELFs) together with the definition of the VEP. Composability
guarantees that executing an application (bundle) before and after integration
with other applications (bundles) gives exactly the same results.

Since the system software extends the hardware, it has the same requirements, and
it must adhere to the same requirements and concepts. We now discuss each of the
software components.

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 509

lib
ra

rie
s

hardware software

C
om

ik
µk

er
ne

l

TI
FU

pr

oc
es

so
r

D
M

A
&

N

O
C

S

/D
R

A
M

vi
rt

ua
l e

xe
cu

tio
n

pl
at

fo
rm

(m
ul

tip
le

 h
et

er
og

en
eo

us

vi
rtu

al
 re

so
ur

ce
s)

ap
pl

ic
at

io
ns

IM
E

M
 &

D

M
E

M

C
M

E
M

ap
pl

ic
at

io
n

co
de

, i
nc

lu
di

ng

bo
ot

 c
od

e,
 a

rb
ite

r,
po

w
er

 m
an

ag
em

en
t,

et
c.

ex
ce

pt
io

n
ha

nd
le

r

ap
pl

ic
at

io
ns

C
A

N

re
so

ur
ce

m

an
ag

em
en

t
lib

ra
ry

D

R
A

M

B
M

dr
iv

er

N
O

C

B
M

dr
iv

er

S
R

A
M

B
M

dr
iv

er

U
A

R
T

B
M

dr
iv

er

til
e

B
M

pr
oc

.

B
M

dr
iv

er

V
E

P

B
M

ph
ys

ic
al

 p
la

tfo
rm

(m

ul
tip

le
 h

et
er

og
en

eo
us

ph

ys
ic

al
 re

so
ur

ce
s)

C
A

N

B
M

dr
iv

er

D
M

A

B
M

dr
iv

er

ar
bi

te
r

in
te

rr
up

t
ha

nd
le

r

U
A

R
T

co
nn

ec
tio

ns

S
/D

R
A

M

C
A

N

U
A

R
T

vi
rtu

al
 p

ro
ce

ss
or

, i
nc

lu
di

ng
 IM

E
M

, D
M

E
M

, C
M

E
M

s
D

M
A

&

D
M

A
M

E
M

D
M

A
M

E
M

D
M

A
M

E
M

ex
c.

in

t.
m

ai
n

til
e

pr
oc

.

D
S

M

M
M

IO

ex
c.

in

t.
m

ai
n

D
S

M

pe
rip

h

lib
B

ar
rie

r
lib

FI
FO

lib
S

am
pl

in
g

lib
K

P
N

lib
D

at
af

lo
w

lib
TT

lib
IO

re
so

ur
ce

 m
an

ag
em

en
t

lib
Lo

ad
er

Fi
g

.
1

6
.3

So
ft

w
ar

e
ar

ch
ite

ct
ur

e.
D

SM
is

di
st

ri
bu

te
d

sh
ar

ed
m

em
or

y

510 K. Goossens et al.

16.4.1 Microkernel and RTOS

Processors are the only resources that are shared with software arbitration; all
other resources use a (programmable) hardware arbiter. This is possible because the
service unit of a processor, called a time slice, is in the order of tens of thousands of
clock cycles and the cost of saving the state of the running application and arbitration
is a few thousand clock cycles.

Recall that the concepts for a mixed-time-criticality platform include composable
arbitration between applications (inter-application), predictable arbitration within an
application (intra-application), or no arbitration for non-shared resources. Inter- and
intra-application arbitration may be either separate (two-level) or combined (single-
level). In the latter case, it must be both predictable and composable.

Task arbitration can be classified along several axes. First, it may be absent when
there is only one task on a resource. Otherwise it is required. Second, it may be
preemptive or not. Third, arbitration may be static and follow a static-order schedule
or be dynamic where the order of tasks is determined at run time. Figure 16.4
and Table 16.1 illustrate how a processor can be (a.A) not shared or shared
between tasks of one application only, either (a.B) with a static-order schedule,
or (a.C) cooperatively scheduled (i.e., non-preemptive dynamic). Alternatively,
multiple applications can share the processor using a microkernel such as CoMik,
which arbitrates only between applications (b and c). Each application can use
the techniques from (a) or even a virtualized RTOS, such as �C-OS III (c), to
independently arbitrate between application tasks. The two levels of arbitration can
also be combined in a single software arbitration layer (d), as done by the CompOSe
RTOS [6, 19]. Finally (e), a traditional RTOS can be used with a single-level
arbitration, e.g., TDM. However, if, as is often the case, priority-based arbitration
without delay blocks is used, only a single application can use the processor.

As Fig. 16.4 shows, a physical processor can run software (“main”) but also
optionally has an interrupt handler (“int.”) and exception handler (“exc.”). When
running the application directly on the processor (a), at least the main software
must be defined by the programmer. A microkernel virtualizes the main, interrupt
and exception handling and passes them on to the application (b) or RTOS (c). An
RTOS that runs directly on the processor typically hides the interrupt and exception
handling from the applications. In almost all cases, the programming model or
model of computation used in an application hides interrupt and exception handling
(see Sect. 16.4.4).

Because the execution of an application should not depend on another applica-
tion, inter-application arbitration must be preemptive with service units (time slices)
that are of constant length (down to the level of a clock cycle). As mentioned in
Sect. 16.3.3, the TIFU allows the microkernel or RTOS to interrupt the running
application at a precise point in the future. After saving the application context,
the next application is scheduled, and its context restored. The time from the
interrupt to the restored context may vary, e.g., due to critical regions, multi-
cycle instructions, or variable execution time. Critical for composability CoMik and

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 511

vi
rtu

al
 p

ro
ce

ss
or

(C

om
pO

S
e

R
TO

S
)

vi
rtu

al
 p

ro
ce

ss
or

 (C
oM

ik
 m

ic
ro

ke
rn

el
)

ex
c.

in

t.
m

ai
n

pr
ee

m
pt

iv
e

(R
TO

S
)

ap
pl

ic
at

io
n

3

ta
sk

s,
 th

re
ad

s,
 ..

. ex
c.

in

t.
m

ai
n

ap
pl

ic
at

io
n

1

a
b

c
d

e

A
. s

in
gl

e
ta

sk

B
. s

ta
tic

al
ly

-o
rd

er
ed

 ta
sk

s
C

. c
oo

pe
ra

tiv
el

y
ar

bi
tra

te
d

ta
sk

s

ex
c.

in

t.
m

ai
n

ap
pl

ic
at

io
n

2

A
. s

in
gl

e
ta

sk

B
. s

ta
tic

al
ly

-o
rd

er
ed

 ta
sk

s
C

. c
oo

pe
ra

tiv
el

y
ar

bi
tra

te
d

ta
sk

s

ap
p

4a

pr
ee

m
pt

iv
e

in
te

r-
ap

p
&

(n

on
)-

pr
ee

m
pt

. i
nt

ra
-a

pp
.

ar
bi

tra
tio

n

ta
sk

s

pr
oc

es
so

r

ta
sk

s

ap
p

4b

ex
c.

in

t.
m

ai
n

pr
oc

es
so

r

ex
c.

in

t.
m

ai
n

pr
oc

es
so

r

tw
o-

le
ve

l a
rb

itr
at

io
n

pr
ee

m
pt

iv
e

in
te

r-
ap

p.
 a

nd

no
n-

pr
ee

m
pt

iv
e

in
tra

-a
pp

. a
rb

itr
at

io
n

on
ly

 n
on

-p
re

em
pt

iv
e

in
tra

-a
pp

. a
rb

itr
at

io
n

pr
ee

m
pt

iv
e

in
te

r-
 a

nd
in

tra
-a

pp
. a

rb
itr

at
io

n

vi
rtu

al
 p

ro
ce

ss
or

(tr

ad
iti

on
al

 R
TO

S
)

ap
p

4a

pr
ee

m
pt

iv
e

ar
bi

tra
tio

n

ta
sk

s

ex
c.

in

t.
m

ai
n

pr
oc

es
so

r

on
e-

le
ve

l p
re

em
pt

iv
e

ar
bi

tra
tio

nap
p

4b

ta
sk

s

Fi
g

.
1

6
.4

Pr
oc

es
so

r
vi

rt
ua

liz
at

io
n

512 K. Goossens et al.

Table 16.1 Inter- and intra-application arbitration on processors and other resources

Inter-app. Intra-application

Figure 16.4 Preemptive Preemptive Non-preempt Scenario

(a.A) – – – Single task

(a.B) – – Static order Dataflow actors of 1 app.

(a.C) – – Cooperative Tasks & FIFO, KPN processes of 1 app.

(b.A) TDM – – CoMik microkernel, multiple apps.

(b.B) TDM – Static order CoMik microkernel, multiple apps.

(b.C) TDM – Cooperative CoMik microkernel, multiple apps.

(c) TDM RTOS – CoMik microkernel, multi-app. incl. RTOS

(d) TDM – Any/pred. CompOSe RTOS with 2-level arb.

(d) TDM Any/pred. – CompOSe RTOS with 2-level arb.

(e) – Priority – Traditional RTOS with 1-level arb.

(e) TDM – CoMik or traditional RTOS with 1-level arb.

– – – Any/pred. CM, 1-level arb.

– TDM & composable – NoC, DRAM, SRAM, 1-level arb.

– Atomiser & composable – DRAM, SRAM, 1-level arb.

CompOSe uniquely achieve application slots of constant length (at the level of an
individual cycle) by halting (clock gating) the processor until the WCET of the
CoMik slot [19, 35].

16.4.2 Drivers

Drivers are software libraries that shield programmers from hardware-specific
details. More specifically, we use drivers to:

1. Program the (virtual) resource before use (e.g., set up a NoC connection).
2. Use the virtual resource (e.g., program a DMA transfer, change the frequency of

a processor).
3. Reset the virtual resource after use (e.g., remove reserved TDM slots).

We discuss each of these briefly below.
Hardware resources often require that they are programmed before they can

be used. For example, an arbiter in front of a shared resource (e.g., SRAM or
DRAM) needs to be aware of the budget of each requestor. For TDM, this means
programming the slots reserved for each requestor, and for priority-based arbiters
like CCSP or FBSP, a static priority is required. Delay blocks must be programmed
with parameters to dynamically compute the WCRT, if they are used. If a resource is
reprogrammed while it is active, e.g., to add or remove a requestor, then often extra
care must be taken to not invalidate predictability or composability of requestors
that are running [18]. To release a requestor’s budget is usually harder than to add

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 513

it, because we must ensure that no service units are still in the resource pipeline.
We will return to this issue in Sect. 16.4.3. It is the task of a driver to ensure that a
requestor’s budget is programmed and reset correctly.

Furthermore, hardware resources often require that they are programmed in a
certain way for use. For example, to send a block of data using a DMA, it must be
programmed with the start address of where the data resides in the source memory,
the block size, and the start address in the target memory. How to use the DMA also
depends on whether it is used in a blocking or non-blocking manner. A driver takes
care of these details and ensures that a DMA is used correctly.

The driver of the TIFU allows applications to access (virtualized) timers,
schedule application interrupts, place the processor in sleep mode, and set the
processor frequency. The driver ensures that these actions are done composably,
i.e., without affecting other applications.

Two of the three types of driver functions (program, reset) are privileged in the
sense that they manipulate the requestor budget on the resource. For this reason,
their use is limited to the system application. The remaining driver function to use
the resource is available to both the system and user applications.

16.4.2.1 Example Resource Drivers
The SRAM controller does not require programming, but its arbiter may do. It
depends on the arbiter what has to be programmed, as discussed above. In fact, since
the same arbiters can be used in front of the SRAM, DRAM, and similar resources,
we use a general “shared resource” arbiter for all of these. Unlike the SRAM, the
DRAM controller must be programmed with the DRAM commands that define the
service unit [13], as well as parameters for logical to physical address translation,
and this is done by the DRAM driver.

The NoC driver is complex because the source and destination NIs of a NoC
connection must be programmed from the NI to which the driver is connected. The
driver programs a path, TDM slots, flow-control credits, and enable/disable registers
for each connection [22,45,49]. However, the NoC connection can be used without
a driver after it has been programmed.

Before a requestor (application) can run on the processor, the microkernel
must be programmed. This is straightforward since it uses a TDM arbiter that is
predictable and composable. The processor is the only resource with frequency-
scaling and clock-gating capabilities, for which the TIFU is used. Applications
are allowed to change the frequency of the processor, while they run. However, as
soon as their time slot ends, the frequency is first reset to the maximum frequency
for the microkernel, and when it finishes, the frequency is reset to that of the
next application [36]. This procedure is required to enable applications to manage
the frequency at which they run without affecting the timing behavior of other
applications, i.e., in a composable manner. Similarly, each application can use
virtualized TIFU timers to measure time, to sleep for a certain time, to wake up
at a certain deadline, and so on.

514 K. Goossens et al.

16.4.3 Virtual Resources and Their Management

Recall that each application runs inside its own composable VEP. A VEP is a
hierarchical virtual resource that includes virtual DRAM, NoC connections, and
virtual tiles further subdivided in virtual processors, DMAs and DMAMEMs, CMs,
etc. Each virtual resource is the result of the driver programming a budget in a
resource. The (hierarchical) budget is therefore the specification of the capacity that
a requestor receives on a (hierarchical) resource.

Budgets are used to keep track of the reservations on the resource, such that the
resource is not overloaded and such that multiple requestors do not use the same
memory locations, time slots, etc. Without budgets, it is not possible to guarantee a
minimum service to each requestor; in other words, using the resource would not be
predictable.

The budget manager [16] is a library that offers several functions that are
illustrated in Fig. 16.5. First, given a budget, the reserve function checks if the
requested capacity (slots, memory range, energy, etc.) is available on the resource.
If not, then the reservation fails. Therefore, loading a bundle, i.e., the application
code plus its hierarchical budget, fails when not all of its requested virtual resources

budget descriptor (BD)

virtual resource reserved

virtual resource ready

virtual resource running

release reserve

program reset

start stop

load

use

bundle ELF
a b

VEP BD

tile BD

NOC BD

processor (IMEM, DMEM) BD

DRAM BD

SRA BD

CMEM BD

DMA BD

VEP state

tile state

CMEM state

processor (IMEM, DMEM) state

resource state

DRAM state

Bundle Structure Resource Management FSM

Fig. 16.5 (a) Bundle structure with Budget Descriptor (BD). (b) Resource management state
diagram

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 515

are available. This is desired, since it is not allowed to modify the VEPs of other
running applications, as that would not be composable.

A successful budget reservation results in a budget identifier (cf. file handle), with
which the budget can be programmed in the resource by the driver. Resources often
have to be loaded with an initial state before they are started. For example, a virtual
processor’s IMEM requires a main function, interrupt and exception handlers, and
its DMEM may need to be loaded with initial data. A DMA (driver) has to be loaded
with a memory map to be able to perform range checking for memory protection.
Programming defines the virtual resource, while loading defines the state of the
virtual resource.

It is important to decouple reserving, programming, and loading. Since program-
ming and loading a resource can be slow, and applications always require a set of
virtual resources, it is better to first try to reserve all of them, before programming
and loading them. Otherwise, the programmed resources have to reset. When all
virtual resources specified by a hierarchical budget have been programmed, i.e., the
VEP is ready to run, it can be started. As resources are programmed sequentially,
and even from different processors, all virtual resources should be created before the
application starts running. Otherwise, problems may occur, such as a DMA sending
data before its NoC connection has been created. At this point in time, whatever
software has been loaded in the VEP will run with the resource performance that
was specified in the budget.

Applications use a running resource, either using a driver (e.g., for the DMA) or
without (e.g., for the NoC and S/DRAM). Some resources, such as the processor
and its TIFU, may be programmed (in a safe way) by the application. For example,
the processor frequency may be changed by an application, and it is possible to read
timers and program interrupts at deadlines.

To stop an application in its VEP and release its (hierarchical) budget, the reverse
process is followed. First, all virtual resources must be stopped. This may be
intricate because resources may be pipelined, requests may be waiting in buffers
before the resource, and requests may flow through several resources. For example,
a software task may write to DRAM using DMA and NoC. In general, software
tasks on the processors are stopped first. For the mentioned example, the pipeline of
DMA, NoC, and DRAM will be empty after some time. (For a real-time application,
this time is known). It is important that quiescence of resources (i.e., being in the
ready state) can be observed to avoid leaving a resource in an inconsistent state or
to lose data. Then the DMA, NoC, and DRAM virtual resources can be stopped.

When all virtual resources are in the ready state, the virtual resource can be reset,
and the budgets released.

The budget management library can only be used by the system application
to ensure that applications cannot change their own VEPs, which is crucial for
composability and predictability. Together, the resource driver and budget manager
comprise the resource management library. Usually all resources of the same type
are controlled from one location, the exception being the processor tiles that are
managed locally. Resource management may thus be distributed in the platform
(see Sect. 16.4.5 and [48]).

516 K. Goossens et al.

16.4.4 Synchronization Libraries and Programming Models

Tasks in the same application synchronize and communicate data. As described
in Sect. 16.3.7, the CompSOC platform offers atomicity of data transfers up to a
certain size, which is the minimum requirement to safely communicate. However, it
is not enough, because atomically written data may be overwritten before it has been
read. Fundamentally, there are two ways to synchronize, either based on data or on
time. First, we describe the data synchronization styles offered by the CompSOC
platform: barriers and First-In First-Out (FIFO) queues. After that, we describe
how we offer timed synchronization in a synchronous platform or on top of barrier
synchronization when GALS is used.

16.4.4.1 Barrier Synchronization
Barrier synchronization is implemented as a library. When using a barrier to
synchronize, each task increments its own dedicated counter (starting at zero) and
then waits until all other tasks have done so by repeatedly reading (polling) all
counters. This is shown in Fig. 16.6a. Starting at barrier b, task 1 updates its counter
to b C 1 and then polls task 2’s counter. As soon as task 2 has updated its counter,
barrier b C 1 is reached, which is observed by the next polls of both tasks. Each
counter is a single word in a memory, and is written atomically and independently
of all other counters. It does not matter if all counters together are read atomically or
not because counters are only incremented, and it is therefore not possible to miss
a barrier. However, the assumption that all counters start at zero is problematic.

producer
task

producer
CMEM

token

DRAM
producer

DMAMEM
consumer

CMEM
consumer
DMAMEM

consumer
task

token
read

w+1
w+1

w

w+1

token

r+1
r+1

r

r+1

memory task 1
a b

task 2

b+1

b

b+1

b+1

b+1

b

b+1

Fig. 16.6 (a) Barrier synchronization and (b) FIFO synchronization using DRAM. Each arrow
points from master to slave (for the read/write request), possibly continued back to the master (for
the read response). Labels indicate (b)arrier, (w)rite, and (r)ead data

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 517

At reset, SRAM and DRAM contain random values, and one task has to initialize
the barrier counters before the others start, which is what the barrier intended to
solve. For this reason all processors except the boot processor are kept in reset until
their boot programs have been loaded and the barrier initialized.

16.4.4.2 FIFO Queues
In a streaming or data-driven system, tasks usually communicate using First-In
First-Out (FIFO) queues that ensure no data is lost. Tasks block on a full or empty
FIFO and wait until there is space to write or data to read. (In a cooperatively
arbitrated system, a task could yield upon blocking.) Optionally, a task can poll
for space or data, and continue with processing if it is not available. Although
barriers work well to synchronize the flows of control of concurrent tasks or updates
to global shared state, they are cumbersome for FIFO communication. For this
reason, we offer a FIFO library that also forms the basis of KPN and dataflow
libraries.

The C-HEAP protocol [41] implements FIFO in distributed shared memory
without hardware support, such as locks, mutexes, or processor instructions (other
than read and write). A FIFO has a single producer and consumer. Data is produced
and consumed as constant-size tokens, and the FIFO has a fixed token capacity.
We must ensure that tokens are only written by the producer in memory locations
that are guaranteed to have been freed by the consumer (i.e., it has read the token).
Similarly, the consumer must only read memory locations when the producer has
finished writing the token, i.e., the data is valid. The basic concept is that the start
location of valid tokens is indicated by a write pointer that is only written by the
producer and that the start of space for new tokens is indicated by a read pointer
that is only written by the consumer. The pointers are only updated after tokens have
been written to or read from the destination memory. Because each pointer is only
written (atomically) by one task, consistency of the FIFO is guaranteed. No token
is overwritten before it is read or accidentally read multiple times. The difference
between the pointers indicates the FIFO filling, and the FIFO is full or empty when
the read and write pointer are equal. We use a circular buffer, which means that
wrapping of pointers must be taken into account.

Figure 16.7a illustrates the simplest FIFO (L), where the tokens and the read and
write pointers all reside in DMEM. Only tasks on this processor can communicate
using this FIFO, as shown in Fig. 16.7b. When a FIFO is too large to fit in the
local memories of a processor tile, it can be stored in an SRAM or DRAM that is
connected to the NoC, as shown by FIFO F in Fig. 16.7a. The protocol is unchanged,
but multiple memories and DMAs are now used, as shown in Fig. 16.6b.

The producer of a token first checks for space for a new token (blocking
claim_space or non-blocking poll_space). The token is then written into its local
DMAMEM and copied (write_token) to the remote memory when it is ready. To
ensure that the token has been written in the remote memory, the processor issues a
(dummy) read of the last data word of the token, again using the DMA. Since the
NoC connections do not reorder read and write transactions, the data is guaranteed
to be written when the read data is returned. When the dummy read data has been

518 K. Goossens et al.

NOC

proc.

DMA

W
F

D CR

D
D
D
D

F

proc.

DMA

WRDD
L

consumer of remote FIFO F

R

D

F

storage of
FIFO F

1

2, 32

4

35, 665

producer & consumer of local FIFO L
producer of remote FIFO F

a

b producer
task DMEM consumer

task

token

w+1

w

r+1

w+1

tokenr

r+1

Using local FIFO L

Mapping of local (L) and remote (F) FIFOs

CW

Fig. 16.7 (a) FIFO F with data in remote DRAM and FIFO L with data in local DMEM.
(b) Using local FIFO L. D are tokens, R and W are read and write pointers, respectively

received and discarded, the write counter (CW) is updated (wC1) in the local
DMAMEM, and the DMA is programmed to copy it to the CM (W) of the consumer
(release_token).

Assume that the FIFO was empty until the write counter update. The consumer
would have known this because the read CR and write W pointers in its DMAMEM
and CM would have been equal: w D r in Fig. 16.6b. The consumer would have
been waiting until the write counter update (blocking claim_token or non-blocking
poll_token). When the write counter update is detected, the consumer instructs
its DMA to copy the token from the remote memory to its local DMAMEM
(read_token). When the consumer no longer requires the token, it is released
(release_space) by increasing the local read counter CR and writing it to the
producer’s CM (R).

The tokens and counters may be placed in any memory but preferably as close
as possible to the task that requires reading most often. The highest performance

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 519

is obtained by maximizing the use of posted (non-blocking) write transactions and
minimizing the number of read transactions over the NoC. This is achieved when
placing the write counter W in the consumer’s CM and the read counter R in the
producer’s CM, as well as keeping local copies of the counters (CW, CR). The data
is best placed in the consumer’s CM, assuming it fits. The claim_space, write_token,
and release_token are often combined in a simpler send_token. receive_token is
defined conversely. Although simpler, they require space for one more token and
copy action.

16.4.4.3 Timed Communication
In a time-triggered system, jobs communicate through shared locations (memory
regions) with space for one token. The token may be written multiple times before it
is read, and read multiple times before it is written again. If under- and oversampling
are not desired, then the usual way to synchronize the producer and consumer is
by (statically) scheduling access to the shared location in time. For example, with
token production with a period of 1 ms starting at time 0, we can schedule token
consumption with the same period of 1 ms but with a starting time of 1 ms. As long
as the producer ensures that the token has been written completely in the shared
location before the period deadline, the consumer can safely read the token. This
approach works as long as a sufficiently accurate common notion of time is available
to the producer and the consumer, and the production and transport of the token is
predictable and guaranteed to fit within the production and consumption periods.

In a fully synchronous CompSOC platform, i.e., where the NoC and all processor
and memory tiles operate on the same clock, time-triggered communication works
without surprises. The simplest scenario is that the producer computes the token
and writes it to the shared location. Using the TIFU, it then sleeps until the periodic
deadline and then restarts. The consumer(s) sleep until the periodic deadline and
then copy the token [55]. Care must be taken to not write tokens too late (i.e.,
arriving after the deadline) and not too early (i.e., when consumers are still reading
the previous token). Even without a global clock or notion of time, we can use
barriers to safely implement time-triggered communication in a GALS MPSoC.
We show a basic implementation in Fig. 16.8. A producer writes its token and
increments and waits on the producer barrier. The producer barrier is released
periodically by a clock task, after which consumers indicate in a consumer barrier
when they have consumed the token. The producer waits for the consumer barrier
before it updates the token and the producer barrier. Producers and consumers follow
both barriers to detect any late consumption or production, which could result in
transfer of corrupt data.

16.4.4.4 Programming Models
Different applications of different time criticalities will be developed with different
requirements on timing. Real-time applications must be analyzable, which imply
a more restrictive programming model (e.g., dataflow or time triggered) than
a programming model that non-real-time applications can use, such as Kahn
Process Network (KPN) or even arbitrary C. CompSOC therefore offers multiple

520 K. Goossens et al.

memory
producer

task
consumer

task
clock
task

p p

c
c

token t released

token t written

producer:
while true do
write_token
increment_and_wait(producer_barrier)
increment_and_wait(consumer_barrier)

end while

consumer:
while true do
increment_and_wait(producer_barrier)
read_token
increment_and_wait(consumer_barrier)

end while

clock:
while true do
 wait until next periodic deadline
increment_and_wait(producer_barrier)

end while

p+1

p+1

p+1

c+1
c+1

token t+1 released

token t+1 written

period

token t read

token t+1 read

Fig. 16.8 Timed communication using barriers

programming models, such that each application can be designed as easily and
efficiently as possible.

Although we do not encourage it, an application programmer can use multiple
tasks and communicate using DMAs, without using CompSOC’s synchronization
libraries. All the programming models are implemented using tasks (or threads),
using the templates shown in Fig. 16.9. We describe them from least restrictive, and
thus least analyzable, to most restrictive [32]. In all cases, the task graph is static.

1. Non-blocking and blocking FIFO communication. The first arrow illustrates that
claim_space and its corresponding write_token and release_token may have
arbitrary code between them. The second arrow illustrates that this task uses
polling, which could result in nondeterministic behavior. This is because it
depends on the scheduling of other tasks, which may be non-deterministic due
to GALS. This is not recommended unless the task uses some kind of sampling
algorithm.

2. Kahn Process Network (KPN) with finite FIFOs use only blocking send_token
and receive_token. Processes may use arbitrary control flow, which may result in
a data-dependent number of tokens being consumed or produced (indicated by
the arrow). It is, in general, not possible to compute the WCET of a process, and
KPN is suitable for non-real-time or perhaps soft-real-time applications.

3. (Not shown in the figure.) Programmers can use barriers, as described earlier in
this section, to synchronize multiple tasks using patterns such as fork-join.

4. Dataflow applications contain actors that consume all input tokens before
computing the output tokens, which are released at the end. Note that an actor
is a stateless function, unlike a KPN process. State can be implemented with
a self-edge, i.e., a channel from the actor to itself. A programmer only writes
the actor functions; the dataflow_actor wrapper is automatically generated.
If the code in the actor function has a WCET, and all resources are shared

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 521

ta
sk

 k
pn

_p
ro

ce
ss

 n
 :=

 re
ce

iv
e_

to
ke

n(
f1

);
 s

 :=
 0

;
 w

hi
le

 tr
ue

 d
o

 fo

r i
 :=

 1
 to

 n
 d

o

s
:=

 s
 +

 re
ce

iv
e_

to
ke

n(
f2

)

 e
nd

 fo
r;

se
nd

_t
ok

en
(f3

,s
)

 e
nd

 w
hi

le

en
d

ta
sk

fu
nc

tio
n

ac
to

r (
a,

b)

 c

 i
f a

 <
 b

 th
en

 c
 :=

 a
+b

 e
ls

e
c

:=
 b

*(
b-

a)

 e
nd

 if
;

 r
et

ur
n

c
en

d
fu

nc
tio

n
ta

sk
 d

at
af

lo
w

_a
ct

or
 w

hi
le

 tr
ue

 d
o

 a
 :=

 re
ce

iv
e_

to
ke

n(
f1

);

 b
 :=

 re
ce

iv
e_

to
ke

n(
f2

);

 c
 :=

 c
la

im
_s

pa
ce

(f3
);

 *

c
:=

 a
ct

or
(a

,b
);

re
le

as
e_

to
ke

n(
f3

)
 e

nd
 w

hi
le

en

d
ta

sk

ta
sk

 ta
sk

_w
ith

_f
ifo

s
 w

hi
le

 tr
ue

 d
o

 n

: =
 re

ce
iv

e_
to

ke
n(

f1
);

st
 :=

 c
la

im
_s

pa
ce

(f2
);

 s

 :=
 0

;

 fo
r i

 :=
 1

 to
 n

 d
o

 s

 :=
 s

 +
 re

ce
iv

e_
to

ke
n(

f3
)

 e

nd
 fo

r;

 e
 :=

 p
ol

l_
to

ke
n(

f3
);

 if

 e
 !=

 n
ul

l t
he

n
s

:=
 s

 +
 *

e

 e

nd
 if

;
w

rit
e_

to
ke

n(
st

,s
);

re
le

as
e_

to
ke

n(
f2

)
 e

nd
 w

hi
le

en

d
ta

sk

FI
FO

-b
as

ed
 ta

sk
 (n

on
 re

al
 ti

m
e)

st

at
ic

 o
r d

yn
am

ic
 o

rd
er

 s
ch

ed
ul

e
no

n-
de

te
rm

in
is

tic
 o

ut
pu

t
no

 W
C

R
T

K
P

N
 p

ro
ce

ss
 (s

of
t r

ea
l t

im
e)

st

at
ic

 o
r d

yn
am

ic
 o

rd
er

 s
ch

ed
ul

e
de

te
rm

in
is

tic
 o

ut
pu

t
no

 W
C

R
T

da
ta

flo
w

 a
ct

or
 (r

ea
l t

im
e)

st

at
ic

 &
 d

yn
am

ic
 o

rd
er

 s
ch

ed
ul

e
de

te
rm

in
is

tic
 o

ut
pu

t
W

C
R

T
fo

r a
ct

or
 a

nd
 g

ra
ph

tim
e-

tri
gg

er
ed

 jo
b

(r
ea

l t
im

e)

st
at

ic
 ti

m
e

sc
he

du
le

de

te
rm

in
is

tic
 o

ut
pu

t
W

C
R

T
fo

r j
ob

 a
nd

 p
ro

gr
am

fu
nc

tio
n

jo
b

(a
,b

)
 c

 i

f a
 <

 b
 th

en
 c

 :=
 a

+b
 e

ls
e

c
:=

 b
*(

b-
a)

 e

nd
 if

;
 r

et
ur

n
c

en
d

fu
nc

tio
n

ta
sk

 ti
m

e_
tri

gg
er

re
d_

jo
b

 c
 :=

 in
iti

al
_v

al
ue

;
 w

hi
le

 tr
ue

 d
o

w
rit

e_
to

ke
n(

l_
ou

t,c
);

 w

ai
t u

nt
il

ne
xt

 a
ct

iv
at

io
n;

 a
 :=

 re
ad

_t
ok

en
(l_

in
1)

;

 b
 :=

 re
ad

_t
ok

en
(l_

in
2)

;

 c
 :=

 jo
b(

a,
b)

 e

nd
 w

hi
le

en

d
ta

sk

Fi
g

.
1

6
.9

Pr
og

ra
m

m
in

g
m

od
el

s

522 K. Goossens et al.

predictably, then the throughput and WCRT of the dataflow application as a
whole can be computed [37]. As a result the dataflow model of computation
is suitable for real-time applications. �Chapter 3, “SysteMoC: A Data-Flow
Programming Language for Codesign” contains more information about the
dataflow model of computation, and �Chap. 4, “ForSyDe: System Design Using
a Functional Language and Models of Computation” contains more information
about dataflow and other models of computation.

5. Time-triggered communication. A job (non-blocking) reads tokens from its input
locations (except for the first execution), computes outputs, and then (non-
blocking) writes tokens in its output locations. Jobs communicate using the
time-triggered synchronization library. Time-triggered applications are executed
periodically according to a global static schedule, for example, using a global
clock or barriers. The code of each job (computation on processor, as well as
communication on NoC, and access to shared memories) must have a WCRT
smaller than the period, which determines the real-time performance of the
application. As a result, the time-triggered model of computation is suitable for
real-time applications. �Chapter 24, “Networked Real-Time Embedded Sys-
tems” contains more information about the time-triggered model of computation.

16.4.5 System Application and Application Loading

The system application is like a normal application with the exception that it has
access to privileged resource management library functions. The system application
creates and removes VEPs, and starts and stops applications in running VEPs. The
system application has a task on each processor tile, with one being the master. The
tasks synchronize and communicate using the barrier and FIFO libraries.

Figure 16.10 illustrates the six (simplified) steps to start an application [48]:

1. The system application detects a bundle.
2. It hierarchically creates a VEP in a distributed manner.
3. It loads the bootloader in the VEP, and starts the VEP and bootloader.
4. In the VEP, the bootloader loads the application code and data.
5. For multitask applications, the bootloader creates tasks and communication

channels.
6. The bootloader finishes and the application runs.

These steps are now explained in more detail. The master task detects in bundles
at a predefined location in shared memory and loads them based on some strategy
(e.g., as soon as they have been uploaded from outside the ASIC/FPGA or based on
certain triggers [26]). The bundle contains the budget description of the VEP that
the application requires to run.

The master task analyzes the hierarchical budget descriptor and sends the budget
descriptors of the processor tiles to the slave tasks on those tiles. The slave tasks
locally reserve and program the required resources and notify the master task. Other

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 523

create VEP

system application

reserve &
pgm VR

reserve &
program VR

load
bootloader start VEP run

bootloader
set up channels of

programming model run application

application

privileged unprivileged

app. boot code app. task code

master proc. tile 1

run application

run application

barrier barriersynchronise

slave proc. tile 2

slave proc. tile 3

predictable

set up channels

set up channels

load app.
code

load app.
code

Fig. 16.10 Loading and starting an application

resources, such as the NoC and shared memories, are similarly reserved by the
master or a slave task. If any budget reservation fails, the entire VEP creation fails,
and all its resources are released. After the VEP has been created, it is loaded with a
standard small bootloader application. After starting all the virtual resources, the
bootloader loads and starts the application code that is specified in the bundle.
In this way, loading an application, which may take some time, is performed in
the VEP of the application instead of that of the system application. Multiple
applications may be loading and/or running simultaneously because each VEP is
independent.

The bootloader finishes and hands over to the application code. A non-
preemptive application on a single processor (Fig. 16.4a, 16.4b) now runs.
Otherwise, the application contains tasks (actors, processes, etc.) that synchronize
or communicate using barriers, FIFOs, etc., and then these are set up using the
relevant programming model library (see Fig. 16.3). When all tiles on which the
application runs have finished this set-up phase, they synchronize using a barrier,
and the distributed application starts.

The time from observing arrival of a bundle and starting the application is
predictable and can also be made composable. In other words, the time from
detecting a bundle until it is running is independent of other applications [48].

16.4.6 Conclusions

The software architecture of the CompSOC platform is quite complex, but this is
mostly due to its versatility. The processor is the only software-arbitrated resource,
and virtualization of multiple applications is inherently quite involved. The essential
concept of the software architecture is the bundle which contains application
code together with the requirements for its VEP structuring. Building on this, the
resource management library provides a uniform way to reserve, program, and
start heterogeneous resources in a hierarchical and distributed manner. After the
system application creates a VEP, the bootloader library is used to load and start

524 K. Goossens et al.

applications, of any kind. Various communication and programming model libraries
are provided for both system application and user applications.

16.5 Example CompSOC Platform Instance

The CompSOC platform is a template that can be instantiated [14] and used in
many different ways and applications. In this section, we describe a demonstrator
showing:

1. Mixed-time-criticality: several concurrently executing applications with and
without real-time requirements.

2. Predictability: guaranteed performance for real-time applications.
3. Composability: multiple applications loading and executing composably.
4. Multiple models of computation.

The demonstrator, shown in Fig. 16.11, contains five applications:

1. A high-performance real-time motion controller for a two-mass spring motion
system written as a time-triggered application, shown in Fig. 16.12. The con-
troller is a software task that regulates the current to a DC motor that drives and

daelite NOC

Comik on
processor tile

Comik on
processor tile

Comik on
processor tile

H263 decoder
real-timereal-time

motion control motion control
system

app
flappy
bird

DRAM
controller

UARTI/OTFT
controller UART

graphics
display

motion ctrl
set points

Comik on
processor tile

Comik on
processor tile

system
app

graphics
displayETSCH button

I/O

DRAM
controllerUART TFT

controller
UART UART

daelite NOC

ATmega ATmegaWPAN

ETSCH

FPGA 1 FPGA 2

soft real-time
H263 output

real-time reference and measured
positions of the spring-mass shaft

non real-time
Flappy Bird output

real-time angle of
the spring-mass shaft

real-time signal noise on the
16 wireless TSCH channels

energy usage
of Flappy Bird

energy usage
of H263 decoder

real-time
motion control

Fig. 16.11 Mapping of the applications on the two FPGA boards (bottom) and the display output
of the two boards (top)

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 525

Fig. 16.12 Demonstration CompSOC hardware setup, showing two Xilinx ML605 FPGA boards
with ATmega 256RFR2 boards for WPAN, interconnecting daughter boards, a two-mass spring
motion system, and a video game controller

controls the rotational position of a flexible shaft [8]. The positions of the shaft
are measured by optical encoders and read out by the software controller.

2. A CompSOC implementation of the non-real-time popular video game Flappy
Bird. The user controls it with a simple hardware button. For demonstration
purposes, the game can be played in composable mode, without interference
from other applications, or in non-composable mode where the height of the
bird’s jumps depends on the processor load.

3. A (soft) real-time H263 video decoder [39], written as a dataflow application of
six actors.

4. A non-real-time graphics application displays information on a Thin-Film
Transistor (TFT) screen by updating a (triple) video buffer, which is read out by a
hardware TFT controller. The graphics application has a (composable) sampling
interface with the motion controller, Flappy Bird, and H263 video decoder to
draw graphs and compose the image of several sub-images (video and game
outputs).

5. The system application that manages the virtual execution platforms, including
the starting and stopping of applications at run time.

The applications are mapped on two Xilinx ML605 FPGA boards, shown in
Fig. 16.12. The first board contains a CompSOC platform with three processor
tiles each running the CoMik microkernel, NoC, DRAM, and several peripherals
(TFT, UART) connected to the NoC. The sensing and actuation of the spring
motion system is memory mapped on the NoC using an intermediate hardware
I/O block. The second FPGA board has only two processor tiles and has the
hardware controller for the Flappy Bird game instead of the motion-control
hardware. Each ML605 board contains an Extended TSCH (ETSCH) application
that connects to an ATmega 256RFR2 board using a UART. In this way, tasks
of an application mapped on both FPGA boards can communicate wirelessly
using the Extended TSCH (ETSCH) [51] extension of the IEEE 802.15.4e Time-
Synchronised Channel Hopping (TSCH) standard. (E)TSCH uses frequency
hopping and TDM for robust real-time performance. The architecture is GALS
both within and between FPGAs.

526 K. Goossens et al.

Figure 16.11 illustrates the mapping of applications on (multiple) boards and
(multiple) processors, as well as the display output of the boards. Of particular
note are the following. Flappy Bird runs and displays on FPGA 1, but the game
controller hardware (buttons) is connected to FPGA 2. The latency from the button
I/O application on FPGA 2 to the Flappy Bird application on FPGA 1 is mostly
due to the wireless connection and is just within the limits for a playable game.
Using other buttons connected to FPGA 2, the system application on FPGA 1 can
be instructed to start and stop Flappy Bird in different modes, without affecting other
running applications. The graphics application on FPGA 2 displays the performance
of the real-time motion controller with real-time graphs of the reference, measured
angles of the spring-mass shaft and the calculated error. It also displays the real-
time signal noise on the 16 wireless TSCH channels that it obtains from the ATmega
board.

All the concepts of Sect. 16.2 are proven in the demonstrator. The system
application dynamically loads application bundles by creating virtual execution
platforms that are predictable and composable. Although the platform contains only
five processor tiles in total, they are interconnected globally asynchronously using
two TDM NoCs and a robust wireless TDM connection. The finite scheduling
interval and efficient arbitration are optimizations and proven on the various
resources, as described in previous sections.

16.6 Related Work

A vast literature is available on predictability, ranging from single resources to
multiple shared resources, using a variety of analytical approaches, such as real-
time calculus [52], dataflow [50], and response-time analysis for priority-based
scheduling [10].

In the literature, composability is especially addressed for safety-critical applica-
tions, such as those found in the automotive [43] and aeronautical [46,56] industries.
Temporal and spatial partitioning [46, 56] are addressed most often, increasingly
using microkernels and RTOS, such as LynxOS-178, VxWorks 653, INTEGRITY,
and PikeOS.

Our focus is on complete platforms that are predictable, are composable, or
offer mixed-time-criticality. Note however, that in the literature, definitions of
predictability and composability vary. Apart from CompSOC, notable mature
platforms include the Transport-Triggered Architecture (TTA) [29], Giotto [25]
and LET [28], and PRET [11]. A number of collaborative projects have developed
platforms of varying degrees of maturity, including Flextiles [26], T-CREST [47],
PARMERASA [54], MULTIPARTES [53], P-SOCRATES [44], DREAMS [42],
and CERTAINTY [12]. The resource-management frameworks of [7, 31, 40] are
noteworthy because their approaches consider the entire system, with different
resources.

These platforms focus on different aspects, and they are often updated, which
means that comparisons change over time. At a high level, all platforms offer

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 527

real-time performance to at least one application and sometimes to multiple
applications. Dynamic loading, starting, and stopping of applications are sometimes
supported. Mixed-time-criticality, where non-real-time and real-time applications
coexist, is also often claimed. However, the levels of predictability, the formalisms
used, and the level of automation vary considerably. Increasingly platforms claim to
be composable, especially in the sense of temporal and space partitioning, but not
to the extreme extent of CompSOC, i.e., no interference at the level of individual
clock cycles.

In general, points on which platforms may be compared include the for-
malism for predictability, model(s) of computation offered, single or multiple
applications, global or distributed arbitration, single-level or multi-level arbitration,
work-conserving arbitration or not, use of budgets or virtual resources or not, time-
triggered or data-driven execution, and distributed-shared-memory or message-
passing architecture.

16.7 Conclusions

In this chapter, we first defined what a mixed-time-criticality system is and what its
requirements are. After defining the concepts that such systems should follow, we
described CompSOC, which is one example of a mixed-time-criticality platform.
We described, in detail, how multiple resources, such as processors, memories, and
interconnect, are combined into a larger hardware platform, and especially how they
are shared between applications using different arbitration schemes. Following this,
the software architecture that transforms the single hardware platform into multiple
virtual execution platforms, one per application, was described.

Acknowledgments The development of CompSOC has been partially funded by European
grants, including CATRENE CT217 RESIST; ARTEMIS 621429 EMC2, 621353 DEWI, 621439
ALMARVI, and ECSEL 692455 ENABLE-S3.

References

1. Akesson B, Goossens K (2011) Architectures and modeling of predictable memory controllers
for improved system integration. In: Proceedings of design, automation and test in Europe
conference and exhibition (DATE), Grenoble. IEEE, pp 1–6

2. Akesson B, Goossens K (2011) Memory controllers for real-time embedded systems. Embed-
ded systems series, 1st edn. Springer, New York

3. Akesson B, Hansson A, Goossens K (2009) Composable resource sharing based on latency-
rate servers. In: Proceedings of Euromicro symposium on digital system design (DSD), Patras,
pp 547–555

4. Akesson B, Molnos A, Hansson A, Ambrose Angelo J, Goossens K (2010) Composability and
predictability for independent application development, verification, and execution. In: Hübner
M, Becker J (eds) Multiprocessor system-on-chip – hardware design and tool integration,
circuits and systems, chap. 2. Springer, Heidelberg, pp 25–56

528 K. Goossens et al.

5. Akesson B, Steffens L, Strooisma E, Goossens K (2008) Real-time scheduling using credit-
controlled static-priority arbitration. In: Proceedings of international conference on embedded
and real-time computing systems and applications (RTCSA). IEEE Computer Society, Wash-
ington, DC, pp 3–14

6. Beyranvand Nejad A, Molnos A, Goossens K (2013) A software-based technique enabling
composable hierarchical preemptive scheduling for time-triggered applications. In: Pro-
ceedings of international conference on embedded and real-time computing systems and
applications (RTCSA), Taipei

7. Bini E, Buttazzo G, Eker J, Schorr S, Guerra R, Fohler G, Arzen KE, Romero Segovia V,
Scordino C (2011) Resource management on multicore systems: the ACTORS approach. Proc
Microarch (MICRO) 31(1):72–81

8. Bolder J, Oomen T (2014) Rational basis functions in iterative learning control – with
experimental verification on a motion system. IEEE Trans Control Syst Technol 23(2):
722–729

9. Chandrasekar K, Akesson B, Goossens K (2012) Run-time power-down strategies for real-time
SDRAM memory controllers. In: Proceedings of design automation conference (DAC). ACM,
New York, pp 988–993

10. Davis RI, Burns A (2011) A survey of hard real-time scheduling for multiprocessor systems.
ACM Comput Surv (CSUR) 43(4):35

11. Edwards SA, Lee EA (2007) The case for the precision timed (pret) machine. In: Proceedings
of the 44th annual design automation conference, New York. ACM, pp 264–265

12. Giannopoulou G, Stoimenov N, Huang P, Thiele L, de Dinechin BD (2015) Mixed-criticality
scheduling on cluster-based manycores with shared communication and storage resources.
J Real-Time Syst 52(4):399–449

13. Goossens S, Akesson B, Goossens K (2013) Conservative open-page policy for mixed time-
criticality memory controllers. In: Proceedings of design, automation and test in Europe
conference and exhibition (DATE), Grenoble, pp 525–530

14. Goossens K, Azevedo A, Chandrasekar K, Gomony MD, Goossens S, Koedam M, Li Y,
Mirzoyan D, Molnos A, Beyranvand Nejad A, Nelson A, Sinha S (2013) Virtual execution
platforms for mixed-time-criticality systems: the CompSOC architecture and design flow.
ACM Spec Interest Group Embed Syst (SIGBED) Rev 10(3):23–34

15. Goossens K, Hansson A (2010) The Aethereal network on chip after ten years: goals, evolution,
lessons, and future. In: Proceedings of design automation conference (DAC), Anaheim,
pp 306–311

16. Goossens K, Koedam M, Sinha S, Nelson A, Geilen M (2015) Run-time middleware to support
real-time system scenarios. In: Proceedings of European conference on circuit theory and
design (ECCTD), Trondheim

17. Goossens S, Kouters T, Akesson B, Goossens K (2012) Memory-map selection for firm real-
time SDRAM controllers. In: Proceedings of design, automation and test in Europe conference
and exhibition (DATE). IEEE, Dresden, pp 828–831

18. Goossens S, Kuijsten J, Akesson B, Goossens K (2013) A reconfigurable real-time SDRAM
controller for mixed time-criticality systems. In: International conference on hardware/soft-
ware codesign and system synthesis (CODES+ISSS), Montreal, pp 1–10

19. Hansson A, Ekerhult M, Molnos A, Milutinovic A, Nelson A, Ambrose J, Goossens K
(2011) Design and implementation of an operating system for composable processor sharing.
J Micromech Microeng (MICPRO) 35(2):246–260. Elsevier. Special issue on network-on-chip
architectures and design methodologies

20. Hansson A, Goossens K (2007) Trade-offs in the configuration of a network on chip for
multiple use-cases. In: Proceedings of international symposium on networks on chip (NOCS).
IEEE Computer Society, Washington, DC, pp 233–242

21. Hansson A, Goossens K (2009) An on-chip interconnect and protocol stack for multiple
communication paradigms and programming models. In: International conference on hard-
ware/software codesign and system synthesis (CODES+ISSS). ACM, New York, pp 99–108

16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications 529

22. Hansson A, Goossens K (2010) On-Chip interconnect with aelite: composable and predictable
systems. Embedded systems series. Springer, New York

23. Hansson A, Goossens K, Bekooij M, Huisken J (2009) CoMPSoC: a template for composable
and predictable multi-processor system on chips. ACM Trans Des Autom Electron Syst
14(1):1–24

24. Hansson A, Wiggers M, Moonen A, Goossens K, Bekooij M (2009) Enabling application-level
performance guarantees in network-based systems on chip by applying dataflow analysis. IET
Comput Digit Tech 3(5):398–412

25. Henzinger TA, Horowitz B, Kirsch CM (2003) Giotto: a time-triggered language for embedded
programming. Proc IEEE 91(1):84–99

26. Jansen B, Schwiegelshohn F, Koedam M, Duhem F, Masing L, Werner S, Huriaux C,
Courtay A, Wheatley E, Goossens K, Lemonnier F, Millet P, Becker J, Sentieys O, Hübner M
(2015) Designing applications for heterogeneous many-core architectures with the FlexTiles
platform. In: Proceedings of International Conference on Embedded Computer Systems:
Architectures, MOdeling and Simulation (SAMOS), Samos

27. Kasapaki E, Sorensen RB, Müller C, Goossens K, Schoeberl M, Sparso J (2015) Argo: a real-
time network-on-chip architecture with an efficient GALS implementation. IEEE Trans Very
Large Scale Integr Syst (TVLSI) 99(2):479–492

28. Kirsch C, Sokolova A (2012) The logical execution time paradigm. In: Chakraborty S,
Eberspächer J (eds) Advances in real-time systems (ARTS). Springer, Berlin/Heidelberg,
pp 103–120

29. Kopetz H (2011) Real-time systems: design principles for distributed embedded applications.
Springer, Heidelberg

30. Li Y, Salunkhe H, Bastos J, Moreira O, Akesson B, Goossens K (2015) Mode-controlled data-
flow modeling of real-time memory controllers. In: Proceedings of embedded systems for real-
time multimedia (ESTIMedia), Amsterdam

31. Moreira O, Corporaal H (2014) Scheduling real-time streaming applications onto an embedded
multiprocessor. Embedded systems series, vol 24. Springer, Cham

32. Nejad AB, Molnos A, Goossens K (2013) A unified execution model for multiple computation
models of streaming applications on a composable MPSoC. J Syst Archit (JSA) 59(10, part C),
1032–1046. Elsevier

33. Nejad AB, Molnos A, Martinez ME, Goossens K (2013) A hardware/software platform for
QoS bridging over multi-chip NoC-based systems. J Parallel Comput (PARCO)39(9):424–441.
Elsevier

34. Nelson A (2014) Composable and predictable power management. Ph.D. thesis, Delft Univer-
sity of Technology

35. Nelson A, Beyranvand Nejad A, Molnos A, Koedam M, Goossens K (2014) CoMik: a
predictable and cycle-accurately composable real-time microkernel. In: Proceedings of design,
automation and test in Europe conference and exhibition (DATE), Dresden

36. Nelson A, Goossens K (2015) Distributed power management of real-time applications on a
GALS multiprocessor SOC. In: Proceedings of ACM international conference on embedded
software (EMSOFT), Amsterdam

37. Nelson A, Goossens K, Akesson B (2015) Dataflow formalisation of real-time streaming
applications on a composable and predictable multi-processor SOC. J Syst Archit (JSA)
61(9):435–448

38. Nelson A, Molnos A, Goossens K (2011) Composable power management with energy and
power budgets per application. In: Proceedings of international conference on embedded
computer systems: architectures, modeling and simulation (SAMOS), Samos, pp 396–403

39. Nelson A, Molnos A, Goossens K (2012) Power versus quality trade-offs for adaptive real-time
applications. In: Proceedings of embedded systems for real-time multimedia (ESTIMedia),
Tampere, pp 75–84

40. Nesbit KJ, Smith JE, Moreto M, Cazorla FJ, Ramirez A, Valero M (2008) Multicore resource
management. Proc Microarch (MICRO) 28(3):6–16

530 K. Goossens et al.

41. Nieuwland A, Kang J, Gangwal OP, Sethuraman R, Busá N, Goossens K, Peset Llopis R,
Lippens P (2002) C-HEAP: a heterogeneous multi-processor architecture template and scalable
and flexible protocol for the design of embedded signal processing systems. ACM Trans Des
Autom Embed Syst 7(3):233–270

42. Obermaisser R, Weber D (2014) Architectures for mixed-criticality systems based on net-
worked multi-core chips. In: Proceedings of Conference on Emerging Technology and Factory
Automation (ETFA), Barcelona, pp 1–10

43. Pelz G et al (2005) Automotive system design and autosar. In: Advances in design and
specification languages for SoCs. Springer, New York, pp 293–305

44. Pinho LM, Nelis V, Yomsi PM, Quinones E, Bertogna M, Burgio P, Marongiu A, Scordino
C, Gai P, Ramponi M, Mardiak M (2015) P-socrates: a parallel software framework for time-
critical many-core systems. J Microprocess Microsyst 39(8):1190–1203. Elsevier

45. Rădulescu A, Dielissen J, González Pestana S, Gangwal OP, Rijpkema E, Wielage P,
Goossens K (2005) An efficient on-chip network interface offering guaranteed services, shared-
memory abstraction, and flexible network programming. IEEE Trans CAD Integr Circuits Syst
24(1):4–17

46. Rushby J (1999) Partitioning in avionics architectures: requirements, mechanisms, and assur-
ance. Technical report, NASA

47. Schoeberl M, Abbaspour S, Akesson B, Audsley N, Capasso R, Garside J, Goossens K,
Goossens S, Hansen S, Heckmann R, Hepp S, Huber B, Jordan A, Kasapaki E, Knoop J,
Li Y, Prokesch D, Puffitsch W, Puschner P, Rocha A, Silva C, Sparsø J, Tocchi A (2015)
T-CREST: time-predictable multi-core architecture for embedded systems. J Syst Archit (JSA)
61(9):449–471. Elsevier

48. Sinha S, Koedam M, Breaban G, Nelson A, Nejad A, Geilen M, Goossens K (2015) Compos-
able and predictable dynamic loading for time-critical partitioned systems on multiprocessor
architectures. J Microprocess Microsyst (MICPRO) 39(8):1087–1107

49. Stefan R, Molnos A, Goossens K (2014) dAElite: a TDM NoC supporting QoS, multicast, and
fast connection set-up. IEEE Trans Comput 63(3):583–594

50. Stuijk S, Basten T, Geilen M, Corporaal H (2007) Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs. In: Proceedings of design automation
conference (DAC), San Diego, pp 777–782

51. Tavakoli R, Nabi M, Basten T, Goossens K (2015) Enhanced time-slotted channel hopping
in wsns using non-intrusive channel-quality estimation. In: Proceedings of international
conference on mobile ad hoc and sensor systems (MASS), Dallas

52. Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-
time systems. In: The 2000 IEEE international symposium on circuits and systems, 2000.
Proceedings. ISCAS 2000, Geneva, vol 4. IEEE, pp 101–104

53. Trujillo S, Crespo A, Alonso A, Perez J (2014) Multipartes: multi-core partitioning and vir-
tualization for easing the certification of mixed-criticality systems. J Microprocess Microsyst
38(8, part B):921–932. Elsevier

54. Ungerer T, Bradatsch C, Gerdes M, Kluge F, Jahr R, Mische J, Fernandes J, Zaykov PG, Petrov
Z, Boddeker B, Kehr S, Regler H, Hugl A, Rochange C, Ozaktas H, Casse H, Bonenfant A,
Sainrat P, Broster I, Lay N, George D, Quinones E, Panic M, Abella J, Cazorla F, Uhrig S,
Rohde M, Pyka A (2013) parmerasa – multi-core execution of parallelised hard real-time
applications supporting analysability. In: Proceedings of Euromicro symposium on digital
system design (DSD), Los Alamitos

55. Valencia J, van Horsen E, Goswami D, Heemels M, Goossens K (2016) Resource utilization
and quality-of-control trade-off for a composable platform. In: Proceedings of design, automa-
tion and test in Europe conference and exhibition (DATE), Lausanne

56. Windsor J et al (2009) Time and space partitioning in spacecraft avionics. In: SMC-IT,
Pasadena

57. Zhang H (1995) Service disciplines for guaranteed performance service in packet-switching
networks. Proc IEEE 83(10):1374–1396

Part V
Hardware/Software

Cosimulation and Prototyping

17Parallel Simulation

Rainer Dömer, Guantao Liu, and Tim Schmidt

Abstract

The SystemC standard is widely used in industry and academia to model and
simulate electronic system-level designs. However, despite the availability of
multi-core processor hosts, the reference SystemC simulator is still based on
sequential Discrete Event Simulation (DES) which executes only a single thread
at any time.

In recent years, parallel SystemC simulators have been proposed which
run multiple threads in parallel based on Parallel Discrete Event Simulation
(PDES) semantics. While this can improve the simulator run time by an order
of magnitude, synchronous PDES requires careful dependency analysis of the
model and still limits the parallel execution to threads that run at the same
simulation time.

In this chapter, we review the classic DES and PDES algorithms and then
present a state-of-the-art approach called Out-of-Order Parallel Discrete Event
Simulation (OOO PDES) which breaks the traditional time cycle barrier and
executes threads in parallel and out of order (ahead of time) while maintaining
the standard SystemC modeling semantics. Specifically, we present our Recoding
Infrastructure for SystemC (RISC) that consists of a dedicated SystemC compiler
and advanced parallel simulator. RISC provides an open-source reference imple-
mentation of OOO PDES and achieves fastest simulation speed for traditional
SystemC models without any loss of accuracy.

R. Dömer (�)
Center for Embedded and Cyber-physical Systems, Department of Electrical Engineering and
Computer Science, The Henry Samueli School of Engineering, University of California, Irvine,
CA, USA
e-mail: doemer@uci.edu

G. Liu • T. Schmidt
Center for Embedded and Cyber-physical Systems, University of California, Irvine, CA, USA
e-mail: guantaol@uci.edu; schmidtt@uci.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_19

533

mailto:doemer@uci.edu
mailto:guantaol@uci.edu
mailto:schmidtt@uci.edu

534 R. Dömer et al.

Acronyms

AST Abstract Syntax Tree
DE Discrete Event
DES Discrete Event Simulation
DUT Design Under Test
ESL Electronic System Level
OOO PDES Out-of-Order Parallel Discrete Event Simulation
PDES Parallel Discrete Event Simulation
RISC Recoding Infrastructure for SystemC
SG Segment Graph
SLDL System-Level Description Language

Contents

17.1 Introduction . 534
17.1.1 Exploiting Parallelism for Higher Simulation Speed 535
17.1.2 Related Work on Accelerated Simulation . 536

17.2 Discrete Event Simulation (DES) . 537
17.2.1 Discrete Time and Discrete Event Model . 538
17.2.2 Scheduling Queues . 538
17.2.3 Sequential Discrete Event Scheduler . 539

17.3 Parallel Discrete Event Simulation (PDES) . 540
17.3.1 Parallel Discrete Event Scheduler . 541
17.3.2 Protection of the Parallel Simulation Kernel . 542
17.3.3 Preserving SystemC Execution Semantics in PDES 542

17.4 Out-of-Order Parallel Discrete Event Simulation (OOO PDES) 543
17.4.1 Thread-Local Simulation Time . 543
17.4.2 Dynamically Evolving Scheduling Queues . 543
17.4.3 Out-of-Order Parallel Discrete Event Scheduler . 544
17.4.4 OOO PDES Scheduling Algorithm. 545

17.5 Recoding Infrastructure for SystemC (RISC) . 546
17.5.1 Segment Graph . 548
17.5.2 Segment Graph Construction . 549
17.5.3 Static Conflict Analysis . 551
17.5.4 Source Code Instrumentation . 557

17.6 Experimental Evaluation . 558
17.6.1 Conceptual DVD Player Example . 558
17.6.2 Mandelbrot Renderer Example . 559

17.7 Conclusion . 562
References . 562

17.1 Introduction

Electronic System Level (ESL) design space exploration in general and the val-
idation of ESL designs in particular typically rely on dynamic model simulation
in order to study and optimize a desired system or electronic device before it is
actually being built. For this simulation, an abstract model of the intended system
is first specified in a System-Level Description Language (SLDL) such as SpecC
[13] or SystemC [15]. This SLDL model is then compiled, executed, and evaluated

17 Parallel Simulation 535

on a host computer. In order to reflect causal ordering and provide abstract timing
information, SLDL simulation algorithms are usually based on the classic Discrete
Event (DE) semantics which drive the simulation process forward by use of events
and simulation time advances.

As an IEEE standard [18], the SystemC SLDL [15] is predominantly used in both
industry and academia. Under the umbrella of the Accellera Systems Initiative [1],
the SystemC Language Working Group [31] maintains not only the official SystemC
language definition but also provides an open-source proof-of-concept library [16]
that can be used free of charge to simulate SystemC design models within a standard
C++ programming environment. However, this reference implementation follows
the traditional scheme of sequential Discrete Event Simulation (DES) which is
much easier to implement than truly parallel approaches. Here, the discrete time
events generated during the simulation are processed strictly in sequential order. As
such, the SystemC reference simulator runs fully sequentially and cannot utilize any
parallel computing resources available on today’s multi- and many-core processor
hosts. This severely limits the simulation speed since a single processor core has to
perform all the work.

17.1.1 Exploiting Parallelism for Higher Simulation Speed

In order to provide faster simulation performance, parallel execution is highly desir-
able, especially since the SLDL model itself already contains clearly exposed paral-
lelism that is explicitly specified by the language constructs, such as SC_METHOD,
SC_THREAD, and SC_CTHREAD in the case of SystemC SLDL. Here, the topic
of Parallel Discrete Event Simulation (PDES) [12] has recently gained a lot of
attraction again. Generally, the PDES approach issues multiple threads concurrently
and runs these threads in parallel on the multiple available processor cores. In
turn, the simulation speed increases significantly. The naive assumption of a linear
speedup of factor nx for n available processor cores occurs very rarely due to the
usually quite limited amount of parallelism exposed in the model and the application
of Amdahl’s law [2]. Typically, a speedup of one order of magnitude can be expected
for embedded system applications with parallel modules [6].

With respect to PDES performance, it is very important to understand the
dependencies among the discrete time events and also to distinguish between the
dependencies present in the model and the (additional) dependencies imposed by
the simulation algorithm. In general, SLDL models assume a partial order of events
where certain events depend on others due to a causal relationship or occurrence
in sequence along the time line, and other events are independent and may be
performed in any order or in parallel. On top of this required partial ordering of
events in the model, a sequential simulator (described in Sect. 17.2) imposes a much
stronger total order on the event processing. This is acceptable as it observes the
weaker SLDL execution semantics but results in slow performance due to the overly
restrictive sequential execution.

In contrast, PDES follows a partial ordering of events. Here, we can distinguish
between regular synchronous PDES, which advances the (global) simulation time in

536 R. Dömer et al.

order and executes threads in lockstep parallel fashion, and aggressive asynchronous
PDES, where simulation time is effectively localized and independent threads can
execute out of order and run ahead of others. As we will explain in detail in
Sect. 17.3, the strict in-order execution imposed by synchronous PDES still limits
the opportunities for parallel execution. When a thread finishes its evaluation phase,
it has to wait until all other threads have completed their evaluation phases as
well. Threads finishing early must stop at the simulation cycle barrier, and available
processor cores are left idle until all runnable threads reach the cycle barrier.

This problem is overcome by the latest state-of-the-art approaches which im-
plement a novel technique called Out-of-Order Parallel Discrete Event Simulation
(OOO PDES) [6, 8]. By internally localizing the simulation time to individual
threads and carefully processing dependent events only at required times, an OOO
PDES simulator can issue threads in parallel and ahead of time, exploiting the
maximum available parallelism without loss of accuracy. Thus, the OOO PDES
presented in Sect. 17.4 minimizes the idle time of the available parallel processor
cores and results in highest simulation speed while fully maintaining the standard
SLDL and unmodified model semantics.

We should note that parallel simulation in general, and synchronous PDES
and OOO PDES in particular, can be implemented in different environments and
are not language dependent. In fact, the parallel simulation techniques discussed
in Sects. 17.3 and 17.4 have been originally designed using the SpecC language
[10, 13, 35] and integrated into the system-on-chip environment (see �Chap. 31,
“SCE: System-on-Chip Environment” and in particular Sect. 4.1, “Simulation”) but
can be equally well applied to other SLDLs with explicitly exposed parallelism.
Without loss of generality, and in order to present the state of the art, we describe
in this chapter the evolution from sequential DES over synchronous PDES to
asynchronous OOO PDES using the SystemC SLDL [15, 18] which is both the
de facto and official standard for ESL design today. In particular, we describe in
Sect. 17.5 our Recoding Infrastructure for SystemC (RISC) [21], which is open
source [20] and consists of a dedicated SystemC compiler and corresponding out-
of-order parallel simulator, and thus provides a reference implementation of OOO
PDES for SystemC.

Finally, we conclude this chapter in Sect. 17.6 with experimental results for em-
bedded application examples that demonstrate the significantly reduced simulator
run times due to parallel simulation.

17.1.2 Related Work on Accelerated Simulation

Parallel simulation is a well-studied subject in the literature [4, 12, 24]. Two major
synchronization paradigms can be distinguished, namely, conservative and opti-
mistic [12]. Conservative PDES typically involves dependency analysis and ensures
in-order execution for dependent threads. In contrast, the optimistic paradigm
assumes that threads are safe to execute and rolls back when this proves incorrect.
Often, the temporal barriers in the model prevent effective parallelism in conserva-
tive PDES while rollbacks in optimistic PDES are expensive in execution.

17 Parallel Simulation 537

The OOO PDES presented in Sect. 17.4 is conservative and can be seen as an
improvement over synchronous PDES (Sect. 17.3) approaches, such as [11, 27] for
SystemC and [7] for SpecC.

Distributed parallel simulation, including [4, 17], is a natural extension of PDES
where the system model is partitioned into sets of modules and distributed onto a
set of networked host computers. Here, the necessary model partitioning may create
extra work, and often the network speed becomes a bottleneck for synchronization
and communication among the multiple host simulators.

In a wider perspective, simulation performance can also be improved by clever
software modeling and utilizing specialized hardware. Software approaches include
the overall concept of transaction-level modeling (TLM) [3] and temporal decou-
pling [32, 33], which abstract communication from a pin-accurate level to entire
transactions with only approximate timing, and source-level [30] or host-compiled
simulation [14], which model computation and scheduling at a higher abstraction
level. Typically, these modeling techniques trade off higher simulation speed at the
cost of reduced timing accuracy.

Simulation acceleration can also be achieved by special purpose hardware, such
as field-programmable gate arrays (FPGA) and graphics processing units (GPU).
For example, [29] emulates SystemC code on FPGA boards and [23] proposes a
SystemC multi-threading model on GPUs. As a hybrid approach, [28] parallelizes
SystemC simulation across multiple CPUs and GPUs. Usually, special hardware
approaches pose limitations on the model partitioning across the heterogeneous
simulator units.

Parallel simulation can also be organized as multiple simulators which run inde-
pendently in parallel and synchronize regularly or when needed (i.e., when timing
differences grow beyond a given threshold). For instance, the Wisconsin Wind
Tunnel [22] uses a conservative time bucket synchronization scheme to coordinate
multiple simulators at predefined intervals. Another example [34] introduces a sim-
ulation backplane to handle the synchronization between wrapped simulators and
analyzes the system to optimize the period of synchronization message transfers.

From this discussion, we can see that parallel simulation is an important topic that
has been addressed and optimized with a multitude of approaches. For the remainder
of this book chapter, we will focus on the SystemC language and present two general
parallel simulation techniques, namely, synchronous PDES in Sect. 17.3 and an
advanced out-of-order PDES algorithm in Sect. 17.4. Both approaches are general in
the sense that they do not require any special setup or hardware, pose no limitations
on the simulation model, and do not sacrifice any timing accuracy in the result.

17.2 Discrete Event Simulation (DES)

Before we address the details of modern parallel simulation, we review in this
section the classic sequential simulation of models with discrete time. After the
description of this traditional DES algorithm, we then extend it incrementally to
synchronous PDES in Sect. 17.3 and finally to out-of-order PDES in Sect. 17.4.

538 R. Dömer et al.

17.2.1 Discrete Time and Discrete Event Model

SLDL simulation is driven by discrete events and simulation time advances. We will
use the term simulation time for the simulated time maintained by the simulator.
This must not be confused with simulator run time which is the actual wall-clock
time that measures how long it takes the simulator to perform the simulation
on the host. Simulation time consists of a tuple .t; ı/ where t represents an
integral amount of simulated time since the simulation start t D 0 and ı is a
positive integer that counts iterations at the same simulated time t due to event
notifications.

Formally, time tuples, often referred to as time stamps, form a partial order and
can be compared as follows [6]:

equal: .t1; ı1/ D .t2; ı2/ iff t1 D t2, ı1 D ı2
before: .t1; ı1/ < .t2; ı2/ iff t1 < t2, or t1 D t2, ı1 < ı2
after: .t1; ı1/ > .t2; ı2/ iff t1 > t2, or t1 D t2, ı1 > ı2

Events serve the purpose of synchronization among communicating or dependent
threads. Threads can notify events or wait for events. An event notification at time
.t; ı/ reaches a thread waiting for the event at the same time, or it expires without
any effect if no thread is waiting for the event. If a thread wakes up due to a notified
event, it resumes its execution at the next delta increment .t; ı C 1/ or immediately
at .t; ı/ in case of a SystemC immediate notification.

In other words, the SLDL semantics use an outer cycle in the simulation process
to model time advances so that thread execution can reflect estimated duration or
delays by adding to time t . In addition, there is an inner cycle in the simulator,
called delta cycle, that is used for event notifications which may in turn wake
waiting threads, in which case time is incremented by one ı count. In the case
of SystemC, yet another innermost cycle is available where so-called immediate
event notifications may take place without any time advance. Since immediate
notifications can easily lead to nondeterministic models with potential deadlocks
or lost events, these should generally be avoided.

17.2.2 Scheduling Queues

SLDLs use a set of parallel threads to execute the functionality in the
model. In SystemC, such threads are explicitly specified as SC_METHOD,
SC_THREAD, or SC_CTHREAD. These threads are then managed by a scheduler
in the simulator kernel which decides when threads are actually dispatched
to run.

To coordinate the execution of the threads according to the SLDL semantics,
the simulation scheduler typically maintains sorted lists or queues of threads where
each thread is a member of one queue at any time. For ease of understanding, we use
a simplified formal model here and ignore special cases in the SystemC language,

17 Parallel Simulation 539

such as suspended processes. Formally we define the following scheduling
sets [9]:

THREADSD READY [RUN [WAIT [WAITTIME
READYD { th | th is ready to run }
RUN D { th | th is currently running }
WAITD { th | th is waiting for one or more events }
WAITTIMED { th | th is waiting for time advance }

At the beginning of simulation at time .0; 0/, all threads are placed into the
READY queue and the other sets are empty:

THREADS D READY
RUN D WAIT D WAITTIME D ¿

During simulation, the scheduler moves threads between the queues and sus-
pends or resumes their execution according to their state. In order to describe
the discrete event scheduling algorithms below, we formally define the following
scheduling operations on threads th maintained in queues A and B:

Run(th): thread th begins or resumes its execution
Stop(): the current thread stops running or suspends its execution
Yield(th): the current thread stops running and yields execution to thread th
th = Pick(A): pick one thread th out of set A
Move(th, A, B): move thread th from set A to set B

For inter-thread synchronization and communication, the SystemC language
provides events and channel primitives with special update semantics. Without
going into the details of event notifications and channel updates, we denote the set
of instantiated primitive channels in the model as CHANNEL.

17.2.3 Sequential Discrete Event Scheduler

Figure 17.1 shows the traditional DES scheduling algorithm as it is implemented
by the Accellera SystemC reference simulator [16]. Most notably, this algorithm is
fully sequential in the sense that only a single thread is made runnable at all times.
In SystemC specifically, the choice of the next thread to run is nondeterministic
by definition, so one thread is randomly picked from the READY queue and placed
into the RUN queue for execution. When the thread returns to the scheduler due to
execution of a wait statement, it yields control back to the scheduler which in turn
picks the next thread to run.

When the READY queue is empty, the scheduler performs requested channel
updates and event notifications which typically fills the READY queue again with
threads that wake up due to events they were waiting for. These are taken out of the
WAIT queue and a new delta cycle begins.

If no threads become ready after the update and notification phase, the current
time cycle is complete. Then the scheduler advances the simulation time, moves all

540 R. Dömer et al.

start

READY = Ø?

th ← Pick(READY)
Move(th, READY, RUN)

Yield(th)

∀ch ∈ CHANNEL where update is requested:
Update(ch)

∀th ∈ WAIT where event is triggered:
Move(th, WAIT, READY)

READY = Ø?

∀th ∈ WAITTIME where time(th) = tmin:
Move(th, WAITTIME, READY)

READY = Ø?

end

No

No

Yes

Yes

Yes

No

δ ← δ + 1

Immediate
Notification

Delta Cycle

Time Cycle

t ← t + tmin

Fig. 17.1 Traditional discrete event simulation (DES) scheduler for SystemC

threads with the earliest next time stamp from the WAITTIME queue into the READY
queue, and resumes execution with the next time cycle.

Finally, when both the READY and WAITTIME queues are empty, the simulation
terminates.

17.3 Parallel Discrete Event Simulation (PDES)

The sequential DES algorithm can be easily extended to support synchronous
parallel simulation. Instead of a single thread in DES, regular PDES manages
multiple threads at the same time in the RUN queue. These threads can then execute
truly in parallel on the parallel processors of the host.

17 Parallel Simulation 541

start

No
No

Yes

Yes

Yes

No

No

Yes

|RUN| < Cores
and READY ≠ Ø?

Stop()

Stop()RUN = Ø?
Run (th)

READY = Ø?

th ← Pick(READY)
Move(th, READY, RUN)

∀ch ∈ CHANNEL where update is requested:
Update(ch)

∀th ∈ WAIT where event is triggered:
Move(th, WAIT, READY)

∀th ∈ WAITTIME where time(th) = tmin:
Move(th, WAITTIME, READY)

READY = Ø?

δ ← δ + 1

Immediate
Notification

Delta Cycle

Time Cycle

READY = Ø?

end

No

Yes

t ← t + tmin

Fig. 17.2 Synchronous parallel discrete event simulation (PDES) scheduler for SystemC

17.3.1 Parallel Discrete Event Scheduler

The PDES scheduling algorithm, as shown in Fig. 17.2, operates the same way as the
traditional scheduler in Fig. 17.1, but with one exception: the synchronous parallel
scheduler picks multiple threads from the READY queue and runs them in parallel
on the available processor cores.

In the evaluation phase, as long as the READY queue is not empty and an idle
core is available, the PDES scheduler issues a new thread from the READY queue
in a loop. When a thread finishes earlier than the other threads in the same cycle, a
new ready thread is picked and assigned to the free processor core. Thus, within the
same delta cycle, PDES keeps as many processor cores as busy as possible.

However, we notice that only threads at the same time .t; ı/ run in parallel.
Synchronous PDES implies an absolute barrier at the end of each delta and time
cycle. All threads need to wait at the barrier until all other runnable threads finish

542 R. Dömer et al.

their current evaluation phase. Only then the synchronous scheduler performs the
channel update and event notification phase for the next delta or advances simulation
time for the next time cycle.

17.3.2 Protection of the Parallel Simulation Kernel

The benefit of PDES running more than a single thread at the same time comes
at a price. Explicit synchronization among the parallel threads becomes necessary
in critical sections. In particular, shared data structures in the simulation kernel,
including the global simulation time, event lists, and thread queues, need to be
properly protected for mutual exclusive access by the concurrent threads.

In order to protect the central scheduling resources, locks (binary semaphores)
and condition variables need to be introduced for proper thread synchronization.
For example, our RISC prototype implementation (see Sect. 17.5 below) uses one
dedicated kernel lock to protect the scheduling resources. This lock is acquired by
the threads at every kernel entry and released upon kernel exit. Each thread also
owns a condition variable c that is used in combination with the lock to put threads
to sleep (Stop() calls wait(c)) or wake them up (Run(th) calls signal(c)), as
determined by the scheduling kernel.

17.3.3 Preserving SystemC Execution Semantics in PDES

In contrast to the SpecC language, which allows preemptive parallel execution of
the threads in the model [10], the SystemC language poses strict rules on standard-
compliant simulation. This is a very important aspect to consider when applying
PDES to SystemC. For semantics-compliant SystemC simulation, complex inter-
dependency analysis over all threads and variables in the model is a prerequisite to
parallel execution [9]. The IEEE standard SystemC Language Reference Manual
(LRM) [18] clearly states that “process instances execute without interruption”
and presumably is meant to simplify the writing of SystemC models. Here, the
need to prevent parallel access conflicts to shared variables and to avoid potential
race conditions among the parallel threads becomes a burden for the simulation
environment (rather than for the model designer).

This requirement is also known as cooperative (or coroutine) multitasking which
is explicitly assumed by the SystemC execution semantics. As detailed in [9], the
particular problem of parallel simulation is also explicitly addressed in the SystemC
LRM [18]:

An implementation running on a machine that provides hardware support for concurrent
processes may permit two or more processes to run concurrently, provided that the behavior
appears identical to the coroutine semantics defined in this subclause. In other words,
the implementation would be obliged to analyze any dependencies between processes and
constrain their execution to match the coroutine semantics.

17 Parallel Simulation 543

Consequently, a standard-compliant PDES environment for SystemC must iden-
tify and resolve any dependencies among the threads in the model. We will describe
this required dependency analysis in detail in Sect. 17.5.3 because it is needed for
both synchronous and out-of-order PDES.

17.4 Out-of-Order Parallel Discrete Event Simulation
(OOO PDES)

In OOO PDES [6], we break the synchronous barrier in the simulator so that
independent threads can also run in parallel when they are at a different simulation
times (different t or different ı). In other words, threads are allowed to run ahead in
time and thus can execute out-of-order, unless a causal relationship prohibits it.

17.4.1 Thread-Local Simulation Time

For OOO PDES, we replace the global simulation time .t; ı/ with local time stamps
for each thread. Thus, each thread th maintains its own time .tth; ıth/.

Events get assigned their own time, too. Since events in the simulation model can
occur multiple times and at different simulation times, we note an event e notified
at time .t; ı/ as a triple .ide; te; ıe/. Thus, every event is managed with its own ID
and notification time attached.

Finally, we distinguish the sets of events that have been notified at a given time.
Formally, we define:

EVENTS D [EVENTSt;ı
EVENTSt;ı D f.ide; te; ıe/ j te D t; ıe D ı/g

17.4.2 Dynamically Evolving Scheduling Queues

Rather than the static DES queues which exist at all times, we define for OOO PDES
multiple sets ordered by their local time stamps and dynamically create and delete
these sets as needed. For efficiency reasons, these sets are typically implemented as
true queues where the threads are ordered by increasing time stamps. Formally, we
define the following queues:

QUEUES D fREADY;RUN;WAIT;WAITTIMEg
READY D [READYt;ı , where READYt;ı D fth j th is ready to run at .t; ı/g
RUN D [RUNt;ı , where RUNt;ı D fth j th is running at .t; ı/g
WAIT D [WAITt;ı , where WAITt;ı D fth j th is waiting since .t; ı/ for events
.ide; te; ıe/, .te; ıe/ � .t; ı/g
WAITTIME D [WAITTIMEt;ı , where ı D 0, WAITTIMEt;ı D fth j th is waiting for
simulation time advance to .t; 0/g

544 R. Dömer et al.

As in the regular DES case, the simulation starts at time .0; 0/ with all threads in
the READY0;0 queue. Then again the threads change state by transitioning between
the queues, as determined by the scheduler:

Move.th;READYt;ı;RUNt;ı/: thread th is issued and becomes runnable
Move.th;RUNt;ı;WAITt;ı/: thread th calls wait(e) for an event e
Move.th;RUNt;ı;WAITTIMEt 0;0/, where t < t 0 D t C d: thread th calls wait(d)
to wait for a time delay d
Move.th;WAITt;ı;READYt 0;ı00/, where .t; ı/ � .t 0; ı00/: thread th is waiting since
time .t; ı/ for event e D .ide; t

0
e; ı
0
e/ which is notified at time .t 0; ı0/; in turn,

thread th becomes ready to run at .t 0; ı00/ where ı00 D ı0 (immediate notification)
or ı00 D ı0 C 1 (regular delta cycle notification)
Move.th;WAITTIMEt;ı;READYt;ı/, where ı D 0: simulation time advances to
time .t; 0/, making one or more threads th ready to run; the local time for these
threads th is set to .tth; ıth/ where tth D t and ıth D 0

Whenever the sets READYt;ı and RUNt;ı become empty and there are no WAITt 0;ı0

or WAITTIMEt 0;ı0 queues with earlier time stamps .t 0; ı0/ � .t; ı/, then the scheduler
can delete these sets as well as any expired events EVENTSt;ı .

17.4.3 Out-of-Order Parallel Discrete Event Scheduler

Figure 17.3 shows the OOO PDES scheduling algorithm. Since each thread
maintains its own local time, the scheduler can relax the nested loops structure of
synchronous PDES and deliver events and update simulation times individually,
providing more flexibility for threads to run in parallel. Overall, this results in a
higher degree of parallelism and thus higher simulation speed.

Note that the prior loops for explicit delta cycles and time cycles in the scheduler
control flow do not exist any more for OOO PDES. Instead, we only have one
main loop where both the notification phase and time updates are processed.
The READY queue is consequently filled with more threads which, however, are
now subject to possible conflicts. These conflicts are then taken into account
when threads are picked from the READY queue and issued for execution into the
RUN set.

Note also that the WAITTIME queue gets cleared in every scheduling step and all
the threads move into the timed READY queue. Then, when the scheduler picks ready
threads to run, it prefers earlier ones over threads with later time stamps. This order
prevents threads from starving in the READY queue and also minimizes conflicts
among the ready threads.

Potential conflicts are strictly averted by the NOCONFLICTS(th) condition in
Fig. 17.3 when runnable threads are picked. Here, detailed dependency analysis
is used to avoid potential data, event, and time advance hazards among the
set of threads in RUN that are executing in parallel. Only if a thread th has
NOCONFLICTS(th) it can be issued for parallel execution.

17 Parallel Simulation 545

start

No

No

NoYes

Yes

Yes

|RUN| < Cores
and READY ≠ Ø?

Stop()

Stop()

RUN = Ø?

RUNt, δ,

Run (th)

READY = Ø?

where NoConflicts(th) = true

∀th ∈ WAIT where event is triggered at (te', δe'):
Move(th, WAITt, δ, READYt', δ'')

Move(th, READYt, δ,

end

(tth, δth) ← (t', δ'')

∀th ∈ WAITTIMEt, 0:
Move(th, WAITTIMEt, 0, READYt, 0)

(tth, δth) ← (t, 0)

th ← Pick(READY)

Fig. 17.3 Out-of-order parallel discrete event simulation (OOO PDES) scheduler for SystemC

17.4.4 OOO PDES Scheduling Algorithm

Algorithm 3 formally defines the scheduling algorithm of OOO PDES. At each
scheduling step, the scheduler first evaluates notified events and wakes up corre-
sponding threads from WAIT. If a thread receives its event e with time stamp .t 0e; ı

0
e/,

it becomes ready to run and its local time advances to either .t 0e; ı
0
e/ for an immediate

notification or .t 0e; ı
0
e C 1/ for regular delta notifications.

After event notifications, the scheduler processes local time advances and moves
any threads in WAITTIME to the READYt;0 queue corresponding to their wait time.

Then the scheduler issues threads for parallel execution as long as idle CPU
cores and threads without conflicts are available. Finally, if no threads can run, that
is when RUN D READY D ;, the simulator terminates.

Note that Algorithm 3 allows to enable/disable the parallel out-of-order execution
at any time by setting the Cores parameter. For example, when in-order execution is

546 R. Dömer et al.

Algorithm 3 OOO PDES scheduling algorithm
1: procedure OOOPDES_SCHEDULER

2: for all th 2WAIT do F Process event notifications
3: if 9e D .ide; t

0

e; ı
0

e/ where th awaits e and .t 0e; ı
0

e/ � .t; ı/ then
4: if e is an immediate notification then
5: Move(th, WAITt;ı , READYt 0e ;ı0

e
/

6: tth t 0e ; ıth ı0

e

7: else
8: Move(th, WAITt;ı , READYt 0e ;ı0

eC1/

9: tth t 0e ; ıth ı0

e C 1
10: end if
11: end if
12: end for
13: for all th 2WAITTIME do F Process local time advances
14: Move(th, WAITTIMEt;ı , READYt;ı)
15: tth t ; ıth 0

16: end for
17: for all th 2 READY do F Out-of-order evaluation phase
18: if jRUNj < Cores and NOCONFLICTS.th/ then
19: Run(th)
20: end if
21: end for
22: return F End of simulation
23: end procedure

needed for debugging purposes, we can set Cores to 1, and the algorithm will behave
the same way as the traditional DES where only one thread is running in order at all
times.

OOO PDES relies heavily on efficient conflict detection. At run time, the
scheduler calls the function NOCONFLICTS(th) listed in Algorithm 4. NOCON-
FLICTS(th) checks for potential conflicts with all concurrent threads in the RUN
and READY queues that run at an earlier time than the candidate thread th. For each
concurrent thread, function CONFLICT(th1; th2) checks for any data, time, and event
hazards. We will explain these hazards and their analysis in detail in Sect. 17.5.3
below, because we can rely on the compiler to carry the heavy burden of this
complex analysis and pass prepared conflict tables to the simulator. At run time,
the scheduler can then perform these checks in constant time (O(1)) by use of table
lookups.

17.5 Recoding Infrastructure for SystemC (RISC)

We have realized the OOO PDES approach for the SystemC language with
our RISC. This proof-of-concept prototype environment consists of a compiler
and simulator with examples and documentation. The RISC software package is
available as open source on our website [20] and can be installed on any regular
multi-core Linux host.

17 Parallel Simulation 547

Algorithm 4 Conflict detection in OOO PDES scheduler
1: function NOCONFLICTS(th)
2: for all th2 2 RUNt;ı [READYt;ı where .t; ı/ < .tth; ıth/ do
3: if CONFLICT(th, th2) then
4: return false
5: end if
6: end for
7: return true
8: end function

9: function CONFLICT(th1, th2)
10: if th2 has data conflicts with th1 then F check data hazards
11: return true
12: end if
13: if th2 may enter another segment before th1 then F check time hazards
14: return true
15: end if
16: if th2 may wake up another thread th3 to run before th1 then F check event hazards
17: return true
18: end if
19: return false
20: end function

RISC Compiler Target Compiler

RISC
SystemC
Library

systemc.h

Model.cpp

Segment Graph
Conflict Analysis

Source Code
Instrumentation

Input Model

Out-of-Order
Parallel

Simulation

systemc
_par.h

Model
_par.cpp

C++
Compiler

Instrumented Model Executable
Model

Fig. 17.4 RISC compiler and simulator for out-of-order PDES of SystemC

To perform semantics-compliant parallel SystemC simulation with out-of-order
scheduling, we introduce a dedicated SystemC compiler that works hand in hand
with a new simulator. This is in contrast to the traditional SystemC simulation flow
where a SystemC-agnostic C++ compiler includes the SystemC headers and links
the input model directly against the reference SystemC library.

As shown in Fig. 17.4, our RISC compiler acts as a frontend that processes the
input SystemC model and generates an intermediate model with special instrumen-
tation for OOO PDES. The instrumented parallel model is then linked against the
extended RISC SystemC library by the target compiler (a regular C++ compiler) to
produce the final executable output model. OOO PDES is then performed simply by
running the generated executable model.

From the user perspective, we simply replace the regular C++ compiler with the
SystemC-aware RISC compiler (which in turn calls the underlying C++ compiler).
Otherwise, the overall SystemC validation flow remains the same as before. It will
be just faster due to the parallel simulation.

548 R. Dömer et al.

Internally, the RISC compiler performs three major tasks, namely, segment graph
construction, conflict analysis, and source code instrumentation.

17.5.1 Segment Graph

The first task of the RISC compiler is to parse the SystemC input model into an
Abstract Syntax Tree (AST). Since SystemC is syntactically regular C++ code,
RISC relies here on the ROSE compiler infrastructure [25]. The ROSE internal
representation (IR) provides RISC with a powerful C/C++ compiler foundation that
supports AST generation, traversal, analysis, and transformation.

As illustrated with the RISC software stack shown in Fig. 17.5a, the RISC
compiler then builds on top of the ROSE IR a SystemC internal representa-
tion which accurately reflects the SystemC structures, including the module and
channel hierarchy, port connectivity, and other SystemC-specific constructs. Up
until this layer, the RISC software stack is very similar to the SystemC-clang
framework [19].

On top of this, the RISC compiler then builds a segment graph data structure.
A Segment Graph (SG) [8] is a directed graph that represents the code segments
executed by the threads in the model. With respect to SystemC simulation, these
segments are separated by the scheduler entry points, i.e., the wait statements in
the SystemC code. In other words, the discrete events in the SystemC execution
semantics are explicitly reflected in the SG as segment boundaries.

Note that a general segment graph may be defined with different segment
boundaries. In fact, the RISC infrastructure takes the segment boundary as a flexible
parameter that may be set to any construct found in the code, including function
calls or control flow statements, such as if, while, or return. Here, we use
wait statements as boundary (specified as “segment graph Œwait�” in Fig. 17.5c)

Fig. 17.5 Recoding infrastructure for SystemC (RISC) and a segment graph (SG) example [26].
(a) RISC software stack. (b) Example source code. (c) Segment graph [wait]

17 Parallel Simulation 549

since for the purpose of parallel simulation we are interested in the segments of code
executed between two scheduling points.

Formally, a segment graph consists of nodes and edges [6]. While the nodes are
defined by the specified boundaries, the edges in the SG are defined by the possible
control flow transitions. A transition exists between two segment nodes S1 and S2 if
the flow of control starting from segment S1 can reach segment S2.

For example, the SystemC source code in Fig. 17.5b results in the SG shown
in Fig. 17.5c where the segment boundary is chosen as SystemC wait. Here, the
control flow from the start can reach the two wait statements in lines 2 and 6,
resulting in the two edges to segment “wait(line2)” and “wait(line6).” Note also
that source code lines may become part of multiple segments. Here, the assignment
z=z*z is part of both segments “wait(line2)” and “wait(line6)” because it can be
reached from both nodes.

17.5.2 Segment Graph Construction

The automatic construction of a segment graph is a complex process for the
compiler. In this section, we first outline the main aspects and then provide a formal
algorithm for the SG generation.

In contrast to the initial SpecC-based implementation [6, 8] (which is part
of �Chap. 31, “SCE: System-on-Chip Environment”) which has had several
limitations, the RISC SG generator can build a graph from any given scope
in a C/C++-based code and the user can freely choose the segment boundaries
(as stated above for a general SG). There are also no control flow limitations.
The RISC compiler fully supports recursive functions, jump statements break
and continue, as well as multiple return statements from functions. Finally,
expressions with an undefined evaluation order will be properly ordered to avoid
ambiguity.

Algorithm 5 formally defines the central function BUILDSG used in the RISC
SG generator. Function BUILDSG is recursive and builds the graph of segments by
traversing the AST of the design model. Here, the first parameter CurrStmt is the
current statement which is processed next. The set CurrSegs contains the current set
of segments that lead to CurrStmt and thus will incorporate the current statement.
For instance, while processing the assignment z=z*z in Fig. 17.5, CurrSegs is the
set {wait(line2), wait(line6)}, so the expression will be added to both segments.

If CurrStmt is a boundary statement (e.g., wait), a new segment is added to
CurrSegs with corresponding transition edges (lines 2–7 in Algorithm 5). Com-
pound statements are processed by recursively iterating over the enclosed statements
(lines 8–12), and conditional statements are processed recursively for each possible
flow of control (from line 13). For example, the break and continue statements
represent an unconditional jump in the program. For handling these keywords,
the segments in CurrSegs move into the associated set BreakSegs or ContSegs,
respectively. After completing the corresponding loop or switch statement, the
segments in BreakSegs or ContSegs will be moved back to the CurrSegs set.

550 R. Dömer et al.

Algorithm 5 Segment graph generation
1: function BUILDSG(CurrStmt, CurrSegs, BreakSegs, ContSegs)
2: if isBoundary(CurrStmt) then
3: NewSeg new segment
4: for Seg 2 CurrSegs do
5: AddEdge(Seg, NewSeg)
6: end for
7: return CurrSegs [{ NewSeg }
8: else if isCompoundStmt(CurrStmt) then
9: for Stmt 2 CurrStmt do

10: CurrSegs BUILDSG(Stmt, CurrSegs, BreakSegs, ContSegs)
11: end for
12: return CurrSegs
13: else if isIfStmt(CurrStmt) then
14: AddExpression(IfCondition, CurrSegs);
15: NewSegSet1 BUILDSG(IfBody, CurrSegs, BreakSegs, ContSegs)
16: NewSegSet2 BUILDSG(ElseBody, CurrSegs, BreakSegs, ContSegs)
17: return NewSegSet1 [NewSegSet2
18: else if isBreakStmt(CurrStmt) then
19: BreakSegs BreakSegs [CurrSegs
20: CurrSegs ;
21: return CurrSegs
22: else if isContinueStmt(CurrStmt) then
23: ContSegs ContSegs [CurrSegs
24: CurrSegs ;
25: return CurrSegs
26: else if isExpression(CurrStmt) then
27: if isFunctionCall(CurrStmt) then
28: return AddFunctionCall(CurrStmt, CurrSegs) F See Fig. 17.6a
29: else
30: AddExpression(CurrStmt, CurrSegs)
31: return CurrSegs
32: end if
33: else if isLoop(CurrStmt) then
34: return AddLoop(CurrStmt, CurrSegs) F See Fig. 17.6b
35: end if
36: end function

For brevity, we illustrate the processing of function calls and loops in Fig. 17.6.
The analysis of function calls is shown in Fig. 17.6a. In step 1 the dashed circle
represents the segment set CurrSegs. The RISC algorithm detects the function call
expression and checks if the function is already analyzed. If not and it is encountered
for the first time, the function is analyzed separately, as shown in step 2. Otherwise,
the algorithm reuses the cached SG for the particular function. Then in step 3, each
expression in segment 1 of the function is joined with each individual segment in
CurrSegs (set 0). Finally, segments 4 and 5 represent the new set CurrSegs.

Correspondingly, Fig. 17.6b illustrates the SG analysis for a while loop. Again
the dashed circle in step 1 represents the incoming set CurrSegs. The algorithm
detects the while statement and analyzes the loop body separately. The graph for

17 Parallel Simulation 551

1

2 3

4 5

0

func()

Graph for func()a b

2 3

4 5

(1) (2) (3) (1) (2) (3)

0+1 0 1

2 3

4 5

while(var){
//body
}

0+1

2 3

4 5

Graph for loop body

Fig. 17.6 Segment graph generation for functions and loops. (a) Function call processing. (b)
Loop processing

the body of the loop is shown in step 2. Then each expression in segment 1 is joined
into the segment set 0, and the new set CurrSegs becomes the joined set of 0+1, 4,
and 5. Note that we have to consider set 0+1 for the case that the loop is not taken.

17.5.3 Static Conflict Analysis

The segment graph data structure serves as the foundation for static (compile time)
conflict analysis. As outlined earlier, the OOO PDES scheduler must ensure that
every new running thread is conflict-free with respect to any other threads in the
READY and RUN queues. For this, we utilize the RISC compiler to detect any
possible conflicts already at compile time.

Potential conflicts in SystemC include data hazards, event hazards, and timing
hazards, all of which may exist among the current segments executed by the threads
considered for parallel execution [6].

17.5.3.1 Data Hazards
Data hazards are caused by parallel or out-of-order accesses to shared variables.
Three cases exist, namely, read after write (RAW), write after read (WAR), and
write after write (WAW).

In the example in Fig. 17.7, if the simulator would issue the threads th1 and
th2 in parallel, this would create a race condition, making the final value of s
nondeterministic. Thus, the scheduler must not run th1 and th2 out of order. Note,
however, that th1 and th2 can run in parallel in the segment after their second wait
statement if the functions f() and g() are independent.

Since, data hazards stem from the code in specific segments, RISC analyzes data
conflicts statically at compile time and creates a table where the scheduler can then
at run time quickly look up any potential conflicts between active segments.

Formally, we define a data conflict table CTŒN;N � where N is the total number
of segments in the application model: CTŒi; j � D true, iff there is a potential data
conflict between the segments segi and segj ; otherwise, CTŒi; j � D false.

To build the conflict table, the compiler generates for each segment a variable
access list which contains all variables accessed in the segment. Each entry is a

552 R. Dömer et al.

Fig. 17.7 Example of WAW
conflict: Two parallel threads
th1 and th2 start at the same
time but write to the shared
variable s at different times.
Simulation semantics require
that th1 executes first and sets
s to 0 at time .5; 0/, followed
by th2 setting s to its final
value 1 at time .10; 0/

1 int s;
2
3 thread1()
4 { wait(5, SC_MS);
5 s = 0;
6 wait(10, SC_MS);
7 f();
8 }
9

10 thread2()
11 { wait(10, SC_MS);
12 s = 1;
13 wait(10, SC_MS);
14 g();
15 }

tuple (Symbol, AccessType) where Symbol is the variable and AccessType specifies
read only (R), write only (W), read write (RW), or pointer access (Ptr).

Finally, the compiler produces the conflict table CTŒN;N � by comparing the
access lists for each segment pair. If two segments segi and segj share any variable
with access type (W) or (RW), or there is any pointer access by segi or segj , then
this is marked as a potential conflict.

Figure 17.8 shows an example SystemC model where two threads th1 and th2
which run in parallel in modules M1 and M2, respectively. Both threads write to
the global variable x, th1 in lines 14 and 27, and th2 in line 35 since reference p is
mapped to x. Before we can mark these WAW conflicts in the data conflict table, we
need to generate the segment graph for this example. The SG with corresponding
source code lines is shown in Fig. 17.9a, whereas Fig. 17.9b shows the variable
accesses by the segments. Note that segments 3 and 4 of thread th1 write to x,
as well as segment 8 of th2 which writes to x via the reference p. Thus, segments
3, 4, and 8 have a WAW conflict. This is marked properly in the corresponding data
conflict table shown in Fig. 17.10a.

In general, not all variables are straightforward to analyze statically. SystemC
models can contain variables at different scopes, as well as ports which are con-
nected by port maps. The RISC compiler distinguishes and supports the following
cases for the static variable access analysis.

1. Global variables, e.g., x, y in lines 2 and 3 of Fig. 17.8: This case is discussed
above and is handled directly as tuple (Symbol, AccessType).

2. Local variables, e.g., temp in line 10 for Module M1: Local variables are stored
on the stack and cannot be shared between different threads. Thus, they can be
ignored in the variable access analysis.

3. Instance member variables, e.g., i in line 2 for Module M2: Since classes can
be instantiated multiple times and then their variables are different, we need to
distinguish them by their complete instance path added to the variable name. For
example, the actual symbol used for the instance variable i in module M2 is
m:m2:i .

17 Parallel Simulation 553

1 #include "systemc.h"
2 int x = 0;
3 int y;
4 SC_MODULE(M1) { // Module M1
5 SC_HAS_PROCESS(M1);
6 sc_event &event;
7 M1(sc_module_name name, sc_event &e): event(e)
8 { SC_THREAD(main); }
9 void main() {

10 int temp = 0;
11 while(temp++<2) {
12 wait(1, SC_MS);
13 wait(event);
14 x = temp;
15 }
16 wait(3, SC_MS);
17 x = 27;
18 }
19 };
20 SC_MODULE(M2) { // Module M2
21 SC_HAS_PROCESS(M2);
22 int i;
23 int &p;
24 sc_event &event;
25 M2(sc_module_name name, int &pp, sc_event &e):
26 sc_module(name), p(pp), i(0), event(e)
27 { SC_THREAD(main); }
28 void main() {
29 do {
30 wait(2, SC_MS);
31 y = i;
32 event.notify(SC_ZERO_TIME);
33 } while(i++<2);
34 wait(4, SC_MS);
35 p = 42;
36 }
37 };
38 SC_MODULE(Main) { // Module Main
39 sc_event event;
40 M1 m1;
41 M2 m2;
42 Main(sc_module_name name):
43 sc_module(name), m1("m1", event), m2("m2", x, event)
44 { }
45 };
46 int sc_main(int argc, char **argv) {
47 Main m("main");
48 sc_start();
49 return 0;
50 }

Fig. 17.8 SystemC example with two parallel threads in modules M1 and M2

554 R. Dömer et al.

Se
gm

en
t I

D
: 0

 [
M

1:
:m

ai
n]

E
xa

m
pl

e.
cp

p:
10

 in
t t

em
p

=
 0

;

E
xa

m
pl

e.
cp

p:
11

 te
m

p+
+

 <
 2

Se
gm

en
t I

D
: 2

 (
E

xa
m

pl
e.

cp
p:

12
)

Se
gm

en
t I

D
: 4

 (
E

xa
m

pl
e.

cp
p:

16
)

E
xa

m
pl

e.
cp

p:
17

 x
 =

 2
7

Se
gm

en
t I

D
: 3

 (
E

xa
m

pl
e.

cp
p:

13
)

E
xa

m
pl

e.
cp

p:
14

 x
 =

 te
m

p

E
xa

m
pl

e.
cp

p:
11

 te
m

p+
+

 <
 2

Se
gm

en
t I

D
: 5

Se
gm

en
t I

D
: 7

 (
E

xa
m

pl
e.

cp
p:

30
)

E
xa

m
pl

e.
cp

p:
31

 y
 =

(t
hi

s)
 -

>
 i

E
xa

m
pl

e.
cp

p:
32

 (
th

is
)

->
 e

ve
nt

 .
no

tif
y(

SC
_Z

E
R

O
_T

IM
E

)

E
xa

m
pl

e.
cp

p:
33

 (
th

is
)

->
 i+

+
 <

 2

Se
gm

en
t I

D
: 8

 (
E

xa
m

pl
e.

cp
p:

34
)

E
xa

m
pl

e.
cp

p:
35

 (
th

is
)

->
 p

 =
 4

2

a

b
Se

gm
en

t I
D

: 0
 [

M
1:

:m
ai

n]

(W
)

te
m

p

(R
)

te
m

p

Se
gm

en
t I

D
: 2

 (
E

xa
m

pl
e.

cp
p:

12
)

Se
gm

en
t I

D
: 4

 (
E

xa
m

pl
e.

cp
p:

16
)

(W
)

x

Se
gm

en
t I

D
: 3

 (
E

xa
m

pl
e.

cp
p:

13
)

(W
)

x

(W
)

te
m

p

(R
)

te
m

p

Se
gm

en
t I

D
: 5

Se
gm

en
t I

D
: 7

 (
E

xa
m

pl
e.

cp
p:

30
)

(W
)

y

(W
)

i

(R
) S

C
_Z

E
R

O
_T

IM
E

(R
)

i

Se
gm

en
t I

D
: 8

 (
E

xa
m

pl
e.

cp
p:

34
)

(W
)

p

Fi
g

.
1

7
.9

Se
gm

en
tg

ra
ph

s
ge

ne
ra

te
d

by
R

IS
C

fo
r

th
e

ex
am

pl
e

in
Fi

g.
17

.8
.(

a)
So

ur
ce

co
de

SG
fo

r
Fi

g.
17

.8
.(

b)
V

ar
ia

bl
e

ac
ce

ss
SG

fo
r

Fi
g.

17
.8

17 Parallel Simulation 555

Fig. 17.10 Data conflict and
event notification tables for
the example in Fig. 17.8. (a)
Data conflict table. (b) Event
notification table

0a b2 3 54 7 8

0

2

3 T T T

4 T T T

5

7 T

8

0 2 3 54 7 8

0

2

3

4

5

7

8T T T

T

4. References, e.g., p in line 23 in moduleM2: RISC follows references through the
module hierarchy and determines the actual mapped target variable. For instance,
p is mapped to the global variable x via the mapping in line 43.

5. Pointers: RISC currently does not perform pointer analysis. This is planned as
future work. For now, RISC conservatively marks all segments with pointer
accesses as potential conflict with all other segments.

17.5.3.2 Event Hazards
Thread synchronization through event notification also poses hazards to out-of-order
execution. Specifically, thread segments are dependent when one is waiting for an
event notified by another.

We define an event notification table NTŒN;N � where N is the total number of
segments: NTŒi; j � D true, iff segment segi notifies an event that segj is waiting
for; otherwise, NTŒi; j � D false. Note that in contrast to the data conflict table, the
event notification table is not symmetric.

Figure 17.10b shows the event notification table for the SystemC example in
Fig. 17.8. For instance, NTŒ7; 3� D true since segment 7 notifies the event e in line
32, which segment 3 is waiting for in line 13.

Note that in order to identify event instances properly, RISC uses the
same scope and port map handling for events as described above for data
variables.

17.5.3.3 Timing Hazards
The local time for an individual thread in OOO PDES can pose a timing hazard when
the thread runs too far ahead of others. To prevent this, we analyze the minimum
time advances of threads at segment boundaries. For SystemC, there are three cases
with different time increments, as listed in Table 17.1.

In order for the scheduler to avoid timing hazards, we let the compiler prepare
two time advance tables, one for the segment a thread is currently in and one for the
next segment(s) that a thread can reach in the following scheduling step.

The current time advance table CTimeŒN � lists the time increment that a thread
will experience when it enters the given segment. For the SystemC example in
Figs. 17.8 and 17.11a shows the corresponding current time advance table. Here

556 R. Dömer et al.

Table 17.1 Time advances at wait segment boundaries

Segment boundary Time increment Add to .t 0; ı0/

wait(t) Increment by time t .t W 0/ .t 0 C t; 0/

wait(event) Increment by one delta count .0 W 1/ .t 0; ı0 C 1/

wait(immediate event) No increment .0 W 0/ .t 0; ı0/

0 2 3 54 7 8

(0:0)

a b

(1:0) (0:0) (0:0)(3:0) (2:0) (4:0)

0

(1:0) (0:0) (1:0) (2:0)∞ (2:0)

2 3 54 7 8

Fig. 17.11 Current and next time advance tables for the example in Fig. 17.8. (a) Current time
advance table. (b) Next time advance table

Table 17.2 Examples for direct and indirect timing hazards

Situation th1 th2 Hazard?

Direct timing hazard
.10 W 2/ .10 W 0/, next segment at .10 W 1/ Yes

.10 W 2/ .10 W 0/, next segment at .12 W 0/ No

Indirect timing hazard
.10 W 2/ .10 W 0/, wakes th3 at .10 W 1/ Yes

.10 W 2/ .10 W 1/, wakes th3 at .10 W 2/ No

for instance, the wait(2,SC_MS) in line 30 at the beginning of segment 7 defines
CTimeŒ7� D .2; 0/.

On the other hand, the next time advance table NTimeŒN � lists the time increment
that a thread will incur when it leaves the given and enters the next segment. Since
there may be more than one next segment, we list in the table the minimum of
the time advances, which is the earliest time the thread can become active again.
Formally: NTimeŒi � D minfCTimeŒj �;8segj which follow segig.

For example, Fig. 17.11b lists NTimeŒ0� D .1; 0/ since segment 0 is followed by
segment 2 with increment .1; 0/ and segment 4 with increment1.

There are two types of timing hazards, namely, direct and indirect ones. For a
candidate thread th1 to be issued, a direct timing hazard exists when another thread
th2, that is safe to run, resumes its execution at a time earlier than the local time of
th1. In this case, the future of th2 is unknown and could potentially affect th1. Thus,
it is not safe to issue th1.

Table 17.2 shows an example where a thread th1 is considered for execution at
time .10 W 2/. If there is a thread th2 with local time .10 W 0/ whose next segment
runs at time .10 W 1/, i.e., before th1, then the execution of th1 is not safe. However,
if we know from the time advance tables that th2 will resume its execution later at
.12 W 0/, no timing hazard exists with respect to th2.

An indirect timing hazard exists, if a third thread th3 can wake up earlier than
th1 due to an event notified by th2. Again, Table 17.2 shows an example. If th2 at
t ime.10 W 0/ potentially wakes a thread th3 so that th3 runs in the next delta cycle
.10 W 1/, i.e., earlier than th1, then it is not safe to issue th1.

17 Parallel Simulation 557

17.5.4 Source Code Instrumentation

As shown above in Fig. 17.4 on page 547, the RISC compiler and parallel simulator
work closely together. The compiler performs the complex conservative static
analysis and passes the analysis results to the simulator which then can make safe
scheduling decisions quickly.

More specifically, the RISC compiler passes all the generated conflict tables to
the simulator, namely, the data conflict table, the event notification table, as well as
the current and next time advance tables. In addition, the compiler instruments the
model source code so that the simulator can properly identify each thread and each
segment by unique numeric IDs.

To pass information from the compiler to the simulator, RISC uses automatic
model instrumentation. That is, the intermediate model generated by the compiler
contains instrumented (automatically generated) source code which the simulator
then can rely on. At the same time, the RISC compiler also instruments user-
defined SystemC channels with automatic protection against race conditions among
communicating threads. The source code instrumentation with segment IDs, conflict
tables, and automatic channel protection is a part of model “recoding” (i.e., the “R”
in RISC). For the future, we envision additional recoding tasks performed by RISC,
such as model transformation, optimization, and refinement.

In total, the RISC source code instrumentation includes four major components:

1. Segment and instance IDs: Individual threads are uniquely identified by a creator
instance ID and their current code location (segment ID). Both IDs are passed
into the simulator kernel as additional arguments to all scheduler entry functions,
including wait calls and thread creation.

2. Data and event conflict tables: Segment concurrency hazards due to potential
data conflicts, event conflicts, or timing conflicts are provided to the simulator
as two-dimensional tables indexed by a segment ID and instance ID pair. For
efficiency, these table entries are filtered for scope, instance path, and reference
and port mappings.

3. Current and next time advance tables: The simulator can make better scheduling
decisions by looking ahead in time if it can predict the possible future thread
states. This possible optimization is discussed in detail in [5] but remains as a
future work item for the current RISC prototype.

4. User-defined channel protection: SystemC allows the user to design channels for
custom inter-thread communication. To ensure that such user-defined communi-
cation remains safe also in the OOO PDES situation where threads execute truly
in parallel and out of order, the RISC compiler automatically inserts locks (binary
semaphores) into these user-defined channel instances (which are acquired at
entry and released upon leaving) so that mutually exclusive execution of the
channel methods is guaranteed. Otherwise, race conditions could exist when
communicating threads exchange data.

After this automatic source code instrumentation, the RISC compiler passes
the generated intermediate model to the underlying regular C++ compiler which

558 R. Dömer et al.

produces the final simulator executable by linking the instrumented code against the
RISC extended SystemC library.

17.6 Experimental Evaluation

We now present two SystemC application models as examples and evaluate the
performance of DES, PDES, and OOO PDES algorithms on modern multi-core
hosts. As DES representative and baseline reference, we will use the open-source
proof-of-concept library [16] provided by the SystemC Language Working Group
[31] of the Accellera Systems Initiative [1]. As OOO PDES representative, we will
use the RISC [21] which is also available as open source [20]. For synchronous
PDES, we will use an in-house version of RISC where the out-of-order scheduling
features are disabled. To ensure a fair comparison, all simulator packages are based
on Posix threads and compiled with the same optimization settings, and of course
run on the same host environment.

17.6.1 Conceptual DVD Player Example

Our first example is an abstract model of a DVD player, as shown in Fig. 17.12.
While this SystemC model is conceptual only, it is well-motivated and very
educational as it clearly demonstrates the differences between the DES, PDES, and
OOO PDES algorithms.

As listed in Fig. 17.12, the SystemC modules representing the video and audio
decoders operate in an infinite loop, reading a frame from the input stream,
decoding it, and sending it out to the corresponding monitor modules. Since the
video and audio frames are data independent, the decoders run in parallel and

Video
30 FPS

2 Audio Channels
38.28 FPS

Multimedia
input

stream

DUT

Video
Codec

Left
Audio
Codec

Right
Audio
Codec

DUT
Video

Monitor
Left

Speaker
Right

Speaker

Stimulus

1: SC_MODULE(VideoCodec)
2: { sc_port<i_receiver> p1;
3: sc_port<i_sender> p2;
4:
5: while(1){
6: p1->receive(&inFrm);
7: outFrm = decode(inFrm);
8: wait(33330, SC_US);
9: p2->send(outFrm);

10: }
11: };

1: SC_MODULE(AudioCodec)
2: { sc_port<i_receiver> p1;
3: sc_port<i_sender> p2;
4:
5: while(1){
6: p1->receive(&inFrm);
7: outFrm = decode(inFrm);
8: wait(26120, SC_US);
9: p2->send(outFrm);

10: }
11: };

Fig. 17.12 Conceptual DVD player example with a video and two audio stream decoders

17 Parallel Simulation 559

Video

Left
Right

0

76.6633.33

78.38

100

Frame 3Frame 1 Frame 2

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

Time [ms] 52.2526.12

LF 4

a

b

c

0 26.12

33.33 66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

52.25

0 26.12

33.33

52.25

66.67

78.38

100

Frame 1 Frame 2 Frame 3

LF 1
RF 1

LF 2
RF 2

LF 3
RF 3

LF 4
RF 4

Time [ms]

Video

Left
Right

Fig. 17.13 Time lines for the DVD player example during simulation. (a) DES schedule:
sequential execution, only one task at any time. (b) Synchronous PDES schedule: parallel
execution only at the same simulation times. (c) Out-of-order PDES schedule: fully parallel
execution (the same as in reality!)

output the decoded frames according to their channel rate, 30 frames per second
video (delay 33.33 ms) and 38.28 frames per second audio (delay 26.12 ms),
respectively.

Figure 17.13 depicts the time lines of simulating the DVD player according
to DES, PDES, and OOO PDES semantics. As expected, the DES schedule
in Fig. 17.13a executes only a single task at all times. Synchronous PDES in
Fig. 17.13b is able to parallelize the decoders for the left and right audio channels
but cannot exploit parallelism for decoding the video channel due to its different
frame rate. Only the OOO PDES schedule in Fig. 17.13c shows the fully parallel
execution that we also expect in reality. Note that the artificially discretized timing
in the model prevents PDES from full parallelization. In contrast, OOO PDES with
thread-local timing achieves the goal.

Our experimental measurements listed in Table 17.3 confirm the analysis of
Fig. 17.13. For both experiments, the synchronous PDES gains about 50% simu-
lation speed over the reference DES. However, the out-of-order PDES beats the
synchronous approach by another 100% improvement.

17.6.2 Mandelbrot Renderer Example

As a representative example of very computation intensive and highly parallel
applications, we have evaluated the three-simulation algorithms also on a graph-
ics pipeline model that renders a sequence of images of the Mandelbrot set.

560 R. Dömer et al.

Table 17.3 Experimental results for the DVD player example. RISC V0.2.1 simulator perfor-
mance (Posix-thread based) on a 8-core Intelr Xeonr host PC (E3-1240 CPU, 4 cores, 2
hyper-threads) at 3.4 GHz

Movie Simulator DES PDES OOO PDES

10 second stream
Run time 6.98 s 4.67 s 2.94 s

CPU load 97% 145% 238%

Speedup 1� 1.49� 2.37�

100 second stream
Run time 68.21 s 45.91 s 28.13 s

CPU load 100% 149% 251%

Speedup 1� 1.49� 2.42�

Top

Stimulus Monitor

Platform

DUT

din dout

Coordinator

M M M M

Fig. 17.14 Mandelbrot renderer example: Stimulus generates target coordinates in the complex
plane for which the DUT renders the corresponding Mandelbrot image and sends it to the
Monitor module. In the DUT, a Coordinator distributes slices of the target coordinates to parallel
Mandelbrot worker threads and synchronizes their progress

Figure 17.14 shows the block diagram of our Mandelbrot renderer model in
SystemC.

The number of Mandelbrot worker threads is user configurable as an exponent
of 2, for example, 4 as illustrated in Fig. 17.14. Each worker thread computes a
different horizontal slice of the image and works independently and in parallel to the
others. If enabled in the SystemC model, the progress of the workers’ computation
is displayed in a window, as shown in Fig. 17.15.

Table 17.4 shows the measured experimental results for the Mandelbrot renderer
with different numbers of worker threads, one per image slice, as indicated in
the first column. Since the example is “embarrassingly parallel” in the DUT
and otherwise contains only comparatively little sequential computation, both

17 Parallel Simulation 561

Fig. 17.15 Screenshot of the
Mandelbrot set renderer in
action: The progress of the
parallel threads, which
collaboratively compute a
Mandelbrot set image, can be
viewed live in a window on
screen. Here, eight SystemC
threads compute the eight
horizontal slices of the image
in parallel. Note that this
visualization clearly shows
the difference between the
sequential DES simulation
(which computes only one
slice at any time) and the
parallel PDES algorithms
(which are shown here)

Table 17.4 Experimental results for the Mandelbrot renderer example. RISC V0.2.1 simulator
performance (Posix-thread based) on a 32-core Intelr Xeonr host PC (2 E5-2680 CPUs, 8 cores,
2 hyper-threads) at 2.7 GHz

DES PDES OOO PDES

Slices Run time Load Run time Load Speedup Run time Load Speedup

1 162.13 s 99% 162.06 s 100% 1.0� 161.90 s 100% 1.0�

2 162.19 s 99% 96.50 s 168% 1.7� 96.48 s 168% 1.7�

4 162.56 s 99% 54.00 s 305% 3.0� 53.85 s 304% 3.0�

8 163.10 s 99% 29.89 s 592% 5.5� 30.05 s 589% 5.4�

16 164.01 s 99% 19.03 s 1050% 8.6� 20.08 s 997% 8.2�

32 165.89 s 99% 11.78 s 2082% 14.1� 11.99 s 2023% 13.8�

64 170.32 s 99% 9.79 s 2607% 17.4� 9.85 s 2608% 17.3�

128 174.55 s 99% 9.34 s 2793% 18.7� 9.39 s 2787% 18.6�

256 185.47 s 100% 8.91 s 2958% 20.8� 8.90 s 2964% 20.8�

parallel simulators respond with impressive performance speedups, more than
20� compared to the Accellera reference simulator. With growing parallelism, the
simulation speed increases almost linearly with respect to the number of parallel
workers, up until to the point where the number of software threads reaches the
number of available hardware threads (2 CPUs, 8 cores with 2 hyper-threads each,
so 32 in total).

We can also observe that, for this example, the synchronous PDES and the
OOO PDES perform the same since the differences are within the noise range of
the measurement accuracy. This matches the expectation, because the Mandelbrot
workers are all synchronized (locked in) due to their communication with the
coordinator thread and thus out-of-order execution cannot be exploited here.

As for scalability, PDES and OOO PDES approaches scale very well, if we base
our expectation on the host hardware capabilities and the amount of parallelism

562 R. Dömer et al.

exposed in the application model (which is the fundamental limitation of any
PDES). Overall, we observe that parallel simulation has the potential to improve
simulation speed by an order of magnitude or more. In this book chapter we do
not evaluate the overhead of the static analysis incurred at compile time because
our current compiler implementation does not produce meaningful results due
to its unoptimized ROSE foundation. Generally, compile time for OOO PDES
increases moderately, but is amortized by the typically longer and more frequent
simulations [6].

17.7 Conclusion

In the era of stagnant processor clock frequencies and the growing availability of
inexpensive multi- and many-core architectures, parallel simulation is a must-have
for the efficient validation and exploration of embedded system-level design models.
Consequently, the traditional purely sequential DES approach, as provided by the
open-source SystemC reference simulator, is inadequate for the future when the
system complexity keeps growing at its current exponential pace.

In this chapter, we have reviewed the classic discrete event-based simulation
techniques with a focus on state-of-the-art parallel solutions (synchronous and
out-of-order PDES) that are particularly suited for the de facto and official IEEE
standard SystemC. While many approaches have been proposed in the research
community, we have detailed the OOO PDES approach [6] being developed in
the Recoding Infrastructure for SystemC (RISC) [21]. The open-source RISC
project provides a dedicated SystemC compiler and corresponding out-of-order
parallel simulator as proof-of-concept implementation to the research community
and industry.

The OOO PDES technology stands out from other approaches as an aggressive
yet conservative modern simulation approach beyond traditional PDES, because
it can exploit parallel computing resources to the maximum extend and thus
achieves fastest simulation speed. At the same time, it can preserve compliance with
traditional SystemC semantics and support legacy models without modification or
loss of accuracy.

Acknowledgments This work has been supported in part by substantial funding from Intel Cor-
poration. The authors thank Intel Corporation for the valuable support and fruitful collaboration.
The authors also thank the anonymous reviewers for valuable suggestions to improve this chapter.

References

1. Accellera Systems Initiative. http://www.accellera.org
2. Amdahl GM (1967) Validity of the single processor approach to achieving large scale

computing capabilities. In: Proceedings of the spring joint computer conference, AFIPS’67
(Spring), 18–20 Apr 1967. ACM, New York, pp 483–485. doi:10.1145/1465482.1465560

http://www.accellera.org

17 Parallel Simulation 563

3. Cai L, Gajski D (2003) Transaction level modeling: an overview. In: Proceedings of the
international conference on hardware/software codesign and system synthesis, Newport Beach

4. Chandy K, Misra J (1979) Distributed simulation: a case study in design and verification of
distributed programs. IEEE Trans Softw Eng SE-5(5):440–452

5. Chen W, Dömer R (2013) Optimized out-of-order parallel discrete event simulation using
predictions. In: Proceedings of design, automation and test in Europe conference and exhibition
(DATE)

6. Chen W, Han X, Chang CW, Liu G, Dömer R (2014) Out-of-order parallel discrete event
simulation for transaction level models. IEEE Trans Comput Aided Des Integr Circuits Syst
(TCAD) 33(12):1859–1872. doi:10.1109/TCAD.2014.2356469

7. Chen W, Han X, Dömer R (2011) Multi-core simulation of transaction level models using the
system-on-chip environment. IEEE Des Test Comput 28(3):20–31

8. Chen W, Han X, Dömer R (2012) Out-of-order parallel simulation for ESL design. In:
Proceedings of design, automation and test in Europe conference and exhibition (DATE)

9. Dömer R, Chen W, Han X, Gerstlauer A (2011) Multi-core parallel simulation of system-
level description languages. In: Proceedings of design automation conference. Asia and South
Pacific (ASPDAC), pp 311–316

10. Dömer R, Gerstlauer A, Gajski D (2002) SpecC language reference manual, version 2.0. SpecC
technology open consortium. http://www.specc.org

11. Ezudheen P, Chandran P, Chandra J, Simon BP, Ravi D (2009) Parallelizing SystemC
kernel for fast hardware simulation on SMP machines. In: PADS’09: proceedings of the
2009 ACM/IEEE/SCS 23rd workshop on principles of advanced and distributed simulation,
pp 80–87

12. Fujimoto R (1990) Parallel discrete event simulation. Commun ACM 33(10):30–53
13. Gajski DD, Zhu J, Dömer R, Gerstlauer A, Zhao S (2000) SpecC: specification language and

design methodology. Kluwer Academic Publishers, Boston
14. Gerstlauer A (2010) Host-compiled simulation of multi-core platforms. In: Proceedings of the

international symposium on rapid system prototyping (RSP), Washington, DC
15. Grötker T, Liao S, Martin G, Swan S (2002) System design with SystemC. Kluwer Academic

Publishers, Dordrecht
16. Group SLW SystemC 2.3.1, core SystemC language and examples. http://accellera.org/

downloads/standards/systemc
17. Huang K, Bacivarov I, Hugelshofer F, Thiele L (2008) Scalably distributed SystemC simulation

for embedded applications. In: International symposium on industrial embedded systems, SIES
2008, pp 271–274

18. IEEE Computer Society (2011) IEEE standard 1666-2011 for standard SystemC language
reference manual. IEEE, New York

19. Kaushik A, Patel HD (2013) SystemC-clang: an open-source framework for analyzing mixed-
abstraction SystemC models. In: Proceedings of the forum on specification and design
languages (FDL), Paris

20. Liu G, Schmidt T, Doemer R Recoding infrastructure for SystemC (RISC) compiler and
simulator. http://www.cecs.uci.edu/~doemer/risc.html

21. Liu G, Schmidt T, Dömer R (2015) RISC compiler and simulator, alpha release V0.2.1: out-
of-order parallel simulatable SystemC subset. Technical Report CECS-TR-15-02, Center for
Embedded and Cyber-physical Systems, University of California, Irvine

22. Mukherjee S, Reinhardt S, Falsafi B, Litzkow M, Hill M, Wood D, Huss-Lederman S, Larus J
(2000) Wisconsin wind tunnel II: a fast, portable parallel architecture simulator. IEEE Concurr
8(4):12–20

23. Nanjundappa M, Patel HD, Jose BA, Shukla SK (2010) SCGPSim: a fast SystemC simulator
on GPUs. In: Proceedings of design automation conference. Asia and South Pacific
(ASPDAC)

24. Nicol D, Heidelberger P (1996) Parallel execution for serial simulators. ACM Trans Model
Comput Simul 6(3):210–242

http://www.specc.org
http://accellera.org/downloads/standards/systemc
http://accellera.org/downloads/standards/systemc
http://www.cecs.uci.edu/~doemer/risc.html

564 R. Dömer et al.

25. Quinlan DJ (2000) ROSE: compiler support for object-oriented frameworks. Parallel Process
Lett 10(2/3):215–226

26. Schmidt T, Liu G, Dömer R (2016) Automatic generation of thread communication graphs
from SystemC source code. In: Proceedings of international workshop on software and
compilers for embedded systems (SCOPES)

27. Schumacher C, Leupers R, Petras D, Hoffmann A (2010) parSC: synchronous parallel SystemC
simulation on multi-core host architectures. In: Proceedings of the international conference on
hardware/software codesign and system synthesis (CODES+ISSS), pp 241–246

28. Sinha R, Prakash A, Patel HD (2012) Parallel simulation of mixed-abstraction SystemC models
on GPUs and multicore CPUs. In: Proceedings of design automation conference. Asia and
South Pacific (ASPDAC)

29. Sirowy S, Huang C, Vahid F (2010) Online SystemC emulation acceleration. In: Proceedings
of design automation conference (DAC)

30. Stattelmann S, Bringmann O, Rosenstiel W (2011) Fast and accurate source-level simulation of
software timing considering complex code optimizations. In: Proceedings of design automation
conference (DAC)

31. SystemC Language Working Group (LWG). http://accellera.org/activities/working-groups/
systemc-language

32. SystemC TLM-2.0. http://www.accellera.org/downloads/standards/systemc/tlm
33. Weinstock J, Schumacher C, Leupers R, Ascheid G, Tosoratto L (2014) Time-decoupled

parallel SystemC simulation. In: Proceedings of design, automation and test in Europe
conference and exhibition (DATE), Dresden

34. Yun D, Kim S, Ha S (2012) A parallel simulation technique for multicore embedded systems
and its performance analysis. IEEE Trans Comput Aided Des Integr Circuits Syst (TCAD)
31(1):121–131

35. Zhu J, Dömer R, Gajski DD (1997) Syntax and semantics of the SpecC language. In:
International symposium on system synthesis (ISSS), Osaka

http://accellera.org/activities/working-groups/systemc-language
http://accellera.org/activities/working-groups/systemc-language
http://www.accellera.org/downloads/standards/systemc/tlm

18Multiprocessor System-on-Chip
Prototyping Using Dynamic Binary
Translation

Frédéric Pétrot, Luc Michel, and Clément Deschamps

Abstract

Dynamic binary translation is a processor emulation technology that allows
to execute in a very efficient manner a binary program for an instruction-set
architecture A on a processor having instruction-set architecture B . This chapter
starts by giving a rapid overview of the dynamic binary translation process and
its peculiarities. Then, it focuses on the support for SIMD instruction and the
translation for VLIW architectures, which bring upfront new challenges for this
technology. Next, it shows how the translation process can be enhanced by the
insertion of instructions to monitor nonfunctional metrics, with the aim of giving,
for instance, timing or power consumption estimations. Finally, it details how it
can be integrated within virtual prototyping platforms, looking in particular at
the synchronization issues.

Acronyms

DBT Dynamic Binary Translation
ILP Instruction-Level Parallelism
ISA Instruction-Set Architecture
ISS Instruction-Set Simulator
MMU Memory Management Unit
MPSoC Multi-Processor System-on-Chip
OS Operating System
RTL Register Transfer Level
SIMD Single Instruction, Multiple Data
SMP Symmetric Multi-Processing
SSA Static Single Assignment

F. Pétrot (�)
Université de Grenoble Alpes, Grenoble, France
e-mail: frederic.petrot@univ-grenoble-alpes.fr

L. Michel • C. Deschamps
Antfield SAS, Grenoble, France
e-mail: luc.michel@antfield.fr; clement.deschamps@antfield.fr

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_20

565

mailto:frederic.petrot@univ-grenoble-alpes.fr
mailto:luc.michel@antfield.fr
mailto:clement.deschamps@antfield.fr

566 F. Pétrot et al.

TB Translation Block
TLM Transaction-Level Model
VLIW Very Long Instruction Word
VP Virtual Prototype
WAR Write-After-Read

Contents

18.1 Introduction . 566
18.2 Dynamic Binary Translation Basics . 568
18.3 Support for Non-scalar Architectures . 573

18.3.1 Support for SIMD Instructions . 573
18.3.2 Support for VLIW Architectures . 576

18.4 Annotations in Dynamic Binary Translation . 579
18.4.1 Cache Modeling Strategies . 581
18.4.2 Modeling Branch Predictors . 583

18.5 Integration with TLM Simulations . 584
18.5.1 Precision Levels . 586
18.5.2 TLM Synchronization Points . 587

18.6 Concluding Remarks . 589
References . 590

18.1 Introduction

Virtual Prototype (VP) serve different purposes, and depending on these purposes,
the acceptable “accuracy vs speed of simulation” trade-off is very different. More
than two decades ago, Transaction-Level Model (TLM) was introduced as a way
to abstract time and data and clearly decouple computations from communications.
Compared to Register Transfer Level (RTL) which focuses on implementation and
targets on accuracy, TLM aims at giving a high-level view of the system so that it is
possible to quickly take design decisions. What has been intuited at that time is now
recognized as an actual solution for early software development and design space
exploration of hardware/software systems [5]. The system-on-chip industry has seen
the value of having models sitting in between RTL and fully analytical formulas and
has adopted this kind of modeling strategy quite rapidly [15].

In the context of an ever-increasing number of programmable cores in integrated
devices, the simulation of the software part of a system becomes a critical issue.
Even though TLM is well suited for hardware design, it says nothing about the way
the software that runs on the hardware part of the system should be executed. Several
strategies can be thought of, ranging from interpretive instruction-set simulation of
the cross-compiled target binary code to the native execution of host compiled code
using the Operating System (OS) calls as simulation callbacks [24]. Figure 18.1
summarizes the main strategies used for software execution on top of transaction-
level hardware.

The three first software execution approaches can be classified as interpretive
ones.

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 567

Fig. 18.1 Major software execution strategies in TLM environments

Instruction accurate interpretation (Fig. 18.1a) is the textbook method for exe-
cuting cross-compiled code. Each instruction is read from memory, decoded, and
executed. Decoding can be done using a big switch-like control structure or a
functions pointer table [4].

Predecode (Fig. 18.1b) is based on the same principle, but the instructions are
fetched and decoded, and placed in a cache in which they are identified by their
program counter (pc) [22]. Then, if the pc matches a cache entry, the instruction
is directly executed through a function call. Using a decode cache brings up new
issues as it must be kept up to date when some code region is modified. Some
applications heavily rely on dynamic compilation, so it is necessary to handle it
with efficiency. Incidentally, this cache can be the actual simulation model of the
processor instruction cache, as the high hit rate it usually has ensures that few
fetch/decode will be redone without necessity. Furthermore, provided the simulated
instruction caches ensure coherency, multiprocessor systems work out of the box
with this approach.

Dynamic Binary Translation (DBT) pushes the limits further by fetching and
decoding an entire sequence of code ended by a branch at once, translating it into
host code with identical behavior, and caching the result [11]. The whole sequence
is then executed atomically, avoiding to check per instruction the presence of the pc
in the cache. As a translation cache is used, the same issues as predecode arise, but
then using the model of an instruction cache is not possible as there is no such thing
as a single target instruction in DBT.

The last approach, introduced here only for completeness, takes a fully different
angle, as the high-level code to be executed is directly compiled for the host. Many

568 F. Pétrot et al.

different approaches have been proposed, as detailed in �Chap. 19, “Host-Com-
piled Simulation” of this book. Anyhow, these native or host-compiled approaches
need to access the hardware and, at some point, rely on an operating system or
hardware abstraction layer API to implicitly let the simulator execute the hardware
models. A clear limitation of these strategies is that it is hardly possible to handle
self-modifying code or dynamic code generation; however, not all applications
need it.

A current trend in system-level simulation is to use DBT to execute target code
and TLM to model hardware [1, 16, 23]. Indeed, a desirable goal is to define a
framework which provides a way to virtually prototype full hardware/software
multiprocessor systems with an entire software stack, including the operating
systems and the device drivers. As this requires to execute the cross-compiled binary
code of all software layers at high speed, dynamic binary translation is the more
suitable software execution technique.

On the one hand, modern DBT engines take their root in virtualization, an effort
that took place in computer science to make possible the execution of several OS
in isolation concurrently on the same processor [28], based on the virtual machine
technology developed in the early 1960s [7].

On the other hand, due to the constraints of consumer system integration (form
factor, packaging, power, heat, etc.), each application or class of application still
calls for a specific circuit in order to fit into the performance/power budget. The
Multi-Processor System-on-Chip (MPSoC) design approaches aim firstly at clearly
separating computation from communication, using interfaces that are standardized,
allowing to quickly exchange one IP, including processors, by another. Secondly,
they aim at producing figures of merits, such as code sequence run times and
interrupt latencies, used bandwidth on an interconnect, even energy or power
information, depending of the architectural choices. Due to the increase in number
of programmable cores and software in the near to come SoCs, the availability of
virtual platforms providing a structural view of the system and fast application and
OS code execution with a reliable accuracy is an important issue.

If modularity is of primary importance in MPSoC design, it is not the case for
virtualization which targets a single one-shot hardware platform with an as high as
possible execution speed. Although the goals of the hardware/software cosimulation
and virtualization may seem very different, at the end of the day the way to achieve
these different goals are similar.

The rest of the chapter is devoted to clarifying the necessary points to build
an operational optimized MPSoC simulator which makes use of DBT as software
execution engine.

18.2 Dynamic Binary Translation Basics

Full virtualization allows the execution of an operating system, called guest, on
top of another operation system, called host, without any modification. One of
the main issues in virtualization is the execution of the privileged guest operating

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 569

Fig. 18.2 Trap and emulate
based virtualization

Other
Applications

OS

CPUMemNICDisk

Hardware

OS

Application

Virtual Machine

VMM

traps

system instructions since the simulator in running on the host operating system
as an unprivileged application. Another delicate issue is the interception of I/O
operations of guest operating system. The classical solution for full virtualization,
called trap-and-emulate, is presented Fig. 18.2. It assumes the direct execution of the
simulated machine binary code on the host processor; therefore, the host processor
and the target processor (the one on which the guest operating system is run) must
be identical. This solution is based on a virtual machine monitor (VMM) which
takes control whenever a trap caused by a privileged operation executed in the
unprivileged context of the virtual machine occurs. However, not all processors
are fully virtualizable [25], typically because some privileged instructions executed
in user mode do not trap. To work around this problem, the binary translation
approach using DBT, as depicted Fig. 18.3, can be used. This approach has no
constraints concerning the host and target processor types, as all instructions of the
guest operating system binary code, including the privileged ones, are replaced by
unprivileged instructions and/or system calls.

Apart from virtualization, historically DBT has also been used for transparently
running legacy software compiled for a processor on either a new version of this
processor or an entirely different processor. Apple used this technology when
transitioning from the PowerPC architecture to the x86 one (Rosetta by Transitive
Technologies, now acquired by IBM). When Intel introduced the IA64, DBT from
x86 code was also applied [2]. While the former case translates from scalar to scalar
architectures, the latter one does a scalar to Very Long Instruction Word (VLIW)
architecture translation, which requires a more complex process.

Figure 18.4 presents the general principle of binary-translation-based simulators.
The simulator starts by verifying if the current pc of the simulated processor has
already been encountered. If not, the binary translation stage begins.

570 F. Pétrot et al.

Fig. 18.3 Dynamic binary
translation based
virtualization

Other
Applications

OS

CPUMemNICDisk

Hardware

OS

Application

Virtual Machine

VMM

DBT

Fig. 18.4 Binary translation principle

The instruction corresponding to the program counter of the simulated processor
is fetched from the target binary code. The fetched instruction is then translated
into several host instructions. If the current instruction is not a branch instruction,
the next target instruction is fetched and decoded. Otherwise, the binary translation
stage ends. The sequence of instructions treated by the binary translation stage
at once forms a Translation Block (TB). The host instructions generated for a
translation block are grouped together and stored into the translation cache and
are ready to be executed to simulate the corresponding target instructions behavior.
Once executed, the simulator has stepped forward by one TB, and the simulated
pc has evolved accordingly. The simulator then verifies the existence of the
translation corresponding to this new program counter value. If it already exists
in the translation cache, it is directly executed. The idea is that the price paid for
host code generation will be amortized as the translated code sequences are usually
executed many times.

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 571

The notion of translation block is similar in spirit to the notion of basic block
used by compilers, but they are not identical. Even though translation blocks and
basic blocks end after a branch instruction, there are other conditions that end
only the translation blocks or only the basic blocks. As an example, a translation
block is also ended at the page boundary of the target processor, because the
DBT engine must ensure that the page is mapped in memory. Other conditions
for ending a translation block include instructions generating exceptions (e.g.,
undefined instruction), change of the execution mode of the target processor, etc.
By definition, the basic blocks are also ended before the instructions which are the
target of jump or branch instructions.

A binary translation simulator would generate in this case a new translation block
starting at the jumping address. So, an instruction can be part of several translation
blocks, but only of a single basic block.

Given the simulation context we are interested in, it is required to be able
to support different types of target processor architectures on different types of
host architecture, even though simulation will very likely take place on a x86_64
machine. Given t target processor types and h host processor types, the approach
just described leads to the development of t � h translators to allow all target
processors to run on all the host processors.

Due to the complexity of writing a translator, the principle of retargetable DBT
has been proposed [28, 29]. Instead of being translated directly to host code, each
target instructions is first translated to a bytecode (also often called intermediate
representation or IR) common to all targets. The virtual instructions of the bytecode,
that we call microoperations, are then translated to host code. This way, target and
host translations are independent. Adding a new target processor requires “only”
a translator of the instruction set of that processor to the bytecode, no matter the
number of hosts on which the new target processor can be simulated. By adding
a translator from the bytecode to a new host processor, all target processors can
be simulated on the new host processor. So, the number of translators is now t C

h. The principle of these simulators, given Fig. 18.5, is close to that presented in
Fig. 18.4. The target instruction decoder generates the bytecode corresponding to

Fig. 18.5 Retargetable binary translation principle

572 F. Pétrot et al.

Fig. 18.6 Microoperations and host code generated while translating a target instruction

the translation block under consideration. Then, the host code generator produces
the host code corresponding to that translation block for the host processor.

Figure 18.6 is a simplified illustration of the translation process on a MIPS
instruction, the intermediate bytecode is a 3-address Instruction-Set Architecture
(ISA) close to the one of QEMU [12], and the target is x86_64. The generated
bytecode uses a mix of processor architectural registers, e.g. v1, and of temporaries,
here tmp0 and tmp1. The architectural registers represent a part of the processor
state and belong to a larger structure called the environment in QEMU. Their value
survives between translation blocks, while temporaries live only inside a TB. Once
translated as host code, these elements become offsets within the environment,
pointed to by the host register %r14 in QEMU for x86_64.

When performing translation, some instructions require complex operations that
can hardly be produced by generating host instructions at run time. For example,
when doing a load instruction, it is necessary to access the Memory Management
Unit (MMU) model to determine whether the addressed page is mapped in memory.
If not, a page fault exception must be raised. This leads to complex operations, like
traversing the page table, which are done using a lot of code. Therefore, instead of
generating the whole code dynamically (which is hardly possible and an overkill),
the DBT engines generate calls to specific functions (called helpers) to handle these
instructions.

Even though instruction interpretation is the core of dynamic binary translation,
quite a lot of housekeeping is necessary to actually obtain a running simulator.

• First and foremost, as the guest OS expects a memory management unit, it is
necessary to simulate it. It is also necessary to produce the expected page faults
including the protection flags, etc. Page boundaries are handled at translation
time; flags are handled on memory accesses.

• Second, self-modifying code must be supported. This is especially true as now,
even in embedded environments, many just-in-time compilers are used (just
think of Javascript in a browser or of Android). The performance issue related
to supporting dynamic code generation in DBT is considered as of primary
importance [17].

• Third, the translation cache has to be managed. A cache, by nature, has a
finite size. The placement of the newly generated translation blocks and the
replacement policy in case of overflow have to be determined.

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 573

• Fourth, multiprocessor systems must be supported. A basic implementation
simply simulates the processors one after other in a predefined order by calling
their execution function. The simulation of a processor is suspended, and the
simulation of the next one (e.g. round-robin algorithm) resumed when an
interrupt or an exception occurs. However these events can only occur at the
border of a translation block. Other solutions can be thought of to better mimic
parallelism, as explained in Sect. 18.5.

• Finally, many optimizations are possible. Chaining is a classical optimization
which links a block to its successor using a jump instruction without going back
to the DBT engine when possible. The identification of the mostly used paths,
called hot paths, and the optimized retranslation of these paths can be beneficial.
It can also be counterproductive, as it requires accounting in the translation
blocks and time for optimized retranslations. Finding the right balance is known
to be hard [12].

18.3 Support for Non-scalar Architectures

Dynamic binary translation is usually used for running target code for a scalar
architecture on a scalar host. However, MPSoCs target specific markets with tight
power and area constraints and therefore embed specialized processor extensions or
processors with unusual architectures. The goal of this section is to briefly present
how such features can be efficiently supported by DBT.

18.3.1 Support for SIMD Instructions

Single Instruction, Multiple Data (SIMD) instructions perform parallel operations
on multiple data (Single Instruction, Multiple Data (SIMD)). There are today
multiple ISA extensions providing SIMD instructions to general purpose CPUs. For
performing parallel operations on multiple data, an SIMD instruction performs the
operation (or sequence of operations) on registers interpreted as array of values. This
array of data can have a variable number of values of various size, for example, a 128
bits wide register can be viewed as two 64 bits, four 32 bits, eight 16 bits, or sixteen
8 bits values. On top of that, the variety of the operations applied to the data is huge.
It ranges from the classical arithmetic operation (add, sub, shift, . . .) to saturated or
rounding arithmetic. Among this large range of instructions, each SIMD instruction
set represents a unique subset choice made by the processor architects. SIMD exten-
sions can also integrate some exotic instructions such as polynomial multiplication
or pixel distance computation that have no equivalent in other SIMD ISA.

DBT engines focus on efficiency for the most often used instructions, following
the adage “make the common case fast and the uncommon case correct.” As the
SIMD extensions are rarely relevant in general purpose computing, most translators
use helpers to execute their behavior even though all host processors include SIMD
instructions.

574 F. Pétrot et al.

People in companies developing processors [20] have looked at this issue
as the number of different SIMD extensions for different processor generations
(e.g., MMX, 3DNow!, SSE1, . . . , AVX for Intel) is huge, so having legacy code
being able to benefit from the most efficient version available on the actually running
processor has a clear value for some applications [26].

Replacing the helpers by dynamically generated code which uses the host SIMD
instructions opens the interesting question of the appropriate intermediate bytecode
for representing SIMD instructions [21]. The main two constraints to which one
may think for this bytecode are:

• limiting the number of new IR microoperations in order to limit the burden on
the code generator and the overall performances of the binary translator,

• adding enough microoperations in the IR to allow a wide coverage of both target
and host SIMD instruction sets.

Indeed, adding too many microoperations will tend to the addition of one
microoperation per SIMD instruction. This will not solve the problem since the
code generator (the second phase of DBT) will have a heavy work to do to produce
the inlined optimized code for each of the SIMD microoperations. Conversely, if
not enough microoperations are added, the semantic of all SIMD instructions will
not be expressed, and the translator will have to perform this translation using many
non-SIMD microinstructions. A simple way to extend the IR is to choose a set of
microoperations which is close to the intersections of the more widely available
SIMD instruction sets. The IR microoperations will be 3-address operations since
it is the most general case and allows to represent the 2-address versions easily,
whereas the reverse is not true.

As opposed to scalar DBT, finding instruction equivalence in SIMD DBT has
to take care of the SIMD specificities: parallelism and register interpretation. The
following section illustrates these peculiarities with concrete examples of translation
from ARM NEON instruction set to Intel MMX/SSE.

Direct mapping between instructions: in the presence of an exact equivalence
between a target SIMD instruction and an host SIMD instruction, the behavior of the
SIMD DBT is quite similar to the one of the scalar DBT. This case can be called a
direct mapping. The main difference between scalar and SIMD direct mappings lies
in the fact that it is necessary to guaranty that there is the same level of parallelism
between the two instructions, i.e. the same interpretation of registers (couple of
number and size of the values).

This case is widely applicable on arithmetic operations of SIMD instruction
sets. Figure 18.7 illustrates the DBT of an ARM Neon vadd.i16 into an Intel
MMX/SSE paddw. The IR microoperation used to propagate the parallelism is
named simd_128_add_i16 and represents the SIMD instruction performing 8
parallel adds on 16-bit values in 128-bit registers.

Table 18.1 gives some examples of direct mappings between the ARM Neon
add instructions and the Intel SSE ones. These examples are only 128-bit adds, but
equivalent mapping can also be found for 64-bit instructions and for other arithmetic
instructions such as sub, and, or, and xor.

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 575

Fig. 18.7 Direct mapping between vadd.i16 Neon instruction and paddw MMX/SSE instruc-
tion

Table 18.1 Mapping between addition instructions

Operation Neon instruction MMX/SSE instruction

Add 8 bits vadd.i8 Qd, Qn, Qm paddb xmm1, xmm2

Add 16 bits vadd.i16 Qd, Qn, Qm paddw xmm1, xmm2

Add 32 bits vadd.i32 Qd, Qn, Qm paddd xmm1, xmm2

Add 64 bits vadd.i64 Qd, Qn, Qm paddq xmm1, xmm2

Fig. 18.8 The vsra Neon instruction is translated into two IR microoperations

No direct mapping: in a less favorable case, there exists no direct mapping
between instructions of the instruction sets. Most of the cases, this lack of mapping
is due to a lack of generality of the operations performed by the target SIMD
instruction. In that case it is only of little interest to have a microoperation in
the IR for that instruction. The strategy in such cases is to split the target SIMD
instruction in more elementary operations already present in the IR. This technique
is once more identical to the one used in scalar DBT, but more parameters have
to be taken into account during the process, i.e. parallelism level and registers
interpretation.

Figure 18.8 gives an example of this situation with the translation of the
ARM Neon vsra.u32 instruction which performs a right shift on operands
and accumulate the shifted results in the output register. This SIMD instruction
is translated into two elementary IR microoperations simd_128_shr_i32 and
simd_128_add_i32. The code generator can then find an equivalent for each
microoperation, i.e. psrld and paddd.

Exceptional case: a third and least favorable case is finally possible. This
situation occurs quite rarely, but due to the way instructions have been chosen
for integration in the SIMD instruction sets, it can be encountered. It happens
when an SIMD instruction of the target can be translated into a corresponding
IR microoperation, but no equivalent is available in the host SIMD instruction
set. As shown Table 18.2, all versions of the shift are available in ARM Neon

576 F. Pétrot et al.

Table 18.2 Mapping between left shift instructions

Operation Neon instruction MMX/SSE instruction

shl 8 bits vshl.i8 Qd, Qm, #imm N/A

shl 16 bits vshl.i16 Qd, Qm, #imm psllw xmm1, xmm2

shl 32 bits vshl.i32 Qd, Qm, #imm pslld xmm1, xmm2

shl 64 bits vshl.i64 Qd, Qm, #imm psllq xmm1, xmm2

Fig. 18.9 The left shift microoperation is translated into multiple MMX/SSE instructions

SIMD instruction set. This is even true for all SIMD instruction sets that have been
analyzed for this study, except for the Intel SSE SIMD instruction set. As it can be
realized from this table, there exists no instruction for shifting 8-bit values. As this
operation is present in all other instruction sets, it is present in the IR.

The code generator has then to solve this situation by generating multiple
host instructions, as shown Fig. 18.9. The example given in this figure is for the
translation of a 8-bit logical left shift emulated by a 16-bit version.

Comparison instructions: as far as comparisons are concerned, PowerPC Altivec,
Sparc VIS, MMX/SSE, and Neon instruction sets provide the result for each element
in the output operand, whereas the MIPS DSPASE sets flags. Because of this
unbalanced distribution, a reasonable choice is to define microoperations producing
their results in the output operand.

18.3.2 Support for VLIW Architectures

VLIW are not uncommon in the embedded space; indeed several recent many-core
architectures are VLIW based [10, 14, 18], as they provide a high computing vs.
power efficiency. The VLIW idea is to make a processor simple yet powerful by
having the compiler provide the Instruction-Level Parallelism (ILP) explicitly in the
execute packet, i.e., the set of instructions to be executed concurrently. The VLIW
implementation choices are mainly trade-offs regarding simplicity of the design
against compiler complexity, the major one being bypasses and stalls against register
update latencies (also called delay slots).

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 577

18.3.2.1 VLIW Specificities
VLIW have specificities which render the VLIW to scalar DBT process particularly
hard. The main characteristic of the execute packet is that multiple member
instructions are meant to be executed in parallel. Some may use a register as input
operand, while another one might use it as an output operand. The correct behavior
is to feed the input operands with values the register had before the execute packet
begin, which is not trivial in the DBT context.

The next characteristic concerns the latency of arithmetic and logic instructions,
which may be greater than one cycle. Instead of stalling the pipeline until the avail-
ability of the result in the destination register, the compiler has the responsibility to
ensure that an instruction depending on this result will not be scheduled before the
end of the delay. It also means that all instructions executed in between can read
this register to get its old value, and it is even possible to write it, as the actions will
occur after the corresponding latency, as long as there is no multiple writers on the
same destination register at the same cycle (otherwise, the result is undefined).

The last specificity is related to branches. Branch instructions have also delay
slots, which means that instructions following a branch will be executed irrespective
of the branch outcome.

18.3.2.2 VLIW DBT Extension Principles
The DBT has to handle the fact that multiple instructions are executed in parallel
which may have destination registers being source registers of others in the same
execute packet. The Write-After-Read (WAR) dependencies must be fulfilled to
obtain correct behavior against execute packet semantic. The systematic solution
to this problem is to introduce a new copy of a register each time it is overwritten.
This strategy is similar to the Static Single Assignment (SSA) [9] form used in
compilation when considering target registers as variables.

Applied to the intra-execute packet WAR dependency, this leads to at most two
living versions of the register in each execute packet, one corresponding to the old
value and one corresponding to the updated value.

Although this solution clearly solves the WAR problem, it does not solve the
issue of instructions delay slots. The solution is again relatively simple: the old
version of a register must be kept and used in case of a read until all delay slots
of the instruction have been consumed. This results in keeping possibly alive more
than two versions of the same register at the same moment, which is clearly not the
case in conventional SSA.

The number of living versions of the registers increases, but fortunately, this
number is bounded to a reasonable amount, which is the maximum instruction
latency among all instructions plus 1. Indeed, the worst case is a sequence of largest
latency instructions writing to the same register. In that case, one living version must
exist for each instruction executed between the execution of the first occurrence and
the availability of its result, plus one version for the previous value.

Finally, the branches have to be handled in two phases. Firstly, the code
responsible for the computation of the branch target address is generated when

578 F. Pétrot et al.

a b

Fig. 18.10 Reading and writing registers replicates

encountering the branch instruction. Secondly, a TB ending instruction is produced
after the delayed instructions and pc is updated accordingly.

18.3.2.3 TB Entry and Exit States
Using the above-described techniques (plus others not described here but similar
in spirit, to handle, e.g., predicated instructions), the DBT translation phase can
produce a sequential bytecode using registers replicates accomplishing the exact
functional behavior of the source VLIW code.

For implementation purposes, each register points to the head of a queue.
Reading the register value is done accessing the head, while the registers replicates
(created when an instruction writes the register) are inserted in the position
representing their latency. Figure 18.10 illustrates the idea. At first, replicates 0 are
created in case a read occurs. Then, depending on the execute packet instructions,
two 0 cycle latency instructions writing registers 0 and 2 and a 3 cycle latency
instruction writing register 2 Fig. 18.10a, the replicates are created. After the
translation of an execute packet, the queues are shifted left one position (see
Fig. 18.10b), the leftmost replicate being kept if no value overwrites it, and the
useless replicates are freed.

Due to this translation time renaming strategy, the working version (currently
used versions) of the registers, although known, is unpredictable. More precisely,
as TB are translated independently, the working versions when leaving a TB
are unknown to the newly entered TB. Indeed, when a TB has several different
predecessors, there is no way to guaranty that the working version will be identical
at the exit of all the preceding TBs, and the translator does not even know if a TB
has more than one predecessor when performing the translation.

The solution for handling this need of TB independence is to define a canonical
entry and exit working register set for TBs. In that way, once translated, the TB will
be reusable from all TBs pointing to it. The canonical state will be composed of the
first replicate of each register, in which are mapped the first version of each register
at the beginning of TB translation.

A further, this time dynamic, complication may arrive: in some cases, the delay
slots cross the border of a TB. In that case, an external mechanism needs to be
set up to handle these delay slots. This mechanism needs to be external to the
translator because of the TB independence requirements. Indeed, the translator loses

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 579

the information about delay slots when exiting a TB, and thus only a run-time
mechanism can manage the delay slots in that case.

This mechanism records the pending delayed registers with their current cycle
delay when exiting the current TB at run time. The next TB executed consults
the recorded data during its first execution cycles (bounded by the maximum
possible latency) to check if there are some registers needing to be updated as
they reach their latency. This can be done through helper calls inserted by the
translator.

18.3.2.4 Complexity of the Modifications
From a pure functional point of view, all modifications needed to implement the
VLIW DBT are part of the translator. The code generator does not strictly need to
be modified to handle these new features.

The modifications needed are first a change from a simple array of registers in
which each cell represents a target register to an array of these registers in which
a line represents all the replicates of one target register. This change requires to
modify all mechanisms at translation time to allocate the correct replicate each time
an assignment to a target register occurs.

The delay slot handling, delaying use of a newer replicate, can be modeled
using a simple queue, in which future versions of registers can be inserted at the
corresponding delay. At the end of each cycle, all delayed register versions progress
of one cycle in the delay queue. All these computations occur at translation time.
Complexity is once again limited.

The handling of the canonical state implies a modification of the translator but
impacts the generated code. Indeed, the easiest way to return to the canonical state at
the end of a translation block is to generate instructions that move current working
replicates of registers to the ones defined in the canonical state. This solution has a
limited complexity on the translator but has the unfortunate side effect of increasing
the TB size and thus its execution time.

Finally, the handling of delay slots crossing TB edges is a pure run-time
mechanism. This mechanism has to be identical for all TB to be valid for all
sequences of TB. The amount of generated code for this purpose is not huge, as it
consists of generating helper calls to propagate correctly the register updates. Even
though the functions themselves are quite straightforward since they only handle
registers updates through a run-time delay queue similar to the one described before,
the run-time overheads necessary to set up and perform these calls are quite large
compared to a simple sequence of generated host instructions.

18.4 Annotations in Dynamic Binary Translation

Although DBT is a very efficient technique for instruction interpretation, it is
not, in its usual form, suited to performance evaluation of software, making
the virtual platforms built on top of it unsuited to design space exploration of
hardware/software systems. Indeed, the translation process produces host code

580 F. Pétrot et al.

Fig. 18.11 Generation of annotated code

whose behavior must reproduce the one of the target code, and there is no provision
to estimate any kind of information (time, power, etc.) related to the execution
of a translated block. However, as translation generates code, it is possible to
produce nonfunctional code which aim at doing, during execution, some specific
activity [6,30]. These nonfunctional pieces of code are called annotations. The first
goal of these annotations is to make the simulated processors accurate from the point
of view of the time internally required for instructions execution.

The place at which these annotations are exactly placed depends on the overall
virtual prototyping approach, but it can be either before the first functional
instruction of a translation block, before or after a specific instruction, or after the
last functional instruction of a translation block.

Assuming the annotation targets a rough estimation of the software execution
time (excluding cache and memory effects), a first approach consist of generating,
before the translation of the instruction, an addition on a global variable, as illus-
trated Fig. 18.11, which can be compared with Fig. 18.6 to measure the overhead
due to annotation.

In this case, the number of cycles is a field at offset 0x48c in the environment.
The value of the field is incremented by the number of cycles associated to

the instruction, quantity typically found using a look-up table that contains the
information copied from the processor datasheet. Sometimes the number of cycles
required by an instruction depends on values available only when the instruction is
executed. For instance, the number of cycles required by a multiplication instruction
may depend on the values of the operands, which may differ from an execution to
another. In that case, specific code has to be generated to add the corresponding
difference to the preceding value. Since entering a translation block guarantees
that all instructions it contains will be executed, a wiser way, that does more at
translation time but less at execution time, consists of generating code at the end
of the translation block that adds to a variable the value accumulated during the
translation of the whole translation block.

Annotations can also be used for power estimation, or for totally different
purposes, such as fault injection for code analysis [3] or generation of traces for
analysis [8].

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 581

18.4.1 Cache Modeling Strategies

A modification which greatly improves the time accuracy (at the cost of execution
speed) consists of modeling the instruction and data caches. This section deals with
level-1 (L1) caches, as the situation with upper-level caches depends on the structure
of the memory hierarchy. Indeed, if the level-2 (L2) caches are private, then the
same approach as for L1 cache, described below, should be used. However, if they
are shared, then a global state must be visible, so that correct updates take place.
The simulation of the L2 cache can either be a component at TLM level or a shared
structure within the DBT engine. In the former case, it takes benefit from the event-
driven nature of the TLM simulator to synchronize with the rest of the system as
any other component would do, at the cost of more synchronizations within the
simulator. In the latter case, the relative progression of all hardware models must be
considered carefully.

For the instruction cache, the access to the models occurs thanks to a helper
called through a microoperation inserted at the beginning of each translated
translation block and, inside a translation block, before the first instruction from
each instruction cache block. As exact target instruction addresses are known at
translation time (even for dynamically generated code since it is translated at run
time), this can always be done at relatively low cost.

Data caches using write-through or write-back policies can also be modeled for
main memory read/write data accesses. Each time a main memory location is read
or written, its presence in the data cache is checked and the proper action (return
value, fetch block, write-allocate or write update) taken. Here also the addresses are
exact, so the modeling in terms of hits and misses by a simple array of addresses
can be faithful.

For set associative caches, the replacement policy may be difficult to re-
produce exactly, e.g., when a set is chosen at random with a generation of
the random number depending on a free-running counter, but this is not DBT
specific.

Figure 18.12 shows how the annotations are inserted to handle the computation
of cache misses. To limit the code size, pseudo-code instead of actual code is used.
In this figure, the first column is the instruction address, the second column the
generated code without annotations, and the third column the generated code with
annotations. Assuming a 4 32-bit words long cache block, it is necessary to check
the presence of the instruction in the cache only when the 4 lower bits of the
address are equal to zero, which is done by a call to the insn_cache_verify()
helper when the program counter has this property. Read and write accesses,
even though handled specifically by the translator back-end to simulate the MMU
and actually access the memory and peripherals, are simple microoperations in
the front-end. To model the L1 data cache, helper calls (read_access() and
write_access()) are added.

When modeling shared memory processor subsystems, a further issue is cache
coherency. Two solutions can be thought of for maintaining coherent data or

582 F. Pétrot et al.

Fig. 18.12 Cache modeling through annotation

instruction (necessary to support dynamically generated code) within the caches.
The brute force one simply ignores the cache protocol and traverses all cache
models when a write occur to check for the presence or absence of the written
address in the cache. When the number of processor is small, this traversal is quick
enough to be acceptable. To do so, the run time of the DBT engine simply needs
to maintain a list of caches accessible by all CPUs. However, when the number of
processor increases, the traversal time becomes unacceptable, and the solution is
then to implement (even in a simplified form) a cache coherence protocol. Indeed,
assuming n is the number of writes and p the number of processors, traversing all
caches is in O.p � n/, while a hardware cache coherence protocol would lead to
performance in O.k � p/, with k
 10 in average since the number of sharers
of a data is usually low. This behavior can be mimicked efficiently by accessing
a hash table indexed by the hashed address whose entries contain the address as
key and a pointer to the array representing the cache which caches the address
as data. The tipping point between both solutions depends on the implementation
details, but it seems clear that for many-core architectures, the latter one is more
efficient.

As can be seen, adding cache models increases the size of the generated code and
requires more complex handling of the memory accesses at execution time, which
leads in any case to an important degradation in simulation speed. Given the fact
that is it possible to count load and store, higher, typically analytical, models can
also be used when accuracy can be trade-off for speed.

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 583

18.4.2 Modeling Branch Predictors

Even though not that many embedded processors today include branch predictors,
it is worth taking a look at how it can be modeled in DBT-based simulation as the
influence of this microarchitectural feature on out-of-order execution performance
is major. At first, modeling a branch predictor seems easy: the branch outcomes are
known, so updating a set of branch history tables (as in the TAGE [27] predictor
or its descendants, current state-of-the-art predictors) to predict a future branch
outcome is straightforward. However, branch predictors use large global tables,
shared by all branches in the execution flow. As opposed to caches, these tables
are accessed one after the other at what looks like random indexes (computed as
hashes of branch history and branch instruction address). As far as simulation is
concerned, repeated accesses to random places lead to poor program locality and,
in consequence, poor simulation performance. Experiments have shown slowdowns
of 1:5� to 15� as compared to raw DBT execution [13]. To limit this overhead, a
performance/accuracy trade-off can be made by defining models which predict the
behavior of the branch predictor. The principle consists of transforming the tables
of the reference architecture, which are global, i.e., shared between all branches,
into information local to each branch. This leads to allocating the table entries only
when needed and enhances locality, thus limiting the number of cache misses when
simulating the predictor model.

Taking TAGE as an example, the bimodal table, as can be seen Fig. 18.13, is
reduced to a 2 bit counter which can be stored in the local data of each branch.
Then, for the tagged tables, two parts are distinguished, the tables themselves and
the way they are indexed. Concerning the tables, a simple solution is to use a single
tagged table, ignoring history length. In the same way as for the bimodal table, only

3 bits counter
3 bits counter

.

.

.

Outcome

if not
weak

prediction

Points to
global history

Simulator
metadata

2 bit counter

Translation
block (local)

Simplified ModelReference model h[0:L(4)]h[0:L(3)]h[0:L(2)]h[0:L(1)]

hash

=?

hash hash

=?

hash hash

=?

hash hash

=?

hash

tag u tag u pred tag u pred tag upred pred

prediction

pc pc pc pc

pc

base predictor

T0 T1 T2 T3 T4

a b

Fig. 18.13 (a) Reference [27] and (b) simplified models for a TAGE branch predictor

584 F. Pétrot et al.

the potentially reachable entries, i.e., the ones concerning already seen branches, can
be allocated locally for each branch. This results in a local table that is indexed by
the global history, which, in the reference architecture, was hashed with the program
counter (PC) of the branch.

The choice of the entry is then naturally simplified as there is only one, local,
tagged table to choose from.

The confidence state of the entry in the tagged table is used to select between the
tagged table and the bimodal table. If it is “weak,” the prediction will be given by the
bimodal table; otherwise it will be given by the tagged one. This should ensure that,
as in the reference architecture, tagged prediction is chosen only when the tagged
entry is “sure” of its prediction. The tag of the tagged table is not useful anymore,
as entries concerning one branch are now specific to it. In other words, aliasing, i.e.,
multiple branches pointing to the same entry, already very unlikely thanks to tags,
is impossible in the simplified model.

The resulting model uses memory local to the current basic block, which tends to
enhance locality, but it also uses more memory, as information shared due to aliasing
is now duplicated. The information used by the simplified predictor is similar to
that of the reference architecture: the outcome of the current branch, its own data, a
global history of branch outcomes, and, finally, the structure of the already executed
code (to store data per branch). This model produces identical predictions to the
TAGE architecture in average 95% of the time for a 5% execution time overhead.
Even though 95% identical predictions may seem a good achievement, the impact
on the execution time may be of importance, so finer models can also be of interest.

As for caches, a wide range of models can be used for taking into account branch
prediction, and it boils down to produce annotations at the end of the basic blocks,
as shown Fig. 18.14. The bp_model helper is called with the address of the branch
instruction (PC) and the outcome of the branch (bcond).

18.5 Integration with TLM Simulations

Integrating DBT-based Instruction-Set Simulator (ISS) in a TLM simulation en-
vironment can be done in two steps, as depicted Fig. 18.15. First, all processors
belonging to a Symmetric Multi-Processing (SMP) subsystem are grouped together

Fig. 18.14 Annotation to model branch prediction

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 585

Fig. 18.15 Binary translation based simulator – SystemC simulation platform

in a module that can be instantiated by the TLM simulator (platform_wrapper). It
is assumed that all processors are identical and have identical cache geometries and
that they have a shared view of the memory. This allows to share the translation
cache between them, avoiding retranslation on one processor of code migrating
from another processor in SMP systems and an efficient implementation of cache
coherency.

Second, the platform wrapper instantiates a module wrapper for each processor
(iss_wrapper). The execution of each processor is performed in the context of
the process of its wrapper. This way, the processors are simulated concurrently
by the TLM simulator time-sharing scheduler. The platform wrapper is useful
for managing the common aspects shared by the processors (e.g., inter-processor
interrupt management, platform specific registers, interrupt controllers etc.).

The platform wrapper is connected to an interconnect, through which it can
communicate with other hardware components (memory, timers, DMA engines,
frame buffer, etc.) also connected to it. All hardware components are implemented
as TLM modules.

From the initial DBT platform, the platform uses only the processor models with,
if required, their MMUs. All other devices are externalized and implemented as
TLM modules. This allows to enforce the notion of IP and reuse, thanks to the
TLM principles, whereas devices in DBT are described in very ad hoc manner
and use shortcuts hardly acceptable when the simulation is also used for design
space exploration purposes. The main memory is also implemented as one or more
TLM modules. For accessing TLM models other than the main memory, a few
ranges of the simulated processor physical addresses are mapped as I/O addresses
in the processor wrapper. The I/O requests from the simulated processors are then
transformed by the processor wrappers into TLM requests, using the protocol
understood by the interconnect. Memory, on the other hand, is accessed through

586 F. Pétrot et al.

a direct memory interface. This avoids relinquishing the CPU to the TLM part of
the simulation and thus saves a lot of time.

18.5.1 Precision Levels

Depending upon the accuracy one expects from the simulation, four trade-offs can
be made regarding memory accesses.

The first approach does not implement caches and uses the main memory
internally allocated by the DBT engine. The time required for executing the number
of cycles corresponding to the instructions simulated is consumed using the wait
function of the simulator. In this configuration, it is considered that the memory
is always available for all processors, without any cycle cost for accessing it.
The communication with other peripherals is performed by sending requests over
the interconnect. The time consumed for these accesses is composed of the time
consumed by each TLM components involved in the transmission and the reception
of the request packets. In this case, a simulated processor synchronizes with the
rest of the TLM platform only when an I/O operation is executed and when that
processor is unscheduled by the DBT simulator. Due to the reduced number of
synchronizations, large pieces of translated code are executed without interruption.
As a result, the simulation will be very fast (close to the DBT alone). The accuracy
in this case will be low as the cache effects and the time required to communicate
with the main memory over the interconnect are not accounted for. Since all memory
accesses are done without going through the interconnect, there is no need for an
explicit support for cache coherent mechanisms.

The second approach relies on the caches being implemented only from the
hit/miss point of view, while the main memory of the initial DBT engine is still used.
As opposed to native simulation or compiled simulation presented in �Chap. 19,
“Host-Compiled Simulation”, dynamic binary translation uses the exact addresses
for instructions fetch and data accesses. However, the target instructions are fetched
from memory only once, for translation, before their first execution. The simulator
always executes the generated binary host code stored in the translation cache. So,
to accurately account for these accesses, a model of the cache is needed. Both data
and instruction caches can be modeled as pure directories, so that an array access
(with the proper tag, index, and offset) indicates if the instruction would in reality be
in the cache. A cache miss issues a TLM wait for a time precomputed to be required
to load a cache line, without actually sending the request over interconnect. As for
the previous approach, the I/O operations involve the interconnect and other TLM
hardware models. The time corresponding to the simulated cycles is consumed at the
beginning of the next synchronization. In this case, the processors are synchronized
with the TLM simulator when a cache miss occurs, an I/O is executed or when they
are unscheduled by the DBT engine. The simulation speed for this configuration
is reduced a lot because of the large number of synchronizations produced by the
cache misses. As the precomputed time is consumed directly in the cache model, a
single timed event is generated for each cache miss. This is not much, considering

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 587

that the transfer of a single byte over the interconnect requires more than 10 timed
and untimed events. The accuracy increases by using a precomputed average value
for the time required for a memory transfer over the interconnect. However, the
interconnect load, hardly guessable as it is highly nonlinear when congested, is not
taken into account.

The third approach is an extension of the second one, in which, instead of
consuming the precomputed time when the cache misses occur, the consumption
of time is postponed until the next synchronization produced by an I/O operation or
by the normal unscheduling of a processor. At the synchronization moment, the sum
of the precomputed times required by all write accesses and cache misses that have
occurred since the previous synchronization is consumed. This way, the number of
synchronizations is reduced, increasing simulation speed. The chances of preventing
other processors to modify a variable waited on by the current simulated processor
are higher in this configuration compared to the previous one because of the small
number of synchronizations. This may have a negative impact on simulation speed
as more cycles have to be simulated by a polling processor and has a negative impact
on simulation accuracy.

The fourth and most accurate approach fully implements the caches and uses
an external TLM memory module as main memory. In this case, in addition to the
directory, the caches also have their data part. However, the data of the instruction
cache is ignored. The instructions needed for translation are searched directly in the
memory module, without issuing a TLM wait. The loading price will be paid by the
instruction cache when the generated code is executed from the translation cache, as
explained Fig. 18.12. In all cases, a cache miss issues a request over the interconnect.
The simulation speed for this configuration will be even slower, because the requests
and responses pass through all the components that are required for the transfer.

18.5.2 TLM Synchronization Points

In this DBT+TLM integration approach, a processor is simulated as long as it does
not communicate with the world behind its caches and the DBT engine does not
stop it. When an instruction/data cache misses or an I/O occurs, the processor
simulation stops, and the processor wrapper synchronizes itself with the rest of
the platform by consuming the estimated time required by the real processor to
execute the instructions simulated since the last synchronization. In case no such
event occurs, in order to limit the divergence between the different processors’
execution, a synchronization can be forced after a predefined period of time without
synchronization. For the target processor instructions designed for synchronization
of the software running on a SMP architecture (e.g., exclusive load and store,
compare, and swap), a synchronization should also be generated.

The processors’ simulation order depends on the time consumed by the proces-
sors at synchronizations. A synchronization condition may occur at any time during
the execution of a translation block (e.g., cache miss); thus unscheduling does not
anymore always occur at the boundary of a translation block. As the DBT engine

588 F. Pétrot et al.

unschedules the processors only at the translation block border, it is necessary to
save their “execution context” before synchronization and restore it afterward.

18.5.2.1 TLM Synchronization After Long Intervals Lacking in
Synchronization

Due to the fact that simulated processors do not synchronize at each memory access,
if two or more simulated processors read/write from/to the same memory address,
the instructions executed by these processors may differ from those executed on a
cycle accurate platform. A write to an address should invalidate the corresponding
cache line in all caches but the one of the writing processor, and these other
processors should see the new value at their next read from that address. Because
of the direct access to memory, the write is visible by the rest of processors before
it happens in the simulated timeline, if the writing processor is simulated before the
reading one. If the processors’ simulation order is inverted, the reading processor
does not see the effect of writing until it synchronizes and the writing processor
executes the writing code.

Processor unscheduling after a predefined time without synchronization is
needed even for cases when a processor waits in a loop for a simple variable to
be changed by another processor or any initiator of the system or even by an
interrupt handler on the same processor. This kind of loops would also prevent
the interrupts to occur for that processor because the interrupt pending flag is set
during synchronization. For example, for computing the processor speed, Linux
waits in a loop for the jiffies variable to be incremented by the timer interrupt
handler. The condition of unscheduling due to lack of synchronization is verified
at the beginning of each translation block. The time period for this unscheduling
condition determines the maximum lag of the interrupts.

18.5.2.2 TLM Synchronizations Caused by Target Synchronization
Instructions

The threads of a software application usually synchronize together. A spin lock is an
example of a software synchronization mechanism. The lock and unlock function of
the spinlocks are usually implemented using exclusive load and store instructions.

Figure 18.16 presents an example of software running on two processors and
using a spinlock for the software synchronization. This figure shows what would
happen if the simulator would not generate a synchronization for this type of target
instructions or if the spinlock functions would not be implemented using exclusive
access instructions.

Figure 18.16a presents the execution on a real hardware. The first processor (P1)
locks a spinlock at t1, at t2 a cache miss occurs, at t4 P 1 releases the spinlock, and
at t6 it executes an I/O operation. The second processor tries to lock the spinlock
(t3) just before t4; it actually obtains the lock at t40 and releases the spinlock at t5.

The execution on our platform in the case when the simulator would not generate
synchronization for the exclusive accesses is depicted in Fig. 18.16b. Considering
that P1 is first scheduled for simulation, it locks the spinlock at t1 without being
unscheduled (the spinlock is placed in the main memory), but at t2 it is unscheduled

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 589

a

b

c

Fig. 18.16 Simulation behaviors based on the spinlock implementation

for synchronization before loading the cache line. P2 is now scheduled and at t3 it
begins trying to take the lock. P2 reads in an infinite loop the spinlock locked value
from the main memory.

After the predefined time without synchronization, P2 would be however
unscheduled at time t4 C N . Then, P1 is scheduled, it unlocks the spinlock, and
then it is unscheduled for synchronization before the I/O operation. P1 will be able
now to take the spinlock, but it has oversimulated by time N .

The simulation behavior when spinlocks functions use exclusive access functions
and the synchronizations that are generated for them are presented in Fig. 18.16c. In
this case, the processors synchronize before each lock and unlock. P1 synchronize
at t1 and P2 is scheduled. P2 is unscheduled before its first lock attempt. P1
synchronizes at t2, but it is rescheduled because P1 is more advanced in simulation
time (t3 > t2). At t4, before releasing the lock, P1 synchronizes and it is
unscheduled (t4 > t3). Between t3 and t4 (the simulation time of P1), P2
synchronizes and it is rescheduled at each attempt to lock the spinlock. After t4,
P1 is scheduled and it releases the lock and it is simulated until t6. P2 gets the lock
at t40 (immediately after P1 has released it) and release it at t5.

18.6 Concluding Remarks

Dynamic binary translation provides a real increase in performance as compared to
instruction accurate instruction-set simulators. This enhancement comes at the price
of a much greater implementation complexity and, intrinsically, less capabilities to

590 F. Pétrot et al.

monitor precisely nonfunctional properties of the software. The progress toward the
integration of more and more cores on SoC makes it however a must for achieving
hardware/software simulation at acceptable speed.

To act as an independent processor simulator, DBT must be integrated into
standard event-driven simulation environments, e.g., SystemC. Then, it must sup-
port processors with non-scalar architectures and possibly more efficiently scalar
processors [19], by resorting to run-time optimizations including dynamic recompi-
lation. And finally, it should be capable of integrating models of processor specific
microarchitectural details so that software performance evaluations (mainly timing
and power) can be done.

References

1. Aarno D, Engblom J (2014) Software and system development using virtual platforms: full-
system simulation with wind river simics. Morgan Kaufmann, Waltham

2. Baraz L, Devor T, Etzion O, Goldenberg S, Skaletsky A, Wang Y, Zemach Y (2003) Ia-
32 execution layer: a two-phase dynamic translator designed to support IA-32 applications
on itaniumr-based systems. In: Proceedings of the 36th annual IEEE/ACM international
symposium on microarchitecture, pp 191–201

3. Becker M, Baldin D, Kuznik C, Joy MM, Xie T, Mueller W (2012) Xemu: an efficient qemu
based binary mutation testing framework for embedded software. In: Proceedings of the tenth
ACM international conference on Embedded software. ACM, pp 33–42

4. Bell JR (1973) Threaded code. Commun ACM 16(6):370–372
5. Cai L, Gajski D (2003) Transaction level modeling: an overview. In: Proceedings of the

1st IEEE/ACM/IFIP international conference on hardware/software codesign and system
synthesis. ACM, pp 19–24

6. Cmelik B, Keppel D (1994) Shade: a fast instruction-set simulator for execution profiling. In:
Proceedings of the 1994 ACM SIGMETRICS conference on measurement and modeling of
computer systems, pp 128–137

7. Creasy RJ (1981) The origin of the VM/370 time-sharing system. IBM J Res Dev 25(5):
483–490

8. Cunha M, Fournel N, Pétrot F (2015) Collecting traces in dynamic binary translation based
virtual prototyping platforms. In: Proceedings of the 2015 workshop on rapid simulation and
performance evaluation: methods and tools. ACM, p 4

9. Cytron R, Ferrante J, Rosen BK, Wegman MN, Zadeck FK (1991) Efficiently computing static
single assignment form and the control dependence graph. ACM Trans Program Lang Syst
13:451–490

10. de Dinechin BD, Ayrignac R, Beaucamps PE, Couvert P, Ganne B, de Massas PG, Jacquet
F, Jones S, Chaisemartin NM, Riss F, Strudel T (2013) A clustered manycore processor
architecture for embedded and accelerated applications. In: IEEE high performance extreme
computing conference. IEEE, pp 1–6

11. Deutsch LP, Schiffman AM (1984) Efficient implementation of the smalltalk-80 system.
In: 11th ACM SIGACT-SIGPLAN symposium on principles of programming languages,
pp 297–302

12. Duesterwald E, Bala V (2000) Software profiling for hot path prediction: less is more. ACM
SIGARCH Comput Archit News 28(5):202–211

13. Faravelon A, Fournel N, Pétrot F (2015) Fast and accurate branch predictor simulation. In:
Proceedings of the design automation and test in Europe conference. ACM, pp 317–320

14. Flamand E (2009) Strategic directions towards multicore application specific computing. In:
IEEE/ACM conference on design, automation & test in Europe, pp 1266–1266

18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation 591

15. Ghenassia F, Clouard A (2005) TLM: an overview and brief history. In: Ghenassia F (ed)
Transaction level modeling with SystemC: TLM concepts and applications for embedded
systems. Springer, Dordrecht

16. Gligor M, Fournel N, Pétrot F (2009) Using binary translation in event driven simulation for
fast and flexible MPSoC simulation. In: Proceedings of the 7th IEEE/ACM/IFIP international
conference on hardware/software codesign and system synthesis, Grenoble, pp 71–80

17. Hawkins B, Demsky B, Bruening D, Zhao Q (2015) Optimizing binary translation of
dynamically generated code. In: Proceedings of the 13th annual IEEE/ACM international
symposium on code generation and optimization. IEEE Computer Society, pp 68–78

18. Lethin R (2009) How vliw almost disappeared-and then proliferated. IEEE Solid-State Circuits
Mag 1(3):15–23

19. Leupers R, Eeckhout L, Martin G, Schirrmeister F, Topham N, Chen X (2011) Virtual
manycore platforms: moving towards 100C processor cores. In: Design, automation & test
in Europe conference & exhibition (DATE), 2011. IEEE, pp 1–6

20. Li J, Zhang Q, Xu S, Huang B (2006) Optimizing dynamic binary translation for simd instruc-
tions. In: Proceedings of the international symposium on code generation and optimization,
pp 269–280

21. Michel L, Fournel N, Pétrot F (2011) Speeding-up simd instructions dynamic binary translation
in embedded processor simulation. In: Proceedings of the design, automation & test in Europe
conference, pp 277–280

22. Mitchell JG (1970) The design and construction of flexible and efficient interactive program-
ming systems. PhD thesis, Carnegie-Mellon University, Pittsburgh

23. Monton M, Carrabina J, Burton M (2009) Mixed simulation kernels for high performance
virtual platforms. In: Forum on specification & design languages, pp 1–6

24. Pétrot F, Fournel N, Gerin P, Gligor M, Hamayun MM, Shen H (2011) On mpsoc software
execution at the transaction level. IEEE Des Test Comput 28(3):32–43

25. Popek GJ, Goldberg RP (1974) Formal requirements for virtualizable third generation archi-
tectures. Commun ACM 17(7):412–421

26. Rohou E, Williams K, Yuste D (2013) Vectorization technology to improve interpreter
performance. ACM Trans Archit Code Optim (TACO) 9(4):1–22

27. Seznec A, Michaud P (2006) A case for (partially) tagged geometric history length branch
prediction. J Instr Lev Parall 8:1–23

28. Sites RL, Chernoff A, Kirk MB, Marks MP, Robinson SG (1993) Binary translation. Commun
ACM 36(2):69–81. doi:10.1145/151220.151227

29. Ung D, Cifuentes C (2000) Machine-adaptable dynamic binary translation. ACM SIGPLAN
Not 35(7):41–51

30. Witchel E, Rosenblum M (1996) Embra: fast and flexible machine simulation. ACM SIGMET-
RICS Perform Eval Rev 24(1):68–79

19Host-Compiled Simulation

Daniel Mueller-Gritschneder and Andreas Gerstlauer

Abstract

Virtual Prototypes (VPs), also known as virtual platforms, have been now widely
adopted by industry as platforms for early software development, HW/SW
coverification, performance analysis, and architecture exploration. Yet, rising
design complexity, the need to test an increasing amount of software functionality
as well as the verification of timing properties pose a growing challenge in
the application of VPs. New approaches overcome the accuracy-speed bottle-
neck of today’s virtual prototyping methods. These next-generation VPs are
centered around ultra-fast host-compiled software models. Accuracy is obtained
by advanced methods, which reconstruct the execution times of the software
and model the timing behavior of the operating system, target processor, and
memory system. It is shown that simulation speed can further be increased
by abstract TLM-based communication models. This support of ultra-fast and
accurate HW/SW cosimulation will be a key enabler for successfully developing
tomorrows Multi-Processor System-on-Chip (MPSoC) platforms.

Acronyms

API Application Programming Interface
CFG Control-Flow Graph
HAL Hardware Abstraction Layer
HW Hardware
IPC Inter-Process Communication

D. Mueller-Gritschneder (�)
Department of Electrical and Computer Engineering, Technical University of Munich, Munich,
Germany
e-mail: daniel.mueller@tum.de

A. Gerstlauer
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin,
TX, USA
e-mail: gerstl@ece.utexas.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_18

593

mailto:daniel.mueller@tum.de
mailto:gerstl@ece.utexas.edu

594 D. Mueller-Gritschneder and A. Gerstlauer

IR Intermediate Representation
ISA Instruction-Set Architecture
ISS Instruction-Set Simulator
MPSoC Multi-Processor System-on-Chip
OS Operating System
SLDL System-Level Description Language
TD Temporal Decoupling
TLM Transaction-Level Model
VP Virtual Prototype
WCET Worst-Case Execution Time

Contents

19.1 Introduction . 594
19.1.1 Traditional Virtual Prototype Simulation . 595
19.1.2 Next-Generation Virtual Prototypes . 596
19.1.3 Temporal Decoupling . 597

19.2 Source-Level Software Simulation . 598
19.2.1 Binary to Source Mapping . 600
19.2.2 Memory Trace Reconstruction . 602
19.2.3 Block-Level Timing Characterization . 603
19.2.4 Back-Annotation . 604

19.3 Host-Compiled OS and Processor Modeling . 605
19.3.1 OS Modeling . 606
19.3.2 Processor Modeling . 608
19.3.3 Cache Modeling . 609

19.4 TLM Communication for Host-Compiled Simulation . 612
19.4.1 TD with No Conflict Handling . 612
19.4.2 TD with Conflict Handling at Transaction Boundaries 613
19.4.3 TD with Conflict Handling at Quantum Boundaries 614
19.4.4 Abstract TLMC with Conflict Handling at SW Boundaries 616

19.5 Summary and Conclusions . 617
References . 617

19.1 Introduction

Due to increased complexity of modern embedded and integrated systems, more
and more design companies are adopting virtual prototyping methods. A Virtual
Prototype (VP), also known as a virtual platform, is a computer model of a HW/SW
system. In such a HW/SW system, tasks of an application are executed on one or
more target processors, e.g., ARM cores. Tasks usually run on top of an Operating
System (OS). The tasks can communicate and access memory and peripherals via
communication fabrics, e.g., on-chip busses. Next to obtaining correct hardware
with less iterations, VPs support early software development, performance analysis,
HW/SW coverification, and architecture exploration.

Modern Multi-Processor System-on-Chip (MPSoC) platforms feature multiple
hardware and software processors, where processors can each have multiple cores,

19 Host-Compiled Simulation 595

all communicating over an interconnection network, such as a hierarchy of busses.
The large amount of functionality and timing properties that need to be validated
for complex MPSoCs brings traditional VP approaches to their limits. New VPs are
required, which raise the abstraction to significantly increase simulation speed. This
is a challenging task, because high abstraction leads to a loss of timing information,
penalizing simulation accuracy.

This gives rise to next-generation VPs, which are centered around host-compiled
software models. Abstraction is applied at all layers of the system stack starting
from the software level, including operating system and processor models, down
to abstract communication models. Intelligent methods are applied to preserve
simulation accuracy at ulta-high simulation speeds. These methods are independent
of the used System-Level Description Language (SLDL). Yet, SystemC [1] has
nowadays emerged as a quasi-standard for system-level modeling. Therefore,
SystemC is used as the main SLDL to illustrate the modeling concepts throughout
this chapter.

Next to ultra-high simulation speed, VPs based on host-compiled simulation
also provide improved debug abilities. Both software and hardware events can
be traced jointly and transparently as the simulation model describes both in one
executable.

19.1.1 Traditional Virtual Prototype Simulation

The VP is simulated via an SLDL simulation kernel. The PC, which runs the
simulation, is referred to as the simulation host. Naturally, it can have a different
Instruction-Set Architecture (ISA) from the target processors. In discrete-event
(compound adjective) simulation, the simulation kernel on the host advances the
logical simulation time. To simulate concurrent behavior, simulation processes
are sequentially executed based on scheduling events and the simulation time.
Scheduling events suspend or resume simulation thread processes (threads) or
activate method processes. Suspending and resuming the thread processes requires
context switches, which can produce significant simulation overhead. This overhead
reduces simulation speed, which measures how fast the simulation is performed in
terms of the physical time.

Communication is usually modeled using abstract Transaction-Level Models
(TLMs). TLMs center around memory-mapped communication but omit the de-
tailed simulation of the bus protocol. In TLM, the bus interface is modeled by a
TLM socket. A transaction is invoked by an initiator (master) module when calling
a predefined transport function on its socket. The function is implemented at the
target (slave) module. During simulation the initiator socket is bound to the target
socket, and the respective transport function is called.

While TLMs have been successfully applied to model communication aspects,
today’s VPs usually model the computational part by emulating the software on
Instruction-Set Simulators (ISSs), which are either inaccurate or slow. As such, the
amount of functionality and timing properties that can be checked by traditional
VPs remains limited by their simulation speed. The low speed results from the

596 D. Mueller-Gritschneder and A. Gerstlauer

high number of scheduling events created by the traditional computation and
communication model.

19.1.2 Next-Generation Virtual Prototypes

Simulation speed can be increased by reducing the number of scheduling events.
One possibility is to raise the level of abstraction and thus lower the level of detail
in the simulation. Abstractions can increase simulation speed significantly but may
decrease accuracy due to loss of timing information or missing synchronization
events as discussed in Sect. 19.1.3.

Next-generation VPs are aimed at overcoming these challenges by using in-
telligent modeling approaches to preserve simulation accuracy. The abstraction is
raised by source-level simulation of software as an advanced method for software
performance analysis. Instead of emulating the software program with an ISS
of the target processor at the binary level, the source code of the software is
directly annotated with timing or other information. The annotated source code
can be directly compiled and executed on the simulation host machine, which
leads to a huge gain in simulation speed compared to ISS simulation. However,
this requires access to the source code by the user, which might not be available
especially for library functions. This is a limitation of such approaches, which can
be partly overcome, e.g., by profiling library functions beforehand. Additionally,
sophisticated methods are required to annotate potentially expensive and slow
cosimulation models for any dynamic low-level target behavior, such as stack or
cache behavior, that cannot be easily or accurately estimated through static analysis

Pure source-level simulation approaches focus on emulating stand-alone ap-
plication behavior only. However, interferences among multiple tasks running on
a processor as well as hardware/software interactions through interrupt handling
chains and memory and cache hierarchies can have a large influence on overall
software behavior. As such, OS and processor-level effects can contribute signifi-
cantly to overall model accuracy, while also carrying a large simulation overhead
in traditional solutions. So-called host-compiled simulation approaches therefore
extend pure source-level models to encapsulate back-annotated application code
with abstract, high-level, and lightweight models of OSs and processors. This is
aimed at providing a complete, fast, and accurate simulation of source-level software
running in its emulated execution environment.

Additionally, embedded and integrated systems are composed out of many
communicating components as we move toward embedded multi-core processors.
The simulation of communication events can quickly become the bottleneck in
system simulation. Next-generation VPs tackle this challenge by providing abstract
communication models. Special care must be taken in such abstract models to
capture the effect of conflicts due to concurrent accesses on shared resources.
Different methods are addressed, which can model the effect of arbitration, e.g., by
retroactive correction of the timing behavior. This correction is usually performed
by a central timing manager.

19 Host-Compiled Simulation 597

19.1.3 Temporal Decoupling

Overall, any discrete-event simulation of asynchronous interactions among con-
current system components will always come with a fundamental speed and
accuracy trade-off. Concurrency is simulated by switching between execution of
the simulation processes at scheduled simulation events. With increasing amount of
such scheduling events, simulation speed drops due to the overhead caused by the
involved context switches.

Naturally, simulation speed can be increased by reducing the number of schedul-
ing events. This can be achieved by raising the level of abstraction in the simulation
model. A less detailed simulation usually leads to fewer scheduling events. How-
ever, a simulation at coarser granularity also leads to timing information being
potentially lost. Maintaining a coarser timing granularity results in a Temporal
Decoupling (TD) of simulation processes. TD lets simulation processes run ahead
of the logical simulation time up to a given time quantum, which increases the
simulated timing granularity and decreases the number of scheduling events. The
logical simulation time of the kernel is referred to as global simulation time. By
contrast, components keep track of their time using a local simulation time, which
is usually defined as an offset to the global simulation time.

For HW/SW systems, TD increases simulation speed but may decrease accuracy
due to out-of-order accesses to or wrong prediction of conflicts on shared resources.
Specifically, TD may decrease accuracy due to incoming events being captured
too late, and also in terms of outgoing events being produced too early. This is
illustrated for a scenario with two concurrent active threads in Fig. 19.1. Without
TD, as shown in the upper half of the figure, Thread 2 writes the value of b to
the shared target before it is read by Thread 1. Additionally, the shared target can
arbitrate accesses. The writing process of b is ongoing when the read access is
performed, which adds additional delay on the read access of Thread 1. In contrast,
temporal decoupling leads to out-of-order accesses to b as shown in the lower half
of the figure. Additionally, the conflicting access by Thread 2 cannot be predicted
by the shared resource, and Thread 1 sees the write to b by Thread 2 only at a much
later (local) time. Similar problems of events being recognized too late arise when
modeling active threads that can be interrupted or preempted by external sources.

TD methods can be classified as optimistic or conservative. Optimistic ap-
proaches aggressively execute a model under temporal decoupling. Inaccuracies
due to out-of-order execution are either tolerated or corrected for at a later point
in simulation. Note that optimistic approaches do not guarantee an accurate order
of events and interactions unless correction using a full rollback is possible in
the simulator. As the name suggests, conservative approaches, by contrast, always
maintain the correct order of events and interactions. They only apply temporal
decoupling as long as it can be guaranteed that results do not depend on the order
of the respective events. Both methods can benefit from intelligent compile-time
or run-time usage of system knowledge. Accuracy of optimistic approaches can
be improved by using system knowledge to perform retroactive timing correc-
tions. Conservative approaches can increase their simulation speed by dynamically

598 D. Mueller-Gritschneder and A. Gerstlauer

100ns

Global Simulation Time

a=compute_a()

write(addr=0x00,value=a)

Thread 2Thread 1

100ns

Global Simulation Time

a=compute_a()
wait(10ns)

110ns
write(addr=0x00,value=a)
wait(10ns)

compute_cont()
wait(10ns)

Thread 2

b=compute_b()
wait(10ns)

write(addr=0x04,value=b)
wait(10ns)

b=read(addr=0x04)

wait(10ns+delay)

compute(b)
wait(10ns)

delay = 5ns

Thread 1 Shared Target

Shared Target

compute_cont()

b=read(addr=0x04)

compute(b)

compute_cont()
wait(10ns)

offset+=10ns

offset+=10ns
110ns

offset+=10ns

offset+=10ns

offset+=10ns

120ns

130ns

140ns

150ns
wait(50ns)

b=compute_b()

write(addr=0x04,value=b)
offset+=10ns

Local time

offset+=10ns

compute_cont()
offset+=10ns

115ns

125ns

135ns

145ns
wait(45ns)

115ns

120ns

125ns

130ns

135ns

145ns

Fig. 19.1 Simulation without/with Temporal Decoupling (TD)

adjusting their local time quantum using system knowledge to perform prediction of
possible future event interactions. In Sects. 19.2 and 19.4, we will show in detail how
accuracy and speed can be improved by such intelligent TD modeling approaches.

19.2 Source-Level Software Simulation

Traditional virtual platforms simulate software execution at a detailed instruction
level. This includes both a functional as well as, optionally, a timing model. Such
low-level ISSs can be very accurate, especially when combined with a cycle-level
microarchitecture model, but they also tend to be very slow, especially when cosim-
ulating multiple processor or cores in a full-system context. Functional simulation

19 Host-Compiled Simulation 599

speed can be significantly improved by statically translating instructions (and
caching translated results, see the �Chap. 18, “Multiprocessor System-on-Chip
Prototyping Using Dynamic Binary Translation”) instead of dynamically interpret-
ing them. Timing models can be accelerated by executing them in FPGAs or other
dedicated hardware platforms [6]. Nevertheless, simulation speed, particularly when
requiring accurate timing, remains a major concern.

Source-level approaches are aimed at improving the speed of both functional
and timing simulations. Computation is modeled at the source or Intermediate
Representation (IR) level, which allows a purely functional model to be natively
compiled and executed on a host without having to emulate the functionality of
a target ISA. For fast timing simulation, source-level methods employ a hybrid
approach that combines the functional simulation with an abstract, statically derived
timing model at much coarser program block granularity. This is similar to static
Worst-Case Execution Time (WCET) estimation. However, a key challenge is
enumeration of possible program paths when performing such static analysis at the
whole program level. Source-level approaches avoid or simplify this problem by
constructing a static timing model at finer block-level granularity and driving this
model with block sequences of program paths encountered in the actual functional
simulation. In practice, this is often done by simply back-annotating the timing
model directly into the functional source or IR code. Nevertheless, models can
be separated, and coarse-grain timing models can equally be combined with fast
functional ISS models instead (see also �Chaps. 20, “Precise Software Timing
Simulation Considering Execution Contexts” and � 21, “Timing Models for Fast
Embedded Software Performance Analysis”).

A remaining challenge is that due to pipeline, cache, and other effects, the timing
of a program block is not statically fixed but generally depends on the dynamic
machine state and hence previous program history. Traditional ISSs simulate
detailed interactions with machine state for each encountered instruction. WCET
approaches have to derive conservative bounds based on possible program history.
By contrast, source-level approaches operate at an intermediate level. The functional
simulation allows actual history and state-dependent effects to be accurately tracked.
At the same time, only the relevant state is dynamically simulated while statically
abstracting as many effects as possible. During static pre-characterization, blocks
are analyzed on a target reference model under different possible conditions. Static
timing numbers can then be selected based on the actual context encountered in
simulation. This can provide accurate timing without replaying the same instruction
sequence on the slow timing reference each time the block is executed. However,
this is only possible as long as the possible state space affecting block timing
is small. For dynamic structures with deep history, such as caches or branch
predictors, detailed simulation models that dynamically adjust pre-characterized
block timing can be included. Alternatively, a static average- or worst-case analysis
can be applied. Ultimately, the amount of static analysis versus dynamic simulation
overhead thereby determines the speed and accuracy trade-off in different source-
level models.

A typical flow for generating a source-level timing simulation model is shown
in Fig. 19.2. There are generally three stages in such a framework: (1) binary

600 D. Mueller-Gritschneder and A. Gerstlauer

C Source Code

Frontend
Optimizations

Intermediate Rep.
(IR)

Backend

Binary

Host-
Compiled
(HC) Model

Binary to
Source/IR
Mapping

Program Block
Timing

Characterization

Target
Metrics
Back-

Annotation

Low Level Timing
Reference

Timing Characterization and Annotation

Debugger

Fig. 19.2 Source-level timing characterization and back-annotation

to source/IR mapping, (2) program block timing characterization, and (3) target
metrics back-annotation. During the mapping stage, a relationship between source-
/IR-level code and binary need to be established. This usually includes an accurate
Control-Flow Graph (CFG) mapping to provide insertion points of target profiling
metrics. Additionally, memory accesses also need to be reconstructed in order to
account for cache effects. For timing characterization, target metrics are extracted at
the machine level at a certain granularity as a one-time effort. Finally, execution
statistics are back-annotated into the source/IR model based on the previously
determined relationship. The back-annotated source code can then be directly
compiled and executed on the simulation host machine for fast and accurate software
simulation.

19.2.1 Binary to Source Mapping

The first step in the timing back-annotation flow is to establish a matching between
the CFGs of the target binary and source-level code, which is aimed at ultimately
allowing target metrics to be annotated back into the source-level or IR code at
correct insertion points.

The earliest works estimate and annotate target performance metrics purely
based on source code analysis [4, 14]. Control flow and operation information are
extracted directly at source level, which are further fed into abstract performance
estimators to calculate the corresponding target metrics. These approaches avoid the
mapping issues and provide a fast and approximate profiling strategy for early stage
design space exploration. However, without consulting the corresponding target
binary, such techniques cannot provide precise estimations compared to detailed
characterization of binary blocks on a cycle-level reference model.

19 Host-Compiled Simulation 601

Source Code

22-24

24

Binary

25

26 27

24
29

0x8000

0x8010

0x8020 0x8028

0x802C

0x8034

Fig. 19.3 Matching between source- and binary-level control flow

The challenge when working at the binary level is that, due to aggressive
compiler optimization, CFGs can be significantly changed when source code is
transformed into a binary implementation (Fig. 19.3). Thus, target metrics obtained
for each binary block need to be annotated to a matching source code block such
that numbers are guaranteed to be accounted for correctly when accumulated during
subsequent source-level simulation. Early approaches relied on debug information
alone to perform such a mapping [45]. However, debug information provided
by standard compilers is often unreliable or ambiguous. For example, debug
information often contains no or several source references for the same binary block.
Each of these entries describes a potential relation between a binary and source-level
basic blocks from which a unique mapping still needs to be determined, i.e., the
debug information has to be subject to further analysis steps. These ambiguities and
CFG mismatches are the main issues to be resolved to establish a valid and accurate
mapping.

When targeting back-annotation at the source level, binary to source matching
typically relies on complex structural analysis combined with the use of IR level
and debug information to establish a mapping between the target binary and source
code [24]. Structural analysis is performed on both source level and binary code to
extract loop and control flow dependency characteristics. Along with debug infor-
mation, these structural properties are then used as matching criteria to establish a
tentative CFG mapping. In case of heavily optimized CFGs, advanced approaches
annotate an additional IR level [43] or binary path simulation model [39, 41] to
dynamically cosimulate, track, and reconstruct the actual binary execution flow and
its corresponding accumulated timing. Working at source level benefits from better
readability and convenience with respect to manual adjustments or analysis of the
simulation model. However, it is usually hard to systematically handle the full range
of compiler optimization for general CFG mapping.

602 D. Mueller-Gritschneder and A. Gerstlauer

Other works address these issues by performing back-annotation and simulation
at the IR level. Working at the IR allows typical front-end compiler optimizations
to be taken into account, where the IR provides a much closer representation of the
final control flow. This simplifies the matching problem, i.e., improves accuracy
with little to no penalty in execution speed. Early work [45] only used debug
information to perform the mapping, which is more reliable when working at the
IR level. Nevertheless, even IR and binary control flows do not always match
cleanly due to aggressive compiler backend optimizations. In these cases, similar
to advanced source-level approaches, a path tracking model that replicates the
CFG of the target binary can be extracted during backend code generation for
cosimulation with the IR [3]. However, this adds simulation overhead and requires
detailed backend compiler and/or target ISA information to be available, making
the approach dependent on the estimation target. Alternatively, a mapping can be
established by a simplified structural analysis of both IR and binary CFGs. A general
and fully retargetable approach is proposed in [5], where a synchronized depth-first
traversal of both CFG is performed to identify legal matches based on a control
flow representation using both loop and branch nesting levels. In addition, debug
information is consulted when multiple equally likely matches are possible.

19.2.2 Memory Trace Reconstruction

Caches can have a large effect on overall performance estimation. At the same time,
cache behavior is highly dynamic and strongly depends on the actual sequence
of memory accesses made by the application, which cannot be fully determined
statically during program block characterization. Some approaches employ an
approximate solution by annotating a statistically calculated average or statically
estimated worst-case delay for each memory access [14, 18]. Otherwise, memory
accesses need to be reconstructed during the back-annotation stage with information
from both binary and source code [21, 27, 44]. The source or IR code is thereby
annotated with accurate information about the type and address of each memory
access made by the binary code. Alternatively, approaches that already reconstruct
a binary cosimulation model for path tracking purposes can equally annotate
this model with memory access tracking code obtained from de-compiling the
binary [42]. In either case, back-annotated memory accesses can then feed an
abstract, dynamic cache simulation model that determines additional cache miss
and memory delay penalties to be included during source-level timing simulation
(see Sect. 19.3.3).

Memory access trace reconstruction can be generally decomposed into three
categories: (1) accesses to static and global variables, (2) accesses to stack data,
and (3) accesses to the heap. To reconstruct the addresses of static and global data
accesses, their base addresses and, in case of non-scalars, their access offsets are
required. Base address information of global data can easily be obtained from the
symbol table of the target binary, while access offsets are extracted from analysis of
IR or binary code. A key observation is that, with proper translation of primitive data
types, access offsets in the IR are the same as in the target binary, while only base

19 Host-Compiled Simulation 603

addresses differ. Hence, IR-based approaches can directly obtain such information.
By contrast, reconstructing accurate addresses at the source level requires falling
back to IR or binary analysis.

Different from the global data, stack and heap accesses are more complicated to
back-annotate. Their base addresses change dynamically depending on the local and
global execution context. Tracking such memory accesses requires reconstructing
the target stack/heap layout as well as the dynamic status of the stack pointer
and heap manager during program execution. Thus, abstracted models for stack
pointers and heap allocation are usually inserted into source or IR-level simulations
to capture and track such information dynamically. Together with access offsets
extracted from IR or source code, accurate target stack/heap accesses can then be
reconstructed during simulation time.

19.2.3 Block-Level Timing Characterization

The core step in the back-annotation process is the characterization of block-specific
target metrics. As mentioned above, accurate characterization is complicated by
the fact that target metrics of a program block can be significantly affected by the
dynamic machine state and previous program history. In general, the performance
metrics for a code block are determined by its internal execution paths as well as the
path history of code that has previously executed (Fig. 19.4).

Block_F

Block_G

Block_E

Path E_G_1
Path E_G_2

Path F_G_2
Path F_G_1

Block_C

Block_B

Path B_E
Path C_E

Fig. 19.4 Path dependency of block-level timing characterization

604 D. Mueller-Gritschneder and A. Gerstlauer

Overall speed and accuracy are determined by the granularity of code blocks at
which characterization (and ultimately back-annotation are performed). Approaches
that operate at a coarse function level [4] have to estimate average or worst-case
behavior across all dynamic execution paths taken within each function body as
determined, for example, by a previous profiling run. By contrast, solutions that
annotate timing at the individual statement level [22] suffer from unnecessary
characterization and simulation overhead. Most existing approaches instead work
at a basic block level. Since there is only a single path through a basic block, the
assumption is that its baseline timing can be accurately represented by a single,
statically characterized number.

Machine state and execution history can, however, still significantly affect a
block’s timing. Such effects can be estimated by employing a WCET analysis for
binary timing characterization, which provides an upper bound on the execution
time for each individual basic block either alone or within its larger execution
context [41]. In most cases, however, basic block timing is characterized through
cycle-accurate simulation on a detailed microarchitecture reference model. Pipeline
history effects are taken into account by characterizing each block in sequence
with possible predecessors, such that variations in execution context are accurately
accounted for. The characterization overhead thereby exponentially increases with
the number of possible predecessors and depth of considered execution path history.
Depending on the binary block length and machine pipeline depth, a maximum
number of predecessors that can possibly affect dependencies until they are
guaranteed to have percolated through the pipeline can be dynamically determined
for each block and path [18]. Alternatively, blocks can simply be characterized
through pairwise execution with all of their immediate predecessors, which has been
shown to provide a good trade-off between accuracy and estimation complexity [5].

19.2.4 Back-Annotation

The final step in generating a source-level software simulation model is back-
annotation of characterized timing metrics using previously obtained mapping
information. Metrics gathered during the characterization step are usually recorded
in a mapping table, which is then used for directing the annotation of target metrics
into the IR or source code at correct insertion points.

For a single annotation unit, there are often multiple performance metrics
accounting for path-dependent timing effects. In order to be able to pick up the
correct set of metrics during simulation, the back-annotation process will usually
insert extra data structures to record essential execution history, such as the dynamic
predecessor of currently executing basic block. In this way, the back-annotated
model can reconstruct the binary execution flow and properly accumulate block
execution time along with the annotated points.

To account for dynamic execution characteristics that depend on complex history
behavior, such as branch predictors [8] and caches (see Sect. 19.3.3), the source
code is further augmented with calls to dynamic simulation models of such (micro-)

19 Host-Compiled Simulation 605

architectural structures. In case of caches, this includes annotating the code with
previously reconstructed memory and cache access information. During simulation,
delays can be adjusted according to the corresponding outcomes from such models.
For this purpose, blocks are usually characterized assuming ideal conditions (such as
always-correct branch prediction or perfect caches), where dynamically determined
penalties are added during simulation. This approach is feasible for simpler in-
order processors. By contrast, dynamic tracking of complex interactions between
pipelines and other structures in out-of-order processors requires a significantly
more involved characterization and back-annotation [26]. In all cases, the choice of
annotating static estimates or dynamic simulation models, which incur additional,
in some cases, significant simulation overhead, enables generation of different
models with varying trade-off between simulation speed and accuracy. Furthermore,
such source-level simulation approaches can be extended beyond timing to back-
annotation of other performance, energy, reliability, power, and thermal (PERPT)
metrics [5, 9, 17, 47].

19.3 Host-Compiled OS and Processor Modeling

As described previously, host-compiled simulators extend pure source-level ap-
proaches with fast yet accurate models of the complete software execution en-
vironment. Figure 19.5 shows a typical layered organization of a host-compiled
simulation model [30, 35, 38]. Individual source-level application models that are
annotated with timing and other metrics as described in Sect. 19.2 are converted

OS

Scheduler

Dispatch

Ready
Queue

SLDL Simulation Kernel

Intr.
Handler

Ap
pl

ic
at

io
n

M
od

el

HAL

HW

T1

CH

Intr.
Handler

Intr.
Task

Intr.
Task

OS API

I/O
Drv

O
S

M
od

el
Pr

oc
es

so
r

M
od

el

Periph.

T3T2

I/O IF
Intr. IF

TLM
Communication

Channel

Fig. 19.5 Host-compiled simulation model

606 D. Mueller-Gritschneder and A. Gerstlauer

into tasks running on top of an abstract, canonical OS Application Programming
Interface (API). Tasks are grouped and encapsulated according to a given parti-
tioning to model the multi-threaded application mix running on each processor
of an overall MPSoC. Within each processor, an OS model then provides an
implementation of the OS API to manage tasks and replicate a specific single-
or multi-core scheduling strategy. The OS model itself sits on top of models
of the firmware and drivers forming a Hardware Abstraction Layer (HAL). An
underlying Hardware (HW) layer in turn provides interfaces to external TLMs
of the communication infrastructure (Sect. 19.4). Finally, the complete processor
model is integrated and cosimulated with other system components on top of an
SLDL. The SLDL simulation kernel thereby provides the basic concurrency and
synchronization services for OS, processor, and system modeling.

19.3.1 OS Modeling

An OS model generally emulates scheduling and interleaving of multiple tasks on
one or more cores [11, 12, 16, 23, 28, 31, 46]. It maintains and manages tasks in
a set of internal queues similar to real operating systems. In contrast to porting
and paravirtualizing a real OS to run on top of the modeled HAL, a lightweight
OS model can provide an accurate emulation of real OS behavior with little to
no overhead [35]. Tasks are modeled as parallel simulation threads on top of the
underlying SLDL kernel. The OS model then provides a thin wrapper around
basic SLDL event handling and time management primitives, where SLDL calls
for advancing simulation time, event notification, and wakeup in the application
model are replaced with calls to corresponding OS API methods. This allows the
OS model to suspend, dispatch, and release tasks as necessary on every possible
scheduling event, i.e., whenever there is a potential change in task states. An OS
model will typically also provide a library of higher-level channels built around
basic OS and SLDL primitives to emulate standard application-level Inter-Process
Communication (IPC) mechanisms.

Figure 19.6 shows an example trace of two tasks T0 and T1 running on top
of an OS model emulating a time slice-based round-robin scheduling policy on a
single core [30]. Source-level execution times of tasks are modeled as calls to wait-
for-time methods in the OS API. On each such call, the OS model will advance
the simulated time in the underlying SLDL kernel but will also check whether the
time slice is expired and switch tasks if this is the case. In order to simulate such
a context switch, the OS model suspends and releases tasks on events associated
with each task thread at the SLDL level. Overall, the OS model ensures that at any
simulated time, only one task is active in the simulation. Note that this is different
from scheduling performed in the SLDL kernel itself. Depending on available host
resources, the SLDL kernel may serialize simulation threads in physical time. By
contrast, the OS model serializes tasks in the simulated world, i.e., in logical time.

Within an isolated set of tasks on a core, this approach allows OS models
to accurately replicate software timing behavior for arbitrary scheduling policies.

19 Host-Compiled Simulation 607

5 ns

10 ns

os.wait(5 ns)

os.wait(5 ns)

os.wait(5 ns)

os.wait(5 ns)

...

...

...

..

0 ns
Advance

time

Simulation
Time

Simulation
kernel trace

OS
Model

15 ns

T0T1

Fig. 19.6 Example of OS model trace

Preemption Error

Time

τhigh

τ low

rh,1 h,1 h,2 h,2f r tn f

Response Time Error

Fig. 19.7 Inherent preemption inaccuracies in discrete OS models

However, the discrete nature of such models introduces inherent inaccuracies in
the presence of asynchronous scheduling events, such as task releases triggered
by external interrupts or by events originating on other cores. Since the OS model
advances (simulated) time only in discrete steps, it will not be able to react to such
events immediately. Figure 19.7 shows an example of a low-priority task �low being
preempted by a high-priority task �high triggered externally. In reality, the high-
priority task is released at time rh;2. In the simulation, however, the OS model is
not able to perform the corresponding task switch until the next simulation step is
reached at time tn. This results in a corresponding preemption and response time
error for both tasks (with �low potentially finishing too early).

As shown in the example of Fig. 19.7, the preemption error is generally upper
bounded by the maximum timing granularity. By contrast, it can be shown that
response time errors can potentially become much larger than the time steps
themselves [33]. This is, for example, the case if �low in Fig. 19.7 finishes too early
but should have been preempted and delayed by a very long running �high. This
can be a serious problem for evaluation of real-time system guarantees. Adjusting

608 D. Mueller-Gritschneder and A. Gerstlauer

the timing granularity does not generally help to improve the maximum simulation
error. Nevertheless, decreasing the granularity will reduce the likelihood of such
large errors occurring, i.e., will improve average simulation accuracy.

At the same time, the timing granularity also influences simulation speed. A
fine granularity allows the model to react quickly but increases the number of time
steps, context switches and hence overhead in the simulator. Several approaches
have been proposed to overcome this general trade-off and provide a fast coarse-
grain simulation while maintaining high accuracy. Existing approaches are either
optimistic [37] or conservative [32]. In optimistic solutions, a lower-priority task
is speculatively simulated at maximum granularity assuming no preemption will
occur. If a preemption occurs while the task is running, the higher-priority task
is released concurrently at its correct time. In parallel, all disturbing influences
are recorded and later used to correct the finish time of the low-priority task(s).
Such an approach has also been used to model preemptive behavior in other
contexts, such as in TLMs of busses with priority-based arbitration [36] (see also
Sect. 19.4.2). Note that unless a full rollback is possible in the simulator, optimistic
approaches cannot guarantee an accurate order of all task events and interactions,
such as shared variable accesses. By contrast, in conservative approaches, at any
scheduling event, the closest possible preemption point is predicted to select a
maximum granularity not larger than that. If no prediction is possible, the model
falls back onto a fine default granularity or a kernel mechanism that allows
for coarse time advances with asynchronous interruptions by known external
events. Conservative approaches, by their nature, always maintain the correct
task order. In both optimistic and conservative approaches, the OS model will
automatically, dynamically, and optimally accumulate or divide application-defined
task delays to match the desired granularity. This allows the model to internally
define a granularity that is independent from the granularity of the source-level
timing annotations. Furthermore, both types of approaches are able to completely
avoid preemption errors and associated issues with providing worst-case guaran-
tees.

19.3.2 Processor Modeling

Host-compiled processor models extend OS models with accurate representations
of drivers, interrupt handling chains, and integrated hardware components, such
as caches and TLM bus interfaces [2, 10, 15, 38]. Specifically, accurate models of
interrupt handling effects can contribute significantly to overall timing behavior and
hence accuracy [35].

The software side of interrupt handling chains is typically modeled as special,
high-priority interrupt handler tasks within the OS model [46]. On the hardware
side, models of external generic interrupt controllers (GICs) interact with interrupt
logic in the processor model’s hardware layer. The OS model is notified to suspend
the currently running task and switch to a handler whenever an interrupt for a
specific core is detected. At that point, the handler becomes a regular OS task,

19 Host-Compiled Simulation 609

which can in turn notify and release other interrupt or user tasks. By back-annotating
interrupt handlers and tasks with appropriate timing estimates, an accurate model of
interrupt handling delays and their performance impact can be constructed.

An example trace for a complete host-compiled simulation of two task sets with
three tasks each running on a dual-core platform is shown in Fig. 19.8 [30]. Task
sets are mapped to run on separate cores, and the highest priority tasks are modeled
as periodic. All interrupts are assigned to Core0. The trace shows a conservative
OS model using dynamic prediction of preemptions. The model is in a fine-grain
fallback mode whenever there is a higher-priority task or handler waiting for an
unpredictable external event. In all other cases, the model switches to a predictive
mode using accumulation of delays. Note that high-priority interrupt handlers and
tasks are only considered for determining the mode if any schedulable tasks is
waiting for the interrupt. This allows the model to remain in predictive mode for the
majority of time. Handlers and tasks themselves can experience large errors during
those times. However, under the assumption that they are generally short and given
that no regular task can be waiting, accuracy losses will be small.

When applied to simulation of multi-threaded, software-only Posix task sets on a
single-, dual-, and quad-core ARM-Linux platform, results show that host-compiled
OS and processor models can achieve average simulation speeds of 3,500 MIPS with
less than 0.5% error in task response times [35]. When integrating processor models
into a SystemC-based virtual platform of a complete audio/video MPSoC, more
than 99% accuracy in frame delays is maintained. For some cases, up to 50% of the
simulated delays and hence accuracy is attributed to accurately modeling the Linux
interrupt handling overhead. Simulation speeds, however, drop to 1,400 MIPS. This
is due to the additional overhead for cosimulation of HW/SW interactions through
the communication infrastructure. Methods for improving performance of such
communication models will be discussed in Sect. 19.4.

19.3.3 Cache Modeling

Next to external communication and synchronization interfaces, a host-compiled
processor simulator will generally incorporate timing models for other dynamic
aspects of the hardware architecture. Specifically, timing effects of caches and
memory hierarchies are hard to capture accurately as part of a static source-level
back-annotation. Hit/miss rates and associated delay penalties depend heavily on
the execution history and the specific task interactions seen by the processor.
To accurately model such dynamic effects, a behavioral cache simulation can be
included [25, 27, 42, 44].

As described in Sect. 19.2, the source level can be annotated to re-create accurate
memory access traces during simulation. Such task-by-task traces can in turn drive
an abstract cache model that tracks history and hit/miss behavior for each access.
Resulting penalties can then be used to dynamically update source-level timing
annotations. Note that cache models only need to track the cache state in terms
of line occupancy. The data itself is natively handled within the simulation host.

610 D. Mueller-Gritschneder and A. Gerstlauer

G
IC

G
IC

In
tr

B
In

tr
H

1

IR
Q

1

IF

O
S

La
ye

r
H

AL
La

ye
r

H
W

A

H
W

La
ye

r

IR
Q

0

t 1 t 3 t 5 t 6t 0 t 2 t 4

T h
In

tr
A

T m
T l

T h
T m

T l
In

tr
H

0

IR
Q

0

IF

Co
re

0
Co

re
1

Fa
llb

ac
k

m
od

e

Pr
ed

ic
tiv

e
m

od
e

Bl
oc

ke
d

by
an

ev
en

t

IN
T A

IN
T BH

W
B

IR
Q

0

Fi
g

.
1

9
.8

H
os

t-
co

m
pi

le
d

si
m

ul
at

io
n

tr
ac

e

19 Host-Compiled Simulation 611

When combined with an OS model, such an approach allows for accurate
modeling of cache pollution and interference among different tasks. A particular
challenge emerges, however, when multiple cores can interfere through a shared
cache. A cache model can accurately track shared state, including coherency effects
across multiple cache levels, as long as individual core models issue cache accesses
in the correct global order. As mentioned above (Sect. 19.3.2), this is generally not
the case in a coarse-grain, temporally decoupled simulation. Cores may produce
outgoing events ahead of each other, and, as a result, multiple cores may commit
their accesses to the cache globally out-of-order. At the same time, from a speed
perspective, it is not feasible to decrease granularity to a point where each memory
access is synchronized to the correct global time.

Several solutions have been proposed to tackle this issue and provide a fast
yet accurate multi-core out-of-order cache (MOOC) simulation in the presence of
temporal decoupling [34, 40]. The general approach is to first collect individual
accesses from each core including accurate local time stamps. Later, once a
certain threshold is reached, accesses are reordered and committed to the cache
in their globally correct sequence. Figure 19.9 illustrates this concept [34]. In
this approach, both cores first send accesses to a core-specific list maintained in
the cache model. After each time advance, cores notify the cache to synchronize
and commit all accesses collected up to the current time. It is thereby guaranteed
that all other cores have advanced and produced events up to at least the same
time.

An added complication are task preemptions [30]. Since cores and tasks can
run ahead of time, a task may generate accesses that would otherwise not have

Core2
Local Time

Core1
Local Time

Simulation
Time

1

10

Sync(20)

wait(12)

wait(20) 12

20

Core1
Accesses

Core2
Accesses

Cache
Channel

(Addr2, ts2)
(Addr1, ts1)

(Addr3, ts3)

Sync(12)

(Addr4, ts4)

(Addr5, ts5)

2

12

20

Reordering
& Commit

Reordering
& Commit

0

Fig. 19.9 Multi-core out-of-order cache simulation trace

612 D. Mueller-Gritschneder and A. Gerstlauer

been issued until after a possible preemption is completed. This requires access
reordering to be tightly integrated with the OS model. By maintaining task-specific
access lists in the OS model instead of the cache, the OS can adjust remaining
time stamps by the duration of the preemption whenever such a preemption occurs.
Overall, such an approach can maintain 100% accuracy of cache accesses at the
speed of a fully decoupled simulation.

In other approaches, the cache model is moved outside of the processor to
become part of the TLM backplane itself [40]. In this case, the cache is accessed via
regular bus transactions, and all of the reordering is relegated to a so-called quantum
giver within a temporally decoupled TLM simulation (see Sect. 19.4.3). Note that
this still requires OS model support to generate accurate transaction time stamps
in the presence of preemptions. Similar reordering techniques can then also be
applied to other shared resources, such as busses, as will be shown in the following
sections.

19.4 TLM Communication for Host-Compiled Simulation

Embedded and integrated systems are comprised of many communicating compo-
nents as we move toward embedded multi-core processors. Fast simulation requires
advanced communication models at transaction level. Usually, scheduling events of
the simulation kernel are closely coupled to the communication events. For high-
speed virtual prototyping, usually the blocking transaction style, called loosely-
timed TLM in SystemC [1], is applied. Blocking transactions can be synchronized
to the global simulation time at each accessed module. As many communication
resources such as busses or target (slave) modules are shared between initiator
(masters) modules, accurate models additionally schedule an arbitration event at
each arbitration cycle.

Novel works have shown that these requirements can be usually relaxed to
improve simulation speed. These works either raise the abstraction of the communi-
cation, e.g., a single simulated block transaction represents a set of bus transactions
performed by the HW/SW system, or apply TD. TD implies that initiators perform
accesses, which are located in the future with respect to the current global simulation
time. This leads to several challenges, as discussed in Sect. 19.1.3. An overview of
selected communication models is given in the following.

19.4.1 TD with No Conflict Handling

The TLM-2.0 standard offers the Quantum Keeper. The TLM-2.0 Quantum Keeper
provides a global upper bound to the local time offset. The Quantum Keeper is
easily applicable to realize temporal decoupling. It offers no standard way to handle
data dependencies or resource conflicts. Shared variables have to be protected
by additional synchronization methods. Figure 19.10a shows a message diagram
for an example. We assume blocking TLM communication style indicated by the

19 Host-Compiled Simulation 613

Shared Bus TargetInitiator I1 Global Simulation Time

Quantum = 100ns

Local time
b_transport(t,30ns)

Call b_transport(t,40ns)

Call

b_transport(t,50ns)

Returnb_transport(t,60ns)
120ns

Call

b_transport(t,10ns)

Call

b_transport(t,20ns)

b_transport(t,30ns)

Return

Return

b_transport(t,40ns)

140ns 170ns

130ns 160ns

200ns

wait(90ns)

130ns

140ns

150ns

210ns

220ns
wait(120ns)

Global Simulation Time

a

b

140ns

110ns

150ns

160ns

170ns

Initiator I2

160ns

I2

I1

Shared Bus

Shared Bus

Quantum boundaryQuantum boundary

210ns120ns

220ns100ns 110ns

Fig. 19.10 Temporal decoupling with Quantum Keeper

b_transport function. The b_transport function propagates as its argument of the
offset between the local simulation time and the global simulation time. Both
initiators are only executed once per quantum until their local time exceeds the next
quantum boundary. The communication is out-of-order. Transaction of initiator I1 to
the shared bus starts at 140 ns, yet it is executed before the transaction of I2 starting
at 130 ns. Additionally, the transactions concurently access the shared bus as shown
in Fig. 19.10b, which would lead to arbitration. Yet, I1 can finish its transaction
without conflict delay because the transaction of I2 was not yet known at the shared
bus. Simulation speed is highest, but communication timing is optimistic, and out-
of-order accesses may lead to incorrect simulation results. Thus, several methods
for using system knowledge for improving accuracy in TLM communication using
TD were proposed, which are presented in the following.

19.4.2 TD with Conflict Handling at Transaction Boundaries

In [29, 36], the additional delay due to resource conflicts are resolved at the
transaction boundaries. At the start of a transaction, the communication state is
inspected in [36]. If a higher-priority transaction is ongoing, the end time of the
considered transaction is computed accordingly. Yet, still an optimistic end time is
computed at the beginning of a transaction because future conflicting transactions
are not considered. When the end time of the transaction is reached, additional delay
due to other conflicting transaction is retroactively added. In the case of [36], another

614 D. Mueller-Gritschneder and A. Gerstlauer

Shared Bus TargetInitiator I1 Initiator I2

Call
b_transport(t,0ns)

Call Return

b_transport(t,30ns)

b_transport(t,20ns)

wait(40ns) b_transport(t,40ns)

b_transport(t,0ns)
Call

Return
b_transport(t,10ns)

b_transport(t,20ns)
Call

b_transport(t,30ns)

Return

wait(30ns)

100ns

b_transport(t,0ns)
Call

Return
b_transport(t,10ns)

b_transport(t,20ns)
Call

b_transport(t,30ns)

Return

wait(30ns)

Global Simulation Time

100ns

120ns

I1

I2

Shared BusShared Bus

130ns

160ns

a

b

Conflict: +30ns
wait(30ns)

Conflict: +10ns

Correct for ongoing accesses at transaction start
Correct for later high−priority accesses at transaction end

130ns
120ns 160ns 190ns

Shared Bus

Fig. 19.11 Handling conflicts at transaction boundaries

wait is issued to account for the additional delay, but intelligent event re-notification
could also be applied. The method needs minimally one context switch (single call
to wait()) per transaction. An example is shown in Fig. 19.11 with I1 having higher
priority on the shared bus. The transaction of I2 is delayed during execution due to
the conflict with the first transaction of I1. As I1 issues another transaction, the delay
for I2 is adapted with another call to wait to consider the second conflict. In [29], a
similar approach is presented that handles conflicts at the transaction boundaries. It
additionally combines several atomic transactions into block transactions. If these
block transactions get preempted, the transactions are split to assure that the order
of data accesses is preserved.

19.4.3 TD with Conflict Handling at Quantum Boundaries

With the Quantum Giver [40], each initiator can issue multiple transactions until
its individual local quantum is exceeded during the so-called simulation phase. All
transactions in one quantum are executed instantaneously but use time stamping
to record their start times. After the quantum is reached, the initiator informs
a central timing manager, the so-called Quantum Giver, and waits for an end
event. During the scheduling phase, the Quantum Giver retroactively orders all
transactions according to their time stamps. It computes the delays due resource

19 Host-Compiled Simulation 615

Shared Bus TargetInitiator I1 Initiator I2

b_transport(t,0ns)
Call

Return
b_transport(t,10ns)

b_transport(t,20ns)
Call

b_transport(t,30ns)

Return

Global Simulation Timea

b

100ns

Call
ReturnCall

Return

Call
b_transport(t,0ns)

Call Return

b_transport(t,30ns)

b_transport(t,20ns)

wait(40ns) b_transport(t,40ns)

120ns

b_transport(t,30ns)
b_transport(t,40ns)

b_transport(t,50ns)
b_transport(t,60ns)

Return

wait(60ns)

100ns
I1

I2

Shared BusShared Bus

130ns
120ns

160ns

Global Simulation Time

Scheduling Phase

Shared Bus

190ns100ns
I1

I2

Shared BusShared Bus

130ns
120ns

Shared Bus

160ns

Global Simulation Time

Simulation Phase

Fig. 19.12 Handling conflicts with Quantum Giver

conflicts and resolves all dependencies. According to the conflicts, the end event
of each initiator is notified at the correct time. Finally, the quantum of each
initiator is adjusted for the next simulation phase. The concept is illustrated in
Fig. 19.12. During the simulation phase, transaction on the shared bus still overlap.
The resulting delays are computed in the scheduling phase by traversing the list of
transaction ordered by their starting time. The method also considers that conflicts
on different shared resources might have impact on each other. This method targets
fast simulation with temporal decoupling. Only a single context switch is required
in each quantum, which may include several transactions. Yet, the transactions
are executed immediately; thus, out-of-order accesses to shared variables must
be avoided with additional synchronization guards. In [13], Advanced Temporal
Decoupling (ATD) is presented. It applies TD but is a conservative approach that
preserves access order. The initiators may advance their local time until they meet
an inbound data dependency, e.g., a read on a shared variable. All write transactions
performed on shared data are buffered by an additional communication layer. After
all initiators have completed execution, the transactions are ordered, and the write
transactions are completed according to their start time together with pending read
transactions. This preserves the correct access order. So-called Temporal Decoupled
Semaphores handle resource conflicts and compute arbitration delays. The ATD
communication model is implemented in a transparent TLM (TTLM) library, which
hides the implementation details from the model developer.

616 D. Mueller-Gritschneder and A. Gerstlauer

19.4.4 Abstract TLMC with Conflict Handling at SW Boundaries

TLM+ is a SW-centric communication model for processors, which can only be
applied for host-compiled SW simulation [7]. It not only applies TD but raises
the abstraction of communication. Usually a driver function does not transfer a
single data item but a range of control values together with a possible block of
data. Execution of a driver function involves a complete set of bus transactions
from the processor. This set of bus transactions is abstracted into a single TLM+
block transaction. The HW/SW interface is adapted in the host-compiled simulation.
The software could, thus, not simulate on an ISS. Conflicts at shared resources
are handled by a central timing manager, the so-called resource model. In order
to give good estimates on the delay due to conflicts, the resource model requires
to save a communication profile of the original driver function [19]. This profile
allows to extract a demand for communication resources. Usually, a driver function
would not block a shared bus completely. Accesses of different cores accessing
other modules would interleave, as driver functions are executed concurrently. Yet
both cores may suffer from additional delays due to arbitration conflicts. Analytic
demand-availability estimators inside the resource model can be used to estimate
these delays [20].

The scheduling is conducted by the resource model at the transaction boundaries.
These boundaries then correspond to the entry and exit to the respective software
driver function. The concept is illustrated in Fig. 19.13. Initiator I1 first executes a
block transaction trigged by the execution of a driver function. At a later point, I2
starts its block transaction. I1 has higher priority; therefore, I2 is scheduled to take
longer as it has not the full resource availability on the shared bus. When the block
transaction of I1 finishes, I2 is not subject to further high-priority traffic blocking
its bus accesses. Its end time is rescheduled to an earlier end time. This is done by
event re-notification, which leads to a single call to wait() for each block transaction.

Shared Bus TargetInitiator I1a

b

Global Simulation Time

110ns

100ns

I1

110ns

Shared Bus

Shared Bus

100ns

ev2

ev1

Rescheduling of event ev2

wait(ev2)

data block

data block

Initiator I2

I2

wait(ev1)
reschedule(ev2)

reschedule(ev2)

ev2

ev2

Global Simulation Time

Fig. 19.13 Handling conflicts in TLM+

19 Host-Compiled Simulation 617

TLM+ targets very high abstraction and faster simulation compared to the other
TLM communication methods. Yet, it does not execute the original SW because the
driver functions are replaced by abstract TLM+ counterparts.

19.5 Summary and Conclusions

With time to market shrinking day by day, developing fast and accurate models
is no more a luxury or good-to-have-methodology. It is essential for companies to
invest in making software models for meeting their time to market. However, the
fastest model is not a good model if it does not accurately match or predict the
final design reality. Therefore, new methods are required that enable efficient but
accurate simulation of HW/SW systems. Next-generation virtual prototypes based
on host-compiled software simulation can provide such ultra-fast yet highly accurate
modeling solutions.

Acknowledgments The authors acknowledge Oliver Bringmann, Wolfgang Müller, and Zhuoran
Zhao for their contributions in Sects. 19.2 and 19.3.

References

1. 1666–2011 – IEEE standard for standard SystemC language reference manual (2012)
2. Bouchhima A, Bacivarov I, Youssef W, Bonaciu M, Jerraya A (2005) Using abstract CPU

subsystem simulation model for high level HW/SW architecture exploration. In: Proceedings
of the Asia and South Pacific design automation conference (ASPDAC)

3. Bouchhima A, Gerin P, Petrot F (2009) Automatic instrumentation of embedded software for
high level hardware/software co-simulation. In: Proceedings of the Asia and South Pacific
design automation conference (ASPDAC)

4. Cai L, Gerstlauer A, Gajski D (2004) Retargetable profiling for rapid, early system-level design
space exploration. In: Proceedings of the 41st annual conference on design automation. ACM,
San Diego, pp 281–286. doi:10.1145/996566.996651. http://portal.acm.org/citation.cfm?id=
996566.996651

5. Chakravarty S, Zhao Z, Gerstlauer A (2013) Automated, retargetable back-annotation for host
compiled performance and power modeling. In: Proceedings of the international conference on
hardware/software codesign and system synthesis (CODES+ISSS)

6. Chiou D, Sunwoo D, Kim J, Patil NA, Reinhart W, Johnson DE, Keefe J, Angepat H
(2007) FPGA-accelerated simulation technologies (FAST): fast, full-system, cycle-accurate
simulators. In: Proceedings of the international symposium on microarchitecture (MICRO)

7. Ecker W, Esen V, Schwencker R, Steininger T, Velten M (2010) TLM+ modeling of embedded
hw/sw systems. In: Design, automation test in Europe conference exhibition (DATE), pp 75–80

8. Faravelon A, Fournel N, Petrot F (2015) Fast and accurate branch predictor simulation. In:
Proceedings of the design automation and test in Europe conference. ACM, pp 317–320

9. Gandhi D, Gerstlauer A, John L (2014) FastSpot: host-compiled thermal estimation for early
design space exploration. In: Proceedings of the international symposium on quality electronic
design (ISQED)

10. Gerin P, Shen H, Chureau A, Bouchhima A, Jerraya A (2007) Flexible and executable
hardware/software interface modeling for multiprocessor SoC design using SystemC. In:
Proceedings of the Asia and South Pacific design automation conference (ASPDAC)

http://dx.doi.org/10.1145/996566.996651
http://portal.acm.org/citation.cfm?id=996566.996651
http://portal.acm.org/citation.cfm?id=996566.996651

618 D. Mueller-Gritschneder and A. Gerstlauer

11. Gerstlauer A, Yu H, Gajski D (2003) RTOS modeling for system level design. In: Proceedings
of the design, automation and test in Europe (DATE) conference

12. He Z, Mok A, Peng C (2005) Timed RTOS modeling for embedded system design. In:
Proceedings of the real time and embedded technology and applications symposium (RTAS)

13. Hufnagel S (2014) Towards the efficient creation of accurate and high-performance virtual
prototypes. Ph.D. thesis. https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3892

14. Hwang Y, Abdi S, Gajski D (2008) Cycle-approximate retargetable performance estimation
at the transaction level. In: Proceedings of the design, automation and test in Europe (DATE)
conference

15. Kempf T, Dorper M, Leupers R, Ascheid G, Meyr H, Kogel T, Vanthournout B (2005) A
modular simulation framework for spatial and temporal task mapping onto multi-processor
SoC platforms. In: Proceedings of the design, automation and test in Europe (DATE)
conference

16. Le Moigne R, Pasquier O, Calvez JP (2004) A generic RTOS model for real-time systems
simulation with SystemC. In: Proceedings of the design, automation and test in Europe (DATE)
conference

17. Lee CM, Chen CK, Tsay RS (2013) A basic-block power annotation approach for fast and
accurate embedded software power estimation. In: Proceedings of the international conference
on very large scale integration (VLSI-SoC)

18. Lin KL, Lo CK, Tsay RS (2010) Source-level timing annotation for fast and accurate
TLM computation model generation. In: Proceedings of the Asia and South Pacific design
automation conference (ASPDAC)

19. Lu K, Muller-Gritschneder D, Schlichtmann U (2012) Accurately timed transaction level
models for virtual prototyping at high abstraction level. In: Design, automation test in Europe
conference exhibition (DATE), pp 135–140

20. Lu K, Muller-Gritschneder D, Schlichtmann U (2013) Analytical timing estimation for
temporally decoupled tlms considering resource conflicts. In: Design, automation test in
Europe conference exhibition (DATE), pp 1161–1166

21. Lu K, Muller-Gritschneder D, Schlichtmann U (2013) Memory access reconstruction based
on memory allocation mechanism for source-level simulation of embedded software. In:
Proceedings of the Asia and South Pacific design automation conference (ASP-DAC)

22. Meyerowitz T, Sangiovanni-Vincentelli A, Sauermann M, Langen D (2008) Source-level
timing annotation and simulation for a heterogeneous multiprocessor. In: Proceedings of the
design, automation and test in Europe (DATE) conference

23. Miramond B, Huck E, Verdier F, Benkhelifa MEA, Granado B, Aichouch M, Prevotet JC,
Chillet D, Pillement S, Lefebvre T, Oliva Y (2009) OveRSoC: a framework for the exploration
of RTOS for RSoC platforms. Int J Reconfig Comput 2009(450607):1–18

24. Mueller-Gritschneder D, Lu K, Schlichtmann U (2011) Control-flow-driven source level timing
annotation for embedded software models on transaction level. In: EUROMICRO conference
on digital system design (DSD)

25. Pedram A, Craven D, Gerstlauer A (2009) Modeling cache effects at the transaction level. In:
Proceedings of the international embedded systems symposium (IESS)

26. Plyaskin R, Wild T, Herkersdorf A (2012) System-level software performance simulation
considering out-of-order processor execution. In: 2012 international symposium on system on
chip (SoC)

27. Posadas H, Díaz L, Villar E (2011) Fast data-cache modeling for native co-simulation. In:
Proceeding of the Asia and South Pacific design automation conference (ASPDAC)

28. Posadas H, Damez JA, Villar E, Blasco F, Escuder F (2005) RTOS modeling in SystemC for
real-time embedded SW simulation: a POSIX model. Des Autom Embed Syst 10(4):209–227

29. Radetzki M, Khaligh R (2008) Accuracy-adaptive simulation of transaction level models. In:
Design, automation and test in Europe, DATE’08, pp 788–791

30. Razaghi P (2014) Dynamic time management for improved accuracy and speed in host-
compiled multi-core platform models. Ph.D. thesis, The University of Texas at Austin

https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3892

19 Host-Compiled Simulation 619

31. Razaghi P, Gerstlauer A (2011) Host-compiled multicore RTOS simulator for embedded real-
time software development. In: Proceedings of the design, automation test in Europe (DATE)
conference

32. Razaghi P, Gerstlauer A (2012) Automatic timing granularity adjustment for host-compiled
software simulation. In: Proceedings of the Asia and South Pacific design automation
conference (ASPDAC)

33. Razaghi P, Gerstlauer A (2012) Predictive OS modeling for host-compiled simulation of
periodic real-time task sets. IEEE Embed Syst Lett (ESL) 4(1):5–8

34. Razaghi P, Gerstlauer A (2013) Multi-core cache hierarchy modeling for host-compiled
performance simulation. In: Proceedings of the electronic system level synthesis conference
(ESLsyn)

35. Razaghi P, Gerstlauer A (2014) Host-compiled multi-core system simulation for early real-
time performance evaluation. ACM Trans Embed Comput Syst (TECS) 13(5s). http://dl.acm.
org/citation.cfm?id=2660459.2678020

36. Schirner G, Dömer R (2007) Result oriented modeling a novel technique for fast and accurate
TLM. IEEE Trans Comput Aided Des Integr Circuits Syst (TCAD) 26(9):1688–1699

37. Schirner G, Dömer R (2008) Introducing preemptive scheduling in abstract RTOS models
using result oriented modeling. In: Proceedings of the design, automation and test in Europe
(DATE) conference

38. Schirner G, Gerstlauer A, Dömer R (2010) Fast and accurate processor models for efficient
MPSoC design. ACM Trans Des Autom Electron Syst (TODAES) 15(2):10:1–10:26

39. Stattelmann S, Bringmann O, Rosenstiel W (2011) Dominator homomorphism based code
matching for source-level simulation of embedded software. In: Proceedings of the seventh
IEEE/ACM/IFIP international conference on hardware/software codesign and system synthesis

40. Stattelmann S, Bringmann O, Rosenstiel W (2011) Fast and accurate resource conflict
simulation for performance analysis of multi-core systems. In: Design, automation test in
Europe conference exhibition (DATE), 2011

41. Stattelmann S, Bringmann O, Rosenstiel W (2011) Fast and accurate source-level simulation
of software timing considering complex code optimizations. In: 2011 48th ACM/EDAC/IEEE
design automation conference (DAC)

42. Stattelmann S, Gebhard G, Cullmann C, Bringmann O, Rosenstiel W (2012) Hybrid source-
level simulation of data caches using abstract cache models. In: Proceedings of the design,
automation test in Europe (DATE) conference

43. Wang Z, Henkel J (2012) Accurate source-level simulation of embedded software with respect
to compiler optimizations. In: Proceedings of the design, automation test in Europe (DATE)
conference

44. Wang Z, Henkel J (2013) Fast and accurate cache modeling in source-level simulation of
embedded software. In: Design, automation test in Europe conference exhibition (DATE),
pp 587–592. doi:10.7873/DATE.2013.129

45. Wang Z, Herkersdorf A (2009) An efficient approach for system-level timing simulation of
compiler-optimized embedded software. In: Proceedings of the design automation conference
(DAC)

46. Zabel H, Müller W, Gerstlauer A (2009) Accurate RTOS modeling and analysis with SystemC.
In: Ecker W, Müller W, Dömer R (eds) Hardware-dependent software: principles and practice.
Springer, Berlin

47. Zhao Z, Gerstlauer A, John LK (2017) Source-level performance, energy, reliability, power
and thermal (PERPT) simulation. IEEE Trans Comput Aided Des Integr Circuits Syst (TCAD)
36(2):299–312

http://dl.acm.org/citation.cfm?id=2660459.2678020
http://dl.acm.org/citation.cfm?id=2660459.2678020
http://dx.doi.org/10.7873/DATE.2013.129

20Precise Software Timing Simulation
Considering Execution Contexts

Oliver Bringmann, Sebastian Ottlik, and Alexander Viehl

Abstract

Context-sensitive software timing simulation enables a precise approximation of
software timing at a high simulation speed. The number of cycles required to
execute a sequence of instructions depends on the state of the microarchitecture
prior to the execution of that sequence, which in turn heavily depends on the
preceding instructions. This is exploited in context-sensitive timing simulation by
selecting one of multiple pre-calculated cycle counts for an instruction sequence
based on the control flow leading to a particular execution of the sequence. In this
chapter, we give an overview of this concept and present our context-sensitive
simulation framework. Experimental results demonstrate that our framework
enables an accurate and fast timing simulation for software executing on current
commercial embedded processors with complex high-performance microarchi-
tectures without any slow, explicit modeling of components such as caches
during simulation.

Acronyms

BB Basic Block
BLS Binary-Level Simulation
CFG Control-Flow Graph
DSE Design Space Exploration
FPGA Field-Programmable Gate Array
ICFG Interprocedural Control-Flow Graph

O. Bringmann (�)
Wilhelm-Schickard-Institut, University of Tübingen, Tübingen, Germany

Embedded Systems, University of Tübingen, Tübingen, Germany
e-mail: oliver.bringmann@uni-tuebingen.de

S. Ottlik • A. Viehl
Microelectronic System Design, FZI Research Center for Information Technology, Karlsruhe,
Germany
e-mail: ottlik@fzi.de; viehl@fzi.de

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_21

621

mailto:oliver.bringmann@uni-tuebingen.de
mailto:ottlik@fzi.de
mailto:viehl@fzi.de

622 O. Bringmann et al.

MIPS Million Instructions Per Second
PSTC Path Segment Timing Characterization
RTL Register Transfer Level
SIMD Single Instruction, Multiple Data
SLS Source-Level Simulation
TDB Timing Database
VIVU Virtual Inlining and Virtual Unrolling
WCET Worst-Case Execution Time

Contents

20.1 Introduction . 622
20.2 Context-Sensitive Simulation Fundamentals . 623

20.2.1 Basic Idea of Context-Sensitive Simulation . 623
20.2.2 Control-Flow Graphs . 626
20.2.3 Context Mappings . 626
20.2.4 Related Work . 630
20.2.5 Challenges in Context-Sensitive Simulation . 630

20.3 Context-Sensitive Simulation Framework . 632
20.3.1 Timing Database Contents . 633
20.3.2 Timing Database Generation . 635
20.3.3 Simulation . 638

20.4 Experimental Results . 641
20.4.1 Benchmarks . 642
20.4.2 Case Studies . 646

20.5 Discussion . 648
20.5.1 Advantages . 648
20.5.2 Limitations . 649

20.6 Conclusions . 649
References . 650

20.1 Introduction

Hardware/software cosimulation is an essential tool during the codesign process. In
principle, well-known techniques such as Register Transfer Level (RTL) simulation
could be used to create simulations that provide a level of detail (e.g., cycle-by-
cycle exact timing) that is sufficient for most purposes. However, the low simulation
performance makes them impractical in many scenarios while this level of detail
is unnecessary for many use cases. For example, a developer analyzing software
performance is likely not directly interested in the contents of the branch history
table of the processor, but only indirectly in its influence on the time required to
execute a particular function. A simulation used by this developer does not need to
simulate the branch history table if it can still accurately approximate its influence
on performance. Therefore, simulation performance can be improved by raising the
abstraction level, if a reasonable accuracy can be maintained.

In this chapter, we discuss an approach that is capable of accurately approximat-
ing the timing influence of the full microarchitecture, yet at the same time allows

20 Precise Software Timing Simulation Considering Execution Contexts 623

for a highly efficient simulation as no components of the microarchitecture are
explicitly simulated. This is achieved by preestimating target code instruction block
timings in a Path Segment Timing Characterization (PSTC). For each block, timings
are differentiated by the execution paths and thus the instructions executed before
a particular execution of the block. So-called contexts serve as an abstraction of
these paths. Context essentially enable an approximate consideration of the different
possible states of the microarchitecture before and its impact on the execution time
of a particular block execution. We implemented this approach in a highly flexible
framework that support both static and dynamic methods for the PSTC. Results are
stored in a common format, the so-called Timing Database (TDB). We integrated
our timing simulation with QEMU [3], a fast functional simulator for binary code,
which enables us to support a wide range of commercially embedded processors.

This chapter is organized as follows: In Sect. 20.2 we introduce fundamental
concepts of context-sensitive timing simulation and give an overview of the current
state of the art. In Sect. 20.3 we present our simulation framework and detail the
main aspects of the context-sensitive timing simulation. Experimental results are
presented in Sect. 20.4. A discussion of our main findings is provided in Sect. 20.5.
This chapter is concluded in Sect. 20.6.

20.2 Context-Sensitive Simulation Fundamentals

In this section we first introduce the basic idea of context-sensitive timing simulation
in Sect. 20.2.1. The necessary background on control-flow graphs and context
mappings is introduced in Sects. 20.2.2 and 20.2.3. Related work is summarized
in Sect. 20.2.4. We discuss various challenges that must be handled by context-
sensitive simulation approaches in Sect. 20.2.5.

20.2.1 Basic Idea of Context-Sensitive Simulation

Binary-Level Simulation (BLS) and Source-Level Simulation (SLS), which are,
respectively, discussed in �Chaps. 18, “Multiprocessor System-on-Chip Prototyp-
ing Using Dynamic Binary Translation” and � 19, “Host-Compiled Simulation”,
are well-known techniques to simulate software functionality in hardware/software
cosimulation at a high performance. However, providing accurate approximations of
time at this abstraction level is challenging. Typically software timing simulations
consider the processor pipeline, branch prediction, and the memory subsystem –
caches in particular. However, a detailed simulation of all relevant components and
their interactions is extremely slow. While this approach is common in interpretative
instruction-set simulation (e.g., Gem5 [4]), it degrades overall simulation perfor-
mance of BLS to a level that makes the functional simulation performances nearly
irrelevant [6, 22]. Such a detailed timing simulation is therefore not reasonable,
if BLS or the significantly faster SLS is utilized to achieve a significant boost in
simulation performance.

624 O. Bringmann et al.

a

b

Fig. 20.1 Example of execution order/path dependent execution time. (a) Target code. (b)
Instruction sequence executed by processor

A reasonable trade-off between timing simulation accuracy and overhead over
a purely functional simulation can be achieved by advancing time by a number
of processor cycles for each execution of an instruction block, for example,
as discussed by Tach, Tamiya, Kuwamura, and Ike [26] for BLS. Simulation
performance is improved by analyzing the processing of an instruction block by
the processor pipeline only once. The results of this analysis are reused on each
execution of a block. Further influences of the microarchitecture (e.g., caches) are
accounted for by modeling the respective components during the simulation and
applying timing penalties for certain events (e.g., cache misses). Usually, these
events are assumed to not occur during the pipeline analysis, and only a single
timing is calculated per block.

A major drawback of these approaches is that influences of preceding
blocks (e.g., instruction dependencies) on the execution time of a block are not
reflected due to the use of a single value and an isolated consideration of each
block. The problem is illustrated in Fig. 20.1 for a simple loop. Before the loop is
entered, the iteration count is loaded into a register, which is used as loop counter.
The loop counter register is decremented by the first instruction in the loop body.
In the first loop iteration, this instruction is directly preceded by the load in the
instruction sequence executed by the processor and can only be processed once
the loaded is completed. In subsequent iteration this is not an issue. The timing
of the instruction block containing the decrement, thus, depends on which block
is executed beforehand: the block preceding the loop (i.e., containing the load) or
the loop block (i.e., itself). This issue can significantly impair simulation accuracy
and becomes even more significant for the deeper and wider pipelines found in
high-performance processors.

20 Precise Software Timing Simulation Considering Execution Contexts 625

a b

Fig. 20.2 Quintessential difference between context-insensitive and context-sensitive timing
simulation. (a) Context-insensitive simulation. (b) Context-sensitive simulation

Context-sensitive simulation aims to improve simulation accuracy by enabling
a consideration of the influence of preceding instructions on the timing of an
instruction block. Multiple values are provided for each block, one of which is
selected for a particular execution of a block based on the current context. The
context essentially abstracts the precedingly executed instructions. This difference
between context-sensitive and context-insensitive block-level timing simulation is
illustrated in Fig. 20.2. A context-insensitive simulation selects the timing purely
based on the currently executing instruction block, whereas a context-sensitive
simulation can additionally consider the execution history by means of the current
context.

The use of context-sensitive block timings can provide further advantages,
because they can accurately reflect the influence of caches and branch prediction
without an explicit model: Firstly, while online cache and branch prediction models
are much faster than an online model of the full processor, they can still lead to
a significant overhead [13, 26]. Secondly, a fixed penalty for cache misses and
branch mis-predictions essentially corresponds to assuming the pipeline is halted
in these situations, whereas, for example, in a typical super-scalar processor only
instruction that depend on the result of the instruction that caused a cache miss will
be stalled.

The main drawback of context-sensitive simulation is the increased complexity
of calculating block cycle counts. All published approaches, therefore, require an
analysis step to derive these values before an actual simulation can be performed.
However, such an PSTC, that is an ahead-of-time partial characterization of timing
properties of execution path segments, is also necessary for other simulation
approaches (cf. �Chap. 21, “Timing Models for Fast Embedded Software Perfor-
mance Analysis”). For context-sensitive simulations, the PSTC needs to calculate
possible execution paths through the software and characterize segments of these
paths regarding their timing properties. PSTC results are then utilized to simulate
the actual timing of the simulated path during the simulation. The PSTC can be static
or dynamic. A static PSTC considers multiple (or even all) possible executions of
the software in a single analysis. A dynamic PSTC considers only a single execution
of the software at a time.

626 O. Bringmann et al.

20.2.2 Control-Flow Graphs

The control flow of a program can be formally expressed by a Control-Flow Graph
(CFG). A CFG is a directed graph where nodes represent Basic Blocks (BBs)
and edges represent possible control flow between them. Basic blocks can only be
entered at the beginning and left at the end by control-flow changes. They usually
represent particular code sequences, but sometimes additional empty nodes that do
not represent actual code are also included. Here, we are only concerned with CFGs
of binary code without such empty nodes. However, CFGs are also used on other
abstraction levels such as source code.

In a binary-level CFG, basic blocks cover sequences of processor instructions,
as shown in Fig. 20.3b. Branch instructions establish the control flow and thus basic
block boundaries. In a basic block, branches can only occur as the last instruction.
Furthermore, instructions that can be executed after a branch (i.e., branch targets
and instructions directly after a branch) can only occur as the first instruction.

For a context-sensitive timing simulation, basic knowledge of the CFG for
the simulated software is required and usually reconstructed from binary code.
For some approaches, a simple subdivision into blocks and edges is sufficient.
However, more complex approaches operate on an Interprocedural Control-Flow
Graph (ICFG), where blocks are grouped into routines, and edges carry additional
semantic information to express various types of control flow (e.g., calls and
returns). Additionally, loops can be represented as independent, recursive routines,
and loop-back edges are represented as recursive routine calls. These concepts
are illustrated in Fig. 20.3 for the source code shown in Fig. 20.3a. Typically, the
function itself would be represented in a ICFG as shown in Fig. 20.3c, whereas with
loop extraction a ICFG as shown in Fig. 20.3d is used. In such an ICFG, the term
routine may also refer to extracted loops. The transformation of loop to recursive
routines is only performed for so-called natural loops. In practice, this is not a
significant restriction, as this condition is fulfilled for typical code of reasonable
quality [14].

20.2.3 Context Mappings

The set of instruction sequences that can be executed before a particular block of
instructions can be expressed by the set of ICFG paths that lead to it. In the presence
of loops and recursions, this set can be infinite. Hence, it is infeasible to provide a
separate timing value for each path leading to a particular block of instructions.
Therefore context-sensitive timings are only provided for a finite number of subsets
of the set of control-flow paths. These subsets are referred to as contexts. A function
that maps a control-flow path to a context is referred to as a context mapping. This
function must be chosen such that the set of contexts is finite.

This consideration and the concept of contexts is well known in the domain of
static program analysis, where alternative context concepts are also known (e.g.,
parameter-value-based contexts). Here, we restrict our discussion to the two map-
pings that have been applied to timing simulation in the literature: The n-block

20 Precise Software Timing Simulation Considering Execution Contexts 627

a b

c d

Fig. 20.3 Example of control-flow representations. (a) Source code. (b) Target code subdivided
into basic blocks. (c) Plain ICFG. (d) ICFG with extracted loop

mapping and the Virtual Inlining and Virtual Unrolling (VIVU) mapping. A
simplified comparison of the two mappings is shown in Fig. 20.4. The example
shows a control-flow path through the example CFG from Fig. 20.3 to the second
iteration of the loop. We will use this example in the following to explain both
mappings.

628 O. Bringmann et al.

Fig. 20.4 Example of context mappings (cf. Fig. 20.3)

As VIVU only considers call edges, it only differentiates contexts by a subset
of the preceding blocks. Therefore, VIVU can consider much longer histories, but
at a smaller granularity. This has the advantage that the timing influence of states
that are maintained much longer, such as cache contents, can be reflected accurately
without explicit modeling. In practice this means that a simulation using VIVU
does not necessarily require an online cache model, whereas it is necessary when
using an n-block mapping. However, this advantage comes at the cost of being
less sensitive to more local influences such as instruction dependencies. We would
expect a combination of VIVU and an n-block mapping to provide the overall best
results, but currently find such an extension unnecessary based on the very high
simulation accuracy provided by the VIVU mapping in our experiments.

20.2.3.1 n-Block Mapping
For the n-block mapping, the control-flow path to the currently executing basic
block is expressed as a sequence of executed blocks. In an n-block mapping, this
path is simply truncated to the last n elements to form a context. In more practical
terms, contexts are differentiated by the n most recently executed basic blocks.

This mapping has two main advantages: Firstly, it is relatively simple and
therefore straightforward to apply. Secondly, it always includes all most recently
executed instructions to differentiate contexts and can therefore provide a high
accuracy for local timing influences, such as instruction dependencies.

The main drawback of this mapping is that only small values of n can be chosen,
as otherwise an excessive number of contexts has to be considered. This limits
the ability of this mapping to accurately reflect global timing influences such as
caches. For example, the path from Fig. 20.4 would be extended by BB2 for each
further loop iteration. Even for the largest published n D 16 [20], only the first 16
iterations of the loop could be differentiated, as afterward the context would always
be a sequence of 16 instances of BB2.

20 Precise Software Timing Simulation Considering Execution Contexts 629

20.2.3.2 VIVU Mapping
The VIVU mapping [14] is an approach to enhancing the accuracy of interprocedu-
ral program analysis with a special consideration of loops. It has been successfully
applied in static Worst-Case Execution Time (WCET) analysis of binary code [9].
Our presentation of the VIVU mapping is based on the notation used by Theiling in
his dissertation [27]. A sequence of a followed by b is denoted as a ı b. The empty
sequence is denoted as ".

For VIVU the control-flow path to the currently executing basic block is
expressed as a sequence of edges. Compared to the n-block mapping, VIVU reduces
the accuracy for local timing influences, but can accurately reflect global influences.
VIVU is usually applied to an ICFG, where loops are represented as recursive
routines (cf. Sect. 20.2.2). Thereby, besides function calls, a call string also reflects
loop iterations counts. As shown in Fig. 20.4, VIVU does not consider the whole
path, but only edges that represent calls to routines that are currently executing (i.e.,
have not returned yet). These edges are referred to as call edges, and the sequence
of call edges is referred to as call string. For example, after the loop is left, the call
string would be e5;1, as e1;2 and e2;2 represent calls to the loop.

VIVU maps a call string to a sequence of so-called context links. A context link
is a pair .e; x/ of a call edge e and a recursion count of x. A sequence of context
links is referred to as a VIVU context. The call string is mapped to a VIVU context
by iteratively extending the empty context " by each call edge in the call string using
the VIVU context connector˚kn and starting with the first (i.e., oldest) call edge. The
context " is empty in terms of a context as a sequence of context links. In terms of
a context as a set of control-flow paths it is the exact opposite, that is the context
for all control-flow paths. The call string e5;1 ı e1;2 ı e2;2 in Fig. 20.4 is mapped to
.."˚kn e5;1/˚

k
n e1;2/˚

k
n e2;2/. The context connector˚kn applies one of two rules. It

can be adapted by the parameters n and k to influence the granularity of the contexts.
A particular VIVU mapping is denoted as VIVU(n,k). n is an upper limit for the
recursion count, while k limits the number of context links in a context. Both k and
n can be unbounded, which is, respectively, denoted as n D 1 or k D 1. Their
exact functionality is discussed below.

Which of the two rules is applied depends on whether the connected edge
(right-hand side) has the same destination as any edge in a context link in the to-
be-extended context (left-hand side). An edge where this condition is true w.r.t. the
to-be-extended context is referred to as recursive.

If the edge is not recursive, the context is extended by a context link with that
edge and a recursion count of 0. For example, ."˚kne5;1/˚

k
ne1;2 D .e5;1; 0/˚

k
ne1;2 D

.e5;1; 0/ ı .e1;2; 0/. If the length of the new context would exceed k, it is shortened
to the last k elements. With k D 1, for example, .e5;1; 0/ ˚kn e1;2 D .e1;2; 0/. The
context link .e5;1; 0/ is dropped to meet the length restriction. For k D 0, all call
strings are mapped to ".

If the edge is recursive, the context is truncated to end with the context link with
the same destination, and its recursion count is incremented by 1. For example,
..e5;1; 0/ ı .e1;2; 0// ˚

k
n e2;2 D .e5;1; 0/ ı .e1;2; 1/, as e1;2 and e2;2 have the same

destination. The recursion count is further bounded to the value of n. Theiling [27]
denotes the recursion count in this case as >, we do not make this distinction. For

630 O. Bringmann et al.

n D 1, ..e5;1; 0/ ı .e1;2; 1// ˚kn e2;2 D .e5;1; 0/ ı .e1;2; 1/, because the recursion
count is limited to 1. As a more complex example, assume the ICFG in Fig. 20.3d
contained an additional edge e2;1, because the function calc calls itself recursively
from within the loop. A typical context would be calculated as ..e5;1; 0/ı.e1;2; 1//˚kn
e2;1 D .e5;1; 1/. The context link .e1;2; 1/ is dropped because the context is truncated
to end with the context link containing e5;1, as it has the same destination as e2;1.

In some cases the interaction between rules and parameters can become complex.
For k D 1, ..e5;1; 0/˚1n e1;2/˚

1
n e2;1 D .e1;2; 0/˚

1
n e2;1 D .e2;1; 0/. Because .e5;1; 0/

is dropped in the first application of the context connector, e2;1 is not considered
recursive anymore in the second application of the context connector.

To ensure a finite set of contexts when n D 1, an edge-specific limit nmax.e/

is required and applied in the same way as n. In a static PSTC, this value can be
derived automatically in some cases and has to be specified by a user otherwise. In
a dynamic PSTC it can formally be assumed to be equal to the number of traversals
of an edge that in a particular analysis and thus ignored in practice.

20.2.4 Related Work

Here we provide a brief introduction to closely related work, a more comprehensive
overview can be found in our previous publications [16, 17, 25], which also served
as a foundation of this chapter and �Chap. 21, “Timing Models for Fast Embedded
Software Performance Analysis”.

Chakravarty, Zhao, and Gerstlauer [5] presented a SLS with a 1-block mapping.
A similar, but more general, concept for a BLS for an n-block mapping with n � 16
has been presented by Plyaskin, Wild, and Herkersdorf [19–21]. Stattelmann [23]
applied VIVU contexts in a SLS. In our framework we also apply VIVU.

The main difference between the use of VIVU in our simulation framework
and Stattelmann’s simulation is that his approach only uses the mapping implicitly
by essentially tracing the path through a so-called expanded supergraph [14]. The
expanded supergraph is an ICFG where a node is copied for each context that node
can be executed in. While this approach simplifies an efficient implementation, the
inherent loss of the meaning of a context restricts the handling of contexts. Most
importantly, control flow that was not considered during the preceding static PSTC
is not handled in Stattelmann’s simulation.

20.2.5 Challenges in Context-Sensitive Simulation

While context-sensitive simulation has many advantages to offer, the increased
complexity in the required understanding of a program also poses several challenges
that we discuss in the following.

20.2.5.1 Incomplete Data
At its core a context-sensitive simulation requires knowledge of the program control
flow during the PSTC. It can be obtained by static or dynamic techniques. In both
cases discovering the full control flow is nontrivial: Dynamic analysis techniques are

20 Precise Software Timing Simulation Considering Execution Contexts 631

restricted to the control flow of the observed executions, which in turn depends on
the used input. While static techniques do not suffer from this issue, it is complicated
by computed and indirect branches (e.g., function pointers) and asynchronous
changes of control flow (e.g., interrupts). In practice achieving a sufficiently high
coverage is nontrivial in a single dynamic or static PSTC.

Three types of coverage issues can be differentiated:

Code If the PSTC fails to discover parts of the code the respective
nodes are missing from the reconstructed control flow graph. For
example, for a program with an interrupt handler, a static PSTC
will not discover the handler code, as typically no explicit control
flow to the handler is contained in a program. In a dynamic PSTC
on the other hand, the handler could be missing if the interrupt is
not raised during the observation.

Control-Flow A PSTC can also fail to discover edges between nodes. For
example, when it fails to discover all possible call sites for a
function pointer.

Context A dynamic PSTC is unlikely to execute a program in all contexts
that can occur during a simulation. However, this issue can also
occur in static PSTC as a consequence of limited code or control-
flow coverage.

20.2.5.2 Context Granularity
Even for small benchmarks, the large number of possible control-flow paths can
lead to an excessive number of contexts. An increased number of contexts typically
reduces the simulation performance, due to the increased memory footprint of the
timing data and the increased complexity of context selection. On the other hand,
with only few contexts, a simulation will provide a reduced accuracy.

The number of contexts is therefore a trade-off between simulation accuracy
and performance. Furthermore, different contexts can be identical in terms of
timing, as contexts only indirectly reflect the state of the microarchitecture. Most
context mappings can be parametrized to influence the granularity of contexts.
Furthermore it is possible to automatically remove unnecessary contexts, without
reducing simulation accuracy.

20.2.5.3 Execution Variations
Context-sensitive timing simulations achieve a good trade-off between simulation
accuracy and performance by preestimating many influences on software timing. A
drawback of this approach is that variations between the simulation and the PSTC
are not trivial to handle. Variations in the following areas can be considered:

Input If dynamic PSTC is used, it is desirable that the simulation is not
restricted to the executions that were observed during the analysis –
in particular for changes to program input including hardware stimu-
lations such as interrupts. This can firstly lead to the aforementioned
coverage issues, but can cause subtle changes in timing behavior.

632 O. Bringmann et al.

Hardware As large, or all, parts of the hardware components that influence soft-
ware timing are considered before the simulation, different simulation
cannot reflect different hardware configurations without a reexecution
of the PSTC.

Code If the analyzed code changes, the analysis results become stale. Current
context-sensitive approaches require a full reexecution of the PSTC in
this case. In the future more advanced analyses may allow an adaption
of the exiting timing data.

20.3 Context-Sensitive Simulation Framework

An overview of our context-sensitive timing simulation framework is shown in
Fig. 20.5. As first step, context-sensitive timings of instruction blocks in a given
binary code have to be obtained by a PSTC based on a detailed microarchitectural
model. Our framework is very flexible in what kind of analysis technique and
model can be used. Currently, we support static analysis using abstract models
intended for WCET analysis by abstract interpretation and dynamic analysis using
actual hardware implementations of a processor. Additionally, we plan to support
further models, such as Field-Programmable Gate Array (FPGA)-based processor
prototypes and detailed models in Gem5 [4], in the future. Therefore, even though
our framework requires a detailed model, it is retargetable with a low effort
if a model is available. Supported targets of our framework so far include the
ARM7TDMI, LEON3, ARM Cortex-M3, ARM Cortex-A9, and ARM Cortex-A15
processors.

Path Segment Timing Characteriza�on (PSTC)

Software Simulation

Functional Simulation Timing Simulation

Timing
Database

Source Code

Binary Code

Dynamic
Analysis

Sta�c Analysis

Binary Level
Simulation

Source Level
Simulation

Timing
Database

Op�miza�on

Context
Selection

Timing
SimulationBinary Path

Simulation

Debug/Profile/Co-Simulation/...

Timing
Database

Bi
na

ry
Ba

s ic
Bl

oc
k

Ex
ec

ut
io

n
O

rd
er

Fig. 20.5 Simulation framework overview (grey areas: beyond article scope)

20 Precise Software Timing Simulation Considering Execution Contexts 633

The PSTC produces an initial TDB. The TDB includes an ICFG of the analyzed
binary code and context-sensitive timing data for instruction blocks. We make
use of VIVU [14] (cf. Sect. 20.2.3.2) as context mapping. This initial TDB could
in principle already be used in a simulation. However, it is usually improved by
applying further optimizations that lead to both, improved simulation performance
and accuracy. Furthermore, it is possible to merge multiple TDBs.

After a TDB has been generated, it can be reused in multiple simulations. As
a functional simulator, we support BLS based on QEMU [3] and are currently
working toward the integration of an experimental SLS tool. Both produce a trace
of the binary basic blocks executed in the simulation to drive the timing simulation.

Based on the basic block execution order, contexts are selected from the TDB.
The current context is used to choose a timing value for a simulated block
execution by which to advance simulation time. The combined functional and timing
simulation for the software is then usually combined with a hardware simulation in
order to provide a cosimulation. However, other use cases such as a direct profiling
or debugging of the simulated software are also supported. Currently, the framework
only targets single core processors. Multi- and many-core systems can be modeled
in a cosimulation using multiple instances of the software simulation. A feedback
between the timing and functional simulation is also possible. For example, when
interrupts influence the control flow in the functional simulation and are triggered
by a simulated peripheral based on the simulated timing.

20.3.1 Timing Database Contents

The TDB consists of two main parts: an ICFG and context-dependent cycle counts
for instruction blocks.

20.3.1.1 Control Flow
In the TDB the control flow of the target binary code is expressed by an ICFG
with loops extracted, as outlined in Sect. 20.2.2 and shown in Fig. 20.3d. To support
a tracking of the current context during the simulation, edges can be marked as
a return or call edge. While a call edge always represents a single call, a return
edge can represent multiple returns. For example, if the program shown in Fig. 20.3
contained a return within the loop, the corresponding edges from BB2 to BB6/BB8
would represent two returns. In our current implementation, the number of returns
always corresponds to the number of routines left by the return, including all directly
recursive calls of these routines. More details on the handling of returns are given in
Sect. 20.3.3.1.

20.3.1.2 Context-Sensitive Timings
Context-sensitive timings are differentiated by the outgoing edges of a block and
an associated context. More formally, the stored timings can be thought of as a
function timing.e; c/ that returns the timing of block bx , when it is left via an edge
e D .bx; by/ to execute by in context c. An example is shown in Table 20.1 and
explained in Sect. 20.3.1.3.

634 O. Bringmann et al.

Table 20.1 Example of context-sensitive timings for a loop (cf. Fig. 20.3)

Timings Valid for call string

Context e2;2 e2;3 e5;1 ı e1;2 e7;1 ı e1;2 ı e2;2

" 5 7 Yes Yes

.e1;2; 1/ 3 5 No Yes, highest precedence

.e1;2; 0/ 6 6 Yes Yes

.e7;1; 0/ ı .e1;2; 0/ 5 6 No Yes

.e5;1; 0/ ı .e1;2; 0/ 3 8 Yes, highest precedence No

In classic use of VIVU contexts for static WCET analysis, the set of known
control-flow paths from an analysis starting point (e.g., the main function) is
partitioned into contexts. Essentially, there is exactly one corresponding context
for each path, which can be calculated by applying a particular VIVU mapping.
However, this approach is not practical for our framework, as it should provide a
best-effort approximation for paths that were not considered during TDB generation
due to the limitations of the used analysis technique (cf. Sect. 20.2.5).

For example, a TDB generated from timings observed in an execution of the
program in Fig. 20.3 where calc is called via BB5, there may not be a context
for calls via BB7. This would prevent the simulation of an execution where calc
is called via BB7 instead of BB5. In this simple example, a reasonable alternative
would be a context that does not differentiate between the two call edges to calc.
In the general case, a flexible relationship between paths and contexts must be
considered to achieve the goals of our framework.

Arbitrary contexts may be combined in the TDB, and a context is considered
valid for a control-flow path, if the path could be mapped to the context for arbitrary
VIVU parameters n and k and an arbitrary analysis starting point. In other words,
a VIVU context in the TDB can be thought of as a condition that must be fulfilled
by an arbitrary suffix of the simulated path to make the respective context-sensitive
timings a valid choice. The drawback of this approach is that it becomes necessary
to define which of the valid contexts should be selected during simulation.

20.3.1.3 Context Precedence
As outlined in the preceding section, a TDB may – and typically does – contain
multiple contexts that are valid for a path or more specifically the respective call
string. One of these contexts has to be selected during the simulation such that the
simulated timing is as accurate as possible. In our framework this process is based
on two assumptions: First, in terms of the set of control-flow paths represented
by a context, a context that represents a smaller set is more likely to be accurate
because variations in the timing of fewer paths are less likely. Second, a context
that represents paths that share recent control flow is likely more accurate, as it
is more likely that recent control flow (i.e., more recently executed instructions)
still have an impact on the timing of the currently executing block. For example, if
two precedingly executed blocks caused memory to be loaded into the cache, the

20 Precise Software Timing Simulation Considering Execution Contexts 635

memory that was loaded by the more recently executed block is more likely to still
reside in the cache.

An example of context-sensitive timings and the precedence of various contexts
is shown in Table 20.1 for the loop from the example program in Fig. 20.3. As
can be seen each context provides timings for the outgoing edges of the blocks in
the routine (BB2). As every call string may be mapped to ", it is a valid choice
for every call string, but also takes the lowest precedence. Thus it can serve as a
fallback if no other context is available. For the call string e5;1 ı e1;2, the context
.e5;1; 0/ı.e1;2; 0/ is the preferred choice, as it is more specific than .e1;2; 0/ or ". For
the call string e7;1ıe1;2ıe2;2, the preferred context is .e1;2; 1/. While .e7;1; 0/ı.e1;2; 0/
can be considered equal in terms of the first assumption, it represents less recent
control flow and thus has a lower precedence. Roughly it can be said that the choice
between .e7;1; 0/ ı .e1;2; 0/ and .e1;2; 1/ is a choice between a context that reflects
e7;1 and one that reflects e2;2. Since e2;2 ultimately represents more recently executed
instructions, .e1;2; 1/ is the preferred context.

Since a context may represent an infinite number of paths, some of which may
not have been discovered during TDB generation, using these assumptions directly
to establish context precedence is not a good solution. Furthermore the efficiency of
the context lookup has also been considered. The context selection scheme of the
simulation framework is outlined in Sect. 20.3.3.3.

20.3.2 Timing Database Generation

The TDB can be generated using either a static or a dynamic PSTC of the
application binary code for the target platform. Compared to the static PSTC, the
main advantage of the dynamic PSTC-based generation is that it can provide highly
accurate results even for complex system architectures. However, this requires
appropriate program stimuli during the dynamic PSTC, which is not necessary for
the static PSTC.

20.3.2.1 Dynamic PSTC
The dynamic PSTC-based TDB generation requires a timed trace of a program
execution as an input. The trace must allow a full reconstruction of the program
control flow (i.e., the exact sequence of executed instructions), whereas timing data
is only required for every execution of a basic block. In practice, such traces can
be obtained from on-chip tracing units available for many embedded processors.
For example, they are supported by ARM CoreSight [2] and the Nexus 5001
standard [15]. Note that such tracing units typically only provide time stamps for
executed branch instructions. More specifically, ARM style traces provide a time
stamp for take and non-taken branches, whereas Nexus style traces only provide
time stamps for taken branches. Therefore, some time stamps may cover multiple
basic blocks. In this case the timing of individual block executions is interpolated.

To construct a TDB, two passes are performed over a trace. During the first
pass, an ICFG is extracted. The extracted graph is analyzed to identify loops and

636 O. Bringmann et al.

subsequently transformed to the form described in Sect. 20.2.2. During the second
pass, the graph is traversed based on the trace, and the observed timings are stored
in the TDB for the current context.

If the VIVU mapping is limited (i.e., n ¤ 1 or k ¤ 1) or the traced execution
contains indirect recursions, it is possible that multiple observations are stored in the
same context. In this case an average is stored in the TDB. Additionally, we store the
number of observations underlying a timing value as this information is required in
the context generalization optimization. This optimization is applied after the TDB
generation to enable an accurate simulation if the simulated control flow differs from
the traced control flow. A description is given in Sect. 20.3.2.3.

20.3.2.2 Static PSTC
For the static PSTC, we adopt well-known techniques from the domain of static
WCET analysis. More specifically, we employ a static control-flow analysis to
extract the ICFG, on which block timings are estimated using abstract interpreta-
tion [7]. In our current implementation, these steps are performed by Absint aiT [1],
which is a commercial tool for WCET analysis, from which we read intermediate
results. The intermediate results are translated to a TDB, and we typically execute
multiple analyses and merge the resulting TDBs, as a single analysis may not
provide sufficient coverage. This is, for example, the case for typical programs with
interrupt handlers: As the analysis only discovers explicit control-flow changes, an
analysis of the main function does not cover interrupt handlers and vice versa. The
TDB generator could, for example, execute two distinct analyses in aiT, one starting
at the main function and another at the interrupt handler, and merge their results in
a single TDB.

As aforementioned, the control-flow representation and context mapping used
in the TDB are based on research into WCET analysis. More specifically, they are
based on their use in aiT and earlier work [23, 24] by our groups that essentially
directly made use of the same intermediate results. However, for the TDB we make
two small, but significant changes: First, aiT only considers discovered control-flow
paths for each context, whereas the TDB assumes a context is valid for any control-
flow path that can be mapped to it. As a result, when simulating control flow beyond
the control flow considered during the analysis, the worst-case timing guarantees
made by the analysis cannot be maintained. We expect that changing the static
analysis to enable a generic worst-case timing simulation is feasible, but this topic
is beyond the scope of our current research activities. Second, there is a difference
between the ICFGs used by the static analysis and the ICFGs used in simulation that
we describe in the following.

The ICFGs used during the static analysis include special empty nodes to avoid
the complexity of handling various special cases. For example, calls are represented
by a call and a return node that follow/precede the basic block a call is made
from/returns to. As these nodes contain no instructions, their execution cannot
be registered during a simulation, and we therefore do not include them in the
TDB. During the translation of analysis results to a TDB, we map path between
nonempty blocks that contain only empty blocks to a single edge. A resulting edge
can therefore cross call and/or multiple returns. This translation is not sensible for

20 Precise Software Timing Simulation Considering Execution Contexts 637

arbitrary graphs, but in our experience the analysis only produces graphs where this
translation can be handled with a reasonable effort.

20.3.2.3 Optimization
Various optimizations can be applied to the TDB that improve simulation perfor-
mance and/or accuracy. Performance improvements can be achieved by removing
unnecessary contexts. Thereby the overall memory footprint of a simulation is
reduced and the context lookup algorithm used in the simulation, which we describe
later in Sect. 20.3.3.3, can terminate early. Accuracy improvements on the other
hand are achieved by synthesizing new contexts and/or adding new data to existing
contexts. These new contexts may then be used to simulate the timing of paths that
were not considered during the PSTC and thus may not be represented by the context
produced by the PSTC. This step is especially critical for the dynamic PSTC, as only
a single execution is considered. In practice it enables a simulation of the timing
of a program for multiple different inputs (and thus potentially different paths)
based on the timing observed for one input. Typically, the resulting TDB is smaller
after all optimizations have been applied. All optimizations are performed on a per-
routine basis. They are constructed such that timing data remains unchanged for the
executions considered during TDB generation.

Removing Unnecessary Contexts
Contexts can be removed from a TDB under some conditions. For example, assume
a TDB contained only the contexts .e5;1; 0/ ı .e1;2; 0/ and .e5;1; 0/ ı .e1;2; 1/ for the
loop from the example in Fig. 20.3. As the contexts are not differentiated by the
context link .e5;1; 0/, the contexts .e1;2; 0/ and .e1;2; 1/ can be used, respectively.
This is possible because these shorter contexts will be selected for each path the
original contexts would be selected for, and as no other contexts exists, these were
the only paths considered during analysis. Furthermore, if the context-sensitive data
for both contexts is identical, .e1;2; 1/ can be removed based on the same rationale.
As .e1;2; 0/ is the only remaining context, it can simply be replaced by ".

In general, these optimizations are expressed by two rules that define which
contexts can be considered for removal without considering the associated data and
separate consideration if the data of two contexts is mergeable. The data for two
contexts is considered mergeable, if cycle counts are identical for all edges that are
present in both sets of data. In more practical terms, two contexts are mergeable if
cycle count lookup that was successful in either context before the merge returns the
same result after the merge. Note that a context without any associated data may be
merged with any other context. The first rule is referred to as shorten call strings. It
defines that a context .e1; r1/ ı .e2; r2/ ı � � � ı .en; rn/ may be removed and merged
with .e2; r2/ ı � � � ı .en; rn/, if no other context .ex; rx/ ı .e2; r2/ ı � � � ı .en; rn/ with
ex ¤ e1 ^ rx ¤ e1 exists. The second rule is referred to as merge leaf iterations. It
defines that a context .ex; rx/ ı : : : may be removed and merged with .ex; ry/ ı : : : ,
if ry < rx and ry is the largest value where this holds. As can be seen from the
example in the beginning of this section, each rule can create a situation where the
other rule can be applied. They are therefore applied in turn until a fixed point is
reached.

638 O. Bringmann et al.

Context Generalization
The prime motivation for the context generalization optimization is the incom-
pleteness of a TDB created from a single program execution using the dynamic
PSTC-based TDB generation. As example assume a TDB for the example in
Fig. 20.3 was generated from the timings observed for an execution where calc
is called from BB5. Such a TDB could only contain the contexts .e5;1; 0/ ı .e1;2; 0/
and .e5;1; 0/ ı .e1;2; 1/. If calc is called via BB7 in a simulation, a call string for
the second iteration of the loop would be e7;1 ı e1;2 ı e2;2. No context could be
selected for this call string. A good alternative would be to use the data from context
.e5;1; 0/ ı .e1;2; 1/, that is, use the timing of the second iteration when the call was
from BB5 to simulate the timing of the second iteration when the call was from BB7.
This could, for example, accurately reflect that timing under consideration that the
instruction cache was already filled with the loop instructions in the first iteration.

For a general understanding of this optimization, it is helpful to consider contexts
as sets of control-flow paths (i.e., the set of paths that could be mapped to the
context). As a first step consider the valid contexts of a call string that was not
considered during the initial TDB generation. Each of these contexts represents a
set of control-flow paths that includes the paths represented by the call string. For
some of these potential contexts, there exist other contexts in the TDB that represent
a subset of a potential context, a condition that is always at least true for ". For the
example mentioned in the preceding paragraph, a valid context for the call string
e7;1 ı e1;2 ı e2;2 would be .e1;2; 1/, of which the existing context .e5;1; 0/ ı .e1;2; 1/ is
a subset. The best context to generate would be the one with the highest precedence
as discussed in Sect. 20.3.1.3.

However, generating these contexts is not possible before the simulation, as not
all call strings may be known, and could be very inefficient during simulation.
Instead the context generalization synthesizes more general versions of the existing
contexts. For each context .e1; r1/ ı .e2; r2/ ı � � � ı .en; rn/, new contexts .e2; r2/ ı
� � � ı .en; rn/, .e3; r3/ı � � � ı .en; rn/ and so on until " are generated. Each new context
is associated with average timings of the underlying original contexts. The averages
are weighted by the number of underlying observations, if a dynamic PSTC was
used for the initial TDB generation.

An additional issue is also handled by this optimization: The timing for some
edges may only have been observed for some of the original contexts. To ensure
that all context contain a timing for all edges of a routine, missing values in original
and synthesized contexts are filled in from the most specific context that contains a
value for that edge and is a generalized version of the context with the missing data.

20.3.3 Simulation

To make use of the context-dependent timing, appropriate contexts have to be
selected during a simulation. A naive approach to look up a context from the TDB
during simulation would be to maintain the current call string during the simulation,
and on each change find the valid context with the highest precedence in the TDB

20 Precise Software Timing Simulation Considering Execution Contexts 639

by applying various VIVU(n, k) mappings. However, this approach is unlikely to
achieve a high simulation performance.

To enable a robust, flexible, and efficient context lookup, under consideration
of the discussion of context precedence outline in Sect. 20.3.1.3, we developed the
following approach: During simulation, similarly to a call string, we maintain a
so-called intermediate string. Contexts in the TDB are structured in a per-routine
context tree. They can be looked up by the dynamic context selection algorithm.

During simulation the execution of target binary code basic blocks must be
registered as an event. In BLS, we perform this by instrumenting the first instruction
of every basic block. In SLS, this can be achieved by so-called path simulation
code [24], which reconstructs the execution path through the target binary code
based on the source code execution path (cf. �Chap. 19, “Host-Compiled Simula-
tion”). Time is advanced for each executed block by the cycle count stored in the
TDB for the taken outgoing edge in the current context.

20.3.3.1 Intermediate String
An intermediate string is similar and in simple cases identical to a VIVU context for
n D 1 and k D 1. More specifically, it is a sequence of context links (i.e., a pair
of a call edge and a recursion count) with an unbounded length and unbounded
recursion counters. On each traversal of a call edge, the intermediate string is
updated. Usually, a new context link with a recursion count of 0 is appended to
the intermediate string. If an edge is a direct recursion (i.e., has the same destination
as the last context link element) and is marked as a non-returning call (e.g., it is
a loop back edge), no element is appended and the recursion counter of the last
element is increased instead. This process is similar to the VIVU context connector,
but prevents a loss of information that may be required for a context lookup or a
future update of the intermediate string. In contrast to maintaining a call string, it
has the advantage that no additional memory is required for loop iterations, which
are the most common case of recursive calls.

An edge can only represent a single call, as every natural loop has a distinct
header (control-flow structures that could intuitively be considered two distinct
loops with a shared header are formally considered a single natural loop) and, in
practice, functions always have a few prologue instructions. However, an edge can
represent multiple returns, for example, when a loop contains a function return. In
the TDB an edge can therefore be a call edge (or not) and additionally represent an
arbitrary number of returns, which shall be performed before the call. The number
of returns is not the number of call edges that should be removed from a call string,
as this number may be statically unknown (e.g., in the aforementioned case of a
return from within a loop). Instead it is defined as the number of context links that
shall be removed from the intermediate string.

20.3.3.2 VIVU Context Tree
In the TDB contexts for a routine are structured as a tree, where each node
corresponds to a particular VIVU context but may be empty/unused. The children
of a node represent more specific versions of contexts of their parent. The root of

640 O. Bringmann et al.

the tree represents the context " and therefore is a valid context for any control-flow
path. Each step from a node to a direct child is associated with a context link, where
the context of the child is given by prepending the context link to the context of the
parent. The full context of a node is therefore the sequence of context links for the
path from the node to the root (the path from the root to the node is the reversed
context). An example for the context tree is given in the next section.

20.3.3.3 Dynamic Context Selection
The dynamic context selection algorithm is used to select a particular context for
an intermediate string from a context tree. Essentially, the context tree is ordered
such that during a descend into the tree, each step to a child node leads to a more
specific context for the intermediate string. As the path from the root to a node
is the revered context for that node, the intermediate string is also processed in
reverse. Usually the child to descend into is selected based on the next context
link in the reversed intermediate string until no further valid child is available. An
exception are recursions over multiple call edges and returnable direct recursions,
where multiple children may be a valid choice and a scoring scheme is used to select
a particular context. In the following, we first describe the lookup algorithm without
consideration for this special case and provide a separate description afterward.

The lookup starts at the root node, which corresponds to the context ", which
is a valid choice for any intermediate string. For descending into child nodes, the
intermediate string is considered in reverse order. A child node is considered a
candidate for descending, if the edge of the context link for the step to the child node
and the edge for the currently considered context link of the intermediate string are
identical. Often (e.g., for loops) multiple candidates with different recursion counts
exist. In this case the candidate with the highest recursion count is selected, that
is, less than or equal to the recursion count of the currently considered context link
of the intermediate string. This process is repeated until no further candidate for
descending can be found. The deepest encountered node with valid timing data is
selected as current context, usually this is the last node the lookup descended to. In
the worst case, when no descend from the root is possible, the context " is selected if
it contains valid timing data. In our current implementation, we ensure this is always
the case by an optimization of the TDB (cf. Sect. 20.3.2.3).

An example for the context tree and dynamic context selection is shown in
Fig. 20.6. Both intermediate strings are evaluated in reveres. For .e5;1; 0/ı.e1;2; 0/ all
intermediate strings are evaluated, and the context links to the child nodes and from
the intermediate string are identical. For .e5;1; 0/ ı .e1;2; 2/ on the other hand, the
child node for .e1;2; 1/ is selected, as there is no child node with a higher recursion
count. Furthermore, the intermediate string is not evaluated further, as there are no
child nodes to descend into.

To handle recursions over multiple call edges and returnable direct recursions,
the algorithm checks whether other context links of the (unreversed) intermediate
string preceding the context link has an identical destination. If this is the case, it
preforms additional descends for the other elements and a recursion count that is the
sum of both recursion counts plus one (to account for the increment that would have
been performed by the VIVU mapping but was not performed for the intermediate

20 Precise Software Timing Simulation Considering Execution Contexts 641

Fig. 20.6 Example of
context tree (black) for the
example contexts from
Fig. 20.1 and context
selection (gray) for
intermediate strings
.e5;1; 0/ ı .e1;2; 0/ (dashed)
and .e5;1; 0/ ı .e1;2; 2/
(dotted)

ε (e7,1, 0) (e1,2,0)

(e1,2, 1)

(e1,2, 0)

(e5,1, 0) (e1,2, 0)

(e7,1,
0)

(e5,1, 0)

(e1,2 ,0)

(e1,2,
1)

(e1,2, 0)
(e5,1, 0)

(e1,2, 2
)

o

o

string). The depth is not a sufficient criterion to select the most specific context
in this case. Therefore, each encountered node is scored based on the sum of all
recursion counts of all context links that were evaluated during the descend to this
node plus the number of evaluated context links. The node with the highest score
is selected and if multiple nodes have the same score the first encountered node is
preferred.

20.3.3.4 Fallback Strategies
It is unlikely that a TDB provides perfect coverage of the simulated control flow
for various reasons: For example, changes in control flow due to interrupts (e.g.,
a timer interrupt driving a preemptive scheduler) are not expressed in an ICFG.
Another reason can be imperfect matchings in a SLS, which can lead to blocks
missing from the path simulation code. The simulation framework includes various
fallback mechanisms to handle such cases. First, the TDB provides a fallback cycle
count for each block, which we currently calculate by averaging all cycle counts
for the outgoing edges of a block. This value can be used if a block execution
order is simulated for which no corresponding edge exists in the ICFG stored in the
TDB. Second, if such an execution order is simulated the intermediate string may be
incorrect, because the missing edge may have been a call or return. This is handled
by removing elements from the intermediate string until the edge of the last context
link is an incoming edge of the currently executing routine. In the worst case the
intermediate string is cleared. For example, a program with preemptive scheduling
is roughly simulated as follows: The program is simulated normally as outlined
above. When control flow is diverted to the timer interrupt handler, the fallback
value for the currently executing block is used to advance simulation time and the
intermediate string is cleared. During the subsequent execution of the scheduler,
the intermediate string is rebuild providing progressively more accurate timings.
Once the interrupt handler returns to a different or the previously executing thread,
a similar sequence is repeated.

20.4 Experimental Results

In this section we present experimental results for our timing simulation framework.
First, we establish a baseline regarding simulation accuracy based on results
for small benchmarks. Afterward, we discuss case studies for more complex

642 O. Bringmann et al.

applications. Due to space restrictions, we do not provide an in-depth description
of the experiments here, more details can be found in our preceding publications
[16, 17].

20.4.1 Benchmarks

As benchmarks we use several programs from the Mälardalen WCET bench-
mark [10] collection. Each of these benchmarks focuses on specific control-flow
structures, for example, typical computations such as matrix multiplications or
implementation patterns such as state machines. This has the drawback that the
benchmark collection does not provide representative workloads. However, it
allows an evaluation of the relationship between program structure and simulation
properties.

Some benchmarks were excluded for various reasons: Several benchmarks had
very short execution times or were even completely optimized by the compiler.
Furthermore we had to adapt benchmarks to allow a variation of inputs for our
experiments using a dynamic PSTC. For these experiments we selected benchmark
where such an adaptation was feasible with a reasonable effort. This adaptation was
primarily necessary, as our framework can simulate the timing exactly without input
variations.

We performed experiments with these benchmarks for TDB generation using
static PSTC for an ARM Cortex-M3 system and using dynamic PSTC for an
ARM Cortex-A9 system. The experiments using a static PSTC were evaluated
regarding both simulation accuracy and performance, whereas the experiments
using a dynamic PSTC were only evaluated regarding simulation accuracy.

20.4.1.1 Simulation Accuracy
Figure 20.7 shows the deviation of simulation results from hardware measurements
for the Mälardalen benchmarks using four different TDBs and two different
hardware configurations. The TDBs inf and opt represent the intended use of our
simulation framework: a TDB that was generated using a VIVU(1,1) mapping
in the static PSTC and, in the case of opt, further optimization of the TDB. Noctx
represents a simulation that does not itself make use of contexts but relies on the
results of a static PSTC that does use contexts. Whereas the zero case represents a
simulation where contexts are used in neither.

Many programs can be simulated accurately by any TDB, but only the context-
sensitive simulations provide accurate simulation results in all cases. The difference
is more pronounced in the configuration with two wait states. Here, the increased la-
tency of the flash the benchmarks are executed from makes the timing behavior more
complex, which can only be reflected accurately by the context-sensitive simulation.

Table 20.2 shows minimum and maximum simulation errors when using a
dynamic PSTC to generate a TDB. As the main issue with a dynamic analysis-
based TDB generation is a variation of program inputs, we adapted a subset of
the Mälardalen benchmarks to enable parameter variations. For this evaluation we
chose a wide range of values for each parameter (e.g., size parameters in a range

20 Precise Software Timing Simulation Considering Execution Contexts 643

0
w

ai
ts

ta
te

s
2

w
ai

ts
ta

te
s

ad
pc

m
bs

or
t1

00cr
c

ed
n

fft
1

lm
s

lu
dc

m
p

m
at

m
ul

t
m

in
ve

r
ns

ic
hn

eu
pr

im
e

qs
or

t−
ex

amqu
rt

se
le

ctst

0
40

80
12

0
0

40
80

12
0

D
ev

ia
tio

n
%

Program

db

in
f

no
ct

x

op
t

ze
ro

Fi
g

.
2

0
.7

D
ev

ia
tio

n
of

si
m

ul
at

io
n

re
su

lts
fr

om
ha

rd
w

ar
e

m
ea

su
re

m
en

ts
fo

r
C

or
te

x-
M

3
w

he
n

us
in

g
a

st
at

ic
PS

T
C

644 O. Bringmann et al.

Table 20.2 Simulation error when using a dynamic PSTC

Avg./max. error %

Program Param. Alla Singleb Pairc

matmult
Seed 0:0 0:0 0:0 0:0 0:0 0:0

Matrix size 12:5 28:8 8:2 16:2 4:1 12:0

crc
Input size 2:4 14:2 0:8 3:9 0:4 1:2

Input values 0:2 0:5 0:1 0:4 0:0 0:2

adpcm

Input amp. 0:9 1:8 0:7 1:7 0:0 0:1

Input freq. 1:0 3:1 0:2 0:6 0:1 0:4

Num. samples 0:6 1:5 0:4 0:7 0:0 0:0

bsort100
Seed 0:0 0:0 0:0 0:0 0:0 0:0

Array size 15:2 84:3 0:7 2:1 0:2 0:8

qsort-exam
Seed 4:2 7:0 2:8 4:0 2:8 4:0

Array size 8:2 21:9 3:4 6:5 2:4 6:1

prime Tested prime 11:1 29:0 6:3 12:8 2:3 5:3

select
Seed 0:7 1:8 0:5 0:9 0:3 0:6

Array size 8:0 42:7 2:2 9:2 0:6 1:3

All None 0:0 0:0 0:0 0:0 0:0 0:0

aAll: All TDBs
bSingle: on average most accurate TDB
cPair: Most accurate pair of TDBs when choosing the more accurate one of the pair per program

such that the working set size exceeds the L1 cache size for some values but not for
others), traced executions for each parameter value and generated a TDB from every
trace. Afterward, each TDB was used to simulate executions for all parameters. We
calculate mean and maximum simulation errors from these simulation for multiple
scenarios of selecting a TDB for a simulation. In all we include all TDBs, which
is similar to a user choosing tracing inputs arbitrarily. In single we selected the
single, on average best TDB, which represents the best result a user could achieve
when he deliberately selects tracing inputs. The pair selection strategy is similar, but
additionally considers that a user may generate multiple TDBs – two in this case –
to further improve simulation accuracy.

The control flow in most benchmarks does not change significantly when the
working set size is identical in TDB generation and simulation. In these cases even
using arbitrary inputs during tracing leads to a high simulation accuracy. An extreme
exception to these rules is the prime benchmark, as it makes heavy use of a low-
level math function to perform modulo operations. This function essentially contains
a large switch statement, if the TDB is generated for shorter executions the switch
statement is not covered sufficiently. In this case and also variations of the working
set size, a more careful selection of tracing input is required. In most cases using
two TDBs provides a further accuracy improvements.

20 Precise Software Timing Simulation Considering Execution Contexts 645

0
w

ai
ts

ta
te

s
2

w
ai

ts
ta

te
s

ad
pc

m
bs

or
t1

00cr
c

ed
n

fft
1

lm
s

lu
dc

m
p

m
at

m
ul

t
m

in
ve

r
ns

ic
hn

eu
pr

im
e

qs
or

t−
ex

amqu
rt

se
le

ctst

0
10

0
20

0
0

10
0

20
0

O
ve

rh
ea

d
%

Program

db

in
f

op
t

ze
ro

Fi
g

.
2

0
.8

Si
m

ul
at

io
n

ov
er

he
ad

646 O. Bringmann et al.

20.4.1.2 Simulation Performance
Figure 20.8 shows the overhead of the timing simulation for the Mälardalen
benchmarks in the experiments for the Cortex-M3 processor using a static PSTC.
The overhead is independent of the used hardware configuration, as during the
simulation the only difference between the two cases is the timing values stored
in the TDB. While not shown in the figure, this has also the consequence that there
is no significant difference in simulation performance for a TDB generated using
a dynamic or static PSTC. A performance gain of over factor 10 can be achieved
utilizing SLS and an automaton based encoding of the timing data [18].

20.4.2 Case Studies

Benchmarks are usually significantly smaller and less complex than real appli-
cations, but our simulation becomes more complex with application size and
complexity. We therefore put a focus on using real code in the evaluations of our
simulation framework. Here we present a few selected case studies.

20.4.2.1 eCos
Our eCos case study explores the capabilities of the simulation to exceed the
limitations of a static PSTC used during TDB generation. For this purpose we
ported the embedded operating system eCos [8] to our reference hardware that was
also used in the experiments for the Mälardalen benchmarks using static PSTC.
We configured eCos with support for preemptive multi-threading and crafted an
application that executed two concurrent instances of the matmult benchmark.

The preemption creates a feedback between the temporal and the functional
behavior of the program, as changes in software performance lead to additional
thread switches. This factor complicates the static PSTC used to generate a TDB.
In particular an accurate simulation would be impossible without dynamic context
selection and the fusion of results from multiple analyses.

When using an optimized TDB, our simulation can approximate the hardware
execution with an error of less than 0:25%, whereas a simulation and analysis
without context lead to an error of over 70%. This large error is not only the result
of the decreased accuracy of the block-level timings but also the resulting change in
the functional simulation due to additional thread switches. This demonstrates the
importance of an accurate low-level timing simulation in the presence of feedback
between the functional and the timing behavior of an application.

While the difference in the functional behavior prevents an exact calculation
of the timing simulation overhead, the difference in simulation performance is
comparable to the results for the Mälardalen benchmarks: The context-sensitive
simulation with an optimized TDB achieves about 22 Million Instructions Per
Second (MIPS), while a simulation without timing and thus a sequential execution
of both threads achieves 39 MIPS.

20 Precise Software Timing Simulation Considering Execution Contexts 647

768 x 512 pixels 576 x 384 pixels 384 x 256 pixels 192 x 128 pixels

0e+00

1e+07

2e+07

3e+07

4e+07

5e+07

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100
compression quality

cy
cl

es

arbitrary deliberate measurement

Fig. 20.9 Min/mean/max number of cycles for execution of image compression as simulated
using arbitrarily and deliberately selected tracing inputs compared to hardware measurements

20.4.2.2 Image Compression
As an example for highly optimized software, we investigated the simulation
accuracy for the libjpeg-turbo [12] image compression library on a Cortex-A9,
which makes use of Single Instruction, Multiple Data (SIMD) instruction set
extensions. We created an application that compresses images from a collection
by Kodak [11] at various compression quality settings. To further vary the image
size, we rescaled some of the images to obtain four groups of constant size with
five images each. TDBs were generated using a dynamic PSTC and explored the
relationship between tracing input and simulation accuracy.

If an arbitrary input is used in tracing, the simulation error is 2:07% on
average and at most 30:63%. If more care is taken by making sure tracing and
simulation image size are identical and the special case of a compression quality
of 100 is handled separately, the error can be reduced to 1:18% on average
and at most 11:66%. Figure 20.9 shows a comparison of simulation results with
hardware measurements. As can be seen, the simulation accurately characterizes
the application timing, but for the case of arbitrary tracing inputs suggests a wider
variation.

20.4.2.3 Advanced Driver Assistance
As an example for a complex, modern embedded application we experimented with
a video based circular traffic sign recognition on the same platform used in the image
compression application. The application processes each image in two stages. First,
in the segmentation stage circles are detected. In the subsequent classification stage
these circles are classified as a particular traffic signs or no sign. For our experiments
we varied two segmentation parameters that influence the number of circles that go
into the classification stage and must be tuned in practice to achieve a reasonable
trade-off between application performance and recognition accuracy. Furthermore
we used several input images.

648 O. Bringmann et al.

hardware simulation

min.votes

1.5e+08

1.0e+08

cy
cl

es

min. gradient

5.0e+07

300 600 9001200 1200

8

12

16

20

300600 900

Fig. 20.10 Subset of simulation results for advanced driver assistance application compared to
hardware measurements

If an arbitrary input is used in tracing, the simulation error is 0:98% on average
and at most 7:55%. If more care is taken by making sure tracing and simulation
images are identical or at least very similar, the error can be reduced to 0:27% on
average and at most 2:06%. Figure 20.10 shows a comparison of simulation results
with hardware measurements. As can be seen, the simulation slightly idealizes the
application timing, which is more erratic on hardware.

20.5 Discussion

Context-sensitive software timing simulation offers many advantages over other
approaches to software timing simulation. However, the need for a PSTC of the
software code and the complexity of the control-flow models as well as context
mappings lead to a number of limitations. In this section we list advantages and
limitations of context-sensitive simulation at the current state of the art.

20.5.1 Advantages

While the simulation at its core is still driven by events at a higher level of
abstraction than individual processor cycles, the use of contexts allows an accurate
approximation of the flow of instructions through the processor pipeline from a
timing perspective. As a consequence, context-sensitive timing simulation can offer

20 Precise Software Timing Simulation Considering Execution Contexts 649

an extremely high accuracy, in particular, when used with a dynamic PSTC that can
also consider application behavior for typical workloads.

Furthermore, if VIVU is used as context mapping, contexts can also approximate
cache effects. This makes online cache models unnecessary, which otherwise
can significantly reduce simulation performance. Furthermore, both caches and
the pipeline can be considered simultaneously during the PSTC, which enables
an accurate consideration of their interactions that is not possible in a context-
insensitive simulation. This applies to instruction caches in particular, as their
impact on application timing is mainly influenced by the control flow. However,
our experimental results demonstrate that it is also possible to accurately model
the timing influence of data and unified caches if a dynamic PSTC is used. It
remains to be seen how far these advantages can be maintained in multi- and many-
core systems. For example, if coherent caches are used the timing of instructions
executed on one core can be influenced by those executed on another core.

Another interesting advantage is offered by our simulation framework if a
dynamic PSTC by hardware tracing is used. As the timing information is extracted
from hardware, a software model of the hardware is not needed during the PSTC.
Such a model is not only hard to construct, but the necessary details of the
microarchitecture are not always publicly available.

20.5.2 Limitations

The main limitation of context-sensitive simulation is the need to re-execute
the PSTC when the software code or the system configuration (to the extent
considered in the PSTC) changes. This complicates the application of context-
sensitive simulation in Design Space Exploration (DSE) and for self modifying
code.

For systems with self-modifying code, for example, those using just-in-time
compilation (e.g., Java in Android) or dynamic code relocation (e.g., shared libraries
under Linux) context-sensitive simulation is currently not possible. However, for
DSE, Plyaskin, Wild, and Herkersdorf [21] demonstrated that limited variations in
the hardware architecture can still be considered in a context-sensitive simulation.

20.6 Conclusions

In this chapter we discussed context-sensitive timing simulation for embedded
software. This concept improves simulation accuracy by considering the control
flow that leads to the execution of an instruction sequence to more accurately
approximate the timing of that particular execution. Furthermore, it permits novel
approaches, such as highly accurate simulations of application performance over
a wide range of inputs based on hardware measurements for only few inputs.
Moreover, as could be observed in our experimental results, context-sensitive
simulation can remove the need for slow online models of caches and branch
prediction.

650 O. Bringmann et al.

These advantages come at the drawback of requiring a PSTC of the application
code before a simulation. This analysis induces an overhead which is only recouped
if multiple and/or longer running simulations are performed based on the results of
one analysis. Furthermore the complexity of dynamic and static PSTC complicates
a practical application.

Even though these drawbacks appear significant, we expect an increase in the
practical relevance of context-sensitive simulations in future hardware/software
cosimulations. We base this assessment on three factors: First, future products such
as autonomous vehicles will require highly complex and performance-demanding
software which must fulfill high safety standards. Cosimulations using context-
sensitive software timing simulation can provide a valuable tool to developers of
these products. Second, we expect that future research will simplify the application
of the approach, for example, by simplifying the PSTC by combining static and
dynamic analysis techniques. Third, other future and existing simulation techniques
using block-level timings can exploit contexts to improve simulation accuracy, even
if they only apply simple mappings that only consider the preceding block.

References

1. AbsInt Angewandte Informatik GmbH (2016) aiT: worst-case execution time analyzers. http://
www.absint.com/ait

2. ARM: CoreSight: V1.0 architecture specification
3. Bellard F (2005) QEMU, a fast and portable dynamic translator. In: Proceedings of the

USENIX annual technical conference (ATEC)
4. Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower DR,

Krishna T, Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill MD, Wood DA (2011) The
GEM5 simulator. ACM SIGARCH Comput Archit News 39(2):1–7

5. Chakravarty S, Zhao Z, Gerstlauer A (2013) Automated, retargetable back-annotation for host
compiled performance and power modeling. In: Proceedings of the international conference on
hardware/software codesign and system synthesis (CODES+ISSS)

6. Chiang MC, Yeh TC, Tseng GF (2011) A QEMU and SystemC-based cycle-accurate ISS for
performance estimation on SoC development. IEEE Trans Comput Aided Des Integr Circuits
Syst 30(4):593–606

7. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Proceedings of 4th ACM SIGACT-
SIGPLAN symposium principles of programming languages

8. eCos. http://ecos.sourceware.org
9. Ferdinand C, Heckmann R, Langenbach M, Martin F, Schmidt M, Theiling H, Thesing S,

Wilhelm R (2001) Reliable and precise WCET determination for a real-life processor. In:
Embedded software. Springer, Berlin/Heidelberg, pp 469–485

10. Gustafsson J, Betts A, Ermedahl A, Lisper B (2010) The Mälardalen WCET benchmarks –
past, present and future. In: Lisper B (ed) WCET2010. OCG, Brussels, pp 137–147

11. Kodak test images. http://www.cipr.rpi.edu/resource/stills/kodak.html
12. libjpeg-turbo. http://libjpeg-turbo.virtualgl.org/
13. Lu K, Müller-Gritschneder D, Schlichtmann U (2013) Fast cache simulation for host-compiled

simulation of embedded software. In: Design, automation & test in Europe, pp 637–642.
doi:10.7873/DATE.2013.139

http://www.absint.com/ait
http://www.absint.com/ait
http://ecos.sourceware.org
http://www.cipr.rpi.edu/resource/stills/kodak.html
http://libjpeg-turbo.virtualgl.org/
http://dx.doi.org/10.7873/DATE.2013.139

20 Precise Software Timing Simulation Considering Execution Contexts 651

14. Martin F, Alt M, Wilhelm R, Ferdinand C (1998) Analysis of loops. In: Compiler construction.
Lecture notes in computer science, vol 1383. Springer, Berlin/Heidelberg, pp 80–94. doi:10.
1007/BFb0026424

15. Nexus 5001 Forum (2012) Nexus 5001 Forum Standard. IEEE-ISTO 5001-2012
16. Ottlik S, Stattelmann S, Viehl A, Rosenstiel W, Bringmann O (2014) Context-sensitive timing

simulation of binary embedded software. In: Proceedings of the 2014 international conference
on compilers, architecture and synthesis for embedded systems, CASES’14

17. Ottlik S, Borrmann JM, Asbach S, Viehl A, Rosenstiel W, Bringmann O (2016) Trace-based
context-sensitive timing simulation considering execution path variations. In: 21st Asia and
South Pacific design automation conference (ASP-DAC)

18. Ottlik S, Gerum C, Viehl A, Rosenstiel W, Bringmann O (2017) Context-Sensitive Timing
Automata for Fast Source Level Simulation, In: Proceedings of Design, Automation & Test in
Europe (DATE), 2017

19. Plyaskin R, Herkersdorf A (2010) A method for accurate high-level performance evaluation of
MPSoC architectures using fine-grained generated traces. In: Architecture of computing sys-
tems – ARCS 2010. Lecture notes in computer science, vol 5974. Springer, Berlin/Heidelberg,
pp 199–210

20. Plyaskin R, Herkersdorf A (2011) Context-aware compiled simulation of out-of-order proces-
sor behavior based on atomic traces. In: 2011 IEEE/IFIP 19th international conference on VLSI
and system-on-chip (VLSI-SoC)

21. Plyaskin R, Wild T, Herkersdorf A (2012) System-level software performance simulation
considering out-of-order processor execution. In: 2012 international symposium on system on
chip (SoC)

22. Rosa F, Ost L, Reis R, Sassatelli G (2013) Instruction-driven timing CPU model for efficient
embedded software development using OVP. In: 2013 IEEE 20th international conference on
electronics, circuits, and systems (ICECS)

23. Stattelmann S (2013) Source-level performance estimation of compiler-optimized embedded
software considering complex program transformations. Verlag Dr. Hut, München

24. Stattelmann S, Bringmann O, Rosenstiel W (2011) Fast and accurate source-level simulation
of software timing considering complex code optimizations. In: 2011 48th ACM/EDAC/IEEE
design automation conference (DAC)

25. Stattelmann S, Ottlik S, Viehl A, Bringmann O, Rosenstiel W (2012) Combining instruction
set simulation and WCET analysis for embedded software performance estimation. In: 2012
7th IEEE international symposium on industrial embedded system (SIES), pp 295–298

26. Thach D, Tamiya Y, Kuwamura S, Ike A (2012) Fast cycle estimation methodology for
instruction-level emulator. In: 2012 design, automation & test in Europe conference &
Exhibition (DATE)

27. Theiling H (2002) Control flow graphs for real-time systems analysis. Dissertation, Universität
des Saarlandes

http://dx.doi.org/10.1007/BFb0026424
http://dx.doi.org/10.1007/BFb0026424

Part VI
Performance Estimation,
Analysis, and Verification

21Timing Models for Fast Embedded Software
Performance Analysis

Oliver Bringmann, Christoph Gerum, and Sebastian Ottlik

Abstract

In this chapter, we give an overview on timing models which provide an abstract
representation of the timing behavior for a given software. These models can
be driven by a functional simulation based on the simulated control flow. As
the timing model itself can reach a level of accuracy that is comparable to a
classic timing simulation of the represented software, these approaches enable a
fast yet accurate software performance analysis. In this chapter, we focus on the
generation and structure of various models but also provide a brief introduction
into their integration with a functional simulation. The presented approaches are
targeting software executing on current and future system-on-chips with a wide
range of embedded processors – including Graphics Processing Units (GPUs).

Acronyms

ASIP Application-Specific Instruction-set Processor
CFG Control-Flow Graph
CPU Central Processing Unit
DSP Digital Signal Processor
GPU Graphics Processing Unit
MLoC Million Lines of Code

O. Bringmann (�)
Wilhelm-Schickard-Institut, University of Tübingen, Tübingen, Germany

Embedded Systems, University of Tübingen, Tübingen, Germany
e-mail: oliver.bringmann@uni-tuebingen.de

C. Gerum
Embedded Systems, University of Tübingen, Tübingen, Germany
e-mail: christoph.gerum@uni-tuebingen.de

S. Ottlik
Microelectronic System Design, FZI Research Center for Information Technology, Karlsruhe,
Germany
e-mail: ottlik@fzi.de

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_22

655

mailto:oliver.bringmann@uni-tuebingen.de
mailto:christoph.gerum@uni-tuebingen.de
mailto:ottlik@fzi.de

656 O. Bringmann et al.

RTL Register Transfer Level
SoC System-on-Chip
VIVU Virtual Inlining and Virtual Unrolling
VLIW Very Long Instruction Word
WCET Worst-Case Execution Time

Contents

21.1 Introduction . 656
21.2 Background . 658

21.2.1 Challenges in Performance Evaluation of Modern Embedded Systems 658
21.2.2 Static Software Timing Analysis . 659
21.2.3 Simulation-Based Software Timing Analysis . 659
21.2.4 Summary . 662

21.3 Modeling Using Hardware-Independent Execution Cost Estimates 663
21.4 Modeling Using Partial Architectural Knowledge . 665

21.4.1 Static Timing Estimation Using Pipeline Execution Graphs 666
21.4.2 Timing Annotation and Simulation . 668

21.5 Modeling Using Detailed Microarchitectural Knowledge . 669
21.5.1 Framework Overview. 669
21.5.2 Static and Dynamic Analysis . 670
21.5.3 Enhancing Accuracy by Considering Execution Contexts 671

21.6 Case Study: Modeling the Performance of a GPU-Based Microarchitecture 672
21.6.1 Applying the Simulation Approach to GPU Cores . 672
21.6.2 Results . 676

21.7 Approaches to Include a Cache and Memory Simulation . 678
21.8 Discussion . 679

21.8.1 Comparison of Modeling Techniques . 679
21.9 Conclusions . 680
References . 680

21.1 Introduction

The ever increasing demand for new and more advanced features in products
including embedded systems is leading to an increased relevance and complexity
of embedded software to be used to realize these features. In addition, the growing
computational demand of embedded software can only be served by more and
more complex hardware architectures. Furthermore, for many embedded systems,
software performance or even strict adherence to timing requirements is a serious
factor, in particular for safety-critical products. Therefore, it is essential to integrate
efficient timing and performance analysis methods and tools into the development
process.

Software timing simulations are one approach to software timing and perfor-
mance analysis. In contrast to a direct evaluation of software on the target hardware,
simulations offer many advantages; the most important are reproducibility and
greatly enhanced observability. In contrast to static analysis, using simulation is
more natural to a developer and does not suffer from the overly conservative
approximations necessary to avoid state space explosion in static analysis.

21 Timing Models for Fast Embedded Software Performance Analysis 657

Besides these decisive advantages, there are a number of factors that must be
considered for simulation to achieve a high practical value: Firstly, a detailed
simulation of the underlying hardware greatly impairs simulation performance, up
to a degree where a simulation is essentially useless in many use cases. Therefore,
an abstraction is necessary. Secondly, there is an inherent loss of simulation
accuracy when raising the abstraction level. However, this accuracy loss needs to
be kept within acceptable limits; otherwise, simulation results become meaningless.
Thirdly, creating a complex simulation can take a considerable modeling effort.
Consequently, when choosing a simulation approach, the time-to-model must be
considered.

In this chapter, we discuss timing models that enable high-performance yet
accurate timing simulation. Essentially, these models provide a target platform-
specific model of the temporal behavior of the embedded software based on the
internal control flow. As the control flow of software programs can be tracked
very efficiently during fast functional simulation, these model can enable timing
simulation with a very low overhead. Since many factors that influence software
timing can be represented as a direct or an indirect function of the control flow, a
very high simulation accuracy can be achieved. While these models can be generated
automatically, additional knowledge of the target platform is required and needs to
be modeled and generated.

A wide range of sources can be applied during model generation, ranging
from observing code execution on prototyping hardware, where modeling effort is
negligible, to complex analytical models used in abstract interpretation.

Use cases for these models can be mainly found in the domain of embed-
ded software engineering and systems development. For example, they can be
applied in early evaluations of nonfunctional properties or to select components
in heterogeneous multiprocessor systems-on-a-chip. The need to regenerate the
model when the target platform changes limits their use in microarchitecture
design.

This chapter is organized as follows: In Sect. 21.2, we discuss software per-
formance analysis in general but with a particular focus on simulation and a
comparison of control-flow-driven timing models to other approaches. Afterward
we give an overview of three different approaches to control-flow-driven timing
models. These models differ in the necessary knowledge of the target platform and
the modeling effort. In Sect. 21.3, we discuss an approach that allows target platform
independent performance characterization during simulation. Target-specific timing
estimates are then generated after the simulation using an analytical target model.
In Sect. 21.4, we discuss an approach that employs a generic platform model, that
only has to be parametrized for a given target platform. In Sect. 21.5, we discuss an
approach that employs a specific platform model, that requires a detailed description
of the target hardware. In Sect. 21.6, we focus on a case study on modeling
GPU-based architectures as these kinds of architectures cannot be represented by
related models. In Sect. 21.8, we compare the presented approaches to modeling the
generation of software performance models. The main conclusions of this chapter
are summarized in Sect. 21.9.

658 O. Bringmann et al.

21.2 Background

21.2.1 Challenges in Performance Evaluation of Modern Embedded
Systems

As the main challenges for performance modeling and evaluation, we see software
complexity and code reuse, hardware complexity and heterogeneity, as well as speed
of performance analysis, which are briefly discussed in the following.

21.2.1.1 Software Complexity and Code Reuse
Current embedded software is large and complex. For example, Boeings 787 is
estimated to contain 6.5 Million Lines of Code (MLoC) for its avionics and on-
board support systems, while current premium class automobiles even run more
than 100 MLoC [8]. This high software complexity leads to an extensive reuse
of software components across different products. Considering these complexities,
performance modeling techniques need to be applicable to large software projects.
In cases of code reuse in different target systems, it would be beneficial if the
timing models could be reused if a software component is reused in a different
product.

21.2.1.2 Hardware Complexity and Heterogeneity
Many embedded systems contain complex hardware architectures. The ARM
processors from the Cortex-A series contain superscalar pipelines often with out-
of-order execution. But not only complex general purpose Central Processing Units
(CPUs) are used in current embedded systems, there are also a wide variety of
specialized processors like Digital Signal Processors (DSPs), Application-Specific
Instruction-set Processors (ASIPs), or Very Long Instruction Words (VLIWs)
processors. Moreover, in recent years, different Graphics Processing Unit (GPU)-
based architectures for embedded systems are offered [28] that combine standard
embedded processor architectures with GPUs. These are suitable as accelerators for
specific software tasks. Therefore, performance models should be able to represent
the timing-relevant behavior of the components of these complex, heterogeneous
systems.

21.2.1.3 Development Cycles and Modeling Effort
Embedded system designers face tight deadlines. This means that the development
process needs to be parallelized and has to support timing analysis and timing
error detection as early as possible. While hardware software codesign approaches
allow to start software development before the developed hardware is available,
performance models allow to expose performance relevant errors very early in the
development of an embedded system [44].

To reach this goal, the effort for model generation should be as low as possible,
and the generated models should be available very early in the development
process.

21 Timing Models for Fast Embedded Software Performance Analysis 659

21.2.1.4 Speed of Performance Analysis
When using timing models to evaluate the performance of embedded systems, the
speed of performance analysis is always an important optimization goal. The appli-
cation of high-level performance simulation increases the development productivity
and acceptance as simulation can easily be integrated into the development process.
There exist also some applications of performance models like Software-in-the-
Loop simulation [47] where the performance simulation needs to be faster than the
execution of the software on the target hardware.

21.2.2 Static Software Timing Analysis

Static software execution time analysis mostly uses a combination of abstract
interpretation [11] and Programming (ILP) [48] to determine an estimate of the
execution time of an embedded software without actually executing the software.

In static analysis, the modeling of timing behavior is only part of the analysis,
while a reconstruction of program structure [26, 46], program values, and loop
bounds is also an important aspect of the analysis. The usage of caches in embedded
architectures further complicates the static timing analysis of embedded systems.

Static analysis has the advantage that, using properly designed analysis, certain
properties of the timing estimation can be guaranteed. Especially a formally safe
Worst-Case Execution Time (WCET) estimate is currently not possible using the
other analysis techniques. On the other hand, static analysis is problematic as some
architectures such as many-core processors and GPUs are currently not analyzable
using a static analysis tool.

21.2.3 Simulation-Based Software Timing Analysis

In the following sections, we give an overview of methodologies that provide
some notion of time while simulating the execution of software on a processor. In
particular, we exclude trace-driven simulation [20] where only a prerecorded trace
of instructions is replayed.

21.2.3.1 RTL Simulation
In principle, a simulation can be generated from the Register-Transfer Level (RTL)
description of a system. While obtaining Register Transfer Level (RTL) code for
a full system is not practical for most application developers, such models are
sometimes available commercially. For example, ARM recently acquired Carbon
Design System and plans to market models compiled from the RTL descriptions as
ARM Cycle Models. However, even when accelerated using specialized compilers
such as Verilator [19], these simulations have a very low performance and therefore
are not a good choice for application performance analysis, unless exact results are
absolutely required.

660 O. Bringmann et al.

21.2.3.2 Fixed Throughput Simulation
Many commercial simulators, such as Imperas OVP [18] and ARM FastModels [1],
as well as mainline QEMU, provide a simple timing simulation that is based on
an user-specified instruction throughput. The main use case of these simulations is
functional analysis, where the simplified timing simulation only serves to ensure a
linear progression of time. As the throughput is assumed to be constant during a
simulation but can vary significantly for nontrivial applications on real processors,
these models are not appropriate for software performance analysis.

21.2.3.3 Microarchitectural Simulation
Microarchitectural simulation focuses on the interaction between hardware compo-
nents of the system microarchitecture such as individual processor pipeline stages,
functional units, or caches. Individual component models abstract implementation
details and only aim at approximating timing characteristics. The simulation is
usually cycle driven. For classical Systems-on-Chips (SoCs), well-known examples
of this class of simulators are Simplescalar [2] and Gem5 [4]. GPGPUsim [3] applies
this approach to GPUs.

While the low-abstraction level of these simulations suggest a near-exact simu-
lation, this is usually not achieved. Reported simulation errors when modeling real
processors [5, 16, 35] are, at best, equal to other approximate approaches, while
performance is significantly lower [2,10,35]. The main benefit of these simulations
is the ease of modifying low-level details (e.g., branch predictor policies). Therefore
this approach is mainly useful for computer architecture research but not a good fit
for software performance analysis.

21.2.3.4 Analytical Performance Estimation
Analytical performance models consist of a profiling phase and an estimation phase.
In the profiling phase, performance metrics such as instruction count, cache miss
rates, or the number of mispredicted branches are extracted during the execution of
a program. During the estimation phase, the performance models then integrate the
performance metrics to estimate program execution times using an analytic formula.
Analytical models for performance estimations of GPU cores were presented in [22]
and [31].

21.2.3.5 Phase-Based Performance Estimation
Another analytical approach is trying to reduce the simulation to phases of a
program representative for the behavior of the whole program. Sampling-based
analytical simulation models use a cycle accurate simulation but try to restrict the
simulation to parts of a program. Very simple applications of this principle are
just simulating the first n instructions of a program run and using the number of
instruction per cycle obtained from this simulation to interpolate the timing behavior
of the remainder of the program. A slight improvement can be reached when the
representative phase from the middle of the execution trace [49].

An application of this simulation technique is SimPoint [37, 38]; it divides the
program execution in phases of 100 million instructions. Phases are characterized

21 Timing Models for Fast Embedded Software Performance Analysis 661

by the basic block vectors capturing the number of executions of each basic block
during a phase. These basic block vectors are used to identify similar phases using
a clustering algorithm. The performance of the programs is estimated from the
results of a cycle accurate simulation of each phase closest to a cluster center.
Other approaches combine a sampling-based model with a higher-level analytical
performance model [43].

21.2.3.6 Interval-Based Simulation
Interval-based analytical performance models combine the profiling phase and the
estimation phase in one run.

As shown in Fig. 21.1, these performance models divide the execution of a
program in parts with a constant instruction throughput divided by stall events
like branch mispredictions or cache misses. These models therefore allow a more
accurate simulation of the interleaving in the processor pipeline compared to
analytical models considering the whole program execution.

In simple interval-based models [12], the duration of an interval is approximated
by the number of instructions in the interval divided by the dispatch width of the
simulated processor pipeline and a miss penalty of the miss event at the end of
the pipeline stage. Interval-based simulation is extended by Sniper [6] to improve
the execution time estimation of an interval by incorporating information on the
number of available functional units and allowing out of order execution of data
cache miss events. GPUMech [17] is an interval-based GPU performance model. It
uses interval-based simulation claims to simulate the timing behavior of GPU-based
systems. Their methods are comparable to the ones used in Sniper for CPUs. This
model has been applied to complex processor pipelines in [21].

21.2.3.7 Control Flow-Driven Simulation
Control flow-driven timing simulation is performed based on a priori estimations of
the execution time for small portions of the program code, as shown in Fig. 21.2.

CPI

Time
Intervall 1 Interval 2 Interval 3

Branch
Misprediction

Cache
Miss

Fig. 21.1 Simulation by dividing time into intervals between miss events

662 O. Bringmann et al.

1

2
3
4

6
5

Path Segment
Timing Characterisation

1

2
3
4

6
5

5 cycles

2 cycles

3 cycles

4 cycles

8 cycles
2 cycles

Fig. 21.2 Control flow-driven simulation uses static execution time estimates for small portions
of programs

Most approaches use an a priori timing estimation to get the execution times for the
basic block of the Control-Flow Graph (CFG).

For example, Tach, Tymiya, Kuwamura, and Ike [45] presented an approach
where instruction block timings are first estimated assuming no cache misses or
branch mispredictions. Timing is simulated by accumulating the block timings of all
executed blocks and further penalties for cache misses and branch mispredictions.

Recent research [7,13,14,29,30,32–34,39,41,42] has demonstrated that simula-
tion accuracy of this approach can be improved by differentiating different situations
in which an instruction block is executed. In the most simple case [7, 13, 14],
block timings are selected based on the preceding block. In contrast to a single
block timing, this improves the consideration of instruction dependencies and
instruction scheduling. Accuracy can be increased by considering more than one
preceding block [33]. Besides an approach that implements this scheme, we also
discuss a consideration of the preceding control flow using so-called Virtual Inlining
and Virtual Unrolling (VIVU) context [29, 30, 42] in this chapter. These context
enable a block timing granularity that allows an accurate simulation of complex
applications on complex processor architectures without any online modeling of
microarchitectural components, such as caches.

21.2.4 Summary

From the presented approaches especially control flow-driven simulation models
combine many advantages. They clearly separate the functional simulation from
the timing simulation. This allows a combination of these models with functional

21 Timing Models for Fast Embedded Software Performance Analysis 663

simulation by source-level simulation (cf. �Chap. 17, “Parallel Simulation”) or
binary-level simulation (cf. �Chaps. 19, “Host-Compiled Simulation” and � 20,
“Precise Software Timing Simulation Considering Execution Contexts”). This
separation also allows to choose different styles of timing models. In the following
sections, we present three approaches to generate timing models for these kinds of
systems at different abstraction levels.

21.3 Modeling Using Hardware-Independent Execution Cost
Estimates

This approach to performance modeling of embedded systems tries to use the bare
minimum of target specific information to produce a still meaningful result. While
many approaches to generate performance models operate on the target-specific bi-
nary of a software, this approach aims to extract and quantify hardware-independent
computational demand (HIC) from software source code and define a transition
to gain hardware-specific execution costs (HSE). One main characteristic of our
approach is that we extract computational demand for each software component
from the source code. This has to be done only once. There is no need for target
compilers or binary tools. We execute the application on the development platform
to obtain data-dependent but hardware-independent execution characteristics of the
application. If the developer changes components of the hardware platform or their
configuration, only the transition to the HSE needs to be recalculated. The basic
approach of the analysis is shown in Fig. 21.3.

The hardware independent computational demand is initially calculated on each
basic block of the source-level control-flow graph of the original application. As

Path Segment Timing Characterisation

Software Simulation

Fu
nc
tio
na
lS
im
ul
at
io
n

Source Code

Source Level
Simulation

Ex
ec

ut
ed

So
ur

ce
Le

ve
l

Ba
s ic

BL
o c

k s

HIC-Simulation

Hardware Indpendent
Computational Demand (HIC)

Extraction

Ac
cu

m
la

te
d

HI
C-

De
m

an
d

HIC to HSE
Transformation

Ha
rd

w
ar

e
S p

e c
i fi

c
E x

e c
ut

io
n

Co
st

s
(H

S E
)

Hardware Specific Performance
Properties

Fig. 21.3 Flow for the performance simulation with a hardware-independent computational
demand simulation

664 O. Bringmann et al.

short i;
unsigned result = 1;

i = EXP_BITS;
while(i > 0){
if((exponent & 1) == 1){
result = (result * base) % mod;
}
exponent >>= 1;
base = (base * base) % mod;
i--;
}
return result;

}

#define EXP_BITS 32

unsigned modexp(unsigned base,
unsigned exponent,
unsigned mod) { computational demand

BB1:

= (int) 1 = (short) 1
BB2:

cond_branch 1 > (short) 1
BB3:

cond_branch 1 & (unsigned) 1 == (unsigned) 1
BB4:

= (unsigned) 1 * (unsigned) 1 % (unsigned) 1
BB5:

» 1 * (unsigned) 1 % (unsigned) 1
= (unsigned) 2 – (short) 1
BB6:

ind_branch 1

Fig. 21.4 Calculating computational demand for a simple example

shown in Fig. 21.4, the approach extracts the computational demand by counting
the operation type and the data types it operates on.

The HSE determination is based on abstract hardware specifications. The
transition from HIC to HSE calculates the HSE for the considered pair of hardware
and software. This estimation requires only an abstract hardware specification that
can be extracted from the data sheets of the hardware platforms.

To calculate the hardware-specific execution costs, the target platform is specified
with processor-specific and operation-specific attributes. The processor-specific
attributes are:

1. The clock frequency at which the processor operates.
2. The branch predictor configuration, e.g., type and size of the target branch

predictor
3. The used cache sizes and associativities and replacement strategies and cache

miss penalties
4. A superscalar factor specifying the maximum number of instructions executed in

parallel

In contrast to the general processor-specific attributes, the operation-specific
attributes do not specify general behavior of the processor but give an execution
cost attribute for the

1. The operation that is executed by this branch predictor.
2. The data type this operation operates on.
3. The number of cycles this operand needs for execution.
4. The number of parallel FUs that can execute this instruction type.

21 Timing Models for Fast Embedded Software Performance Analysis 665

This means much less effort than implementing virtual models or using target
compilers and binary tools for WCET analyzers. The transition only needs seconds
which makes the approach much faster than the determination of HSE via virtual
prototypes or ISS and can speed up the design process in complex software systems
on heterogeneous hardware components before the initial mapping configuration
is available. The HSE values can be used for an initial mapping determination
approach. Experimental results show that the estimation is very fast and accurate
enough to help designers making initial system configuration decisions.

21.4 Modeling Using Partial Architectural Knowledge

In this approach, we assume that the information available is comparable to the
microarchitecture description given in architecture reference manuals of current
microprocessors. This information is not sufficient to build a detailed cycle accurate
simulator but can be used to derive analytic performance models of the microarchi-
tecture. As generation of these kinds of models needs only partial knowledge of the
modeled microarchitecture, we refer to them as partial microarchitectural models or
microarchitecture-aware models.

The complete flow of the performance modeling and simulation using partial
microarchitecture models is shown in Fig. 21.5. The method starts with the source
code and the binary code of an application. We then extract the structure of the
binary code CFG and do a structural matching of the source-level and binary-level
control flow graphs and automatically annotated with function calls which reference
the matched binary codes. Together with a generated path simulation code, this
allows a simulation of binary-level paths through execution of the annotated source

Path Segment Timing Charachterisation

Software Simulation

Fu
nc
tio
na
l S
im
ul
at
i o
n

Source Code

Binary Code

Source Level
Simulation

Binary Path
Simulation

Bi
na
ry
Ba
sic

B l
oc
k
E x
ec
ut
io
n

O
rd
er

Timing
Simulation

ResurceUsage
Simulation

Static Timing
Analysis

Structural
Analysis

ResourceUsage
Analysis

Es
tim

at
es

of
Re
so
ur
c e

Us
a g
e

an
T i
m
in
g

Analytic Timing
Model

Es
tim

at
ed

Fi
n a
l

Ex
ec
ut
i o
n
Ti
m
e

Fig. 21.5 Flow for the performance simulation with partial microarchitectural knowledge

666 O. Bringmann et al.

code. The source to binary-level matching and path simulation code generation is
not part of this chapter. Details of these steps are given in �Chap. 17, “Parallel
Simulation” and in [39–41].

The application-specific timing model is generated using an offline analysis of
the binary-level control-flow graphs. It calculates for each basic block an estimated
execution time depending on its predecessor. We additionally calculate a resource
usage histogram for the instructions in each basic block. The results of the offline
analysis are then added to the path simulation code and accumulate the per basic
block matrix during execution of the instrumented source code. After the execution
of the instrumented software, the accumulated performance metrics are used by
a target-specific analytical performance model to produce a final estimate of the
execution time.

Parts of the following subsections are based on our preceding publications
[13, 14]. In these publications, we specifically focused on the application of this
modeling style on GPUs. The following description is split in a part describing
the modeling of GPU architectures (Sect. 21.6.1) and Sects. 21.4.1 and 21.4.2
describing the target agnostic parts of the model generation and simulation.

21.4.1 Static Timing Estimation Using Pipeline Execution Graphs

The static basic block timing analysis determines an optimistic execution time for
each basic block in the binary-level control-flow graph. The effects of resource
contention on the execution time can be incorporated by an analytical model after
the timing simulation (Sect. 21.6.1). The analysis uses pipeline execution graphs
[24] to model the timing behavior of each instruction on the pipeline. Our pipeline
execution graph EGB for a basic block is defined as

EGB D .SB; DB; lat; use; res/

where the nodes in SB represent each execution step for each instruction on the
pipeline.DB
 SB�SB represents the dependence relation. It contains an edge for
each dependence corresponding to the instructions in the basic block. In our model,
an execution step might not directly correspond to a pipeline stage. The minimum
latency between the start of an execution step and the start of a dependent execution
step is given by the function lat W DB ! N0. Latency is expressed in cycles.

To incorporate the dynamic resource usage into the timing model, we extend
the pipeline execution graph model with an estimation of the resource usage. The
resource usage function use W VB ! N0 labels each step in the execution graph by
the number of cycles the resources in this step are taken. The function res W SB !
N0 maps each execution step to a unique identifier for the resource used in this step.

In Fig. 21.6, we show an example for a pipeline execution graph that is built for
the analysis of an Bolero-3M-based microcontroller [36]. These microcontrollers
are based on a PowerPC instruction-set architecture. Depending on the number of
instructions in a PPC processor. The front end of the processor pipeline allows

21 Timing Models for Fast Embedded Software Performance Analysis 667

IF DE WBMEI1: load r1, 0x15

IF DE WBEXI2: add r3, r1, 2

IF DE WBEXI3: add r4, r2, 5

IF DE WBMEI4: store r4, 0x15

+1 +1 +1

+1 +1 +1+1

+1

+1

Fig. 21.6 Pipeline execution graph-based timing analysis

fetches of up to two 32-Bit instructions at once. This is indicated by the edges
between the IF (instruction fetch) nodes of I1 and I3 and I2 and I4. So that every
instruction is fetched one cycle after the instruction that is two positions ahead in
the instruction stream. As the decode stage can handle two instructions as well,
its representation is similar to the IF stage. In the third stage, the instructions
are executed on multiple execution units. The instructions accessing memory are
executed on a single memory unit (MEM), while there are two execution units for
arithmetic and logic instructions available. This means there is a potential resource
conflict between the MEM nodes of instruction I1 and I4. There is no potential
resource conflict between I1 and I2 as the pipeline has two execution units for
this instruction type available. The writeback to register file is handled for two
instructions in parallel on this pipeline. The edges between the WB and DE nodes
of the graph indicate a true data dependency. I1 loads data from memory that is used
as an operand by the next instruction. In this case, the DE phase of instruction I2
needs to wait for the cycle after the writeback of node instruction I2. The same kind
of dependency also exists between instruction I3 and I4.

Provided a pipeline execution graph, the timing analysis is done as a fixpoint
iteration on the pipeline execution graph. The algorithm iterates over each state in
the pipeline execution graph and calculates the earliest start times for each node by
the maximum over the start times of the predecessors added with the corresponding
latencies. The fixpoint iteration is finished when the start times for each state do not
change anymore. To accelerate the convergence of the fixpoint iteration, we iterate
over the states in topological sort order, but the result of the iteration is independent
of the order in which the states are visited. The termination of the algorithm follows
from the absence of cycles in the execution graph. For the static execution time
analysis, we build the pipeline execution graph for the instructions of each basic
block and calculate the fixpoint. It delivers a static timing analysis for the duration
of the basic block by the maximum start time of each node in the execution graph.
The analyzed execution time for a basic block vi is called tvi . Building the execution

668 O. Bringmann et al.

time of a kernel during simulation by summation over the basic block times ti would
overestimate the execution time of the kernel, because the execution of instructions
from adjacent basic blocks can overlap. To incorporate this effect into the static
timings, we also build pipeline execution graphs for the instructions from each pair
of adjacent basic blocks. The analyzed execution time for each pair of basic blocks
vi ; vj is called t.vi ;vj /.

The results of this static analysis are then used for a simulative approximation of
the timing behavior of a program.

21.4.2 Timing Annotation and Simulation

The timing information and resource information from static timing analysis is back
annotated to the original source code, by inserting function calls to timing functions
in the original source code and generating the corresponding timing function
implementations. The algorithm for timing annotation is shown in Algorithm 1.

Algorithm 1 Algorithm for timing annotation
for vS 2 VS do

if 9vB 2 VB W map.vB/ D vS then
insert function call to timing simulation in vS
create function for timing simulation
for paths p between a mapped block v

0

B and vB do
Add code to function for:
if last simulated block = v

0

B then
tthreadC D

P
vi2p=v

0

B
t.vi�1;vi / � tvi�1

for resources ri do
uthread .ri /C D

P
vi2p=v

0

B
use.ri ; vi /

end for
end if

end for
end if

end for

As the timing analysis has been done on the binary-level code and the simulation
is based on annotations in the source code, the algorithm depends on a good
mapping of binary basic blocks to source-level basic blocks. An example for a
good method for mapping of source-level to binary-level control flow is given in
�Chap. 17, “Parallel Simulation”. The algorithm first iterates over all mapped
basic blocks in the source-level control-flow graph and inserts function calls that
do the timing simulation according to the static analysis. The functions for timing
simulation are generated in the inner loop of Algorithm 1. In this loop, the algorithm
iterates over all binary-level paths between matched blocks and calculates the
estimated execution time for this path by the sum over the pairwise execution times
of the nodes in the path t.vi�1;vi /. As the summation would count the execution time
for each start node twice, we subtract the execution time for each basic block tvi�1 .

21 Timing Models for Fast Embedded Software Performance Analysis 669

When doing simulations of GPU-based architectures, in addition to the execution
times, we also annotate the threads resource usage for all resources in the pipeline.
The results of an execution of the annotated source code on an OpenCL compatible
device are an optimistic timing estimation of each thread and each accumulated
resource usage of the thread for each resource in the pipeline. The final execution
time of the kernel is estimated from these values using an analytical model. Details
on an analytical model for GPUs are given in the following section.

21.5 Modeling Using Detailed Microarchitectural Knowledge

A complete, detailed description of the microarchitecture can be utilized to achieve
an exact performance simulation. However, due to their extremely low performance,
such simulations are, in practice, not a good choice for software performance anal-
ysis. Therefore, a simulation that achieves a high performance while maintaining an
acceptable accuracy is preferable for this purpose, even if complete knowledge of
the microarchitecture is available.

One concept for such a simulation is to shift most or all evaluations regarding
the microarchitecture to an offline analysis that is executed before the simulation.
The result of a single analysis can be reused by multiple simulations; the analysis
cost is distributed among these simulations. This approach is therefore attractive for
exploring software performance in different scenarios, such as over a wide range of
input values. In this section, we give a brief overview of our simulation framework
that realized this concept. More details can be found in �Chap. 19, “Host-Compiled
Simulation”.

21.5.1 Framework Overview

An overview of our current framework is shown in Fig. 21.7. At first, the application
binary code for the target processor is analyzed either statically or dynamically. In
both cases, analysis results are stored in a software-specific timing model which is
sometimes referred to as a timing database (TDB). A comparison of both analysis
approaches is given in Sect. 21.5.2.

The timing model contains a description of the binary code control flow and
timings for basic blocks of the program. Multiple timings are available for each
block and differentiated by context. A context is an abstraction of the control flow
leading to a block. The main advantages of using contexts is that the instructions
that were executed before a block can be reflected in the context-dependent block
timing. More details on this approach are given in Sect. 21.5.3.

A timing model can then be used in multiple simulations, where the timing
simulation is driven by events indicating the execution of target basic blocks as
defined by the control flow stored in the timing model. In a simulation of binary
code execution (cf. �Chap. 19, “Host-Compiled Simulation”), this can be achieved
by instrumenting the first instruction of each basic block, whereas in a source-level

670 O. Bringmann et al.

Path Segment Timing Characterization

Software Simulation

Timing
Model

Source Code

Binary Code

Static TimingAnalysis

Execution Tracing

Binary Level
Simulation

Source Level
Simulation

Context
Selection

Timing
Simulation

Binary Path
Simulation Bi

na
ry
Ba
sic

Bl
oc
ks
in

Ex
ec
u t
io
n
Or
de
r

Fig. 21.7 Overview of the simulation framework

simulation (cf. �Chap. 17, “Parallel Simulation”, Section 21.4), a so-called path
simulation is necessary, which simulates the target binary control flow based on the
source-level control flow.

21.5.2 Static and Dynamic Analysis

The need for a precise microarchitectural model is the main drawback of detailed
timing simulation. To limit the impact of this drawback, our framework is flexible in
the kind of models that can be used by the offline analysis and supports both static
and dynamic analyses. Thereby a model that was originally intended for a different
purpose can be utilized by our simulation.

However, there are also various differences between static and dynamic analysis
that lead to different advantages and disadvantages of one approach compared to
the other. In principle, multiple timing models can be combined, which could also
enable a hybrid analysis, but this topic is currently beyond the scope of our research.

In static analysis, the timing of the software is analyzed without executing
the software. To avoid the halting problem, the actual states the software can
get into have to be over-approximated. Firstly, this complicates the calculation of
block timings. In practice, this currently restricts the application of static timing
analysis to complex microarchitectures, in particular those including out-of-order
execution. Secondly, it can lead to coverage deficits for programs containing
asynchronous (e.g., interrupts) and indirect (e.g., function pointers) control flow
changes. We developed a methodology to run multiple static analyses and combine
their results to remove this issue.

In dynamic analysis, the timing of the software is analyzed by observing its
execution. This avoids the issues of static analysis but makes it necessary to choose

21 Timing Models for Fast Embedded Software Performance Analysis 671

program inputs that provide sufficient coverage. However, our experimental results
demonstrate that selecting such inputs manually is feasible. Currently we observe
software executions on target hardware, which removes the need for an additional
model during the analysis.

21.5.3 Enhancing Accuracy by Considering Execution Contexts

On most modern embedded processors, the timing of an instruction sequence
depends on the state of the microarchitecture before its execution, for example, due
to instruction dependencies or cache contents. This state is heavily influenced by
the already executed instructions. As aforementioned, this factor can be leveraged
to improve simulation accuracy by obtaining multiple possible timings for each
instruction block during the offline analysis and selecting an appropriate value for
each execution of a block during the simulation.

More specifically, timings are differentiated by the preceding control flow.
However, as the set of paths to block can in general be infinite and is likely
excessively large for nontrivial programs, it is not possible to calculate a distinct
timing for every path. Instead, the set of control flow paths is divided into a
finite number of subsets, which are referred to as contexts, and block timings are
differentiated by context.

In our framework, we apply the so-called VIVU contexts [26], which were
originally developed for static analysis. Figure 21.8 shows a simple example for
a VIVU contexts. This kind of context information captures the call stack and
the loop iteration counts on the way from the start of the program to each basic
block. The fact that this approach allows to distinguish the timing behavior of
basic blocks depending on the call stack and the loop iteration count is reflected
by its full name. Our experimental results demonstrate [30] that VIVU context
coupled with a dynamic analysis by observing hardware executions enables a
highly accurate timing simulation. This simulation is capable of simulating complex

Fig. 21.8 An example for
VIVU-context-based timing
selection 1

2 3

4

5 6

10

9 8
7

f() g() g.l1
Contexts
f():

f;
g():

f>g;
g.l1():

f>g>g.l1,0
f>g>g.l1,1
f>g>g.l1,2
...

672 O. Bringmann et al.

software executing on complex processors at an error of typically less than 10%
without any further modeling of microarchitectural elements including data caches.

21.6 Case Study: Modeling the Performance of a GPU-Based
Microarchitecture

In this case study, we show the application of the timing model from Sect. 21.4 to a
complex microarchitecture.

21.6.1 Applying the Simulation Approach to GPU Cores

To generate timing models for GPUs, the static analysis is run on the PTX assembly
code and currently models the microarchitecture of a NVIDIA GTX 480 core. The
analysis assumes that the pipeline is occupied by one warp exclusively.

As shown in Fig. 21.9, the static analysis models each instruction’s execution on
the given pipeline as a graph with five nodes. The first node (IF) corresponds to
the front-end part of the pipeline up to the instruction buffer. The second part (IS)
models the issue stage and the scoreboard. The latency of register accesses in the
operand collector units is modeled by the node labeled OC. The fourth node (ALU)
models the timing effects of the actual execution. This node is labeled according
to the used execution unit (ALU, SFU, MEM). The last node models the writeback
stage of the pipeline. This node is labeled WB.

Figure 21.10 shows an example of a pipeline execution graph for three add
instructions on the pipeline of a GeForce GTX480 which is quite similar to the GPU
core used in NVIDIAs embedded SoC Tegra K1 [25]. The latencies inherent to the

ICache

Program
Counters

Decode

IBuffer

Scoreboard

Issue

SIMT-
Stack

Operand
Collector

Register
File

ALU

SFU

Memory

Write
Back

IF IS OC ALU WB

Fig. 21.9 GPU microarchitecture and the pipeline model

21 Timing Models for Fast Embedded Software Performance Analysis 673

IF IS OC ALU WB
+2 +1 +3 +4

IF IS OC ALU WB
+2 +1 +3 +4

IF IS OC ALU WB
+2 +1 +3 +4

+0

+0

+3

+1

+1
+1 +1

+1

add.f32 %f59,%f48,%f50

add.f32 %f55,%f49,%f58

add.f32 %f57,%f50,%f59

Fig. 21.10 Example of our pipeline analysis

pipelined execution of each instruction on the pipeline are shown by black edges.
Instructions always take two cycles from instruction fetch to issue. The latency from
issue to the operand collectors is one cycle for all instructions. The latency of the
operand collectors depends on the number of registers read by the operation. The
best case is always the number of registers read by the operation. The latency from
execute to writeback can vary greatly depending on the instruction type. Load/store
instructions show one cycle under the assumption of a cache hit and full coalescing
of memory accesses, while double precision floating point division has a latency of
330 cycles. Resource dependencies between instructions are modeled by the blue
edges in Fig. 21.10. As the front end fetches two adjoining instructions at a time
in program order, each instruction is connected by an edge with latency zero in
program order. To integrate the additional latency that every instruction is only
fetched when the two entry instruction buffer is empty, we add additional edges
between every second instruction. These edges have a latency of three cycles as this
is the best-case instruction fetch latency. The issue stage issues one instruction a
cycle in program order; this is modeled by an edge with latency one between each
successive instruction. Resource dependencies in the execute stage are modeled in
the same way. If there are multiple copies of a resource, the modeled pipeline has
two ALUs, and the resource dependency edges skip instructions to account for the
multiplicity of the resource. The same applies to the writeback step, as the pipeline
can writeback two results at a time, there is only a dependency between every second
node in WB. Data dependencies are always modeled by an edge with latency one
from the writeback of the preceding instruction to the issue state of the depending
instruction.

21.6.1.1 Analytical Timing Approximation for GPUs
Due to the inherent parallelism of GPU architectures, the cycle times and resource
usages obtained from executing the annotated source code are specific to individual
threads of the executed kernel, the levels of parallelism handled within the pipeline
of a GPU core, simultaneous multi-threading, and warp-level parallelism.

Warps consist of the instructions of multiple threads from the same local work
group. While the warp size may vary depending on the size of local work groups,

674 O. Bringmann et al.

branch

path A path B

reconvergence

path B

path A

Time

Fig. 21.11 An example of branch divergence

the preferred and maximum warp size on NVIDIA GPUs has been 32 threads for
several generations. The threads of a warp always execute the same instruction in
lockstep but are allowed to branch independently. As the instructions are allowed to
branch independently, a so-called branch divergence can occur. Branch divergence
is handled in hardware by executing each path sequentially and masking those
operations which did not take the currently selected path. Figure 21.11 shows an
example of branch divergence.

Apart from branch divergence, warps execute the instructions of several threads
in lockstep. Each streaming multiprocessor handles multiple warps concurrently
using fine-grained multi-threading.

The timing model uses the per thread execution times and resource usages as
determined by the native execution of the annotated source code to calculate an
estimate of the execution time of the whole kernel. The analytical model follows the
hierarchy of parallelism of the multi-threaded execution. The algorithm starts with
the execution time of the threads as determined by the source-level simulation. The
execution time of a warp is then calculated from the execution time of the threads
that form this warp. The execution times of all warps in a work group are combined
to form the execution time of a work group. The execution time of the whole kernel
is then estimated from the execution times of all work groups in the kernel. Timings
up to this point do not consider the resource contention due to parallel execution
of warps in the pipeline. This resource contention is taken into account by a final
correction step.

The first step of the timing estimation calculates the execution time of each warp.
This is done by first determining which threads form a common warp and then
calculating the execution time of a warp tWi by taking the maximum execution time
of all threads in the warp.

tWi D max
ti2Wi

.tti /

This calculation is motivated by the fact that all threads in a warp are executing the
same instruction in lockstep. Due to branch divergence, it is still possible that the

21 Timing Models for Fast Embedded Software Performance Analysis 675

simulated execution time of the threads in warp shows different execution times. The
effects of branch divergence are approximated by taking the maximum execution
time of all threads in the warp. This does not fully simulate all timing effects
of branch divergence but accurately handles the most important case, of branch
divergence at an if statement without an else or branch divergence at a loop exit
condition. Real branch divergence in an if-else statement is not fully handled by our
current model, but taking the maximum execution time still approximates the timing
effects of this case. The execution times of a local work group WGj is modeled by
the end time of the last warp tlastj in the work group. All warps in a local work
group are started at the same time. So we can calculate the end time of the last warp
by taking the maximum execution time of all warps in the local work group.

tlastj D max
twi 2WGj

.twi /

Due to the limited bandwidth of the issue stage, the threads of a local work group,
the i -th warp of a local work group issues at least bi=2c cycles after the first thread
of the local work group. To incorporate this in our model, we add this to the finish
time of the last warp. This leads us to the final equation for the execution time of the
last warp

tlastj D max
twi 2WGj

.twi C bi=2c/

The finish time of the last warp in each local work group is used to calculate the
execution times of a kernel. The local work groups of a kernel can be executed
in parallel, but due to constraints of a GPU’s hardware, not all local work groups
might be able to run in parallel. Given the number of parallel work groups npar ,
we estimate the finish time of each work group. The first npar work groups are
started in parallel. The next work group is started when a work group finishes. This
is expressed by the following equation:

tWGj D

(
tlastj W j < npar
mink2fj�npar ;:::;j�1g.tWGk /C tlastj W j � npar

The upper part of the equation calculates the finish times for the first npar work
groups, by using the finish time of the last warps. All further work groups are
simulated by taking the minimum over the npar predecessors and adding the finish
time of the last warp in this work group. The optimistic execution time of the whole
kernel is then the maximum finish time over all work groups:

tkernel_opt D max
WGi

.tWGi /

The kernel execution time so far does not consider any delays due to resource
conflicts between multiple warps on the same pipeline. These resource conflicts

676 O. Bringmann et al.

are modeled by the last step of our analytical model. The analytical model first
calculates the resource usage useWj .ri / of a warp Wj as the maximum resource
usage over all threads in the warp:

useWj .ri / D max
tk2Wj

.usetk .ri //

The resource usage is calculated for each resource ri . We then calculate the resource
usage of the whole kernel by summation over the resource usage of all warps in the
kernel:

usekernel .ri / D
X

Wi2Warps

useWi .ri /

The optimistic execution time is then combined with the kernel’s maximum resource
usage to form the final execution time estimate. The most successful combination
of resource usage and optimistic execution time we have found is the maximum of
both values.

tkernel D max.tkernel_opt ;max
ri2R

usekernel .ri//

This model is surprising as it only takes resource contention into account when
it is certain that there must be resource conflicts in the pipeline. But as GPUs
are optimized for a high throughput, this model seems a reasonable choice. The
accuracy of these models can be improved by doing a probabilistic approximation
of the resource conflicts [14].

21.6.2 Results

We evaluated the performance model using several synthetic and real world
benchmarks. All simulations were run on an Intel Core i7-4770 K CPU at 3.5 GHz
with a NVIDIA GTX780 GPU with 12 streaming multiprocessors at 952 MHz.
For the execution of the instrumented source code, we used either the CPU using
Intel’s implementation of OpenCL for CPUs or on the GPU using NVIDIA’s
implementation of OpenCL for GPUs. For comparison, we used the cycle accurate
GPU simulator gpgpu-sim. Our configuration is based on the configuration for a
NVIDIA GTX480 GPU as delivered by gpgpu-sim, but we reduced the model to
more closely resemble an NVIDIA embedded gpu core. We also activated the so-
called perfect memory mode of gpgpu-sim. This mode handles all memory accesses
as cache hits. We choose to use a simulator for our evaluation as only limited
information on the internal architecture of actual GPUs is available, and we needed
to verify the results of the pipeline model ignoring influences from the memory
subsystem.

21 Timing Models for Fast Embedded Software Performance Analysis 677

ho
tsp

ot nn

km
ea
ns
1

km
ea
ns
2

oc
lV
ec
to
rA
dd

CO
RR

FD
TD

-2
D

3D
CO

NV
1

3D
CO

NV
2

3D
CO

NV
3

2D
CO

NV

CO
VA

R1

CO
VA

R2

GE
M
M
3M

M
0

0.5

1

1.5

A
cc
ur

ac
y

i7-4770K GTX780

Fig. 21.12 Accuracy of the GPU performance simulation

The proposed simulation framework has been implemented as a shared library
implementing the run-time API for translation and running of OpenCL kernels.
For performance simulations, the library can be preloaded using the standard Unix
LD_PRELOAD mechanism, so no changes to the host binaries used for simulation
are needed. The kernels were translated to PTX code using clang as compiler [23].
All benchmarks were run with most compiler optimizations enabled (-O3), and we
used the compiler switch to enable debug information in the compiler-generated
assembly files (-g). We evaluated the performance model with benchmarks from
the Rodina [9] and polybench-gpu [15] Benchmarks.

Figure 21.12 shows the execution times as estimated by our method divided
by the execution times provided by gpggpu-sim. All our execution times
underestimate the execution time as is expected by the best-case assumptions made
by the performance modeling. For all but two kernels, the proposed simulation
technique provides an accuracy of 80% or higher.

The accuracy results do not change between execution of the instrumented source
code on a CPU or GPU as the performance simulation can be run on any OpenCL
compatible device. The speedups in terms of the simulation time are shown in
Fig. 21.13. The simulation time of our tool includes the time for data transfers
from and to the OpenCL device, the execution of the kernel on the device, and
the execution time of the analytical resource conflict model. As our goal is to
support the simulation of long running application scenarios, the speedups do not
include the time used for the static analysis of GPU kernels and binary to source
matching. When instrumented source code is run on a CPU, speedups range between
140 for oclVectorAdd and 24061 for kmeans2. If the instrumented source code is
run on a GPU, the speedups range between 477 for oclVectorAdd and 67750 for
COVAR. The variation of execution speeds is partly explained by different basic
block sizes in the applications. The other important factor considering speedups
is the proportion of execution time of a thread to the number of threads. In our

678 O. Bringmann et al.

ho
tsp

ot nn

km
ea
ns
1

km
ea
ns
2

oc
lV
ec
to
rA
dd

CO
RR

FD
TD

-2
D

3D
CO

NV
1

3D
CO

NV
2

3D
CO

NV
3

2D
CO

NV

CO
VA

R1

CO
VA

R2

GE
M
M
3M

M

102

103

104

105
Sp

ee
du

p

i7-4770K GTX780

Fig. 21.13 Speedup of the simulation compared to the ISS gpgpusim

model, threads are simulated with the parallelism of the OpenCL device used for
the simulations but our analytical performance model is run on the host without the
use of parallelism. All benchmarks except kmeans1 show an improvement of the
simulation speed when the instrumented source code is executed on the GPU. The
simulation performance of kmeans1 degrades slightly as this benchmark does not
fully utilize the available parallelism on the GPU.

21.7 Approaches to Include a Cache and Memory Simulation

The models so far assume that the latency of instructions can be statically deter-
mined. There are three basic approaches to integrate the simulation.

The simplest approach is an offline cache simulation. Prerequisite for an offline
cache simulation is an approximation prior to the performance analysis. In an
offline cache simulation, the cache miss rates of the application can be estimated
using an external cache simulator. Either by executing the target binary code of
the application on an instruction-set simulator or by executing the application on a
host-compiled cache simulator like cachegrind [27]. Cache miss rates might even
be provided as estimates by the developer using the performance model. The effect
of the memory performance can then be incorporated into the model generation by
increasing the latencies for each memory accessing instruction using an adoption of
the standard formula to approximate the average memory access time:

Average Memory Access TimeDCache Hit TimeCCache Miss Rate �Miss Penalty

21 Timing Models for Fast Embedded Software Performance Analysis 679

This is the approach that is most compatible with the hardware-independent
computational demand simulation, as the average memory access time can be used
to dynamically determine the hardware-independent computational demand.

In contrast to an offline analysis that is run ahead of the simulation time, an online
analysis that is run concurrently to the timing simulation might be carried out.

In the case of context-sensitive models based on hardware tracing, the memory
subsystem often does not need to be modeled, as the timing impact of the memory
subsystem is already part of the timed basic block traces, and a context-sensitive
performance model reflects the timing impact well enough for many applications.

When higher accuracies or safe bounds are required. The timing relevant
behavior of the memory subsystem can be analyzed by using a fully static analysis.
In this case, the cache analysis is run in before the pipeline analysis and the results of
the cache analysis are integrated with the pipeline analysis by changing the latencies
of each individual instruction. If context-sensitive analyses are used, the pipeline
analyses use individual latencies for each pair of instruction and context.

21.8 Discussion

The modeling techniques presented in this chapter represent models at different lev-
els of abstraction and different trade-offs considering the challenges from Sect. 21.2.
In this section, we briefly compare different modeling techniques addressing these
challenges.

21.8.1 Comparison of Modeling Techniques

All of the considered modeling techniques have some specific drawbacks. For early
platform component selection and task mapping onto different cores, it is probably
the best solution to use hardware-independent execution cost estimates taken from
Sect. 21.3 as these models require the least development effort and allow a good
performance approximation for a wide variety of hardware components. However,
the main drawback of these models are their quite low simulation accuracy.

The highest accuracy can be achieved by using context-sensitive perfor-
mance models with detailed knowledge about the underlying microarchitecture
(Sect. 21.5). These models often come up with an average simulation error below
1% and a maximum simulation error below 10%. The main drawback of this
technique is the modeling effort and the need of a detailed microarchitectural model
in terms of a cycle accurate simulator, a static WCET analysis tool, or a hardware
implementation using a complex tracing unit. At least one of these approaches
is generally available for standard embedded CPUs, but these are not generally
available for application-specific processors or GPUs. If none of these approaches
are available, the generation of a performance model would become necessary
which requires an effort of several person months.

680 O. Bringmann et al.

The technique using partial knowledge about the microarchitecture (Sect. 21.4
tries to balance the modeling effort and the model accuracy. Timing models can
be developed in less than a month, and these models can represent most of the
microarchitectural timing behavior of modern pipelined architectures. So these
models are available very early on in the design process. This modeling style is
also the only one that has been successfully applied to GPU-based microarchitec-
tures, making it currently the correct choice for modeling of application-specific
processors especially GPUs and GPU-based architectures.

21.9 Conclusions

In this chapter, we have discussed three different approaches to provide models
for software performance analysis and compared their drawbacks. None of these
techniques are able to fulfill all characteristics desired from a software performance
model. Future research will need to allow an easier integration and seamless switch-
ing between different modeling techniques. Furthermore, an easy optimization of a
performance model toward a timing characteristics of a desired target application
has to be considered.

References

1. Arm fast models. http://www.arm.com/products/tools/models/fast-models/
2. Austin T, Larson E, Ernst D (2002) Simplescalar: an infrastructure for computer system

modeling. Computer 35(2):59–67
3. Bakhoda A, Yuan GL, Fung WWL, Wong H, Aamodt TM (2009) Analyzing CUDA workloads

using a detailed GPU simulator. IEEE, pp 163–174. doi:10.1109/ISPASS.2009.4919648
4. Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower DR,

Krishna T, Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill MD, Wood DA (2011) The
Gem5 simulator. SIGARCH Comput Archit News 39(2):1–7. doi:10.1145/2024716.2024718

5. Butko A, Garibotti R, Ost L, Sassatelli G (2012) Accuracy evaluation of Gem5 simula-
tor system. In: 2012 7th international workshop on reconfigurable communication-centric
systems-on-Chip (ReCoSoC), pp 1–7. doi:10.1109/ReCoSoC.2012.6322869

6. Carlson TE, Heirman W, Eyerman S, Hur I, Eeckhout L (2014) An evaluation of high-level
mechanistic core models. ACM Trans Archit Code Optim (TACO). doi:10.1145/2629677

7. Chakravarty S, Zhao Z, Gerstlauer A (2013) Automated, retargetable back-annotation for host
compiled performance and power modeling. In: Proceedings of the ninth IEEE/ACM/IFIP
international conference on hardware/software codesign and system synthesis (CODES+ISSS),
Newport Beach

8. Charette RN (2009) This car runs on code. IEEE Spectr 46(3):3
9. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Lee SH, Skadron K (2009) Rodinia: a bench-

mark suite for heterogeneous computing. In: 2009 IEEE international symposium on workload
characterization (IISWC), vol 2009. IEEE, pp 44–54. doi:10.1109/IISWC.2009.5306797

10. Chiang MC, Yeh TC, Tseng GF (2011) A QEMU and SystemC-based cycle-accurate ISS for
performance estimation on SoC development. IEEE Trans Comput Aided Des Integr Circuits
Syst

11. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium principles of programming languages, New York

http://www.arm.com/products/tools/models/fast-models/
http://dx.doi.org/10.1109/ISPASS.2009.4919648
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/ReCoSoC.2012.6322869
http://dx.doi.org/10.1145/2629677
http://dx.doi.org/10.1109/IISWC.2009.5306797

21 Timing Models for Fast Embedded Software Performance Analysis 681

12. Eyerman S, Eeckhout L, Karkhanis T, Smith JE (2009) A mechanistic performance
model for superscalar out-of-order processors. ACM Trans Comput Syst 27(2):3:1–3:37.
doi:10.1145/1534909.1534910

13. Gerum C, Bringmann O, Rosenstiel W (2015) Source level performance simulation of GPU
cores. In: Design automation and test Europe, Grenoble

14. Gerum C, Rosenstiel W, Bringmann O (2015) Improving accuracy of source level tim-
ing simulation for GPUs using a probabilistic resource model. In: International confer-
ence on embedded computer systems: architectures modeling and simulation (SAMOS),
Samos

15. Grauer-Gray S, Xu L, Searles R, Ayalasomayajula S, Cavazos J (2012) Auto-tuning a high-
level language targeted to GPU codes. In: 2012 innovative parallel computing (InPar). IEEE,
pp 1–10. doi:10.1109/InPar.2012.6339595

16. Gutierrez A, Pusdesris J, Dreslinski RG, Mudge T, Sudanthi C, Emmons CD, Hayenga
M, Paver N (2014) Sources of error in full-system simulation. In: 2014 IEEE international
symposium on performance analysis of systems and software (ISPASS). IEEE, Piscataway,
pp 13–22

17. Huang JC, Lee JH, Kim H, Lee HHS (2014) GPUMech: GPU performance modeling
technique based on interval analysis. In: 47th annual IEEE/ACM international symposium on
microarchitecture, pp 268–279. doi:10.1109/MICRO.2014.59

18. Imperas open virtual platforms. http://www.ovpworld.org/
19. Introduction to verilator. http://www.veripool.org/wiki/verilator
20. Isshiki T, Li D, Kunieda H, Isomura T, Satou K (2009) Trace-driven workload simulation

method for multiprocessor system-on-chips. In: Proceedings of the 46th annual design
automation conference, San Francisco

21. Karkhanis TS, Smith JE (2004) A first-order superscalar processor model. SIGARCH Comput
Archit News 32(2):338–349. doi:10.1145/1028176.1006729

22. Lai J, Seznec A (2012) Break down GPU execution time with an analytical method. ACM
Press, New York, pp 33–39. doi:10.1145/2162131.2162136

23. Lattner C, Adve V (2004) LLVM: a compilation framework for lifelong program analysis &
transformation. In: Proceedings of the 2004 international symposium on code generation and
optimization (CGO’04), Palo Alto

24. Li X, Roychoudhury A, Mitra T (2006) Modeling out-of-order processors for WCET analysis.
Real-Time Syst 34(3):195–227. doi:10.1007/s11241-006-9205-5

25. Li A, Serban R, Negrut D (2014) An overview of NVIDIA Tegra K1 architecture. http://sbel.
wisc.edu/documents/TR-2014-17.pdf

26. Martin F, Alt M, Wilhelm R, Ferdinand C (1998) Analysis of loops. In: compiler construc-
tion. Lecture notes in computer science, vol 1383. Springer, Berlin/Heidelberg, pp 80–94.
doi:10.1007/BFb0026424

27. Nethercote N, Seward J (2007) Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Proceedings of ACM SIGPLAN conference on programming language
design and implementation (PLDI), Seattle

28. Nvidia: NVIDIA Tegra K1 A New Era in Mobile Computing, pp 1–26
29. Ottlik S, Stattelmann S, Viehl A, Rosenstiel W, Bringmann O (2014) Context-sensitive timing

simulation of binary embedded software. In: Proceedings of the 2014 international conference
on compilers, architecture and synthesis for embedded systems (CASES)

30. Ottlik S, Borrmann JM, Asbach S, Viehl A, Rosenstiel W, Bringmann O (2016) Trace-based
context-sensitive timing simulation considering execution path variations. In: 21st Asia and
South Pacific design automation conference (ASP-DAC), Hong Kong

31. Parakh AK, Balakrishnan M, Paul K (2012) Performance estimation of GPUs with cache.
IEEE, pp 2384–2393. doi:10.1109/IPDPSW.2012.328

32. Plyaskin R, Herkersdorf A (2010) A method for accurate high-level performance evaluation of
MPSoC architectures using fine-grained generated traces. In: Architecture of computing sys-
tems – ARCS 2010. Lecture notes in computer science, vol 5974. Springer, Berlin/Heidelberg,
pp 199–210

http://dx.doi.org/10.1145/1534909.1534910
http://dx.doi.org/10.1109/InPar.2012.6339595
http://dx.doi.org/10.1109/MICRO.2014.59
http://www.ovpworld.org/
http://www.veripool.org/wiki/verilator
http://dx.doi.org/10.1145/1028176.1006729
http://dx.doi.org/10.1145/2162131.2162136
http://dx.doi.org/10.1007/s11241-006-9205-5
http://sbel.wisc.edu/documents/TR-2014-17.pdf
http://sbel.wisc.edu/documents/TR-2014-17.pdf
http://dx.doi.org/10.1007/BFb0026424
http://dx.doi.org/10.1109/IPDPSW.2012.328

682 O. Bringmann et al.

33. Plyaskin R, Herkersdorf A (2011) Context-aware compiled simulation of out-of-order proces-
sor behavior based on atomic traces. In: 2011 IEEE/IFIP 19th international conference on VLSI
and system-on-Chip (VLSI-SoC), Hong Kong

34. Plyaskin R, Wild T, Herkersdorf A (2012) System-level software performance simulation
considering out-of-order processor execution. In: 2012 international symposium on system on
chip (SoC), Tampere

35. Rosa F, Ost L, Reis R, Sassatelli G (2013) Instruction-driven timing CPU model for efficient
embedded software development using OVP. In: 2013 IEEE 20th international conference on
electronics, circuits, and systems (ICECS), Abu Dhabi

36. Semiconductor F, Microelectronics S (2012) Bolero_3m microcontroller reference manual
37. Sherwood T, Perelman E, Calder B (2001) Basic block distribution analysis to find periodic

behavior and simulation points in applications. In: Proceedings of the 2001 international
conference on parallel architectures and compilation techniques. IEEE, Washington

38. Sherwood T, Perelman E, Hamerly G, Calder B (2002) Automatically characterizing large
scale program behavior. ACM SIGARCH Comput Archit News 30(5):45–57, ACM

39. Stattelmann S (2013) Source-level performance estimation of compiler-optimized embedded
software considering complex program transformations. Verlag Dr. Hut

40. Stattelmann S, Bringmann O, Rosenstiel W (2011) Dominator homomorphism based code
matching for source-level simulation of embedded software. In: Proceedings of the seventh
IEEE/ACM/IFIP international conference on hardware/software codesign and system synthe-
sis, CODES+ISSS’11. ACM, New York, pp 305–314. doi:10.1145/2039370.2039417

41. Stattelmann S, Bringmann O, Rosenstiel W (2011) Fast and accurate source-level simulation
of software timing considering complex code optimizations. In: Proceedings of the 48th design
automation conference (DAC), San Diego

42. Stattelmann S, Ottlik S, Viehl A, Bringmann O, Rosenstiel W (2012) Combining instruction set
simulation and WCET analysis for embedded software performance estimation. In: 2012 7th
IEEE international symposium on industrial embedded system (SIES), Karlsruhe, pp 295–298

43. Van den Steen S, De Pestel S, Mechri M, Eyerman S, Carlson T, Black-Schaffer D, Hagersten
E, Eeckhout L (2015) Micro-architecture independent analytical processor performance and
power modeling. In: 2015 IEEE international symposium on performance analysis of systems
and software (ISPASS), pp 32–41. doi:10.1109/ISPASS.2015.7095782

44. Teich J (2012) Hardware/software codesign: the past, the present, and predicting the future.
Proc IEEE 100(Special Centennial Issue):1411–1430

45. Thach D, Tamiya Y, Kuwamura S, Ike A (2012) Fast cycle estimation methodology for
instruction-level emulator. In: 2012 design, automation & test in Europe conference &
exhibition (DATE), Dresden

46. Theiling H (2002) Control flow graphs for real-time systems analysis. Dissertation, Universität
des Saarlandes

47. Werner S, Masing L, Lesniak F, Becker J (2015) Software-in-the-loop simulation of embedded
control applications based on virtual platforms. In: 2015 25th international conference on field
programmable logic and applications (FPL). IEEE, Piscataway, pp 1–8

48. Wilhelm R (2004) Why AI + ILP is good for WCET, but MC is not, nor ILP alone. In:
Proceedings of the 5th international conference on verification, model checking, and abstract
interpretation, VMCAI 2004, Venice, pp 309–322. doi:10.1007/978-3-540-24622-0_25

49. Yi JJ, Kodakara SV, Sendag R, Lilja DJ, Hawkins DM (2005) Characterizing and comparing
prevailing simulation techniques. In: 11th international symposium on high-performance
computer architecture (HPCA-11), San Francisco

http://dx.doi.org/10.1145/2039370.2039417
http://dx.doi.org/10.1109/ISPASS.2015.7095782
http://dx.doi.org/10.1007/978-3-540-24622-0_25

22Semiformal Assertion-Based Verification
of Hardware/Software Systems in a
Model-Driven Design Framework

Graziano Pravadelli, Davide Quaglia, Sara Vinco, and Franco Fummi

Abstract

Since the mid-1990s, Model-Driven Design (MDD) methodologies (Selic, IEEE
Softw 20(5):19–25, 2003) have aimed at raising the level of abstraction through
an extensive use of generic models in all the phases of the development of
embedded systems. MDD describes the system under development in terms
of abstract characterization, attempting to be generic not only in the choice
of implementation platforms but even in the choice of execution and inter-
action semantics. Thus, MDD has emerged as the most suitable solution to
develop complex systems and has been supported by academic (Ferrari et al.,
From conception to implementation: a model based design approach. In: Pro-
ceedings of IFAC symposium on advances in automotive control, 2004) and
industrial tools (3S Software CoDeSys, 2012. http://www.3s-software.com; At-
ego ARTiSAN, 2012. http://www.atego.com/products/artisan-studio; Gentleware
Poseidon for UML embedded edition, 2012. http://www.gentleware.com/uml-
software-embedded-edition.html; IAR Systems IAR visualSTATE, 2012. http://
www.iar.com/Products/IAR-visualSTATE/; rhapsodyIBM Rational Rhapsody,
2012. http://www.ibm.com/software/awdtools/rhapsody; entarchSparx Systems
Enterprise architet, 2012. http://www.sparxsystems.com.au; Aerospace Valley
TOPCASED project, 2012. http://www.topcased.org). The gain offered by the
adoption of an MDD approach is the capability of generating the source code
implementing the target design in a systematic way, i.e., it avoids the need of
manual writing. However, even if MDD simplifies the design implementation,
it does not prevent the designers from wrongly defining the design behavior.
Therefore, MDD gives full benefits if it also integrates functional verification.

G. Pravadelli (�) • D. Quaglia • F. Fummi
Università di Verona, Verona, Italy
e-mail: graziano.pravadelli@univr.it; davide.quaglia@univr.it; franco.fummi@univr.it

S. Vinco
Politecnico di Torino, Turin, Italy
e-mail: sara.vinco@polito.it

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_23

683

http://www.3s-software.com
http://www.atego.com/products/artisan-studio
http://www.gentleware.com/uml-software-embedded-edition.html
http://www.gentleware.com/uml-software-embedded-edition.html
http://www.iar.com/Products/IAR-visualSTATE/
http://www.iar.com/Products/IAR-visualSTATE/
http://www.ibm.com/software/awdtools/rhapsody
http://www.sparxsystems.com.au
http://www.topcased.org
mailto:graziano.pravadelli@univr.it
mailto:davide.quaglia@univr.it
mailto:franco.fummi@univr.it
mailto:sara.vinco@polito.it

684 G. Pravadelli et al.

In this context, Assertion-Based Verification (ABV) has emerged as one of
the most powerful solutions for capturing a designer’s intent and checking
their compliance with the design implementation. In ABV, specifications are
expressed by means of formal properties. These overcome the ambiguity of
natural languages and are verified by means of either static (e.g., model checking)
or, more frequently, dynamic (e.g., simulation) techniques. Therefore ABV
provides a proof of correctness for the outcome of the MDD flow. Consequently,
the MDD and ABV approaches have been combined to create efficient and
effective design and verification frameworks that accompany designers and veri-
fication engineers throughout the system-level design flow of complex embedded
systems, both for the Hardware (HW) and the Software (SW) parts (STM
Products radCHECK, 2012. http://www.verificationsuite.com; Seger, Integrating
design and verification – from simple idea to practical system. In: Proceedings of
ACM/IEEE MEMOCODE, pp 161–162, 2006). It is, indeed, worth noting that
to achieve a high degree of confidence, such frameworks require to be supported
by functional qualification methodologies, which evaluate the quality of both
the properties (Di Guglielmo et al. The role of mutation analysis for property
qualification. In: 7th IEEE/ACM international conference on formal methods and
models for co-design, MEMOCODE’09, pp 28–35, 2009. DOI 10.1109/MEM-
COD.2009.5185375) and the testbenches which are adopted during the overall
flow (Bombieri et al. Functional qualification of TLM verification. In: Design,
automation test in Europe conference exhibition, DATE’09, pp 190–195, 2009.
DOI 10.1109/DATE.2009.5090656). In this context, the goal of the chapter
consists of providing, first, a general introduction to MDD and ABV concepts
and related formalisms and then a more detailed view on the main challenges
concerning the realization of an effective semiformal ABV environment through
functional qualification.

Acronyms

ABV Assertion-Based Verification
CTL Computation Tree Logic
DUV Design Under Verification
EFSM Extended Finite-State Machine
ES Embedded System
ESL Electronic System Level
FSM Finite-State Machine
HDL Hardware Description Language
HW Hardware
I/O Input/Output
LLVM Low-Level Virtual Machine
LTL Linear Time Logic
MARTE Modeling and Analysis of Real-Time Embedded Systems
MDA Model-Driven Architecture

http://www.verificationsuite.com

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 685

MDD Model-Driven Design
MLBJ Multi-Level Back Jumping
MMIO Memory-Mapped I/O
MoC Model of Computation
OMG Object Management Group
OSCI Open SystemC Initiative
OVL Open Verification Library
PIM Platform Independent Model
PSL Property Specification Language
PSM Platform Specific Model
RTL Register Transfer Level
SERE Sequential Extended Regular Expression
SoC System-on-Chip
SVA System Verilog Assertions
SW Software
TLM Transaction-Level Model
UML Unified Modeling Language
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

Contents

22.1 Introduction to Model-Driven Design . 685
22.2 Introduction to Assertion-Based Verification . 687
22.3 Integrating MDD and ABV. 687
22.4 Models and Flows for Verification . 689

22.4.1 Automata-Based Formalisms . 689
22.4.2 Top-Down and Bottom-Up Flows for System Verification 694

22.5 Assertion Definition and Checker Generation . 698
22.5.1 Template-Based Assertion Design . 699

22.6 Mutant-Based Quality Evaluation . 701
22.6.1 Testbench Qualification . 702
22.6.2 Property Qualification . 707

22.7 Automatic Stimuli Generation . 711
22.7.1 EFSM-Based Stimuli Generation . 712

22.8 Conclusion . 715
References . 716

22.1 Introduction to Model-Driven Design

The focus of MDD is to elevate the system development to a higher level of
abstraction than that provided by HW description languages (e.g., VHDL and Ver-
ilog) for Hardware (HW) aspects and by third-generation programming languages
for Software (SW) aspects [92]. The development is based on models, which are

686 G. Pravadelli et al.

abstract characterizations of requirements, behavior, and structure of the embedded
system without anticipating the implementation technology.

Due to the noticeable effort of the Object Management Group (OMG) [84], the
Unified Modeling Language (UML) [85] was originally adopted as the reference
modeling language for describing software, and then it was also applied to the de-
scription of embedded hardware. UML provides general-purpose graphic elements
to create visual models of systems and attempts to be generic in both the integration
and the execution semantics. Due to such a general-purpose semantics, more specific
UML profiles have been introduced for dealing with specific domains or concerns.
They extend subsets of the UML meta-model with new standard elements, and they
refine the core UML semantics to cope with particular hardware/software problems.
For example, the SysML [97] profile supports the specification, the analysis, and
the design of complex systems, which may include physical components. The
Gaspard2 [57] profile, instead, supports the modeling of System-on-Chip (SoC).
The synchronous reactive [35] profile provides a restrictive set of activity diagrams
and sequence diagrams with a clear and semantically sound way of generating valid
execution sequences. The Modeling and Analysis of Real-Time Embedded Systems
(MARTE) [83] profile adds capabilities to UML for modeling and analysis of real-
time and embedded systems. Its modeling concepts provide support for representing
time and time-related mechanisms, the use of concurrent resources and other em-
bedded systems characteristics (such as memory capacity and power consumption).
The analysis concepts, instead, provide model annotations for dealing with system
property analysis, such as schedulability analysis and performance analysis. It is
worth noticing that other UML profiles exist for hardware-related aspects such as
system-level modeling and simulation [81,90]. Other hardware-oriented profiles and
a comparison of them are clearly described in [18]. Model-Driven Design (MDD)
has been also used for modeling embedded systems that interact together through
communication channels to build distributed applications. In this context, the MDD
approach consists in using a UML deployment diagram to capture the structural
representation of the whole distributed application. MARTE stereotypes (e.g., the
MARTE-GQAM sub-profile and MARTE nonfunctional properties) can be used to
represent attributes such as throughput, price, and power consumption. Furthermore
some aspects (e.g., node mobility) require the definition of an ad-hoc UML network
profile [46].

Besides the standard UML supported by OMG, some proprietary variants of the
UML notations also exist. The most famous ones are the MathWorks’ Stateflow
and Simulink [98] formalisms. They use finite-state, machine-like and functional-
block, diagram-like models, respectively, for specifying behavior and structure of
reactive hardware/software systems with the aim of rapid embedded SW prototyping
and engineering analysis. Several MDD tools on the market support UML and
Model-Driven Architecture (MDA). The underlying idea of MDA is the definition
of models at different levels of abstraction which are linked together to form
an implementation. MDA distinguishes the conceptual aspects of an application
from their representation on specific implementation technologies. For this reason,
the MDA design approach uses Platform Independent Models (PIMs) to specify

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 687

what an application does, and Platform Specific Models (PSMs) to specify how
the application is implemented and executed on the target technology. The key
element of an MDA approach is the capability to automatically transform models:
transformation of PIM into PSM enables realizations, whereas transformations
between PIMs enable integration features.

22.2 Introduction to Assertion-Based Verification

Assertion-based verification aims at providing verification engineers with a way to
formally capture the intended specifications and checking their compliance with the
implemented embedded system. Specifications are expressed by means of formal
properties defined according to temporal logics, e.g., Linear Time Logic (LTL) or
Computation Tree Logic (CTL), and expressed by means of assertion languages,
like Property Specification Language (PSL) [64].

Approaches based on ABV are traditionally classified in two main categories:
static (i.e., formal) and dynamic (i.e., simulation based). In static Assertion-
Based Verification (ABV), formal properties, representing design specifications,
are exhaustively checked against a formal model of the design by exploiting, for
example, a model checker. Such an exhaustive reasoning provides verification
engineers with high confidence in system reliability. However, the well-known state
space explosion problem limits the applicability of static ABV to small/medium-
size, high-budget, and safety-critical projects [67]. On the contrary, thanks to the
scalability provided by simulation-based techniques, dynamic ABV approaches are
nowadays preferred for verifying large designs, which have both reliability require-
ments and stringent development cost/time-to-market constraints. In particular, in
the hardware domain, dynamic ABV is affirming as a leading strategy in industry
to guarantee fast and high-quality verification of hardware components [24, 80],
and several verification approaches have been proposed [50, 51]. In dynamic ABV,
properties are compiled into checkers [17], i.e., modules that capture the behavior
of the corresponding properties and monitor if they hold with respect to the design,
when the latter is simulated by using a set of (automatically generated) stimuli.

22.3 Integrating MDD and ABV

Even if MDD simplifies software implementation, it does not prevent the designer
from wrongly defining system behavior. Certain aspects concerning the verification
of the code generated by MDD flows are automated, as, for example, the structural
analysis of code, but specification conformance, i.e., functional verification, is still a
human-based process [47,55]. Indeed, the de facto approach to guarantee the correct
behavior of the design implementation is monitoring system simulation: company
verification teams are responsible for putting the system into appropriate states by
generating the required stimuli, judging when stimuli should be executed, manually
simulating environment and user interactions, and analyzing the results to identify

688 G. Pravadelli et al.

Fig. 22.1 The combined model-driven and verification framework implemented in the RadSuite

unexpected behaviors. MDD and dynamic ABV, if combined in a comprehensive
framework, enable automatic functional verification of both embedded SW and
HW components. The approach generally relies on a design and verification
framework composed of two environments: a UML-like modeling and development
environment - supporting model-driven design - and a dynamic ABV environment
that supports assertion definition and automatic checkers and stimuli generation.

An example of this design and verification flow, which integrates MDD and
ABV, is represented by the commercial RadSuite, composed by radCASE and
radCHECK [38] (Fig. 22.1). Starting from informal specifications and requirements,
the designer, with the model editor of radCASE, defines the system model by
using a UML-based approach. Concurrently, with the property editor of radCHECK,
he/she defines a set of PSL assertions that the system must fulfill. Then, radCASE
automatically translates the UML specifications in the C-code implementation, and
it automatically extracts an Extended Finite-State Machine (EFSM) model (see
Sect. 22.4.1.1 for this formalism) to support automatic verification. At the same
time, radCHECK can be used to automatically generate executable checkers from
the defined PSL assertions. The dynamic ABV is guided by stimuli automatically

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 689

generated by a corner-case-oriented concolic stimuli generator that exploits the
EFSM model to explore the system state space (see Sect. 22.7). Checkers execute
concurrently with the Design Under Verification (DUV) and monitor if it causes any
failure of the corresponding properties. The designer uses the resulting information,
i.e., failed requirements, for refining the UML specifications incrementally and in
an iterative fashion.

22.4 Models and Flows for Verification

The key ingredient underpinning an effective design and verification framework
based on MDD and ABV is represented by the possibility of defining a model of
the desired system and then automatically deriving the corresponding simulatable
description to be used for virtual prototyping. Selecting the formalism to represent
the model is far from being a trivial choice, as the increasing complexity and
heterogeneity of embedded systems generated, over time, a plethora of languages
and different representations, each focusing on a specific subset of the Embedded
System (ES) and on a specific domain [44]. Examples are EFSMs, dedicated
to digital HW components and cycle-accurate protocols, hybrid automata for
continuous physical dynamics, high-level UML diagrams for high-level modeling
of hardware, software, and network models. This heterogeneity reflects on the
difficulty of standardizing automatic approaches that allow the conversion of the
high-level models in executable specifications (e.g., SystemC/C code). Such an
automatic conversion is indeed fundamental to reduce verification costs, particularly
in the context of virtual prototyping of complex systems that generally integrate
heterogeneous components through both bottom-up and top-down composition
flows. In this direction, automata-based formalisms represent the most suitable
solutions to enable a precise mapping of the model into simulatable descriptions.
Thus, the following discussion in this section is intended to summarize the main
automata-based formalisms available as state of the art, together with bottom-up and
top-down flows, whose combined adoption allows the generation of a homogeneous
simulatable description of the overall system.

22.4.1 Automata-Based Formalisms

The most widespread models for representing the behavior of a component or a
system are based on automata, i.e., models that rely on the notions of states and of
transitions between states. The simplest automata-based model, i.e., the finite-state
machine, has proved to be too strict to allow a flexible and effective view of modern
components. This originated a number of extensions, each targeting specific aspects
and domains, as summarized in the following of this section.

22.4.1.1 Extended Finite-State Machines
EFSMs extend standard Finite-State Machines (FSMs) to allow a more compact
representation of the system that reduces the risk of state explosion for complex
designs [4]. An EFSM differs from the traditional FSM, since transitions between

690 G. Pravadelli et al.

states are not labeled in the classical form input/output values, but they take care
of the values of internal variables too. Practically, transitions are labeled with an
enabling function, which represents the guard of the transition, and an update
function, which specifies how the values of variables and outputs evolve when the
transition is fired upon the satisfaction of its guard.

To exemplify the concept, Fig. 22.2 reports the EFSM of a simplified in-flight
safety system. The states of the EFSM are S D fSafe;Warning; C rit icalg,
where Safe is the reset state. The input variables are I D ft; p; o; rstg and
represent the corresponding temperature, pressure, and oxygen variables, whereas
rst represents the EFSM reset signal. O D flight; sound g is the set of output
variables corresponding to light and sound controls. Finally, D D ftva; pva; ovag
is the set of internal variables of the EFSM. For each transition, the enabling function
and update function are reported in the table under the figure. For readability, only
a reset transition t0 is depicted with a dotted arrow as a representative of each of the
reset transitions outgoing from the states of the EFSM and entering in Safe.

Unfortunately, the semantics of EFSMs is strictly discrete, and it does not support
continuous-time physical models. Thus it cannot, for instance, represent an ES with
its continuous-time environment.

Fig. 22.2 An EFSM specification of a simplified in-flight safety system

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 691

22.4.1.2 Hybrid Automata
A hybrid automaton is modeled as a set of states and transitions, but, as opposed to
EFSMs, it supports both discrete time and continuous time dynamics [58]. The dis-
crete time dynamics coincides with FSM semantics, and it is implemented through
transitions between states that respond to system evolution and to synchronization
events. The continuous-time dynamics is implemented by the states, which are
associated with two predicates: the flow predicate that constrains the evolution
of continuous variables into the state, and the invariant predicate, that specifies
whether it is possible to remain into the state or not, depending on a set of conditions
on variables. Variables can be assigned continuous values, as opposed to EFSMs.

Figure 22.3 depicts an example of a simple hybrid automaton. If compared
with Fig. 22.2, the automaton now associates each state with an invariant condition
(e.g., x � 18, for the state S0) and with a flow predicate which shows the rate of
change of the variable x with time (e.g., x0 D 	0:1x, for the state S0, where x0

represents the first derivative of variable x). Furthermore, a synchronization event,
close, is used to force the transition to S1, irrespective of the current state of
variable x.

A special class of automata, namely, timed automata, introduces the notion of
time [6]. Time evolution is modeled with dense variables, called clocks, whose
evolution is constrained by predicates and used in transition guards. Furthermore,
events and variables are associated with a time stamp. As a result, automaton
evolution depends also on time. This is extremely useful in the modeling of real-
time systems with time constraints.

Hybrid automata are especially suited for modeling control scenarios, modeling a
tight interaction between a controller and a continuous time environment. However,
this formalism is suited for modeling only high-level systems. Unfortunately,
describing cycle-accurate hardware behaviors as well as software functionalities
(such as interrupt handling) would exponentially increase the complexity of the
related model, and it would lead to state space explosion [56].

22.4.1.3 UML Diagrams
UML is a standardized general-purpose modeling language, specially suited for
modeling SW intensive systems, but often adopted also for modeling HW com-
ponents and networked systems [85]. UML includes a set of graphic notation
techniques for clearly representing different aspects of a system, i.e., its structure
(structural diagrams) or its behavior (behavioral diagrams).

The most useful class from the point of view of MDD approaches for HW/SW
systems is represented by behavioral diagrams, which model what happens in the
system, either in terms of internal behavior or from the communication perspective.

Fig. 22.3 Example of a
hybrid automaton

x > 21

x < 19

S0
x' = -0.1x

x≥18

S1
x' = 5 – 0.1x

x≤22
close

692 G. Pravadelli et al.

Behavioral diagrams can be further classified into different classes, among which
the most relevant for modeling HW/SW systems are:

• Activity diagrams, which represent the data and control flow between activities
• Interaction diagrams, which represent the interaction between collaborating

parts of a system, in terms of message exchange (sequence diagram and
communication diagrams), and of state evolution depending on timed events
(timing diagrams)

• State machine diagrams, which are automata-based model representing the state
transitions and actions performed by the system in response to events

Besides behavioral diagrams, deployment diagrams, belonging to the category
of structural diagrams, have been also used in the context of MDD to capture
the structural representation of network aspects, in conjunction with MARTE
stereotypes [46].

In general, UML diagrams have been specialized to fit many different domains
through the definition of profiles. However, their diagrams are too high level to
represent cycle accurate models and physical models with a sufficient accuracy,
without incurring in the state explosion problem or degenerating into standard
FSMs.

Figure 22.4 shows a sequence diagram example. Sequence diagrams show how
processes operate and their interactions, represented as exchanged messages. For
this reason, they are the most common diagrams to specify system functionality,
communication, and timing constraints. Lifelines (the vertical dashed lines) are the
objects constituting the system. The rectangles in a lifeline represent the execution
of a unit of behavior or of an action, and they are called execution specification.
Execution specifications may be associated with timing constraints that represent
either a time value (3�) or a time range (4�). Finally, messages, written with
horizontal arrows, display interaction. Solid arrowheads represent synchronous
calls, open arrowheads represent asynchronous messages, and dashed lines represent
reply messages.

D0 D1 D2 D3

Message

Message0
Message2

Message3

Message4

Message5
[0,10]

loop

@t0

[t0..3*t0]

1

3
3

4

5

LIFELINE

EXECUTION
SPECIFICATION

SYNCHRONOUS
MESSAGE AND

REPLY

ASYNCHRONOUS
MESSAGES

CONSTRAINTS

Fig. 22.4 Example of UML sequence diagram

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 693

22.4.1.4 The UNIVERCM Model of Computation (MoC)
UNIVERCM is an automaton-based MoC that unifies the modeling of both the
analog (i.e., continuous) and the digital (i.e., discrete) domains, as well as hardware-
dependent SW. A formal and complete definition is available in [44, 56].

In each UNIVERCM automaton (depicted in Fig. 22.5), states reproduce the
continuous-time dynamics of hybrid automata, while transitions reproduce the
discrete-time semantics of EFSMs. As a consequence, UNIVERCM automata can be
reduced to either EFSMs or hybrid automata, depending on the enabled features. An
automaton can be transformed in an equivalent EFSM by transforming its continu-
ous time features into discrete transitions (e.g., by discretizing the flow predicate). A
UNIVERCM automaton can also be transformed into an equivalent hybrid automaton
by reducing discrete transitions to conditions that allow to change state and by
moving the corresponding actions to the flow predicate of the destination state. This
correspondence of UNIVERCM automata to well-established formal models allows
to apply well-known design or verification techniques, originally defined for EFSMs
or hybrid automata, also to the context of UNIVERCM. This makes UNIVERCM an
important resource in the design of HW/SW systems, as it covers the heterogeneity
of ES, ranging from analogue and digital HW to dedicated SW, in order to build
reuse and redesign flows [44].

Note that UNIVERCM states and transitions are provided with two additional
tags, i.e., atomic and priority. The atomic tag is used to define atomic regions
that are considered to all intent a single transition when performing parallel
composition with other automata. The priority tag is used to handle nondeterministic
behaviors that may be present in a system: in case two or more transitions can be
performed at the same time, the automaton activates the one with lower value of the
priority tag.

UNIVERCM variables fall back in three main classes: discrete variables, wire
variables, and continuous variables. Wire variables extend discrete variables with
an event that is activated whenever the corresponding variable changes value.
This mechanism is used to mimic the event-driven semantics of Hardware De-
scription Languages (HDLs). Continuous variables are dense variables that can
be either assigned an explicit value (e.g., in discrete transitions) or constrained
through the flow predicate. They thus resemble the clock variables of timed
automata [6].

Fig. 22.5 Example of
UNIVERCM automaton

S0 S1

x≥18
x' = -0.1x

priority: 1
atomic: false

x≤22
x' = 5 – 0.1x
priority: 1
atomic: false

priority: 0
x > 21

priority: 2
x < 19

priority: 0
close

error = true

694 G. Pravadelli et al.

22.4.2 Top-Down and Bottom-Up Flows for System Verification

UNIVERCM bridges the characteristics of the major automata-based formalisms, and
it thus allows to reduce both top-down and bottom-up flows to a single framework, to
build a homogeneous simulatable description of the overall ES. Such a description
can then be the focus of redesign and validation flows, targeting the homogeneous
simulation of the overall system [43]. This section presents the main flows that can
be reduced to UNIVERCM, as summarized in Fig. 22.6.

22.4.2.1 Bottom-Up: Mapping Digital HW to UNIVERCM
The mapping of digital HW to UNIVERCM can be defined focusing on the
semantics of HDLs, i.e., of the languages used for reproducing and designing HW
execution. In HDLs, digital HW is designed as a number of concurrent processes
that are activated by events and by variations of input signals, constituting the
process sensitivity list. Process activation is managed by an internal scheduler that
repeatedly builds the queue of runnable processes and advances simulation time.

When mapping to UNIVERCM, each HDL process is mapped to an automaton,
whose transitions are activated by variations in the value of the signals in the sen-
sitivity list. In the example in Fig. 22.7, the automaton is activated by events on the
read signal b that fires the transaction from state H0 to state H1. This mechanism, to-
gether with the sharing of variables and signals, ensures that process communication
and interaction are correctly preserved. Note that, since digital HW does not foresee
continuous-time evolution, the automaton is restricted to the discrete-time dynamics
(i.e., to an EFSM). The existence of predefined synchronization points (e.g., wait
primitives) is ensured in UNIVERCM with an ad hoc predicate, called atomic,
that allows to consider a number of transitions and states as a single transition
(e.g., transitions from H0 to H4 in Fig. 22.7). This guarantees that the original
execution flow is preserved.

The mapping of the sensitivity list to events, and the parallel semantics of
UNIVERCM automata, builds an automatic scheduling mechanism that avoids the
need for an explicit scheduling routine. The advancement of simulation time is
explicitly modeled with an additional automaton [43].

AUTOMATA-BASED
FORMALISMS

UNIVERCM
EFSMs

Hybrid automata

DIGITAL HW AS
HDL MODELS

EMBEDDED
SW

HYBRID
AUTOMATA

HOMOGENEOUS
SIMULATION THROUGH

CODE GENERATION
(C++/SystemC)

Fig. 22.6 Top-down and bottom-up flows proposed in the following of this section

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 695

Fig. 22.7 Mapping of a digital HW component and of the communicating embedded SW to
UNIVERCM automata

22.4.2.2 Bottom-Up: Mapping Embedded SW to UNIVERCM
Embedded SW is typically structured into a number of functions that can be easily
represented as UNIVERCM automata evolving among a certain set of states via
transitions. Since SW does not allow continuous evolution, each automaton is
restricted to its discrete-time dynamics (i.e., to an EFSM).

Each function is provided with an activation event (for representing function
invocation, event interrupt in Fig. 22.7) and a return label, which is used to
communicate to the caller that the function has finished its execution (event return
in Fig. 22.7).

Note that the atomic predicate can be used also in case of SW to avoid race
conditions and unpredictable behaviors due to concurrency, e.g., in Fig. 22.7 all
transitions are encapsulated in an atomic region, to guarantee that the execution
of function interrupt_handler is non-interruptible.

Communication with HW devices based on the Memory-Mapped I/O (MMIO)
approach is easily implemented in UNIVERCM by representing MMIO locations as
variables shared with the HW automata. HW interrupts are mapped to synchroniza-
tion events. The interrupt handling routine is mapped to an automaton, just like any
other function. The activation event of the automaton is the interrupt fired by the HW
device. The automaton remains suspended until it receives the interrupt event and,
on receipt of the event, it executes the necessary interrupt handling operations. In
the example of Fig. 22.7, the activation event of the function (event interrupt) is the
interrupt fired by the HW automaton (in the transition from H1 to H3, as highlighted
by the red arrow).

696 G. Pravadelli et al.

22.4.2.3 Bottom-Up: Mapping Hybrid Automata to UNIVERCM
Since UNIVERCM is a superset of hybrid automata, this mapping is quite straight-
forward. Care must be taken in the mapping of synchronization events, as hybrid
automata may activate an event only if all its recipients may perform a transition
in response to the event. To reproduce this semantics in UNIVERCM, each recipient
automaton is provided with a flag variable that is false by default and that is set to
true only if the current state has an outgoing transition fired by the synchronization
event. The event may be fired only after checking that all the corresponding flag
variables are true.

Hybrid automata may be hierarchical, for simplifying the design of analog
components. Mapping a hierarchical hybrid automaton to UNIVERCM requires to
remove the hierarchy by recursively flattening the description.

22.4.2.4 Top-Down: Mapping UML Diagrams to UNIVERCM
The mapping of UML diagrams is defined to EFSMs, that are the reference
automata-based model for MDD approaches. Given that EFSMs can be considered
the discrete-time subset of UNIVERCM, this is equivalent to mapping the diagrams
to UNIVERCM automata. For this reason, in the following, the terms EFSM and
UNIVERCM automaton are interchangeable.

The mapping is defined for UML sequence diagrams. These are the most
common diagrams to specify system functionality, communication, and timing
constraints. However, a similar approach can be applied also to other classes of
UML diagrams.

The mapping of sequence diagrams to UNIVERCM is exemplified in Fig. 22.8.
Each diagram is turned into one automaton, whose states are defined one per lifeline
(D0, D1, D2, and D3) [45]. Message receipt forces transition from one state to the
next (e.g., from D0 to D1 at 1�). Messages are enumerated, to define enabling
conditions that preserve the execution order imposed by the sequence diagram
(2�). This allows to reproduce also control constructs, such as the loop construct
in Fig. 22.8, that iterates a message transfer ten times (5�). Timing constraints are
used to perform check constraints through an additional state W (3� and 4�) that
may raise timing errors.

22.4.2.5 Top-Down: Mapping UNIVERCM Automata to C++/SystemC
UNIVERCM has been specifically defined to ease the conversion of UNIVERCM
automata toward C++ and SystemC descriptions [43, 44].

Each UNIVERCM automaton is mapped in a straightforward manner to a C++
function containing a switch statement, where each case represents one of the
automaton states. Each state case lists the implementation of all the outgoing edges
and of the delay transition provided for the state. When an edge is traversed,
variables are updated according to the update functions, and the continuous flow
predicates and synchronization events are raised, where required.

The code generated from UNIVERCM automata is ruled by a management
function, in charge of activating automata and of managing the status of the overall
system and parallel composition of automata.

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 697

D0 D1 D2 D3

Message

Message0
Message2

Message3

Message4

Message5
[0,10]

loop

@t0

[t0..3*t0]

1

2
3

4

5

D0

true
priority: 1
atomic: false

D1
priority: 0
received_
message

true
priority: 1

atomic: false

D2
priority: 0
received_
message

true
priority: 1

atomic: false

D3
true
priority: 1
atomic: false

priority: 0
seq == 2

received_message
t0 = time

W priority: 0
((time < t0) or
(time > 3*t0))

1

2

3

4

5

false
priority: 0

atomic: false

priority: 0
((seq == 5) or

(seq <= seq+10))

priority: 0
((seq == 5) or

(seq <= seq+10))

5

priority: 0
seq == 2

seq++

5

Fig. 22.8 Mapping of a UML sequence diagram to an EFSM (and thus to the discrete-time
restriction of UNIVERCM)

In case of conversion toward SystemC descriptions, the presence of a simulation
kernel allows to delegate some management tasks and to reproduce automata be-
havior through native SystemC constructs. Thus, UNIVERCM automata are mapped
to processes, rather than functions. This allows to delegate automata activation to
the SystemC scheduler, by making each process sensitive to its input variables.
Automata activation is removed from the management function, that still updates
the status of variables and events at any simulation cycle. The management function
itself is declared as a process.

698 G. Pravadelli et al.

22.5 Assertion Definition and Checker Generation

In software verification, software designers widely use executable assertions [59]
for specifying conditions that apply to some states of a computation, e.g., “pre-
conditions” and “post-conditions” of a procedural code block. A runtime error is
released whenever execution reaches the location at which the executable assertion
occurs and the related condition does not hold any more. This kind of executable
assertions is limited to Boolean expressions, which are totally unaware of temporal
aspects. However, if the designers aim to check more complex requirements in
which Boolean expressions are used for defining relations spanning over the time,
they have to (i) define assertions in a formal language and (ii) synthesize them
as executable modules, i.e., checkers. Checkers, integrated into the simulation
environment, monitor the software execution for identifying violations of the
intended requirement.

In hardware verification, several solutions have already been proposed. These
approaches can be classified in (i) library based or (ii) language based.

Library-based approaches rely on libraries of predefined checkers, e.g., Open
Verification Library (OVL) [52], which can be instantiated into the simulation envi-
ronment for simplifying the checking of specific temporal behaviors. Unfortunately,
due to their inflexibility for checking general situations, the predefined checkers
limit the completeness of the verification.

Language-based approaches, instead, use declarative languages, such as
PSL [64] and System Verilog Assertions (SVA) [94], for formalizing the temporal
behaviors into well-defined mathematical formulas (i.e., assertions) that can be
synthesized into executable checkers by using automatic tools named checker
generators [2, 16, 17, 34]. These tools may generate checkers implementations
at different levels of abstraction, from the Register Transfer Level (RTL), e.g.,
MBAC [17] and FoCs [2], to the C-based Electronic System Level (ESL) [33],
e.g., FoCs.

However, a large part of an ES is software, which must also be verified. Some
attempts have been tried to extend hardware ABV to embedded software and a
comprehensive work is in [38].

In [26], the authors present a Microsoft’s proprietary approach for binding C
language with PSL. They define a subset of PSL and use a simulator as an execution
platform. In this case, only a relatively small set of temporal assertions can be
defined, since only the equality operator is supported for Boolean expressions, and
the simulator limits the type of embedded software applications.

Another extension of PSL is proposed in [101], where the authors unify assertion
definition for hardware and software by translating their semantics to a common
formal semantic basis. In [100], the authors use temporal expressions of the e
hardware verification language to define checkers. In both these cases, temporal
expressions are similar but not compatible with PSL standards.

Finally, in [74] the authors propose two approaches based on SystemC checkers.
In the first case, embedded software is executed on top of an emulated SystemC

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 699

processor, and, at every clock cycle, the checkers monitor the variables and functions
stored in the memory model. In the second approach, embedded software is
translated to SystemC modules which run against checkers. In this case, timing
reference is imposed by introducing an event notified after each statement, and the
SystemC process is suspended on additional wait() statements. In both cases,
there are several limitations. First, the approaches are not general enough to support
real-life embedded software: the SystemC processor cannot reasonably emulate real
embedded system processors. In addition, the translation of embedded software
applications in SystemC may be not flexible enough. Secondly, in both cases
the SystemC cosimulation and the chosen timing references introduce significant
overhead. In particular, clock cycle or statement step may be an excessively fine
granularity for efficiently evaluating a sufficient number of temporal assertions.
Moreover, on the one hand, defining assertions which consider absolute time may
generate significantly large checkers to address the high number of intermediate
steps; on the other, it is difficult to define temporal assertions at source code level,
i.e., C applications, in terms of clock cycles.

22.5.1 Template-Based Assertion Design

Previous sections show that assertion definitions can be unified for both hardware
and software, that is, they can be applied to an entire ES. An effective tool in this
case is DDPSL [41]: a template library and a tool which simplify the definition
of formal properties. It combines the advantages of both PSL and OVL, i.e.,
expressiveness and simplicity.

The template library is composed of DDTemplates, i.e., PSL-based templates
accompanied with an interface semantics. The adoption of a PSL-based property
implementation guarantees the same expressiveness of LTL and CTL temporal
logics, a wide compatibility with HDL (e.g., VHDL, Verilog and SystemVerilog,
SystemC) and programming languages (e.g., C++), and enables a large reuse of
already available verification tools previously described. Moreover, like the OVL
approach, the use of an interface semantics allows a clean separation between prop-
erty implementation and property semantics. Such an interface notably simplifies
property definition: the user needs only to understand the semantics of the interface
and replace parameters with the intended expression, and a correct-by-construction
PSL code is automatically generated.

DDTemplates are characterized by (i) a parametric interface, (ii) a formal
PSL implementation, and (iii) a detailed semantics (i.e., interface semantics) that
specifies how to use the corresponding interface for defining properties.

The interface consists of a synthetic description that gives an intuitive idea of
the semantics of the property. Such a description is characterized by parameters
that are placeholders inside the property. These parameters are strongly typed and
distinguished into Boolean, arithmetic, temporal, and Sequential Extended Regular
Expression (SERE) parameters. The interaction with such placeholders guides

700 G. Pravadelli et al.

property definition: the user can replace parameters only with compatible elements
according to a predefined semantics check.

Figure 22.9 shows an example of the “conditional events bounded by time”
DDTemplate. In particular, it reports the synthetic description adopted as interface
showing the three parameters (i.e., $P , $Q, and $i) that the user can substitute.

Although the interface is explanatory, major details of the interface semantics
are described by means of online documentation provided by the DDEditor. Such
documentation reports information related to the parameters type and their meaning,
the temporal behavior the template aims to check and possible warnings. For
example, the online documentation corresponding to the DDTemplate shown in
Fig. 22.9 reports:

• Semantics of the parameters
– $P is a Boolean expression that represents a configuration, an event or an

input/output for the system/program.
– $i is an integer that specifies the instant in the future within which $Q must

hold.
– $Q is a Boolean expression that represents a new configuration, an event or an

input/output for the system/program.
• Semantics of the template

– The template specifies that if the system takes the configuration $P (or the
event $P happens) in the cycle t0, then the new configuration or the event $Q
must occur within the cycle t0 C $i .

• Warnings
– Notice that $Q may occur in many cycles within t0C $i , but it is not possible

that $Q never happens within the cycle t0 C $i .

The PSL implementation, instead, consists of a formal PSL definition (Fig. 22.10).
More than 60 templates have been defined and organized into five libraries

(e.g., a selection of templates is reported in Table 22.1); each one focuses on
a specific category of patterns: universality, existence, absence, responsiveness,
and precedence. The universality library describes behaviors that must hold
continuously during the software execution (e.g., a condition that must be preserved
for the whole execution, or that has to hold continuously after that the software
reaches a particular configuration). The existence library describes behaviors
in which the occurrence of particular conditions is mandatory for the software
execution (e.g., a condition must be observed at least once during the whole

Every time that $P then, within $i cycle(s), $Q

Fig. 22.9 Example of a DDTemplate interface

Fig. 22.10 Example of
formal PSL definition

always (%P → next_e[0..%i](%Q))

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 701

Table 22.1 Selection of assertion templates

Library Parametric interface Parametric PSL definition

Universality
P holds continuously after Q always ($Q -> next (always $P))

P holds continuously since Q
up to R

always (($Q & !$R) -> ($P until_
$R))

Existence
P holds at least once since Q next_event!($Q)(eventually! $P)

P holds at least once since Q
up to R

always (($Q & !$R) -> (!$R
until! $P))

Absence
P is continuously false after Q
until R

always (($Q & !$R) -> next (!$P
until! $R))

P is continually false before R !$P until! $R

Responsiveness
P causes S to happen always ($P -> eventually! ($S))

P causes S to happen, but af-
ter Q

always ($P -> (($Q before! $S) &
eventually! ($S)))

Precedence
P precedes R globally always ($P -> ($P before $R))

P precedes R before S always ($P ->(($P before $R)&($R
before! $S)& eventually! ($S)))

execution or after that a particular configuration is reached, etc.). The absence
library describes behaviors that must not occur during the software execution or
under certain conditions. The responsiveness library, instead, describes behaviors
that specify cause-effect relations (e.g., a particular condition implies a particular
configuration of the software variables). Finally, the precedence library describes
behaviors that require a precise ordering between conditions during the software
execution (e.g., a variable has to assume specific values in an exact order).

Notice that the user can ignore the exact PSL formalization. He/she can
define properties by simply dragging and dropping expressions onto placeholders
contained into the interface by exploiting the DDEditor tool [41].

22.6 Mutant-Based Quality Evaluation

Assertion-based verification can hypothetically provide an exhaustive answer to the
problem of design correctness, but from the practical point of view, this is possible
only if (1) the DUV is stimulated with testbenches that generate the set of all
possible input stimuli and (2) a complete set of formal properties is defined that
totally captures the designer’s intents. Unfortunately, these conditions represent two
of the most challenging aspects of dynamic verification, since the set of input stimuli
for sequential circuits is generally infinite, and the answer to the question “have I
written enough properties?” is generally based on the expertise of the verification
engineers. For these reasons, several metrics and approaches have been defined to
address the functional qualification of dynamic verification methodologies and
frameworks, i.e., the evaluation of the effectiveness of testbenches and properties
adopted to check the correctness of a design through semiformal simulation-based
techniques.

702 G. Pravadelli et al.

Among existing approaches, mutation analysis and mutation testing [37], orig-
inally adopted in the field of software testing, have definitely gained consensus,
during the last decades, as being important techniques for the functional qualifica-
tion of complex systems both in their software [61] and hardware [15] components.

Mutation analysis [86] relies on the perturbation of the DUV by introducing
syntactically correct functional changes that affect the DUV statements in small
ways. As a consequence, many versions of the model are created, each containing
one mutation and representing a mutant of the original DUV. The purpose of
such mutants consists in perturbing the behavior of the DUV to see if the test
suite (including testbenches and, in case, also properties) is able to detect the
difference between the original model and the mutated versions. When the effect of
a mutant is not observed on the outputs of the DUV, it is said to be undetected. The
presence of undetected mutants points out inadequacies either in the testbenches,
which, for example, are not able to effectively activate and propagate the effect of
the mutant, or in the DUV model, which could include redundant code that can
never be executed. Thus, mutation analysis has been primarily used for helping
the verification engineers in developing effective testbenches to activate all DUV
behaviors and discovering design errors. More recently, it has been used also
to measure the quality of formal properties that are defined in the context of
assertion-based verification. The next sections will summarize some of the most
recent approaches based on mutation analysis for the functional qualification of
testbenches and properties.

22.6.1 Testbench Qualification

Nowadays, (i) the close integration between HW and SW parts in modern embedded
systems, (ii) the development of high-level languages suited for modeling both
HW and SW (like SystemC with the Transaction-Level Model (TLM) library), and
(iii) the need of developing verification strategies to be applied early in the design
flow require the definition of simulation frameworks that work at the system level.
Consequently, mutation analysis-based strategies for the qualification of testbenches
need to be defined at system level too, possibly before HW and SW functionalities
are partitioned. In this context, the mutation analysis techniques proposed for over
30 years in the SW testing community can be reused for perturbing the internal
functionality of the DUV, which is indeed implemented like a SW program,
often by means of C/C++ behavioral algorithms. In particular, several approaches
[5, 12, 13, 20, 88, 89], empirical studies [75], and frameworks [19, 31, 36, 76] have
been presented in the literature for mutation analysis of SW program. Different as-
pects concerning software implementation are analyzed in all these works, in which
the approaches are mainly suited for perturbing Java or C constructs. However, all
these proposals are suited to target basic constructs and low-level synchronization
primitives rather than high-level primitives typically used for modeling TLM com-
munication protocols. Other approaches present mutation operators targeting formal
abstract models, independently from specific programming languages [9,12,88,89].

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 703

These approaches are valuable to be applied at TLM levels. However, the authors
do not show a strict relation between the modeled mutants and the typical design
errors introduced during the modeling steps. To overcome this issue, a native TLM
mutation model to evaluate the quality of TLM testbenches has been proposed
in [14, 15]. It exploits traditional SW testing framework for perturbing the DUV
functional part, but it presents a new mutation model for addressing the system-level
communication protocol typical of TLM descriptions. The approach is summarized
in the rest of this section.

22.6.1.1 Mutant-Based Qualification of TLM Testbenches
The approach assumes that the functionality of the TLM model is a procedural style
of code in one or more SystemC processes. Therefore, the mutation model for the
functionality is derived from the work in [36] that defined mutation operators for
the C language. Selective mutation (suggested in [78] and evaluated in [87]) is
applied to ensure the number of mutations grows linearly with the code size. On
the contrary, the communication part of the DUV is mutated by considering the
effect of perturbations injected on the EFSM models representing the Open SystemC
Initiative (OSCI) SystemC TLM-2.0 standard primitives adopted for implementing
blocking and non-blocking transaction-level interfaces.

In TLM-2.0, communication is generally accomplished by exchanging packets
containing data and control values, through a channel (e.g., a socket) between an
initiator module (master) and a target module (slave). For the sake of simplicity and
lack of space, we report in Fig. 22.11 the EFSMs representing the primitives and the
proposed mutations of the most relevant interfaces (i.e., blocking and non-blocking
interfaces).

a

A B
Setting payload
to be sent;
b_transport(payload,time);

true

socket_event
Data handling;

C

b

A

B

Setting of payload
to be sent and phase;
nb_transport_fw(payload,phase
Handling of received data;

true

c

A

B

Handling of received data;
Setting of payload to be sent back
 and phase;
nb_transport_bw(payload,phase,time);

true

Fig. 22.11 EFSM models of some SystemC TLM-2.0 primitives

704 G. Pravadelli et al.

• Blocking interface. It allows a simplified coding style for models that com-
plete a transaction in a single-function call, by exploiting the blocking prim-
itive b_transport(). The EFSM model of primitive b_transport()
is composed of three states (see Fig. 22.11a). Once the initiator has called
b_transport(), the EFSM moves from state A (initial state) to state B,
and it asks the socket channel to provide a payload packet to the target. Then,
the primitive suspends in state B waiting for an event from the socket channel
(socket_event) indicating that the packet can be retrieved. Finally, the retrieved
data is handled by executing the operations included in the update function,
moving from B to the final state C. Timing annotation is performed by exploiting
the time parameter in the primitives and managing the time information in the
handling code of the received data for implementing, for example, the loosely
timed models.

• Non-blocking interface. Figure 22.11b, c show the EFSM models of the non-
blocking primitives, which are composed of two states only. Primitives such
as nb_transport_fw() and nb_transport_bw() perform the required
operation as soon as they are called, and they immediately reach the final state
in the corresponding EFSM. The caller process is informed if the non-blocking
primitive succeeded by looking at its return value. Timing annotation is still
performed by exploiting the time parameter in the primitives, while parameter
phase is exploited for implementing more accurate communication protocols,
such as the four phases approximately timed.

Several TLM communication protocols can be modeled by using the TLM
primitives previously described, and their EFSM models can be represented by
sequentially composing the EFSMs of the involved primitives. Starting from the
EFSM models, the mutation model for the communication protocols is defined by
following the next steps:

1. Identify a set of design errors typically introduced during the design of TLM
communication protocols.

2. Identify a fault model to introduce faults (i.e., mutations) in the EFSM represen-
tations of the TLM-2.0 primitives.

3. Identify the subset of faults corresponding to the design errors identified at step 1.
4. Define mutant versions of the TLM-2.0 communication primitives implementing

the faults identified at step 3.

Based on the expertise gained about typical errors made by designers during the
creation of a TLM description, the following classes of design errors have been
identified:

1. Deadlock in the communication phase
2. Forgetting to use communication primitives (e.g., the TLM communication

primitive nb_transport_bw() for completing transaction phases, before
initiating a new transaction is not called)

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 705

3. Misapplication of TLM operations (e.g., setting a write command for reading
data instead of read)

4. Misapplication of blocking/non-blocking primitives
5. Misapplication of timed/untimed primitives
6. Erroneous handling of the generic payload (e.g., failing to set or read the packet

fields)
7. Erroneous polling mechanism (e.g., infinite loop)

Other design errors could be added to the previous list to expand the proposed
mutation model without altering the methodology. Each of the previous error classes
has been associated with at least a mutation of the EFSM models representing TLM
primitives, as described in the next paragraphs.

According to the classification of errors that may affect the specification of finite-
state machine, proposed by Chow [32], different fault models have been defined for
perturbing FSMs [25, 89]. They target, generally, Boolean functions labeling the
transitions and/or transition’s destination states. Mutated versions of an EFSM can
be generated in a similar way, by modifying the behavior of enabling and update
functions and/or changing the destination state of transitions.

Hereafter, we present an example of how the EFSM of Fig. 22.11a can be
perturbed to generate mutant versions of the TLM primitive according to the design
errors previously summarized. Figure 22.12 shows how such kinds of mutations are
used to affect the behavior of primitive b_transport(). Numbers reported in
the bottom right part of each EFSM identify the kind of design errors modeled by
the mutation with respect to the previous classification.

Mutations on destination states. Changing the destination state of a transition
allows us to model design errors #2, #4, and #7. For example, let us consider
Fig. 22.12. Cases (a)–(d) show mutated versions of the EFSM that affect the des-
tination state of the transition. Mutation (a) models the fact that the designer forgets
to call b_transport() (design error #2), while (b) models the misapplication of
a non-blocking primitive instead of a blocking one, since the wait on channel event
is bypassed (design error #4). Cases (c) and (d) model two different incorrect uses
of the polling mechanism (design error #7).

Mutations on enabling functions. Mutation on the truth value of enabling functions
model design errors of type 1 and 4. For example, Fig. 22.12e shows a mutated
version of the EFSM corresponding to primitive b_transport(), where the
transition from A to B is never fired and B is never reached. Such a mutation
corresponds to a deadlock in the communication protocol (design error #1), for
example, due to a wrong synchronization among modules with the socket channel.
The primitive can also be mutated as shown in case (f), which corresponds to using
a non-blocking instead of a blocking primitive, since the wait in B for the channel
event is prevented by an always true enabling function (design error #4).

706 G. Pravadelli et al.

(a)

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

(b)

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

)d()c(

false

(e)

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

(f)

(g)

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

(h)

A B

Setting payload
to be sent;
b_transport(payload,time);

true

socket_eventC

2 4

4,7 7

1 1,4

3,4,5 6

Fig. 22.12 Mutations on EFSM representing the TLM-2.0 primitive b_transport()

Mutations on update functions. Changing the operations performed in the update
functions allows us to model design errors #3, #4, #5, and #6. Mutation on
operations (shown in case (g)) corresponds to a misapplication of the communi-
cation primitives, like, for example, calling a transaction for writing instead of
a transaction for reading (design error #3), a b_transport() instead of an
nb_transport() (design error #4), setting the time parameter instead of not
setting it (design error #5). On the other hand, mutations on data included in the
payload packets (shown in cases (h)) model design errors corresponding to an
erroneous handling of the payload packet (design error #6).

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 707

22.6.2 Property Qualification

In the last years, research topics investigated how to assess the quality and the
comprehensiveness of a set of properties to increase the efficiency and effectiveness
of assertion-based verification. Three approaches have emerged:

1. Detection of properties that pass vacuously. Properties are vacuously satisfied if
they hold in a model and can be strengthened without causing them to fail. Such
properties may not cover any behavior of the golden model thus they can lead
to a false sense of safety. The vacuous satisfaction points out problems either in
property or in environment definition or in the model implementation.

2. Analysis of the completeness of a set of properties. A set of properties could
be incomplete since some requirements could be only partially formalized into
properties. As a consequence behaviors uncovered by properties can exist, so
implementation could be wrong even if it satisfies all the defined properties.

3. Identification of over-specification. The set of properties could be over-specified
if it contains properties that can be derived as logical consequence of other
properties. For example, it is possible to define a property whose coverage is a
subset of the coverage of another defined property. Thus, all behaviors modeled
by the first property are also modeled by the latter. The presence of such over-
specification yields the verification time to be longer than it is required to be.

Current approaches to vacuity analysis, rely on the pioneering work of Beer
et al. [10], where a formula ' is said to pass vacuously in a model M if it passes
in M , and there is a sub-formula of ' that can be changed arbitrarily without
affecting the passing of '. All of them, generally, exploit formal methods to search
for an interesting witness, proving that a formula does not pass vacuously [7,10,11,
69, 70]. In this context, an interesting witness is a path showing one instance of the
truth of the formula ', on which every important sub-formula affects the truth of
'. Such approaches are, generally, as complex as model checking, and they require
to define and model check further properties obtained from the original ones by
substituting their sub-formulas in some way, thus sensibly increasing the verification
time.

The analysis of the completeness of a set of properties addresses the question
of whether enough properties have been defined. This is generally evaluated by
computing property coverage, whose intent is to measure the percentage of DUV
behaviors captured by properties. Current approaches for property coverage can
be divided into two categories: mutant based [27–29, 60, 65, 71, 73, 103] and
implementation based [66, 82, 102]. The first references rely on a form of mutation
coverage that requires perturbing the design implementation before evaluating the
property coverage. In particular, [71] gives a good theoretic background with
respect to mutation of both specification and design. The latter ones estimate the
property coverage by analyzing the original implementation without the need to
insert perturbations. The main problem of these approaches is due to the adoption
of symbolic algorithms that suffer from the state explosion problem.

708 G. Pravadelli et al.

Finally, regarding the problem of over-specification, the analysis can be per-
formed by exploiting theorem proving. However, its complexity is exponential in
the worst case, and it is not completely automatized, since human interaction is very
often required to guide the proof. Fully automatic techniques for dealing with over-
specification removal have not been investigated in literature, while the problem
has been only partially addressed in [30]. The authors underline that given a set
of properties, there can be more than one over-specified formula, and they can be
mutually dependent; thus, they cannot be removed together. The authors show that
finding the minimal set of properties that does not contain over-specifications is a
computationally hard problem.

In general, by observing the state of the art in the literature, it appears that most
of the existing strategies for property qualification rely on formal methods, which
require a huge amount of spatial (memory) and temporal (time) resources, and
they generally solve the qualification problem only for specific subsets of temporal
logics. Given the previous drawbacks, the next section is devoted to summarizing
an alternative qualification approach [39], which exploits mutation analysis and
simulation to evaluate the quality of a set of formal properties with respect to
vacuity [42], completeness [48], and over-specification [21].

22.6.2.1 Mutant-Based Property Qualification
As shown on top of Fig. 22.13, the basic ingredients for the mutant-based property
qualification methodology are the model of the DUV, a corresponding set of
formal properties that hold on the model and, if necessary, the description of the
environment where the DUV is embedded in. The approach is independent from the
abstraction level of the DUV and the logics used for the definition of the properties.
Properties are then converted into checkers, i.e., monitors connected to the DUV
that allow checking the satisfiability of the corresponding properties by simulation.
Checkers can be easily generated by adopting automatic tools, like, for example,
IBM FoCs [2] or radCHECK [38].

According to the central part of Fig. 22.13, mutants are injected into either the
DUV or the checkers to generate their corresponding faulty versions. Faulty checker
implementations are generated for addressing vacuity analysis, while faulty DUV
implementations are necessary for measuring property coverage and detecting cases
of over-specification.

Entering in the details, the vacuity analysis for a property ' is carried on in
relation to the effect of mutants that affect the sub-formulas of '. In particular, the
methodology works as follows:

1. Given a set of properties that are satisfied by the DUV, a set of interesting
mutants is injected in the corresponding checkers. Intuitively, an interesting
mutant perturbs the checker’s behavior similar to what happens when a sub-
formula is substituted by true or false in ' according to the vacuity analysis
approach proposed in [11]. Thus, for each minimal sub-formula (i.e., each atomic
proposition) of ', a mutant is injected in the corresponding checker, such that
the signal storing the value of is stuck at true or stuck at false, respectively,

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 709

Specification
Formalization and
Implementation

Properties
Mutations

Identification

List of
mutations

Checker
Implemen-

tation

Design
Implemen-

tation

Environment

Faulty Faulty

Generation of
Faulty

Implementations

Muta�on analysis

Vacuity analysis Completeness
analysis

Overspecifica�on
analysis

checker
implemen-

tantions

DUV
implemen-

tantions

1 2 3

Fig. 22.13 Overview of the property qualification methodology

when has a negative or a positive polarity. (Intuitively, in a logic with polarity, a
formula has positive polarity if it is preceded by an even number of not operators;
otherwise, it has negative polarity).

2. The faulty checkers are connected to the DUV and the related environment. Then,
testbenches are used to simulate the DUV. The vacuity analysis relies on the
observation of the simulation result. A checker failure due to the effect of an
interesting mutant f corresponds to proving that the sub-formula perturbed
by f affects the truth value of '. Consequently, the sequence of values generated
by the testbench that causes the checker failure is an interesting witness proving
that ' is not vacuous with respect to its sub-formula . On the contrary, a mutant
that does not cause checker failures (i.e., an undetected mutant) must be analyzed
to determine if either the property is vacuous with respect to the corresponding
sub-formula or the vacuity alert is due to the inefficiency of the testbenches
that cannot detect the mutant during the simulation. The latter happens when
there exists a test sequence (i.e., an interesting witness) for detecting the mutant,
but the testbenches are not able to generate it. In case of an undetected mutant,
the verification engineer can manually investigate the cause of undetectability to
discriminate between a vacuous property and a low-quality testbench. However,
it is also possible to make the disambiguation in an automatic way, by means of
a formal approach. In fact, a new property '0 can be generated from ', where

710 G. Pravadelli et al.

the sub-formula inside ' is substituted with either true or false, depending on
the polarity of , to reproduce the same effect caused by injecting the mutant
f on the checker of '. Then, the satisfiability of '0 is verified on the DUV
by using a model checker. If the model checker returns a successful answer,
it implies that ' is vacuous, because does not affect '; otherwise it means
that ' is not vacuous while the testbench is ineffective. In this second case, the
counterexample generated by the model checker represents the input sequence
that must be added to the testbench to prove the non-vacuity of ' by simulation.

3. Finally, the analysis of interesting mutants that actually correspond to vacuous
passes allows the verification engineer to determine the exact cause of the
vacuity, which can be either an error in the property, a too strict environment
for the DUV, or an error in the model of the DUV itself that does not implement
correctly the intended specification.

At the end of the vacuity analysis, it is possible to measure the degree of
completeness of the remaining properties on the basis of their property coverage.
According to the theoretical basis described in [48], property coverage is computed
by measuring the capability of a set of properties to detect mutants that perturb the
DUV. A low property coverage is then a symptom of a low degree of completeness.
In particular, if a mutant that perturbs the functionality of the DUV does not affect
at least one property in the considered set, it means that this set of properties is
unable to distinguish between the faulty and the fault-free implementations of the
DUV, and thus it is incomplete. In this case, a new property covering the fault
should be added. On the contrary, the fact that at least one property fails in the
presence of each mutant affecting the outputs of the DUV implementation represents
a positive feedback about the quality of the property set. Nevertheless, the quality
of the mutant model is the key aspect of the overall methodology. A low-quality
set of mutants negatively impacts the overall methodology, such that achieving
100% property coverage provides a false sense of security when mutant injection
is inadequate.

Independently from the adopted mutant model, the computation of the property
coverage consists of two phases:

1. Generation of faulty DUV implementations. Perturbations of the design imple-
mentation are generated by automatically injecting mutants inside the DUV
model. The obtained mutant list must include only detectable mutants, which
are mutants that, for at least one input sequence, cause at least one output of the
faulty implementation to differ from the corresponding output of the fault-free
implementation. Only detectable mutants are considered to achieve an accurate
estimation of the golden model completeness because undetectable mutants
cannot cause failures on the properties since they do not perturb the outputs of
the DUV. The set of detectable mutants can be identified by simulating the DUV
with either manual testbenches or by using an automatic test pattern generator.

2. Property coverage analysis. The presence of a detectable mutant implies that the
behavior of the faulty implementation differs from the behavior of the fault-free

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 711

implementation. Thus, while the defined properties are satisfied by the fault-
free implementation, at least one of them should be falsified if checked on a
faulty implementation. The property coverage is then measured by the following
formula:

PC D
number of mutants detected by the properties

number of detectable mutants

The computation of PC can be done by using a formal approach, i.e., by
model checking the properties in the presence of each mutant, or by means of
a dynamic strategy, i.e., by simulating the faulty DUV connected to the checkers
corresponding to the properties under analysis. The formal approach is generally
unmanageable for a large number of mutants, but the higher scalability provided
by the dynamic simulation is paid in terms of exhaustiveness. In fact, as for the
case of vacuity analysis, an undetected mutant during simulation can be due to the
ineffectiveness of the testbenches rather than an incompleteness of the properties.
Thus, formal analysis is restricted to the few mutants that remain undetected after
simulation.

3. In case of a low property coverage, the verification engineer is guided in
the definition of new properties by analyzing the area of the DUV including
mutants that do not affect any property till the desired degree of completeness is
achieved.

When the achieved degree of completeness is satisfactory (this measure depends
on the design team standards), a last process, still based on the property coverage,
can be applied for capturing the case of over-specification, i.e., the presence of
properties that can be removed from the final set because they are covering the same
behaviors covered by other properties included in the same set [21].

22.7 Automatic Stimuli Generation

The main purpose of dynamic verification is increasing the confidence of designers
in the ES behavior by creating stimuli and evaluating them in terms of adequacy
criteria, e.g., coverage metrics. In this context, an effective stimuli generation
is at the basis of a valuable functional qualification. Actual value inputs may
be either automatically generated or developed by engineers as stimuli suites.
Stimuli generation techniques fall into three main categories: concrete execution,
symbolic execution, and concolic execution. Concrete execution is based on random,
probabilistic, or genetic techniques [79]. It is not an exhaustive approach, but
it allows to reach deep states of the system space by executing a large number
of long paths. Symbolic execution [68] represents an alternative approach for
overcoming concrete execution limitations, where an executable specification is
simulated using symbolic variables, and a decision procedure is used to obtain
concrete values for inputs. Such approaches suffer from solver limitations in
handling either the complexity of formulas or data structures or the surrounding

712 G. Pravadelli et al.

execution environment. Such limitations have been recently addressed by proposing
concolic execution [77, 93] that mingles concrete and symbolic executions and,
whenever necessary, simplifies symbolic constraints with corresponding concrete
values. However, module execution is still represented as a symbolic execution tree,
growing exponentially in the number of the maintained paths, states, and conditions,
thus incurring in state space explosion.

Several tools on the market adopt these approaches and provide the user with au-
tomatic stimuli generation addressing coverage metrics. DART [54] combines ran-
dom stimuli generation with symbolic reasoning to keep track of constraints for exe-
cuted control flow paths. CUTE [93] is a variation of the DART approach addressing
complex data structures and pointer arithmetic. EXE [23] and KLEE [22] are frame-
works for symbolic execution, where the second symbolically executes LLVM [72]
bytecode. PEX [99] is an automated structural testing generation tool for .NET code
developed at Microsoft Research. [77] describes a hybrid concolic stimuli genera-
tion approach for C programs, interleaving random stimuli generation with bounded
exhaustive symbolic exploration to achieve better coverage. However, it cannot
selectively and concolically execute paths in a neighborhood of the corner cases.

22.7.1 EFSM-Based Stimuli Generation

This section presents an EFSM-based concolic stimuli generation approach for ES.
The approach is based on an EFSM model of the ES and leads to traverse a target
transition t (i.e., not-yet-traversed transition) by integrating concrete execution and
a symbolic technique that ensures exhaustiveness along specific paths leading to the
target transition t .

Algorithm 1 is a high-level description of the proposed concolic approach. It
takes as inputs the EFSM model and two timeout thresholds: (i) overall timeout,
i.e., the maximum execution time of the algorithm (MaxTime), and (ii) inactivity
timeout, i.e., the maximum execution time the long-range concrete technique can
spend without improving transition coverage (InaTime).

Algorithm 1 The EFSM-based concolic algorithm for stimuli generation

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 713

RInf keeps track of the EFSM configurations used for (re-)storing system status
whenever the algorithm switches between the symbolic and concrete techniques. At
the beginning, both Stimuli and RInf are empty (line 2). The algorithm identifies
the dependencies between internal and input variables and EFSM paths. EFSM
transitions allow to determine dependency information (DInf, line 3), used in the
following corner-case-oriented symbolic phases, when further dynamic analysis
between EFSM paths is performed. Such a dependency analysis selectively chooses
a path for symbolic execution whenever the concrete technique fails in improving
transition coverage of the EFSM. The stimuli generation runs until the specified
overall timeout expires (line 4–5). First, the algorithm executes a long-range
concrete technique (line 6), then a symbolic wide-width technique, which exploits
the Multi-Level Back Jumping (MLBJ) (see Sect. 22.7.1.3) to cover corner cases
(line 7). The latter starts when the transition coverage remains steady for the user-
specified inactivity timeout (line 5). The algorithm reverts back to the long-range
search as soon as the wide-width search traverses a target transition. The output is
the generated stimuli set (line 9). The adopted long-range search (line 6) exploits
constraint-based heuristics [40] that focus on the traversal of just one transition at
a time. Such approaches scale well with design size and, significantly, improve the
bare pure random approach. The following sections deepen the single steps of the
algorithm.

22.7.1.1 Dependency Analysis
Without a proper dependency analysis, the stimuli generation engine wastes con-
siderable effort in the exploration of uninteresting parts of the design. Thus, the
proposed approach focuses on dependencies of enabling functions, i.e., control
part, on internal variables. As a further motivating example, consider the EFSM
in Fig. 22.2. Let t8 be the target transition. We want to compare paths �1 D t2 WW t6
and �2 D t3, where t WW t 0 denotes the concatenation of transitions t and t 0. The
enabling function of t8 involves the variables “ova” and “pva.” Both are defined
along �1 by means of primary inputs. Along �2 only “pva” is defined by means
of primary inputs. Thus, to traverse t8, MLBJ will select �1 instead of �2, since
t8 enabling function is more likely to be satisfied by the symbolic execution of �1
rather than of �2. We will consider again this example at the end of the section.

We approximate dependencies as weights. Indirect dependencies, as the depen-
dency of d2 on i1 in the sequence of assignments “d1 WD i1 C i2I d2 WD d1 C i3,”
are approximated as flows of weights between assignments. Given a target transition
Nt , we map each path ending in Nt to a nonnegative weight representing data control
dependencies. Intuitively, the higher the weight, the greater is the dependency of
Nt ’s enabling function, i.e., eNt , on inputs read along such a path, and the higher is the
likelihood that its symbolic execution leads to the satisfaction of eNt . An initial weight
is assigned to eNt , then we let it “percolate” backward along paths. Each transition
lets a fraction of the received weight percolate to the preceding nodes and retains
the remaining fraction. The weight associated with a path � is defined as the sum
of weights retained by each transition of � . The ratio of the weight retained by a
transition is defined by its update function.

714 G. Pravadelli et al.

22.7.1.2 Snapshots of the Concrete Execution
The ability of saving the EFSM configurations allows the system to be restored
during the switches between concrete and symbolic phases. This avoids the time
consuming re-execution of stimuli. Algorithm 1 keeps trace of the reachability
information, i.e., RInf, and maintains a cache of snapshots of the concrete execution.
Each time a stimulus is added to the set of stimuli, the resulting configuration
is stored in memory and explicitly linked to the reached state. The wide-width
technique searches feasible paths that both start from an intermediate state of the
execution and lead to the target transition. Moreover, during the MLBJ, for a
given configuration and target transition, many paths are checked for feasibility,
as described in Sect. 22.7.1.3. Thus, caching avoids the cost of recomputing
configurations for each checked path. Both the time and memory requirements of
each snapshot are proportional to the size of D (see definition in Sect. 22.4.1.1).

22.7.1.3 Multilevel Back Jumping
When the long-range concrete technique reaches the inactivity time-out threshold,
the concolic algorithm switches to the weight-oriented symbolic approach; see
line 7 in Algorithm 1. Typically, some hard-to-traverse transitions, whose enabling
functions involve internal variables, prevent the concrete technique goes further
in the exploration. In this case, the MLBJ technique is able to selectively address

Algorithm 2 The core of the MLBJ technique

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 715

paths, with high dependency on inputs, i.e., high retained weight, for symbolically
executing them. Such paths are leading from an intermediate state of the execution
to the target transition; thus the approach is exhaustive in a neighborhood of the
corner case.

Algorithm 2 presents a description of the core of the MLBJ procedure. A
transition Nt is selected in the set of target transition, and then a progressively
increasing neighborhood of Nt is searched for paths � leading to Nt and having
maximal retained weight, i.e., R�.�;w0/. If the approach fails, another target
transition is selected in the set, and the procedure is repeated.

Describing in an elaborate way, a visit is started from Nt that proceeds backward
in the EFSM graph. The visit uses a priority queue p, whose elements are paths
that end in Nt . In particular, each path of p is accompanied by its weight tuple, i.e.,
w D P �.�;w0/ and retained weights, i.e., r D R�.�;w0/ and r 0 D R�.t WW �;w0/.
At the beginning, the queue p contains only Nt and the associated initial weight w0

(lines 2–3); no weight is initially retained (line 4). At each iteration, a path t WW �
with maximal retained weight is removed from p (line 6). The decision procedure
is used to check if the path t WW� can be proved unsatisfiable in advance (line 9), e.g.,
it contains clause conflicts. In this case t WW � is discarded so the sub-tree preceding
t WW� will not be explored. Otherwise, if the transition t has yielded a positive retained
weight (line 10), and then for each configuration associated with the source state of
t , the decision procedure checks the existence of a sequence of stimuli that leads to
the traversal of t WW � and thus of Nt (lines 12–13). In particular, the path constraint
is obtained by the identified EFSM path, i.e., t WW � , and the concrete values of the
internal variables, i.e., k, (line 12). In case a valid sequence of stimuli has not been
identified, for each transition t 0 that precedes t , the path t 0 WW t WW � is added to the
priority queue p (lines 14–17).

22.8 Conclusion

This chapter focused on the realization of an effective semiformal ABV environment
in a Model-Driven Design Framework. First it provided a general introduction
to Model-Driven Design and Assertion-Based Verification concepts and related
formalisms and then a more detailed view on the main challenges concerning
their combined use. Assertion-based verification can hypothetically provide an
exhaustive answer to the problem of design correctness, but from the practical point
of view, this is possible only if (1) the design under verification is stimulated with
testbenches that generate the set of all possible input stimuli and (2) a complete set
of formal properties is defined that totally captures the designer’s intents. Therefore
the chapter addressed assertion definition and automatic generation of checkers and
stimuli.

The key ingredient for an effective design and verification framework based on
MDD and ABV, is represented by the possibility of defining a model of the desired
system and then automatically deriving the corresponding simulatable description
to be used for virtual prototyping. This aspect was addressed in the chapter by using

716 G. Pravadelli et al.

automata-based formalisms, together with bottom-up and top-down flows, whose
combined adoption allows the generation of a homogeneous simulatable description
of the overall system.

Finally, the problem of property qualification was addressed by discussing about
property vacuity, completeness and over-specification.

References

1. 3S Software (2012) CoDeSys. http://www.3s-software.com
2. Abarbanel Y, Beer I, Gluhovsky L, Keidar S, Wolfsthal Y (2000) FoCs: automatic generation

of simulation checkers from formal specifications. In: Proceedings of international conference
on computer aided verification (CAV), pp 538–542

3. Aerospace Valley (2012) TOPCASED project. http://www.topcased.org
4. Alagar V, Periyasamy K (2011) Extended finite state machine. In: Specification of software

systems, texts in computer science. Springer, London, pp 105–128. DOI 10.1007/978-0-
85729-277-3_7

5. Alexander RT, Bieman JM, Ghosh S, Bixia J (2002) Mutation of Java objects. In: Proceedings
of IEEE ISSRE, pp 341–351

6. Alur R, Dill DL (1994) A theory of timed automata. Theoret Comput Sci 126(2):183–235
7. Armoni R, Fix L, Flaisher A, Grumberg O, Piterman N, Tiemeyer A, Vardi M (2003)

Enhanced vacuity detection in linear temporal logic (CAV). In: International conference on
computer aided verification, vol 2725. Springer, Berlin/Heidelberg, pp 368–380

8. Atego (2012) ARTiSAN. http://www.atego.com/products/artisan-studio
9. Batth SS, Vieira ER, Cavalli A, Umit Uyar M (2007) Specification of timed EFSM fault

models in SDL. In: Proceedings of FORTE, pp 50–65
10. Beer I, Ben-David S, Eisner U, Rodeh Y (1997) Efficient detection of vacuity in ACTL

formulas. In: International conference on computer aided verification (CAV), vol 1254,
pp 279–290

11. Beer I, Ben-David S, Eisner C, Rodeh Y (2001) Efficient detection of vacuity in temporal
model checking. Form Methods Syst Des 18(2):141–163

12. Belli F, Budnik CJ, Wong WE (2006) Basic operations for generating behavioral mutants. In:
Proceedings of IEEE ISSRE, pp 10–18

13. Black P, Okun V, Yesha Y (2000) Mutation operators for specifications. In: Proceedings of
IEEE ASE, pp 81–88

14. Bombieri N, Fummi F, Guarnieri V, Pravadelli G (2014) Testbench qualification of systemc
TLM protocols through mutation analysis. IEEE Trans Comput 63(5):1248–1261

15. Bombieri N, Fummi F, Pravadelli G, Hampton M, Letombe F (2009) Functional qualification
of TLM verification. In: Design, automation test in Europe conference exhibition, DATE’09,
pp 190–195. DOI 10.1109/DATE.2009.5090656

16. Borrione D, Liu M, Morin-Allory K, Ostier P, Fesquet L (2005) On-line assertion-based
verification with proven correct monitors. In: Proceedings of international conference on
information and communications technology (ICICT), pp 125–143

17. Boulé M, Zilic Z (2008) Automata-based assertion-checker synthesis of PSL properties. ACM
Trans Des Autom Electron Syst 13:1–21. http://doi.acm.org/10.1145/1297666.1297670

18. Boutekkouk F, Benmohammed M, Bilavarn S, Auguin M et al (2009) UML 2.0 profiles for
embedded systems and systems on a chip (SoCs). J Object Technol 8(1):135–157. DOI
10.5381/jot.2009.8.1.a1

19. Bradbury JS, Cordy JR, Dingel J (2006) ExMan: a generic and customizable framework for
experimental mutation analysis. In: Proceedings of IEEE ISSRE, pp 4–9

20. Bradbury JS, Cordy JR, Dingel J (2006) Mutation operators for concurrent Java (J2SE 5.0).
In: Proceedings of IEEE ISSRE, pp 11–11

http://www.3s-software.com
http://www.topcased.org
http://www.atego.com/products/artisan-studio
http://doi.acm.org/10.1145/1297666.1297670

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 717

21. Brait S, Fummi F, Pravadelli G (2005) On the use of a high-level fault model to analyze
logical consequence of properties. In: Proceedings of ACM/IEEE international conference
on formal methods and models for co-design, MEMOCODE, pp 221–230

22. Cadar C, Dunbar D, Engler D (2008) KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Proceedings of USENIX symposium on
operating systems design and implementation (OSDI)

23. Cadar C, Ganesh V, Pawlowski PM, Dill DL, Engler DR (2006) EXE: a system for
automatically generating inputs of death using symbolic execution. In: ACM conference
on computer and communications security, pp 322–335

24. Cadence (2012) Assertion-based verification. http://www.cadence.com/products/fv/pages/
abv_flow.aspx

25. Cheng KT, Jou JY (1990) A single-state-transition fault model for sequential machines. In:
IEEE ICCAD’90, pp 226–229

26. Cheung P, Forin A (2007) A C-language binding for PSL. In: Proceedings of international
conference on embedded software and systems (ICESS). Springer, pp 584–591

27. Chockler H, Kupferman O, Kurshan R, Vardi M (2001) A practical approach to coverage in
model checking. In: Proceedings computer aided and verification, pp 66–78

28. Chockler H, Kupferman O, Vardi M (2006) Coverage metrics for formal verification. Int J
Softw Tools Technol Transfer (STTT) 8:373–386

29. Chockler H, Kupferman O, Vardi M (2006) Coverage metrics for temporal logic model
checking. Formal Methods Syst Des 28:189–212

30. Chockler H, Strichman O (2007) Easier and more informative vacuity checks. In: Proceedings
ACM/IEEE international conference on formal methods and models for codesign, pp 189–198

31. Choi BJ, DeMillo RA, Krauser EW, Martin RJ, Mathur AP, Pan AJOH, Spafford EH
(1989) The Mothra tool set (software testing). In: Proceedings of IEEE HICSS, vol 2,
pp 275–284

32. Chow T (1978) Testing software design modeled by finite state machines. IEEE Trans Softw
Eng 4(3):178–187

33. Dahan A, Geist D, Gluhovsky L, Pidan D, Shapir G, Wolfsthal Y, Benalycherif L, Kamidem
R, Lahbib Y (2005) Combining system level modeling with assertion-based verification. In:
Proceedings of international symposium on quality of electronic design (ISQED), pp 310–315

34. Das S, Mohanty R, Dasgupta P, Chakrabarti P (2006) Synthesis of system verilog assertions.
In: Proceedings of design, automation & test in Europe conference & exhibition (DATE),
vol 2, pp 1–6

35. De Simone R, André C (2006) Towards a “synchronous reactive” UML profile? Int J Softw
Tools Technol Transfer 8(2):146–155

36. Delamaro ME, Maldonado JC (1996) Proteum – a tool for the assessment of test adequacy
for C programs. In: PCS’96, pp 79–95

37. DeMillo RA, Lipton RJ, Sayward FG (1978) Hints on test data selection: help for the
practicing programmer. IEEE Comput 11(4):34–41

38. Di Guglielmo G, Di Guglielmo L, Foltinek A, Fujita M, Fummi F, Marconcini C, Pravadelli
G (2013) On the integration of model-driven design and dynamic assertion-based verification
for embedded software. J Syst Softw 86(8):2013–2033. DOI 10.1016/j.jss.2012.08.061

39. Di Guglielmo L, Fummi F, Pravadelli G (2009) The role of mutation analysis for property
qualification. In: IEEE/ACM international conference on formal methods and models for
co-design, MEMOCODE, pp 28–35

40. Di Guglielmo G, Fummi F, Pravadelli G, Soffia S, Roveri M (2010) Semi-formal functional
verification by EFSM traversing via NuSMV. In: Proceedings of IEEE international high
level design validation and test workshop (HLDVT), pp 58–65

41. Di Guglielmo L, Fummi F, Orlandi N, Pravadelli G (2010) DDPSL: an easy way of defining
properties. In: 2010 IEEE international conference on computer design (ICCD), pp 468–473

42. Di Guglielmo L, Fummi F, Pravadelli G (2010) Vacuity analysis for property qualification by
mutation of checkers. In: Design, automation test in Europe conference exhibition (DATE),
pp 478–483

http:// www.cadence.com/products/fv/pages/abv_flow.aspx
http:// www.cadence.com/products/fv/pages/abv_flow.aspx

718 G. Pravadelli et al.

43. Di Guglielmo L, Fummi F, Pravadelli G, Stefanni F, Vinco S (2012) A formal support
for homogeneous simulation of heterogeneous embedded systems. In: IEEE international
symposium on industrial embedded systems (SIES), pp 211–219

44. Di Guglielmo L, Fummi F, Pravadelli G, Stefanni F, Vinco S (2013) UNIVERCM: the
universal versatile computational model for heterogeneous system integration. IEEE Trans
Comput 62(2):225–241

45. Ebeid E, Fummi F, Quaglia D (2015) HDL code generation from UML/MARTE sequence
diagrams for verification and synthesis. Des Autom Embed Syst 19(3):277–299. DOI
10.1007/s10617-014-9158-1

46. Ebeid E, Fummi F, Quaglia D (2015) Model-driven design of network aspects of distributed
embedded systems. IEEE Trans Comput Aided Des Integr Circuits Syst 34(4):603–614

47. Ebert C, Jones C (2009) Embedded software: facts, figures, and future. Computer 42(4):
42–52

48. Fedeli A, Fummi F, Pravadelli G (2007) Properties incompleteness evaluation by functional
verification. IEEE Trans Comput 56(4):528–544

49. Ferrari A, Gaviani G, Gentile G, Stara G, Romagnoli G, Thomsen T (2004) From conception
to implementation: a model based design approach. In: Proceedings of IFAC symposium on
advances in automotive control

50. Ferro L, Pierre L (2010) ISIS: runtime verification of TLM platforms. Adv Des Methods
Model Lang Embed Syst SoCs 63:213–226

51. Foster H, Krolnik A, Lacey D (2004) Assertion-based design. Springer, New York
52. Foster H, Larsen K, Turpin M (2006) Introducing the new accellera open verification library

standard. In: Proceedings of design and verification conference (DVCON)
53. Gentleware (2012) Poseidon for UML embedded edition. http://www.gentleware.com/uml-

software-embedded-edition.html
54. Godefroid P, Klarlund N, Sen K (2005) DART: directed automated random testing. In:

Proceedings of ACM SIGPLAN conference on programming language, design, and imple-
mentation (PLDI), pp 213–223

55. Graaf B, Lormans M, Toetenel H (2003) Embedded software engineering: the state of the
practice. IEEE Softw 20(6):61–69

56. Di Guglielmo L, Fummi F, Pravadelli G, Stefanni F, Vinco S (2011) UNIVERCM: The
UNIversal VERsatile computational model for heterogeneous embedded system design. In:
Proceedings of IEEE HLDVT, pp 33–40

57. HAL – Inria (2012) Gaspard2 UML profile documentation. http://hal.inria.fr/inria-
00171137/en

58. Henzinger T (1996) The theory of hybrid automata. In: Logic in computer science (LICS).
IEEE Computer Society, New Brunswick, pp 278–292

59. Hiller M (2000) Executable assertions for detecting data errors in embedded control systems.
In: Proceedings of IEEE international conference on dependable systems and networks
(DSN), pp 24–33

60. Hoskote Y, Kam T, Ho P, Zhao X (1999) Coverage estimation for symbolic model checking.
In: Proceedings ACM/IEEE design automation conference, pp 300–305

61. Hyunsook D, Rothermel G (2006) On the use of mutation faults in empirical as-
sessments of test case prioritization techniques. IEEE Trans Softw Eng 32(9):
733–752

62. IAR Systems (2012) IAR visualSTATE. http://www.iar.com/Products/IAR-visualSTATE/
63. IBM (2012) Rational Rhapsody. http://www.ibm.com/software/awdtools/rhapsody
64. IEEE Computer Society (2010) IEEE Standard for Property Specification Language (PSL)

(IEEE Std 1850-2010)
65. Jayakumar N, Purandare M, Somenzi F (2003) Dos and don’ts of CTL state coverage

estimation. In: Proceedings of design automation conference (DAC)
66. Katz S, Grumberg O (1999) Have I written enough properties? – a method of comparison

between specification and implementation. In: Proceedings ACM advanced research working
conference on correct hardware design and verification methods. Springer, pp 280–297

http://www.gentleware.com/uml-software-embedded-edition.html
http://www.gentleware.com/uml-software-embedded-edition.html
http://hal.inria.fr/inria-00171137/en
http://hal.inria.fr/inria-00171137/en
http://www.iar.com/Products/IAR-visualSTATE/
http://www.ibm.com/software/awdtools/rhapsody

22 Semiformal Assertion-Based Verification of Hardware/Software Systems. . . 719

67. Kim M, Kim Y, Kim H (2011) A comparative study of software model checkers as unit testing
tools: an industrial case study. IEEE Trans Softw Eng 37(2):146–160

68. King JC (1976) Symbolic execution and program testing. Commun ACM 19(7):385–394
69. Kupferman O, Vardi MY (1999) Vacuity detection in temporal model checking. In:

Conference on correct hardware design and verification methods, pp 82–96
70. Kupferman O, Vardi M (2003) Vacuity detection in temporal model checking. Int J Softw

Tools Technol Transfer 4(2):224–233
71. Kupferman O, Li W, Seshia S (2008) A theory of mutations with applications to vacuity,

coverage, and fault tolerance. In: Proceedings IEEE international conference on formal
methods in computer-aided design

72. Lattner C, Adve V (2005) The LLVM compiler framework and infrastructure tutorial. In:
Proceedings of international workshop on languages and compilers for high performance
computing (LCPC). Springer, pp 15–16

73. Lee T, Hsiung P (2004) Mutation coverage estimation for model checking. In: Pro-
ceedings international symposium on automated technology for verification and analysis,
pp 354–368

74. Lettnin D, Nalla P, Ruf J, Kropf T, Rosenstiel W, Kirsten T, Schonknecht V, Reitemeyer S
(2008) Verification of temporal properties in automotive embedded software. In: Proceedings
of design, automation & test in Europe conference & exhibition (DATE). ACM, pp 164–169

75. Lyu MR, Zubin H, Sze SKS, Xia C (2003) An empirical study on testing and fault tolerance
for software reliability engineering. In: Proceedings of IEEE ISSRE, pp 119–130

76. Ma YS, Offutt J, Kwon YR (2005) Mujava: an automated class mutation system. Softw Test
Verif Reliab 15(2):97–133

77. Majumdar R, Sen K (2007) Hybrid concolic testing. In: Proceedings of IEEE international
conference on software engineering (ICSE), pp 416–426

78. Mathur AP (1991) Performance, effectiveness, and reliability issues in software testing. In:
COMPSAC’91, pp 604–605

79. McMinn P (2004) Search-based software test data generation: a survey. Softw Test Verif
Reliab 14(2):105–156

80. Mentor Graphics (2012) Assertion-based verification . http://www.mentor.com/products/fv/
methodologies/abv

81. Mischkalla F, He D, Mueller W (2010) A UML profile for SysML-based comodeling for
embedded systems simulation and synthesis. In: Proceedings of workshop on model based
engineering for embedded system design (MBED)

82. Mishra P, Dutt N (2002) Automatic functional test program generation for pipelined
processors using model checking. In: Proceedings IEEE high-level design validation and
test, pp 99–103

83. Object Management Group, Inc. (2012) MARTE resource page. http://www.omgmarte.org/
84. Object Management Group, Inc. (2012) OMG specifications. http://www.omg.org
85. Object Management Group, Inc. (2012) UML resource page. http://www.uml.org
86. Offutt AJ, Untch RH (2001) Mutation 2000: uniting the orthogonal. In: Wong WE (ed)

Mutation testing for the new century. Kluwer Academic Publishers, Boston, pp 34–44
87. Offutt AJ, Rothermel G, Zapf C (1993) An experimental evaluation of selective mutation. In:

ICSE’93, pp 100–107
88. Olsson T, Runeson P (2001) System level mutation analysis applied to a state-based language.

In: Proceedings of IEEE ECBS, pp 222–228
89. Pinto Ferraz Fabbri SC, Delamaro ME, Maldonado JC, Masiero PC (1994) Mutation analysis

testing for finite state machines. In: IEEE ISSRE’94, pp 220–229
90. Riccobene E, Scandurra P, Bocchio S, Rosti A, Lavazza L, Mantellini L (2009) SystemC/C-

based model-driven design for embedded systems. ACM Trans Embed Comput Syst 8(4):1–
37

91. Seger C (2006) Integrating design and verification – from simple idea to practical system. In:
Proceedings of ACM/IEEE MEMOCODE, pp 161–162

92. Selic B (2003) The pragmatics of model-driven development. IEEE Softw 20(5):19–25

http://www.mentor.com/products/fv/methodologies/abv
http://www.mentor.com/products/fv/methodologies/abv
http://www.omgmarte.org/
http://www.omg.org
http://www.uml.org

720 G. Pravadelli et al.

93. Sen K, Agha G (2006) CUTE and jCUTE: Concolic unit testing and explicit path model-
checking tools. In: Proceedings of international conference on computer aided verification
(CAV). Springer, Berlin/New York, pp 419–423

94. Society IC (2009) IEEE standard for system verilog-unified hardware design, specification,
and verification language (IEEE Std 1800-2009)

95. Sparx Systems (2012) Enterprise architet. http://www.sparxsystems.com.au
96. STM Products (2012) radCHECK. http://www.verificationsuite.com
97. SysML Partners (2012) SysML resource page. http://www.sysml.org
98. The MathWorks, Inc. (2012) Simulink. http://www.mathworks.com/products/simulink/
99. Tillmann N, De Halleux J (2008) Pex: white box test generation for. NET. In: Proceedings of

ACM international conference on tests and proofs (TAP), pp 134–153
100. Winterholer M (2006) Transaction-based hardware software co-verification. In: Proceedings

of forum on specification & design languages (FDL)
101. Xie F, Liu H (2007) Unified property specification for hardware/software co-verification.

In: Proceedings of international computer software and applications conference (COMSAC),
pp 483–490

102. Xu X, Kimura S, Horikawa K, Tsuchiya T (2005) Transition traversal coverage estimation for
symbolic model checking. In: Proceedings ACM/IEEE international conference on formal
methods and models for co-design, pp 259–260

103. Xu X, Kimura S, Horikawa K, Tsuchiya T (2006) Transition-based coverage estimation for
symbolic model checking. In: Proceedings ACM/IEEE Asia and South Pacific conference on
design automation, pp 1–6

http://www.sparxsystems.com.au
http://www.verificationsuite.com
http://www.sysml.org
http://www.mathworks.com/products/simulink/

23CPA: Compositional Performance Analysis

Robin Hofmann, Leonie Ahrendts, and Rolf Ernst

Abstract

In this chapter we review the foundations Compositional Performance Analysis
(CPA) and explain many extensions which support its application in design
practice. CPA is widely used in automotive system design where it successfully
complements or even replaces simulation-based approaches.

Acronyms

ACK Acknowledgement
ARQ Automatic Repeat Request
BCET Best-Case Execution Time
BCRT Best-Case Response Time
CAN Controller Area Network
COTS Commercial/Components Off-The-Shelf
CPA Compositional Performance Analysis
DAG Directed Acyclic Graph
DMA Direct Memory Access
ECU Electronic Control Unit
FIFO First-In First-Out
MCR Mode Change Request
SPNP Static-Priority Non-Preemptive
SPP Static Priority Preemptive
TWCA Typical Worst-Case Analysis
TWCRT Typical Worst-Case Response Time
WCET Worst-Case Execution Time
WCRT Worst-Case Response Time

R. Hofmann (�) • L. Ahrendts • R. Ernst
Institute of Computer and Network Engineering, Technical University Braunschweig,
Braunschweig, Germany
e-mail: rhofmann@ida.ing.tu-bs.de; ahrendts@ida.ing.tu-bs.de; ernst@ida.ing.tu-bs.de

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_24

721

mailto:rhofmann@ida.ing.tu-bs.de
mailto:ahrendts@ida.ing.tu-bs.de
mailto:ernst@ida.ing.tu-bs.de

722 R. Hofmann et al.

Contents

23.1 Motivation . 722
23.2 Fundamentals . 723

23.2.1 Timing Model . 724
23.2.2 Analysis . 730

23.3 Extensions . 740
23.3.1 Analysis of Systems with Shared Resources . 740
23.3.2 Analysis of Systems Undergoing Mode Changes . 742
23.3.3 Analysis of the Timing Impact of Errors and Error Handling 743
23.3.4 Refined Analysis of Task Chains . 745
23.3.5 Timing Verification of Weakly-Hard Real-Time Systems 747
23.3.6 Further Contributions . 748

23.4 Conclusion . 748
References . 748

23.1 Motivation

Despite the risk of overlooking critical corner cases, design verification is for
the most part based on execution and test using simulation, prototyping, and the
final system. Formal analysis and verification are typically used in cases where
errors are particularly expensive or may have catastrophic consequences, such as in
safety critical or high availability systems. Such formal methods have considerably
improved in performance and usability and can be used on a broader scale to
improve design quality, but they must cope with growing hardware and software
architecture complexity.

The situation is similar when we consider system timing verification. Formal
timing analysis methods have been around for decades, starting with early work
by Liu and Layland in the 70s [24] which provided schedulability analysis and
worst-case response time data for a limited set of task system classes and scheduling
strategies for single processors. In the meantime, there were dramatic improvements
in the scope of considered tasks systems, architectures, and timing models. One
of the key analysis inputs is the maximum execution time of a task, the Worst-
Case Execution Time (WCET), where there has been similar progress [51]. As in
the case of function verification, progress in hardware and software architectures
made analysis more challenging. In particular the dominant trend focusing Commer-
cial/Components Off-The-Shelf (COTS) on average or typical system performance
has impaired system predictability forcing analysis to resort to more conservative
methods (i.e., methods that overestimate the real worst case). While architectures
with higher predictability have been proposed [29,51], design practice currently has
to live with the ongoing trend.

In some respect, efficient formal timing verification is even harder than func-
tion verification because of systems integration. Today, a vehicle, an aircraft,
a medical device, and even a smartphone integrates many applications sharing
the same network, processors, and run-time environment. This leads to potential

23 CPA: Compositional Performance Analysis 723

timing interference of seemingly unrelated applications. The integrated modular
architecture (IMA), standardized as ARINC 653 [45] for aircraft design, and even
more the automotive AUTOSAR standard are perfect examples for such software
architectures. They also stand for different philosophies. While ARINC 653 takes
a constructive approach and uses scheduling to obtain application isolation at the
cost of resource efficiency, AUTOSAR does not constructively prevent timing
interference, but the related automotive safety standard ISO 26262 requires proof
of “freedom from interference” for safety critical applications.

However, even with extensive runs on millions of cases, simulation and pro-
totyping remain an investigation of collections of use cases with decreasing
expressiveness for large integrated systems. Therefore, there is a strong incentive
to use formal timing analysis methods at least on the network level. For example,
there are formal methods for some protocols such as the automotive Controller Area
Network (CAN) bus which is the dominant automotive bus standard today [10].
Unfortunately, current automotive systems are not only large but heterogeneous
combining different protocols and scheduling and arbitration strategies. To make
things worse, the component and network technology incrementally develops over
time challenging flexibility and scalability of any formal timing analysis.

In this situation, the introduction of modular timing analysis methods which
support composition of analyses for different scheduling and arbitration strategies as
well as different architectures and application systems with a variety of models-of-
computation was considered a breakthrough. Today, most automotive manufacturers
and many suppliers use formal timing analysis as part of their network development.
A corresponding tool, SymTA/S, has been commercialized and is widely used. The
original ideas which led to that tool can be found in [37].

This chapter presents the general concept of the Compositional Performance
Analysis (CPA) and extensions of the last couple of years. Since this is an overview
chapter, it stays on the surface to keep readability. For more details, the reader
is referred to the large body of related scientific papers covering compositional
performance analysis and a related approach based on the Real-Time Calculus
(RTC) [49].

23.2 Fundamentals

CPA is an analysis framework which serves to formally derive the timing behavior
of embedded real-time systems.

From a hardware perspective, an embedded real-time system consists of a
set of interconnected components. These components include communication and
computation elements as well as sensors and actuators which act as the connection to
the system environment. The interconnected components represent the platform on
which software applications with real-time requirements are executed. A software
application is composed of tasks, entities of computation, which are distributed over
and executed on different components of the system.

724 R. Hofmann et al.

The execution order of tasks belonging to one application is constrained, for
instance, the read of a sensor must be performed before the computation of a
control law and the control of an actuator. Moreover, if several tasks are executed
on one component, the tasks have to share the processing service the component
offers. This has obviously an impact on the timing behavior of each task. As a
result, in order to determine the timing behavior of the system, it is not sufficient
to focus on isolated tasks. Apart from the interaction of tasks which are caused
by functional dependencies (imposed execution order), nonfunctional dependencies
(share of component service) have also to be taken into consideration.

In the following, the system model used for CPA is described, and then the
compositional analysis principle is deduced. Following the above argumentation,
CPA structures its system model with respect to three aspects: (1) the individual
tasks, (2) the individual components with intra-component (local) dependencies
between mapped tasks, and (3) the system platform with inter-component (global)
dependencies between mapped tasks. The analysis is structured according to the lo-
cal and global aspects, and it is compositional in the sense that the timing properties
of the system can be conclusively derived from its constituting components.

23.2.1 Timing Model

In the following the timing model of a real-time embedded system is described as
it is used in CPA. The timing model is layered and includes the task timing model,
the component timing model, and the system timing model. All three layers are
explained in detail below and are illustrated in Fig. 23.1.

23.2.1.1 Task Timing Model
In this section the timing behavior of an individual task �i is presented which is
characterized completely by its execution time Ci . The execution time Ci is the
amount of service time which a component has to provide in order to process task �i .
The actual execution time of a task �i does not only heavily depend on the task input
and the task state but also on the execution platform. For instance, the processor
architecture, the cache architecture, and the Direct Memory Access (DMA) policy
impact the execution time. As a result, a task �i does not have a static but rather
a varying execution time Ci as illustrated in Fig. 23.2. For the CPA, the lower and
the upper bound on the task execution are of interest because they include every
intermediate timing behavior. The lower bound on the task execution time is called
Best-Case Execution Time (BCET) denoted as C�i , whereas the upper bound is
called the WCET denoted as CCi .

Different methods exist to derive the BCET and WCET of a task �i . One
method is to simulate the task execution under different scenarios and observe
the required execution time. Since the number of test cases is naturally limited,
the simulation is bound not to cover all corner cases thus underestimating the
WCET and overestimating the BCET. Formal program analysis, on the other hand,
evaluates the source or object code associated with a task �i and takes into account

23 CPA: Compositional Performance Analysis 725

Fig. 23.1 System timing model. The system timing model used in CPA comprises three aspects:
(1) individual tasks, (2) individual components with mapped tasks and local task dependencies,
and (3) the entire platform with mapped tasks and global task dependencies

Fig. 23.2 Relative frequency of the observed execution time of a task. Observed execution
times from simulations can in general not bound the actual best-case and worst-case behaviors. In
contrast, a formal bound tends to overestimate the actual WCET and to underestimate the actual
BCET

the architectural properties of the execution platform. Program analysis is capable
of deriving a safe upper bound on the WCET of a task �i , relying on worst-case
program configuration and worst-case program input in order to cover all behavioral
corner cases. Apart from static WCET bounds, parametric WCET bounds have
been proposed [9]. Tools for the derivation of WCET bounds like aiT [1] are
available. As programs can be become arbitrarily complex, program analysis makes
conservative assumptions leading to significant WCET overestimations and BCET
underestimations. This is the reason why program analysis for BCET/WCET-
estimation is often only used for tasks with high criticality, i.e., with high impact
on system safety. While there is extensive research dedicated to the WCET analysis

726 R. Hofmann et al.

[52], it is not part of CPA itself. Therefore, the BCETs and WCETs are assumed to
be known as safe but possibly conservative values.

23.2.1.2 Local View: Component Timing Model
The component timing model represents a locally restricted view on the system. It
focuses on the timing behavior in the scope of individual system components.

Once a set of tasks is mapped to a component, the timing behavior of each
task can no longer be treated in isolation. On the one hand, tasks interact due
to nonfunctional dependencies, i.e., the share of component service which is
determined by the local scheduling policy. On the other hand, tasks interact due
to functional dependencies. All tasks belonging to one application have activation
patterns, and an execution order imposed by the application which per definition
specifies the high-level functional context and the functional interaction of tasks.

The derivation of a task activation pattern and the realization of the required
execution order of tasks is done by the propagation of activation events in the CPA
component timing model. Assume a precedence-constrained execution order of a
set of tasks which are mapped to a component as illustrated in Fig. 23.1 for the
component timing model layer. The activation pattern of a task �i which represents
the first element in the execution order of tasks (head of a task chain) is determined
by the behavior of an event source outside of the component. Such an event source
can either be located in the system environment or at another system component.
A task �j which directly succeeds task �i in the task chain is activated by the
termination events of task �i . This propagation of activation events applies for all
elements in the task chains. Note that the event propagation in CPA timing model
implies that the activation patterns of tasks are derived from high-level functional
constraints, and do not represent a direct property of the individual task.

In this section, first the component abstraction and then the component scheduler
is introduced which organizes the share of component service. Hereafter, in order to
reason about service demand and event propagation among precedence-constrained
tasks, the principles of activation/termination traces and activation/termination event
models are explained.

Component Abstraction
System components are also called resources and are characterized by their property
to provide processing service to tasks. A component can either be a computation
resource or a communication resource, and depending on the kind of resource, a task
can either represent an algorithm to be computed or a data frame to be transmitted.
For instance, an Electronic Control Unit (ECU) is a computation resource which
may provide processing service to tasks computing a control law. A data bus, in
contrast, can be modeled as a communication resource transmitting data frames.

Scheduler
A resource can only serve one task at a time; hence, if more than one task is ready to
execute, it has to be decided which task will be processed next. The decision process
is performed by the scheduler of the resource. It specifies when to start and pause

23 CPA: Compositional Performance Analysis 727

the execution of pending tasks. Commonly used scheduling policies for embedded
real-time systems are Static Priority Preemptive (SPP) and Static-Priority Non-
Preemptive (SPNP) scheduling. We will use these policies as important examples
throughout the chapter, noting that CPA is not limited to static priority policies.

Activation Traces and Termination Traces
A task is activated by an activation event, where activation means that the task is
moved from a sleeping state to a ready-to-execute state. Such an activation event
can either be time triggered or event triggered. A time-triggered activation occurs
according to a predefined time pattern, whereas an event-triggered activation is
a reaction to a certain true condition in the system or the system environment.
Additionally to being activated by an activation event, a task produces a termination
event when it has finished.

An activation trace of a task �i describes the set of instants at which an activation
event for a task �i takes place. A similar definition applies to the termination trace.
An activation event for a task �i originates either from an event source which is
triggered by the system environment or another external event source like a timer,
or it is produced by a predecessor task �j if a precedence constraint with respect to
the execution order exists between two tasks in the form of �j ! �i (�j precedes
�i). The termination event of the predecessor task �j , produced at the end of its
execution, then represents the activation event for task �i . If the predecessor task is
not local to the component, an external event source with a conservative activation
pattern is initially assumed in the CPA component timing model, see Sect. 23.2.2.2.

Activation event traces from event sources and predecessor tasks can be com-
bined to form a joint activation event trace. The join of two event traces can either
follow an AND or an OR logic. An AND logic implies that only if an event from
both incoming event traces is available at a given time, an event is produced on the
joint event trace. An OR logic requires an event from only one of the two incoming
event traces to produce an event on the joint trace. It is also possible for a single
event trace to fork, i.e., to serve as an activation trace for multiple tasks. Figure 23.3
illustrates how activations events propagate through the system. Note that activation
and termination events do not include any information on data, rather the event
concept is agnostic of the concrete processed and transferred data and focuses on
the timing behavior of tasks.

Event Models
An event trace of a task �i captures the sequence of event occurrences with respect
to task �i for a given system trajectory in the system state space. Due to the countless
number of possible system trajectories, it is not feasible to perform a timing analysis
for all possible event traces. Rather, the timing analysis has to be restricted to corner
cases which bound the timing behavior of the task �i in all other cases. CPA uses for
this purpose arbitrary activation [termination] event models where arbitrary means
that an arbitrary activation [termination] behavior of a task �i can be bounded by the
event model [36].

728 R. Hofmann et al.

Fig. 23.3 Event traces. Tasks are activated by activation events from time-triggered or event-
triggered event sources as well as by the termination events of predecessor tasks. The arrows
connecting event sources and tasks as well as tasks among each other indicate the flow of events
through the system. The small arrows # indicate individual activation events which occur regularly
in case of time-triggering and irregularly in case of event-triggering and propagate through the
system

An event model of a task �i is defined by the set of two distance functions
ı�i ; ı

C
i W N0 ! R

C
0 , namely, the minimum distance function ı�i and the maximum

distance function ıCi . The minimum distance function ı�i .n/ describes the minimum
time distance between any n consecutive activation [termination] events of task
�i . The maximum distance function ıCi .n/ describes the maximum time distance
between any n consecutive activation [termination] events of task �i . The distance
between zero and one events is defined for mathematical convenience as zero so that
ı
C;�
i .0/ D ıC;�i .1/ WD 0.

Pseudo inverses of the distance functions are the arrival functions 	Ci ; 	
�
i W

R
C
0 ! N0. The maximum arrival function 	Ci is the pseudo inverse of the minimum

distance function ı�i , and the minimum arrival function 	�i is the pseudo inverse
of the maximum distance function ıCi . The function 	C.�t/, resp. 	�.�t/, returns
the maximum, resp. minimum, number of activation [termination] events of task �i
within any half-open time interval Œt; t C �t/. For a time interval �t D 0, the
event arrival functions 	�i and 	Ci are defined as zero. The pseudo inverses are
introduced because they often allow a more elegant mathematical formulation of
timing analysis problems.

The pair of minimum and maximum distance functions, resp. arrival functions,
describe the best-case and worst-case event trace of a task �i with respect to event
frequency. If distance functions, resp. arrival functions, cannot be formally derived,
it is possible to extract them from measured event traces [17].

A commonly used event model is the PJd event model [36] shown in Fig. 23.4.
A PJd event model is applicable to a task �i which is activated periodically but
may experience bursts of activations once in a while. It can be characterized by
the three parameters period Ti , jitter Ji , and a minimum event distance di . Bursts
occur if the jitter of periodic activation events, i.e., the maximum relative deviation
in time from the exactly periodic activation instant, is larger than the task activation
period. In this case the task may receive multiple new activation events before the
current task invocation has terminated. The PJd event model is also of historical

23 CPA: Compositional Performance Analysis 729

a

Arrival functions. Distance functions.

b

Fig. 23.4 PJd event model. (a) illustrates the maximum arrival function 	C.�t/ D

min
n˙

�t
d

;
l
�tCJ
T

mo
and the minimum arrival function 	�.�t/ D max

˚
0;
˙
�t�J
T

�
for a

PJd event model with T D 3; J D 6; d D 1. (b) illustrates for the same PJd model the
minimum distance function ı�.�t/ D max f.n� 1/ � d; .n� 1/ � T � J g and the maximum
distance function ıC.�t/ D .n � 1/ � T C J with n � 2. For small time intervals, the burst
behavior dominates where the minimum event distance d bounds the maximum event frequency
during the burst. For large time intervals, the periodic behavior with jitter dominates

importance because it was the basis for the description of activation patterns before
the more general distance functions and arrival functions were introduced [18, 36].
It has the advantage that it can be described by a limited set of parameters and
shows a periodic behavior for larger time intervals. In contrast, arbitrary event
models may potentially extend indefinitely without showing a repetitive pattern.
This complicating property of arbitrary event models has to be handled by an
appropriate analysis approach which is able to extract relevant limited time windows
for the investigation of the system timing behavior, see the busy period concept in
Sect. 23.2.2.

23.2.1.3 Global View: System Timing Model
From a global perspective, the system is composed of a set of interconnected com-
munication and computation resources which constitute the processing platform.
Tasks are mapped to the resources and interact with each other forming larger
functional entities, so-called applications.

In the global perspective, inter-component interactions between tasks as defined
by applications become visible; see Fig. 23.1. Inter-component interactions between
tasks are, like intra-component interactions, modeled by event propagation in CPA.
To account for a dependency between two tasks �i , �j mapped on two different
components where task �i precedes task �j , the termination event model of the
predecessor task �i is propagated as activation event model to the successor task
�j . The required termination event model of a task is determined iteratively during
the system analysis procedure described in the following section.

730 R. Hofmann et al.

23.2.2 Analysis

CPA is a systematic timing analysis method which serves to verify the timing prop-
erties of complex distributed real-time systems with heterogeneous components.
The major challenge in analyzing such a system is to take into account the numerous
interdependencies of task executions which result both from direct task interaction
and indirect task interaction due to the share of resources.

CPA follows a compositional approach which first performs a local component-
related timing verification step and then, in a global timing verification step, sets the
local verification problems in a system context where inter-component dependencies
are considered. The inter-component dependencies relate the local verification
problems in such a manner that their inputs and outputs are linked. The relation
of the local verification problems leads to a fixed point problem which converges if
the propagation of outputs to inputs between related verification problems does not
change the verification results any more. If the system is overloaded, the fixed point
problem does not converge, and an abort criterion, e.g., the detected miss of a task
deadline, is used to stop the iteration process.

In this section, first the local analysis is presented and then the superordinate
global analysis is introduced.

23.2.2.1 Local Analysis
Local analysis refers to the analysis of timing properties of an individual system
resource which processes tasks according to a given scheduling policy. The local
analysis is based on the component timing model.

Resource Utilization
The utilization U of a resource is defined as the quotient of the execution request
which the resource receives and the available service time which it can provide. It
is computed by accumulating the utilization Ui that each task �i with i D 1 : : : N

mapped to this resource imposes. The maximum utilization UCi that an individual
task �i can impose on a resource is given if the task requests its maximum execution
time CCi at its maximum activation frequency

UCi D lim
n!1

n � CCi
ı�i .n/

: (23.1)

The maximum utilization of a resource UC D
PN

iD1 U
C
i is an important variable

to determine whether the resource is overloaded, and consequently the tasks
are not schedulable. Apparently, it is impossible to schedule tasks sets with a
resource utilization larger than one. In this case, the local analysis will be stopped.
While being a necessary (under some conditions even sufficient) indicator for the
schedulability of a task set, the utilization is not an appropriate means to describe
the system timing behavior in detail. The utilization of a resource does not give any

23 CPA: Compositional Performance Analysis 731

insight into the sequence of execution and suspension phases during the processing
of a task which are determined by the applied scheduling policy.

Worst-Case Response Time
Since tasks which are allocated to the same resource have to share its service, the
processing of a task �i is preempted if other tasks with higher priority are activated.
This is illustrated in Fig. 23.5. The time interval between the activation and the
termination of a task �i , including all suspension phases, is defined as the response
time of task �i denoted as Ri . The minimum response time of task �i , denoted as
R�i , and the maximum response time of task �i , denoted as RCi , serve to bound the
response time behavior of task �i .

The decisive property of hard real-time systems is that no task �i is allowed to
miss its deadline Di . In other words, it is required that the deadline Di is an upper
bound on the worst-case response time RCi . A major purpose of timing analysis like
CPA is to verify this system property which is crucial for safe operation of real-time
systems.

Determining the Worst-Case Response Time
In order to verify whether the real-time requirement RCi � Di for a task �i is
fulfilled, the worst-case response time RCi needs to be determined. Obviously, it is
not possible to explore the entire system state space for this purpose. Rather a worst-
case scenario has to be derived which allows to find the worst-case response time
RCi in a limited time window.

The limited time window of system behavior comprising the worst-case response
time behavior of task �i is called the longest level-i busy period [23]. The longest
level-i busy period is initiated by the so-called critical instant. The critical instant
describes the alignment of task activations and the execution times which lead to
the maximum interference with respect to task �i and consequently to the worst-
case response timeRCi . The longest level-i busy period closes if the investigation of
a longer time interval is known not to contribute any new information to the worst-
case response time analysis. In the following, first the concept of the level-i busy
period is explained. Then the multiple activation scheduling horizon as well as the
multiple activation processing time processing time are introduced. Both of those

Fig. 23.5 Response time and relative deadline. Task �2 is preempted during execution by task
�1 which is of higher priority. Therefore, the response time R2 is larger than the execution time
C2 D C2;1 C C2;2. The response time R2 is still smaller than the deadline D2

732 R. Hofmann et al.

variables serve to formally describe the processing behavior of a local resource with
respect to task �i within the level-i busy period.

Busy Period
A level-i busy period [23] is a time interval during which a resource R is busy
processing a task �i or tasks of higher priority than task �i under a fixed priority
scheduling policy. Directly before and after the level-i busy period, the resource R
is idle with respect to task �i and tasks of higher priority.

The level-i busy period is an elegant means to perform a worst-case response
time analysis by investigation of a limited time window. The idea is that the response
time behavior of task �i in a level-i busy period is completely independent of
events outside of this time interval. A level-i busy period is separated from the
preceding and succeeding level-i busy periods by idle phases of the resource R.
An idle phase implies that the resource R is virtually reset to an initial state being
ignorant of previous execution requests of task �i or tasks of higher priority. It is
thus sufficient to investigate in the timing analysis the level-i busy period which
comprises the worst-case response time behavior of task �i . This so-called longest
level-i busy period is initiated by the critical instant, which creates the maximum
possible interference with respect to task �i so that the worst-case response time of
task �i can be observed within the longest level-i busy period. It is a skillful task
to derive this critical alignment of task activations and service requests for a given
system configuration.

In the following, the longest level-i busy period and the initiating critical instant
are derived for an SPP-scheduled task set on a single processing resource R with no
restrictions on the task activation event models. Assume that at an instant t 	 �, the
resource R is idle with respect to task �i and all tasks with higher priority. Shortly
after at instant t , task �i is activated for the first time and requests its maximum
execution time CCi . The activation causes the creation of the first task instance, also
called job, which is denoted as �i .1/. If all tasks with higher priority than task �i are
activated simultaneously with �i .1/ at t and request their maximum execution time
at the highest possible frequency, then the maximum interference with respect to
task �i .1/ is evoked. This alignment of activations is the critical instant, the starting
point of the longest level-i busy period. The level-i busy period generally comprises
more than one job of task �i . The reason is that before job �i .1/ terminates, a second
activation of task �i may occur. Consequently the resource stays busy processing job
�i .2/ even if job �i .1/ terminated, and incoming jobs of tasks with priority higher
than task �i will preempt �i .2/ from time to time. The same may of course happen
before job �i .2/ terminates etc., and only when a job of task �i finishes before a new
activation for task �i comes in and no tasks with higher priority are processed, the
level-i busy period closes.

The critical instant for a task �i scheduled under an SPNP policy occurs (1) if task
�i is activated simultaneously with all tasks of higher priority, (2) if task �i and all
tasks of higher priority request their maximum execution times at highest possible
frequency, and (3) if a task �j of lower priority, which has the largest execution time

23 CPA: Compositional Performance Analysis 733

among all tasks with a priority lower than task �i , started execution just previously
to the first activation of task �i .

In the formal response time analysis, the closure of the level-i busy period is
represented by the solution of a fixed point problem. In order to be able to formulate
a formal response time analysis, the multiple activation scheduling horizon and
the multiple activation event processing time have to be introduced as done in the
following paragraphs. Both variables mathematically describe the timing behavior
of task �i within the level-i busy window.

Multiple Activation Scheduling Horizon
The q-activation scheduling horizon Si .q/ of task �i is defined as the maximum
half-open time interval which starts with the arrival of the first job �i .1/ of any
sequence of q consecutive jobs �i .1/; �i .2/; : : : �i .q/. The scheduling horizon closes
at the (not included) point in time when a theoretical activation of task �i with an
infinitesimally short execution time � could be immediately served by the resource
R after the processing of the q consecutive jobs. This theoretical activation is
independent from the actual activation model of task �i since it is never actually
executed [11].

The q-activation scheduling horizon generalizes the idea of the level-i busy
period for a number q of activations. During the q-activation scheduling horizon,
the resource R is busy processing task q jobs of �i and tasks of higher priority. The
condition, which a theoretical activation with infinitesimally short execution time �
could be potentially served at the end of the scheduling horizon, enforces an idle
time with respect to q jobs of task �i and all tasks of higher priority at the end of the
scheduling horizon. The scheduling horizon for q D qCi corresponds to the longest
level-i busy period, where qCi is the maximum number of activations of task �i
which fall into the scheduling horizon of their respective predecessor jobs

qCi D min fq � 1 j S.q/ < ı�i .q C 1/g : (23.2)

For the SPP scheduling policy, the q-activation scheduling horizon Si .q/ is the
solution to the following fixed point equation

Si .q/ D q � C
C
i C

X
j2hp.i/

CCj � 	
C
j .Si .q//: (23.3)

As can be seen in Eq. 23.3, the scheduling horizon Si .q/ is composed of two parts.
Firstly, it contains the maximum time interval which is required to service q jobs
of task �i . And secondly, it comprises the maximum interference caused by tasks of
higher priority than task �i (hp.i/). The maximum interference is evoked if every
task �j with j 2 hp.i/ is activated according to its maximum arrival curve 	Cj
and every job requests the worst-case execution time CCj during Si .q/. At the end
of Si .q/, a hypothetical q C 1st activation of task �i with � execution time could
immediately be served because all q jobs of task �i are processed and no jobs of

734 R. Hofmann et al.

higher priority are pending. In case of the SPNP scheduling policy, the q-activation
scheduling horizon Si .q/ has to take into account the worst-case one-time blocking
caused by a task of lower priority than task �i

Si .q/ D q � C
C
i C max

j 2 lp.i/

n
CCj

o
C

X
k 2 hp.i/

	Ck .Si .q// � C
C
k : (23.4)

Therefore, Si .q/ is composed of (1) the maximum processing time of q jobs of task
�i , (2) the maximum one-time blocking of task �i by a task of lower priority than
task �i due to non-preemption, and (3) the maximum interference of tasks with a
higher priority than task �i .

Multiple Activation Processing Time
The q-activation processing time Bi.q/ is defined as the time interval starting with
the arrival of the first job �i .1/ and ending at the termination of job �i .q/ for any
q consecutive activations of task �i which fall into the scheduling horizon of their
respective predecessors.

The maximum q-activation processing time BCi .q/ serves as basis for the worst-
case response computation. By definition, the maximum response time of the qth
task instance, denoted as RCi .q/, is the difference of the maximum q-activation
processing time of and its earliest possible time of activation

RCi .q/ D B
C
i .q/ 	 ı

�
i .q/: (23.5)

The worst-case response time of a task �i , denoted asRCi , is the maximum response
time of task �i within the longest level-i busy period, respectively, the qCi -activation
scheduling horizon, thus

RCi D max
1�q�q

C

i

RCi .q/: (23.6)

For the SPP policy, the maximum q-activation processing time BCi .q/ is identical
to the q-activation scheduling horizon Si .q/ so that

BCi .q/ D q � C
C
i C

X
j2hp.i/

CCj � 	
C
j .B

C
i .q//: (23.7)

The identity of the q-activation processing time and the q-activation scheduling
horizon is due to the sub-additive behavior of the SPP scheduling policy with respect
to the processing times [11, 39]: BCi .q C p/ � B

C
i .q/C B

C
i .p/. This property is,

however, not fulfilled for the SPNP scheduling policy. The maximum processing
time BCi .q/ under the SPNP policy is the sum of the maximum queuing delay with
respect to job �i .q/, denoted as QCi .q/, and the maximum execution time of job
�i .q/

23 CPA: Compositional Performance Analysis 735

BCi .q/ D Q
C
i .q/C C

C
i : (23.8)

The maximum queuing delay QCi .q/ is the time a job �i .q/ has to wait before it
is selected for execution by the SPNP scheduler. Activations of tasks with a higher
priority than task �i which occur during the execution of the job �i .q/ do not prolong
its processing time as by definition of the scheduling policy, it cannot be preempted
once it has started executing. The queuing delay can be bounded from above by [10]

QCi .q/ D .q 	 1/ � C
C
i C max

j 2 lp.i/

n
CCj

o
C

X
k 2 hp.i/

CCk � 	
C
k .Qi .q/C �/ :

(23.9)

The maximum queuing delay accounts for (1) the maximum execution demand of
all jobs of task �i activated prior to job �i .q/, (2) the longest one-time lower priority
blocking due to non-preemption, and (3) the longest higher priority blocking during
queuing. The infinitesimally long time interval � added to the queuing delay serves
to check whether another job interfering with task �i .q/ could start exactly at the
end of the iteratively computed queuing delay, thus it extends the investigated time
window. Note that Eq. 23.8–23.9 and Eq. 23.4 are not identical since the fixed point
iteration forBCi .q/ accumulates higher priority interference only during the queuing
delay plus �, whereas Si .q/ takes also into account interference of higher priority
during the execution of the qth job.

Example
Consider the timing diagram in Fig. 23.6 which illustrates the concept of the
multiple activation scheduling horizon and the multiple activation processing time.
The timing diagram shows three tasks �1, �2, and �3 which are scheduled on a
common resource under an SPNP policy, where task �1 is of higher priority than
task �2 and task �2 is of higher priority than task �3. The scenario represents
the worst case with respect to the response time of task �2 since (1) task �3 is
activated just prior to tasks �1 and �2 with maximum execution demand, (2) task
�1 causes maximum interference of higher priority, and (3) task �2 always requests
its maximum execution time at highest possible frequency.

In the timing diagram, the multiple activation scheduling horizons and the
multiple activation processing times are indicated. All scheduling horizons and
processing times start at time 0. The termination of job �2.1/ marks the end of
BC2 .1/. The scheduling horizon S2.1/ is longer than BC2 .1/ due to the higher
priority interference which prevents that a hypothetical activation of task �2 with an
infinitesimally short execution time � could be immediately served after the first job
�2.1/. Note that the scheduling horizon is defined as a half-open interval and thus
does not take interference of higher priority into account which arrives exactly at
the interval boundary of S2.1/. Since the activation of �2.2/ falls into the scheduling
horizon S2.1/ of job �2.1/, B

C
2 .2/ exists. Again, the scheduling horizon S2.2/ is

longer than the processing time BC2 .2/, but the activation of job �2.3/ does not fall
into the scheduling horizon S2.2/. Thus, S2.2/ is the longest scheduling horizon and

736 R. Hofmann et al.

Fig. 23.6 Scheduling horizons and processing times for SPNP scheduling

represents the longest level-2 busy period. Note that the depicted scenario illustrates
the non-subadditive behavior of the processing times: BC2 .2/ > BC2 .1/ C B

C
2 .1/.

The maximum processing time of job �2.1/ is BC2 .1/ D 11, and its worst-case
response time equals RC2 .1/ D BC2 .1/ 	 ı

�.1/ D 11 	 0 D 11. The maximum
processing time of job �2.2/ is BC2 .1/ D 25, and its worst-case response time
equals RC2 .2/ D BC2 .2/ 	 ı

�.2/ D 25 	 15 D 10. Thus, a worst-case response
time analysis yields the result RC2 D max

1�q�q
C

i

RC2 .q/ D 11.

Best-Case Response Time
The best-case response time R�i and the worst-case response time RCi serve to
bound the response time behavior of task �i . A simple approximation of the best-
case response time R�i relies on the following assumptions: (1) the absence of
interference by tasks with equal or higher priority, and (2) the request of the
minimum execution time C�i .

R�i D C
�
i : (23.10)

Even though this approximation does not necessarily represent a tight bound, it is
usually acceptable as timing analysis aims to provide real-time guarantees and thus
focuses particularly on worst-case behavior.

Jitter
Jitter represents the maximum time interval by which the occurrence of a given event
may deviate from the expected occurrence of the event. The response time jitter of
a task �i can hence be calculated as the difference between the best-case response
time RCi and the worst-case response time R�i

Ji;resp D R
C
i 	R

�
i : (23.11)

23 CPA: Compositional Performance Analysis 737

Backlog
It is possible that an activation event for a task �i arrives before the previously
activated task instance has been processed, e.g., due to high interference or jitter. In
this case, a backlog of activation events with respect to task �i arises. To prevent any
loss of information, all activation events are queued until they are processed. The
queue semantics in CPA is characterized by a First-In First-Out (FIFO) organization
and a nondestructive write to and a destructive read from a queue storing activation
events. The determination of an appropriate queue size for pending activation events
of task �i is important both to avoid dropping of events and over-dimensioning. The
maximum activation backlog for task �i , denoted as bCi , is bounded by

bCi D max
1�q�q

C

i

˚
0; 	Ci .B

C
i .q/C oi;out / 	 q C 1

�
: (23.12)

The expression 	C.�t/ represents the maximum possible number of task instances
which can be activated in �t , here with �t D BCi .q/ C oi;out . The first term
BCi .q/ is the maximum processing time for the task instance q of �i , the second
term oi;out represents the maximum overhead required to remove a finished task
instance from the activation queue [13]. The term 	q C 1 accounts for the fact
that previously activated task instances have already been finished. In other words,
Eq. 23.12 computes the difference between the number of occurred activation events
and processed ones, hence returning the number of pending activation events.

23.2.2.2 Global Analysis
In the previous section on the principle of the local analysis, we have shown how
to compute the worst-case and best-case response times, the output jitter and the
maximum activation backlog for a task with a given activation model. The local
analysis is resource-related and does not consider any interaction between tasks on
different resources. However, in reality many real-time applications are composed
of multiple tasks which are distributed over several resources. For instance, a
typical real-time application performs a control function which evaluates and
processes sensor data in order to control an actuator according to a given control
law. An exemplary mapping of such a real-time application to a platform with
communication and computation elements is illustrated in Fig. 23.7.

In this section, it is shown how the global analysis integrates the dependencies of
tasks on different resources into the analysis.

Consideration of Global Precedence Constraints
Tasks in an application can generally not be executed in an arbitrary order but
have to be executed in a function-related order. The functional restrictions on the
possible execution orders of tasks are expressed in form of precedence constraints.
Precedence constraints can be described by a directed graph, the nodes representing
the tasks, and the directed edges representing the directed execution dependencies.
Paths in a precedence graph describe linear, branched, or even cyclic structures of
dependencies.

738 R. Hofmann et al.

Fig. 23.7 Real-time application distributed over multiple computation and communication
resources. ECU Electronic Control Unit, SWC Software Component, RTE Run-Time Environment

If two dependent tasks are mapped to two different resources, the timing
behavior of those tasks is no longer exclusively determined by the local parameters.
Consequently, the local view of a resource is no longer sufficient. To appropriately
consider the precedence constraints of a pair of tasks where �i precedes �j (�i ! �j)
in CPA, the termination event model of the predecessor task �i is used as the
input event model of its successor task �j , i.e., the completion of one task triggers
the activation of another. The termination behavior of task �i is bounded by the
minimum output distance function, denoted as ı�i;out , and the maximum output
distance function, denoted as ıCi;out . The distance functions naturally depend on the
input (activation) event model .ı�i;in; ı

C
i;in/ of task �i and the processing behavior of

the resource [11, 36]

ı�i;out .n/ D max
˚
ı�i;in 	 Ji;resp; .n 	 1/ � di;min

�
(23.13)

ıCi;out .n/ D ı
C
i;in.n/C Ji;resp (23.14)

where di;min is the minimum distance between any two terminations of task �i . A
refined computation of the output models can be found in [43].

With the definition of inter-resource precedence constraints and the derivation of
the best-case and worst-case output event models, the global analysis of the system
can be performed.

Analysis Strategy
The global analysis is a timing verification step which sets the local verification
problems in a system context where inter-resource precedence constraints are taken
into account. As explained above, these inter-resource precedence constraints relate
the local verification problems in such a manner that their input and output event
models are linked. The relation of the local verification problems leads to a fixed

23 CPA: Compositional Performance Analysis 739

point problem which converges if the propagation of outputs to inputs between
related verification problems does not change the verification results any more.
Therefore, the CPA procedure consists of two parts: First, the local analysis of
the individual resources is performed in order to generate the initial output event
models. Then in a global analysis step, the output event models are propagated
through the system to the tasks which utilize them as input event models due to
global precedence constraints. The local analysis is repeated under updated input
parameters computing best-case and worst-case response times, jitter and required
queue sizes. Due to possible circular dependencies between activation models, it
might be necessary to repeat this process multiple times. This propagation of output
event models and update of input event models is continued until the analysis results
converge.

In the following, the detailed procedure of the global analysis is presented which
is also illustrated in Fig. 23.8:

1. For every task �i which is activated by events in the system environment, the
input event model .ı�i;in; ı

C
i;in/ is initialized with the input event model of the

respective external event source.
2. For every task �j which is part of a precedence path, the input event model
.ı�j;in; ı

C
j;in/ corresponds to the output event model of the predecessor task. If in

the initial analysis run no output event model of the predecessor task is available,
then the input event model .ı�j;in; ı

C
j;in/ is initialized with the input event model

of the predecessor task.
3. A local analysis is performed for each resource with the objective of deriving the

task output event models. Additionally, it is checked if the local analysis results
violate any constraints, for instance, the required absence of system overload or
the guarantee of all task deadlines.

4. The computed task output event models are propagated through the system to
the tasks which utilize them as input event models due to respective precedence
constraints.

5. If the propagated output event models are identical to the input event models
used in the previous local analysis, a global fixed point has been reached and
the analysis terminates [46]. All timing constraints, particularly task deadlines
and end-to-end path latencies, are checked. The classical approach to compute
the (worst case) end-to-end path latencies, is to accumulate the individual (worst
case) response times for each task along the path [21, 39, 47]. If any constraint is
violated, the system is not schedulable.

Otherwise, if no fixed point has been reached yet, the local analysis is repeated
with the updated input event models.

If the CPA has successfully terminated, the Best-Case Response Times (BCRTs)
and Worst-Case Response Times (WCRTs) of each task are known such that the
response time behavior of every task can be safely bounded. Moreover, maximum
required queue sizes are derived. Further system performance results can be derived
using the supplementary analysis modules of CPA presented in Sect. 23.3.

740 R. Hofmann et al.

Fig. 23.8 In the system-level
analysis, the local analyses
are combined with a step to
propagate updated output
event models. This is
repeated until the analysis
converges or terminates due
to abort criteria, e.g.,
constraint violation

23.3 Extensions

In the previous section, the basic CPA approach has been presented. It can be
extended to cover more complex system models or to improve the analysis to
compute tighter bounds for task response times or path latencies. In this section,
CPA extensions are introduced which are able to deal with the usage of shared
resources, the change of operation modi and the use of error handling protocols.
Moreover an improved analysis for chained tasks is presented, and it is shown
how CPA can be used to give formal timing guarantees for weakly-hard real-time
systems.

23.3.1 Analysis of Systems with Shared Resources

In multi-core architectures several computational units have to share resources,
such as the memory or data buses. For many of these shared resources concurrent
or interrupted accesses are problematic, e.g., parallel write accesses to the same
memory location can leave the accessed data corrupted or in an undefined state.
Accesses to shared resources for which unconstrained accesses can be problematic
are called critical section. Therefore, accesses to critical sections have to be
isolated, i.e., locked by mutexes or semaphores. To ensure that only one process
can have access to a critical section at a time, the accesses have to be modeled as

23 CPA: Compositional Performance Analysis 741

Fig. 23.9 Locally shared resources (LSR) can be only accessed by tasks from the same resource,
globally shared resources (GSR) are available for any resource. As multiple tasks from different
resources can attempt to access a GSR simultaneously, GSR require a different protection
mechanism compared to LSR

non-preemptive sections [42]. If a task attempts to access a critical section, which
has already been entered by another task, it has to wait until the current access has
finished. This blocking time is further delaying the waiting task’s response time
as it cannot continue executing. Simply locking resources can lead to deadlocks
or the priority inversion problem [22]. The automotive standard AUTOSAR, for
instance, specifies different protocols for accessing locally shared resources (LSR)
and globally shared resources (GSR) [3]. LSRs can only be accessed by tasks
mapped on one computational resource, while GRSs can be accessed by any task in
the system; see Fig. 23.9. Taking the different interference scenarios into account,
AUTOSAR specifies to use the priority ceiling protocol for LSR and a spinlock
mechanism for GSR [3].

When computing the WCRT of a task, the worst-case delay has to be assumed
when accessing a shared resource. The scenario in which the worst-case delay
occurs depends on the protocol used to protect the critical section. Generally, the
worst-case delay occurs if �i tries to access a shared resource which is currently
locked, and other tasks with a higher priority have accesses pending and continue to
issue new ones. If the duration and number of accesses from all tasks is known,
the maximum blocking a single access on a shared resource can be calculated
[39]. Tasks often need to access a shared resource more than once. Calculating the
independent worst-case delay for each individual access and accumulating the delay
can provide an upper bound for the total blocking time a task can experience.

However, doing so can largely overestimate the actual possible interference, as
the individual worst cases for each access are often mutually exclusive, i.e., blocking
that can happen once is accounted for each single access.

To avoid this overestimation, the authors in [39] present a response time
analysis combining arbitrarily activated tasks in multiprocessor systems with shared
resources. Instead of the accumulation of the individual worst-case delays, they
bounded the maximum possible interference that could occur during a given time
interval, the task’s processing time. The authors in [42] provided an analysis

742 R. Hofmann et al.

framework to calculate task timing behavior under the multi-core priority ceiling
protocol. In [28] the authors improved on this by taking into account local
scheduling dependencies allowing to analyze sets of functional dependent tasks.
The analysis has been extended to allow non-preemptive scheduling for tasks in
multi-core architectures with shared resources in [25].

23.3.2 Analysis of Systems Undergoing Mode Changes

Some real-time systems have to execute in multiple different modi, being able to
adapt to the environment or the mission being executed in multiple stages. A plane,
for instance, has to operate differently during start, landing, or flight, while in a car
the engine control might turn off certain analysis features, depending on the engine
speed [26]. With the capability to change its configuration, the system is able to
run more efficiently as it only needs to execute tasks when necessary and disables
functions when no longer needed. Being able to deactivate unrequired functions
can prevent or reduce expensive hardware over-dimensionation. Switching between
different configurations is called a mode change. This comes with the requirement
to analyze and verify the safety not only under one static configuration, but of the
different operational modes and also of the transition phases. For real-time systems,
this includes ensuring that the system satisfies all its deadlines during each possible
configuration.

A system is running in a steady state if it is executing in one mode without any
residing influence from a previous mode change, only executing the tasks from the
corresponding task set. If the system receives a Mode Change Request (MCR) the
set of running tasks has to be changed from the current mode to the new one. In order
to evaluate the transition phase, each task is classified according to the following
categories:

1. Old tasks are tasks which were present in the previous mode but not in the new
one. They are immediately terminated when the MCR occurs, i.e., any active or
pending task instances are removed from the system.

2. Finished or completed tasks are tasks which were present in the previous mode
but not in the new one. During the transition phase, these tasks are allowed to
finish their active and pending task instances, but no new instances will be started.

3. New or added tasks are tasks which are present in the new mode, but not in the
old one. They can represent updated tasks from the old mode, e.g., with changed
execution time or activation pattern, or new functionalities.

4. Unchanged tasks are present during the old and new modes with identical
properties, only in systems with periodicity.

If the system’s mode change protocol allows unchanged tasks, it is referred to as
with periodicity, and without periodicity if all task sets are disjunct.

When a MCR occurs, the system has to change from the current mode to the new
one, remove old and finished tasks and add new tasks. If the system waits until all fin-
ished tasks have completed their execution before starting to schedule new tasks, the

23 CPA: Compositional Performance Analysis 743

mode change protocol is called synchronous. Respectively, it is called asynchronous,
if it starts scheduling new tasks right after the MCR has occurred, simultaneously
with the last instances of finished tasks. Synchronous protocols ensure isolation
between the modes and therefore do not require specific schedulability analyses
for the transition phase. However, due to the delay introduced by the separation of
the modes, synchronous protocols are not always feasible, if the transition has to
be performed as fast as possible [27]. Asynchronous protocols, on the other hand,
overcome this limitation and allow the simultaneous scheduling of tasks from the
old and new mode. With an asynchronous protocol, the new tasks are added to the
set of scheduled tasks, hence possibly increasing the resource utilization. As simply
adding new tasks to the current set can lead to temporal overload on the resource,
asynchronous protocols require specific schedulability analyses [27, 34, 35, 50]. For
the remainder of this section, we will focus be on asynchronous protocols.

The CPA approach provides functionality to analyze the WCRTs of tasks and
path latencies for a system in a certain mode. The transition periods can be modeled
conservatively, by assuming that all tasks from the two (previous and new) modes
are active simultaneously. In order to be able to model a transition phase, rules have
to be defined regarding which transition phases can occur. The CPA extension relies
on the assumption that the system executes in a steady state when the MCR occurs,
i.e., new mode changes are not allowed to arise, while an older MCR is still exerting
influence on the task activations. With this restriction, only tasks from exactly two
mode sets need to be considered for a transition phase. The outcome from this is
that not only the response times of tasks during steady states and the mode change
phases are relevant but also the duration of these transition times. These transient
latencies determine the distance to the next possible mode change [27].

The authors in [27] have shown that due to complex task dependencies the effects
of a MCR are propagated delayed through the system, possibly causing feedback to
the source of the MCR. They have shown how to bound the transition latency, by
dividing it into local task transition latencies and global system transition latencies.
In [26] the authors evaluate options for the design of multi-core real-time systems
to minimize the impact of overly pessimistic measures taken in current practice.

23.3.3 Analysis of the Timing Impact of Errors and Error Handling

Safety-critical computing systems are usually designed to be fault tolerant toward
communication and/or computation errors. However, each fault tolerance mecha-
nisms incurs some time penalty because errors need first to be detected, and then
an error correction or error masking measure has to be taken. To guarantee the
correct timing behavior of a fault-tolerant safety-critical computing system, a formal
performance analysis has to take these error-related, additional timing effects into
account.

The consideration of timing overhead of fault tolerance mechanisms requires the
adaptation of the local CPA. The stochastic nature of errors involves the introduction
of a stochastic busy period; this is described in Sect. 23.3.3.2. Apart from timing

744 R. Hofmann et al.

overhead fault-tolerant systems have specific precedence constraints which result,
for instance, from redundant task executions. In Sect. 23.3.3.1, an adapted worst-
case response time analysis is briefly outlined for such fault-tolerant systems.

23.3.3.1 Computation Errors and Error Handling
A basic principle of detecting computational errors is to perform the same computa-
tion several times and to compare the results. A discrepancy in the computed results
is an evidence for an occurred fault. In a multi- or many-core processing system, it is
possible to parallelize the redundant computations or, respectively, the execution of
the redundant tasks. Such a fault tolerance approach leads to fork-join task graphs,
where forking means the parallel execution of replicated tasks and joining means
synchronization and the comparison of results. In [5] a strategy is presented how to
derive worst-case response times for tasks in a task set with fork-join precedence
constraints, so that the timing impact of replicated and parallelized computations
can be evaluated.

23.3.3.2 Communication Errors and Error Handling
Unreliable communication links in data buses or packet-switched networks intro-
duce bit errors in the digitally transmitted information. The occurrence of bit errors
can be modeled by stochastic processes which often use the average bit error rate
or packet error rate as an important parameter. If the assumption of independent bit
errors is justified, the Bernoulli process or its approximation as a Poisson process is
a classical modeling choice. If the probability of a bit error depends on past events,
a state-aware Markov process is more appropriate [44].

For multi-master data buses and point-to-point communication, the detection of
bit errors in transmitted frames at the receiver is typically based on error detecting
codes. If a an error has been detected and signaled, a retransmission of the the
corrupted or lost frame is initiated and the system is set back to a consistent state.
Since bit errors can occur arbitrarily often albeit with a very low probability, the
computation of a worst-case response time which includes an excessive detection,
signaling, and correction time overhead is meaningless. A probabilistic scheduling
guarantee, however, in the form of an exceedance function which specifies an
upper bound on the probability that a task instance exceeds a reference response
time value, is far more expressive. In [6], a probabilistic scheduling analysis is
presented for a fault-tolerant multi-master/point-to-point communication system
with non-preemptive fixed priority arbitration which is, for instance, applicable to
CAN. The analysis computes first the worst-case response time of a frame under
1 : : : K errors and the corresponding probabilities, and then derives an exceedance
function by summing up the probabilities for all error scenarios which have a
worst-case response time smaller or equal than the reference response time. In [4],
an improved approach is presented which relies on stochastic frame transmission
times. A stochastic frame transmission time is composed of the error-free frame
transmission time and the stochastic overhead for error signaling and correction.

23 CPA: Compositional Performance Analysis 745

Stochastic frame transmission times give rise to stochastic busy periods from which
stochastic response times and a less pessimistic exceedance function can be derived.

The performance analysis of switched real-time networks, both on-chip and off-
chip networks, is treated in [7]. The network switches are assumed to employ a fixed
priority-based arbitration scheme, and an end-to-end error protocol in form of an
Automatic Repeat Request (ARQ) scheme is investigated. In the ARQ scheme, the
sender buffers a sent packet until an Acknowledgement (ACK) message is received.
If no ACK arrives at the sender in a given time interval, a timeout occurs and the
buffered packet is retransmitted. The detection of corrupted packets at the receiver
is typically based on error detecting codes. Both corrupted and lost packets are
signaled to the sender by an omitted acknowledgement so that a retransmission
is implicitly triggered. Variants of this type of ARQ error handling protocol are
selective ARQ, stop-and-wait ARQ, and Go-back-N ARQ.

23.3.4 Refined Analysis of Task Chains

Real-time applications are usually not implemented as single tasks, but rather as a
set of logical dependent tasks, as shown in Fig. 23.7. The tasks within an application
are typically ordered and presented as a Directed Acyclic Graph (DAG), represent-
ing the logical order of execution. Within such a graph any logical dependent tasks
form a task path or task chain. Sensor-actuator chains in automotive or avionic
systems, for example, are distributed within the system as the components are
physically apart, or information needs to be gathered in a central instance to perform
decision-making. Multimedia applications on the other hand are often pipelined in
order to process media streams more efficiently. To be able to take advantage of the
parallelization of applications, the analyses methods need to support task paths and
provide mechanisms to efficiently analyze the dependencies between tasks.

The basic CPA approach supports the latency analysis of task paths, as described
in Sect. 23.2.2. The conservative approach is to compute the WCRT of each task
which is an element of the considered task path and to derive the path latency
by accumulating the individual WCRTs [21, 47]. While this simple accumulation
provides an upper bound for the path latency, it is pessimistic if local worst-case
scenarios within the same path are mutually exclusive.

In [38] the authors consider the communication between application threads
and the corresponding precedence constraints in the resulting task graphs in order
to improve the local WCRTs. They exclude infeasible worst-case scenarios for
logically dependent tasks on the same SPP-scheduled resource by extending the
scope of the busy period approach. By leveraging the particular semantics –
including the distinction of synchronous and asynchronous communication – they
were able to significantly reduce pessimism and the analysis complexity, resulting
in a faster execution of the local analysis.

Another situation, which can lead to especially large local WCRTs, occurs when
a task is activated with a burst. Bursts can potentially occur anywhere within the

746 R. Hofmann et al.

system, but the same burst cannot occur on all resources at once. Accumulating the
local WCRTs from a path with a bursty activation event model can therefore lead
to a significant overestimation. Pessimistically bounded WCRTs can translate into
over-dimensioning of the required hardware components and hence increased costs
[39, 41]. This issue is captured in the ’pay burst only once’ problem [15].

In order to reduce the impact of the pay burst only once problem, the authors
in [40] proposed a method to identify relevant combinations of local response
times to derive a tighter worst-case path latency. They provided a methodology
for computing path latencies, considering pipelined chains of tasks with transient
overload along the path. This approach was extended in [41] by enabling the
analysis of a wider variety of system topologies and including functional cycles
and nonfunctional dependencies.

A similar method can be used to improve the analysis of Ethernet networks.
In Ethernet networks, different data streams often need to be transferred with the
same priority, as Ethernet switches only have a limited range of priorities. Streams
with the same priority are queued and transferred according to FIFO scheduling.
Therefore, for the individual worst-case analyses, each other stream with the same
priority has be assumed to arrive simultaneously with the analyzed one but to be
served first [13].

In [48] the authors have shown how the analysis of Ethernet networks can be
improved by limiting the interference of tasks with the same priority that share more
than one consecutive switch; see Fig. 23.10. Streams with the same priority that
arrive simultaneously on one switch cannot arrive simultaneously on the following
switch, as only one stream can be transfer at a time. This dependency can be
exploited to provide tighter bounds for end-to-end path delays.

Fig. 23.10 The analysis of Ethernet networks can be improved, if dependencies between streams
with the same priority – here stream 1 and 2 – are exploited. This can be done, if these streams are
lead through the same two consecutive switches

23 CPA: Compositional Performance Analysis 747

23.3.5 Timing Verification of Weakly-Hard Real-Time Systems

Hard real-time computing systems require per definition that each instance of a task
meets its deadline, whereas weakly-hard real-time systems tolerate occasional but
in number and distribution precisely bounded deadline misses of tasks [8]. For
instance, a weakly-hard system may require that a given task misses not more
than m deadlines in any sequence of k consecutive task activations. The tolerance
toward occasional deadline misses of tasks is usually based on the characteristics
of the implemented real-time applications. Prevalent real-time applications like
control functions, monitoring functions, and multimedia functions have shown to
be robust against occasional but bounded sample or frame losses which can be
interpreted as consequences of missed task deadlines. This robustness allows real-
time applications to continue in safe operation even in the presence of limited
transient overload [8, 16]. The analysis of weakly-hard real-time systems which is
implemented as an extension of CPA, called Typical Worst-Case Analysis (TWCA)
[2,31,32,53], provides formal guarantees for the compliance with weakly-hard real-
time requirements for a wide range of system configurations. It scales to real-sized
systems and provides a good computational efficiency [30].

TWCA assumes that each task has a typical behavior, e.g., a periodic activation
pattern, which is captured in a typical activation model. In rare circumstances, a task
may additionally experience nontypical activations, e.g., sporadic activations [31] or
sporadic bursts [32], and then can be described by its worst-case activation model.
The distance between the typical and the worst-case activation model of a task is
captured by the so-called overload model. In the typical worst case, which occurs if
all tasks show their densest pattern of typical activations and demand their maximum
execution time, no deadlines are missed. In the worst case, which occurs if all tasks
show their densest pattern of typical and nontypical activations and demand their
maximum execution time, deadlines will be missed due to overload.

In two classical CPAs, the worst-case response times for both the typical worst
case and the worst-case behavior of the system are computed: Typical Worst-Case
Response Time (TWCRT) and WCRT for all tasks. If the WCRT of a task �i exceeds
its deadline, a deadline miss model is computed which indicates the maximum
number of observable deadline misses m in any sequence of k of consecutive
instances of task �i . The computation of the deadline miss model relies on three
main impact factors which need to be derived for each task interfering with task
�i . Firstly, the overload model which is an indicator for how often nontypical
activations can be encountered in a given time interval. Secondly, the longest time
interval during which overload activations can impact the behavior of a sequence of
k of consecutive instances of task �i . And thirdly, the maximum number of deadline
misses of task �i that can be traced back to one overload activation. The computed
deadline miss model for a task �i can be tightened if the number and distribution
of overload activations, which induce the maximum number of deadline misses of
task �i in any sequence of k consecutive instances, are bounded as precisely as
possible [53].

748 R. Hofmann et al.

23.3.6 Further Contributions

This chapter could only introduce the main functions of CPA. There are many more
contributions that exceed the available space and should only be mentioned.

The robustness of a system, for instance, determines how sensitive the system
reacts to changes in, e.g., execution and transmission delays, input data rates, or
CPU clock cycles. A sensitivity analysis determines the influence of input data, or
system configurations on the system robustness. The authors of [19, 20, 33] have
shown how to identify critical components for the system robustness and how to
optimize the platform. In many embedded systems, such as automotive systems,
sensors are measuring the system behavior with a set period. If data is accessed
periodically, but the communication path, e.g., a FlexRay bus, is transmitting the
data with a different period, additional delay can occur due to the period mismatch.
In [14] the authors discuss different end-to-end timing scenarios with a focus on
register-based communication, taking different aspects of end-to-end delays into
account.

23.4 Conclusion

In this chapter the compositional performance analysis approach has been presented.
CPA provides a scalable framework to perform timing analysis of distributed
embedded systems. It is widely used in the industrial development processes of
real-time systems, especially in the automotive field where it is extensively proven
in practice but also in avionics and even in networks-on-chip [12]. Numerous
extensions exist to cover more complex applications, different applications of timing
analysis in sensitivity, and robustness as well as error analysis.

Acknowledgments The project leading to this overview has received funding from the European
Union’s Horizon 2020 research and innovation program under grant agreement No 644080 as well
as from the German Research Foundation (DFG) under the contract number TWCA ER168/30-1.

References

1. AbsInt. aiT. http://www.absint.com/ait/. Accessed 24 Feb 2016
2. Ahrendts L, Hammadeh ZAH, Ernst R (2016) Guarantees for runnable entities with heteroge-

neous real-time requirements (to appear). In: Design, automation & test in Europe conference
& exhibition (DATE 2016)

3. Autosar (2011) Specification of operating system, 5.0.0 edn. http://autosar.org/download/R4.0/
AUTOSAR_SWS_OS.pdf

4. Axer P, Ernst R (2013) Stochastic response-time guarantee for non-preemptive, fixed-priority
scheduling under errors. In: 50th ACM/EDAC/IEEE design automation conference (DAC
2013), pp 1–7. doi:10.1145/2463209.2488946

5. Axer P, Quinton S, Neukirchner M, Ernst R, Dobel B, Hartig H (2013) Response-time analysis
of parallel fork-join workloads with real-time constraints. In: 25th Euromicro conference on
real-time systems (ECRTS 2013), pp 215–224. doi:10.1109/ECRTS.2013.31

http://www.absint.com/ait/
http://autosar.org/download/R4.0/AUTOSAR_SWS_OS.pdf
http://autosar.org/download/R4.0/AUTOSAR_SWS_OS.pdf
http://dx.doi.org/10.1145/2463209.2488946
http://dx.doi.org/10.1109/ECRTS.2013.31

23 CPA: Compositional Performance Analysis 749

6. Axer P, Sebastian M, Ernst R (2012) Probabilistic response time bound for CAN messages
with arbitrary deadlines. In: Design, automation test in Europe conference exhibition (DATE
2012), pp 1114–1117. doi:10.1109/DATE.2012.6176662

7. Axer P, Thiele D, Ernst R (2014) Formal timing analysis of automatic repeat request for
switched real-time networks. In: 9th IEEE international symposium on industrial embedded
systems (SIES 2014), pp 78–87. doi:10.1109/SIES.2014.6871191

8. Bernat G, Burns A, Liamosi A (2001) Weakly hard real-time systems. IEEE Trans Comput
50(4):308–321. doi:10.1109/12.919277

9. Bygde S (2010) Static WCET analysis based on abstract interpretation and counting of
elements. Mälardalen University, Västerås

10. Davis RI, Burns A, Bril RJ, Lukkien JJ (2007) Controller area network (CAN)
schedulability analysis: refuted, revisited and revised. Real-Time Syst 35(3):239–272.
doi:10.1007/s11241-007-9012-7

11. Diemer J (2016) Predictable architecture and performance analysis for general-purpose
networks-on-chip. Technische Universität Braunschweig, Braunschweig

12. Diemer J, Ernst R (2010) Back suction: service guarantees for latency-sensitive on-chip
networks. In: Proceedings of the 2010 fourth ACM/IEEE international symposium on
networks-on-chip (NOCS 2010). IEEE Computer Society, Washington, DC, pp 155–162.
doi:10.1109/NOCS.2010.38

13. Diemer J, Rox J, Ernst R, Chen F, Kremer KT, Richter K (2012) Exploring the worst-
case timing of ethernet AVB for industrial applications. In: Proceedings of the 38th annual
conference of the IEEE industrial electronics society, Montreal. http://dx.doi.org/10.1109/
IECON.2012.6389389

14. Feiertag N, Richter K, Nordlander J, Jonsson J (2008) A compositional framework for end-
to-end path delay calculation of automotive systems under different path semantics. In:
Proceedings of the IEEE real-time system symposium – workshop on compositional theory
and technology for real-time embedded systems, Barcelona, 30 Nov 2008

15. Fidler M (2003) Extending the network Calculus Pay bursts only once principle to aggregate
scheduling. In: Proceedings of the quality of service in multiservice IP networks: second
international workshop, QoS-IP 2003 Milano, 24–26 Feb 2003. Springer, Berlin/Heidelberg,
pp 19–34. doi:10.1007/3-540-36480-3-2

16. Frehse G, Hamann A, Quinton S, Wöhrle M (2014) Formal analysis of timing effects on closed-
loop properties of control software. In: 35th IEEE real-time systems symposium 2014 (RTSS),
Rome. https://hal.inria.fr/hal-01097622

17. GmbH S. SymTA/S and traceanalyzer. https://www.symtavision.com/products/symtas-
traceanalyzer/. Accessed 29 Jan 2016

18. Gresser K (1993) An event model for deadline verification of hard real-time systems. In:
Proceedings of the fifth Euromicro workshop on real-time systems, 1993, pp 118–123.
doi:10.1109/EMWRT.1993.639067

19. Hamann A, Racu R, Ernst R (2006) A formal approach to robustness maximization of complex
heterogeneous embedded systems. In: Proceedings of the international conference on hardware
– software codesign and system synthesis (CODES), Seoul

20. Hamann A, Racu R, Ernst R (2007) Multidimensional robustness optimization in heteroge-
neous distributed embedded systems. In: Proceedings of the 13th IEEE real-time and embedded
technology and applications symposium

21. Henia R, Hamann A, Jersak M, Racu R, Richter K, Ernst R (2005) System level perfor-
mance analysis – the symTA/S approach. IEE Proc Comput Digit Tech 152(2):148–166.
doi:10.1049/ip-cdt:20045088

22. Lampson BW, Redell DD (1980) Experience with processes and monitors in mesa. Commun
ACM 23(2):105–117. doi:10.1145/358818.358824

23. Lehoczky JP (1990) Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In: Proceedings of the 11th real-time systems symposium, pp 201–209.
doi:10.1109/REAL.1990.128748

24. Liu JW (2000) Real-time systems. Prentice Hall, Englewood Cliffs

http://dx.doi.org/10.1109/DATE.2012.6176662
http://dx.doi.org/10.1109/SIES.2014.6871191
http://dx.doi.org/10.1109/12.919277
http://dx.doi.org/10.1007/s11241-007-9012-7
http://dx.doi.org/10.1109/NOCS.2010.38
http://dx.doi.org/10.1109/IECON.2012.6389389
http://dx.doi.org/10.1109/IECON.2012.6389389
http://dx.doi.org/10.1007/3-540-36480-3-2
https://hal.inria.fr/hal-01097622
https://www.symtavision.com/products/symtas-traceanalyzer/
https://www.symtavision.com/products/symtas-traceanalyzer/
http://dx.doi.org/10.1109/EMWRT.1993.639067
http://dx.doi.org/10.1049/ip-cdt:20045088
http://dx.doi.org/10.1145/358818.358824
http://dx.doi.org/10.1109/REAL.1990.128748

750 R. Hofmann et al.

25. Negrean M, Ernst R (2012) Response-time analysis for non-preemptive scheduling in multi-
core systems with shared resources. In: Proceedings of the 7th IEEE international symposium
on industrial embedded systems (SIES), Karlsruhe

26. Negrean M, Ernst R, Schliecker S (2012) Mastering timing challenges for the design of multi-
mode applications on multi-core real-time embedded systems. In: 6th international congress
on embedded real-time software and systems (ERTS), Toulouse

27. Negrean M, Neukirchner M, Stein S, Schliecker S, Ernst R (2011) Bounding mode change
transition latencies for multi-mode real-time distributed applications. In: 16th IEEE interna-
tional conference on emerging technologies and factory automation (ETFA 2011), Toulouse.
http://dx.doi.org/10.1109/ETFA.2011.6059009

28. Negrean M, Schliecker S, Ernst R (2009) Response-time analysis of arbitrarily activated tasks
in multiprocessor systems with shared resources. In: Proceedings of the Design, Automa-
tion, and Test in Europe (DATE), Nice. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
5090720

29. Pellizzoni R, Schranzhofer A, Chen JJ, Caccamo M, Thiele L (2010) Worst case delay
analysis for memory interference in multicore systems. In: Design, automation test in Europe
conference exhibition (DATE 2010), pp 741–746. doi:10.1109/DATE.2010.5456952

30. Quinton S, Ernst R, Bertrand D, Yomsi PM (2012) Challenges and new trends in probabilistic
timing analysis. In: Design, automation & test in Europe conference & exhibition (DATE
2012), pp 810–815. doi:10.1109/DATE.2012.6176605

31. Quinton S, Hanke M, Ernst R (2012) Formal analysis of sporadic overload in real-time
systems. In: Design, automation test in Europe conference exhibition (DATE), pp 515–520.
doi:10.1109/DATE.2012.6176523

32. Quinton S, Negrean M, Ernst R (2013) Formal analysis of sporadic bursts in real-time
systems. In: Design, automation test in Europe conference exhibition (DATE), pp 767–772.
doi:10.7873/DATE.2013.163

33. Racu R, Hamann A, Ernst R (2008) Sensitivity analysis of complex embedded real-time
systems. Real-Time Syst 39:31–72

34. Rafik Henia RE (2007) Scenario aware analysis for complex event models and distributed
systems. In: Proceedings real-time systems symposium

35. Real J, Crespo A (2004) Mode change protocols for real-time systems: a survey and a new
proposal. Real-Time Syst 26(2):161–197. doi:10.1023/B:TIME.0000016129.97430.c6

36. Richter K (2005) Compositional scheduling analysis using standard event models. Ph.D. thesis,
TU Braunschweig, IDA

37. Richter K, Jersak M, Ernst R (2003) A formal approach to MpSoC performance verification.
Computer 36(4):60–67

38. Schlatow J, Ernst R (2016) Response-time analysis for task chains in communicating threads.
In: 22nd IEEE real-time embedded technology and applications symposium (RTAS 2016),
Vienna

39. Schliecker S (2011) Performance analysis of multiprocessor real-time systems with shared
resources. Ph.D. thesis, Technische Universität Braunschweig, Braunschweig. http://www.
cuvillier.de/flycms/de/html/30/-UickI3zKPS76fkY=/Buchdetails.html

40. Schliecker S, Ernst R (2008) Compositional path latency computation with local busy times.
Technical report IDA-08-01, Technical University Braunschweig, Braunschweig

41. Schliecker S, Ernst R (2009) A recursive approach to end-to-end path latency computation in
heterogeneous multiprocessor systems. In: Proceedings of the 7th international conference on
hardware software codesign and system synthesis (CODES-ISSS). ACM, Grenoble. http://doi.
acm.org/10.1145/1629435.1629494

42. Schliecker S, Negrean M, Ernst R (2009) Response time analysis in multicore ECUs with
shared resources. IEEE Trans Ind Inf 5(4):402–413. http://ieee-ies.org/tii/issues/iit09_4.shtml

43. Schliecker S, Rox J, Ivers M, Ernst R (2008) Providing accurate event models for the
analysis of heterogeneous multiprocessor systems. In: Proceedings of the 6th IEEE/ACM/IFIP
international conference on Hardware/Software codesign and system synthesis. ACM, pp 185–
190

http://dx.doi.org/10.1109/ETFA.2011.6059009
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5090720
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5090720
http://dx.doi.org/10.1109/DATE.2010.5456952
http://dx.doi.org/10.1109/DATE.2012.6176605
http://dx.doi.org/10.1109/DATE.2012.6176523
http://dx.doi.org/10.7873/DATE.2013.163
http://dx.doi.org/10.1023/B:TIME.0000016129.97430.c6
http://www.cuvillier.de/flycms/de/html/30/-UickI3zKPS76fkY=/Buchdetails.html
http://www.cuvillier.de/flycms/de/html/30/-UickI3zKPS76fkY=/Buchdetails.html
http://doi.acm.org/10.1145/1629435.1629494
http://doi.acm.org/10.1145/1629435.1629494
http://ieee-ies.org/tii/issues/iit09_4.shtml

23 CPA: Compositional Performance Analysis 751

44. Sebastian M, Axer P, Ernst R (2011) Utilizing hidden Markov models for formal re-
liability analysis of real-time communication systems with errors. In: IEEE 17th Pa-
cific Rim international symposium on dependable computing (PRDC 2011), pp 79–88.
doi:10.1109/PRDC.2011.19

45. Service ASC. Arinc 600 series. http://store.aviation-ia.com/cf/store/catalog.cfm?prod_group_
id=1&category_group_id=3. Accessed 16 Mar 2016

46. Stein S, Diemer J, Ivers M, Schliecker S, Ernst R (2008) On the convergence of the symta/s
analysis. Technical report, TU Braunschweig, Braunschweig

47. Sun J, Liu JWS (1995) Bounding the end-to-end response time in multiprocessor real-time
systems. In: Proceedings of the third workshop on parallel and distributed real-time systems,
1995, pp 91–98. doi:10.1109/WPDRTS.1995.470502

48. Thiele D, Axer P, Ernst R (2015) Improving formal timing analysis of switched ethernet by
exploiting fifo scheduling. In: Design automation conference (DAC), San Francisco

49. Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time
systems. In: Proceedings of the IEEE international symposium on circuits and systems. Emerg-
ing technologies for the 21st century, 2000, pp 101–104. doi:10.1109/ISCAS.2000.858698

50. Tindell KW, Burns A, Wellings AJ (1992) Mode changes in priority preemp-
tively scheduled systems. In: Real-time systems symposium, 1992, pp 100–109.
doi:10.1109/REAL.1992.242672

51. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C,
Heckmann R, Mitra T, Mueller F, Puaut I, Puschner P, Staschulat J, Stenstrom P (2008) The
worst-case execution time problem – overview of methods and survey of tools. ACM Trans
Embed Comput Syst 7(3):Art. 36

52. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C,
Heckmann R, Mitra T, Mueller F, Puaut I, Puschner P, Staschulat J, Stenström, P (2008) The
worst-case execution-time problem—overview of methods and survey of tools. ACM
Trans Embed Comput Syst 7(3):36:1–36:53. doi:10.1145/1347375.1347389

53. Xu W, Hammadeh Z, Quinton S, Kröller A, Ernst R (2015) Improved deadline miss models
for real-time systems using typical worst-case analysis. In: 27th Euromicro conference on real-
time systems (ECRTS), Lund

http://dx.doi.org/10.1109/PRDC.2011.19
http://store.aviation-ia.com/cf/store/catalog.cfm?prod_group_id=1&category_group_id=3
http://store.aviation-ia.com/cf/store/catalog.cfm?prod_group_id=1&category_group_id=3
http://dx.doi.org/10.1109/WPDRTS.1995.470502
http://dx.doi.org/10.1109/ISCAS.2000.858698
http://dx.doi.org/10.1109/REAL.1992.242672
http://dx.doi.org/10.1145/1347375.1347389

24Networked Real-Time Embedded Systems

Haibo Zeng, Prachi Joshi, Daniel Thiele, Jonas Diemer,
Philip Axer, Rolf Ernst, and Petru Eles

Abstract

This chapter gives an overview on various real-time communication protocols,
from the Controller Area Network (CAN) that was standardized over twenty
years ago but is still popular, to the FlexRay protocol that provides strong
predictability and fault tolerance, to the more recent Ethernet-based networks.
The design of these protocols including their messaging mechanisms was driven
by diversified requirements on bandwidth, real-time predictability, reliability,
cost, etc. The chapter provides three examples of real-time communication
protocols: CAN as an example of event-triggered communication, FlexRay as

This work was done while Daniel Thiele was with Technische Universität Braunschweig

H. Zeng (�) • P. Joshi
Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
e-mail: hbzeng@vt.edu; haibo.zeng@gmail.com; prachi@vt.edu

D. Thiele
Elektrobit Automotive GmbH, Erlangen, Germany
e-mail: daniel.thiele@elektrobit.com

J. Diemer
Symtavision, Braunschweig, Germany
e-mail: diemer@symtavision.com

P. Axer
NXP Semiconductors, Hamburg, Germany
e-mail: philip.axer@nxp.com

R. Ernst
Institute of Computer and Network Engineering, Technical University Braunschweig,
Braunschweig, Germany
e-mail: ernst@ida.ing.tu-bs.de

P. Eles
Department of Computer and Information Science, Linköping University, Linköping, Sweden
e-mail: petru.eles@liu.se

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_25

753

mailto:hbzeng@vt.edu
mailto:haibo.zeng@gmail.com
mailto:prachi@vt.edu
mailto:daniel.thiele@elektrobit.com
mailto:diemer@symtavision.com
mailto:philip.axer@nxp.com
mailto:ernst@ida.ing.tu-bs.de
mailto:petru.eles@liu.se

754 H. Zeng et al.

a heterogeneous protocol supporting both time-triggered and event-triggered
communications, and different incarnations of Ethernet that provide desired
temporal guarantees.

Acronyms

ADAS Advanced Driver Assistance System
AFDX Avionics Full-Duplex Switched Ethernet
ARQ Automatic Repeat Request
AVB Audio/Video Bridging
CAN Controller Area Network
CPA Compositional Performance Analysis
CSMA/CD Carrier Sense Multiple Access/Collision Detection
ECU Electronic Control Unit
ET Event-Triggered
FIFO First-In First-Out
ILP Integer Linear Program
LIN Local Interconnect Network
MAC Media Access Control
MOST Media Oriented Systems Transport
QoS Quality of Service
SPNP Static-Priority Non-Preemptive
TSN Time-Sensitive Networking
TT-CAN Time-Triggered CAN
TTEthernet Time-Triggered Ethernet
TTP Time-Triggered Protocol
TT Time-Triggered

Contents

24.1 Introduction . 755
24.2 Event-Triggered Communication: Controller Area Network 757

24.2.1 CAN Message Format and Bus Arbitration . 757
24.2.2 Timing Analysis with Ideal Models . 759
24.2.3 Analysis with Non-idealized Models . 762

24.3 A Heterogeneous Communication Protocol: FlexRay . 764
24.3.1 Introduction . 764
24.3.2 Static Segment . 765
24.3.3 Dynamic Segment . 769

24.4 Packet-Switched Networks: Ethernet . 779
24.4.1 Introduction . 779
24.4.2 Modeling Ethernet Networks for Performance Analysis 780
24.4.3 Analysis of Standard Ethernet (IEEE 802.1Q) . 782
24.4.4 Analysis Extensions . 787

24 Networked Real-Time Embedded Systems 755

24.5 Conclusion . 788
References . 788

24.1 Introduction

The communication network has been a key enabling technology for the ad-
vancement of distributed embedded systems, as evidenced in application domains
like automotive, avionics, and industrial automation. With ever-increasing contents
(safety, driver assistance, infotainment, etc.) in such systems relying on electronics
and software, the supporting architecture is often integrated and interconnected by a
complex set of heterogeneous data networks. For example, a modern automobile
contains up to 100 Electronic Control Units (ECUs) and several heterogeneous
communication buses (such as Controller Area Network (CAN), FlexRay, Media
Oriented Systems Transport (MOST), and Local Interconnect Network (LIN)),
exchanging thousands of signals [60].

This chapter intends to provide an overview of the real-time communication
networks that are mainly categorized according to their messaging mechanism (or
link layer protocol): Event-Triggered (ET), Time-Triggered (TT), or the coexistence
of the two. In the first category (ET), messages are produced and transmitted based
on the significant events occurring in the network, for example, the successful
transmission of other messages. This category includes CAN, switched Ethernet,
Avionics Full-Duplex Switched Ethernet (AFDX), and Ethernet Audio/Video Bridg-
ing (AVB). In the second category (TT), messages are transmitted at predefined
time slots. Hence, it is essential to establish a global notion of time among all
communication nodes to avoid possible collision. Time-Triggered CAN (TT-CAN)
and Time-Triggered Protocol (TTP) belong to this category. In the third category,
both time- and event-triggered traffics exist on the same communication network.
Examples in this category include FlexRay, Ethernet Time-Sensitive Networking
(TSN), and Time-Triggered Ethernet (TTEthernet).

The messaging mechanism in the communication network has a large impact
on the temporal performance guarantees it can provide. Specifically, real-time
performance metrics on the communication network include message latency
and jitter. Message latency (or response time) is defined as the time that the
message is ready for transmission to the time it is successfully received. Meeting
the worst-case latency requirement is of fundamental importance to validate the
system behavior against message deadlines. Jitter is the difference between the
worst-case and best-case latencies, a key metric to the control performance of the
features [44].

For time-triggered communication, the bandwidth is assigned to messages
according to a time-triggered pattern, and the transmission of a message is triggered
exactly when the global time reaches certain time points. Hence, a deterministic

756 H. Zeng et al.

Table 24.1 Summary of real-time communication protocols

Property CAN FlexRay TTP TT-
Ethernet

AFDX Switched
Ethernet

AVB TSN

Bandwidth 1 Mbps 10 Mbps 25 Mbps 1 Gbps 100 Mbps 100 Mbps–1 Gbps

Message size
(bytes)

0–8 0–254 0–240 46–1500 64–1518 42–1542

Channels 1 2 2 2 2 1 1 2+

Messaging ET TT + ET TT TT + ET ET ET ET ET/ET +
TT

Composability No Mixed Yes Yes Yes Yes Yes Yes

Medium
access

CSMA/
CA

TDMA +
FTDMA

TDMA TDMA +
SPNP

SPNP +
BAG

SPNP SPNP +
CBS

TDMA +
SPNP

CRC error de-
tection

15-bit 11-bit
Header
+ 24-bit
Tailer

24-bit 32-bit 32-bit 32-bit 32-bit 32-bit

communication pattern on the bus is guaranteed. The message latency/jitter can
easily be calculated by checking the predefined transmission slots, which is
independent from the rest of the network. On the contrary, in event-triggered
communication, network delay occurs due to conflicts on media access and
queuing mechanisms in the network. Event-triggered communication can be further
classified by the temporal guarantees it can provide. In CAN, the dynamic segment
of FlexRay, and switched Ethernet the temporal bounds on latency and jitter can
oftentimes be analyzed a priori with its priority-based scheduling. However, changes
to one node have an impact on the temporal behavior of messages from other nodes
in the network. This makes the system composition difficult. As a remedy, several
event-triggered communication protocols provide guaranteed service (bounds for
latency and jitter) to a message regardless of the rest of the network, given that the
message is produced at a speed that does not exceed the predefined maximum rate.
Examples include the bandwidth allocation gap in AFDX and the rate-constrained
messages in TTEthernet.

Table 24.1 summarizes the main communication protocols that are currently
being deployed or considered in the application domains of real-time embedded
systems. (Acronyms in the table: CSMA/CA, carrier sense multiple access with col-
lision avoidance; TDMA, time division multiple access; FTDMA, flexible TDMA;
SPNP, static priority non-preemptive; BAG, bandwidth allocation gap; CBS, credit-
based shaping.) They all provide some degrees of predictability on temporal behav-
ior. Those that are more suitable for non-real-time application, such as CSMA/CD-
based Ethernet, are left out of the comparison. Besides the messaging mechanism
and composability, the table also compares their maximum bandwidth, message
size, number of (redundant) channels, medium access policy, and error detection.

The rest of the chapter describes in detail three different communication proto-
cols, focusing on their messaging mechanism and timing predictability: CAN as an

24 Networked Real-Time Embedded Systems 757

example of event-triggered communication, FlexRay as a heterogeneous protocol
supporting both time-triggered and event-triggered communications, and different
incarnations of Ethernet that provide desired temporal guarantees.

24.2 Event-Triggered Communication: Controller Area Network

Controller Area Network is a broadcast digital bus designed to operate at speeds
from 20 kbit/s to 1 Mbit/s, standardized as ISO/DIS 11898 [36]. The transmission
rate depends on the bus length and transceiver speed. CAN is an attractive solution
for embedded control systems because of its low cost, light protocol management,
the deterministic resolution of the contention, and the built-in features for error
detection and retransmission. Today CAN networks are widely used in automotive
applications, as well as in factory and plant controls, robotics, medical devices, and
some avionics systems.

Since its standardization in the mid-1990s, it has attracted a significant amount
of research from the real-time systems community. The CAN protocol adopts a
collision detection and resolution scheme, where the message to be transmitted
is chosen according to its identifier. When multiple nodes need to transmit over
the same bus, the lowest identifier message is selected for transmission. This
arbitration protocol allows encoding the message priority into the identifier field
and implementing priority-based scheduling.

24.2.1 CAN Message Format and Bus Arbitration

The CAN protocol has the message format of Fig. 24.1, where the sizes of the fields
are expressed in bits. Priorities are encoded in the message identifier field (ID),
which is 11 bits wide for the standard format. The identifier is used not only for
bus arbitration but also for describing the data content (identification of the message
stream). The CAN protocol requires that all contending messages have a unique
identifier (unique priority). The other fields are the start-of-frame (SOF) bit; the
control field (CTL) containing information on the type of message; the data field
(DATA) containing the actual data to be transmitted, up to a maximum of 8 bytes; the
checksum (CRC) used to check the correctness of the message bits; the acknowledge
field (ACK) used to acknowledge the reception; the end-of-frame (EOF) delimiter
used to signal the end of the message; and the idle space or inter-frame bits (IF)
used to separate one frame from the following one.

bit length
0

DATA IFEOFCRC
1 1 1 1 1 1 1 1 1

SOF ID CTL

1 11 6 0−64 16 2 7 3

ACKfield name
1

Fig. 24.1 The CAN data frame format

758 H. Zeng et al.

The CAN bus [36] essentially works as wired AND channels connecting all
nodes. The two possible states encoded in the physical media are defined as
“recessive” and “dominant,” where dominant is a logical 0 (actively driven to a
voltage by the transmitter) and recessive is a logical 1 (passively returned to a
voltage by a resistor). The protocol allows multi-master access to the bus. At the
lowest level, if multiple masters try to drive the bus state at the same time, the
“dominant” configuration also prevails upon the “recessive.”

The CAN arbitration protocol is both priority based and non-preemptive, as a
message that is being transmitted cannot be preempted by higher-priority messages
that are made available at the network adapters after the transmission has started.
The media access protocol works by alternating contention and transmission phases.
The time axis is divided into slots that must be larger than or equal to the time
it takes for the signal to travel back and forth along the channel. The contention
and transmission phases take place during the digital transmission of the frame
bits.

At any time, if a node wishing to transmit finds the shared medium in an idle
state, it waits for the end of the current bit (as defined by its internal oscillator)
and then starts an arbitration phase by issuing a start-of-frame bit (a dominant bus
state). At this point in time, each node with a message to be transmitted can start
the competition to get access to the shared medium. All nodes will synchronize
on the SOF bit edge and then, when the identifier field starts, they will serially
transmit the identifier (priority) bits of the message they want to send, one bit for
each slot, starting from the most significant ones. Collisions among identifier bits
are resolved by the logical AND semantics, and each node reads the bus state while
it transmits.

If a node reads its identifier bits on the medium without any change, it realizes
it is the winner of the contention and is granted access to transmit the rest of
the message. On the other hand, if one of the bits is changed when reading it
back from the medium, this means that there is another node sending a higher-
priority (dominant) bit; thus the message is withdrawn by the node that has lost the
arbitration. The node stops transmitting the message bits and switches to listening
mode only.

Clearly, according to this contention resolution protocol, the node with the lowest
identifier is always the winner of the arbitration round and is transmitted next (the
transmission stage is actually not even a distinct stage, given that the message frame
is transmitted sequentially with the fields following the Identifier). All the other
nodes switch to a listening mode. In a CAN system, at any time, there can be no
two messages with the same identifier (this property is also referred to as unique
purity). The message identifiers shall be assigned in a centralized fashion (e.g., by
the system integrator). The arbitration is deterministic and also priority based, as
that the message identifier gives in this case an indication of the message priority
(the lowest identifier always wins).

24 Networked Real-Time Embedded Systems 759

24.2.2 Timing Analysis with Ideal Models

To predictably guarantee that the messages transmitting on CAN bus meet their
deadlines, Tindell et al. [77] developed the seminal analysis of CAN message
worst-case response times. The analysis is derived out of an analogy with CPU
scheduling results but adapted to a message system scheduled by priority but
without preemption. The result of the original paper influenced the design of on-chip
CAN controllers like the Motorola msCAN and was included in the development of
the early versions of Volcano’s Network Architect tool. Volvo used these tools and
the timing analysis results from Tindell’s theory to evaluate communication latency
in several car models, including the Volvo S80, XC90, S60, V50, and S40 [7]. The
analysis was later found to be flawed by Davis et al. [12], where a set of formulas is
provided for the exact evaluation and safe approximation of the worst-case message
response times.

The analysis methods [12, 77] are based on a number of assumptions at
the middleware, driver, and controller levels of the CAN communication stack,
including

• The existence of a perfect priority-based software queue at each node for the
outgoing messages

• The availability of one output buffer (i.e., transmit object, or simply TxObject)
for each message, or preemptability of the TxObjects

• Immediate (zero-time) copy of the highest priority message from the software
queue to the TxObjects

However, these idealized assumptions are often violated in practical systems
(especially automotive systems) [15].

Under such analyses, each periodic or sporadic message mi is defined by the
tuple

mi D fidi ; Ti ; Ji ; Ci ;Dig

where idi is the CAN identifier, Ti is the period or the minimum inter-arrival time,
Ji is the queuing jitter (sometimes also referred to as release jitter), Ci is the worst-
case transmission time, and Di is the deadline. The worst-case transmission time
Ci is given by the total number of transmitted bits (including the worst-case stuffed
bits) divided by the bus transmission rate.

The schedulability analysis [12] starts with the theorem that the worst-case
response time is always inside the busy period. The busy period of priority level-
i is a contiguous interval of time that starts at the critical instant. During the busy
period, any message of priority lower thanmi is unable to start transmission and win
arbitration. For mi , the critical instant is the time instant where (1) the contention

760 H. Zeng et al.

Ti

BiJi Ci

wi (q)

Ri (q)

mi

Ti

Fig. 24.2 The worst-case busy period and response time of message mi

on the bus has just won by the longest lower-priority message (if one exists) and (2)
all the higher-priority messages hp.i/ become simultaneously ready and arrive at
their maximum rates thereafter.

Figure 24.2 illustrates the analysis of the worst-case response time for mi . The
dashed downward arrows denote the arrivals of mi , separated by at least Ti . The
solid downward arrow is the queuing time of mi . The busy period consists of the
queuing jitter, the blocking time, the queuing delay, and the transmission time ofmi

itself.
To find the correct worst-case response time, the formula to be applied is a small

modification to [77] that checks all the instances of message mi transmitted inside
the busy period. The response time of the q-th instance in the hyperperiod is

Ri.q/ D Ji C wi .q/ 	 .q 	 1/Ti C Ci (24.1)

where q ranges from 1 to the last instance qmax
i of mi inside the busy period. The

blocking time, i.e., the time spent on waiting for the transmission of a lower-priority
message already on the bus when mi becomes ready, is denoted as Bi . The worst-
case queuing delay wi .q/ for the q-th instance in the busy period is

wi .q/ D Bi C .q 	 1/Ci C
X

k2hp.i/

�
wi .q/C Jk C �bit

Tk

�
Ck (24.2)

where �bit is the time to transmit one bit of data on the bus.
In Eq. (24.2), wi .q/ appears on both sides. However, the right hand side is a

monotonic nondecreasing function of wi .q/. Hence, wi .q/ can be solved using the
iterative procedure defined in the equation below.

wnC1i .q/ D Bi C .q 	 1/Ci C
X

k2hp.i/

�
wni .q/C Jk C �bit

Tk

�
Ck (24.3)

The calculation can start with an initial value of w0i .q/ D Bi C .q	1/Ci and stop if
wnC1i .q/ D wni .q/ or when JiCwnC1i .q/	.q	1/TiCCi > Di , the latter condition
indicating that mi is unschedulable.

24 Networked Real-Time Embedded Systems 761

The length of the longest busy period Li and the index of the last instance are
calculated as8̂̂

ˆ̂<
ˆ̂̂̂:

Li D Bi C
X

kDhp.i/
S
fig

�
Li C Jk C �bit

Tk

�
Ck

qmax
i D

�
Li C Ji

Ti

� (24.4)

The worst-case message response time is the maximum among all its instances
in the busy period.

Ri D max
qD1;:::;qmax

i

fRi.q/g (24.5)

The above analysis (Eq. (24.1), (24.2), (24.3), (24.4), and (24.5)) requires to
consider all the qmax

i instances in the busy period. Under the assumption that the
deadline is no greater than the period (Di � Ti), a sufficient but not necessary
condition can be derived [12], which only checks the schedulability of the first
instance by using its response time upper bound. Davis et al. [12] define the concept
of push through interference, the largest interference that can be pushed through
into the next period of message mi due to the non-preemptive transmission of the
previous instances. Any instance of mi is subject to either direct blocking from
lower-priority messages or indirect blocking from the previous instances of mi ,
upper bounded by the push through interference of at most Ci . Hence, the queuing
delay of the first instance (q D 1) of mi is bounded by the result of the following
equation:

wi D max.Bi ; Ci /C
X

k2hp.i/

�
wi C Jk C �bit

Tk

�
Ck (24.6)

which can be solved in a similar way to Eq. (24.2).
Besides the above analysis technique [12, 77], the schedulability of CAN mes-

sages is also addressed with other methods. Sufficient schedulability tests based on
system utilization bound are derived for CAN (or in general, for systems under non-
preemptive fixed-priority scheduling) with deadline monotonic and rate monotonic
priority assignment policies [1, 6]. Navet et al. [62] introduce the concept of worst-
case deadline failure probability because of transmission errors. In [5], Broster et al.
present the probabilistic analysis of the impact of faults on CAN message latencies
in the worst-case scenario. In [64], Nolte et al. extend the worst-case response
time analysis using random message transmission times that take into account the
probability of a given number of stuff bits. These works [5, 62, 64] still perform
the analysis with respect to the critical instant, i.e., the worst-case response time
scenario. Zeng et al. [81] provide a stochastic analysis framework for CAN message
response times. In another work [82], they build a probability mix model to predict
the distribution of message response times in CAN. The model is a mixture of the
gamma distribution and the degenerate distribution. In [45], Liu et al. present an

762 H. Zeng et al.

extreme value theory-based statistical method to estimate the worst-case response
times of CAN messages.

The analysis in [12, 77] has also been extended to other models of CAN
messages. [8, 79] studied the worst-case response time for CAN messages that
are scheduled with offsets. Mubeen et al. [51] consider the analysis for mixed
messages, i.e., those with simultaneous time triggered (periodic) and event triggered
(sporadic). They further provide analysis method to support mixed messages that
are scheduled with offsets [55, 56]. In addition, the analysis on mixed messages is
extended for nonideal CAN networks, including those where some nodes implement
FIFO queues [54] or with CAN controllers implementing abortable [53] and non-
abortable [52] transmit buffers. Liu et al. [46, 47] consider messages under the
multi-frame task model [50] and its generalization [4] and present a sufficient
schedulability analysis for systems with mixed message queues.

24.2.3 Analysis with Non-idealized Models

The analysis techniques in Sect. 24.2.2 assume an idealized model for the message
queuing and the configuration and management of the peripheral TxObjects. In
reality, CAN controllers have a limited number of available transmit buffers
(TxObjects). When the number of TxObjects available at the controller is smaller
than the number of messages sent by the node (as is the case for automotive
gateways and nodes with lots of output information, or when message reception
is polling based and a relatively large number of buffers must be reserved to input
streams in order to avoid message loss by overwriting), it is necessary to use a
software queue to hold messages waiting to be copied to a TxObject. Several
commercial drivers (including those from Vector [78], probably the most commonly
used in automotive systems) allow to put the outgoing messages in software queues
as a temporary storage for accessing TxObjects. It is also quite common to use
multiple queues, with each queue linked to a single TxObject. When a TxObject is
available, a message is extracted from the queue and copied into it.

When software queues are used, the preservation of the priority order of the
messages for accessing the CAN bus requires the following:

• (a) The messages in the software queue must be sorted by their priority (i.e., by
message identifier).

• (b) When a TxObject (transmit buffer) becomes free, the highest priority message
in the queue is immediately extracted and copied into the TxObject. In addition,
messages in the TxObjects must be sent in the order of their CAN identifier.

• (c) If a higher-priority message becomes ready and all the TxObjects are used
by lower-priority messages, the lowest-priority message in one of the TxObjects
must be evicted and put back in the queue to ensure that a TxObject is available
for the highest priority message.

24 Networked Real-Time Embedded Systems 763

When any of these conditions do not hold, priority inversion occurs, and
the worst-case timing analysis in [12] is not necessarily safe. These issues are
discussed in [14, 16] where the impact of transmission by polling (as opposed to
interrupt driven) is also outlined. Using FIFO or any work-conserving queuing for
messages inside the CAN driver/middleware layers (violating (a) in the previous
list) is discussed and analyzed in [11, 13, 57]. When the copy time from the
message queue to the TxObject cannot be neglected (disobeying (b) in the list), the
introduced priority inversion is analyzed in [40]. Di Natale and Zeng [15] provides
theory for the analysis of systems in which message output at the CAN driver is
performed by polling (another break of the rule (b)). For the violation to (c) in
the list, additional delay can be caused by limited number of TxObjects at the
CAN controller that are non-abortable. Natale [41] and Khan et al. [61] provide
an analysis to these driver configuration issues and controller policies that can
lead to (possibly multiple) priority inversions. Di Natale and Zeng [15] provides
further insight on the management of TxObjects without preemption and proposes
a heuristic for the design of message queuing systems with guaranteed real-time
properties. Finally, [58, 59] integrate the effect of these hardware and software
limitations with messages that are triggered by both time (periodic) and event
(sporadic).

As an example, the analysis for systems with FIFO software queue [13], under
the condition that the messages have constrained deadlines (D � T), is summarized
below. The more general case of unconstrained deadlines is discussed in [11]. For a
message mi , the maximum time that it waits in the FIFO queue before it becomes
the oldest message (hence ready for priority-based arbitration) is defined as the
buffering delay of mi . The buffering delay of mi is denoted as fi .

The analysis returns the same worst-case response time bound for all messages
M in the same FIFO queue. It is similar to Eq. (24.6) in that the blocking time is
safely bounded to avoid checking multiple instances in the busy period. For each
contributing delay to the response time, it makes pessimistic but safe assumptions
to derive a correct upper bound. The first delay is the blocking time, upper bounded
by the maximum between direct blocking time from lower-priority messages or
the indirect blocking bounded by the push through interference Cmax

M D max
j2M

Cj .

The second is the interferences from messages from the same FIFO queue. Since
messages have a deadline no larger than the period, there can be at most one instance
from each message waiting in the queue for a schedulable system. Hence, the
maximum interference caused by these messages is upper bounded by C SUM

M 	Cmin
M

where C SUM
M D

X
j2M

Cj and Cmin
M D min

j2M
Cj . In this way, among the total

transmission time C SUM
M , the maximum amount is also exposed to interference from

messages in other queues when mi has a transmission time Ci D Cmin
M . The third

delay is the interferences from messages in other queues. This delay is maximized
when we consider the lowest-priority message mLi 2 M queued in the same FIFO
as mi .

764 H. Zeng et al.

Summating all the above, the queuing delay wi can be derived from a sufficient
condition similar to that in Eq. (24.6) for priority-queued messages:

wi D max.BLi ; C
max
M /C.C SUM

M 	Cmin
M /C

X
k2hp.Li /^k…M

�
wi C Jk C fk C �bit

Tk

�
Ck

(24.7)

and the response time of mi is bounded by adding the queuing delay and the
transmission time together:

Ri D wi C C
min
M (24.8)

In Eq. (24.7), besides the queuing jitter Jk , the buffering delay fk should be
treated as an additional jitter. This is because fk quantifies the variation from the
readiness of mk to the time it enters the priority-based arbitration (and becomes
capable of interfering mLi). The buffering time fi of mi can be bounded as

fi D Ri 	 C
min
M (24.9)

24.3 A Heterogeneous Communication Protocol: FlexRay

24.3.1 Introduction

The FlexRay standard was developed by a consortium including the major car
manufacturers and their suppliers, with a stated objective to support cost-effective
deployment of distributed by-wire controls. It is now defined in a set of ISO
standards, ISO 17458-1 to 17458-5 [37]. In addition to the stringent requirements on
determinism and short latencies as those for the x-by-wire functions, the definition
of FlexRay also was motivated by the large volumes of data traffic from active safety
functions.

The upper bound of communication speed in FlexRay is defined as 10 Megabits
per second (Mbps), as opposed to 1 Mbps for CAN. Time is divided into communi-
cation cycles that are of equal length. Each communication cycle contains up to four
segments: static, dynamic, symbol window (to transmit FlexRay-defined symbols
for, e.g., maintenance and cold-start cycles), and network idle time (NIT) (for clock
correction due to, e.g., clock drift), as shown in Fig. 24.3. Clock synchronization is
embedded in the standard, using part of the NIT segment.

The static segment of the communication cycle enables the transmission of time-
critical messages according to a periodic pattern, i.e., with time-triggered (TDMA)
communication. It is divided into a set of equal-sized time slots. The transmission
of frames in the static segment is fixed in a given slot, at a given time window.
The dynamic segment allows for flexible communications. The transmission of
frames in the dynamic segment is event triggered, arbitrated by their identifiers,
where the lowest identifier frames are transmitted first. Frames from different nodes

24 Networked Real-Time Embedded Systems 765

Channel 2

N2−2 N3−3 N1−4 N4−5unused 2 3 8 14

NITDynamic segmentStatic segment

FlexRay cycle

Channel 1

Symbol window

N1−1

N1−1 N3−3 N1−4unused 4 6 1211

Fig. 24.3 The four segments in a FlexRay communication cycle

can share the same identifier, but they differ in the allowed communication cycle.
This flexibility, called slot multiplexing, is supported in the most recent FlexRay
standard [37]. For increased reliability and timing protection, FlexRay includes
specifications of dual channel as well as bus guardians at the node and star level.
In a dual-channel configuration, frames for safety-critical communications can be
replicated in both channels (as those from node N1 in Fig. 24.3), or the slots can be
assigned independently.

The FlexRay bus configuration includes the selection of several parameters,
including the length of the communication cycle, the number and length of time slots
in the static segment, and the slot time of the dynamic segment. There are several
issues that require careful consideration in the definition of the bus configuration:
future extensibility, the composability of subsystems, and the possible standardiza-
tion for reusing of ECU components. Due to the nature of the automotive supply
chain and the desire to reuse ECUs on different car platforms, there is a trend of
global standardization of these FlexRay bus configuration parameters.

24.3.2 Static Segment

In FlexRay static segment, each node keeps the specification of the time slots for
its outgoing and incoming communications in its local scheduling table. The local
scheduling tables of all nodes shall be consistent (i.e., no two nodes are scheduled
to send frames in the same slot of the same communication cycle). In this way, the
schedule is composable (in the sense that no timing conflicts or interferences arise),
each node executes with respect to its own (synchronized) clock, and there is no
need for storing a global scheduling table.

Slots that are left free in the (virtual) global table resulting from the composition
of the local tables can be used for future extensions. Bus guardians monitor and
prevent a node from transmitting outside the allocated time window. This guarantees
time protection and isolation from timing faults.

The scheduling of FlexRay systems consists of the scheduling of the task and
signal instances in an application cycle. Broadly speaking, there are two possible
synchronization patterns between tasks and signals:

• Asynchronous scheduling. Such a scheduling model does not require that the
job (an instance of the task that produces the signal) and signal schedulers are
synchronized. Jobs post data values for the output signals in shared variables.

766 H. Zeng et al.

The communication drivers have the responsibility to pack the signals into frames
and fill the registers for the outgoing communication slot. At the receiving side,
the received frames are de-packed and written into input registers such that they
can be read asynchronously by the reader tasks.

• Synchronous scheduling. Different from the asynchronous scheduling model,
job executions and frame transmissions are synchronized such that a job must
complete before the beginning of the slot that transmits its output signal (with a
margin determined by the necessary copy time). It is then necessary to know
what job produces the data that is transmitted by a frame and what is the
job that reads the data delivered by the frame. It leverages the full benefits
of the FlexRay deterministic communication: Scheduling can be arranged to
achieve small sampling delays, providing very tight end-to-end latencies and
small jitter. Also, equally important, this scheduling model allows to guarantee
time determinism and the preservation of the stream of data exchanged over the
bus [27].

For synchronous scheduling of signals and tasks, besides packing the signals
into frames, designers will need to schedule the software tasks and frames, such
that timing constraints including end-to-end deadlines are satisfied. The precedence
constraints induced by information passing between tasks and signals and the end-
to-end delays associated with control path should be taken into consideration.
ILP-based approaches, holistic or two-stage, are studied by Zeng et al. [80], where
the tasks are scheduled at job level (each job in the hyperperiod can be scheduled
independently). Lukasiewycz et al. [49] provide a framework for scheduling buses
and ECUs at the task level, to enable an AUTOSAR compliant system. Besides
the timing-related metrics (bandwidth, end-to-end latency), synchronous scheduling
is also addressed under other contexts, such as application-level acknowledgment
and retransmission scheme [43], robustness to uncertainties in design parame-
ters [24], and message authentication/verification for security enhancement [28].
Also, Han et al. [27] discuss that system-level time-triggered schedules allow
the semantics-preserving implementation of distributed control models with a
synchronous reactive semantics and develop algorithms for minimizing functional
delays to improve control quality.

When considering the asynchronous scheduling, the FlexRay scheduling prob-
lem consists in the optimization of the communication scheduling for a set of
periodic signal streams, generated at the ECU interface and considered indepen-
dently from their sender and receiver tasks. For several car manufacturers this is a
problem of high practical interest, because the first step in the move to FlexRay is
likely to be the remapping of existing CAN communication flows, which are today
typically asynchronous with respect to computations. This problem is addressed in
a number of papers as follows:

Ding et al. adopt genetic algorithm and its combination with bin packing [22,23].
Schmidt et al. present a two-stage Integer Linear Program (ILP) approach [67],
where the first stage packs signals to frames and the second stage determines
the schedule from the set of frames. Grenier et al. [26] design a simple heuristic

24 Networked Real-Time Embedded Systems 767

assuming one signal per frame. Lukasiewycz et al. [48] develop a bin-packing-based
approach for allocating signals to slots. Tanasa et al. [69] propose to use message
retransmissions on the FlexRay static segment to provide guarantees on reliability.
These works focus on the earlier version of FlexRay 2.1 where slot multiplexing is
disallowed, hence preventing the share of the same slot across different ECUs. In
compliance with the latest FlexRay 3.0 standard, Schenkelaars et al. [66] consider
the mapping of frames to slots but assume the signals are already packed to frames.
Kang et al. [39] consider the problem of packing signals to frames. Hu et al. [30]
adopt a list-scheduling-based approach. Darbandi et al. [9] transform the problem
to a strip packing problem. They also propose an ILP-based approach for a direct
packing of signals to slots [10].

In the following, the ILP-based approach for synthesizing asynchronous schedule
is described. The approach extends the formulation from [48] by considering the slot
multiplexing allowed in FlexRay 3.0.

24.3.2.1 ILP-Based Approach for Asynchronous Scheduling
For asynchronous scheduling, the problem the designers are facing is to pack the
signals into frames and assign frames to slots such that there is one instance of
the signal transmitted within its period, and the number of used slots (the used
bandwidth) is possibly minimized.

For the purpose of scheduling in the static segment, it is sufficient to consider the
following set of design parameters in the FlexRay bus configuration: .cc; ns; ls/,
where cc is the number of communication cycles, ns is the number of slots in the
static segment of the communication cycle, and ls is the length of the slot in bytes.
The application contains a set of ECUs E, each ECU e sending a set of signals Me .
The set of all signals is denoted as M. For each signal m 2 M, it is configured
with a tuple of parameters .lm; rm/, where lm is the length of m in bytes and rm
is the cycle repetition of m. The cycle repetition rm is essentially the period Tm in
the unit of communication cycle: rm D Tm=lcomm, where lcomm is the length of the
communication cycle in time. rm shall always be an integer divisor of the number
of FlexRay communication cycles cc.

Another option is to evaluate several possible FlexRay configurations in an initial
branching of the search procedure. If the number of possible configurations is not
very large, it should be possible to explore them and run the optimization framework
as an inner loop, comparing the results at the end and choosing the best one with
respect to the objective function.

The mapping of signals to slots is encoded in a set of binary variables. For signal
m, the base cycle bm is smaller than rm (bm 2 f0: : :rm	 1g); hence the signal to slot
mapping is defined as

8c D 0; : : : ; rm 	 1;8s D 0; : : : ; ns 	 1;

Bm;c;s D

�
1; if m is mapped to base cycle c; slot s
0; otherwise

(24.10)

768 H. Zeng et al.

Another set of binary variables encodes the status of each slot:

Us D

�
1; if slot s is used
0; otherwise

(24.11)

A third set of binary variables encodes the ownership of a slot in a communica-
tion cycle:

Oe;c;s D

�
1; if slot s in cycle c is owned by ECU e

0; otherwise
(24.12)

The problem now can be formulated as follows. For the set of constraints, each
signal is mapped to one and only one slot in its cycle repetition:

8m 2M;

rm�1X
cD0

ns�1X
sD0

Bm;c;s D 1 (24.13)

The sum of the payloads over all mapped signals within each slot will be upper
bounded by the slot size:

8c D 0; : : : ; cc	1; s D 0; : : : ; ns	1;
X

m; b	c .mod rm/

lm�Bm;b;s � ls (24.14)

If signalm is mapped to communication cycle c and slot s, thenm’s source ECU
e must own that slot:

8m 2Me; c D 0; : : : ; cc	1; b � c .mod rm/; s D 0; : : : ; ns	1; Bm;b;s � Oe;c;s
(24.15)

If no signal is mapped to slot s in any communication cycle, then the slot
ownership is set to null:

8e 2 E; c D 0; : : : ; cc 	 1; s D 0; : : : ; ns 	 1; Oe;c;s �
X

m2Me ; b	c .mod rm/

Bm;b;s

(24.16)

Each slot in each cycle can only be owned by one ECU:

8c D 0; : : : ; cc 	 1; s D 0; : : : ; ns 	 1;
X
e2E

Oe;c;s � 1 (24.17)

The slot is used if any of the ECUs owns it:

8s D 0; : : : ; ns 	 1;
X
e2E

cc�1X
cD0

Oe;c;s � Us (24.18)

24 Networked Real-Time Embedded Systems 769

The objective is to minimize the number of used slots:

min
X
s

Us (24.19)

24.3.3 Dynamic Segment

The FlexRay dynamic segment is partitioned into a number of minislots (MS) that
are of equal length. Each frame is assigned a frame identifier (FrameID, or simply
ID) within which it can transmit. The dynamic segment is arbitrated in the following
way. At the beginning of the dynamic segment, the minislot index is set to one.
If there is a ready frame with ID that matches the current slot index, the frame
is transmitted. Correspondingly, the dynamic slot is extended to a length equal
to the number of minislots needed to transmit the frame, plus one minislot for
idle phase (used to separate frame transmissions). Otherwise, the minislot elapses
without frame transmission, and the dynamic slot index is incremented before the
next minislot starts.

To make sure there is enough time to transmit a frame before the end of the
dynamic segment, a parameter pLatestT x is specified for each ECU as the number
of minislots in the dynamic segment minus the largest frame size (in minislots).
If the current minislot index is larger than pLatestT x (LT x for short in the
following), then no frame can start transmission, and all the ready frames are
delayed to the next communication cycle.

In the example of Fig. 24.4, five dynamic frames are transmitted over a FlexRay
channel. Two frames, m2 and m4, share the same ID. At the beginning of the
dynamic segment, the dynamic slot index is initialized as 1, and the controller
checks whether there is a frame with FrameID 1 ready to be transmitted. m1, and,
consequently, m2 and m3, is transmitted in the first communication cycle. However,
m5 with ID 5 cannot be transmitted since there is not enough room to accommodate
it and its transmission is delayed to the next cycle (assuming it is allowed to transmit
there). In the second communication cycle, there is no frame with ID 1; thus the
first dynamic slot is collapsed to one minislot and m4, which cannot be transmitted

Dynamic segment Dynamic segmentother segments other segments

Communication cycle Communication cycle

1 12 2 33 44 5 56 67 7 88 9 910 10 111112 12

M
S

M
S

M
S

M
S

M
S

1 2 3 4 5 1 2 3 4 5Dynamic slot index
Minislot index

m5m4m3m2m1

Fig. 24.4 An example of FlexRay dynamic frame transmission

770 H. Zeng et al.

in the first communication cycle because of the transmission of another frame m2

with the same ID 2, is transmitted, followed by a minislot for indexes 3 and 4 and
the transmission of m5 with ID 5.

For the purpose of scheduling and analysis in the dynamic segment, the FlexRay
bus configuration is captured with a list of parameters .lcomm; lST; nMS; lMS/, where
lcomm is the length of the FlexRay communication cycle, lST is the length of the
static segment, nMS is the number of minislots in the dynamic segment, and lMS is
the length of the minislot in time (the length of the dynamic segment is lDYN D nMS �

lMS). In the design flows in the automotive industry, these parameters (in particular
the communication cycle and the slot size) are often defined and standardized based
on the need to reuse legacy components and standardize configurations, which is
likely to induce carmakers to freeze the definition of these parameters for their
product lines.

A set of CCmax (of value that is a power of 2, i.e., 1, 2, 4, 8, 16, 32, 64)
communication cycles constitute a hyperperiod, for which the scheduling table is
specified and repeated. Each dynamic frame mi 2 M is characterized by a tuple
of parameters fNi ; Ti ; Ji ;Di ; Cig, where Ni is its source ECU, Ti is its period, Ji
denotes its release jitter (the maximum delay with respect to the periodic activation
event), Di is the deadline, and Ci is the transmission time (the time mi occupies
when transmitted on the bus, including the one minislot needed for the idle phase).
For convenience, Ci is defined in terms of the (integer) number of lMS. For example,
Ci D 5 � lMS for frame m4 in Fig. 24.4. The deadline Di is assumed to be arbitrary,
i.e., it can be smaller, equal, or lager, compared to Ti . The worst-case response
time Ri of mi is the maximum difference between the finish time and the arrival
time. For each mi , LT xi indicates the latest minislot index in which it is allowed
to start transmission. The set of frames with lower ID than mi is denoted as
lf .mi / D fmj jIDj < IDig. Also, the set of frames with lower ID than mi plus
itself is denoted as le.mi / D lf .mi /

S
fig.

In the latest FlexRay 3.0 standard [37], slot multiplexing is added as a new
feature, which allows different frames sent in different cycles to share the same ID.
With slot multiplexing, each frame mi is assigned with two attributes, base cycle
bi and cycle repetition ri . Then mi can only transmit in every ri -th communication
cycle starting at the bi -th cycle. ri only assumes a value as a power of 2 that is no
greater than CCmax, and bi 2 f0: : :ri 	 1g. As a special case, if mi exclusively
occupies the slot (i.e., mi is the only message allowed to transmit in its slot for all
communication cycles), like those without slot multiplexing, and then bi D 0 and
ri D 1. Obviously, to avoid infinite waiting for mi , it shall be Ti � ri � lcomm.

Since the scheduling in FlexRay dynamic segment is not work conserving, i.e.,
the bus may be left idle even if a message is ready, its timing analysis is inherently
more difficult compared to other fixed-priority-based protocols like CAN. First,
even if there is no message to be sent in a particular slot, it will occupy one minislot.
Second, if more than one instance of a message is ready, only one of them can be
sent in one dynamic segment. Third, a message may only be ready after its slot has

24 Networked Real-Time Embedded Systems 771

started. Fourth, there are not enough minislots to transmit a message as its LT x
has elapsed. Lastly, due to slot multiplexing, the pending messages may not be
transmitted in the current communication cycle.

In the following, the timing analysis is discussed in two cases: with or without
slot multiplexing. The case of no slot multiplexing is first discussed because of its
relative simplicity.

24.3.3.1 Timing Analysis Without Slot Multiplexing
When the feature of slot multiplexing is not used, i.e., the parameters bi D 0 and
ri D 1 for all frames mi , it essentially means that a frame can be transmitted in any
cycle.

FlexRay dynamic frames are transmitted in the order of the IDs (priorities) of
ready frames and without preemption: If a frame becomes ready while another frame
with higher ID is being transmitted (after its slot passed), it cannot preempt the
lower-priority frame and must wait until the next cycle. Like other systems with non-
preemptive fixed-priority scheduling (such as CAN), the response time analysis is
based on the calculation of the busy period of level-i , denoted as ti . The busy period
is the worst-case time interval that starts from the critical instant for an instance of
mi queued at t D 0 with jitter Ji , where the bus is always busy transmitting frames
with priority higher than or equal to mi except for a possible initial blocking Bi .

Here, Bi denotes the longest blocking delay that happens in the communication
cycle when mi becomes ready. In the worst case, the slot with index i starts as soon
as possible in the cycle where no frame with ID lower than i is sent, and mi is
queued right after that. Thus, the worst-case blocking Bi is

Bi D lcomm 	 .lST C .IDi 	 1/lMS/ (24.20)

Also, for mj 2 lf .mi /, n
.k/
j denotes the maximum number of instances of mj

activated in the busy period for the k-th iteration t .k/i . n.k/i is the number of instances
of mi activated in the busy period (before the one considered for the analysis). The
vector n.k/ is defined as n.k/ D fn.k/j g; j 2 le.mi /. The function fi .n.k// gives
the worst-case interference caused by the static segment and the transmission of
dynamic frames mj 2 le.mi / (each activated n.k/j times). The computation for

fi .n.k// is discussed in the later part of the section.
The overall length of the busy period can be found as the fixed-point solution of

the iterative procedure:

(
t
.0/
i D Bi

t
.kC1/
i D Bi C Ci C fi .n.k//

(24.21)

772 H. Zeng et al.

For the iterations in the computation of the busy period ti , n.k/ is

8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:

n
.k/
j D

&
Jj C t

.k/
i

Tj

'
;8j 2 lf .mi /

n
.k/
i D

&
Ji C t

.k/
i

Ti

'
	 1

(24.22)

Inside the busy period ti , up to qmax
i instances of mi are ready for transmission:

qmax
i D

�
Ji C ti

Ti

�
(24.23)

The worst-case response time ofmi is the maximum among those qmax
i instances

in the busy period. These instances are indexed as q D 1; : : : ; qmax
i . The longest time

from the start of the busy period to the time the q-th instance starts transmission is
calculated by the following iterative formula:(

w.0/i .q/ D Bi
w.kC1/i .q/ D Bi C fi .n.k//

(24.24)

where n.k/ is given as

8̂̂
<
ˆ̂:
n
.k/
j D

&
w.k/i .q/C Jj

Tj

'
;8j 2 lf .mi /

n
.k/
i D q 	 1

(24.25)

The response time of the q-th instance is

Ri.q/ D Ji C wi .q/ 	 .q 	 1/Ti C .Ci 	 lMS/ (24.26)

where lMS is subtracted from Ci as a frame is considered received before the idle
phase (whose length is one minislot).

Go back to the computation of fi .n.k//, the function computing the worst-case
delay caused by frames in le.mi / with known vector n.k/ of activated instances.
Since each previous instance ofmi delays the transmission of the following instance
of mi by at least one cycle, their occurrences will produce a delay equal to at least
n
.k/
i communication cycles. Consider the frames in lf .mi /. Let s.k/cycle be the number

of communication cycles the .n.k/i C 1/-th instance of mi has to wait because of

interference from frames in lf .mi / and r.k/cycle be the time from the start of the last

cycle to the beginning of the transmission of the .n.k/i C1/-th instance ofmi . fi .n.k//
can be expressed as

24 Networked Real-Time Embedded Systems 773

fi .n.k// D .n
.k/
i C s

.k/
cycle/lcomm C r

.k/
cycle (24.27)

The computation of scycle and rcycle is demonstrated to be NP hard [65, 68]. For
simplicity, from now on the iteration index k is dropped from n, scycle and rcycle.

Next, an overview is given on the calculation of the exact value of fi .n/. The
calculation is based on the solution of two ILPs [65], which is generally time-
consuming especially for large problem sizes. Hence, a load-based heuristic and a
heuristic leveraging the results on bin-covering problem are summarized afterward.

The calculation of fi .n/ can be viewed as a constrained version of the bin-
covering problem. A bin-covering problem is to maximize the number of bins using
a given list of items with known weights, such that each bin is at least filled to
a minimum capacity (the sum of the weights from items packed to the bin is no
smaller than the minimum bin capacity). To calculate fi .n/, after the number of
instances nj from each framemj 2 lf .mi / is calculated, these instances are used to
cover bins (communication cycles) with minimum capacity LT xi � lMS. Each frame
mj has nj instances, and its weight is Cj . The problem also contains additional
constraints such as (24.34) and (24.35) below.

Exact Solution for fi.n/

Below a brief summary is given on the ILP optimization formulation proposed
in [65] to find the exact solutions. The number of busy communication cycles scycle

can be bounded by the total number of frame instances in lf .mi /:

scycle � s
ub
cycle D

X
j2lf .mi /

nj (24.28)

or better, by using the heuristic in (24.41) presented in the following subsections.
The number of binary variables in the ILP formulation depends linearly on the
maximum number of busy communication cycles; thus using a tighter bound
like (24.41) can greatly reduce the complexity.

A set of binary variables defines the transmission of the instances of frames in
lf .mi / in the cycles:

8j 2 lf .mi /; n � nj ; s � s
ub
cycle; xj;n;s D

8<
:
1 if the n-th instance of mj

is sent in cycle s
0 otherwise

(24.29)

Another set of binary variables denotes whether cycle s is busy transmitting frames
2 lf .mi / or not:

8s � sub
cycle; ys D

�
1 if the s-th cycle is busy
0 otherwise

(24.30)

774 H. Zeng et al.

The total loadNi;s from lf .mi / and idle minislots with slot index< IDi in cycle
s is

Ni;s D
X

j2lf .mi /

X
n�nj

xj;n;s � Cj C
X
j<IDi

.1 	
X
n�nj

xj;n;s/lMS (24.31)

A set of constraints encodes the FlexRay protocol requirements. First, in any
busy cycle s, Ni;s must be no smaller than the length of LT xi minislots:

8s � sub
cycle; Ni;s � LT xi � lMS � ys (24.32)

Second, each frame instance is transmitted at most once:

8j 2 lf .mi /; n � nj ;
X
s�sub

cycle

xj;n;s � 1 (24.33)

and each frame ID is transmitted at most once in each cycle

8j 2 lf .mi /; s � s
ub
cycle;

X
n�nj

xj;n;s � 1 (24.34)

Third, each instance of mj is sent no later than the minislot of index LT xj ,
formulated using the “big-M” formulation:

8j 2 lf .mi /; n � nj ; s � s
ub
cycle; Nj;s < LT xj �lMS �ysCM.1	xj;n;s/ (24.35)

Here M is a large-enough constant, e.g., lDYN.
To find the maximum number of busy communication cycles scycle, an opti-

mization problem is solved, with objective function in (24.36) and constraints
in (24.32), (24.33), (24.34), and (24.35):

scycle D max.
X
s�sub

cycle

ys/ (24.36)

With the solution to scycle, the value of rcycle can be determined by maximizing
the communication load in the .scycle C 1/-th cycle after filling up the first scycle

cycles:

rcycle D max.lST CNi;scycleC1/ (24.37)

Load-based Heuristic Solution for fi.n/.
The basic idea to approximate fi .n/ is to assume that the scycle communication
cycles are always filled with the minimum amount of load from frames in lf .mi /.

24 Networked Real-Time Embedded Systems 775

Hence, the concept of the minimum serviced load is defined as the minimum trans-
mission time that is needed in addition to the idle minislots to fill a communication
cycle bin. It can be calculated as

pi D LT xi � lMS 	 .IDi 	 1/lMS

D .LT xi 	 IDi C 1/lMS

(24.38)

This may also be derived by manipulating constraint (24.32):

Ni;s D
X

j2lf .mi /

X
n�nj

xj;n;sCj C
X

j<IDi ;j…lf .mi /

lMS C
X

j2lf .mi /

.1 	
X
n�nj

xj;n;s/lMS

D
X

j2lf .mi /

X
n�nj

xj;n;s.Cj 	 lMS/C .IDi 	 1/lMS

�LT xi � lMS � ys
(24.39)

With C 0i D Ci 	 lMS, constraint (24.32) is equivalent to

X
j2lf .mi /

X
n�nj

xj;n;s � C
0
j � pi � ys (24.40)

An upper bound on scycle can be derived by considering a bin-packing problem
formulation, where (24.32) (or equivalently (24.40)) and (24.33) are respected but
constraints (24.34) and (24.35) are ignored [65]. With the notation Ki as

Ki D

P
j2lf .mi /

.nj � C
0
j /

pi
(24.41)

it is

scycle � bKic (24.42)

The upper bound on fi .n/ is

fi .n/ � .ni C bKic/lcomm C lST C .IDi 	 1/lMS C .Ki 	 bKic/pi (24.43)

However, the upper bound in Eq. (24.43) is in general loose, since con-
straint (24.34) that requires each frame identifier is used at most once in each
cycle is ignored. With this observation, constraint (24.34) is brought back into
consideration: at most one instance of any frame mj 2 lf .mi / can be packed in
each communication cycle.

Algorithm 1 reflects this idea and gives a tighter upper bound f H
i .n/ on fi .n/

than Eq. (24.43). It uses a load variable L to denote the available requested
transmission time within a communication cycle. The loop from Lines 2–15

776 H. Zeng et al.

implements the iterative procedure to calculate L and s. It tries to fill each bin
(communication cycle) starting from cycle s D 0. In each cycle s, one instance
from each mj 2 lf .mi / that has nj > 0 is added to get the load variable L
(Lines 3–8). L is the maximum amount of time that is available for transmission
in the communication cycle s. By adding only a term C 0j D Cj 	 lMS for each
mj 2 lf .mi /, at most one instance from each frame mj can be transmitted in this
cycle. If L � pi , the cycle s is filled, the bin capacity pi is subtracted from the
load variable L, and the iteration continues to the next cycle (Lines 9–11). The
reason is that in the worst-case scenario, only pi of these loads is transmitted in
the communication cycle and the maximum amount of remaining loads is delayed
to the next cycles. If L < pi , there is not enough load to fill the bin, and mi is
transmitted in the current communication cycle, and the iteration stops (Lines 12–
13). Then, s is assigned to sHcycle, and rHcycle is calculated as lSTC .IDi 	 1/lMSCL,
assumingL as the additional load in the communication cycle in which the .niC1/-
th instance of mi is transmitted (Line 16). Finally, fi .n/ is calculated as the length
of .ni C scycle/ communication cycles plus rcycle (Line 17).

Algorithm 1 Algorithm to compute the upper bound f H
i .n/ on fi .n/

1: pi D .LT xi � IDi C 1/lMS, L D 0, s D 0

2: while true do
3: for each frame j 2 lf .mi / do
4: if nj > 0 then
5: L D LC Cj
6: nj D nj � 1
7: end if
8: end for
9: if L � pi then

10: s D sC 1
11: L D L� pi
12: else
13: break
14: end if
15: end while
16: sHcycle D s, rHcycle D lST C .IDi � 1/lMS C L

17: f H
i .n/ D .ni C s

H
cycle/lcomm C r

H
cycle

The value of f H
i .n/ returned by Algorithm 1 is proven to be no smaller than the

exact value fi .n/ [83]. Essentially sHcycle is solved with a more relaxed problem than
the exact solution scycle. It ignores the constraints (24.32) and (24.35). The complete
proof is documented in [83]. Hence, the algorithm is a pessimistic but safe procedure
in that the resulted worst-case response time Ri is always an upper bound for the
actual response time.

24 Networked Real-Time Embedded Systems 777

Bin-Covering-Based Heuristic Solution for fi.n/.
Alternatively, Tanasa et al. [68] apply recent theoretical advances [38] to approx-
imate the upper bounds on the optimal solution for the bin-covering problem. It
takes an input parameter � to define the precision of the results. The details of how
the bin-covering heuristic is solved can be found in [68]. It is reported that [68] the
approach provides improvement over the load-based heuristic when � � 1=16 and is
comparable when � D 1=8. Hence, a value between 1=16 and 1=8 for � can provide
the right balance between efficiency and quality.

24.3.3.2 Extension to Slot Multiplexing
The generalization of the two techniques to slot multiplexing is now discussed.
For this purpose, pi is extended with an additional parameter cc, i.e., pi .cc/,
to denote the minimum serviced load for communication cycle cc. Similarly,
lf .mi ; cc/ denotes the set of messages in lf .mi / which can be transmitted in cc,
i.e., lf .mi ; cc/ D fmj jmj 2 lf .mi /; cc � bj .mod rj /g.

Consider an example as presented in [68], which contains five frames with
their cycle repetition and base cycle in Table 24.2. Figure 24.5 illustrates the
communication cycles that each frame is allowed to transmit.

Load-Based Heuristic
Slot multiplexing provides flexibility and efficiency for scheduling but also intro-
duces new challenges to the timing analysis. Each communication cycle should be
regarded differently, due to the facts that the message mi under analysis and those
with lower ID (in lf .mi /) cannot be transmitted in every cycle.

Table 24.2 Frame
parameters of an example

m1 m2 m3 m4 m5

Cycle repetition 1 2 4 8 2

Base cycle 0 0 0 0 0

1

m5m5m5m5

m4

m3 m3

m2 m2 m2 m2

m1 m1

cycle3 cycle4 cycle5 cycle6 cycle7cycle0 cycle1 cycle2

type 2type1 type 3

m1 m1 m1 m1 m1 m1

Fig. 24.5 The allowed communication cycles for the frames in Table 24.2

778 H. Zeng et al.

• First, the first complete communication cycle cc0 after the start of the busy
window can be any one in the hyperperiod. Hence, in the analysis, it is sufficient
to enumerate the possible values f0: : :CCmax 	 1g for cc0.

• Second, it is insufficient to use a single load variable since the load accumulated
in one cycle may not be delayed to the next cycles. This can be illustrated with a
simple example that mi can be transmitted in every cycle, and each message mj

in lf .mi / has rj D 2 and bj D 0. Even if the accumulated load from lf .mi / in
cycle 0 can be larger than 2pi , it is not deferrable to cycle 1, and mi can be sent
in cycle 1. The solution to this issue is explained later.

• Third, the minimum serviced load pi in each cycle is different as mi may
not be transmitted in certain cycles. A conservative estimate is that for those
communication cycle cc mod ri ¤ bi , pi .cc/ is set to be 0. This can be
improved to pi .cc/ D min

j2lf .mi ;cc/
pj .cc/, since any of the messages in lf .mi /

could still start transmission if less load was serviced [63].

To analyze the effects of slot multiplexing on the interference that messages in
lf .mi / may introduce (the second challenge above), a set of load variables Lb;r is
added to denote the cycle-dependent load, where b is the base cycle and r is the
repetition factor. At a given cycle cc during the analysis, the transmission time Cj
of mj is added to the load variable Lbj ;rj only if cc � bj .mod rj /, to reflect the
fact that mj is only allowed to transmit in such communication cycles. Hence, the
total available load L.cc/ at cc is

L.cc/ D
X

b;rW cc	b .mod r/

Lb;r (24.44)

If L.cc/ < pi .cc/, then there is not enough load to further delay mi , and mi will
be sent in the earliest cycle � cc that it is permitted to transmit. Otherwise, mi will
be delayed, and the minimum serviced load should be subtracted.

Since L.cc/ is in general composed of loads from several suitable Lb;r variables,
there is an additional question about which Lb;r should pi .cc/ be subtracted from.
Neukirchner et al. [63] observe that the repetition factors are only allowed to be a
power of 2, which helps to simplify the problem. Because of this restriction in the
FlexRay specification, any load variable coincides with several load variables of a
lower repetition factor. For example, L3;4 always coincides with L1;2 and L0;1. To
maximize the L.cc/ for every cc, it is sufficient to maximize the Lb;r variable with
the smallest cycle repetition r . This can be achieved by subtracting the minimal
serviced load pi .cc/ first from the available Lb;r with the highest cycle repetition.

Bin-Covering-Based Heuristic
The heuristic based on bin-covering approximation algorithm can also be extended
to slot multiplexing. However, the problem is no longer a traditional bin-covering
problem. Rather, the problem becomes what was called bin-covering problem
with conflicts [68], as not all messages (items) can be transmitted in every

24 Networked Real-Time Embedded Systems 779

communication cycle (bin). The number of types of bins P is determined by the
distinct communication cycles in a hyperperiod, where two communication cycles
are considered distinct if the set of messages they can carry are different. With this
understanding, the problem then can be reformulated as bin-covering problem with
specific requirements on the number of bins to be packed for each of the P types.
For example, in Fig. 24.5, there are three types of bins for the purpose of analyzing
m5’s response time: type 1 containing cycle 0 where all higher-priority messages
m1–m4 can transmit, type 2 for cycles 2 and 6, and type 3 for cycle 4.

24.4 Packet-Switched Networks: Ethernet

24.4.1 Introduction

In addition to traditional buses such as CAN or FlexRay, packet-switched Ethernet
will be used in next-generation automotive communication architectures. Ethernet’s
superior bandwidth and flexibility make it ideal to address the high communication
demands of, for example, Advanced Driver Assistance Systems (ADASs), info-
tainment systems, and ECU flashing. As a switched network, Ethernet provides
a scalable, high-speed, and cost-effective communication platform, which allows
arbitrary topologies.

Ethernet evolved from a shared bus communication medium with Carrier Sense
Multiple Access/Collision Detection (CSMA/CD)-based link access scheme to
a switched network. Frame collisions in CSMA/CD were resolved by a binary
exponential backoff algorithm which picked a random delay until a retransmission
could be started after a collision. This deemed CSMA/CD unsuitable for real-
time systems with tight latency or jitter requirements. Switched Ethernet made
CSMA/CD obsolete. In switched Ethernet, contention is moved into the switches,
where a scheduler has full control over each output port. This enables the imple-
mentation of elaborate link schedulers, which allow the derivation of real-time
guarantees. Today, Ethernet installations (including the automotive domain) are
almost always switched. Hence, in the following, we will refer to switched Ethernet
as standard Ethernet.

In the automotive context, Ethernet is anticipated to serve as an in-vehicle
communication backbone, where it must be able to transport traffic streams of mixed
criticality. This requires Quality of Service (QoS) mechanisms, in order to provide
deterministic timing guarantees for critical traffic. Standard Ethernet (IEEE 802.1Q)
introduced eight traffic classes. These classes can be used to prioritize traffic, which
is typically implemented by a Static-Priority Non-Preemptive (SPNP) scheduler
at each output port in each switch and end point. This limited number of classes
requires that multiple traffic streams share a class, making streams of equal priority
indistinguishable to the scheduler. Traffic within a shared class is usually scheduled
in First-In First-Out (FIFO) order.

Compared to CAN or FlexRay, Ethernet exhibits complex timing behavior, as
each switch output port is a point of arbitration, which adds delay to the overall

780 H. Zeng et al.

end-to-end latency. While mature formal performance analysis techniques have
been established for CAN and FlexRay, such techniques are even more required
for Ethernet before it can be used in timing- and safety-critical systems. This will
become even more important in the context of highly automated and autonomous
driving. In this section, we use Compositional Performance Analysis (CPA) (see
�Chap. 23, “CPA: Compositional Performance Analysis” and [29]) to derive worst-
case performance bounds for Ethernet.

24.4.2 Modeling Ethernet Networks for Performance Analysis

Before timing guarantees can be derived for an Ethernet network, the components
of this network must be mapped to the CPA system model (cf. Sect. 2 in �Chap. 23,
“CPA: Compositional Performance Analysis”). This mapping process is explained
in detail in [19]. Here, a brief summary covering the essential steps, using Figs. 24.6
and 24.7 as illustration, is presented.

Figure 24.6 shows an Ethernet model comprising two switches and four ECUs.
A sequence of related Ethernet frames between a source and one (or more)
destination(s) is called an Ethernet traffic stream. There are two traffic streams in
the network: a unicast stream from ECU0 to ECU3 and a multicast stream from
ECU2 to ECU1 and ECU3.

In order to map the Ethernet model to the CPA system model, resources, tasks,
and event models must be identified. Resources model points of contention. In
Ethernet, contention between individual frames happens at the switches. Inside a
switch there are several delay sources. At the input port, there is input queuing
delay, the switch fabric adds forwarding delay, and at the output port, there is
output queuing delay. Contemporary switches are fast enough that input queuing
delay and forwarding delay only have a negligible impact on the overall timing
guarantees. Hence, these delays can be ignored or approximated by constant terms.
The output queuing delay considers the time it takes to transmit a given frame,
including the interference from other frames. Consequently, switch output ports are
modeled by CPA resources. The scheduling policy of these resources is determined
by the switch port’s scheduling mechanism. Additionally, here is transmission delay
on the link between switches. This delay corresponds to the propagation delay of
electric signals on the link’s wire and can also be modeled by a constant term.

The transmission of a frame via an output port of a switch is modeled in CPA as
the execution of a task on the port’s resource. An Ethernet traffic stream is modeled
as a chain of dependent frames (tasks) according to its path through the network

Fig. 24.6 Ethernet model

ECU0 S0

ECU2

S1 ECU3

ECU1

24 Networked Real-Time Embedded Systems 781

Port0.0 Port1.1

d2

d0

Switch S1

Port1.0Port0.1

Switch S0

ECU0

ECU2

ECU3

ECU1

Fig. 24.7 CPA system model for the Ethernet model from Fig. 24.6

(see Fig. 24.7). This chain may fork to model multicast or broadcast trees. On each
resource, a task consumes service according to its execution time bounds, which are
derived from the best-case and worst-case transmission times of its corresponding
Ethernet frame. The transmission time of a frame is defined to be the time it takes
the frame to be transmitted without any interference from other frames. For a frame
of traffic stream i with maximum/minimum payload p�=Ci , the best-case and worst-
case transmission times C�i and CCi can be computed to

C
C=�
i D

42 bytesCmax
n
42 bytes; pC=�i

o
rTX

(24.45)

where rTX is the transmission rate of the port that transmits the frame. The
constant terms correspond to the protocol overhead. The first 42 bytes account
for preamble (7 bytes), start of frame delimiter (1 byte), destination and source
Media Access Control (MAC) address (both 6 bytes), IEEE 802.1Q tag (4 bytes),
EtherType (2 bytes), frame check sequence (4 bytes), and inter-frame gap (12 bytes).
The second 42 bytes account for the fact that there is a minimum Ethernet frame size
of 84 bytes and that the payload must be padded if necessary.

Frame arrivals (and emissions) are modeled by event models. These models come
from either external sources or from dependent frames.

Figure 24.7 shows the corresponding CPA model of the Ethernet model from
Fig. 24.6. As can be seen, the output ports of both switches are modeled as resources
(light blue boxes with rounded corners). Both traffic streams are modeled by a chain
of tasks (red and green circles) reflecting their paths through the network. Notice
that the green path originating at ECU2 splits into a multicast tree. ECU0 and ECU2
inject frames into the network according to the event models ı0 and ı2 (respectively).
This model can then be analyzed with CPA’s iterative approach.

782 H. Zeng et al.

24.4.3 Analysis of Standard Ethernet (IEEE 802.1Q)

In order to derive upper bounds on the worst-case performance of Ethernet
networks, an analysis which captures all delay effects on the CPA resources that
model the switch output ports must be developed. This analysis will then be used
in the local analysis step of the CPA loop to derive worst-case frame transmission
latencies on each output port.

Definition 1. A frame’s transmission latency is the time interval, which starts when
the frame has been received at an input port and ends when it has been transmitted
entirely from an output port. The transmission latency includes all timing effects
from interfering traffic streams.

In the context of the model transformation from Sect. 24.4.2, the transmission
latency of a frame corresponds to the response time of a task.

When deriving formal performance guarantees, the worst-case transmission
latency of the frames of a given traffic stream i (among all for stream i ’s
possible frames transmission latencies) is of particular interest. For non-preemptive
scheduling (such as standard Ethernet), it has been shown that, in order to find this
worst-case transmission latency, the transmission latencies of all frames of stream
i in its longest scheduling horizon must be evaluated (cf. [12]). The scheduling
horizon of a traffic stream i is the time a switch port is busy processing frames of
stream i , including interference from frames of other traffic streams (cf. Sect. 2.2.1
in �Chap. 23, “CPA: Compositional Performance Analysis” and [17]). Particularly,
the worst-case transmission latency of the q-th frame of traffic stream i can be
derived from its worst-case multiple activation queuing delay Qi.q; a

q
i / (cf. Eq.

(9) in �Chap. 23, “CPA: Compositional Performance Analysis”).

Definition 2. Assuming that the q-th frame of a traffic stream i arrives at time aqi
at a switch output port, its worst-case multiple activation queuing delay Qi.q; a

q
i /

is the time interval, which starts with the arrival of the first frame of stream i that
initiates the scheduling horizon and ends when the q-th frame can be transmitted
(i.e., it does not include the transmission of the q-th frame).

Note that, in contrast to the multiple activation queuing delay Qi.q/ introduced in
Sect. 2.2.1 in �Chap. 23, “CPA: Compositional Performance Analysis”, the queuing
delay in the Ethernet context additionally depends on the arrival time aqi of the q-th
frame. This is due to the FIFO scheduling of frames with equal priority and will be
explained later in this section. The arrival time aqi of the q-th frame of stream i is
measured relative to the beginning of the scheduling horizon.

As stated in Sect. 24.4.2, it is assumed that the queuing delay of a given frame at
a switch output port accounts for all delays induced by interfering traffic streams.
The amount of interference from other traffic streams depends on the output port’s
scheduling policy. In standard Ethernet, traffic streams are categorized into (up to)

24 Networked Real-Time Embedded Systems 783

eight traffic classes, which correspond to priority levels. Inside each output port
there is a set of FIFO queues, one for each traffic class. These FIFO queues are
served by an SPNP scheduler. Consequently, to calculate the worst-case queuing
delay Qi.q; a

q
i / in standard Ethernet, all blocking effects, which can occur in this

combination of FIFO and SPNP scheduling, must be considered.
Lower-priority blocking: In non-preemptive scheduling, a frame which started

transmitting is guaranteed to finish without interruption. Hence, a frame of traffic
stream i can experience blocking from at most one lower-priority frame, if this
lower-priority frame started transmitting just before the arrival of the first frame of
traffic stream i [21]:

I LPB
i D max

j2lp.i/

n
CCj

o
(24.46)

where lp.i/ is a function yielding the set of all traffic streams whose priority is
lower than that of stream i .

Higher-priority blocking: In any time interval of length �t , a frame of traffic
stream i can experience blocking from all frames of higher-priority streams, which
arrive during �t , i.e., before the frame of stream i can be transmitted [21]:

IHPB
i .�t/ D

X
j2hp.i/

	Cj .�t C �/C
C
j (24.47)

where hp.i/ is a function yielding the set all traffic streams whose priority is higher
than that of stream i . Recall from Sect. 2.1.2 in �Chap. 23, “CPA: Compositional
Performance Analysis” that 	C.�t/ yields an upper bound on the number of events,
i.e., frame arrivals, in any half open time interval of length �t . As the multiple
activation queuing delay Qi.q; a

q
i / covers the time until the q-th frame can be

transmitted, higher-priority frames arriving exactly at the end for �t can also
interfere with the q-th frame. We model this by adding an infinitesimal small time �
to�t to cover the closed time interval Œt; t C�t�. In practice, � corresponds to a bit
time.

Same-priority blocking: As frames of identical priority are processed in FIFO
order, frames of traffic stream i can experience blocking from frames of other traffic
streams with the same priority as stream i . Hence, if the q-th frame of traffic stream
i arrives at time aqi , it must wait for all frames from other streams with identical
priority, which arrived before or at aqi , as well as wait for its own q 	 1 predecessor
frames to finish [21]:

I SPB
i .q; a

q
i / D .q 	 1/C

C
i C

X
j2sp.i/

	Cj .a
q
i C �/C

C
j (24.48)

Here, sp.i/ is a function yielding the set of all traffic streams whose priority is
equal to that of stream i (excluding stream i). In the worst case, any same-priority
frames arriving concurrently at exactly aqi are assumed to interfere with the q-frame
of stream i . Again, an infinitesimal small time � is added to �t to cover this case.

784 H. Zeng et al.

In [21] it is shown that FIFO scheduling requires a candidate search in order
to determine the worst-case blocking. The reason for this candidate search is that
if frame q arrives early (within its jitter bounds), it might experience additional
blocking from some of its own q	1 queued predecessors. However, if it arrives late
(within its jitter bounds), it might experience additional blocking from previously
queued frames of interfering same-priority streams. The set of arrival candidates
A
q
i can be reduced to points in time where the candidates aqi coincide with

the earliest arrivals of interfering frames from same-priority traffic streams [21].
Consequently, all candidates for the arrival of the q-th frame of stream i can be
found by investigating the arrivals of interfering frames between the earliest arrival
ı�i .q/ of the q-th frame and its q-activation scheduling horizon Si .q/, which is the
time a switch port is busy processing q frames of stream i , including interfering
frames from other traffic streams (cf. Eq. (4) in �Chap. 23, “CPA: Compositional
Performance Analysis”):

A
q
i D

[
j2sp.i/

n
ı�j .n/jı

�
i .q/ � ı

�
j .n/ < Si .q/

o
n�1

(24.49)

where, in the context of standard Ethernet, Si .q/ can be computed as follows:

Si .q/ D max
j2lp.i/

n
CCj

o
C qCCi C

X
j2sp.i/[hp.i/

	Cj .Si .q// C
C
j (24.50)

Note that the computation of the q-activation scheduling horizon does not require
a candidate search for the same-priority interference, as it is only concerned about
the time when the port is busy. As Si .q/ occurs on both sides, Eq. (24.50) cannot
be solved directly. However, it represents an integer fixed-point problem, which can
be solved by iteration, as all terms are monotonically increasing (cf. [29]). A valid
starting point is, e.g., Si .q/ D maxj2lp.i/fC

C
j g C qC

C
i .

In order to compute the worst-case queuing delay Qi.q; a
q
i / of the q-th frame

arrival of traffic stream i , which arrived at time aqi , all presented blocking effects
must be considered:

Qi.q; a
q
i / D I

LPB
i C I SPB

i .q; a
q
i /C I

HPB
i

�
Qi.q; a

q
i /
�

(24.51)

Again, Qi.q; a
q
i / occurs on both sides, and Eq. (24.51) cannot be solved directly.

Like the integer fixed-point problem in Eq. (24.50), it can be solved by iteration
with, e.g., Qi.q; a

q
i / D .q 	 1/C

C
i as a starting point.

Now, the largest transmission latency Ri.q/ for the q-th frame arrival of traffic
stream i can be computed by adding the transmission time CCi of this q-th frame
to its worst-case queuing delay and accounting for the fact that the frame arrived at
time aqi (see, e.g., [3]). This is illustrated in Fig. 24.8:

Ri.q/ D max
a
q
i 2A

q
i

˚
Qi.q; a

q
i /C C

C
i 	 a

q
i

�
(24.52)

24 Networked Real-Time Embedded Systems 785

Fig. 24.8 Example queuing
delay and transmission
latency computation (cf. [75]) ISPBILPB IHPB

By taking the maximum overallRi.q/, the worst-case frame transmission latency
for a frame of stream i can be computed:

RCi D max
1�q�q

C

i

fRi.q/g (24.53)

As mentioned before, in order to derive the worst-case frame transmission latency
of stream i , all frame arrivals of stream i in its longest scheduling horizon must be
evaluated. Let qCi be the maximum number of these frame arrivals. It can be derived
by computing the maximum number of frames, which arrive during the scheduling
horizon of their respective predecessors (cf. [18]):

qCi D max
q�1
fqjı�i .q/ � Si .q 	 1/g (24.54)

Now, as established in Sects. 2.2.1 and 2.2.2 in �Chap. 23, “CPA: Compositional
Performance Analysis”, the worst-case bounds on the maximum path latency and
the maximum frame backlog can be derived from the maximum frame transmission
latencies and maximum q-activation processing times.

24.4.3.1 End-to-End Latency Bounds
From the individual worst-case transmission latencies of the frames along the path
of a traffic stream through the network, the worst-case end-to-end latency of the
stream can be derived. Let Path.i/ be the path of stream i through the network. Now,
the time it takes to transmit q frames of stream i , i.e., its worst-case q-activation
end-to-end latency, can be bounded by (cf. [20]):

LCi .q/ D ı
�
i .q/C

X
j2Path.i/

RCj (24.55)

Here, the frames of stream i are injected into the network at their maximum rate (i.e.,
with minimum inter-arrival times ı�i .q/) to induce maximum load on the system’s
resources. Along any given path, frames of a traffic stream are processed in order,
i.e., they cannot overtake each other. Equation (24.55) assumes that the last of the
q frames experiences the worst-case transmission latency on all its ports. Due to
in-order processing, all q 	 1 previously sent frames must have arrived by then.

786 H. Zeng et al.

Obviously, for q D 1, Eq. (24.55) yields the worst-case end-to-end latency of a
single frame (recall that ı�i .1/ D 0). Larger q are convenient in cases where, for
example, a large IP packet is distributed over multiple Ethernet frames.

24.4.3.2 Buffer Size Bounds
Apart from timing guarantees, buffer size requirements are also important, as
actual systems (e.g. ,switches) only have limited memory resources (buffer space).
Insufficient buffer space can lead to frame drop, which is highly undesirable for
(time) critical traffic.

The maximum activation backlog of a traffic stream i is an upper bound on the
number of frames from i that can be queued at a resource at any given time. It can be
derived by computing, for each q-th frame, the maximum number of frames, which
arrived until the q-th frame has been transmitted, and subtracting from this number
the q 	 1 frames that must have been transmitted prior to the q-th one (cf. [21]):

bCi D max
1�q�q

C

i

˚
	Ci
�
BCi .q/

�
	 q C 1

�
(24.56)

whereBCi .q/ is the multiple activation processing time. Given q consecutive frames
of a traffic stream i , the multiple activation processing time is the longest time
interval between the arrival of the first frame and end of the transmission of the q-th
frame (cf. Eq. (8) in �Chap. 23, “CPA: Compositional Performance Analysis”):

BCi .q/ D Qi.q/C C
C
i (24.57)

In the Ethernet context, it can be bounded by the multiple activation queuing delay
under the assumption that all event arrive as soon as possible (i.e., we do not need to
consider different event arrivals as in Eq. (24.51)) by adding the frames worst-case
transmission time CCi (cf. Eq. (9) in �Chap. 23, “CPA: Compositional Performance
Analysis”):

Qi.q/ D I
LPB
i C I SPB

i .q;Qi .q//C I
HPB
i .Qi .q// (24.58)

From the maximum activation backlogs, the maximum buffer size requirements
can be derived. Typically, the memory in Ethernet switches can only be allocated
block wise, e.g., in blocks of 128 or 256 bytes. This must be taken into account
when deriving the maximum buffer size requirements. Assuming that a switch only
allows the allocation of memory blocks of size m and that only the destination and
source MAC addresses, the IEEE 802.1Q tag, the EtherType, the maximum payload
pC, and the frame check sequence of an Ethernet frame must be stored in switch
memory, the buffer size requirement (in bytes) for a traffic stream i can be bounded
by (cf. Sect. 24.4.2):

ObCi D b
C
i

�
22 bytesCmaxf42 bytes; pCg

m

�
m (24.59)

24 Networked Real-Time Embedded Systems 787

The buffer size requirement per port can be computed by summing the buffer size
requirements of all streams passing this port, and the buffer size requirement of a
switch can be computed by summing up the requirements of each of its ports.

24.4.4 Analysis Extensions

24.4.4.1 Other Ethernet Schedulers
As Ethernet strives to cover a wide range of application domains, it supports many
different schedulers and shapers to forward frames, each of which has a different
impact on the queuing delay at a switch’s output port. For the most prominent ones,
CPA-based analyses are available.

Ethernet AVB [31] introduced standardized traffic shaping in the form of credit-
based shaping on top of standard Ethernet. The motivation is to shape higher-priority
traffic streams to bound their interference on lower-priority ones, e.g., to prevent
starvation. However, as any form of traffic shaping introduces additional delays,
a careful timing analysis is required to evaluate Ethernet AVB’s applicability for
real-time applications. Formal analyses for Ethernet AVB in the context of the CPA
framework are presented in [21] and [3].

Ethernet TSN defines a set of Ethernet standards, which were designed with
real-time requirements in mind. Some of these standards specify new link arbi-
tration mechanisms. Namely, IEEE 802.1Qbv [35] introduces time-triggered frame
forwarding to Ethernet, i.e., frames of time-triggered traffic classes are scheduled at
predefined points in time such that they do not experience interference from other
traffic classes. IEEE 802.1Qbv relies on so-called guard bands to block non-time-
triggered traffic early enough to prevent interference with time-triggered traffic. In
IEEE 802.1Qch [32], cyclic frame forwarding is defined, i.e., frame forwarding is
based on alternating time intervals and frames received in one interval will be sent
in the next interval etc. A new credit-based shaper, which aims to improve the
forwarding of bursts, is discussed in [25]. Formal analyses for these shapers are
presented in [75] and [74].

Although not explicitly standardized by the IEEE, weighted round robin schedul-
ing can be implemented as an IEEE 802.1Q enhanced transmission selection
algorithm. A CPA-compatible formal analysis for weighted round robin scheduling
in the Ethernet context has been presented in [71].

In order to improve the timing of critical traffic, frame preemption has been intro-
duced to Ethernet via the IEEE 802.3br [33] and IEEE 802.1Qbu [34] standards. A
CPA-compatible formal analysis for frame preemption has been presented in [73].

24.4.4.2 Analysis Improvements
This section covered the fundamental approach to derive timing guarantees for
Ethernet networks in CPA. The presented baseline analysis has been improved and
extended in many directions.

Different analysis optimizations to exploit various kinds of correlations between
Ethernet traffic streams have been proposed in [3] and [70]. Axer et al. [3] exploits

788 H. Zeng et al.

the fact that both Ethernet links and Ethernet AVB’s traffic shapers limit the amount
of workload, which can pass them in a given time interval. This property can
be used to limit the interference during the computation of the worst-case frame
transmission latencies. In [70], the authors show how FIFO scheduling can be
exploited to reduce the interference a frame can experience from its same-priority
predecessors.

24.4.4.3 Higher-Layer Protocols
Ethernet only defines frame forwarding on layer 2 of the ISO/OSI model. Higher-
layer protocols often have additional timing implications. In [2] and [72] analyses to
determine a bound on the worst-case timing impact of Automatic Repeat Requests
(ARQs) and software-defined networking (SDN) [42] are presented.

Due to the compositional nature of CPA, the Ethernet analysis can be easily
combined with other analyses from the CPA framework to derive system-wide
performance guarantees. In [76], this has been done to compute end-to-end la-
tency bounds for CAN-over-Ethernet traffic, where Ethernet ports are modeled
as described in this section, but CAN buses and gateway processors are modeled
according to their respective scheduling policies.

24.5 Conclusion

This chapter gives the overview on three representative communication protocols
for real-time embedded systems, focusing on their timing related design principles
and analysis. We note that real-time embedded systems are increasingly equipped
with more sophisticated features (such as autonomous driving) that require high
adaptivity and large volume data exchange. As a consequence, we envision that
their future supporting communication networks will provide better extensibility
and higher bandwidth while still keeping their behavior predictable.

Acknowledgments The contribution Packet-Switched Networks: Ethernet has received funding
from the European Union’s Horizon 2020 research and innovation program under grant agreement
No 644080.

References

1. Andersson B, Tovar E (2009) The utilization bound of non-preemptive rate-monotonic
scheduling in controller area networks is 25%. In: 2009 IEEE international symposium on
industrial embedded systems, pp 11–18

2. Axer P, Thiele D, Ernst R (2014) Formal timing analysis of automatic repeat request for
switched real-time networks. In: Proceedings of the SIES, Pisa

3. Axer P, Thiele D, Ernst R, Diemer J (2014) Exploiting shaper context to improve performance
bounds of Ethernet AVB Networks. In: Proceedings of the DAC, San Francisco

4. Baruah S, Chen D, Gorinsky S, Mok A (1999) Generalized multiframe tasks. Real-Time Syst
17(1):5–22

24 Networked Real-Time Embedded Systems 789

5. Broster I, Burns A, Rodriguez-Navas G (2002) Probabilistic analysis of can with faults. In:
23rd IEEE real-time systems symposium, pp 269–278

6. von der Bruggen G, Chen JJ, Huang WH (2015) Schedulability and optimization analysis for
non-preemptive static priority scheduling based on task utilization and blocking factors. In:
2015 27th Euromicro conference on real-time systems (ECRTS). IEEE, pp 90–101

7. Casparsson L, Rajnak A, Tindell K, Malmberg P (1998) Volcano revolution in on-board
communications. Technical report, Volvo

8. Chen Y, Kurachi R, Takada H, Zeng G (2011) Schedulability comparison for can message with
offset: priority queue versus FIFO queue. In: 19th international conference on real-time and
network systems, pp 181–192

9. Darbandi A, Kim MK (2014) Schedule optimization of static messages with precedence
relations in FlexRay. In: Sixth international conference on ubiquitous and future networks,
pp 495–500

10. Darbandi A, Kwon S, Kim MK (2014)Scheduling of time triggered messages in static segment
of FlexRay. Int J Softw Eng Appl 8(6):195–208

11. Davis R, Navet N (2012) Controller area network (CAN) schedulability analysis for messages
with arbitrary deadlines in FIFO and work-conserving queues. In: 9th IEEE international
workshop on factory communication systems, pp 33–42

12. Davis RI, Burns A, Bril RJ, Lukkien JJ (2007) Controller area network (CAN) schedulability
analysis: refuted, revisited and revised. Real-Time Syst 35(3):239–272

13. Davis RI, Kollmann S, Pollex V, Slomka F (2013) Schedulability analysis for controller
area network (CAN) with FIFO queues priority queues and gateways. Real-Time Syst 49(1):
73–116

14. Di Natale M, Zeng H (2010) System identification and extraction of timing properties from
controller area network (CAN) message traces. In: IEEE conference on emerging technologies
and factory automation, pp 1–8

15. Di Natale M, Zeng H (2013) Practical issues with the timing analysis of the controller area
network. In: 18th IEEE conference on emerging technologies factory automation, pp 1–8

16. Di Natale M, Zeng H, Giusto P, Ghosal A (2012) Understanding and using the controller area
network communication protocol: theory and practice. Springer Science & Business Media,
New York

17. Diemer J (To appear) Predictable network-on-chip for general-purpose processors – formal
worst-case guarantees for on-chip interconnects. Ph.D. thesis, Technische Universität Braun-
schweig, Braunschweig. N/A

18. Diemer J, Axer P, Ernst R (2012) Compositional performance analysis in python with pyCPA.
In: International workshop on analysis tools and methodologies for embedded and real-time
systems

19. Diemer J, Rox J, Ernst R (2012) Modeling of Ethernet AVB networks for worst-case timing
analysis. In: MATHMOD – Vienna international conference on mathematical modelling,
Vienna

20. Diemer J, Rox J, Negrean M, Stein S, Ernst R (2011) Real-time communication analysis for
networks with two-stage arbitration. In: Proceedings of the ninth ACM international conference
on embedded software (EMSOFT 2011). ACM, Taipei, pp 243–252

21. Diemer J, Thiele D, Ernst R (2012) Formal worst-case timing analysis of ethernet topologies
with strict-priority and AVB switching. In: IEEE international symposium on industrial
embedded systems. Invited Paper

22. Ding S (2010) Scheduling approach for static segment using hybrid genetic algorithm in
FlexRay systems. In: 10th IEEE international conference on computer and information
technology, pp 2355–2360

23. Ding S, Murakami N, Tomiyama H, Takada H (2005) A ga-based scheduling method for
FlexRay systems. In: 5th ACM international conference on embedded software, pp 110–113

24. Ghosal A, Zeng H, Di Natale M, Ben-Haim Y (2010) Computing robustness of FlexRay
schedules to uncertainties in design parameters. In: Proceedings of the conference on design,
automation and test in Europe, pp 550–555

http://N/A

790 H. Zeng et al.

25. Götz FJ (2013) Alternative shaper for scheduled traffic in time sensitive networks. In: IEEE
802.1 TSN TG meeting, Vancouver

26. Grenier M, Havet L, Navet N (2008) Configuring the communication on FlexRay-the case of
the static segment. In: 4th European congress on embedded real time software

27. Han G, Di Natale M, Zeng H, Liu X, Dou W (2013) Optimizing the implementation of
real-time simulink models onto distributed automotive architectures. J Syst Archit 59(10):
1115–1127

28. Han G, Zeng H, Li Y, Dou W (2014) SAFE: security-aware FlexRay scheduling engine. In:
Design, automation and test in Europe conference and exhibition

29. Henia R, Hamann A, Jersak M, Racu R, Richter K, Ernst R (2005) System level performance
analysis – the SymTA/S approach. In: IEE proceedings computers and digital techniques

30. Hu M, Luo J, Wang Y, Lukasiewycz M, Zeng Z (2014) Holistic scheduling of real-
time applications in time-triggered in-vehicle networks. IEEE Trans Ind Inf 10(3):
1817–1828

31. IEEE Audio Video Bridging Task Group (2010) 802.1Qav – forwarding and queuing enhance-
ments for time-sensitive streams. http://www.ieee802.org/1/pages/802.1av.html

32. IEEE Audio Video Bridging Task Group (2016) 802.1Qch – cyclic queuing and forwarding.
http://www.ieee802.org/1/pages/802.1ch.html

33. IEEE P802.3br Interspersing Express Traffic Task Force. P802.3br – standard for ethernet
amendment specification and management parameters for interspersing express traffic. https://
standards.ieee.org/develop/project/802.3br.html

34. IEEE Time-Sensitive Networking Task Group. 802.1Qbu – frame preemption. http://www.
ieee802.org/1/pages/802.1bu.html

35. IEEE Time-Sensitive Networking Task Group (2015) P802.1Qbv (Draft 3.0) – enhancements
for scheduled traffic. http://www.ieee802.org/1/pages/802.1bv.html

36. International Standards Organisation (ISO) (1993) ISO 11898-1. Road vehicles – interchange
of digital information – controller area network (CAN) for high-speed communication. ISO
Standard-11898

37. International Standards Organisation (ISO) (2013) Road vehicles – FlexRay communications
system – part 1: general information and use case definition. ISO Standard-17458

38. Jansen K, Solis-Oba R (2003) An asymptotic fully polynomial time approximation scheme for
bin covering. Theor Comput Sci 306(1):543–551

39. Kang M, Park K, Jeong MK (2013) Frame packing for minimizing the bandwidth consumption
of the FlexRay static segment. IEEE Trans Ind Electron 60(9):4001–4008

40. Khan D, Bril R, Navet N (2010) Integrating hardware limitations in can schedulability analysis.
In: 8th IEEE international workshop on factory communication systems, pp 207–210

41. Khan D, Davis R, Navet N (2011) Schedulability analysis of can with non-abortable transmis-
sion requests. In: 16th IEEE conference on emerging technologies factory automation, pp 1–8

42. Kreutz D, Ramos F, Esteves Verissimo P, Esteve Rothenberg C, Azodolmolky S, Uhlig S (2015)
Software-defined networking: a comprehensive survey. Proc IEEE 103(1):14–76

43. Li W, Di Natale M, Zheng W, Giusto P, Sangiovanni-Vincentelli A, Seshia S (2009) Opti-
mizations of an application-level protocol for enhanced dependability in flexray. In: Design,
automation test in Europe conference exhibition (DATE 2009), pp 1076–1081

44. Lincoln B, Cervin A (2002) Jitterbug: a tool for analysis of real-time control performance. In:
Proceedings of the 41st IEEE conference on decision and control, vol 2, pp 1319–1324

45. Liu M, Behnam M, Nolte T (2013) An EVT-based worst-case response time analysis of
complex real-time systems. In: 8th IEEE international symposium on industrial embedded
systems, pp 249–258

46. Liu M, Behnam M, Nolte T (2013) Schedulability analysis of multi-frame messages over con-
troller area networks with mixed-queues. In: 18th IEEE conference on emerging technologies
factory automation, pp 1–6

47. Liu M, Behnam M, Nolte T (2014) Schedulability analysis of GMF-modeled messages over
controller area networks with mixed-queues. In: 10th IEEE workshop on factory communica-
tion systems, pp 1–10

http://www.ieee802.org/1/pages/802.1av.html
http://www.ieee802.org/1/pages/802.1ch.html
https://standards.ieee.org/develop/project/802.3br.html
https://standards.ieee.org/develop/project/802.3br.html
http://www.ieee802.org/1/pages/802.1bu.html
http://www.ieee802.org/1/pages/802.1bu.html
http://www.ieee802.org/1/pages/802.1bv.html

24 Networked Real-Time Embedded Systems 791

48. Lukasiewycz M, Glaß M. Teich J, Milbredt P (2009) FlexRay schedule optimization of the
static segment. In: 7th IEEE/ACM international conference on hardware/software codesign
and system synthesis, pp 363–372

49. Lukasiewycz M, Schneider R, Goswami D, Chakraborty S (2012) Modular scheduling of
distributed heterogeneous time-triggered automotive systems. In: 17th Asia and South Pacific
design automation conference, pp 665–670

50. Mok A, Chen D (1996) A multiframe model for real-time tasks. In: 17th IEEE real-time
systems symposium, pp 22–29

51. Mubeen S, Mäki-Turja J, Sjödin M (2011) Extending schedulability analysis of controller
area network (CAN) for mixed (periodic/sporadic) messages. In: 16th IEEE conference on
emerging technologies factory automation, pp 1–10

52. Mubeen S, Mäki-Turja J, Sjödin M (2012) Extending response-time analysis of mixed
messages in can with controllers implementing non-abortable transmit buffers. In: 17th IEEE
conference on emerging technologies factory automation, pp 1–4

53. Mubeen S, Mäki-Turja J, Sjödin M (2012) Response time analysis for mixed messages in can
supporting transmission abort requests. In: 7th IEEE international symposium on industrial
embedded systems, pp 291–294

54. Mubeen S, Mäki-Turja J, Sjödin M (2012) Response-time analysis of mixed messages in
controller area network with priority- and FIFO-queued nodes. In: 9th IEEE international
workshop on factory communication systems, pp 23–32

55. Mubeen S, Mäki-Turja J, Sjödin M (2012) Worst-case response-time analysis for mixed
messages with offsets in controller area network. In: 17th IEEE conference on emerging
technologies factory automation, pp 1–10

56. Mubeen S, Mäki-Turja J, Sjödin M (2013) Extending offset-based response-time analysis
for mixed messages in controller area network. In: 18th IEEE conference on emerging
technologies factory automation, pp 1–10

57. Mubeen S, Mäki-Turja J, Sjödin M (2014) Extending worst case response-time analysis for
mixed messages in controller area network with priority and FIFO queues. IEEE Access 2:
365–380

58. Mubeen S, Mäki-Turja J, Sjödin M (2014) Response time analysis with offsets for mixed
messages in can supporting transmission abort requests. In: Emerging technology and factory
automation (ETFA 2014). IEEE, pp 1–10

59. Mubeen S, Mäki-Turja J, Sjödin M (2015) Integrating mixed transmission and practical
limitations with the worst-case response-time analysis for controller area network. J Syst Softw
99:66–84

60. Mundhenk P, Steinhorst S, Lukasiewycz M, Fahmy SA, Chakraborty S (2015) Security
analysis of automotive architectures using probabilistic model checking. In: 52nd ACM/IEEE
design automation conference (DAC), pp 1–6

61. Natale MD (2006) Evaluating message transmission times in controller area networks without
buffer preemption. In: 8th Brazilian workshop on real-time systems

62. Navet N, Song YQ, Simonot F (2000) Worst-case deadline failure probability in real-time
applications distributed over controller area network. J Syst Archit 46(7):607–617

63. Neukirchner M, Negrean M, Ernst R, Bone TT (2012) Response-time analysis of the
FlexRay dynamic segment under consideration of slot-multiplexing. In: 7th IEEE international
symposium on industrial embedded systems, pp 21–30

64. Nolte T, Hansson H, Norstrom C (2003) Probabilistic worst-case response-time analysis for
the controller area network. In: 9th IEEE real-time and embedded technology and applications
symposium, pp 200–207

65. Pop T, Pop P, Eles P, Peng Z, Andrei A (2008) Timing analysis of the FlexRay communication
protocol. Real-Time Syst 39(1–3):205–235

66. Schenkelaars T, Vermeulen B, Goossens K (2011) Optimal scheduling of switched FlexRay
networks. In: Design, automation test in Europe conference exhibition, pp 1–6

67. Schmidt K, Schmidt E (2009) Message scheduling for the FlexRay protocol: the static segment.
IEEE Trans Veh Technol 58(5):2170–2179

792 H. Zeng et al.

68. Tanasa B, Bordoloi UD, Kosuch S, Eles P, Peng Z (2012) Schedulability analysis for the
dynamic segment of FlexRay: a generalization to slot multiplexing. In: 18th IEEE real-time
and embedded technology and applications symposium, pp 185–194

69. Tanasa B, Dutta Bordoloi U, Eles P, Peng Z (2011) Reliability-aware frame packing for the
static segment of FlexRay. In: Proceedings of the ninth ACM international conference on
embedded software, pp 175–184

70. Thiele D, Axer P, Ernst R (2015) Improving formal timing analysis of switched ethernet by
exploiting FIFO scheduling. In: Design automation conference (DAC), San Francisco

71. Thiele D, Diemer J, Axer P, Ernst R, Seyler J (2013) Improved formal worst-case timing
analysis of weighted round robin scheduling for ethernet. In: Proceedings of the CODES+ISSS,
Montreal

72. Thiele D, Ernst R (2016) Formal analysis based evaluation of software defined networking for
time-sensitive ethernet. In: Proceedings of the design, automation, and test in Europe (DATE),
Dresden

73. Thiele D, Ernst R (2016) Formal worst-case performance analysis of time-sensitive Ethernet
with frame preemption. In: Proceedings of emerging technologies and factory automation
(ETFA), Berlin, p 9

74. Thiele D, Ernst R (2016) Formal worst-case timing analysis of Ethernet TSN’s burst-limiting
shaper. In: Proceedings of the design, automation, and test in Europe (DATE), Dresden

75. Thiele D, Ernst R, Diemer J (2015) Formal worst-case timing analysis of Ethernet TSN’s time-
aware and peristaltic shapers. In: IEEE vehicular networking conference (VNC)

76. Thiele D, Schlatow J, Axer P, Ernst R (2015) Formal timing analysis of can-to-ethernet
gateway strategies in automotive networks. Real-Time Syst. http://dx.doi.org/10.1007/s11241-
015-9243-y

77. Tindell K, Hansson H, Wellings A (1994) Analysing real-time communications: controller area
network (CAN). In: IEEE real-time systems symposium, pp 259–263

78. Vector. CANbedded interaction layer. [Online] http://www.vector.com
79. Yomsi P, Bertrand D, Navet N, Davis R (2012) Controller area network (CAN): response time

analysis with offsets. In: 9th IEEE international workshop on factory communication systems,
pp 43–52

80. Zeng H, Di Natale M, Ghosal A, Sangiovanni-Vincentelli A (2011) Schedule optimization of
time-triggered systems communicating over the FlexRay static segment. IEEE Transactions on
Industrial Informatics 7(1):1–17

81. Zeng H, Di Natale M, Giusto P, Sangiovanni-Vincentelli A (2009) Stochastic analysis of CAN-
based real-time automotive systems. IEEE Transactions on Industrial Informatics 5(4):388–401

82. Zeng H, Di Natale M, Giusto P, Sangiovanni-Vincentelli A (2010) Using statistical methods
to compute the probability distribution of message response time in controller area network.
IEEE Transactions on Industrial Informatics 6(4):678–691

83. Zeng H, Ghosal A, Di Natale M (2010) Timing analysis and optimization of FlexRay
dynamic segment. In: 7th IEEE international conference on embedded software and systems,
pp 1932–1939

http://dx.doi.org/10.1007/s11241-015-9243-y
http://dx.doi.org/10.1007/s11241-015-9243-y
http://www.vector.com

Part VII
Hardware/Software

Compilation and Synthesis

25Hardware-Aware Compilation

Aviral Shrivastava and Jian Cai

Abstract

Hardware-aware compilers are in high demand for embedded systems with
stringent multidimensional design constraints on cost, power, performance,
etc. By making use of the microarchitectural information about a processor,
a hardware-aware compiler can generate more efficient code than a generic
compiler while meeting the design constraints, by exploiting those highly
customized microarchitectural features. In this chapter, we introduce two appli-
cations of hardware-aware compilers: a hardware-aware compiler can be used
as a production compiler and as a tool to efficiently explore the design space of
embedded processors. We demonstrate the first application with a compiler that
generates efficient code for embedded processors that do not have any branch
predictor to reduce branch penalties. To demonstrate the second application, we
show how a hardware-aware compiler can be used to explore the Design Space
of the bypass designs in the processor. In both the cases, the hardware-aware
compiler can generate better code than a hardware-ignorant compiler.

Acronyms

ADL Architecture Description Language
BRF Bypass Register File
BTB Branch Target Buffer
CFG Control-Flow Graph
CIL Compiler-In-the-Loop
DSE Design Space Exploration

A. Shrivastava (�)
School of Computing, Informatics and Decision Systems Engineering, Arizona State University,
Tempe, AZ, USA
e-mail: aviral.shrivastava@asu.edu

J. Cai
Arizona State University, Tempe, AZ, USA
e-mail: jian.cai@asu.edu; jcai19@asu.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_26

795

mailto:aviral.shrivastava@asu.edu
mailto:jian.cai@asu.edu; jcai19@asu.edu

796 A. Shrivastava and J. Cai

HPC Horizontally Partitioned Cache
ISA Instruction-Set Architecture
MAC Multiply-Accumulator
OT Operation Table
RT Response Time
SPU Synergistic Processor Unit

Contents

25.1 Introduction . 796
25.1.1 Hardware-Aware Compilers as Production Compilers 799
25.1.2 Hardware-Aware Compilers for Design Space Exploration 813
25.1.3 Conclusions . 825

References . 826

25.1 Introduction

Hardware-aware compilation refers to the compilation that exploits the microar-
chitectural information of the processor to generate better code. Minimally, com-
pilers only require information about the Instruction-Set Architecture (ISA) of
the processor to generate code. This ISA-dependent compilation is often good-
enough to generate code for high-performance superscalar processors, in which
the hardware may drastically modify the instruction stream (e.g., break complex
instructions into simpler microinstructions, fuse simple instructions into complex
macro-instructions, reorder the instruction execution, and perform speculative and
predictive computations) for efficient execution.

However, the processors in embedded systems, or embedded processors, are
characterized by lean designs and specialization for the application domain [12, 16].
To meet the strict multidimensional constraints of the embedded systems, cus-
tomization is very important. For example, even though register renaming improves
performance in processors by avoiding false data dependencies, embedded proces-
sors may not be able to employ it because of the high power consumption and the
increased complexity of the logic. Therefore embedded processors might deploy
a “trimmed-down” or “lightweight” version of register renaming, for example,
register scoreboarding, which provides a different trade-off in the cost, complexity,
power, and performance of the embedded system. In addition, designers often
implement some irregular design features, which are not common in general
purpose processors, but will lead to significant improvements in some design
parameters for the relevant set of applications. For example, several cryptography
application processors come with hardware accelerators that implement the complex
cryptography algorithm in the hardware. By doing so, the cryptography applications
can be made faster, and consume less power, but may not have any noticeable
impact on normal applications. Embedded processor architectures often have such
application-specific “idiosyncratic” architectural features. And last but not the least,
some design features that are present in the general-purpose processors may be

25 Hardware-Aware Compilation 797

entirely missing in embedded processors. For example, support for prefetching is
now a standard feature in general-purpose processors, but it may consume too much
energy and require too much extra hardware to be appropriate in an embedded
processor.

How can we effectively compile for such uniquely designed embedded pro-
cessors? Just the information about the ISA is not enough. A good uniquely
designed compiler needs microarchitectural information, including sizes of caches,
buffers, and execution policies (e.g., register scoreboarding, branch prediction
mechanism, etc). Many of these microarchitectural features are independent of the
ISA but affect the performance very significantly [20, 28]. By knowing about these
microarchitectural features, compilers can design a plan for efficient execution.
For example, popular compilers such as GCC [13] and Clang [19], inlines many
functions and unrolls loops to improve the run-time performance of applications.
However, these optimization techniques increase program code size and thus may
not be usable for embedded systems that have very limited instruction memory. To
accommodate such diversified and sometimes multidimensional design restraints,
not only the compiler must be aware of the memory size of the processor but
also make sure that the compiled code can reside in the available memory. A
compiler that uses microarchitectural information to generate efficient code is called
a hardware-aware compiler.

Figure 25.1 shows the general flow of a hardware-aware compiler. The archi-
tectural description is provided along the input program to the compiler, in an
Architecture Description Language (ADL). An ADL is a formal language that is
used to describe the architecture of a system, including the memory hierarchy,
pipeline stages, etc. Examples of ADLs include EXPRESSION [11], LISA [34], and
RADL [30]. By taking into consideration the microarchitectural features described
by the ADL, the compiler can generate a code that is better optimized for the
target architecture. For example, by taking into consideration the memory access
timing, the compiler may be able to generate better schedules of instructions for
execution [8, 9].

Clearly a hardware-aware compiler is valuable as a production compiler, where
it is used to generate carefully tuned code for the target microarchitecture, but it is

Fig. 25.1 Hardware-aware compiler uses the microarchitecture description of the processor to
generate efficient code

798 A. Shrivastava and J. Cai

also (and arguably even more) valuable for the design of the embedded processor
itself. The typical way to design embedded processors, i.e., to determine the
microarchitectural configuration – which microarchitectural features to keep in the
processor, which execution policy, what buffer, which cache sizes, etc. – is through
a simulator-based DSE. In this methodology, a cycle-accurate simulator of the
processor with different microarchitectural features is designed. The applications
are executed on the simulator to figure out which microarchitectural configuration
works best. This methodology relies solely on processor simulators for Design
Space Exploration (DSE) on traditional superscalar processors, since the code
quality is not very important in them. However, including compiler in the DSE loop
is more important for efficient designs of embedded processors, where a compiler
can have very significant impact on the eventual power and performance of the
application. In the Compiler-In-the-Loop (CIL) DSE methodology, the compiler is
used to generate a code for each microarchitectural variation, and the best design
is selected. This methodology enables us to pick microarchitectural configurations
that may not be as effective by themselves, but lend themselves to very effective use
by the compiler, and achieve superior power saving and performance improvement.
Such configurations will be disregarded by the traditional simulation-only DSE.

In summary, hardware-aware compilers that use the microarchitectural informa-
tion about the processor to generate better code can improve the power consumption
and performance of embedded processors. They can be used both as a production
compiler and be used in the compiler-based processor design. We dive into both
of these uses of the hardware-aware compiler in the rest of this chapter. In the next
section, we describe the use of a hardware-aware compiler as a production compiler.
We present an example of a compiler that generates good code for embedded
processors that do not have any branch predictor at all. Branch predictors, though
very useful in eliminating most of the branch penalty, are costly (require a lot of
hardware) and drain significant amount of power. As a result, some embedded
processors may choose to drop them. Note that the presence/absence of a branch
predictor does not affect the ISA but has a very significant impact on the power
consumption and performance of the execution. Indeed without a branch predictor,
all branches will incur branch penalty, and this will be excessive for execution.
However, a compiler can help. Instead of expensive branch predictors, embedded
processors may choose to have a branch hint instruction, which can indicate to the
processor the direction of the imminent branch. If the application developer or the
compiler can insert these branch hint instructions at the right places in the code, it
can ameliorate most of the branch penalty and result in efficient execution.

Next we will describe how a hardware-aware compiler can be used as an effective
tool in the design of embedded processors. We explain this through the example of
designing the bypasses in the processor. In pipelined processors, even though the
result is evaluated, it cannot be read by the next instruction (if there are no bypasses),
until the instruction is committed, and writes its results in the register file. This
pipeline penalty due to data dependencies among the instructions can be alleviated
to a large extent by using bypasses that forward the results of instructions after
evaluation to the operand read stage of dependent instructions. However, processors

25 Hardware-Aware Compilation 799

now feature extremely long pipelines, often more than 20 stages [3, 6], and a full
bypassing, e.g., bypasses from all the later stages of the pipeline to the operand read
stage, can be extremely complex and expensive. Skipping some bypasses can reduce
the overhead of bypassing logic. However, which bypasses to remove? Clearly, the
bypasses that are used least often can be removed, but the compiler has an important
role to play in this. If the compiler can reschedule the instructions around the
missing bypasses, then the effect of the missing bypasses can be eliminated. The
following section first describes, given a partial bypass configuration (i.e., not all
bypasses are present), how do we reschedule the code so as to avoid the missing
bypasses and then shows the results of DSE with and without this bypass-sensitive
compiler in the loop.

For readers that are interested to learn more about related topics, �Chap. 26,
“Memory-Aware Optimization of Embedded Software for Multiple Objectives”
introduces compiler-based techniques that map applications to embedded systems
with scratchpad memories, focusing on minimizing the worst-case execution time
of the applications. �Chapter 27, “Microarchitecture-Level SoC Design” presents
typical system-on-chip design flow and detailed issues in power modelings, thermal,
and reliability, as well as their relation, and presented some interesting solutions.

25.1.1 Hardware-Aware Compilers as Production Compilers

A hardware-aware compiler can be used as a production compiler to generate
a code for embedded systems once the microarchitecture is fixed. Researchers
have discovered several use-cases for hardware-aware compilers. Muchnick [23]
has developed the concept of Response Time (RT) and RT-based compiler that
reschedules instructions to minimize the data dependence penalty in processors. A
RT specifies how an operation may use the resources of a processor as the operation
executes. Their compiler uses the specification of the pipeline of the processor as
an input. Using this, it can create RT for the given instructions and detect conflicts
among them – the structural and data hazards – so as to generate better instruction
scheduling [21, 31]. Bala and Rubin [1] and Proebsting and Fraser [26] proposed
compiler techniques that use the finite-state automaton (FSA), a derivative of the RT,
to further speed up the detection of pipeline hazards during instruction scheduling.
These approaches improve the power and performance of execution.

Hardware-aware compilers have also been proposed to help hide memory latency
[25]. The most important source of memory latency in processors is the cache
miss penalty, as cache misses typically take orders of magnitude longer time
than cache hits. Grun et al. developed a compiler optimization that uses accurate
timing information of both memory operations and the processor pipeline to exploit
memory access modes, such as page mode and burst mode, so as to allow the
compiler to reorder memory operations to help hide the memory latency [8]. They
later extended the work and used memory access timing information to perform
aggressive scheduling of memory operations, so that cache miss transfers can be
overlapped with the cache hits and CPU operations [9]. For example, an instruction

800 A. Shrivastava and J. Cai

that will cause a cache miss (known by cache analysis) can be scheduled earlier so
that the following cache hits to the same cache line will not be stalled while the
cache line is being transferred.

Hardware-aware compilers have also been proposed to reduce the power and
temperature. Power gating [17, 24, 27] is one such application used in integrated
circuit design to reduce the leakage power of processors. Leakage power already
contributes to more than 30% of the power consumed by the processor. But by
turning off the unused blocks, leakage power of that block can be reduced. However,
power gating will backfire if the power spent in turning off and turning on an
execution unit is more than the power saved while it is power gated or if we turn on
the block too late, and there is a performance penalty corresponding to it. As a result,
prediction-based techniques to power-gated blocks are not as effective. However, a
compiler can analyze the application and find out regions of code where a functional
block is not going to be used. If the functional block is going to be unused longer
than a threshold of time, it can be safely power gated to minimize the leakage power
of the functional block. To prevent such undesired leakage, the compiler can be
utilized to analyze the control flow graph to predict the idle cycles of the execution
units and ensure that power gating is applied only if the power saved during these
cycles is greater than the power used to turn on/off the execution unit.

Another example of hardware-aware compilation to reduce power consumption
can be found in computer architectures with Horizontally Partitioned Cache (HPC).
An HPC architecture maintains multiple caches at the same level of memory
hierarchy (in contrast to one cache per level to traditional computer architec-
tures). Thanks to caching different kinds of data in separate caches to avoid
interference between each other, e.g., between scalar variables and arrays, the
HPC architecture is able to reduce the number of cache misses, which directly
translates to the improved performance and abated power consumption. Moreover,
HPC architectures include at the same level of memory hierarchies one or more
small additional caches, aside the large-sized main cache. For example, in the
Intel XScale [15], the L1 caches consist of the 32 KB main cache and a 2 KB
additional cache. The additional caches typically consume less power per access,
which further decreases the power consumption. Although the benefits of the
HPC architecture are inviting, it is nontrivial to exploit such an architecture as its
performance is highly dependent on the design parameters. Compiler techniques
can be used to explore these parameters and carefully partition data to achieve
the maximum benefit. For example, Shrivastava et al. identified the access pattern
of data, and cached data with temporal locality in the main cache, while leaving
data with spatial locality to the additional caches [29]. This is because the size
of a cache does not affect the miss rate of memory accesses to data that exhibits
spatial locality, while on the other hand, a larger (main) cache is able to have
a higher chance to retain the data that shows temporal locality for repeated
accesses.

For the rest of this subsection, we will present and detail a software branch
hinting technique for processors without hardware branch prediction, but a simple
software branch hinting mechanism [22].

25 Hardware-Aware Compilation 801

25.1.1.1 The Case for Software Branch Hinting
Control hazards or branching hazards pose a serious limitation on the performance
of pipelined processors, which becomes worse as the pipeline depth grows. A branch
predictor that predicts the direction (taken or not taken) and the target address
if the branch is to be taken can solve this predicament. Branch predictors are
typically implemented in hardware so as to handle dynamism of branches. However,
branch predictors can be expensive in both the area and power [4, 18]. As multi-
core processors become increasingly popular even in embedded systems, some
embedded multi-core processor designers remove the hardware branch predictors
to meet the power cap while still being able to accommodate more cores. The IBM
Cell processor [5], in an effort to improve its power efficiency, removes the hardware
branch predictors from its Synergistic Processor Unit (SPU) coprocessors.

Doubtlessly, the lack of branch prediction will cause significant performance
penalty. Table 25.1 manifests the huge overhead caused by branches when running
some typical embedded benchmarks due to the lack of hardware branch prediction.
To prevent such extreme performance loss, processors without hardware branch
prediction may provide instructions for software branch prediction or software
branch hinting, as the IBM Cell processor does. Branch hint instructions must
be used wisely in such processors, in order to achieve comparable or even better
performance than hardware branch prediction.

A branch hint instruction typically predicts the target address a branch will
jump to when the branch is actually taken. This implies that such an instruction
must be inserted only if it is for sure that the branch will be taken, to avoid the
misprediction from slowing down the program execution. Fortunately, there have
been many research works for predicting the direction of a branch [2, 32, 33] with
pretty good accuracy. However, even if we know a branch is taken, finding an
appropriate place in the program to insert the branch hint instruction is a nontrivial
task. On the one hand, it takes time to set up the branch hint instruction, so the
hint must be executed early enough to be recognized by the branch to be hinted. In
other words, the branch hint instruction must be inserted early enough before the
branch to take effect. On the other hand, there is also the restriction on the number
of branch hint instructions that can be activated at the same time. Therefore, simply
bringing forward the insertion point of a hint may cause problems in some cases.
For example, in the IBM Cell processor, only one active branch hint instruction is
allowed. So if there are two branches close to each other in the program, placing
both hints of the two branches before the first branch (i.e., the second hint is also
placed before the first branch to ensure there is enough time left for the second

Table 25.1 The percentage
of execution time spent in
branch penalty of typical
embedded applications
without branch prediction in
Cell SPU

Benchmark Branch penalty (%)

cnt 58.5

insert_sort 31.4

janne_complex 62.7

ns 50.9

select 36.2

802 A. Shrivastava and J. Cai

branch to be hinted) may cause the effect of the first hint overwritten by the second
hint, if the second hint has been activated by the time the first branch is executed.
This will cause the misprediction at the first branch, force the execution to stall, and
wait for the target address to be recalculated.

While the insertion of branch hint instructions can be done by programmers
manually, it can be a tedious and time-consuming process. A compiler-based
solution may be preferred. In the rest of this subsection, we will present a compiler-
based approach for minimizing the branch penalty in processors with only software
branch prediction. We will first introduce the model used for the cost function of
branch penalties. It is based on the number of cycles between the hint instruction
and the branch instruction, the taken probability of the branch, and the number of
times the branch is executed. Subsequently, three basic methods for reducing branch
penalties using the branch hint instruction are introduced and detailed:

(i) A no operation (NOP) padding scheme that inserts NOP instructions before a
branch to leave enough time interval for its hint to be set up, for small basic
blocks without enough margin originally.

(ii) A hint pipelining technique that allows two very close branches where origi-
nally only one of them can be hinted, to be now both hinted.

(iii) A loop restructuring technique that changes the loop structure so the compiler
can insert the hints for more branches within the loop. The heuristic that
combines and applies these basic methods to the code prudently is also briefly
explained. Finally, experimental results collected are examined to demonstrate
the efficacy of the technique.

The discussion will be based on the SPU coprocessor in the IBM Cell processor.
However, the presented technique is applicable to other processors with only
software branch prediction. Also, we will assume that every instruction takes one
cycle for the sake of simplicity, although this is not necessarily true.

25.1.1.2 Mechanism of Software Branch Hinting
Figure 25.2 shows the overview of how a hint instruction works. The execution of a
hint instruction comprises two stages: (i) launching the operation and setting up and
(ii) loading the target instruction. Similar to hardware branch predictors, software
branch hinting employs a Branch Target Buffer (BTB) to predict the target of a taken
branch. When a hint instruction is executed, it needs to search the BTB and see if
it can find any matched entry, and update the BTB if it fails to find one. This is
done in the first stage. Once this stage is over, the hint instruction will start to fetch
the target instruction into the hint target buffer. By default, the next instruction will
be loaded to the in-line prefetch buffer, so the processor can fetch the instruction
and continue the execution. However, when a branch instruction is identified, its PC
address is used to search for any matching BTB entry (the BTB would have been
updated, in the presence of a hint). If any entry is found matched, the processor will
then instead fetch the next instruction from the hint target buffer.

25 Hardware-Aware Compilation 803

Fig. 25.2 The overview of software branch hint instructions

Given such mechanism of software branch hinting, we should readily identify
the three critical design parameters that will seriously affect the performance of
resultant implementation:

• d : the number of cycles used for starting up the operation
• f : the number of cycles to load the target instruction
• s: the number of BTB entries

The parameter d decides the minimum interval between a hint and the branch it
aims to hint. In other words, a hint instruction must be executed at least d cycles
earlier than the branch instruction in the program for it to take effect. After the
startup of the hint instruction, a request is made to the arbiter [14] to load the target
instruction from main memory into the hint target buffer. This is because in the cell
processor, SPUs cannot access the main memory directly, so code and data must be
first loaded into the local storage. This stage will take f cycles to complete. Once
this stage is finished, the hint instruction is also completed. Therefore, if the hint
instruction is executed d C f cycles earlier, the branch it hints can be executed
without any stall. In particular, if the branch is actually not taken, it will still wait
for the hint instruction to load the incorrect target instruction, and then start over to
load the correct instruction.

The number of BTB entries, s, decides size of the hint target buffer, since the
buffer must be large enough to hold the target instructions for all the active hint
instructions. For example, each SPU of the cell processor has only one entry in the
BTB. Therefore, at the same time, only one active hint instruction is allowed for
applications run on SPU. The bigger s is, the larger the BTB, and the more power
consumption. Therefore, s is usually small.

804 A. Shrivastava and J. Cai

25.1.1.3 Cost Model of Branch Penalties Under Software Branch Hinting
The branch penalty of a branch with software branch hinting can be modeled as the
expected value of the penalty when the branch is successful predicted and when it
is mispredicted, respectively. From our previous discussion of the software branch
hinting mechanism, we know the branch penalty is related to the number of cycles
between a hint and the branch to be hinted, whether the branch is correctly predicted.
Therefore, the branch penalty can be modeled as below:

Penalty.l; n; p/ D Penaltycorrect.l/ � np (25.1)

C Penaltyincorrect.l/ � n.1 	 p/

where l , n, and p, respectively, represent the number of cycles between the hint and
the branch, the number of times the branch is executed, and the branch probability.
We assume n and p are given in our discussion. To find out the relation between
the branch penalty and l when a branch is predicted correctly (Penaltycorrect.l/) or
incorrectly (Penaltyincorrect.l/), a synthetic benchmark that includes only a branch
hint instruction and the branch instruction to hint is run in the SPU in the IBM cell
processor. The hint and the branch are separated by lnop instructions (one type of
NOP instructions). By increasing the number of lnop instructions between the hint
and the branch, the change of branch penalties can be inferred through the variation
of the execution time.

Two types of NOP instructions are available in the SPU, thanks to its dual-issue
nature – nop for the even pipeline and lnop for the odd pipeline. The even pipeline
is used to execute fixed point and floating point arithmetic operations, while the
odd pipeline is used to execute memory, logic, and flow-control instructions, which
include the branch instruction and the branch hint instruction. By filling only lnop
and branch/hint instructions, the SPU is forced to use the odd pipeline only and
issue one instruction at a time.

Figure 25.3 shows the relation between the branch penalty and the number of
cycles between the hint instruction and the branch instruction, when the branch

Fig. 25.3 The relation of the branch penalty, and the number of cycles between the hint instruction
and the branch instruction, when the branch is predicted correctly

25 Hardware-Aware Compilation 805

is correctly predicted. In other words, the branch is actually taken (since a hint
instruction always loads the instruction at the target address of the taken branch).
When the hint instruction is scheduled less than 8 cycles before the branch, the
branch penalty is always 18 cycles. It implies the hint needs so much time to be
properly set up and recognized when the branch starts to execute. By default,
the SPU always does not take branch prediction. Therefore, without the hint,
the SPU will keep predicting the incorrect direction for the branch and force the
execution to pay the full branch penalty, i.e., resolving the target address and loading
the instruction. The full branch penalty is measured as 18 cycles. As the interval
between the hint and the branch is increased to be equal or greater than eight cycles
(by inserting lnop instructions), the branch instruction is now aware of the existence
of the hint. It still takes 18 cycles from the beginning of the hint instruction to the
end of the branch instruction, since it also needs to resolve the branch target address
and load the instruction, just like a branch instruction. However, by starting the
entire process earlier, the hint instruction can hide some of the penalty, thanks to
the instructions between the hint and the branch (the lnop instructions inserted),
when the branch starts to execute. Notice the lnop instructions inserted are just
placeholders for investigating the effect of the interval (between the hint and the
branch) on the branch penalty. In the real execution, these will be replaced by the
meaningful instructions. When the interval becomes equal or greater than 19 cycles,
the branch penalty is completely eliminated. The branch penalty model in the SPU
can be therefore built from the observation from the above experiment as follows:

Penaltycorrect.l/ �

8<
:
18; if l < 8
18 	 l; if 8 � l < 19
0; if l � 19

(25.2)

where l denotes the number of cycles between the hint and the branch to be hinted.
Figure 25.4 shows the relation between the branch penalty and the number of

cycles between the hint instruction and the branch instruction, when the branch is

Fig. 25.4 The relation of the branch penalty, and the number of cycles between the hint instruction
and the branch instruction, when the branch is mispredicted

806 A. Shrivastava and J. Cai

mispredicted. In other words, the branch is not taken. When the interval is less than
8 cycles, the hint is not recognized at the branch, and it pays 18 cycles branch
penalty just like before. However, when the interval is increased to be equal or
greater than 8 cycles, the number of cycles spent from the beginning of the hint until
the finish of the branch becomes greater than 18 cycles. This is because the branch
instruction will start to wait for the incorrect target instruction to be loaded once it
perceives the hint instruction. After the loading of the (incorrect) target instruction
is completed, the branch instruction will start over, which will spend another 18
cycles. If the interval is further increased to be equal to or more than 19 cycles, the
penalty becomes 18 cycles again, since the effect of misprediction will have been
completely hidden by the time spent on executing the instructions between the hint
and the branch, so that the branch will be executed as if the hint never happens
and pays the 18 cycle penalty as if there is not any hint. The penalty of a branch
misprediction thus can be modeled as follows:

Penaltyincorrect.l/ �

8<
:
0; if l < 8
.18 	 l/C 18 D 36 	 l; if 8 � l < 19
18; if l � 19

(25.3)

where l denotes the number of cycles between the hint and the branch to be hinted
in the number of cycles.

25.1.1.4 Branch Hinting-Based Compilation

No Padding. When the number of cycles between the hint and the branch it will
hint is smaller than a threshold value (eight in the SPU), the branch has to pay for
the full branch penalty. In this case, we can insert NOP instructions (both nop and
lnop instructions) to create a sufficiently large interval. Take Fig. 25.5 as an example.

Fig. 25.5 NOP padding increases the interval between the hint instruction and the branch from 6
instructions/cycles in (a) to 8 instructions/cycles in (b) so that b1 can be hinted

25 Hardware-Aware Compilation 807

Assume the branch br is taken and the hint instruction hbrr was originally executed
six cycles earlier than br. According to the branch penalty model, the branch penalty
is 18 cycles. After inserting two pairs of nop/lnop instructions, the interval becomes
eight cycles, since each pair of nop/lnop can be executed in the even/odd pipeline at
the same cycle, respectively, in the SPU. The branch penalty is therefore reduced to
10 cycles. The overall improvement is hence 18 	 10 	 2 cycles, i.e., 6 cycles.

The SPU GCC compiler also provides a scheme for inserting nop (inserts both
nop and lnop instruction) when a user-specified flag is enabled [7]. The SPU GCC
inserts whenever the interval between a hint and the branch is not long enough.
Carrying out NOP padding without deliberation may hurt performance sometimes.

To find out whether NOP padding is necessary under certain circumstances, we
need a way to estimate the effect to the performance of applications if we insert the
NOP instructions. Let l , n, p, and nNOP , respectively, denote the interval between a
hint and the branch to hint before NOP padding, the number of times the branch is
executed, the taken probability of the branch, and the number of NOP instructions
inserted. The branch penalties before the NOP padding can be calculated as follows:

Penaltyno_pad D Penalty.l; n; p/ (25.4)

The branch penalties after the NOP padding can be calculated as follows,

Penaltypad D Penalty.l C nNOP ; n; p/ (25.5)

For example, before the NOP padding, if the interval is smaller than eight cycles
so that the hint is not recognized, then by applying the model of branch penalty
introduced, we can get the branch penalty as 18 � np C 18 � n.1 	 p/ D 18n.

When the branch instruction is executed in a loop, the corresponding hint
instruction and the inserted NOP instructions must also be executed within the loop
so to take effect at each iteration. Therefore, the number of times the inserted NOP
instructions executed will be the same as the number of times the branch instruction
is executed. Moreover, each pair of nop and lnop instructions can be executed in
one cycle, thanks to the dual-issue pipeline in the SPU. Therefore, the overhead for
executing the inserted NOP instructions can be modeled as the follows:

Overheadpad D n.nNOP C 1/=2 (25.6)

So far, we have discussed the branch penalties before and after NOP padding and
the extra overhead for the execution of the inserted NOP instructions. The impact of
NOP padding on performance can be now modeled as follows:

Profitpad D Penaltyno_pad 	 Penaltypad 	 Overheadpad (25.7)

Clearly, the NOP padding should be carried out only when the calculated number is
positive.

808 A. Shrivastava and J. Cai

Fig. 25.6 Hint pipelining makes use of the minimum interval required to activate a hint instruction
to insert extra hint instructions

Hint Pipelining. When two branches are close to each other, the hint instruc-
tions for the branches may interfere with each other. Figure 25.6a shows an example
on how the SPU GCC compiler deals with such case. The SPU GCC compiler first
tries to insert hints for both branches b1 and b2. However, when the hint instruction
for b2 has to be placed before b1 to create a sufficiently large interval, it may
overwrite the hint instruction for b1. In this case, the GCC compiler estimates the
priorities of the two branches, decides b2 should be prioritized, and thus discards
the hint for b1. This problem is nevertheless not unsolvable, by prudently choosing
the locations for both hints.

From the previous discussion, we have learned that a hint instruction will not be
recognized by a branch instruction if it is executed within eight cycles before the
branch. This gives us an opportunity to hint both branches. Figure 25.6b shows the
method to hint two branches that are very close to each other. Although the hint
instruction for b2 is inserted before b1, the interval between them is less than eight
cycles. When b1 is executed, the second hint is not recognized, so b1 can be hinted
correctly. However, when b2 starts to execute later, the second hint will have been
set up properly and take effect. With this approach, both b1 and b2 can be hinted.
This method is called hint pipelining, as it “pipelines” hint instructions in the sense
that the execution of the hint instructions are overlapped.

Again, to make sure this method is profitable, we need a cost model to find out
the cost before applying this method and after applying this method. Assume in the
given example in Fig. 25.6b that lx denotes the number of instructions in the basic
block Lx , px denotes the taken probability of the branch bx , and nx denotes the
number of times bx is executed. Keep in mind that we assume each instruction takes

25 Hardware-Aware Compilation 809

one cycle, so lx can be equally understood as the number of cycles that Lx takes
to execute. The branch penalties before applying the hint pipelining method can be
then calculated as follows:

Penaltyno_pipeline D Penalty.0; n1; p1/

C .1 	 p1/ � Penalty.l1 C l2; n2; p2/

C p1 � Penalty.0; n2; p2/

The first term on the right-hand side is the branch penalty for b1. Originally b1 is
not hinted, which can be viewed as if the interval is 0 cycle. The second and third
term on the right-hand side are the branch penalties for b2 when b1 is not taken
and when it is taken, respectively. When b1 is not taken, b2 will be hinted, and the
interval between it and its hint is the sum of the number of instructions in both basic
blocks L1 and L2; on the other hand, when b1 is taken, b2 will not be hinted, since
the control flow will be diverted to a different basic block.

After hint pipelining is applied, both branches are hinted, although the interval
between branch b2 and its hint is decreased from l1 C l2 to 7 C l2 in the example.
The branch penalties are changed as follows:

Penaltypipeline D Penalty.l1; n1; p1/

C .1 	 p1/ � Penalty.7C l2; n2; p2/

C p1 � Penalty.0; n2; p2/

Notice l1 should be at least eight for this method to pan out, since otherwise the
hint for b1 will still not be recognizable.

The overhead of hint pipelining is the number of times the newly introduced hint
instruction for b1 is executed. Since the hint is inserted in basic blockL1, the number
of times it is executed will be the same as b1. The overhead is therefore as follows:

Overheadpipeline D n1 (25.8)

The impact of hint pipelining on performance can be modeled as follows:

Profitpipeline D Penaltyno_pipeline (25.9)

	 Penaltypipeline

	 Overheadpipeline

We should apply hint pipelining method only if the calculated number is positive.

Loop Restructuring. The NOP padding and hint pipelining methods are ap-
plicable when there is no loop or in the innermost loop. The loop restructuring

810 A. Shrivastava and J. Cai

Fig. 25.7 Loop restructuring increases the leeway of hinting b4 from l4 in (a) to l2 C l4 in (b).
Notice b4 in (a) becomes b2 in (b)

method, on the other hand, can be applied to outer loops in nested loops. This is
done by altering the order of the basic blocks of the loops while keeping the semantic
unchanged.

Figure 25.7 shows an example of nested loop restructuring method to reduce
branch penalties in nested loops. Originally in Fig. 25.7a, b4 is the condition of the
outer loop, and the hint instruction for the branch b4 is limited within the basic block
L4. This is because L4 is preceded by a loop that consists of one basic block L3.
If the hint instruction for b4 is inserted in any other basic block (earlier than L4), it
needs to either wait for the execution of all the iterations ofL3 (if the hint is inserted
earlier than L3), or it will be executed in every iteration of L3 (if the hint is inserted
in L3). Neither case will lead to satisfactory performance. After restructuring as
in Fig. 25.7b, L2 is moved after L4. To maintain the semantic, two unconditional
branches from L1 to L2 and from L2 to L4 are introduced, respectively, and the
condition of L4 is modified accordingly. Such restructuring essentially turns b2 into
the condition of the outer loop. As a result, the possible location to insert a hint for
b2 is now increased to cover both L4 and L2.

Again, let lx , px , and nx , respectively, denote the number of instructions in the
basic block Lx , the taken probability of the branch bx , and the number of times bx
is executed. The branch penalties before restructuring of loops are as follows:

Penaltyno_reorder D Penalty.l3; n3; p3/C Penalty.l4; n4; p4/ (25.10)

25 Hardware-Aware Compilation 811

The branch penalties after restructuring the loops are as follows:

Penaltyreorder D 18 C Penalty.l2 C l4; n2; p2/

C Penalty.l3; n3; p3/ C 18

Here the two 18s are the penalties for b1 when entering the outer loop for the first
time and for b4 when exiting the outer loop when it is done, respectively.

The overhead of loop restructuring depends on the original size of basic block
L4. If it has less than eight instructions, then originally no hint can be made for b4.
After the restructuring, we will introduce a new hint in basic block L4, which will
be executed n4 times. Otherwise, if originally there are more than eight instructions
in L4, no extra hint is introduced, and the overhead is zero. Therefore, the overhead
for this method is as follows:

Overheadreorder D

�
n4; if l4 < 8
0; otherwise

(25.11)

As a further optimization, some of the hint instructions can be promoted to be
outside of a loop to avoid repeated computations. For example, Fig. 25.8a shows
the code after promoting the hint for b3 in the code given in Fig. 25.7a. After
the promotion, the hint instruction only needs to be executed once while still

Fig. 25.8 The hint for b3 is promoted to L2 from L3 in (a). This however may cause problems
after loop restructuring as in (b), when the hint for b3 overwrites the hint for b2. Hint pipelining
can be applied to enable both branches being hinted as in (c)

812 A. Shrivastava and J. Cai

maintaining the semantics of the code. However, after the restructuring of nested
loops as in Fig. 25.8b shows, the hint for b3 overwrites the hint for b2. This problem
can be solved by applying the hint pipelining technique, as shown in Fig. 25.8c.
Notice the promotion of a hint instruction should be applied only if the basic block
the hint is promoted to itself does not have any taken branches, e.g., conditional or
unconditional branches; otherwise, the promoted hint may interfere with the hints
for the taken branches.

The three methods of reducing branch penalties – NOP padding, hint pipelining,
and nested loop restructuring – can be combined and integrated into the compiler,
as an optimization pass. The pass first restructures nested loops. It then traverses the
Control-Flow Graph (CFG) of each function, in a bottom-up manner. That is to say,
the pass first visits the bottom node (last basic block), and then recursively goes up
along its predecessors. Once a branch is identified, the pass tries to promote its hint
to its basic block whenever possible: if there is a branch that is likely taken in the
predecessor, the traversal stops and the hint is inserted in the basic block the stop
happens; otherwise, the pass keeps going up until it meets a basic block with any
likely taken branch, or the basic block is the root of the CFG. Notice that a compiler
with this pass enabled needs three extra parameters other than the input program,
i.e., d , f , and s.

A microarchitecture-aware compiler is extremely important to improve the power
saving and performance of execution in a software branch hinted processors.
Figure 25.9 shows the performance improvement of the presented heuristic when
being compared to the software branch hinting scheme provided by the SPU GCC
compiler. The benchmarks that spend less than or equal to 20% of overall execution
time for branches are considered with low branch penalty, while the others are
considered as with high branch penalty. The heuristic outperforms the GCC scheme
in every benchmark, and in general, the higher the ratio of branch penalty, the more
the performance gain from applying the presented heuristic.

Fig. 25.9 Performance improvement of the presented heuristic is as much as 18% compared to
the SPU GCC

25 Hardware-Aware Compilation 813

25.1.2 Hardware-Aware Compilers for Design Space Exploration

Hardware-aware compilers are especially important for the design of embedded
processors. At high level, the embedded processor design comprises of figuring
out the microarchitectural configuration of the processor that will result in the best
power and performance characteristics. Traditional DSE relies solely on simulation,
as shown in Fig. 25.10. The same (compiled) code is measured on architectural
models with different design parameters. The design parameters that yield the
most desirable outcome are chosen. However, using the same code for different
architectural variations may not guarantee fairness of the comparison, since the
optimal code generated may vary as the design parameters changes. For example,
loop tiling divides the iteration space into tiles or blocks to better fit the data cache.
If we change the cache parameters, such as cache-line size or cache associativity,
then we may need to change the size of each tile. Therefore, to be able to accurately
explore the design space, a hardware-aware compiler should be included in the loop
of DSE, so that every time the architectural design parameters are changed, the code
generation should be adjusted accordingly, by compiling with the changed design
parameters. Figure 25.11 shows the example of a framework of CIL DSE. CIL DSE
is especially important in embedded systems, where the hardware-aware compiler
can have a very notable impact on the power and performance characteristics of the
processor.

In the rest of this subsection, we will study PBExplore – a framework for
CIL DSE of partial bypassing in embedded processors. At the heart of the

Fig. 25.10 Traditional DSE relies solely on simulation

Fig. 25.11 CIL DSE includes the compiler in the loop of exploring best design parameters

814 A. Shrivastava and J. Cai

PBExplore is a compiler that can generate high-quality code for a given partial
bypassing configuration. Such a compiler can be used to explore different bypass
configurations and discover the one that offers the best power, performance, cost,
and complexity trade-offs.

25.1.2.1 The Case for Partial Bypassing
Pipelining is a widely used technique in modern processors to explore instruction-
level parallelism and allow processors to achieve much higher throughput. However,
the presence of hazards in the pipeline greatly impairs its value as they stall
the pipeline and cause significant performance loss. Consequently, techniques are
proposed to resolve the problems [10, 23]. Bypassing, also known as operand
forwarding, is a popular solution to reduce data hazards. Bypassing adds additional
datapaths and control logic to the processor so that the result of an operation can be
forwarded to subsequent dependent operations even before it is written back to the
register file.

While bringing in the great benefit, bypasses increase design complexity and
may introduce significant overhead. Bypasses are often included in time-critical
datapaths and therefore cause pressure on cycle time, especially the single cycle
paths. This is particularly important in wide issue machines, where the delay may
become more significant – due to extensive bypassing very wide multiplexors
or buses with several drivers may be needed. Partial bypassing presents a trade-
off between the performance, power, and cost of a processor and is therefore an
especially valuable technique for application-specific embedded processors. Also,
note that adding or removing bypasses or the bypass configuration of the processor
does not affect its ISA.

25.1.2.2 Operation Latency-Based Schedulers Cannot Accurately Model
Partial Bypassing

Traditionally, the retargetable compiler uses constant operation latency of each
operation to detect and avoid data hazards [23]. The operation latency of an
operation o is defined as a positive integer ol 2 IC, such that if any data-dependent
operation is issued more than ol cycles after issuing o, there will be no data hazards.
When no bypassing or complete bypassing (the result of an operation can be
forwarded at every stage of a pipeline once it is calculated and before it is committed
to the memory system) is implemented in a pipeline, the operation latency is
constant, and therefore the retargetable compiler can work perfectly. However, the
presence of partial bypassing (the result of an operation can be forwarded only
at some stage(s) but not all the stages of a pipeline) introduces variable operation
latency and poses challenges for such a compiler.

To better understand the challenge of designing retargetable compilers in the
presence of partial bypassing, let us first consider the differences of pipelines with-
out bypassing, with complete bypassing, and with partial bypassing. Figure 25.12
illustrates the execution of an ADD operation in a simple five-stage pipeline without
any bypassing. In the absence of any hazards, if the ADD operation is in F pipeline
stage in cycle i, then it will be in OR pipeline stage in cycle i + 2. At this time, it

25 Hardware-Aware Compilation 815

Fig. 25.12 A 5-stage processor pipeline with no bypassing

Fig. 25.13 A 5-stage processor pipeline with complete bypassing

reads the two source registers. The ADD operation then writes back the destination
register in cycle i + 4, when it reaches the WB pipeline stage. The result of the ADD
operation can be read from the register file in and after cycle i + 5. The operation
latency of the ADD operation is three cycles ((i + 5) 	 (i + 2)), so any instructions
that are dependent on the result of the current instruction have to be scheduled at
least three cycles later to avoid the data hazards. Figure 25.13 shows the pipeline
with complete bypassing. The pipeline now includes forwarding paths from both
execution (EX) and write back (WB) stages to both the operands of operand reading
(OR) stage. The operation latency now becomes one cycle, since any dependent
instructions scheduled one or two cycles after the ADD instruction can read its result
from the bypasses, while those scheduled three or more cycles later can read the
result from RF. Finally, we show an example of partial bypassing in Fig. 25.14. The
pipeline only contains bypasses from EX (but not WB) stage to both the operands of
OR pipeline stage. In this circumstance, scheduling a data-dependent operation one

816 A. Shrivastava and J. Cai

Fig. 25.14 A 5-stage processor pipeline with partial bypassing

or three cycles after the ADD will not result in a data hazard, since its result can be
read either from EX pipeline stage via the bypasses or from the register file after the
ADD operation writes back its result. However, if the data-dependent operation is
scheduled two cycles after the scheduling ADD operation which is currently in WB
stage, then it cannot do anything but wait, since no bypasses from WB are present. A
data hazard happens. The operation latency of ADD in the partial bypassed pipeline
in Fig. 25.14 is denoted by one, three, which means that scheduling a data-dependent
operation one or three or more cycles after the schedule cycle of ADD will not cause
any data hazard, but scheduling the data-dependent operation two cycles after the
schedule cycle of ADD will cause a data hazard. The operation latency becomes
nonconstant under partial bypassing. As a result, partial bypassing paralyzes the
traditional retargetable compilers, which assumes a constant operation latency to
detect pipeline hazards.

Without the accurate pipeline hazard detection technique, the retargetable com-
piler has to either conservatively assume no bypassing is present or aggressively
assume that the pipeline is completely bypassed. However, both approaches will re-
sult in suboptimal code generated. To solve this problem, Operation Table (OT) [28]
can be employed. An OT maintains the snapshot of the processor resources an
operation uses in each cycle of its execution. It takes into consideration the (partial)
bypassing in the pipeline and can therefore detect data hazards in advance even
for partially bypassed processors. Besides, as the OT records at each cycle which
processor resources are used, it is able to detect the structural hazards as well. As a
result, an OT-based scheduler can accurately detect and avoid pipeline hazards and
improve processor performance.

25.1.2.3 OT to Accurately Model the Execution of Operations in a
Pipeline

In this subsection, we present the concept of OT that can accurately model the
execution of operations in a processor pipeline, and later we will use them to

25 Hardware-Aware Compilation 817

Table 25.2 Definition of the
OT

OperationTable := { otCycle }

otCycle := unit ros wos bos dos

ros := ReadOperands { operand }

wos := WriteOperands { operand }

bos := BypassOperands { operand }

dos := DestOperands { regNo }

operand := regNo { path }

path := port regConn port regFile

Table 25.3 The OT of ADD
R1 R2 R3

1 F

2 D

3 OR

ReadOperands

R2

p1, C1, p6, RF

R3

p2, C2, p7, RF

p2, C5, p3, EX

DestOperands

R1, RF

4 EX

BypassOperands

R1

p3, C5, p2, OR

5 WB

WriteOperands

R1

p4, C3, p8, RF

develop a bypass-aware instruction scheduler. An OT describes the execution of
one operation in the processor. Table 25.2 shows the grammar of an OT. Each entry,
otCycle, in an OT describes the state of the operation in that execution cycle in
the pipeline. otCycles are sorted in temporal order. Each otCycle records in that
cycle the pipeline unit the operation is in (unit), the operands it needs to read (ros),
write (wos), or bypass (bos), and the destination registers (dos) the operation
may write to. Each operand (operand) is defined by the register number (regNo)
and all the possible paths it may be transferred. Each possible path (path) con-
sists of the ports (port), register connections (regConn), and the register file
(regFile).

Table 25.3 shows the OT of executing an add operation, ADD R1 R2 R3, on
the partially bypassed pipeline shown in Fig. 25.15. Without loss of the generality,
assume by the time the add operation starts to execute, no hazards are present, so
the add operation can be executed in five cycles, and consequently the OT of this

818 A. Shrivastava and J. Cai

Fig. 25.15 An example partially bypassed pipeline

add operation contains five otCycles. The add operation is fetched to the F pipeline
unit and decoded at D pipeline unit, respectively, during the first two cycles. In the
third cycle, the add operation proceeds to OR pipeline unit and reads its source
operands R2 and R3. All the possible paths to read the each operand are included
in the table. The first operand R2 can be read only from the register file RF via
connection C1, while the second operand R3 can be read either from the register
file RF via the connection C2 from port p7 to p2 or from the pipeline unit EX
via connection C5 from port p3 to port p2. In addition to the source operands, the
destination operands R1 are listed as well, and the dependent operations should be
scheduled after accordingly. In the fourth cycle, the add operation is sent to the
pipeline unit EX for execution. At the end of this cycle, the result of the operation is
calculated and available for bypassing. The operation at the OR unit at that time can
read the calculated result as its second operand via connection C5. In the last cycle,
the operation is written back to R1 from WB pipeline unit to the register file RF via
connection C3.

There may be multiple paths to read each operand in the presence of bypasses. As
an example, the Intel XScale processor provides seven possible bypasses for each
operand, in addition to the register file. The OT of an operation lists all the possible
paths to read each operand. As a result, the OT may potentially have to store eight
paths (seven from bypasses plus one from the register file) for each an operand to
read. To prevent such superfluity to consume too much space in the OT, the concept
of Bypass Register File (BRF) is introduced. A BRF is essentially a virtual register
file that serves as a temporary storage for each operand having bypasses. All the
values bypassed to the operand are first written to the BRF and then read by the
operation. A value from the bypass must be read in the same cycle once the value
is calculated; therefore, each value can exist only for one cycle in the BRF. Each
operand needs only one BRF to accept values from all the bypasses that attach to it.
As a result, the space consumed by an OT can be greatly reduced.

25 Hardware-Aware Compilation 819

Fig. 25.16 An example partially bypassed pipeline with BRF

Table 25.4 The OT of ADD
R1 R2 R3 with BRF

1 F

2 D

3 OR

ReadOperands

R2

p1, C1, p6, RF

R3

p2, C2, p7, RF

p2, C6, p11, BRF

DestOperands

R1, RF

4 EX

BypassOperands

R1

p3, C5, p10, BRF

5 WB

WriteOperands

R1

p4, C3, p8, RF

Figure 25.16 shows the processor pipeline with a BRF. The bypassed result from
the EX unit to the second source operand of the OR unit is first written to the BRF via
connection C5. The OR unit then reads the value either from the BRF via connection
C6 or from actual register file RF via connection C2. Table 25.4 shows the OT of
the operation ADD R1 R2 R3 in the pipeline with the BRF in Fig. 25.16. The only
differences are that the second source operand of OR unit can be read from either the
actual register file RF or the virtual register file BRF, and the result of the EX unit
is now first bypassed to the BRF instead of directly to the second source operand of
the OR unit.

820 A. Shrivastava and J. Cai

Detecting Pipeline Hazards Using OT
To illustrate the power OT possesses in detecting pipelining hazards, let us consider
an example of applying OT-based scheduling in the pipeline in Fig. 25.16 on the
three operations as follows:

MUL R1 R2 R3 (R1 R2 �R3)
ADD R4 R2 R3 (R4 R2CR3)
SUB R5 R4 R2 (R5 R4 	R2)

Assume both SUB and ADD operations take one cycle in the EX stage and the
MUL operation spends two cycles in the same stage. In addition, all the pipeline
resources are available initially. Therefore, when the MUL operation is scheduled at
the first cycle, there will be no hazards. Table 25.5 shows the state of the machine
after MUL is scheduled.

We then try to schedule ADD in the next cycle. However, a resource hazard will
happen, since the EX pipeline unit is still busy executing the second cycle of MUL
operation. Table 25.6 shows the state of the processor pipeline after scheduling ADD
in the second cycle. A resource hazard is detected when the fourth otCycle of ADD
is tried in the fifth cycle, so the otCycle should be not be scheduled at this cycle.

At this point, if we keep scheduling the SUB operation in the third cycle, a
data hazard will be detected. The SUB operation needs to read the value of the
first operand R4, which is calculated by the previous ADD operation. However, the

Table 25.5 Pipeline states
after scheduling MUL R1 R2
R3 in Cycle 1

Cycle Busy resources !RF BRF

Operation1

1. F – –

2. D – –

3. OR, p1, C1, p6, p2, C2, p7 – –

4. EX R1 –

5. EX, p3, C4, p10 R1 R1

6. WB, p4, C3, p8 R1 –

7. – –

Table 25.6 Pipeline states after scheduling ADD R4 R2 R3 in Cycle 2

Cycle Busy resources !RF BRF

Operation1 Operation 2

1. F – –

2. D F – –

3. OR, p1, C1, p6, p2, C2, p7 D – –

4. EX OR, p1, C1, p6, p2, C2, p7 R1 –

5. EX, p3, C4, p10 Resource hazard R1 R4 R1

6. WB, p4, C3, p8 EX, p3, C4, p10 R1 R4 R4

7. WB, p4, C3, p8 R4 –

8. – –

25 Hardware-Aware Compilation 821

Table 25.7 Pipeline states after scheduling SUB R5 R4 R2 in cycle 3

Cycle Busy resources !RF BRF

Operation1 Operation 2 Operation 3

1. F – –

2. D F – –

3. OR, p1, C1, p6,
p2, C2, p7

D F – –

4. EX OR, p1, C1, p6,
p2, C2, p7

D R1 –

5. EX, p3, C4, p10 Resource hazard Data hazard R1 R4 R1

6. WB, p4, C3, p8 EX, p3, C4, p10 Data hazard R1 R4 R4

7. WB, p4, C3, p8 Data hazard R4 –

8. OR, p1, C1, p6, p2, C2, p7 R5 –

9. EX, p3, C4, p10 R5 R5

10. WB, p4, C3, p8 R5 –

11. – –

bypass in Table 25.5 is from EX pipeline unit to the second operand in OR pipeline
unit, so there will not be any available path for this operand to be transferred at the
time the SUB operation enters to the EX pipeline unit. The data hazard is resolved in
the eighth cycle. Table 25.7 shows that the state of the processor pipeline after SUB
is scheduled in the third cycle. After the scheduling of the SUB operation, all the
operations are successfully scheduled with both data and resource hazards detected,
even in the presence of partial bypassing.

25.1.2.4 List Scheduling Algorithm Using OT
In the presence of partial bypassing, the operation latency of an operation is not
sufficient to avoid all the data hazards – OT is needed. The traditional list scheduling
algorithm can be very easily modified by using OT. Figure 25.17 shows the list
scheduling algorithm that uses OT for pipeline hazard detection. The DetectHazard
function (line 10) and the AddOperation function (line 13) are two functions that
are based on OT. The DetectHazard function checks if scheduling all otCycles of
the operation v starting from the machine cycle t will cause any hazards. Once the
scheduler finds the earliest available machine cycle, it calls AddOperation function
to schedule operation v in cycle t.

Experiments are performed in the Intel XScale microarchitecture to verify the
capability of the OT-based scheme. Figure 25.18 shows the pipeline of XScale
architecture. The experimental setup is shown in Fig. 25.19. Each benchmark
application is first compiled with the GCC cross compiler for Intel XScale processor.
The OT-based scheduling is then applied to each basic block of the original program
to generate the executable again. The two versions of executable files are then run on
the XScale cycle-accurate simulator, respectively. Performance is measured as the
number of cycles spent on executing applications. The improvement of performance
is measured as .gccCycles	 otCycles/� 100=gccCycles, where gccCycles is

822 A. Shrivastava and J. Cai

Fig. 25.17 List scheduling
algorithm using OT

ListScheduleUsingOTs(V)

01:U =V − v0;F = φ;S = v0

/* initialize */
02: foreach (v ∈V)
03: schedTime[v] = 0
04: endFor

/* list schedule */
05: while (U �= φ)
06: F = {v|v ∈U, parents(v) ⊂ S}
07: F.sort() /* some priority function */
08: v = F.pop()
09: t = MAX(schedTime(p)), p ∈ parents(v)
10: while (DetectHazard(machineState,v.OT, t))
11: t++
12: endWhile

13: AddOperation(machineState,v.OT, t)
14: schedTime[v] = t
15: endWhile

Fig. 25.18 The pipeline in XScale

Fig. 25.19 Experimental
setup

25 Hardware-Aware Compilation 823

the number of cycles spent on running an applications compiled with GCC compiler,
and otCycle is its counterpart with OT-based scheduling. Figure 25.20 shows the
details. The OT-based scheme improves the performance over the GCC compiler by
up to 20%.

25.1.2.5 CIL Partial Bypass Exploration
With effectiveness of OT-based scheme, we can further make use of it to explore
the design space of partial bypassed processors. PBExplore, a CIL Framework
for DSE of partial bypassing in processors is proposed to accommodate the need.
The compiler in the PBExplore takes as input bypass configuration, as shown in
Fig. 25.21. A bypass configuration describes the pipeline stage each individual
bypass starts (source), and the operand that can consume the value the bypass
transfers (destination). The binary generated by the bypass-aware compiler is

Fig. 25.20 Performance improvement of the compiler with OT-based scheduling over the GCC
compiler

Fig. 25.21 PBExplore: A CIL framework for partial bypass exploration

824 A. Shrivastava and J. Cai

then run on a cycle-accurate simulator that is parameterized on the same bypass
configuration. The simulator then dumps the estimations of cycles of execution,
area, and power consumption.

PBExplore can effectively guide designers to use the best design decisions
and avoid suboptimal design decisions that may happen in simulation-only DSE.
Figures 25.22, 25.23 and 25.24 show, respectively, the change of execution cycles
when only the X-bypasses (enabling bypassing of the pipeline stages in the integer
pipeline in Fig. 25.18), D-bypasses (enabling bypassing of the pipeline stages in
the memory pipeline), and M-bypasses (enabling bypassing of the pipeline stages
in the Multiply-Accumulator (MAC) pipeline) are varied, respectively, while the
other two bypasses are fixed. Figure 25.22 shows that while the execution cycles
for configurations < X2 X1 >, < XWB X1 > and < XWB X2 > are similar under

Fig. 25.22 X-bypass exploration for the bitcount benchmark

Fig. 25.23 D-bypass exploration for the bitcount benchmark

25 Hardware-Aware Compilation 825

Fig. 25.24 M-bypass exploration for the bitcount benchmark

simulation-only approach, the bypass-sensitive compiler is able to identify<X2 X1
> the best among the three choices. If designers choose to have only two bypasses
in the processor, then they would have made the wrong choice based on simulation
solely. Similarly, Fig. 25.23 shows that when there is only one bypass, bypassing
D2 pipeline stage is a better choice than bypassing DWB according to PBExplore,
while the simulation-only approach may mislead designers to bypass either D2 or
DWB. Similar observations can be found for the M-bypass exploration in Fig. 25.24
and the D-bypass exploration in Fig. 25.23.

25.1.3 Conclusions

Embedded systems are ubiquitous in our daily life, ranging from portable music
players to real-time control systems in space shuttles. The diversity of embedded
applications eventually boils down to multidimensional design constraints on
embedded systems. To meet these constraints, embedded processors often feature
unique design parameters, several missing features, and often quite quirky designs.
For these embedded processors, the compiler often has a very significant impact
on the power and performance characteristics of the processor – and therefore
hardware-aware compilers are most useful and effective for embedded processors.
Hardware-aware compilers take the microarchitectural description of the processor
into account in addition to the application code in order to compile. There are two
main use-cases for hardware-aware compilers. The first one is the traditional use,
i.e., as a production compiler for an embedded processor. In addition to this, a
hardware-aware compiler can be used to design an efficient embedded processor.
The hardware-aware compiler enables the CIL DSE of the microarchitectural space
of the processor, which takes into consideration the effects compilers have on the
power consumption and performance of the processor. We demonstrate these two

826 A. Shrivastava and J. Cai

uses by presenting a compiler technique to significantly alleviate branch penalties
in processors without hardware branch prediction in Sect. 25.1.1, and a OT-based
compiler technique that can be used to improve the performance and to help the
design of processors with partial bypassing in Sect. 25.1.2. The experimental results
corroborate the importance of hardware-aware compilation.

References

1. Bala V, Rubin N (1995) Efficient instruction scheduling using finite state automata. In:
Proceedings of the 28th annual international symposium on microarchitecture, pp 46–56.
doi:10.1109/MICRO.1995.476812

2. Ball T, Larus JR (1993) Branch prediction for free. In: Proceedings of PLDI. ACM, New York,
pp 300–313. doi:10.1145/155090.155119

3. Chen T, Raghavan R, Dale JN, Iwata E (2007) Cell broadband engine architecture
and its first implementation – a performance view. IBM J Res Dev 51(5):559–572.
doi:10.1147/rd.515.0559

4. Dual-Core Intel Itanium Processor 9000 and 9100 Series (2007). http://download.intel.com/
design/itanium/downloads/314054.pdf

5. Flachs et al B (2006) The microarchitecture of the synergistic processor for a cell processor.
IEEE Solid-State Circuits 41(1):63–70

6. Fog A (2008) The microarchitecture of Intel and AMD CPUs
7. GNU Toolchain 4.1.1 and GDB for the Cell BE’s PPU/SPU. http://www.bsc.es/plantillaH.php?

cat_id=304
8. Grun P, Dutt N, Nicolau A Memory aware compilation through accurate timing extraction.

In: Proceedings of the 37th annual design automation conference, DAC’00. ACM, New York,
pp 316–321 (2000). doi:10.1145/337292.337428

9. Grun P, Dutt N, Nicolau A (2000) MIST: an algorithm for memory miss traffic management.
In: IEEE/ACM international conference on computer aided design, ICCAD-2000, pp 431–437.
doi:10.1109/ICCAD.2000.896510

10. Grun P, Halambi A, Dutt N, Nicolau A (2003) RTGEN-an algorithm for automatic generation
of reservation tables from architectural descriptions. IEEE Trans Very Large Scale Integr
(VLSI) Syst 11(4):731–737. doi:10.1109/TVLSI.2003.813011

11. Halambi A, Grun P, Ganesh V, Khare A, Dutt N, Nicolau A (1999) EXPRESSION: a
language for architecture exploration through compiler/simulator retargetability. In: Design,
automation and test in Europe conference and exhibition 1999. Proceedings, pp 485–490.
doi:10.1109/DATE.1999.761170

12. Hoffmann A, Schliebusch O, Nohl A, Braun G, Wahlen O, Meyr H (2001) A methodology
for the design of application specific instruction set processors (ASIP) using the machine
description language LISA. In: Proceedings of the 2001 IEEE/ACM international conference
on computer-aided design, ICCAD’01. IEEE Press, Piscataway, pp 625–630

13. https://gcc.gnu.org/ (2007)
14. IBM: Cell Broadband Engine Programming Handbook including PowerXCell 8i. https://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/7A77CCDF14FE70D5852575CA0074E8ED
15. Intel Corporation. Intel XScale(R) Core: Developer’s Manual. http://www.intel.com/design/

iio/manuals/273411.htm
16. Keutzer K, Malik S, Newton A (2002) From ASIC to ASIP: the next design discontinuity. In:

IEEE international conference on computer design: VLSI in computers and processors, 2002.
Proceedings, pp 84–90. doi:10.1109/ICCD.2002.1106752

17. Kondo M, Kobyashi H, Sakamoto R, Wada M, Tsukamoto J, Namiki M, Wang W, Amano H,
Matsunaga K, Kudo M, Usami K, Komoda T, Nakamura H (2014) Design and evaluation of

http://dx.doi.org/10.1109/MICRO.1995.476812
http://dx.doi.org/10.1145/155090.155119
http://dx.doi.org/10.1147/rd.515.0559
http://download.intel.com/design/itanium/downloads/314054.pdf
http://download.intel.com/design/itanium/downloads/314054.pdf
http://www.bsc.es/plantillaH.php?cat_id=304
http://www.bsc.es/plantillaH.php?cat_id=304
http://dx.doi.org/10.1145/337292.337428
http://dx.doi.org/10.1109/ICCAD.2000.896510
http://dx.doi.org/10.1109/TVLSI.2003.813011
http://dx.doi.org/10.1109/DATE.1999.761170
https://gcc.gnu.org/
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/7A77CCDF14FE70D5852575CA0074E8ED
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/7A77CCDF14FE70D5852575CA0074E8ED
http://www.intel.com/design/iio/manuals/273411.htm
http://www.intel.com/design/iio/manuals/273411.htm
http://dx.doi.org/10.1109/ICCD.2002.1106752

25 Hardware-Aware Compilation 827

fine-grained power-gating for embedded microprocessors. In: Design, automation and test in
Europe conference and exhibition (DATE), pp 1–6. doi:10.7873/DATE.2014.158

18. Kongetira P, Aingaran K, Olukotun K (2005) Niagara: a 32-way multithreaded sparc processor.
IEEE Micro 25(2):21–29. doi:10.1109/MM.2005.35

19. Lattner C (2002) LLVM: an infrastructure for multi-stage optimization. Master’s thesis,
Computer Science Department, University of Illinois at Urbana-Champaign, Urbana. See
http://llvm.cs.uiuc.edu

20. Leupers R (2000) Code generation for embedded processors. In: The 13th international sym-
posium on system synthesis, 2000. Proceedings, pp 173–178. doi:10.1109/ISSS.2000.874046

21. Lowney PG, Freudenberger SM, Karzes TJ, Lichtenstein WD, Nix RP, O’Donnell JS,
Ruttenberg JC (1993) The multiflow trace scheduling compiler. J Supercomput 7:51–142

22. Lu J, Kim Y, Shrivastava A, Huang C (2011) Branch penalty reduction on IBM cell SPUs via
software branch hinting. In: Proceedings of CODES+ISSS, pp 355–364

23. Muchnick SS (1997) Advanced compiler design and implementation. Morgan Kaufmann
Publishers Inc., San Francisco

24. Park D, Lee J, Kim NS, Kim T (2010) Optimal algorithm for profile-based power gating:
a compiler technique for reducing leakage on execution units in microprocessors. In:
2010 IEEE/ACM international conference on computer-aided design (ICCAD), pp 361–364.
doi:10.1109/ICCAD.2010.5653652

25. Patterson D, Anderson T, Cardwell N, Fromm R, Keeton K, Kozyrakis C, Thomas R, Yelick K
(1997) A case for intelligent RAM. IEEE Micro 17(2):34–44. doi:10.1109/40.592312

26. Proebsting TA, Fraser CW (1994) Detecting pipeline structural hazards quickly. In: Pro-
ceedings of the 21st ACM SIGPLAN-SIGACT symposium on principles of programming
languages, POPL’94. ACM, New York, pp 280–286. doi:10.1145/174675.177904

27. Roy S, Katkoori S, Ranganathan N (2007) A compiler based leakage reduction technique by
power-gating functional units in embedded microprocessors. In: 20th international conference
on VLSI Design, 2007. Held jointly with 6th international conference on embedded systems,
pp 215–220. doi:10.1109/VLSID.2007.10

28. Shrivastava A (2006) Compiler-in-loop exploration of programmable embedded systems.
Ph.D. thesis, Donald Bren School of Information and Computer Sciences

29. Shrivastava A, Issenin I, Dutt N (2005) Compilation techniques for energy reduction in
horizontally partitioned cache architectures. In: Proceedings of the 2005 international
conference on compilers, architectures and synthesis for embedded systems, CASES’05. ACM,
New York, pp 90–96. doi:10.1145/1086297.1086310

30. Siska C (1998) A processor desription language supporting retargetable multi-pipeline DSP
program development tools. In: Proceedings of the 11th international symposium on system
synthesis, ISSS’98. IEEE Computer Society, Washington, DC, pp 31–36

31. Trimaran. http://www.trimaran.org/
32. Wagner TA, Maverick V, Graham SL, Harrison MA (1994) Accurate static estimators

for program optimization. In: Proceedings of the ACM SIGPLAN 1994 conference on
programming language design and implementation, PLDI’94. ACM, New York, pp 85–96.
doi:10.1145/178243.178251

33. Wu Y, Larus JR (1994) Static branch frequency and program profile analysis. In: Proceedings
of the 27th annual international symposium on Microarchitecture. ACM, New York, pp 1–11.
doi:10.1145/192724.192725

34. Zivojnovic V, Pees S, Meyr H (1996) LISA-machine description language and generic machine
model for HW/SW co-design. In: Workshop on VLSI signal processing, IX, pp 127–136.
doi:10.1109/VLSISP.1996.558311

http://dx.doi.org/10.7873/DATE.2014.158
http://dx.doi.org/10.1109/MM.2005.35
http://llvm.cs.uiuc.edu
http://dx.doi.org/10.1109/ISSS.2000.874046
http://dx.doi.org/10.1109/ICCAD.2010.5653652
http://dx.doi.org/10.1109/40.592312
http://dx.doi.org/10.1145/174675.177904
http://dx.doi.org/10.1109/VLSID.2007.10
http://dx.doi.org/10.1145/1086297.1086310
http://www.trimaran.org/
http://dx.doi.org/10.1145/178243.178251
http://dx.doi.org/10.1145/192724.192725
http://dx.doi.org/10.1109/VLSISP.1996.558311

26Memory-Aware Optimization of Embedded
Software for Multiple Objectives

Peter Marwedel, Heiko Falk, and Olaf Neugebauer

Abstract

Information processing in Cyber-Physical Systems (CPSs) has to respect a
variety of constraints and objectives such as response and execution time, energy
consumption, Quality of Service (QoS), size, and cost. Due to the large impact
of the size of memories on their energy consumption and access times, an
exploitation of memory characteristics offers a large potential for optimizations.
In this chapter, we will describe optimization approaches proposed by our
research groups. We will start with optimizations for single objectives, such as
energy consumption and execution time. As a consequence of considering hard
real-time systems, special attention is on the minimization of the Worst-Case
Execution Time (WCET) within compilers. Three WCET reduction techniques
are analyzed: exploitation of scratchpads, instruction cache locking, and cache
partitioning for multitask systems. The last section presents an approach for
considering trade-offs between multiple objectives in the design of a cyber-
physical sensor system for the detection of bio-viruses.

Acronyms

CFG Control-Flow Graph
CPS Cyber-Physical System
CPU Central Processing Unit
CRPD Cache-Related Preemption Delay
DRAM Dynamic Random-Access Memory

P. Marwedel (�) • O. Neugebauer
Computer Science, TU Dortmund University, Dortmund, Germany
e-mail: Peter.Marwedel@tu-dortmund.de; Olaf.Neugebauer@tu-dortmund.de

H. Falk
Institute of Embedded Systems, Hamburg University of Technology, Hamburg, Germany
e-mail: Heiko.Falk@tuhh.de

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_27

829

mailto:Peter.Marwedel@tu-dortmund.de
mailto:Olaf.Neugebauer@tu-dortmund.de
mailto:Heiko.Falk@tuhh.de

830 P. Marwedel et al.

FIFO First-In First-Out
GA Genetic Algorithm
GPU Graphics Processing Unit
ILP Integer Linear Program
LRU Least-Recently Used
MMU Memory Management Unit
PAMONO Plasmon-Assisted Microscopy of Nano-Objects
QoS Quality of Service
SPM Scratchpad Memory
SRAM Static Random-Access Memory
SVM Support Vector Machine
WCC WCET-aware C Compiler
WCEC Worst-Case Energy Consumption
WCEP Worst-Case Execution Path
WCET Worst-Case Execution Time

Contents

26.1 Introduction . 831
26.2 Constraints and Objectives . 831

26.2.1 Timing . 831
26.2.2 Energy Consumption and Thermal Behavior . 832
26.2.3 Quality of Service and Precision . 832
26.2.4 Safety, Security, and Dependability . 833
26.2.5 Further Constraints and Objectives . 833

26.3 Optimization Potential in the Memory System. 833
26.3.1 Caches . 834
26.3.2 Scratchpad Memories . 835
26.3.3 A Bound for Improvements . 836
26.3.4 Importance of Memory-Aware Load Balancing . 837

26.4 Scratchpad Allocation Algorithms . 838
26.4.1 Classification . 838
26.4.2 Non-overlaying Allocation Algorithms . 838
26.4.3 Overlaying Allocation Algorithms . 840
26.4.4 Supporting Different Architectures and Objectives . 842

26.5 WCET-Oriented Compiler Strategies . 843
26.5.1 WCET-Oriented Scratchpad Allocation . 844
26.5.2 Static Instruction Cache Locking . 848
26.5.3 Instruction Cache Partitioning for Multitask Systems 851

26.6 Trade-Off Between Energy Consumption, Precision, and Run Time 854
26.6.1 Memory-Aware Mapping with Optimized Energy Consumption

and Run Time . 854
26.6.2 Optimization for Three Objectives for the PAMONO Virus Sensor 856

26.7 Conclusions and Future Work . 862
References . 863

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 831

26.1 Introduction

This chapter considers the mapping of software applications to execution platforms
for embedded systems. Embedded systems are information processing systems
embedded into enclosing products such as cars or smart homes [29]. In combination
with their physical environment, embedded systems form so-called Cyber-Physical
Systems (CPSs). According to the National Science Foundation (NSF), “CPSs
are engineered systems that are built from and depend upon the synergy of
computational and physical components” [31]. In our view, embedded systems
can be seen as the information processing part in a CPS. Due to the integration
with the physical environment, embedded systems have to meet a large set of
functional requirements, constraints, and objectives. Hence, in addition to meeting
the functional requirements, optimization for the relevant objectives within the
design space imposed by the constraints is an essential part of design methodologies
for embedded systems. Analyzing currently available technology, it turns out that
much of the potential for optimizations concerns memories and their usage. In
the following sections, the existence of this potential will be proved by means of
examples. The examples are intended to provide an overview over optimization
potential in this area, using our research results for demonstration. Specific pointers
to our publications are included for further reference and more in-depth discussion.

26.2 Constraints and Objectives

One of the characteristics of embedded systems is the need to consider a large
variety of constraints and objectives during their design.

26.2.1 Timing

Embedded systems often have to meet real-time constraints that make them real-
time systems. Not completing computations within a given time can result in a
serious loss of the quality provided by the system (e.g., if the audio or video quality
is affected) or may cause harm to the user (e.g., if cars, trains, or planes do not
operate in the predicted way). Time constraints are called hard if not meeting them
could result in a catastrophe. All other time constraints are called soft.

During the design of real-time systems, the Worst-Case Execution Time (WCET)
plays an important role. The WCET is the largest execution time of a program
for any input and any initial execution state of the hardware platform. In general,
it is undecidable whether or not the WCET is finite, because it is undecidable
whether or not a program terminates. Hence, the WCET can only be computed for
certain simply structured programs. For realistic and general programs, it is usually
practically impossible to compute the WCET. Instead, reliable upper bounds have

832 P. Marwedel et al.

to be determined by sound methods. Such upper bounds are usually called estimated
WCET (WCETEST) values and should have at least two properties:

1. The bounds should be safe (WCETEST �WCET).
2. The bounds should be tight (WCETEST 	WCETÝ 0).

If safe WCET guarantees for hard real-time systems are needed, static program
analyses are used. At binary code level, such static analyzers estimate register
values in order to identify loop counters, determine loop iteration counts, and extract
hardware-specific states of a processor’s caches and pipelines. The path analysis
stage finally estimates a program’s global WCET by finding that path within a
program’s Control-Flow Graph (CFG) that has the maximal WCET – the so-called
Worst-Case Execution Path (WCEP). The length of this longest path is the sum
of the products T � C over all blocks along the path, where T denotes a block’s
maximum execution time and C represents the block’s maximal execution count.

26.2.2 Energy Consumption and Thermal Behavior

These days, we are almost exclusively using electrical devices to process infor-
mation. Unfortunately, the operation of known devices requires the conversion of
electrical energy into thermal energy. There are various reasons for trying to keep
the amount of dissipated electrical energy as small as possible. For example, we
would like to keep the impact on global warming as small as possible and we would
like to avoid high operating temperatures and too high current densities. Energy may
be available only in limited quantities. For mobile systems, electrical energy has to
be either carried around with the system (e.g., in the form of batteries) or harvested
(e.g., by using solar cells).

Using the consumed energy as an objective or constraint is not easy, since the
amount of consumed energy depends on many factors. There are essentially two
ways of estimating this objective: estimation can be either based on measurements
for real hardware or based on computer models. Measurements can provide very
precise results but can be performed only for existing hardware. Models can be used
also for non-existing hardware, but they are inherently less precise.

The thermal behavior is very much linked to the energy consumption: the
conversion of electrical energy into thermal energy is a source of heating the system.
Thermal modeling has to take the thermal resistance between the system and the
environment as well as thermal capacities into account. Again, computer models as
well as measurements can be used.

26.2.3 Quality of Service and Precision

Overall, embedded systems have to provide some service, e.g., controlling a
physical behavior (such as braking a car), showing some video, or generating
some functional information. Such a service can be of high quality or of a reduced

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 833

quality. For example, a video can have various signal to noise ratios and different
timing jitters. Control loops may be needing different amounts of time to stabilize.
For functional information, there may be a deviation between known precise results
and a computed approximation. In the following, the different levels of service will
be called Quality of Service (QoS), and we will consider the precision of some
functional result as a special case.

26.2.4 Safety, Security, and Dependability

Embedded systems may have a direct impact on their physical environment.
Therefore, if embedded systems fail to perform the intended service, the physical
environment may be at risk. System failures can be caused by internal malfunctions
of the system as well as by attackers compromising the system. As a result, safety
and security of embedded systems are extremely important.

Due to the impact on the physical environment, dependability of embedded
systems is also important. By dependability, we capture the fact that an initially
correctly designed and manufactured system may fail due to some internal fault,
e.g., a bit flip in memory. Various physical effects can lead to such faults. Shrinking
dimensions of microelectronic circuits are known to increase the rate of such
faults [6]. Hence, they will have to be considered more carefully in the future.

26.2.5 Further Constraints and Objectives

There are many more constraints and objectives which are relevant. These include
size, cost, and weight or the availability of hardware platforms. Embedded systems
may have to resist certain types of radiation and may need to be environmentally
friendly disposable. Not all of these can be described in detail in this chapter.

The principle of Pareto optimality can be used to take design decisions in the
presence of multiple objectives. For further information on multi-objective design
space exploitation, refer to our textbook [29] and to “�Chap. 6, “Optimization
Strategies in Design Space Exploration”” of this book.

26.3 Optimization Potential in the Memory System

Much optimization potential is available in the memory system, because small
memories are faster and consume less energy per access than larger memories. This
observation was already made very early by Burks, Goldstein, and von Neumann in
1946 [7]:

Ideally one would desire an indefinitely large memory capacity such that any particular ...
word ... would be immediately available – i.e. in a time which is ... shorter than the operation
time of a fast electronic multiplier. ... It does not seem possible physically to achieve such a
capacity. We are therefore forced to recognize the possibility of constructing a hierarchy of
memories, each of which has greater capacity than the preceding but which is less quickly
accessible.

834 P. Marwedel et al.

 0.01

 0.1

 1

 10

 100

1k 16k 512k 16M 512M 4G

En
er

gy
/A

cc
es

s(
nJ

)

Size(bytes)

32Bit - Main Memory - Total Dynamic Read Energy per Read

DRAM Comm 8 banks
DRAM Comm 1 bank

DRAM LP 8 banks
DRAM LP 1 bank

SRAM HP 8 banks
SRAM HP 1 bank

SRAM LOP 8 banks
SRAM LOP 1 bank 1

 10

 100

 1000

1k 16k 512k 16M 512M 4G

Cy
cl

e
Ti

m
e(

nS
)

Size(bytes)

32Bit - Main Memory - Cycle Time

Fig. 26.1 Access times and energy consumption for DRAM and for SRAM

Figure 26.1 shows access times and energy consumptions per access for con-
temporary Dynamic Random-Access Memories (DRAMs) as well as for Static
Random-Access Memories (SRAMs), for high-power and for low-power variants
of these and for a single and eight banks. Numbers have been computed with
CACTI [19]. Access times as well as energy consumptions vary by more than two
orders of magnitude. Due to this, memory hierarchies have been introduced. Their
key goal is to assign frequently accessed information to small and fast layers of the
hierarchy such that, overall, the impression of a fast, energy-efficient, and still large
memory is achieved on the average.

Small and fast memories thus act as buffers between main memory and the
processor. For embedded systems, the architecture of these small memories has to
be highly energy-efficient and must guarantee a predictable real-time performance.
(More information on power and energy models can be found in �Chap. 27,
“Microarchitecture-Level SoC Design” of this book).

26.3.1 Caches

Let us briefly look again at some of the memories which were described in
detail in �Chap. 13, “Memory Architectures” of this book. Cache-based memory
hierarchies are today’s state of the art, because caches are fully transparent to the
software running on a system. No code modification has to be done, since caches
are hardware controlled. Caches are effective in exploiting temporal locality and
spatial locality. The former means that particular memory locations will be accessed
multiple times within a short period of time. The latter refers to the reference of
contiguous memory locations over time.
N -way set-associative caches are organized as a matrix withN columns (usually

called ways). During a memory access with a given address, the least significant
bits of this address (i.e., its index bits) unambiguously identify the row of the cache
matrix (usually called set) that potentially buffers the requested memory cell’s con-
tents. Within the selected cache set, the requested item can now reside in any of the
N ways. Thus, the most significant address bits (the tag bits) are compared with the

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 835

tag bits buffered in allN ways of the selected set. If the tag bits match (cache hit), the
requested memory cell is buffered in the cache and the data buffered in the identified
way and set is returned to the processor. If no tag comparison matches (cache
miss), the cache does not buffer the requested memory cell. A replacement policy
is responsible for deciding which item to evict from the currently selected set if all
ways of that set are currently occupied, but a new item shall be inserted in this set.

This architecture of set-associative caches combined with replacement policies
enables a very high flexibility of caches so that they can autonomously adapt to
varying memory access patterns issued by the processor. However, the drawbacks
of caches are their large penalties in terms of the objectives introduced in Sect. 26.2.
Caches exhibit a rather high-energy dissipation due to the additional memory
required to store the tag bits and due to the hardware comparators performing the tag
bit comparison for the currently selected cache set. Regarding real-time deadlines,
caches are notorious for their inherent unpredictability. Depending on its replace-
ment policy, it is hard, if not impossible, to predict during a static WCET analysis
if a memory access results in a definite cache hit or miss. If a static WCET analyzer
is uncertain about the cache’s behavior, it has to assume the worst-case behavior of
the cache which frequently leads to highly overestimated WCETEST values.

Modern architectures support cache locking, i.e., cache cells are protected from
being evicted by effectively partially disabling the replacement policy. This way, it
is possible to predict access times of data or instructions that have been locked in
the cache and to make precise statements about the cache’s worst-case timing.

26.3.2 Scratchpad Memories

As an alternative to caches, small and “conventional” memories can be mapped
into the processor’s address space. These memories are frequently called Scratch-
pad Memories (SPMs) and differ from caches in that they are not operating
autonomously in hardware. Instead, a simple address decoder decides whether a
memory cell that is accessed by the processor is part of the SPM’s address space
or not, and the requested item is then fetched from the SPM or from some other
memory.

Since SPMs completely lack tag memories and comparators, their energy
efficiency is significantly higher than that of caches [5]. Furthermore, an access
to the SPM always takes a constant time which is usually one clock cycle. As a
consequence, varying memory access latencies due to cache misses or hits cannot
occur in SPM-based architectures, thus rendering WCET estimates extremely tight
and accurate. The drawback of SPMs is their lacking flexibility. Since they are
unable to decide autonomously in hardware which items to buffer in and to evict
from the SPM memory, there must be some software instance that assigns energy-
or timing-critical parts of a program’s code or data to the SPM. Frequently, this
instance is the compiler that applies scratchpad allocation techniques and that
determines a memory layout of a program such that it exploits the available SPM
resources best. See �Chap. 13, “Memory Architectures” of this book for a detailed
comparison of caches and SPMs.

836 P. Marwedel et al.

26.3.3 A Bound for Improvements

By how much can we improve memory references with respect to some objective
on the average? Suppose that we are given two layers of the memory hierarchy and
that memory mi is closer to the processor and memory miC1 further away from the
processor. Suppose that ai is the access time of memory mi and aiC1 is the access
time ofmiC1. Furthermore, let us assume that a fraction P of memory references to
miC1 can be replaced by references to mi , leaving a fraction of .1 	 P / (the miss
rate) of the memory references using miC1. Then, the average access time is

average new access time D P � ai C .1 	 P / � aiC1 (26.1)

Let S be the ratio of access times (for available memory technologies, S can
easily be in the order of 100):

S D
aiC1

ai
(26.2)

The relative saving is

relative saving D
average old access time 	 average new access time

average old access time

D
aiC1 	 P � ai 	 aiC1 C P � aiC1

aiC1

D
ai � S 	 P � ai 	 ai � S C P � ai � S

ai � S

D
S 	 P 	 S C P � S

S

D P 	
P

S
(26.3)

The speedup of memory accesses can then be computed as follows:

speedup D
average old access time

average new access time

D
aiC1

P � ai C .1 	 P / � aiC1

D
aiC1

P �
aiC1

S
C .1 	 P / � aiC1

D
1

P
S
C .1 	 P /

(26.4)

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 837

If S gets large, the first term in the denominator approaches zero and the improve-
ment gets limited by the second term, .1 	 P /. Hence, making S very large has
a limited benefit when the miss rate cannot be made smaller. This effect is well
known for caches. In practice, this means that the miss rate must be made as small
as possible. Due to the problem of making the miss rate small, we have to make
sure that almost every memory object can potentially be mapped to faster levels in
the memory hierarchy. Excluding the stack, heap, or other memory objects from a
mapping to fast memories would have a negative impact of the feasible speedup. In
general, the goal of an ideal memory hierarchy is not always reached. Drepper has
shown for the case of single-core systems that run times of programs can change by
orders of magnitude if their working set exceeds the sizes of caches [13]. Hence, a
clever use of memory hierarchies is already needed for single cores.

Equation (26.4) also corresponds to Amdahl’s law [3], describing bounds for
speedup by parallelization, where P is the fraction of the code which is parallelized
and S is the speedup during parallel execution.

Equations (26.1) to (26.4) can also be generalized to capture effects for
objectives other than access times. In particular, they can be applied to the case
of modeling access energies and the resulting improvements.

26.3.4 Importance of Memory-Aware Load Balancing

For multi-core systems, an excessive amount of threads can lead to a lack of
memory, as demonstrated, e.g., by Kotthaus and Korb [23]. Figure 26.2 (resulting

SVM Classification

 0 500 1000 1500 2000 2500 3000

pr
oc

es
se

s

 0
 400
 800

 1200
 1600
 2000

 0 500 1000 1500 2000 2500 3000

m
em

or
y

[M
B]

time [s]

Free memory

CPU utilizationlow high

Fig. 26.2 SVM application on a four-core system: lack of free memory resulting in idling cores

838 P. Marwedel et al.

from the experiments of Kottaus and Korb) shows profiling results for a Support
Vector Machine (SVM) application running on a four-core system.

The application is programmed in the R language and is executed by version
3 of the R system running on a Lenovo L512 comprising an i5 processor. Due to
memory-unaware allocation of cores, there are phases in which the system runs
out of free memory. This happens even though load balancing of R is turned
on. However, R is unaware of actual resource requirements. As a result, there is
sometimes no free memory remaining. This is indicated by horizontal lines in the
lower part of the diagram. Due to a too large number of processes, the system runs
out of main memory and suffers from an increased swapping activity. This example
demonstrates that memory-unaware allocation of computing resources results in
wasting resources and cannot be efficient. We should care about required memory
resources even for scenarios in which we address the programming of multi-core
systems at a high level. Therefore, we will be looking at memory allocation in more
detail in the remaining sections of this chapter.

26.4 Scratchpad Allocation Algorithms

26.4.1 Classification

In an earlier paper [5], we provided a detailed side-by-side comparison of caches
and SPMs with respect to access times, energy consumptions, and silicon areas. A
detailed comparison is also included in �Chap. 13, “Memory Architectures” of this
book.

In contrast to caches, SPMs must be explicitly managed by software. In the
following, we classify the approaches to SPM management according to three
dimensions:

• The type of allocation algorithm
• The type of architecture
• The optimization objective

We start by looking at allocation algorithms. SPM allocation algorithms can
be classified into non-overlaying (or “static”) and overlaying (or “dynamic”)
algorithms. For the first type of algorithms, memory objects are resident in the SPM
during the entire lifetime of an application, whereas for the latter, objects are moved
between the memories during run time.

26.4.2 Non-overlaying Allocation Algorithms

For the non-overlaying case, the optimization problem for energy or run-time
optimization can be modeled as a Knapsack problem or as an Integer Linear
Program (ILP).

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 839

Let i denote a memory object and let si denote its size. Let �i denote the saving
with respect to the considered objective if i is mapped to the SPM. The saving is the
difference between the objective values for a mapping to some main memory and
the SPM. Let SSPM denote the size of the SPM. Let xi be 1 if i is mapped to the
SPM and 0 otherwise. Then, the following ILP model can be used to find an optimal
mapping of memory objects to the SPM:

Maximize
X
i

xi ��i (26.5)

Subject toX
i

xi � si � SSPM (26.6)

Algorithms by Steinke [38] and by Verma [44] are examples based on such
models. They are particular examples of hardware-aware compilation discussed in
�Chap. 25, “Hardware-Aware Compilation” of this book. In order to minimize the
fraction .1 	 P / of “unimproved” memory references, most of our optimizations
consider code and data references. For data references, global data can be easily
taken into account. We have also considered stack variables. As a result, large
savings (as computed by Equation (26.3)) have been observed.

We will demonstrate these for partitioned memories. Here, we have at our
disposal J memories, each of them having an energy consumption ej per access
and a size Sj . Let ni be the number of accesses to memory object i . A decision
variable xi;j will be 1 if memory object i is mapped to memory j and 0 otherwise.
Then, the following ILP model allows us to minimize the energy consumption:

Minimize
X
j

ej �

 X
i

xi;j � ni

!
(26.7)

Subject to

8j 2 J W
X
i

xi;j � si � Sj (26.8)

8i W
X
j

xi;j D 1 (26.9)

Figure 26.3 shows results for partitioned SPMs with 1 to 8 partitions.
For a single SPM, the savings (as computed by Equation (26.3) but indicated as a

percentage, rather than a fraction) decrease when the SPM is larger than the working
set of the application. For partitioned SPMs, the saving remains at the maximum,
even for oversized SPMs. These savings refer to dynamic power consumption.
Partitioned SPMs provide even larger advantages when leakage power is also taken
into account.

840 P. Marwedel et al.

Fig. 26.3 Energy savings achieved by SPM allocation of a GSM application

26.4.3 Overlaying Allocation Algorithms

For overlaying algorithms, memory objects are migrated between different levels of
the hierarchy. This migration can be either explicitly programmed in the application
or inserted automatically. Overlaying algorithms are beneficial for applications with
multiple hotspots, for which the code can be evicting each other. For overlaying
algorithms, we are typically assuming that all applications are known at design
time such that memory allocation can be considered at this time. Algorithms by
Verma [44] and Udayakumararan et al. [41] are early examples of such algorithms.

Verma’s algorithm starts with the CFG of the application to be optimized. For
edges of the graph, Verma considers potentially freeing the SPM for locally used
memory objects.

In Fig. 26.4, we are considering control blocks B1 to B10 and control flow
branching at B2. We assume that array A is defined, modified, and used along the left
path. T3 is only used in the right part of the branch. We consider potentially freeing
the SPM so that T3 can be locally allocated to the SPM. This requires spill and load
operations in potentially inserted blocks B9 and B10 (thin and dotted lines: potential
inserts). Cost and benefit of these spill operations are then incorporated into a global
ILP. Solving the ILP yields an optimal set of memory copy operations. For a set
of benchmarks, the average reductions in energy consumption and execution time,
compared to the non-overlaying case, are 34% and 18%, respectively. Blocks of
code are handled as if they were arrays of data.

Udayakumararan’s algorithm is similar, but it evaluates memory objects accord-
ing to their number of memory accesses divided by their size. This metric is then

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 841

SPILL_LOAD(T3);

DEF A SP size=|A|=|T3|

MOD A

USE A

USE A

USE T3

T3

USE T3

SPILL_LOAD(A)

SPILL_STORE(A);

B10

B9

B6

B5

B8

B7

B4

B3

B2

B1

Fig. 26.4 Potential spill code

used to heuristically guide the optimization process. This approach can also take
heap objects into account.

In more dynamic cases, the set of applications may vary during the use of the
system. For such cases, dynamic memory managers are appropriate. Pyka [36]
published an algorithm based on an SPM manager which is part of the operating
system.

Egger et al. [9] proposed to exploit an existing Memory Management Unit
(MMU) for dynamic replacements within the SPM. In his approach, code objects
are classified into those that should potentially be moved into the SPM and those
that should not. Potential SPM objects are then grouped into pages. Corresponding
MMU entries are initially set to invalid. During execution, MMU exceptions are
generated for accesses to SPM candidates not (yet) available in SPM. An exception
handler is then invoked. The handler decides which memory objects to move into the
SPM and which objects to move out. The approach is designed to handle code and
is capable of supporting a dynamically changing set of applications. Unfortunately,
the size of current SPMs corresponds to just a few entries in today’s page tables,
resulting in a coarse-grained SPM allocation.

Large arrays are difficult to allocate to SPMs. In fact, even a single array can
be too large to fit into an SPM. The splitting strategy of Verma [16] is restricted
to a single-array splitting. Loop tiling is a more general technique, which can be
applied either manually or automatically [24]. Furthermore, array indexes can be
analyzed in detail such that frequently accessed array components can be kept in
the SPM [27].

Our explanations have so far mainly addressed code and global data. Stack and
heap data require special attention. In both cases, two trivial solutions may be
feasible: In some cases, we might prefer not to allocate code or heap data to the

842 P. Marwedel et al.

SPM at all. Obviously, this would have an immediate effect on the bound for the
achievable speedup as per Equation (26.4). In other cases, we could run stack [2]
and heap size analysis [18] to check whether stack or heap fit completely into the
SPM and, if they do, allocate them to the SPM.

For the heap, Dominguez et al. [12] proposed to analyze the liveness of heap
objects. Whenever some heap object is potentially needed, code is generated to
ensure that the object will be in the SPM. Objects will always be at the same address,
so that the problem of dangling references to heap objects in the SPM is avoided.
McIllroy et al. [30] propose a dynamic memory allocator taking characteristics
of SPM into account. Bai et al. [4] suggest that the programmer should enclose
accesses to global pointers by two functions p2s and s2p. These functions provide
conversions between global and local (SPM) addresses and also ensure a proper
copying of memory contents.

For the stack, Udayakumararan et al. [41] proposed to use two stacks, one for
calls to short functions with their stack being in main memory and one for calls to
computationally expensive functions whose stack area is in the SPM. Kannan et al.
[22] suggested to keep the top stack frames in the SPM in a circular fashion. During
function calls, a check for a sufficient amount of space for the required stack frame
is made. If the space is not available, old stack frames are copied to a reserved area
in main memory. During returns from function calls, these frames can be copied
back. Various optimizations aim at minimizing the necessary checks.

26.4.4 Supporting Different Architectures and Objectives

A second dimension in SPM allocation (in addition to the allocation type) is the
architectural dimension. Implicitly, we have so far considered single-core systems
with a single memory hierarchy layer and a single SPM. Other architectures exist as
well. For example, there may be hybrid systems containing both caches and SPMs.
We can try to reduce cache misses by selectively allocating SPM space in case of
cache conflicts [8, 21, 48]. Also, we can have different memory technologies, like
flash memory or other types of non-volatile RAM [45]. For flash memory, load
balancing is important. Also, there might be multiple levels of memories. So far, we
have just considered single-core processors. For multi-core systems, new tasks and
options exist. SPMs can possibly be shared across cores. Also, there may be multiple
memory hierarchy levels, some of which can be shared. Liu et al. [25] present an
ILP-based approach for this.

A third dimension in SPM allocation is the objective function. So far, we have
focused on energy or run-time minimization. Other objectives can be considered as
well. Implicitly, we have modeled the average case energy consumption. The Worst-
Case Energy Consumption (WCEC) is an objective considered, for example, by Liu
[25]. Reliability and endurance are relevant for the design of reliable applications,
in particular in the presence of aging [46]. It may also be necessary to avoid
overheating of memories. From among other possible objectives, we will be looking
at the WCET in the following sections.

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 843

26.5 WCET-Oriented Compiler Strategies

In contrast to simple optimization objectives like, e.g., energy consumption that can
be modeled using single values like, e.g., �i or ej (cf. Sect. 26.4.2), the systematic
reduction of WCET estimates is much more subtle due to the nature of the WCET.
As already motivated in Sect. 26.2.1, the WCET of a program corresponds to the
length of the longest path WCEP through a program’s CFG. Thus, WCET-oriented
optimizations must exclusively focus on those parts of the program that lie on the
WCEP. The optimization of parts of the program aside the WCEP is ineffective,
since this does not shorten the WCEP. Therefore, optimization strategies for WCET
reduction must have detailed knowledge about the WCEP.

Unfortunately, this WCEP can be highly unstable in the course of an optimiza-
tion. Consider the CFG of a function main in Fig. 26.5a, consisting of five basic
blocks each of them having the indicated WCET values given in clock cycles.
Obviously, the longest path through this CFG is main, a, b, and c. This WCEP,
highlighted with solid arrows in Fig. 26.5a, has a WCET of 205 cycles. Assuming
that some optimization is able to reduce b’s WCET from 80 down to 40 cycles, the
CFG shown in Fig. 26.5b results from this optimization. As can be seen, the WCEP
after optimization of b is main, d, and c. This example shows that the WCEP is
very unstable during optimization – it can switch from one path within the CFG to
a completely different one in the course of optimizations.

Thus, WCET-oriented and memory-aware compiler optimizations are faced with
the challenges to always accurately model the current WCEP and to always be
aware of possible WCEP switches. The following sections outline examples of
WCET-oriented optimizations that exploit scratchpads and caches and that carefully
consider WCEP switches. First, we present WCET-oriented SPM allocations to
make the structural differences between memory-aware optimizations of energy
dissipation (cf. Sect. 26.4) and of WCET estimates (cf. the following Sect. 26.5.1)
evident. Next, we discuss cache locking optimizations in Sect. 26.5.2, followed by
a presentation of cache partitioning for multitask systems in Sect. 26.5.3. Other
approaches for timing models are explained in �Chap. 19, “Host-Compiled Sim-
ulation” of this book. The importance of WCET-oriented optimizations for actual
applications is stressed in Sect. 4 in �Chap. 37, “Control/Architecture Codesign for
Cyber-Physical Systems” of this book.

main

b

c

a d

main

b

c

a d

a b

Fig. 26.5 (a) Original example CFG (b) Example CFG after optimization of b

844 P. Marwedel et al.

26.5.1 WCET-Oriented Scratchpad Allocation

This section presents an ILP-based SPM allocation of program code that moves
basic blocks statically onto the SPM [14, 39]. This is done under simultaneous
consideration of possibly switching WCEPs by formulating ILP constraints that
inherently model the longest path which starts at a certain basic block. The following
equations use lowercase letters for ILP variables and uppercase letters for constants.

In analogy to the techniques presented previously in Sect. 26.4, the ILP also uses
one binary decision variable vi per basic block bi of a program:

vi D

�
0 if basic block bi is assigned to memMAIN

1 if basic block bi is assigned to memSPM
(26.10)

A scratchpad assignment is legal if the size of all basic blocks allocated to the SPM
does not exceed the scratchpad’s capacity. This property is ensured by adding in
Equation (26.6) to the ILP again.

A block bi of a function f causes some costs ci , i.e., bi ’s WCETEST depending
on whether bi is allocated to main memory or to the SPM:

ci D C
i
MAIN � .1 	 vi /C C

i
SPM � vi (26.11)

Constants C i
MAIN and C i

SPM model the WCETEST values of bi if it is executed from
main memory or from the SPM, respectively. For reducible CFGs, an innermost
loop l has exactly one back edge that turns it into a cyclic graph. Not considering
this back edge turns l’s CFG into an acyclic graph. This acyclic graph without l’s
back edge is denoted as Gl D .V;E/ here. Each node of Gl models a single basic
block. Without loss of generality, there is exactly one unique exit node blexit of loop l
in Gl and one unique entry node blentry. The WCETEST wlexit of blexit is set to the costs
of blexit:

wlexit D c
l
exit (26.12)

The WCETEST of a path from a node bi (different from blexit) to blexit must be greater
or equal than the WCETEST of any successor of bi in Gl , plus bi ’s costs:

8bi 2 V n fb
l
exitg W 8.bi ; bsucc/ 2 E W wi � wsucc C ci (26.13)

Variable wlentry thus represents the WCET of all paths of loop l starting in blentry if l
is executed exactly once. To model several executions of l , all CFG nodes v 2 V
of Gl are merged to a new super-node vl . The costs of vl are equal to l’s WCET if
executed once, multiplied by l’s maximal loop iteration count C l

max:

cl D wlentry � C
l
max (26.14)

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 845

Replacing a loop l by its super-node vl may turn another loop l 0 of function f
that immediately surrounds l into an innermost loop with acyclic CFG G0l . Hence,
Equations (26.12), (26.13), and (26.14) can be formulated analogously for l 0. This
way, the innermost loops of f are successively collapsed in the CFG so that ILP
constraints that model f ’s control flow are created from the innermost to the
outermost loops.

A program’s WCEP can switch only at a block bi with more than one successor
because only there, forks in the control flow are possible. Since Equation (26.13)
is created for each successor of bi , variable wi always reflects the WCET of any
path starting from bi – irrespective of which of the successors actually lies on the
current WCEP. This way, Equation (26.13) realizes the implicit consideration of
(switching) WCEPs in the ILP.

In analogy to the ILP modeling of loops, the WCETEST of a program’s function
f is represented by the variable wfentry if basic block bfentry is F ’s unique entry point.

Whenever a basic block bi calls some function f , variable wfentry is added to wi in
Equation (26.13) in order to model the interprocedural control flow correctly.

Finally, an entire C program’s WCETEST is modeled by the ILP variable wmain
entry

that denotes the WCETEST of the program’s unique entry point main. To minimize
a program’s WCET by the ILP, the following simple objective function is thus used:

Minimize wmain
entry (26.15)

Furthermore, our ILP includes many additional constraints that take care of adjusted
branch instructions making sure that a basic block located in main memory can still
branch to a successor placed onto the SPM, and vice versa [14]. The discussion of
these branching related constraints is omitted here for the sake of brevity.

This structure of the ILP can also be used to allocate global variables of a
program onto the SPM. The main difference between the SPM allocation of code as
described by Equations (26.10)–(26.15) and that of data objects is the cost modeling
part. A binary variable xj per data object dj of a program specifies whether to
allocate it to the SPM or not:

xj D

�
0 if data object dj is assigned to memMAIN

1 if data object dj is assigned to memSPM
(26.16)

Here, the scratchpad capacity constraint (26.6) is simply formulated over the
decision variables and sizes of the allocatable data objects. Again, each basic block
bi of a program causes some costs ci . For the SPM allocation of data, these costs ci
reflect bi ’s WCETEST depending on whether the data objects accessed by bi are put
in main memory or in the SPM:

ci D Ci 	
X

dj 2 data objects

Gi;j � xj (26.17)

Here, Ci denotes bi ’s WCETEST if all data objects accessed by bi are placed in
main memory. Gi;j is a constant that denotes the WCET reduction that bi exhibits

846 P. Marwedel et al.

if data object dj is put on the SPM. All other constraints (26.12), (26.13), (26.14),
and (26.15) of the SPM allocation of program code that model the structure of a
program’s CFG remain unchanged when allocating data to the SPM.

Both ILP models are fully integrated into the WCET-aware C Compiler (WCC)
[15, 47]. Due to the integration of a static WCET analyzer into the compiler,
the constants C i

MAIN , C i
SPM and Ci used in Equations (26.11) and (26.17) are

determined fully automatically. The sizes of basic blocks, data objects and SPM
memories as well as the gain Gi;j from Equation (26.17) are determined using
WCC’s processor-specific low-level intermediate representation. The maximal loop
iteration counts C l

max used in Equation (26.14) stem from WCC’s polyhedral loop
analyzer [26] or from user annotations. The WCC compiler infrastructure allows to
generate the ILPs, their solution using IBM’s cplex solver and the final memory
allocation of the binary executable code in a fully automated fashion without any
user intervention.

The following paragraphs show some experimental results that illustrate the
WCETEST reductions that can be achieved by these two SPM allocations of program
code and of data. Experiments have been performed for an Infineon TriCore TC1796
processor that features a 47 kB code SPM and a separate 40 kB data SPM that are
both accessible within one clock cycle. The processor’s main memory has an access
latency of six clock cycles. WCET analyses were performed using the static timing
analyzer aiT [1]. All results are generated using WCC’s optimization level -O2 so
that our SPM allocations were applied to already highly optimized code.

We applied our SPM allocation of program code to 73 different real-life
benchmarks. Code sizes range from 52 bytes up to 18 kB. Since these code sizes
are much smaller than the totally available SPM size, we artificially limit the
available SPM space for benchmarking. For each benchmark, SPM sizes of 10%,
20%, . . . , 100% of the benchmark’s code size were used. Figure 26.6 shows the
WCET estimates of all benchmarks produced by the WCET analyzer aiT that result
from our SPM allocation as a percentage of the WCETEST when not using the
program SPM at all. The bars in the diagram represent the average values over
all 73 benchmarks. As can be seen, steadily decreasing WCETEST values were
observed for increasing SPM sizes. Already for tiny SPMs with a capacity of 10%
of a benchmark’s code size, WCETEST decreases to 92.6% compared to the case

Fig. 26.6 Average relative WCETEST values after WCET-oriented SPM allocation of code

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 847

Fig. 26.7 Average relative WCETEST values after WCET-oriented SPM allocation of data

when not using the SPM at all. For SPMs large enough to hold entire benchmarks,
an average WCETEST of only 60% of the original WCET was obtained. Thus, the
achieved savings range between 7.4% and 40%. Our SPM allocation of program
code potentially changes the benchmarks’ code sizes due to the insertion of adjusted
jump instructions in order to keep the control flow correct. It turned out that these
changes are negligible – we observed a maximal code size increase by 128 bytes
for our benchmarks. On average over all 73 benchmarks, code sizes increased by
0.02%.

Figure 26.7 shows the results of our SPM allocation of data averaged over all
benchmarks that contain global data. The x-axis represents varying SPM sizes in
absolute values. Again, we observed that WCETEST decreased steadily for increas-
ing data SPM sizes. Already for SPMs of only 8 bytes size, average WCET estimates
over all benchmarks were reduced by 2.6%. For the real TriCore architecture with
its 40 kB data SPM, average overall savings of 20.2% were achieved. The run-time
complexity of both ILP-based SPM allocations is negligible in practice. ILP solving
times of at most two CPU seconds were observed on an Intel Xeon at 2.4 GHz.

Both SPM allocations for code and data assume constant values to represent
WCET values of basic blocks depending on the actual memory allocation (cf.
Equations (26.11) and (26.17)). This in turn implies that the access latencies of
the memories are also assumed to be constant like the six clock cycles for main
memory accesses considered in this section. However, if Flash memory is used as
main memory, its access latencies can vary, since Flash memory is organized in
blocks and consecutive accesses within one block are faster than the six clock cycles
used here. This behavior of Flash memories has no effect on the SPM allocation
of code, since Equation (26.11) uses WCET values provided by a static timing
analyzer that is inherently aware of the varying access latencies of Flash memories.
The SPM allocation of data uses a constant gain Gi;j for data memory accesses in
Equation (26.17) which relies on the assumption of constant access latencies. Thus,
this SPM allocation could take suboptimal allocation decisions so that its objective
function from Equation (26.15) does not optimally minimize the global WCET of
a program. However, since all WCET estimates used to generate Fig. 26.7 were
solely obtained by aiT with its built-in support for Flash memories, our results can
be considered safe, and the savings depicted in Fig. 26.7 are considerable despite of

848 P. Marwedel et al.

the conservative ILP model. We expect that the additional WCET reductions that
could potentially be achieved by an improved ILP model considering block Flash
accesses are marginal and not worth the effort.

26.5.2 Static Instruction Cache Locking

It is worthwhile mentioning that the structure of the ILP presented in the pre-
vious section is very general and flexible so that it can be employed to realize
other memory-oriented optimizations beyond SPM allocation. The key difference
between SPM allocation and cache locking is the granularity of the items to be
allocated to the SPM or cache, respectively. In the case of SPMs, basic blocks
or global variables of arbitrary size are candidates for memory allocation – cf.
Equations (26.10) and (26.16). In contrast, the granularity of items that can be
locked into a cache is defined by the cache’s hardware architecture and its lockdown
scheme.

For example, the ARM926EJ-S architecture supports way-based instruction
cache locking which means that only complete columns of anN -way set-associative
cache (cf. Sect. 26.3) can be locked. For anN -way set-associative cache with a total
capacity of SCACHE bytes, each way comprises SWAY bytes:

SWAY D SCACHE=N (26.18)

For a size B of a cache block given in bytes, the number of lines L per cache way is

L D SWAY=B (26.19)

Loading content from the main memory and locking it into a single cache line causes
some architecture-specific but constant costs CLINE. Thus, the costs for locking a
complete way consisting of L lines are

CWAY D L � CLINE (26.20)

Due to the modulo addressing of caches, memory addresses with addr
mod SWAY � 0 are mapped to the beginning of a cache way. Thus, the main
memory can be divided into memory blocks mb with a size of SWAY bytes each such
that each block can be entirely locked into a single cache way. This partitioning
into blocks of size SWAY is then applied to a program to be optimized by our cache
locking approach – these blocks mb1; : : : ;mbm denote candidates for cache locking.
Thus, the ILP for instruction cache locking includes binary decision variables per
memory block mbj :

yj D

�
0 if memory block mbj remains unlocked
1 if memory block mbj is locked into the instruction cache

(26.21)

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 849

An N -way set-associative cache can keep copies of up to N such memory blocks
at the same time, since ways can only be locked in their entirety. Thus, an ILP
constraint needs to ensure that the size of the contents locked into the cache does
not exceed the cache size:

mX
jD1

yj � N (26.22)

As already shown in Sect. 26.5.1, each basic block bi of a program causes some
costs ci . The WCET estimate of bi if it is executed from main memory is denoted
by the constant C i

MAIN while C i
CACHE represents its Worst-Case Execution Time if

the block is locked into the cache. Given the size Si of each basic block bi and its
start address in main memory, it is easy to determine the number of bytes Si;j of bi
that are part of memory block mbj . Then, the potential WCETEST reduction of bi
in clock cycles Ri;j if parts of it are executed from the cache due to a lockdown of
mbj is:

Ri;j D
Si;j

Si
� .C i

MAIN 	 C
i
CACHE/ (26.23)

In the ILP for instruction cache locking, the costs ci reflect bi ’s WCETEST depending
on whether memory objects that bi is part of are locked into the cache:

ci D C
i
MAIN 	

mX
jD1

yj �Ri;j (26.24)

Using these basic block costs ci , the constraints from Equations (26.12), (26.13),
(26.14) that model the structure of a program’s CFG can, again, be reused without
any further modification in order to realize the ILP for cache locking.

In analogy to Sect. 26.5.1, the WCETEST of a complete C program is represented
by the ILP variable wmain

entry . However, static instruction cache locking as presented
here involves some overhead in terms of WCETEST , since some newly inserted code
for loading and locking contents into the cache needs to be executed in the very
beginning of function main. Thus, the objective function of the ILP for instruction
cache locking that has to be minimized now models the WCETEST of the complete
program including this lockdown overhead [34]:

Minimize wmain
entry C

mX
jD1

yj � CWAY (26.25)

This ILP model is again fully integrated and automated within the WCC
compiler [15,47]. An evaluation has been carried out for an ARM926EJ-S processor
that features a 16-kB large instruction cache with 32-byte line size, Least-Recently
Used (LRU) replacement, and a configurable associativity of 2 or 4. Content can
be accessed from the cache within one clock cycle, while main memory accesses

850 P. Marwedel et al.

Fig. 26.8 Average relative WCETEST values after WCET-oriented locking of 2-way set-
associative instruction caches

take six cycles. The instruction cache supports way-based locking as described in
this section. Loading and locking a single cache line of 32 bytes takes CLINE D 47

clock cycles. The assumption of constant values for main memory access latencies
and thus for the cache line locking overhead CLINE has already been discussed at the
end of Sect. 26.5.1. In the context of the instruction cache locking presented here,
the imprecision of the ILP model is again considered marginal, since the constant
locking overhead contributes exactly once to a benchmark’s overall WCET, because
the locking code is executed exactly once during the system startup phase.

Our cache locking optimization has been evaluated using 100 different real-
life benchmarks from various commonly used benchmarking suites (DSPstone,
MediaBench, MRTC, UTDSP, and some benchmarks from miscellaneous sources).
For our evaluations, we artificially limited the cache sizes to 10%, 15%, and 20% of
a benchmark’s overall code size.

Figure 26.8 depicts the results of our static instruction cache locking scheme if
applied to an architecture with a 2-way set-associative cache. The bars of the dia-
gram show the WCET estimates that result from our cache locking as a percentage
of the WCETEST when executing the benchmarks without any cache. The figure
shows average results over all used benchmark suites for the sake of readability.
Per benchmark suite, detailed results are given for ILP-based cache locking as
well as for a freely operating instruction cache without any locking. All locking-
based results include the overhead for loading and locking blocks into the cache
prior to a benchmark’s execution. As can be seen from Fig. 26.8, ILP-based cache
locking leads to maximal overall WCETEST reductions of 35.4% (misc benchmarks)
for very small caches with a capacity of 10% of a benchmark’s code size. For
caches of size 15% and 20%, respectively, the maximally achieved WCETEST

reductions increase up to 37.7% (misc benchmarks) and 43.1% (MRTC). The
maximal improvements achieved by a regularly operating cache without locking
amount to 32.6%, 36.3%, and 37.8% for the MediaBench suite and caches of sizes
10%, 15%, and 20%, respectively. Interestingly, our proposed cache locking always
outperforms the regular caches except for MediaBench. Due to the static nature of
the cache locking approach described here, the originally dynamic behavior of the
cache gets lost. MediaBench exhibits a number of computation kernels that cannot
be locked simultaneously into the size-restricted cache. In contrast, the regularly

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 851

Fig. 26.9 Average relative WCETEST values after WCET-oriented locking of 4-way set-
associative instruction caches

operating cache can exchange the content during run time and adapt better to the
characteristics of these benchmarks. Partial cache locking as described in [11] would
be an alternative for such cases. For all other benchmark suites, the WCETEST values
resulting from our cache locking are significanly lower than those obtained by a
regular cache. On average over all 100 considered benchmarks, locking leads to
improvements of 27.1%, 31.2%, and 34.3% for 10%, 15%, and 20% large caches,
respectively, while the unlocked caches of the same sizes only show improvements
of 3.3%, 12.4%, and 19.6%, respectively.

The same trends were observed for a 4-way set-associative cache (cf. Fig. 26.9).
Compared to the previous case with associativity of 2, the regular and unlocked
4-way set-associative cache achieves much better results due to its higher degree of
freedom in which way to store some blocks: here, maximal WCETEST reductions
of 35.5%, 38.9% (MediaBench), and 39.5% (misc) were achieved. However, the
locked cache still outperforms the unlocked one except for MediaBench. Cache
locking leads to maximal improvements of 35.4%, 46.1%, and 48.3% (misc
benchmarks) for caches of size 10%, 15%, and 20%, respectively. On average
over all benchmarks, locking the 4-way set-associative cache improves WCETESTs
between 29.5% (10% cache size) and 39.6% (20% cache size) while the regular
unlocked cache only achieves reductions from 19.8% (10% cache size) up to 29.2%
(20% cache size).

Locking of content into data caches could be done in a similar fashion as
described here. A first approach on static data cache locking using compile-time
cache analysis was originally proposed in [42].

26.5.3 Instruction Cache Partitioning for Multitask Systems

While the techniques described so far are effective in reducing the WCETEST of
a single program, today’s systems are often multitask systems where different
programs are preempted and activated by a scheduler. For such multitask sys-
tems, caches are an even larger source of timing unpredictability as compared
to single-task systems (cf. Sect. 26.3), because interrupt-driven schedulers lead to
unknown points of time where task preemptions and context switches may happen.

852 P. Marwedel et al.

Furthermore, it may happen that one task evicts cache contents belonging to some
other task so that this other task exhibits additional cache misses if it resumes its
execution. Finally, it is also unknown at which address the execution of a preempted
task continues; hence it is unknown which cache set is accessed and eventually
evicted next. Recent work on Cache-Related Preemption Delay (CRPD) analysis
tries to incorporate scheduling and task preemption into timing analysis. But since
the behavior of a cache in preemptive multitask systems cannot be predicted with
100% accuracy, the resulting WCET estimates are often highly overestimated, or
some scheduling policies are not analyzable at all.

Cache partitioning is a technique to make the I-cache behavior perfectly
predictable even for preemptive multitask systems. Here, the cache is divided into
partitions of different sizes, and each task of a multitask system is assigned to one of
these partitions. This partitioning is done such that each task can only evict entries
from the cache that belong to its very own partition. By construction, a task can
never evict cache contents of other tasks. As a consequence, multiple tasks do not
interfere with each other any longer w.r.t. the cache during context switches. This
allows to apply static WCET analyses for each individual task of the system in
isolation. The overall WCETEST of a multitask system using partitioned caches is
then composed of the WCETEST values of the single tasks given a certain partition
size, plus the overhead required for scheduling and context switching.

Cache partitioning can be realized fully in software and thus does not require
any support by the underlying cache hardware, as opposed to cache locking as
presented in the previous Sect. 26.5.2. For this purpose, the code of each task has to
be scattered over the main memory’s address space in a way that it only uses such
memory addresses that map to those cache sets that belong to the task’s partition.
Thus, a task’s executable code is split into many chunks which are stored in non-
consecutive regions in main memory. To make sure that a task’s control flow remains
correct after splitting it into chunks, additional jump instructions between these
chunks need to be inserted. The generation of these chunks in the executable code
can be done easily by the linker if a dedicated linker script describing this scattering
and the different chunks is provided.

The remaining challenge consists of determining a partition size per task
such that a multitask system’s overall WCETEST is minimized. In the following,
preemptive round-robin scheduling of tasks is assumed and the period Pi of each
task ti 2 ft1; : : : ; tmg is known a priori. The length of the entire system’s hyper-
period is equal to the least common multiple of all tasks’ periods Pi . The schedule
count Hi then reflects the number of times that each task ti is executed within
a single hyper-period. Furthermore, a couple of n possible cache partition sizes
Sj 2 fS1; : : : ; Sng measured in bytes is given beforehand.

WCET-aware software-based cache partitioning is modeled inside the WCC
compiler using integer linear programming again [35]. A binary decision variable
zi;j is used to model whether task ti is assigned to a partition of size Sj :

zi;j D

�
0 if task ti is not assigned to a partition of size Sj
1 if task ti is assigned to a partition of size Sj

(26.26)

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 853

The following constraints ensure that each task is assigned to exactly one partition:

8 tasks ti 2 ft1; : : : ; tmg W
nX

jD1

zi;j D 1 (26.27)

In analogy to the SPM allocations presented in Sect. 26.5.1, the cache capacity
constraint is given by:

mX
iD1

nX
jD1

zi;j � Sj � SCACHE (26.28)

It is assumed here that the WCETEST Ci;j of each task ti if executed once using
a cache partition of each possible size Sj is given a priori. This is achieved by
performing a WCET analysis of each task for each partition size before generating
the ILP for software-based cache partitioning. A task ti ’s WCETEST ci depending
on the partition size assigned to the task by the ILP can thus be expressed as:

8 tasks ti 2 ft1; : : : ; tmg W ci D
nX

jD1

zi;j � Ci;j (26.29)

The objective function of the ILP models the WCETEST of the entire task set for one
hyper-period. This overall WCET estimate to be minimized is thus defined by:

Minimize
mX
iD1

Hi � ci (26.30)

Figure 26.10 shows the WCET estimates achieved by cache partitioning for
three different benchmark suites. Since no multitask benchmark suites currently
exist, randomly selected task sets from single-task benchmark suites were used.

50%

60%

70%

80%

90%

100%

256 512 1024 2048 4096 8192 16384 256 512 1024 2048 4096 8192 16384 256 512 1024 2048 4096 8192 16384
[Bytes]

Re
la

tiv
e

W
CE

T
[%

]

[Bytes]
MRTC

[Bytes]
UTDSP

Fig. 26.10 Average relative WCETEST values after cache partitioning for multitask systems

854 P. Marwedel et al.

Figure 26.10 shows results for task sets consisting of 5, 10, and 15 tasks, respec-
tively. Each individual point in the figure’s curves denotes the average value over
100 randomly selected task sets of a certain size. Benchmarking was done for an
Infineon TriCore TC1796 processor with instruction cache sizes ranging from 256
bytes up to 16 kB. An access to the cache requires one clock cycle, accessing the
main memory takes six cycles. All results are given as a percentage, with 100%
corresponding to the WCETEST values achieved by a standard heuristic that uses a
partition size per task which depends on the task’s code size relative to the code size
of the entire task set.

As can be seen, substantial WCETEST reductions of up to 36% were obtained.
In general, WCET savings are higher for small caches and lower for larger caches.
For DSPstone, WCETEST reductions between 4% and 33% were achieved. For the
MRTC benchmarks, an almost linear correlation between WCETEST reductions and
cache sizes was observed, with maximal WCET savings of 34%. For the large
UTDSP benchmarks, WCETEST reductions of up to 36% were finally observed.
In most cases, larger task sets exhibit a higher optimization potential so that cache
partitioning achieves higher WCETEST improvements as compared to smaller task
sets.

Software-based instruction cache partitioning as described in this section can
be used for any processor and does not require any hardware support. However,
hardware cache partitioning could be advantageous if dynamic repartitioning and
adaptation of partition sizes at run time are desired. Such a dynamic partitioning
scheme is difficult to realize in software, because it involves relocating the scattered
code in memory at run time. As mentioned previously, additional jump instructions
need to be added to the tasks’ code in order to keep its control flow correct. The
additional overhead contributed by these jumps is obviously the larger, the smaller
the considered cache sizes are. For tiny caches of only 256 bytes, the overhead due to
the additional jumps lies between 10% and 34% of the benchmark’s total WCETEST

for UTDSP and MRTC, respectively. For 16 kB large caches, the overhead lies
between 1% and 2%.

A combination of partitioning and locking for data caches has been proposed
in [43]. The authors use dynamic cache locking, static cache analyses and cache
partitioning to ensure that all intratask conflicts, and consequently, memory access
times, are exactly predictable.

26.6 Trade-Off Between Energy Consumption, Precision, and
Run Time

26.6.1 Memory-Aware Mapping with Optimized Energy
Consumption and Run Time

Thiele et al. designed the DOL tool for the optimized mapping of applications
to multi-processor systems on a chip (MPSoCs) [40]. The original system is
unaware of the sizes of the involved memory systems. Jovanovic modified this

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 855

Fig. 26.11 Reduction in run time and energy achieved by run-time minimization

system such that the characteristics of available memories are also taken into
account [20]. Also, the modified tool accepts general C-programs as input, instead of
Kahn process networks. Input programs are generated by automatic parallelization
[10]. Communication is based on First-In First-Out (FIFO) buffers. Two separate
ILP models minimize either the energy consumption or the run time. The model
minimizing the execution time includes access times of memories as well as
expected execution times for the processors. Optimizations exploit available fast
on-chip memories.

Figure 26.11 shows the reduction in run time and energy consumption for an ILP
system minimizing run time. The baseline is an ILP-based mapping using run time
as its objective.

In this case, the execution platform comprises four processors, each equipped
with local data and instruction level-1 SPMs and a larger local level-2 memory.
Furthermore, the platform includes a global shared memory which is used for
communication. On average, memory awareness results in a reduction of the run
time by 18% and of the energy by 27%.

Figure 26.12 shows the corresponding reduction for an ILP system minimizing
the energy consumption. The baseline is an ILP-based mapping using energy as its
objective. Compared to the results for run-time minimization, average run time is
increased by 28%.

Both figures prove by means of an example that memory awareness allows a
reduction of objectives run time and energy consumption. Also, minimization of run
time does not automatically minimize energy consumption and vice versa, despite
time being one variable in the computation of the energy consumption.

In a similar way, a trade-off between QoS and timeliness of results can be
considered. For example, we can introduce qualifiers indicating whether or not

856 P. Marwedel et al.

Fig. 26.12 Reduction in run time and energy achieved by energy minimization

variables should be allocated to reliable memory [37]. For variables not requiring
reliable memory reads, we can skip error correction in the interest of timeliness of
results.

26.6.2 Optimization for Three Objectives for the PAMONO Virus
Sensor

In this section, we would like to demonstrate by means of an example how trade-
offs between several objectives can be considered in such a way that reliable energy
estimates are used. As an example, we will use a CPS for the detection of biological
viruses based on Plasmon-Assisted Microscopy of Nano-Objects (PAMONO). The
overall structure of the system can be seen in Fig. 26.13.

The sensor system includes an optical prism. On one of the sides (at the top
in Fig. 26.13), there is a very thin gold layer covered with antibodies. Laser light
entering through the second side of the prism, illuminating the backside of the gold
layer and leaving through the third side is captured by a video camera. This prism is
attached to a flow cell where the samples are applied. A pipe can be used to pump
streams of gas or liquids across the gold layer. In case the stream contains viruses,
they get stuck onto the gold layer with a certain probability. In case this happens,
reflectivity of light reflected on the other side of the gold layer is affected and
captured by the camera. Due to a resonance effect, the change is visible even when
the size of the viruses is smaller than the wavelength of light. Real-time diagnosis
of viruses like chicken-flu is among the potential applications.

However, due to the small dimensions of the camera sensor, video streams
contain a significant amount of noise. A sophisticated image processing pipeline is
needed in order to achieve a good detection quality. Figure 26.14 shows the pipeline

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 857

Fig. 26.13 Overall structure
of the PAMONO virus
sensor [33]

Signal Restoration
4 Integer Parameters
1 Float Parameter
6 Hardware Parameters

Feature Extraction
2 Integer Parameters
5 Float Parameters
2 Hardware Parameters

Classification
2 Float Parameters
1 Harware Parameter

Preprocessing
2 Hardware Parameters

Segmentation
3 Integer Parameters
2 Float Parameters
7 Hardware Parameters

Fig. 26.14 Image processing pipeline to detect viruses. Listed parameters are modified by the GA
to optimize the performance [33]

used in our research. In contrast to the previous section on WCET optimization, the
application has soft real-time requirements.

In the pre-processing step, 16-bit gray-scale images are copied to the Graphics
Processing Unit (GPU) and converted to floating-point arrays. In the next step,
constant background noise is removed, and the signal of attaching virus is restored
based on a sensor model of the PAMONO sensor. This step includes parameters
which can be optimized for the best noise reduction under given circumstances.
Various per-pixel and per-polygon features are computed during the feature extrac-
tion step. Per-pixel features describe the degree of membership to pixel classes
representing virus adhesion. Per-polygon features perform the same function for
polygons and their membership to polygon classes representing virus adhesion.
During feature extraction, parameters comprise detection thresholds and parameters
to switch between different feature extraction algorithms. Segmentation parameters
control the way in which polygons are created and the way in which extracted
features per pixel are combined to features per polygon. False classifications are
minimized by appropriate classification parameters. The virus detection quality is
measured with the F1 score. This score is defined as the harmonic mean of the
precision p and recall r :

F1 D 2
p � r

p C r
(26.31)

with

precision p D
TP

TPC FP
(26.32)

858 P. Marwedel et al.

and recall r D
TP

TPC FN
(26.33)

TP W true positives

FP W false positives

FN W false negatives

One of the goals of our research was to demonstrate that the overall system can
be downsized from a PC-based environment such that it can be operated even
in environments with limited compute performance and power availability. For
demonstration purposes, we selected the Odroid-XU3 [17] platform as an execution
platform.

The XU3 contains two powerful multi-core processors with four cores each and a
GPU resulting in a performance matching the needs of our application. The overall
structure is shown in Fig. 26.15. Also and very importantly, it provides facilities for
measuring the currents for all the cores and the memory. In this way, we can get
around the problem of the limited precision of computer-based energy models. This
allows considering energy during the optimization of the mapping of our application
to the cores and the GPU. Unfortunately, the Odroid XU3 is superseded by the
Odroid XU4 platform, which does not have this facility.

Odroid-XU3

IN
A2

31
IN

A2
31

IN
A231

IN
A2 31

Low Power BUS - AMBA ACE

ARM
Mali-T628

MP6

Low Power
DDR3

Cortex-A15

Core Core

Core Core

Cortex-A7

Core Core

Core Core

Exynos 5422

Fig. 26.15 Odroid execution platform [33]

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 859

A Genetic Algorithm (GA) is used to find Pareto-optimized design points
considering execution times, energy consumption, and detection quality as ob-
jectives. (See �Chap. 6, “Optimization Strategies in Design Space Exploration”
of this book for a general discussion of Genetic Algorithm (GA)-based design
space exploration. Other approaches for automatic parallelization and mapping
to platforms can be found in �Chaps. 28, “MAPS: A Software Development
Environment for Embedded Multicore Applications” and � 29, “HOPES: Pro-
gramming Platform Approach for Embedded Systems Design” of this book.) The
design space exploration is based on a heavily modified version of ECJ (Java-
based Evolutionary Computation Research System) [28]. These modifications take
parameter dependencies and parameter restrictions into account such that invalid
parameter combinations are not generated. The evaluation of run times and energy
consumption is based on the execution of the software on two available Odroid
XU3 platforms concurrently as shown in Fig. 26.16. GPU; both Central Processing
Units (CPUs) and memory energy consumptions are measured. Fitness results are
averaged over several executions in order to remove jitter. Our energy measurement
tool has been made publicly available [32].

An overview of the pipeline parameters is depicted in Fig. 26.14. Software
parameters ranging from Boolean to restricted [0,1] floating-point values lead
already to a large solution space. Beside pipeline parameters of the detection
algorithm, several hardware parameters of our Odroid platform are considered by
the optimization algorithm:

1. The used governor controlling operating parameters at run time (e.g., perfor-
mance, powersave, interactive)

2. The frequency (200 MHz to 2 GHz in 100 MHz steps) of the Cortex-A15 core, if
control is allowed by the governor

3. Work group sizes of all pipeline elements mapped to the Mali-T628 GPU
4. The memory allocation size for buffers storing among other things the detected

polygons on the GPU

Fitness Evaluation

Energy Meter

Fitness Evaluation

Energy Meter

Odroid-XU3

A7

Mali
T628 RAM

A15

Odroid-XU3

A7

Mali
T628 RAM

A15Master PC

Genetic
Algorithm

Fig. 26.16 Evolutionary optimization process [33]

860 P. Marwedel et al.

In the following, we will focus on parameters dealing with memory configura-
tions. The work group sizes on the Mali-T628 GPU affect the number of threads
concurrently running on the GPU and thus have major impact on how fast the data
can be processed and how much energy is consumed by the GPU. Partial results
within the work group are shared by synchronizing using the shared memory on
the streaming multi-processor on the GPU. Thus, memory restricts the parallelism
which could be extracted. In addition, the memory allocation size for some of the
buffers on the GPU can affect the detection quality. Within the different pipeline
steps, ring buffers on the GPU store some of the previously processed images.
Depending on the ring buffer sizes, the number of available images varies, e.g.,
for noise reduction or the feature extraction, which increases/decreases the quality
of the results.

To give a detailed example on memory (buffer) allocation optimization, we will
now focus on the application of the sensor model and temporal noise reduction
applied to the captured images to identify possible virus pixels. According to
the PAMONO sensor model, a captured image consists of a background signal,
multiplied with a virus signal and an additive noise term. A potential virus pixel can
be identified by an increase in intensity. Thus, a sliding window of size b of the past
and a sliding window of size a of the future are used to detect potential virus pixels.
Since the virus-binding process takes some time, it is not to be seen instantaneously.
Thus, a time interval of size g is used to model this attaching process. Figure 26.17
shows the intensity of one pixel over a time series of frames. The detection algorithm
calculates the median (red horizontal line) over b and a images. If the difference
between the two medians exceeds a specific threshold, this pixel is considered

29000

30000

31000

32000

33000

34000

35000

36000

250 300 350 400 450 500 550 600

Se
ns

or
 Im

ag
e

In
te

ns
ity

Frames

a g b
Δ

>
 th

re
sh

ol
d

→
 p

os
si

bl
e

vi
ru

s
pi

xe
l d

et
ec

te
d

Fig. 26.17 Sensor model application and temporal noise reduction for one pixel and one time step
to detect possible virus pixels

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 861

as a possible virus pixel. As time moves forward, this is comparable to a sliding
window moving over large data. For this preprocessing step, aCbCg images need
to be stored in GPU’s memory and intuitively, increasing the intervals increases
the performance of this processing step. However, the memory is limited, and
determining a good combination regarding the other memory parameters in the
pipeline is complex. Thus, the genetic algorithm takes care of this selection process.
In later pipeline stages, all possible virus pixels are analyzed in more detail, e.g.,
additional per-pixels and polygon features are extracted.

For the evaluation, we used two data sets for the virus detection program. We
used a training and a testing data set, each consisting of 1,000 16-bit gray-scale
sensor images with size 706 pixels � 167 pixels. Both data sets were labeled, thus
the correct positions of all virus pixels are known, and we can calculate the F1
score according to Equation (26.31). We conducted three different experiments.
Firstly, only hardware parameters were optimized. Secondly, only software param-
eters were optimized. Thirdly, hardware and software parameters were optimized
simultaneously. The unoptimized detection software achieves 7.5 frames per second
while reaching the best detection quality. The greatest improvements could be
observed for the combined optimization. Figure 26.18 shows the result of this
combined optimization experiment. For execution time and energy consumption,

Fig. 26.18 Trade-off between detection quality, energy consumption, and run time resulting
from an optimization of hardware and image pipeline parameters. For execution time and energy
consumption, lower values are better, and for detection quality, higher values are better [33]

862 P. Marwedel et al.

Table 26.1 Excerpt of the Pareto front for the objectives virus detection quality (F1 training),
energy consumption, and execution time. In addition, the detection quality (F1 testing) for the
unseen testing data set is shown. As baseline/comparative measurement, an unoptimized run is
given in the first row, which was measured with an unmodified system and program [33]

F1 training F1 test Energy cons. Energy sav. Exec. time Speedup Frame rate

100% (fixed) 99.5% (fixed) 370.0 Joule – 119.8 s – 7.5 fps

100% 99.5% 57.5 Joule 84% 29.3 s 4:1 30.7 fps

100% 99.5% 84.5 Joule 77% 28.9 s 4:1 31.1 fps

98.5% 97.4% 47.9 Joule 87% 25.5 s 4:7 35.3 fps

97.4% 99.5% 69.3 Joule 81% 23.9 s 5:0 37.7 fps

96.9% 87.8% 27.7 Joule 93% 14.8 s 8:1 60.8 fps

87.9% 76.6% 22.3 Joule 94% 10.8 s 11:1 83.3 fps

84.2% 60.5% 20.7 Joule 94% 11.4 s 10:5 78.9 fps

74.2% 63.9% 23.5 Joule 94% 10.7 s 11:2 84.1 fps

74.2% 64.7% 33.6 Joule 91% 10.4 s 11:5 86.5 fps

51.9% 55.8% 33.0 Joule 91% 10.0 s 12:0 90.0 fps

lower values are better, and for detection quality, higher values are better. The
Pareto front is highlighted, and Table 26.1 shows an excerpt of it. Without losing
quality, for example, a solution running at 30.7 fps with 84% energy savings was
generated. A not 100% detection quality might be sufficient to prove that a sample
is contaminated with viruses. By accepting loss of quality, even higher frame rates
and energy savings were observed. For example, a solution which still achieves a
good detection quality like 76.6% results in an energy saving of 94% and a speedup
of more than 11. This indicates that one could use a less capable and thus cheaper
hardware or increase the resolution of the camera sensor. An increased resolution
enables the simultaneous detection of different virus types. Here, the gold layer is
partitioned with different antibodies, and an increased resolution is necessary to
detect viruses.

Flexibility with respect to the detection quality is the new objective in this
example. This example demonstrates that, in the future, we should not just optimize
the usage of the memory in isolation. Rather, it should be included in an overall
optimization process for several objectives. This optimization needs to include both
the software compilation process as well as the exploration of hardware parameters.
This example also demonstrates that hardware parameters exist even in the case of
off-the-shelf hardware.

26.7 Conclusions and Future Work

In this chapter, we have demonstrated consequences of the fact that the size
of memories has a large impact on their access times and energy consumption.
This impact leads to heterogeneous memory architectures comprising a mixture
of fast small memories and relatively slow larger memories. Other consequences
are resulting from the fact that information processing in Cyber-Physical Systems

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 863

has to take a number of objectives and constraints into account. This leads to the
idea of an exploitation of memory characteristics such that constraints are met and
objectives are used for optimizations. In this chapter, we have presented results of
our research groups. First results concern the optimized use of Scratchpad memories
for a reduction of the energy consumption. Detailed results are presented for the case
of hard real-time systems: we present compiler optimizations using the Worst-Case
Execution Times as their objective. We are also briefly describing the optimized
mapping to multi-core platforms with a choice of objectives to optimize for. Finally,
we demonstrate the integration of memory optimizations into a global approach for
the optimization of a cyber-physical sensor system with soft deadlines. In this case,
the scope for optimizations comprises software and hardware parameters. The goal
is to find good trade-offs between multiple objectives, including quality of service.

We believe that this chapter demonstrates trends in the design of embedded and
CPS very nicely. There is a trend from the consideration of just the memory system
for mono-processors and single objectives towards whole system optimization for
multi-core systems for multiple objectives. The inclusion of the Quality of Service
as an objective offers new opportunities, since we can trade off the quality of service
against other objectives.

Acknowledgments Part of the work on this section has been supported by Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876 “Providing Information
by Resource-Constrained Analysis,” project B2. URL: http://sfb876.tu-dortmund.de

References

1. AbsInt Angewandte Informatik GmbH (2016) aiT: Worst-Case Execution Time Analyzers.
http://www.absint.com/ait

2. AbsInt Angewandte Informatik GmbH (2016) Stack overflow is a thing of the past. https://
www.absint.com/stackanalyzer/index.htm

3. Amdahl GM (1967) Validity of the single processor approach to achieving large scale
computing capabilities. AFIPS spring joint computer conference

4. Bai K, Shrivastava A (2010) Heap data management for limited local memory (LLM) multi-
core processors. In: Proceedings of the international conference on hardware/software codesign
and system synthesis (CODES+ISSS), pp 317–325

5. Banakar R, Steinke S, Lee BS, Balakrishnan M, Marwedel P (2002) Scratchpad memory: a
design alternative for cache on-chip memory in embedded systems. In: Proceedings of the
international symposium on hardware-software codesign (CODES), Estes Park (Colorado)

6. Borkar S (2005) Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation. IEEE Micro 25(6):10–16

7. Burks A, Goldstine H, von Neumann J (1946) Preliminary discussion of the logical design
of an electronic computing element. Report to U.S. Army Ordnance Department, reprinted at
https://www.cs.princeton.edu/courses/archive/fall10/cos375/Burks.pdf

8. Chang DW, Lin IC, Chien YS, Lin CL, Su AWY, Young CP (2014) CASA: contention-aware
scratchpad memory allocation for online hybrid on-chip memory management. IEEE Trans
Comput-Aided Des Integr Circuits Syst 33(12):1806–1817. doi:10.1109/TCAD.2014.2363385

9. Cho H, Egger B, Lee J, Shin H (2007) Dynamic data scratchpad memory management
for a memory subsystem with an MMU. In: Proceedings of the conference on languages,
compilers, and tools for embedded systems (LCTES). ACM, New York, pp 195–206. doi:10.
1145/1254766.1254804

http://sfb876.tu-dortmund.de
http://www.absint.com/ait
https://www.absint.com/stackanalyzer/index.htm
https://www.absint.com/stackanalyzer/index.htm
https://www.cs.princeton.edu/courses/archive/fall10/cos375/Burks.pdf
http://dx.doi.org/10.1109/TCAD.2014.2363385
http://dx.doi.org/10.1145/1254766.1254804

864 P. Marwedel et al.

10. Cordes D, Engel M, Neugebauer O, Marwedel P (2013) Automatic extraction of pipeline
parallelism for embedded heterogeneous multi-core platforms. In: Proceedings of the interna-
tional conference on compilers, architectures, and synthesis for embedded systems (CASES),
Montreal

11. Ding H, Liang Y, Mitra T (2012) WCET-centric partial instruction cache locking. In:
Proceedings of the design automation conference (DAC), San Francisco

12. Dominguez A, Udayakumaran S, Barua R (2005) Heap data allocation to scratch-pad memory
in embedded systems. J Embed Comput 1(4):521–540

13. Drepper U (2007) What every programmer should know about memory. http://www.akkadia.
org/drepper/cpumemory.pdf

14. Falk H, Kleinsorge JC (2009) Optimal static WCET-aware scratchpad allocation of program
code. In: Proceedings of the design automation conference (DAC), San Francisco, pp 732–737

15. Falk H, Lokuciejewski P (2010) A compiler framework for the reduction of worst-case
execution times. Int J Time Crit Comput Syst (Real Time Syst) 46(2):251–300

16. Falk H, Verma M (2004) Combined data partitioning and loop nest splitting for energy
consumption minimization. In: Proceedings of the international workshop on software and
compilers for embedded systems (SCOPES), Amsterdam, pp 137–151

17. Hardkernel Co., Ltd., Odroid-XU3. http://www.hardkernel.com/main/products/prdt_info.php?
g_code=G140448267127 (2015)

18. Hofmann M, Jost S (2003) Static prediction of heap space usage for first-order functional
programs. In: Proceedings of the symposium on principles of programming languages (POPL).
ACM, New York, pp 185–197. doi:10.1145/604131.604148

19. HP Labs, CACTI – an integrated cache and memory access time, cycle time, area, leakage, and
dynamic power model. http://www.hpl.hp.com/research/cacti/ (2015)

20. Jovanovic O, Kneuper N, Marwedel P, Engel M (2012) ILP-based memory-aware mapping
optimization for MPSoCs. In: Proceedings of the conference on embedded and ubiquitous
computing (EUC), Paphos, Cyprus

21. Kang S, Dean AG (2012) Leveraging both data cache and scratchpad memory through
synergetic data allocation. In: Proceedings of the real time and embedded technology and
applications symposium (RTAS). IEEE Computer Society, Washington, DC, pp 119–128.
doi:10.1109/RTAS.2012.22

22. Kannan A, Shrivastava A, Pabalkar A, Lee JE (2009) A software solution for dynamic stack
management on scratch pad memory. In: Proceedings of the Asia and South Pacific design
automation conference (ASPDAC), pp 612–617

23. Kotthaus H, Korb I, Marwedel P (2015) Performance analysis for parallel R programs: towards
efficient resource utilization. Technical Report 1/2015, TU Dortmund, CS Department

24. Li L, Wu H, Feng H, Xue J (2007) Towards data tiling for whole programs in scratchpad
memory allocation. In: Proceedings of the Asia-Pacific conference on advances in com-
puter systems architecture (ACSAC). Springer, Berlin/Heidelberg, pp 63–74. doi:10.1007/
978-3-540-74309-5_8

25. Liu Y, Zhang W (2015) Scratchpad memory architectures and allocation algorithms for hard
real-time multicore processors. J Comput Sci Eng 9:51–72

26. Lokuciejewski P, Cordes D, Falk H, Marwedel P (2009) A fast and precise static loop analysis
based on abstract interpretation, program slicing and polytope models. In: Proceedings of the
international symposium on code generation and optimization (CGO), Seattle, pp 136–146

27. Luican II, Zhu H, Balasa F (2006) Formal model of data reuse analysis for hierarchical
memory organizations. In: Proceedings of the international conference on computer-aided
design (ICCAD). ACM, New York, pp 595–600. doi:10.1145/1233501.1233623

28. Luke S, Panait L, Balan G, Paus S, Skolicki Z, Popovici E, Sullivan K, Harrison J, Bassett J,
Hubley R (2015) ECJ: a java-based evolutionary computation research system. http://cs.gmu.
edu/~eclab/projects/ecj/

29. Marwedel P (2010) Embedded system design – embedded systems foundations of cyber-
physical systems. Springer, New York

http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/cpumemory.pdf
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://dx.doi.org/10.1145/604131.604148
http://www.hpl.hp.com/research/cacti/
http://dx.doi.org/10.1109/RTAS.2012.22
http://dx.doi.org/10.1007/978-3-540-74309-5_8
http://dx.doi.org/10.1145/1233501.1233623
http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/projects/ecj/

26 Memory-Aware Optimization of Embedded Software for Multiple Objectives 865

30. McIlroy R, Dickman P, Sventek J (2008) Efficient dynamic heap allocation of scratch-pad
memory. In: Proceedings of the international symposium on memory management, pp 31–40

31. National Science Foundation (2013) Cyber-physical systems (CPS). http://www.nsf.gov/pubs/
2013/nsf13502/nsf13502.htm

32. Neugebauer O, Libuschewski P (2015) Odroid energy measurement software. http://sfb876.tu-
dortmund.de/auto?self=Software

33. Neugebauer O, Libuschewski P, Engel M, Mueller H, Marwedel P (2015) Plasmon-based virus
detection on heterogeneous embedded systems. In: Proceedings of the international workshop
on software and compilers for embedded systems (SCOPES)

34. Plazar S, Falk H, Kleinsorge JC, Marwedel P (2012) WCET-aware static locking of instruction
caches. In: Proceedings of the international symposium on code generation and optimization
(CGO), San Jose, pp 44–52

35. Plazar S, Lokuciejewski P, Marwedel P (2009) WCET-aware software based cache partitioning
for multi-task real-time systems. In: Proceedings of the international workshop on worst-case
execution time analysis (WCET), Dublin, pp 78–88

36. Pyka R, Fassbach C, Verma M, Falk H, Marwedel P (2007) Operating system integrated energy
aware scratchpad allocation strategies for multi-process applications. In: Proceedings of the
international workshop on software and compilers for embedded systems (SCOPES)

37. Schmoll F, Heinig A, Marwedel P, Engel M (2013) Improving the fault resilience of an H.264
decoder using static analysis methods. ACM Trans Embed Comput Syst (TECS) 13(1s):31:
1–31:27. doi:10.1145/2536747.2536753

38. Steinke S, Wehmeyer L, Lee BS, Marwedel P (2002) Assigning program and data objects
to scratchpad for energy reduction. In: Proceedings of design, automation and test in Europe
(DATE)

39. Suhendra V, Mitra T, Roychoudhury A, et al. (2005) WCET centric data allocation to
scratchpad memory. In: Proceedings of the real-time systems symposium (RTSS), Miami,
pp 223–232

40. Thiele L, Bacivarov I, Haid W, Huang K (2007) Mapping applications to tiled multiprocessor
embedded systems. In: International conference on application of concurrency to system
design, pp 29–40. doi:10.1109/ACSD.2007.53

41. Udayakumararan S, Dominguez A, Barua R (2006) Dynamic allocation for scratch-pad
memory using compile-time decisions. ACM Trans Embed Comput Syst (TECS) 5:472–511

42. Vera X, Lisper B, Xue J (2003) Data cache locking for higher program predictability. ACM
SIGMETRICS Perform Eval Rev 31(1):272–282

43. Vera X, Lisper B, Xue J (2007) Data cache locking for tight timing calculations. ACM Trans
Embed Comput Syst (TECS) 7(1):1–38

44. Verma M, Marwedel P (2006) Overlay techniques for scratchpad memories in low power
embedded processors. IEEE Trans Very Large Scale Integr Syst 14(8):802–815

45. Wang P, Sun G, Wang T, Xie Y, Cong J (2013) Designing scratchpad memory architecture with
emerging STT-RAM memory technologies. In: Proceedings of the international symposium on
circuits and systems (ISCAS), pp 1244–1247. doi:10.1109/ISCAS.2013.6572078

46. Wang Z, Gu Z, Yao M, Shao Z (2015) Endurance-aware allocation of data variables on NVM-
based scratchpad memory in real-time embedded systems. IEEE Trans Comput-Aided Des
Integr Circuits Syst 34(10):1600–1612. doi:10.1109/TCAD.2015.2422846

47. WCET-aware Compilation (2016) http://www.tuhh.de/es/esd/research/wcc
48. Zhang W, Ding Y (2013) Hybrid SPM-cache architectures to achieve high time predictability

and performance. In: Proceedings of the conference on application-specific systems, architec-
tures and processors (ASAP), pp 297–304. doi:10.1109/ASAP.2013.6567593

http://www.nsf.gov/pubs/2013/nsf13502/nsf13502.htm
http://www.nsf.gov/pubs/2013/nsf13502/nsf13502.htm
http://sfb876.tu-dortmund.de/auto?self=Software
http://sfb876.tu-dortmund.de/auto?self=Software
http://dx.doi.org/10.1145/2536747.2536753
http://dx.doi.org/10.1109/ACSD.2007.53
http://dx.doi.org/10.1109/ISCAS.2013.6572078
http://dx.doi.org/10.1109/TCAD.2015.2422846
http://www.tuhh.de/es/esd/research/wcc
http://dx.doi.org/10.1109/ASAP.2013.6567593

27Microarchitecture-Level SoC Design

Young-Hwan Park, Amin Khajeh, Jun Yong Shin, Fadi Kurdahi,
Ahmed Eltawil, and Nikil Dutt

Abstract

In this chapter we consider the issues related to integrating microarchitectural
IP blocks into complex SoCs while satisfying performance, power, thermal,
and reliability constraints. We first review different abstraction levels for SoC
design that promote IP reuse, and which enable fast simulation for early
functional validation of the SoC platform. Since SoCs must satisfy a multitude
of interrelated constraints, we then present high-level power, thermal, and
reliability models for predicting these constraints. These constraints are not
unrelated and their interactions must be considered, modeled and evaluated.
Once constraints are modeled, we must explore the design space trading off
performance, power and reliability. Several case studies are presented illustrating
how the design space can be explored across layers, and what modifications could
be applied at design time and/or runtime to deal with reliability issues that may
arise.

Acronyms

AHB Advanced High-performance Bus
APB Advanced Peripheral Bus
ASIC Application-Specific Integrated Circuit
BER Bit Error Rate
BLB Bit Lock Block

Y.-H. Park
Digital Media and Communications R&D Center, Samsung Electronics, Seoul, Korea
e-mail: younghwp@uci.edu

A. Khajeh
Broadcom Corp., San Jose, CA, USA
e-mail: amin.khajeh@broadcom.com

J. Yong Shin • F. Kurdahi (�) • A. Eltawil • N. Dutt
Center for Embedded and Cyber-Physical Systems, University of California Irvine, Irvine,
CA, USA
e-mail: junys@uci.edu; kurdahi@uci.edu; aeltawil@uci.edu; dutt@uci.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_28

867

mailto:younghwp@uci.edu
mailto:amin.khajeh@broadcom.com
mailto:junys@uci.edu
mailto:kurdahi@uci.edu
mailto:aeltawil@uci.edu
mailto:dutt@uci.edu

868 F. Kurdahi et al.

CA Cycle Accurate
CDMA Code Division Multiple Access
CMOS Complementary Metal-Oxide-Semiconductor
CMP Chip Multi-Processor
CPU Central Processing Unit
DFS Dynamic Frequency Scaling
DMA Direct Memory Access
DTA Dynamic Timing Analysis
DTM Dynamic Thermal Management
DVFS Dynamic Voltage and Frequency Scaling
DVS Dynamic Voltage Scaling
ESL Electronic System Level
GPIO General-Purpose Input/Output-pin
IDC Inquisitive Defect Cache
IP Intellectual Property
IPB Intellectual Property Block
ISS Instruction-Set Simulator
ITRS International Technology Roadmap for Semiconductors
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
MPSoC Multi-Processor System-on-Chip
MTF Mean Time to Failure
NMOS Negative-type Metal-Oxide-Semiconductor
PDF Probability Density Function
PI Principal Investigator
PMOS Positive-type Metal-Oxide-Semiconductor
PSNR Peak SNR
RAM Random-Access Memory
RDF Random Dopant Fluctuations
ROM Read-Only Memory
RTL Register Transfer Level
SNR Signal-to-Noise Ratio
SoC System-on-Chip
SRAM Static Random-Access Memory
SSTA Statistical Static Timing Analysis
T-BCA Transaction-based Bus Cycle Accurate
TLM Transaction-Level Model
VFI Voltage/Frequency Island
VOS Voltage Over Scaling
WCDMA Wideband CDMA

Contents

27.1 Introduction . 869
27.1.1 A Typical System-on-Chip Design Flow . 869

27.2 Power Modeling . 871
27.2.1 Sources of Power Consumption and Defining Energy 873
27.2.2 Overview of Power Saving Techniques . 875

27 Microarchitecture-Level SoC Design 869

27.2.3 Overview of System-Level Power Estimation Methodologies 878
27.2.4 Cache Power Modeling . 881

27.3 Thermal and Reliability Issues and Modeling in the Nano-CMOS Era 883
27.3.1 Reliability . 885
27.3.2 Dynamic Thermal Management . 886
27.3.3 Thermal Sensors . 888
27.3.4 Sensor Allocation: Hotspot Monitoring . 889
27.3.5 Sensor Allocation: Full-Chip Profile Reconstruction 890

27.4 Reliability Modeling . 892
27.4.1 Memory . 892
27.4.2 Combinational Logic . 894
27.4.3 Microarchitecture and System Level . 896

27.5 Interplay between Power, Temperature, Performance, and Reliability 897
27.6 Power, Performance, and Resiliency Considerations in SoC Design 900

27.6.1 Architecture-Level Error Tolerance . 901
27.6.2 Application-Level Error Resiliency: Multimedia Applications (H.264) 902
27.6.3 Application-Level Error Resiliency: Wireless Modem Application

(WCDMA) . 904
27.6.4 Mobile Phone SoC Example . 905

27.7 Summary and Conclusion . 907
References . 907

27.1 Introduction

A typical System-on-Chip (SoC) is shown in Fig. 27.1. There are four major compli-
cated heterogeneous components in SoCs, such as processors (ARM7 shown in the
figure), custom hardware Intellectual Property Blocks (IPBs) (memory controller,
DMA controller, interrupt/GPIO controller and so forth), on-chip memories (RAM
and ROM) and on-chip communication architectures (AHB and APB bus [8]).

These components have their own role such as processors run embedded software
and usually control overall operation, custom hardware IPBs are dedicated to
execute particular tasks, memories are storage place for data and instructions to be
used, and all of which are connected through a on-chip communication architecture
consisting of multiple shared interconnected buses using a specific arbitration
scheme for fair sharing of the limited bus bandwidth.

27.1.1 A Typical System-on-Chip Design Flow

In recent years, research in this field has focused on the problem of defining a
framework for SoC design that promotes Intellectual Property (IP) reuse, with
particular attention paid toward achieving performance goals. Such a framework
needs to have clearly defined abstraction levels for capturing the SoC design. The
basic idea is to model the system first at a high level of abstraction, and then
gradually refine the model to create models with higher levels of detail, until we
arrive at the gate-level model (netlist). The SystemC [4] or SpecC [25] methodology

870 F. Kurdahi et al.

Fig. 27.1 An example of an SoC

focuses on defining a framework in which the system is initially captured at the
specification level, and then gradually refined to generate models at lower levels of
abstraction. This framework allows reuse of protocol libraries and IPBs at various
levels.

Figure 27.2 outlines the typical flow of SoC design in terms of the levels of
abstraction at which the designer can simulate the performance of an SoC, and
perform communication architecture exploration.

The modeling abstraction levels in Fig. 27.2 are typically used for commu-
nication space exploration, with the application/algorithm usually captured with
high-level languages such as C/C++. In Cycle Accurate (CA) models, the bus
architecture and system components (both masters and slaves) are captured at a
cycle and signal accurate level. While these models are extremely accurate, they
are too time-consuming to model and only provide a moderate increase in speed
over Register Transfer Level (RTL) models. Recent research efforts have focused
on using concepts found in the domain of Transaction-Level Models (TLMs) to
speed up simulation. Transaction-level models are very high-level bit-accurate
models of a system, with specifics of the bus protocol replaced by a generic
bus (or channel), and where communication takes place when components call
read() and write() methods provided by the channel interface. Since detailed timing
and signal accuracy are omitted, these models can be simulated quickly but are
only useful for early embedded software development and high-level functional
validation of the system. Transaction-based Bus Cycle Accurate (T-BCA) models
overcome the slow simulation speed of CA models and the low accuracy of TLMs.
T-BCA models capture timing and protocol details, but model components at a less
detailed behavioral level, which allows rapid system prototyping and considerable

27 Microarchitecture-Level SoC Design 871

algorithm
Specification model

TLM model

T-BCA model

cycle/pin-accurate
model

C / C++ model
“algorithm level”

early eSW development
functional validation

fast commucation
arch. exploration

cosimulation
with RTL, debug

and validate

channel

read()
write()

Fig. 27.2 A typical flow for an SoC design [105]

simulation speed over RTL. The component interface and the bus, however, are still
modeled at a cycle-accurate level, which enables accurate communication space
exploration.

27.2 Power Modeling

Reducing power dissipation is a critical design goal for electrical devices, from
handheld systems with limited battery capacity, to large computer workstations
that dissipate vast amounts of power and require costly cooling mechanisms.
Ever-increasing performance needs, which require large parallel processing at fast
clock frequencies accessing huge amounts of data from on and off-chip memories
through a very complicated bus interconnection architecture, make this power issue
more critical. In reality, their power densities and associated heat generation are
exponentially increasing, as shown in Fig. 27.3 [5].This rapid increase of power

872 F. Kurdahi et al.

1000

100

10

i386
i486

Pentium

Pentium Pro

Pentium II

Pentium IIIHot Plate

Nuclear Reactor

Rocket Nozzle

Sun’s Surface

1
1.5 µ 1 µ 0.7 µ 0.5 µ 0.35 µ 0.25 µ

Technology Generation

w
at

ts
/c

m

0.18 µ 0.13 µ 0.1 µ 0.07 µ

Fig. 27.3 The increase of power densities [5]

dissipation is of great concern, not only because of the aforementioned usage time of
handheld devices and cooling costs but also because it can cause many unfortunate
side effects, such as damaging chip reliability and reducing expected life cycles.

To address the ever-widening designer productivity gap, TLMs [20,82] and high-
level simulation platforms are increasingly being used for SoC architecture analysis
and optimization. The increasing importance of power as a design objective in
today’s complex systems is making it imperative to address power consumption
early in the design flow, at the system level, where the benefits of performing
power optimizing design changes are the greatest. Since design changes are easier
and have the greatest impact on application power dissipation at the system level
[58, 109], designers today must evaluate various power optimizations as early as
possible in an Electronic System Level (ESL) design flow. In order to explore
these optimizations, accurate power estimation models are necessary. These models
are especially important for Chip Multi-Processor (CMP) systems with tens to
hundreds of processors integrated on a single chip. Even a slight inaccuracy in power
estimation for a single processor can result in a large absolute error for the chip.
Several system-level power estimation approaches have been proposed in recent
years, focusing on the various components of CMP designs, such as processors
[58], memories [42], interconnection fabrics [84], and custom ASIC blocks [80].
Because of the heterogeneity of these components, power estimation models are
usually customized for each component to achieve desired estimation accuracy. In
addition, each type of component requires several power estimation models that can
be incorporated at the most coarse grain, high levels of abstraction, as well as at the
most detailed, low-level simulation abstractions.

27 Microarchitecture-Level SoC Design 873

27.2.1 Sources of Power Consumption and Defining Energy

In digital Complementary Metal-Oxide-Semiconductor (CMOS) circuits, there are
three key sources of power consumption, shown below [87]

Ptotal D Pdynamic C Pshort�circui t C Pleakage (27.1)

Decomposed equations for each source, respectively, can be described by
the following equations. Firstly, dynamic power consumption can be derived as
below:

Pdynamic D ˛0�>1CLVdd
2fclk (27.2)

where ˛0�>1 is the probability that a power consuming switching occurs, CL is the
load capacitance, Vdd is the supply voltage, and fclk is the clock frequency. Note
that Eq. 27.2 shows an important characteristic of dynamic power, which is that
the power is quadratically proportional to the supply voltage, and can be efficiently
reduced as the supply voltage level is reduced.

Secondly, the short circuit power consumption is formulated as below:

Pshort�circuit D Ishort�circuitVdd (27.3)

where Vdd is the supply voltage, and Ishort�circuit is the short circuit current which
arises when both the NMOS and PMOS transistors are concurrently turned on,
making a direct path from the supply power to ground. However, since this
short circuit power consumption is responsible for only 10–15% of total power
consumption and researchers have not found a good way to reduce this power
without sacrificing performance [87], we will not focus on this component of power
consumption in detail.

Finally, leakage power consumption can be calculated by:

Pleakage D IleakageVdd (27.4)

where Ileakage is the leakage current and Vdd is the supply voltage. Besides the
dynamic and short-circuit power, transistors also consume leakage power (also
referred to as static power), which is quickly becoming the large portion of total
power consumption, based on the recent International Technology Roadmap for
Semiconductors (ITRS) 2008 update [5], as shown in Fig. 27.4. Unlike dynamic
power, the leakage power consumption continues during logic’s idle status, and most
of the techniques for dynamic power saving are not helpful for leakage power saving
[5]. There are two major sources of these leakage currents, which are subthreshold
leakage and gate-oxide leakage.

The first major component of the leakage current is gate-oxide leakage current,
which flows from the gate of a transistor into its substrate. The thickness of the oxide

874 F. Kurdahi et al.

5,000

4,500

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0
2007 2008 2009

Trend: Memory Static Power Trend: Logic Static Power

Trend: Logic Dynamic PowerTrend: Memory Dynamic Power

Requirement: Dynamic plus StatusPower

P
ow

er
 [m

W
]

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Fig. 27.4 Power consumption trends of portable chips [5]

material that insulates the gate decides this leakage current. The equation [87] for
this type of leakage is given by:

Igate�oxide D K1W

�
Vdd

Tox

�2
e
�˛ Tox

Vdd (27.5)

where W is the gate width, Tox is the thickness of the oxide, Vdd is the supply
voltage, and K1 and ˛ are constants. Based on Eq. 27.5, the gate-oxide leakage,
Igate�oxide will be increased exponentially by decreasing the thickness (Tox) of the
oxide material of the gate. In conjunction with other design parameters, such as
transistor sizes and supply voltage, the thickness of the transistor (including Tox) for
the upcoming chip design will also be decreased, and this will cause the exponential
increase of the gate-oxide leakage current. Insulating the gate with high-k dielectric
material might be the best possible solution for the problem of increasing gate-oxide
leakage for the next few years [5].

The second major component of the leakage current is subthreshold leakage
current, which flows between the drain and source terminal of a transistor. When
the gate-source voltage, Vgs , exceeds the weak inversion point, it is still lower than
the threshold voltage, Vt , and the MOSFET works like a bipolar transistor. The
subthreshold current in this region changes exponentially, depending on the gate-
source voltage, Vgs . The current in this subthreshold region is formulated by [5]:

Isubthreshold D K2We
�Vt
nT

	
1 	 e

�Vdd
T

(27.6)

where W is the gate width, Vt is the threshold voltage, Vdd is the supply voltage,
T is the temperature, and K2 and n are constants. According to the Eq. 27.6, when
the threshold voltage, Vt , is reduced, the subthreshold leakage current is increased

27 Microarchitecture-Level SoC Design 875

exponentially. In response to increasing requirements for reducing technology
scale parameters for upcoming chip designs, the threshold voltage should be
reduced in conjunction with the supply voltage, and this causes a worse problem
of subthreshold leakage. The increased subthreshold leakage current can cause
another serious problem, called thermal runaway. A vicious cycle can result, in
which the increased leakage currents cause increased temperature, then the increase
temperature again causes more leakage currents, based on Eq. 27.6.

On the other hand, energy can be defined by the total quantity of the work
a system completes over a period of time and formulated as the following
equation :

E.T / D

Z T

0

P .t/dt (27.7)

where E is energy, P(t) is the instantaneous power at time t , and T is a time interval.
The unit for energy is joules (J), and the unit for power is watts (W). In a computing
system, power is the rate at which the system consumes the supplied electricity
while performing computing activities, and energy is the total amount of consumed
electricity over time for the task [87].

Note that some techniques to decrease power do not always decrease energy
consumption. For instance, the power used by a computing system can be reduced
to half by halving the supplied clock frequency; however, the total energy consumed
will be approximately the same, because computing time will be twice as long to
run the same task.

Different approaches will be necessary for reducing power or for reducing
energy, depending on the context. For a system (e.g., a workstation) in which
temperature is an important concern (because high temperature can cause various
problems such as decreasing the overall speed of chips, increasing cooling costs,
damaging chip reliability, and causing the thermal runaway problem), we must re-
duce instant power, despite the influence on overall energy, to keep the temperature
of the system within tolerable limits. In handheld systems, however, reducing energy
is usually the more important issue, because it is directly related to the battery
lifetime.

27.2.2 Overview of Power Saving Techniques

There are many proposed techniques to reduce the power and energy of digital
systems. The discussion in this section provides an overview for the most widely
used power saving techniques.

Approaches for minimizing power consumption in CMOS digital systems
involve various design abstraction levels, from the software algorithm and archi-
tectures to circuits. Some important power saving techniques are summarized in
Table 27.1. They are classified by enabling time and sources of targeted power
consumption (leakage/dynamic). Some techniques can be employed at the time of

876 F. Kurdahi et al.

Table 27.1 Summary of power saving techniques

Power Design time Idle time Run time

Dynamic Lower Vdd Clock gating Dynamic voltage

Multi-Vdd Operand isolation Scaling (DVS)

Transistor sizing Dynamic frequency

Logic optimizations Scaling (DFS)

Leakage Multi-Vt Sleep transistors Variable Vt

Multi-Vdd

Variable Vt

design, such as modification of transistor size and logic optimization, while other
techniques, including varying supply voltage, clock frequency, and threshold volt-
age, can be either implemented statically at the design time or applied dynamically
during the run time [84].

There are several techniques to decrease dynamic power consumption in particu-
lar. These techniques have different trade-offs, and some of them do not necessarily
reduce the total energy consumption.

Clock gating (CG) is a widely used power optimization technique that saves
dynamic power by stopping clock supply to unused portions in synchronous logic
designs. “Multistage clock gating” refers to the scenario in which a clock gating cell
controls either another one, or an entire row of clock gating cells. The synthesis tool
identifies common enables and groups them with another clock gating cell. This
technique is used for further optimization of existing gating cells by merging more
register banks, so that the clock gating can be moved up closer to the root (i.e., the
power/ground pad(s)), for more power savings [2].

Operand isolation is the technique that keeps the inputs of the data-path operators
stable whenever the output is not used. Special circuitry is required to identify
redundant computations of data-path components and to prevent unnecessary
switching activity. Both CG and OI techniques can be implemented automatically
with standard tools such as Synopsys Power Compiler [2], or manually, by inserting
necessary circuits at the RTL.

Reducing the physical load capacitance is a technique to reduce dynamic
power consumption. Low-level design parameters, such as size and wire length
of transistors, decide this physical capacitance. We can reduce this capacitance by
decreasing transistor sizes or by decreasing wire length and/or width at the cost of
performance degradation.

Dynamic Frequency Scaling (DFS) is a technique which varies the clock
frequency during run time. This technique can reduce dynamic power consumption
linearly (Eq. 27.2). However, this also degrades overall performance and does not
save total energy consumption. Thus, we can use this technique when reducing peak
or average power dissipation, when reducing the temperature of the chip is the major
concern.

Lowering the supply voltage is a very attractive method of power saving,
because it reduces dynamic power quadratically (Eq. 27.2), while reducing leakage

27 Microarchitecture-Level SoC Design 877

power (Eq. 27.4). However, this technique also increases the delay of CMOS
gates inversely. Thus, logical and architectural compensation is necessary for this
degradation of performance. The technique of scaling the supply voltage during
run time is called Dynamic Voltage Scaling (DVS). However, since reducing the
voltage increases gate delays, we also have to reduce the clock frequency for
proper operation of the circuit. DVS is therefore commonly used in conjunction
with DFS.

On the other hand, there are techniques that primarily decrease the subthreshold
leakage power.

Multiple threshold voltages (Vt) provide a trade-off for leakage power and speed.
The high-Vt transistor has a leakage current that is roughly one order of magnitude
lower than that of the low-Vt transistor, at the cost of reduction in performance.
Thus, the low-Vt transistors are preferred for use in timing critical paths, whereas
the high-Vt transistors are used for the rest of the paths. According to Eq. 27.6, this
technique exponentially decreases the subthreshold leakage. However, increasing
the threshold voltage can decrease logic performance as well, as described in the
equation below :

f /
.Vdd 	 Vt /

˛

Vdd
(27.8)

where f is a frequency, Vdd is the supply voltage, Vt is the threshold voltage, and ˛
is a constant.

Decreasing the size of circuits can reduce leakage power. This is because the total
leakage current is proportional to the leakages that are consumed in all transistors in
a circuit. Minimizing cache size and reducing unnecessary logic in the chip will be
helpful in reducing the actual number of transistors and the corresponding leakage
power. However, this is not always possible, because reduced logic may degrade
performance.

Power gating with sleep transistors is reducing the count of the active transistors
dynamically, by blocking the power supply to the idle portion of circuits. Problems
with this method might include difficulty in predicting the exact time and portion of
the idle part of various components, and minimizing the overhead for this by turning
them off or on.

Cooling the system is also helpful in reducing leakage power. Various cooling
techniques such as blowing cold air, refrigerating the system, or even circulating
costly liquid nitrogen have been proposed and used for several decades. This
technique has several advantages, such as decreasing subthreshold leakage power
significantly and preventing degradation of reliability and lifecycle of a chip. This
technique also increases the overall speed of chips, because electricity has smaller
resistance at lower temperature. In spite of the aforementioned advantages, cost
and cooling system power consumption are major limitations to applying cooling
technology to every chip [87].

Again, only the most popular and widely used power minimization techniques
have been presented in the section.

878 F. Kurdahi et al.

27.2.3 Overview of System-Level Power Estimation Methodologies

There have been several power estimation methodologies for specific components in
an SoC such as processors [19,27,48,64,89,94,98], various communication fabrics
[36, 83–85] and memories [67], and developed power examination tools such as
SimplePower [109] and Wattch [19]. There are relatively few methodologies for
customized ASIC blocks, due to their extreme heterogeneity. Few researchers have
tried to make comprehensive power models for all these components [11, 58, 78].
These models still simplify the power model for a specific component (e.g., the two
state processor power model for PowerViP [58]).

With the conventional approach, designers need power estimation models at
each of the design abstraction levels, in order to guide design decisions that affect
power dissipation. Existing power estimation techniques create power models that
map onto, and are useful only at, a particular level. For instance, a technique that
is readily applicable at the detailed functional level cannot be easily used at the
higher functional level, which is unaware of the detail functionality of the design.
Furthermore, if this technique is used at the lower levels, it fails to exploit the
additional accuracy in the control and data paths and suffers from an abstraction
mismatch. Similarly, cycle-accurate power estimation tools are applicable to the
detailed microarchitectural level of the ESL design flow, but cannot be easily
ported to higher-level architectural models that lack microarchitectural detail such
as the methods described in �Chaps. 25, “Hardware-Aware Compilation” and � 26,
“Memory-Aware Optimization of Embedded Software for Multiple Objectives”.
The mismatch between power model granularity and level of detail captured at an
ESL design level thus limits the applicability of current power estimation techniques
across an ESL flow.

In [81], a comprehensive multi-granularity power model generation methodology
that spans the entire ESL design flow (Fig. 27.5) was reported. Using industry-
standard design flows (Fig. 27.6), this methodology can quickly generate multiple
power models ranging from the simplest two-level, coarse-grained model for
early power estimation, to the most accurate cycle-accurate model (Fig. 27.8) that
allows designers to explore the impact of using power optimizations with minimal
manual interference and effort. Our proposed approach is based on the concept
of hierarchical decomposition. This decomposition is aided by a tripartite hyper-
graph model of processor power that can be iteratively refined to create power
estimation models with better accuracy (Fig. 27.7). The methodology serves a vital
function in supplying a designer with multiple derivative processor power estimation
models that match the increasing accuracy of the design, as it is successively
refined from the functional, to the architectural and then down to the cycle-accurate
microarchitectural stages in an ESL design flow (Figs. 27.7 and 27.8). The feasibility
of this approach was demonstrated on an OpenRISC and MIPS processor case study,
and present results to show how multi-granularity power models generated for the
processors provide designers with the flexibility to trade-off estimation accuracy
and simulation effort during system-level exploration.

27 Microarchitecture-Level SoC Design 879

Fig. 27.5 ESL design flow for embedded processors

Power LUT Generation
Process

Power Modeling
Process

Tech Lib

RTL Design

1

2

3

4

1

8

7

6

5

2

3

9

9

Select Parameters

Synthesis

Power Outputs

Check accuracy
goal met ?

Yes

No

No

No

No

Yes

Yes

Yes

 Bias
= Structural ?

Ranked Structural
Decomposition

Candidates

3D Power
LUT

Special Purpose
Tech Bench Gate Level

Simulation

Clustering
(Optional)

Lower
Threshold

Output Power
Model

Instr.
Decomposition

Possible

Structural
Decomposition

Possible ?

Structural
Decomposition

Regression
Compensation

Simulate &
Estimate Accuracy

Power Simulation

Power Contribution
Computation

Simulation
Information

Fig. 27.6 Power model generation methodology

880 F. Kurdahi et al.

Fig. 27.7 Tripartite hyper-graph H(P), (a) simplest two-state power model, (b) power model with
set I decomposed, (c) power model with sets I, S decomposed, (d) power model with sets I, S, U
decomposed

Fig. 27.8 Hierarchical power model for OpenRISC processor

Figure 27.9 shows the average absolute cycle error (EAAC) and relative estima-
tion effort in terms of simulation overhead, for the generated power models for
OpenRISC. The power model at Level 0 has a large error of over 20%, which
subsequently reduces for the more detailed power models. The Level 3_b power

27 Microarchitecture-Level SoC Design 881

Fig. 27.9 Average absolute
cycle error and relative effort
for power models

model has an approximately 5% error, which is extremely good compared to gate
level estimates. The error in such a detailed model occurs because of several factors,
such as the inability to capture the layout and consequently accurately model intra-
processor interconnect length, and wire switching.

Figure 27.10 shows a comparison between system-level and gate-level nor-
malized power for the “mul” testbench executing on OpenRISC, across different
ESL design flow levels. The figure shows how the coarse-grained Level 1_b
instruction-set model at the architectural/ISS level is unable to track the power
variation very accurately due to the absence of a pipeline at that level. When the
pipeline is captured, as in the Level 2_b case, then accuracy improves slightly.
However, it requires a more detailed Level 3_b model which additionally captures
the structural units in a cycle-accurate manner, to accurately track the peaks of the
gate level power waveform. The power estimated at this level can allow designers
to accurately estimate peak power of the processor at simulation speeds that are
100 	 1000� faster than gate-level power simulation. Such a model is extremely
useful for determining the thermal and electrical limits of the design and can
guide the selection of the appropriate packaging to prevent hotspots and thermal
runaway.

27.2.4 Cache Power Modeling

Even though the processor power model described above deeply investigated only
the power of core components, we can take account of the cache power for the more
realistic embedded processor power model with equation below:

Pprocessor D Pcore C Pcache (27.9)

where Pprocessor is the cycle-accurate power for the entire processor, Pcore is cycle-
accurate power of the core (which is available from the our methodology), and
Pcache is the cycle-accurate power for the cache component (which may be obtained
from the available memory tool such CACTI [42]).

882 F. Kurdahi et al.

Fig. 27.10 Relative power waveform comparison for the “mul” testbench on OpenRISC (Unit for
Time: 20 ns). (a) Level 1_b. (b) Level 2_b. (c) Level 3_b

27 Microarchitecture-Level SoC Design 883

If we are interested in simple average power consumption of a processor, the
power model can be formulated as:

Pprocessor_avg D Pcore_avg C
nPcache_hit

N
C
mPcache_miss

N
(27.10)

where Pprocessor_avg is the average power value for the entire processor, Pcore_avg

is the average power value of the core, Pcache_hit is the average power value of
cache hit (access power), Pcache_miss is the average power value of cache miss (idle
power), n is total cache hit time during the execution, m is the total cache miss time
during the execution, and N is the total execution time.

Rodriguez et al. [92] investigated power consumption of cache with varying sizes
(from 16 to 256 K) and associativities (from 1-way to 16-way) for the 65 and 32 nm
technology libraries as shown in Fig. 27.11. In fact, current and future SoC designs
will be dominated by embedded memory as projected by the ITRS reports which
indicate that memories will continue to be a major fraction of any SoC in terms of
both area and power [46].

27.3 Thermal and Reliability Issues and Modeling in the
Nano-CMOS Era

Downscaling of chips or the continued shrinkage in gate length has naturally
increased the power density of chips. Resulting high temperature of chips became
one of the biggest issues in chip design, and those thermal issues are becoming
more problematic with aggressive technology scaling. In extreme cases, some parts
of a chip can be burned out leading to chip failure in the end; thermal runaway,
which is caused by positive feedback between increased leakage current and high
temperature, can be thought of as one example of such a case. In addition, as we
put a lot of heterogeneous components on a chip, the thermal distribution of a chip
tend to become nonuniform, i.e., some parts of a chip are hotter than the others
due to different processing tasks in different parts of a chip. Implementing multiple
cores instead of increasing the clock frequency of a single core became a trend in
processor design as a way of alleviating the burden of high power consumption and
enormous heat generation [38], and this trend also plays a role in making the thermal
distribution nonuniform over a chip to some extent. Especially when thread mapping
among the multiple cores is not well-balanced, nonuniform thermal distribution can
become a lot worse, resulting in multiple localized temperature maxima, which are
usually termed hotspots [38]. According to [14, 15, 103], temperature within a chip
can vary as much as 50 ıC across a die, and examples of this nonuniform thermal
distribution are given in Fig. 27.12.

884 F. Kurdahi et al.

0

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

2-
w

ay
1-

w
ay

4-
w

ay

32
n

m

65
n

m

8-
w

ay
16

-w
ay

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

16kB

32kB

64kB

128kB

256kB

512kB

2-
w

ay
1-

w
ay

4-
w

ay
8-

w
ay

16
-w

ay

0.
51

1.
5

ot
he

rs

da
ta

pr
oc

de
co

de

pi
pe

_o
vr

hd

bi
tli

ne

Power(W)Power(W)

20

0.
51

1.
52

2.
53

3.
54

Fi
g

.
2

7
.1

1
Po

w
er

br
ea

kd
ow

n
fo

r
th

e
65

nm
an

d
32

nm
lib

ra
ri

es
va

ry
in

g
ca

ch
e

si
ze

s
an

d
as

so
ci

at
iv

iti
es

[1
06

]

27 Microarchitecture-Level SoC Design 885

Fig. 27.12 Examples of nonuniform thermal profiles [77, 111]

Hotspots and thermal gradient may result in various kinds of issues: reduced
reliability of a chip due to electromigration, [14] timing failure or communication
error between functional blocks in a chip due to increased clock skews, higher cost
than before for cooling solutions such as heavy cooling fans, heat sinks, etc. [103]

27.3.1 Reliability

One of the serious issues that can be caused by high operating temperatures and
a nonuniform thermal distribution over a die is the reduction in the reliability of
interconnects and the resulting short life expectancy of a chip due to electromigra-
tion [14]. Electromigration is the result of momentum transfer from the collision
between electrons and the atoms forming the lattice of the material, and it can
cause void or hillock formation along the metal lines in extreme cases. With CMOS
technology scaling, the reliability and the life expectancy of interconnects in a chip
are becoming more susceptible to electromigration than before. Black’s equation
or its modified equation [15] given below have been widely used as a way of
modeling and predicting the Mean Time to Failure (MTF) of interconnects subjected
to electromigration:

MTF D
A

J n
e
E
kT (27.11)

In this equation, A is a constant that is determined by the material properties and
the geometry of the interconnects, J is the current density, n is a scaling factor that
is to be determined experimentally, E is the thermal activation energy depending on
the used material, k is the Boltzmann’s constant, and T is the absolute temperature
of the metal in the unit of kelvin. The current density exponent n is usually set to a
value between one and two, and it depends on the failure mechanism [79]; a value
close to one characterizes well the failure due to void growth [62]; a value close to
two represents the failure due to void nucleation quite well [100]. In the equation,
two dominant factors determining the MTF of interconnects are the current density

886 F. Kurdahi et al.

Fig. 27.13 Trend in MTF as a function of temperature

J and the temperature T. As CMOS technology scales down, the current density of
interconnects generally increases [60], so the life expectancy of interconnects will
decrease. To make it worse, the MTF decreases exponentially with respect to the
temperature of interconnects. For example, when the temperature of an interconnect
changes from 45 to 65 ıC, the life expectancy of the interconnect is reduced by 70%
roughly, and the chip will fail much sooner than before if we design chips in a
traditional way without proper consideration on thermal issues and adequate cooling
solutions. The trend in MTF, which is normalized so that the MTF at 25 ıC is to be
one, is given in Fig. 27.13 as a function of temperature.

As process scaling develops further, the top metal layers get closer to the
substrates, and this will further intensify the impact of thermal gradients of
substrates on the thermal profile of interconnects [45]; thus, the reliability or the
MTF of interconnects decreases exponentially with the increase in the temperature
of substrates. In order to improve the reliability or the MTF of interconnects, it
becomes indispensable to manage the thermal distribution of a chip dynamically
and also to consider the thermal distribution of substrates during chip design or
interconnect design stage so that we can avoid hot regions or hotspots on the
substrates for the routing.

27.3.2 Dynamic Thermal Management

As we discussed in previous sections, temperature plays a critical role in the
reliability, the performance, and the power consumption of a chip in current and
future CMOS technology nodes. Therefore, temperature of a chip, especially in case
of a high performance chip, should be managed in a smart way at run time so that
the maximum temperature can be controlled and also temperature can be evenly
distributed both temporally and spatially for better reliability and performance of
a chip. According to [39], cost for the implementation of cooling and packaging
solutions was expected to increase at an alarming rate with the thermal dissipation of

27 Microarchitecture-Level SoC Design 887

65 W or higher; hence, thermal management of a high performance chip is also quite
crucial in terms of cooling and packaging cost. A large number of techniques for
Dynamic Thermal Management (DTM) have been proposed and developed in recent
years as ways of limiting the peak temperature of a chip or managing the temporal
and spatial temperature variation of a chip through proper resource management
[18, 53]. Those techniques can be roughly classified into one of two categories
based on how the source management is performed: hardware-based techniques and
software-based techniques.

Hardware-based DTM
The relationship between temperature and power dissipation is quite complicated,
but temperature can be managed to a certain extent by controlling power consump-
tion of a chip. One of the simple power management techniques, which is called
clock gating, began to be used generally in the early 2000s [39]; dynamic power
consumption can be minimized by disabling the clocks in a functional block when
the functional block is not in use or when the temperature of the functional block
reaches a threshold. Clock gating is relatively simple to implement and has good
cooling capability because we can effectively reduce the power consumption of a
clock tree, which may consume up to around 70% of total dynamic power [37], but
the performance degradation is quite high.

Changing dynamically the supply voltage and the clock frequency of a processor
based on the workload can be effective in reducing the dynamic power consumption
because of the quadratic relationship between dynamic power and the supply
voltage, and this technique is called Dynamic Voltage and Frequency Scaling
(DVFS) [102]. In case of a processor consisting of multiple cores, the supply voltage
and the clock frequency settings of each core can be scaled independently, and it is
termed local DVFS or distributed DVFS or per-core DVFS [26], while the chip-
level voltage and frequency control is usually termed global DVFS [37]. Additional
hardware components and increased design complexity to support multiple clock
domains or multiple Voltage/Frequency Islands (VFIs) might become a critical issue
especially in case of processors with a large number of cores [40].

Fetch gating [10, 102] is another way to cool down a chip through power con-
sumption reduction; it controls the instruction activity in the pipeline by throttling
the fetch stage, and its performance on power reduction and thermal management
highly depends on the implemented throttling mechanisms as expected.

Software-based DTM
A simple temperature-aware task scheduling technique for single-threaded proces-
sors was proposed in [93]; kernel monitors the CPU activity of each process and
the temperature readings from a thermal sensor. When the temperature of a chip
becomes higher than a threshold, the kernel identifies processes that use more
CPU activities than a predefined value, and then slows them down for cooling
purpose. Even though it was simple, it worked effectively to some extent. This basic
idea was extended to temperature-aware scheduling techniques for processors that
support multi-threading or have multiple cores. For example, a temperature-aware

888 F. Kurdahi et al.

Fig. 27.14 (a) Thread selection when the integer register file is thermally critical [32], (b)
Thermal aware task scheduling for MPSoC [29]

scheduling technique for simultaneously multi-threading (SMT) processors was
proposed in [32]; it manages the execution of threads selectively and dynamically
based on the probability of heat generation of each thread, and hardware event
counters [56] are used for the estimation of the heat generation probability. In
[29], a scheduling method specifically targeting Multi-Processor Systems-on-Chips
(MPSoCs) was proposed; for each core or processor, the probability of workload
assignment is calculated and updated regularly based on the temperature history in
the past, and one core with the highest probability is selected when a new workload
assignment is required.

When there are multiple cores or processors in a chip, process or task migration
can be used effectively in order to balance the thermal distribution among all
cores and also to improve the performance as a result; in [33] , a task migration
technique was used on top of local DVFS, and it successfully avoided all thermal
emergencies, and also achieved 2.6 times speedup when compared with the base
case of using local clock gating without task migration. Figure 27.14 illustrates such
systems.

27.3.3 Thermal Sensors

As discussed in previous sections, DTM solutions use temperature information to
manage the thermal distribution of a chip. Performance Counter-based temperature
information can be used for thermal management [56], but the information is not
a direct representation of thermal behaviors of a chip most of the time, and it can
supply approximation at best. In that sense, it is far better to use the temperature
information from thermal sensors because it represents actual thermal behavior of
a chip. Each thermal sensor basically provides point-wise temperature information.
Thus, it would be better to use a large number of thermal sensors in order to have
correct temperature information at any locations of interest on a chip. As for the
locations of interest, hotspots need to be monitored first for better reliability and
performance, and also for the reduction in power consumption of a chip just as we
discussed in previous sections. In addition, a lot more thermal sensors need to be

27 Microarchitecture-Level SoC Design 889

deployed across a die so that the thermal distribution over a die can be monitored
and balanced out for the increased reliability of a chip and also for the prevention of
performance degradation. However, it is not reasonable to allocate as many thermal
sensors as possible on a small-sized chip in reality due to a lot of practical design
constraints [63] power consumption and heat generation of thermal sensors, routing
and placement issues, etc. As a result, quite a large number of methods have been
proposed regarding how to select the number of thermal sensors properly and how to
allocate them on a die in order to have accurate temperature readings at any locations
of interest on a die at run time.

Another issue to be resolved is the accuracy of thermal sensors; a thermal sensor
in a 0.35�m 2.5 V digital CMOS technology, which was implemented in a general
purpose microprocessor in the late 1990s, had the reading accuracy of˙12 ıCwith a
resolution of 4 ıC, [96]. Since then, great improvement has been made in its reading
accuracy, and recent sensors report accuracy of ˙1 [63], but there still remains a
lot of work to be done especially when it comes to the design of on-chip thermal
sensors that are fully compatible with digital CMOS technologies.

27.3.4 Sensor Allocation: Hotspot Monitoring

Since the late 1990s and the early 2000s, thermal distribution of a chip has become a
lot more complicated due to a large number of hotspots spreading across a die, and
multiple thermal sensors came into play to monitor the temperatures of hotspots
more efficiently and accurately.

One simple way to place multiple thermal sensors on a die is to place them on
a uniform grid. As a result, some hotspots might not be detected, and the accuracy
will be quite limited especially when a small number of thermal sensors is used.
Linear interpolation technique using the temperature readings of four neighboring
thermal sensors was proposed for the estimation of the maximum temperature of a
chip [69];

When thermal distribution of a chip is available, this information can be used
for sensor allocation, and thermal sensors can be allocated in a smart way so that
the hotspots of a chip can be monitored correctly while minimizing the number of
thermal sensors. In [72], a sensor allocation algorithm divides the die area into an
array of blocks using the information on hotspot locations, and the size of each
block is adjusted in such a way that all hotspots in each block can be covered and
monitored by a single thermal sensor assigned to the block. This method works well
when the number of hotspots is not large, but with the increase in the number of
hotspots, a lot more thermal sensors will be required.

A thermal sensor allocation method based on k-means clustering [65] was
proposed in [71]; each and every hotspot is assigned to one of k clusters recursively,
where k is the number of thermal sensors, so that the Euclidean distance between
the centroid of a selected cluster and the hotspot is minimized. Then, k thermal
sensors are assigned to the centroids of those k clusters. However, this method might

890 F. Kurdahi et al.

Fig. 27.15 Recursive bisection based thermal sensor allocation [72]

produce some unreasonable results especially when remotely located hotspots have
smaller temperature differences than closely located hotspots. Figure 27.15 shows
an example of such systems.

27.3.5 Sensor Allocation: Full-Chip Profile Reconstruction

In recent years, a large number of new sensor allocation methods have been
proposed to support full-chip thermal profile reconstruction at run time from the
temperature readings of a small number of sensors. Sensor allocation is performed
with a view to a better run-time thermal profile reconstruction from the beginning,
and the number and the locations of thermal sensors are determined accordingly.
Fine-grain DTM solutions can make full use of the detailed temperature information
from full-chip profile reconstruction, especially on multi-core processors [88]; task
migration among cores can be performed more efficiently, and the thermal behavior
and static power consumption of caches, which consume a large portion of the die
area, can be optimized [47, 49].

In [77] (Fig. 27.16), energy analysis in frequency domain was used for sensor
allocation; the main idea of this method is that thermal sensors should be distributed
in proportion to the high-frequency energy in frequency domain so that more sensors
can be assigned to regions with large thermal variations. This method alternates
vertical bisection and horizontal bisection, and then compares the high-frequency
energy of the two bisected regions. Thermal sensors are allocated proportionately,
and the bisection continues until all thermal sensors are assigned.

In [112], a statistical methodology was developed for sensor allocation and full-
chip thermal profile reconstruction; the entire die area was divided into a 16-by-16

27 Microarchitecture-Level SoC Design 891

Fig. 27.16 Energy-aware thermal sensor allocation [77]

Power estimator

Sensor Placement

Thermal model Thermal estimation

Power calibrator

Thermal sensors

Fig. 27.17 Thermal profile estimation based on sensor-assisted power estimation [107]

grid, and a set of nodes on the grid were selected so that the thermal correlation
among them can be minimized, and the thermal correlation between the selected
nodes in the set and the nodes outside the set can be maximized at the same time.
In this way, each thermal sensor can provide as much temperature information as
possible on the non-sensor nodes, while the redundancy among the sensor nodes is
minimized.

One way to have accurate temperature information of a chip is to solve the heat
differential equation directly with correct power information [43]. Performance
counter-based run-time power estimators [86, 108] can be used to supply power
information at run time, but they tend to have some power estimation errors. A new
approach to achieve good temperature estimation based on the differential equation
was proposed in [107] (Fig. 27.17), and it exploits the temperature readings of
thermal sensors to correct the power estimation errors. According to the simulation
results on a dual-core processor and SPEC2000 benchmark suites [3], it achieved
the maximum error of 1.2 ıC, and the averaged error of 0.085 ıC with six thermal
sensors.

892 F. Kurdahi et al.

In [101] a novel approach of using multiple virtual thermal sensors to increase
the accuracy of temperature readings was presented; the virtual thermal sensors are
generated from a small low-power physical thermal sensor by adaptively switching
its calibration points on the run. Simulation results show that the RMS error of
temperature readings can be reduced by up to 91.1% with the use of four virtual
thermal sensors as compared with a single thermal sensor case.

27.4 Reliability Modeling

Modern highly scaled CMOS circuits suffer from performance and power losses
due to short channel effects that exacerbate process variations. Process-induced
variations are typically classified as either systematic or random variations. System-
atic variations are predictable in nature and depend on deterministic factors such
as layout and surrounding topological environment [74]. These types of errors are
handled by static redundancy techniques. Random variations, on the other hand,
pose one of the major challenges in circuit design in the nanometer regime [12]. This
variation shifts the process parameters of different transistors in a die in different
directions, which can result in significant mismatch between neighboring transistors
[66]. This phenomenon is typically referred to as Random Dopant Fluctuations
(RDF). RDF has the dominant impact on the transistors strength mismatch and
is the most noticeable type of intra-die variation that can lead to cell instability
and failure. These failures are manifested as either an increase in the cell access
time or unstable read and write operations. Typically, RDF effects are countered
by increasing the operational supply voltage, thus effectively masking away any
variations in the individual transistor threshold voltage. Clearly, this leads to higher
power consumption. One major aspect of RDF is that the randomness of the
variations results in a random distribution of the access errors across the two-
dimensional area of a memory [12, 66]. This phenomenon is a key element that
can be exploited by cross layer approaches, since random errors are much easier
to handle at higher layers of the system via error correction techniques such as
data redundancy (coding) or spatial and temporal filtering. Several research efforts
considered exploiting this phenomenon by reducing the supply voltage (i.e., Voltage
Over Scaling (VOS)) [6, 44, 73, 75, 76, 99], while informing higher network layers
of the anticipated increase in memory fault rates.

27.4.1 Memory

Figure 27.18 shows the typical six-transistor cell used for CMOS Static Random-
Access Memories (6T SRAM). The cell consists of two cross-coupled CMOS
inverters (NL,PL and NR,PR) that store one bit of information, and two N-type
transistors (SL and SR) that connect the cell to the bitlines (BLC and BLT).
Classically [66] failures in memory cells are categorized as either of a transient
nature dependent on operating conditions or of a fixed nature due to manufacturing

27 Microarchitecture-Level SoC Design 893

Fig. 27.18 6T SRAM Cell

errors. Symptoms of these failures are expressed as (1) increase in cell access
time, (2) write time, or (3) unstable read operations. Conventionally, we assumed
that fixed errors are predominant, with a minority of the errors introduced due
to transient effects. In sub-100 nm designs, RDF has the dominant impact on the
transistors strength mismatch and is the most noticeable type of intra-die variation
that can lead to cell instability and failure in embedded memories. RDF has a
detrimental effect on transistors that are colocated within one cell, by creating a
mismatch in their intrinsic threshold voltage Vt. Furthermore, these effects are a
strong function of the operating conditions (voltage, frequency, temperature, etc.).

The total cell failure probabilities for different Vdd as a function of TMax ,
PT ŒFail� D P robŒRAF [WF [DRF �, are shown in Fig. 27.19 where RAF
is read access failure, WF is write failure, and DRF is destructive read failure
[31]. This figure illustrates that designers can trade off Vdd , performance and error
(failure) tolerance to achieve an optimal solution for a given set of conditions. It is
important to make a distinction between errors and performance. Performance here
is taken to mean achieving a specific (TMax) target as a predefined speed for the
SRAM cell, while errors are taken to be hardware malfunction such as RAF, WF,
etc. Intuitively, for a specific performance target, the designers can trade off error
tolerance versus supply voltage. In other words, to achieve a low power solution,
the designer must first decide on the acceptable level of error tolerance that is

894 F. Kurdahi et al.

0.9

P
F

ai
l

10–5

10–6

10–4

10–2

100

0.85 0.8
Vdd (v)

0.75

TMax= 55 ps

TMax= 45 ps

TMax= 35 ps

TMax= 65 ps

0.7

Fig. 27.19 Total cell failure probabilities

permissible by the application and the overall system design while still maintaining
the required performance. Given that level, and a required performance level (i.e.,
TMax/, the designer can select the appropriate Vdd from Fig. 27.19. For instance,
consider the case that a wireless receiver using a Turbo Decoder is working at
nominal Vdd D 0:9 v and at the failure rate of 10�7 and delay of TMax D 65ps.
It has been shown in [50] that this system can handle memory errors up to 0.1%
(10�3). From Fig. 27.19, one can find out that by dropping the Vdd from 0.9 v to
almost 0.775 v, the error is still less than 10�3 and the system can work at the same
performance level, but at lower power.

27.4.2 Combinational Logic

Unlike memory, the propagation delays (tpd) of arithmetic and logic circuits are
highly dependent on the input patterns to the block and its circuit implementation
[110]. Therefore, errors are not spatially random and one cannot find a closed form
failure model for arithmetic and logic circuits. Applying VOS to logic and arithmetic
blocks introduces input-dependent errors (timing violations) at the circuit level.
Consider a logic gate Z with two inputs a and b and output x. To characterize
this gate, the transistor-level circuit representing gate Z (or extracted from layout
for more precise modeling of parasitics) is implemented in a Spice simulation
making similar assumptions about threshold voltage, Vth as in Section 27.4.1. A
Monte-Carlo simulation is run on the circuit for each of the possible 22n input-
vectors, where n is the number of input signals to the gate, and an input-vector
consists of the previous and current states of the inputs. The propagation delays

27 Microarchitecture-Level SoC Design 895

0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15
Propagation Delay (ps)

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

20

00 to 11 - Actual

00 to 11 - Approx.

01 to 11 - Actual

01 to 11 - Approx.

25

Fig. 27.20 pdf of a 2 input CMOS AND gate

statistics and the average power consumption for each input-vector are measured
and stored. Figure 27.20 shows the Probability Density Functions (PDFs) of the
propagation delays of a two input CMOS AND gate simulated in a 32 nm process
under nominal supply voltage of 0.9 V using predictive transistor-models [1]. Two
input-vectors, with input state transitions ab D 00 ! 11 and ab D 01 ! 11, are
used. The PDFs of the measured propagation delays for the two scenarios show a
very close match as compared a normal distribution approximation N

�
�i ; �

2
i

�
.

Note that even though the outputs of the two input vectors are the same, their
propagation delays are considerably different because of the initial state of the
inputs. As circuit size increases, the complexity of modeling such delay distributions
quickly becomes unmanageable. To address this challenge, one needs to incorporate
circuit-level failures into a system-level simulation. While Statistical Static Timing
Analysis (SSTA) [13] rapidly gives useful statistics of propagation delays and timing
violations of critical paths, it does not give any information about the specific input-
vectors that will cause timing violation errors in those paths. Therefore, SSTA
cannot be used to address this challenge. On the other hand, Dynamic Timing
Analysis (DTA) [61,106] simulates circuits for functionality to acquire propagation
delays on a per input-vector basis. Hence, DTA can be used to address the challenge
of trading off reliability versus energy efficiency. In doing so, one can attempt
to integrate a circuit simulator (such as Spice) into the system-level simulation
to acquire propagation delay results on a per input-vector basis. This, however,
will be very costly in terms of processing overhead and simulation time, since
the quality and accuracy of DTA is directly proportional to the number of input

896 F. Kurdahi et al.

Fig. 27.21 Comparing probability of error per bit from proposed model and from Spice simula-
tion

test vectors used. Simulating a simple digital block for one input-vector in Spice
requires run time in the order of few hundred milliseconds. This would be very
inefficient for processing large amounts of data. Methods such as [110] attempt to
macromodel these distributions and propagate them in a consistent way, allowing
the modeling of large combinational components such as Adders, multipliers, and
CORDIC. Figure 27.20 compares the probability of error per bit for the adder from
the proposed model and from the Spice simulation, and it confirms that the second
most significant output bit has the highest probability of error (Fig. 27.21).

27.4.3 Microarchitecture and System Level

In recent years, numerous research efforts have targeted reliability-power-
performance trade-offs via software, microarchitectural, and circuit techniques,
including several efforts by the Principal Investigators (PIs) as outlined above.
For example, in [91] Rinard et al. identify inherent redundancies in computational
patterns such as sum and mean calculations and indicate the insignificant impact
of resource reduction on such patterns. Moreover, techniques such as varying clock
frequencies, skipping tasks, loop perforation, dynamic knobs, and using alternative
implementations for key components [7, 9, 41, 70, 90] have also been performed
with minimal effect on the accuracy of final performance metrics. Other approaches
[24, 104] propose relaxing the correctness at the end results. These approaches
allow the user to determine the minimum necessary precision needed at a given
point or output of the code and adjust the amount of calculations performed to
only satisfy the required accuracy. To use the hardware redundancies, the EnerJ
approach [95] introduces an approximated language that enables the developer to

27 Microarchitecture-Level SoC Design 897

distinguish the precise and “approximatable” parts of the code and save energy
on portions that can tolerate approximation. Furthermore, a more detailed work
by the same research group [110] uses EnerJ as the guarantee for reliability and
proposes language constructs that focus more on power-saving possibilities in a
pipelined architecture and further specify the hardware implementations of such
approximated language. ERSA [59] is a more drastic technique for saving power
on a multi-core architecture. It divides the cores to reliable and unreliable cores
and proposes to reduce the voltage on all parts of the unreliable cores. Even though
there is no error recovery method introduced and the frozen cores are restarted
by reliable ones, the output remains more than 90% accurate for the tested set of
benchmarks. Earlier works such as the Aura/Odyssey/Coda project [76] investigated
mobility and adaptation at the software level via what was termed “application-
aware adaptation.” Finally, the work of Breuer and Gupta promotes the concept of
living with processing errors in some cases in order to improve yield [16, 17].

On the microarchitectural front, researchers have proposed several approaches
that attempt to exploit architectural innovations to reduce excessive design
margining associated with process variations. Examples include Razor [30, 35, 57]
and TEAtime [105] that add extra hardware to correct for errors. The research in
[76, 99], and [31] promoted the use of “algorithmic noise tolerance” and proposed
using adaptive filters and replication to minimize the impact of scaling Vdd beyond
the critical region for basic DSP functions, e.g., filtering and other communication
blocks. The work proposed in [73] and [75] considers faulty caches and means
of dealing with process faults through isolating faulty cache lines. On the circuits
front, there has been significant work to achieve low-power operation through a
combination of circuit design and technology-dependent optimizations [17, 21–
23, 28, 51, 52, 68, 81, 97].

27.5 Interplay between Power, Temperature, Performance, and
Reliability

The power, temperature, performance, and reliability of a chip exhibit a complex
relationship where a small change in one dimension can potentially affect other
characteristics. In order to illustrate the complexity of the interacting metrics
or power, performance, and reliability in a dynamically changing environment,
we present as an example an embedded memory block. Classically, failures in
embedded memory cells are categorized as either of a transient nature (because of
operating conditions) or of a fixed nature (due to manufacturing errors). Failures are
manifested as (1) increase in cell access time, or (2) unstable read/write operations.
In process technologies larger than 100 nm, fixed errors are predominant, with a
minority of the errors introduced due to transient effects. This model cannot be
sustained as scaling progresses due to the random nature of the fluctuation of dopant
atom distributions. In fact, in sub 100 nm design, RDF has the dominant impact
on the transistor’s strength mismatch and is the most noticeable type of intra-die
variation that can lead to cell instability and failure in embedded memories [55].

898 F. Kurdahi et al.

Temperature

Dynamic
Power

Leakage
Power

Vdd Vdd

Pe

Pe

T

Pe
f

T

D
yn

am
ic

P
ow

er

P
ow

er

Vdd

+

+

+

+

+

+

+–

Vdd

Vdd

f

f

T

Pe

8

+7

9

65

3

2

1

4

Frequency
(Memory Speed)

Floorplan

Steady State
Temperature

Probability of
Errors in Memory

Fig. 27.22 Sensitivity of memory errors to various parameters

RDF has a detrimental effect on transistors that are colocated within one cell by
creating a mismatch in their intrinsic threshold voltage, Vt . Furthermore, these
effects are a strong function of the operating conditions such as voltage, frequency,
temperature, etc.

Figure 27.22 shows how errors in memory are affected by different parameters.
As the operating frequency is increased, the probability of memory errors increases
(1) because it enforces tighter bounds on the time allowance for memory accesses.
Increase in Vdd reduces the cell delay and thus causes the errors to decrease (2).
The errors in memory increase along with the rise in temperature (3) because
of increase in the cell delay. These are not the only relationships that affect
memory errors. From Fig. 27.22, we also examine other interrelationships at work:
The dynamic power dissipation in memory cells increases with increase in both
frequency (/ f) and Vdd (/ V 2

dd) . The leakage power, on the other hand,

27 Microarchitecture-Level SoC Design 899

increases with Vdd (/ eˇVdd ; ˇ > 1). Both dynamic power and leakage power
determine the operating temperature. Leakage power dissipation of a cell is known
to increase superlinearly with increase in temperature. As temperature increases,
the leakage power dissipation increases which further elevates the temperature.
This “positive feedback loop” between temperature and leakage power stabilizes
when steady-state operating temperatures have been reached at which state, all the
dynamic and leakage power dissipation is transferred to the environment by the
package [30]. This discussion implies that probability of error is not a monotonically
decreasing function of supply voltage but rather exhibits a convex behavior as shown
in Fig. 27.23. A comprehensive approach to memory/logic design must consider
these mutual interdependent relationships. The effect of interplay between Vdd ,
probability of error, and temperature for different cell speeds is shown in Fig. 27.23
where the different curves represent the behavior of memories with maximum
allowed times of 70, 67, 65, and 60 ps, respectively. We observe that as the frequency
of the cell increases (or the delay decreases), the probability of error also increases.
We also observe that an increase in Vdd reduces the probability of error but only up
to a certain point (marked X). After X, the rise in temperature due to Vdd increases
the memory errors. However, for curve we do not observe this behavior because
the speed of the cell is low and the probability of failure is not detectable by our
simulation setup. In the absence of thermal considerations, these curves would have
continued to exhibit decreasing probabilities of error with increasing Vdd .

0.7

P
ro

ba
bi

lit
y

of
 E

rr
or

N
or

m
al

iz
ed

 T
ot

al
 P

ow
er

1.00E–10

1.00E–09

1.00E–08

1.00E–07

1.00E–06

1.00E–05

1.00E–04

1.00E–03

1.00E–02

1.00E–01

1.00E+00

0.8 0.9

Probability of Error Normalized Total Power

A

Effect of Vdd Effect of Temperature
is dominant is dominant

B

1 1.1 1.12

Vdd (v)

1.14 1.16 1.18 1.2
0

2

4

6

8

10

12

Fig. 27.23 Probability of error for different frequencies

900 F. Kurdahi et al.

0.7

P
ro

ba
bi

lit
y

of
 E

rr
or

10–20

10–15

10–10

10–5

100

0.8

Undetectable Error

Increasing the frequency

0.9 1

1

2

3

4

Vdd(v)
1.1 1.2 1.3

Fig. 27.24 Probability of error and total power

Figure 27.24 shows the normalized total power dissipation and the probability of
error for a cell with maximum allowed time of 65ps. Initially, the effect of increase in
Vdd is dominant and probability of error decreases with increase in Vdd . However, at
higher Vdd the effect of resulting temperature becomes dominant and probability of
error increases with increase in Vdd . The figure illustrates that for a given probability
of failure target, two voltage levels can be chosen that achieve the desired target. For
example, at a target probability of error of 10�8, one can select either 1.0 v (Point A)
or 1.16 v (Point B). However, the dynamic power at 1.0 v is 34.5% less than that at
1.16 v because dynamic power/V2

dd. Even without thermal dependence, the leakage
power at 1.0 v is 46.1% less than that at 1.16 v because leakage power/eˇVdd ;ˇ > 1.
Thus, the total power at 1.0 v is 2.5� less than that at 1.16 v. Designers can save
significant power by operating at lower Vdd voltages while maintaining performance
levels.

27.6 Power, Performance, and Resiliency Considerations in SoC
Design

While scaling Vdd is indeed one of the most effective means of controlling power,
it is imperative to understand how other effects can be factored in. For example,
incorporating temperature, process variations, etc. will lead to significantly different
system policies than those which would be adopted in a non-cross layer aware
approach. Figure 27.25 highlights the different phases in error development as Vdd
is scaled. When Vdd is close to its typical value, the system operates normally. As
we scale down, errors start to develop. Depending on the system, such errors may

27 Microarchitecture-Level SoC Design 901

Power Catastrophic
errors

Error cannot be
ignored but can
be compensated
for

Compensation
“penalty” Vdd

Errors can
be ignored

Fig. 27.25 Different phases in error development

be ignored, but only up to a point beyond which it becomes necessary to deploy
measures that will compensate, either partially or fully, for the drop in quality.
Discussed below, these measures can occur at different layers of abstraction and
incur a penalty causing a lessening of the power savings due to Vdd scaling. This
may lead to a “sweet spot” at which maximum power savings can be achieved. If
we keep decreasing Vdd , not only would the savings become less, but there typically
exists a point at which errors can become so large that the system breaks down and
quality cannot be recovered.

How much errors can be tolerated depends on the technology, architecture,
and application. Similarly the method of error compensation depends on these
parameters as well and can be applied at all the design layers. In the following,
we present examples of error tolerance at these various design layers and methods
of compensation. These examples serve as data points and are not intended to limit
the scope of the discussion.

27.6.1 Architecture-Level Error Tolerance

Consider the case of a stringently error-constrained system. A representative 16 KB
processor cache is assumed, with a block size of 16 bytes and associativity of 1,
based on an underlying 70 nm CMOS technology. Cache errors can either lead to
unstable system behavior or excessive delay due to a cache miss. By varying the
voltage of the cache from 0.9 to 0.7 v, it was observed that the miss rate increases
from 3.9 to 59.5%, respectively. It is clear that reducing the supply voltage increases
parametric errors to an extent where the memory becomes useless. To counter this
effect, a modified structure allows the memory to continue operation with minimal
impact on the miss rates even at elevated error rates [50]. The proposed architecture
is shown in Fig. 27.26 (Red dots indicate parametric errors), where, in addition to
the cache block, two other blocks are added, the Bit Lock Block (BLB) and the
Inquisitive Defect Cache (IDC). The BLB is an off cache defect map that stores
a tag bit to identify faulty locations. These can be updated via a built-in self-test
initiated at each configuration update. The IDC acts as a place holder for defective
cache words. Due to the random spatial distribution of RDF induced faults, as well

902 F. Kurdahi et al.

Fig. 27.26 IDC Error-tolerant cache architecture

as the locality of access in a cache, the size of IDC cache could be much smaller
than the total size of all the defective words in a cache. Since this cache is masking
parametric errors, it can be thought of as a means of tightening the distribution of
faults as a function of the change in supply voltage. In this sense, DMS can be
used to identify the optimum size of this cache based on an expected distribution of
errors due to supply changes. If the IDC size and associativity are chosen properly,
the execution window of a process in the cache (after its first pass) will experience
very little defective/disabled words.

Both the IDC and the BLB can be assumed to be operated at a higher and safer
voltage (within temperature constraints) or utilizing larger devices, while Adaptive
Supply Voltage (ASV)/Adaptive Body Bias (ABB) is applied on the cache body.
Early simulation results, using standard benchmarks, and a trace-driven simulator
are shown in Fig. 27.26 where the miss rate is reduced down to 6.45% (from
59.5% initially) and power savings of more than 40% are reported. The interested
reader is referred to [51] for more details about the simulation setup and results.
This approach benefits from the spatial randomness of process-induced faults, thus
allowing the use of a very small victim cache to perform cache remapping at elevated
error rates without reducing the size of the cache.

27.6.2 Application-Level Error Resiliency: Multimedia Applications
(H.264)

Consider an H.264 system Fig. 27.27 (left) as a representative application for mobile
multimedia systems. One of the biggest challenges is power consumption, which is
typically addressed by power management, mainly by reducing the supply voltage.
However the range of such a reduction is limited by (1) performance constraints and
(2) component reliability under very low Vdd .

By design, these systems have built-in error resiliency that has been exploited in
many different compression and transmission schemes mainly as a quality trade-off.
[54] proposed utilizing aggressive voltage scaling on embedded memories resulting
in low-power, high-frequency operation, albeit, with errors due to scaling. Based
on the error statistics, we propose, analyze, and quantify the performance and
overhead (in terms of power and area) of various filtering and mapping techniques

27 Microarchitecture-Level SoC Design 903

Coded
Image

a

b

Entropy
decode

Frame

Frame

Frame

Frame

Frame

50%

45%

40%

35%

30%

25%

20%

15%

10%

5%

0%
0.62

total power savings with filter
PSNR(Y)

tot pwr saving
PSNR(U)

PSNR(V)

0.63 0.64 0.65 0.66 0.67

Memory Vdd

P
S

N
R

 (
dB

)

p
o

w
er

 s
av

in
g

s

0.68 0.69 0.7 0.8 0.9

0

5

10

15

20

25

30

35

40

45

50

Reorder and
Dequantization

IDCT

Fn–1
(reference)

Motion
Compensate

Image
Filter

Detect
Map

Vectors and
headers

DPB memory
(Embedded Data SRAM)

Fn
(reconstructed)

Fig. 27.27 H.264 decoder with filtering (left) & Image quality (PSNR) vs power savings at
different Vdd levels (Foreman Video) (right)

that compensate for the errors, thus enabling the system to operate at lower
voltages while meeting system specifications. Finally, we quantify the expected
system power savings due to the above mentioned approach. Figure 27.27 (right)
shows the results of such an exploration. When we lower Vdd on the decoder
memories, its reliability decreases and as a result, the output quality drops. This

904 F. Kurdahi et al.

can be compensated for by filtering, which consumes power so the gains from Vdd
reduction tend to lessen as error rates increase. However, the overall results indicate
that good performance (PSNR) can be maintained even at very low Vdd while saving
over 40% in overall system power consumption. While this case study highlights
a significant opportunity in power savings, it requires an important paradigm
shift in today’s system design flow. Current flow emphasizes compartmentalization
between system-level designers and backend (chip) designers, thus necessitating
100% correctness in hardware. The new paradigm de-compartmentalizes this flow
and allows system designers to be aware of the physical layer through model
abstractions.

27.6.3 Application-Level Error Resiliency: Wireless Modem
Application (WCDMA)

In this section, we now extend the discussion to the transmission medium, using
Wideband CDMA (WCDMA) as a representative of a wireless physical layer.
Figure 27.28 depicts the top-level block diagram of a diversity enabled WCDMA
SoC modem [34]. The SoC includes the modem section (RAKE receiver), the
coding layer and the protocol layer of the standard. It is based on a dual embedded
microcontroller architecture. The symbols from the modem are soft values with 10-
bit precision that are available for all the data and control symbols transmitted on the
data channels. Naturally, control symbols are very important and thus must be stored
in a protected memory with minimum loss. However, data symbols possess a high
degree of redundancy typically inserted by the channel coding scheme. Specifically
in WCDMA [50], both Turbo and Viterbi schemes are supported. Thus, the data

Fig. 27.28 WCDMA chip architecture

27 Microarchitecture-Level SoC Design 905

10–5
10–8

10–5

10–4

10–2

100

10–4

144Kbps, SNR=5dB
64Kbps, SNR=5dB
64Kbps, SNR=4dB

10–3 10–2 10–1

Fig. 27.29 Effect of the WCDMA memory errors on the system Bit Error Rate

memory can be partitioned into defect tolerant and non-defect tolerant sections.
A defect tolerant memory is a memory that is used primarily to buffer data and thus
can be a target of aggressive power management. It is interesting to note that the
data buffering memories (defect tolerant candidates) consume approximately 50%
of the overall memory required for the entire modem.

Figure 27.29 shows the effect of the memory errors on the WCDMA Bit Error
Rate (BER) for different transmission bit rates. As expected, given the same SNR,
for higher bit rates, the memory errors have higher impact on the BER since there
is less redundancy in the system. A power analysis of the architecture indicates that
the overall memory consumes roughly 45% of the total power. In prior work, the
PIs have shown that by applying error aware dynamic voltage scaling a savings of
46% in leakage power and 44% in dynamic power is possible in the error-tolerant
memories. It is important to note that these savings are independent of other power-
saving methods such as reducing frequency of operation, etc.

27.6.4 Mobile Phone SoC Example

The previous two case studies illustrated the design space exploration for a
wireless and a video application. In today’s mobile phones, these applications are
synergistic and are typically implemented on the same chip. Figure 27.30 illustrates
a hypothetical modern mobile phone SoC with a WCDMA physical layer to convey
the data stream and an H.264 video codec as the application. While in the previous
cases we considered each application separately, in this case, the question arises as
to which of the two applications to target for Vdd reduction in order to save overall
SoC power? To do so we investigated three scenarios: Case (A) Nominal-Vdd for
the WCDMA modem and aggressive dynamic voltage scaling (AVS) for the H.264

906 F. Kurdahi et al.

Fig. 27.30 A mobile phone
SoC architecture

Fig. 27.31
Application-aware design
space exploration for the cell
phone SoC

15
10%

15%

20%

25%

30%

20 25

P
ow

er
 S

av
in

g

30
Y PSNR (dB)

35

Case A
Case B
Case C

40

decoder engine, Case (B) supply scaling for the WCDMA modem and nominal-
Vdd for the H.264 decoder, and Case (C) supply scaling for both the H.264 decoder
and the WCDMA modem. Based on prior experience, the PIs have with WCDMA
systems, it is estimated that the WCDMA modem consumes 72% of the total power
whereas the H.264 decoder consumes 28% of the total power in 65 nm technology
node [50]. As this portion changes, the gains will scale accordingly. Figure 27.31
illustrates a summary of the results depicting the expected power savings for each
case versus the luma (Y) component of the image as a quality metric. From the
graph, we observe that some points are inferior to others. In other words, one case
may yield higher power savings than another for the same target PSNR. Such points
are considered as Pareto-optimal. Overall, Case B appears to be inferior to cases
A and C. However, this is a direct result of the ratio of power consumption of the
receiver and video decoder. Since the receiver consumes more than 3� the power of
the H.264 decoder, one would expect to get more power reduction by supply scaling
of the receiver. This situation would be reversed in another system where the ratios
are the opposite. As expected, case C yields the most Pareto-optimal design points
since it is a superset of cases A and B.

27 Microarchitecture-Level SoC Design 907

27.7 Summary and Conclusion

This chapter presented a typical design flow for integrating microarchitectural IPBs
into complex SoCs that must satisfy performance, power, thermal, and reliability
constraints. Toward this end, we first presented different abstraction levels for SoC
design that promote IP reuse and which enable fast simulation for early functional
validation of the SoC platform. Since SoCs must satisfy a multitude of interrelated
constraints, we then presented high-level power, thermal, and reliability models
for estimating these constraints. We outlined the complex interrelationship between
power, temperature, performance, and reliability of an SoC and illustrated these de-
pendencies. We concluded the chapter with several case studies presenting examples
of error tolerance at these various design layers and methods of compensation.

References

1. Predictive technology model(ptm). http://www.eas.asu.edu
2. Synopsys design compiler, primetime px, power compiler. http://www.synopsys.com
3. Standard performance evaluation council, performance evaluation in the new millennium,

v.1.1 (2000)
4. Functional Specification for SystemC 2.0. www.systemc.org (2001)
5. International technology roadmap for semiconductors (2011) System drivers. Technical

report.
6. Abdallah R, Shanbhag N (2009) Error-resilient low-power Viterbi decoder architectures.

IEEE Trans Signal Process 57(12):4906–4917. doi:10.1109/TSP.2009.2026078
7. Ansel J, Chan C, Wong YL, Olszewski M, Zhao Q, Edelman A, Amarasinghe S (2009)

Petabricks: a language and compiler for algorithmic choice. In: Proceedings of the 30th
ACM SIGPLAN conference on programming language design and implementation, PLDI
’09. ACM, New York, pp 38–49. doi:10.1145/1542476.1542481

8. ARM (2001) ARM AMBA specification and multi layer AHB specification, (rev2.0). http://
www.arm.com

9. Baek W, Chilimbi TM (2010) Green: a framework for supporting energy-conscious program-
ming using controlled approximation. In: Proceedings of the 31st ACM SIGPLAN conference
on programming language design and implementation, PLDI ’10. ACM, New York, pp 198–
209. doi:10.1145/1806596.1806620

10. Baniasadi A, Moshovos A (2001) Instruction flow-based front end throttling for power-aware
high performance processors. In: Proceedings of the 2001 international symposium on Low
power electronics and design (ISLPED’01). ACM, New York, pp 16–21. http://dx.doi.org/10.
1145/383082.383088

11. Bansal N, Lahiri K, Raghunathan A, Chakradhar S (2005) Power monitors: a framework
for system-level power estimation using heterogeneous power models. In: 18th international
conference on VLSI design, pp 579–585 doi:10.1109/ICVD.2005.138

12. Bhavnagarwala A, Tang X, Meindl J (2001) The impact of intrinsic device fluctu-
ations on CMOS SRAM cell stability. IEEE J Solid State Circuits 36(4):658–665.
doi:10.1109/4.913744

13. Blaauw D, Chopra K, Srivastava A, Scheffer L (2008) Statistical timing analysis: from
basic principles to state of the art. IEEE Trans Comput Aided Des Integr Circuits Syst
27(4):589–607. doi:10.1109/TCAD.2007.907047

14. Black J (1969) Electromigration – a brief survey and some recent results. IEEE Trans Electron
Devices 16(4):338–347

http://www.eas.asu.edu
http://www.synopsys.com
www.systemc.org
http://dx.doi.org/10.1109/TSP.2009.2026078
http://dx.doi.org/10.1145/1542476.1542481
http://www.arm.com
http://www.arm.com
http://dx.doi.org/10.1145/1806596.1806620
http://dx.doi.org/10.1145/383082.383088
http://dx.doi.org/10.1145/383082.383088
http://dx.doi.org/10.1109/ICVD.2005.138
http://dx.doi.org/10.1109/4.913744
http://dx.doi.org/10.1109/TCAD.2007.907047

908 F. Kurdahi et al.

15. Blair J, Ghate P, Haywood C (1971) Concerning electromigration in thin films. Proc IEEE lett
59:1023–1024

16. Breuer M (2010) Hardware that produces bounded rather than exact results. In: 2010 47th
ACM/IEEE design automation conference(DAC), Anaheim, pp 871–876

17. Breuer M, Gupta S, Mak T (2004) Defect and error tolerance in the presence of massive
numbers of defects. IEEE Des Test Comput 21(3):216–227. doi:10.1109/MDT.2004.8

18. Brooks D, Martonosi M (2001) Dynamic thermal management for high-performance
microprocessors. In: Proceedings of the 7th international symposium on high-performance
computer architecture (HPCA’01). IEEE Computer Society, Washington, DC, p 171

19. Brooks D, Tiwari V, Martonosi M (2000) Wattch: a framework for architectural-level power
analysis and optimizations. In: Proceedings of the 27th international symposium on computer
architecture, Vancouver, pp 83–94

20. Cai L, Gajski D (2003) Transaction level modeling: an overview. In: First IEEE/ACM/IFIP
international conference on hardware/software codesign and system synthesis, pp 19–24.
doi:10.1109/CODESS.2003.1275250

21. Calhoun B, Chandrakasan A (2004) Standby power reduction using dynamic voltage
scaling and canary flip-flop structures. IEEE J Solid State Circuits 39(9):1504–1511.
doi:10.1109/JSSC.2004.831432

22. Calhoun B, Daly D, Verma N, Finchelstein D, Wentzloff D, Wang A, Cho S, Chandrakasan
A (2005) Design considerations for ultra-low energy wireless microsensor nodes. IEEE Trans
Comput 54(6):727–740. doi:10.1109/TC.2005.98

23. Calhoun B, Wang A, Chandrakasan A (2005) Modeling and sizing for minimum en-
ergy operation in subthreshold circuits. IEEE J Solid State Circuits 40(9):1778–1786.
doi:10.1109/JSSC.2005.852162

24. Carbin M, Kim D, Misailovic S, Rinard MC (2012) Proving acceptability properties of
relaxed nondeterministic approximate programs. In: Proceedings of the 33rd ACM SIGPLAN
conference on programming language design and implementation, PLDI ’12. ACM, New
York, pp 169–180. doi:10.1145/2254064.2254086

25. Center for Embedded Computer Systems: SpecC system. http://www.cecs.uci.edu/~specc/
26. Chabloz J, Hemani A (2010) Distributed DVFS using rationally-related frequencies and

discrete voltage levels. In: Proceedings of the 16th ACM/IEEE international symposium on
Low power electronics and design (ISLPED’10). ACM, New York, pp 247–252. http://dx.doi.
org/10.1145/1840845.1840897

27. Chakrabarti C, Gaitonde D (1999) Instruction level power model of microcontrollers. In:
Proceedings of the 1999 IEEE international symposium on circuits and systems, ISCAS ’99,
vol 1, pp 76–79. doi:10.1109/ISCAS.1999.777809

28. Cho S, Chadrakasan A (2004) A 6.5-ghz energy-efficient BFSK modulator for wireless sensor
applications. IEEE J Solid State Circuits 39(5):731–739. doi:10.1109/JSSC.2004.826314

29. Coskun AK, Rosing TS, Whisnant K (2007) Temperature aware task scheduling in MPSoCS.
In: Proceedings of the conference on design, automation and test in Europe (DATE’07). EDA
Consortium, San Jose, pp 1659–1664

30. Das S, Roberts D, Lee S, Pant S, Blaauw D, Austin T, Flautner K, Mudge T (2006) A self-
tuning dvs processor using delay-error detection and correction. IEEE J Solid State Circuits
41(4):792–804. doi:10.1109/JSSC.2006.870912

31. Djahromi A, Eltawil A, Kurdahi F, Kanj R (2007) Cross layer error exploitation for aggressive
voltage scaling. In: 8th international symposium on quality electronic design, ISQED ’07,
pp 192–197. doi:10.1109/ISQED.2007.53

32. Donald J, Martonosi M (2005) Leveraging simultaneous multithreading for adaptive thermal
control. In: Proceedings of the second workshop on temperature-aware computer systems

33. Donald J, Martonosi M (2006) Techniques for multicore thermal management: classification
and new exploration. ACM SIGARCH computer architecture news. 34(2). IEEE computer
society

34. Eltawil A, Grayver E, Zou H, Frigon J, Poberezhskiy G, Daneshrad B (2003) Dual
antenna UMTS mobile station transceiver asic for 2 mb/s data rate. In: IEEE international,

http://dx.doi.org/10.1109/MDT.2004.8
http://dx.doi.org/10.1109/CODESS.2003.1275250
http://dx.doi.org/10.1109/JSSC.2004.831432
http://dx.doi.org/10.1109/TC.2005.98
http://dx.doi.org/10.1109/JSSC.2005.852162
http://dx.doi.org/10.1145/2254064.2254086
http://www.cecs.uci.edu/~specc/
http://dx.doi.org/10.1145/1840845.1840897
http://dx.doi.org/10.1145/1840845.1840897
http://dx.doi.org/10.1109/ISCAS.1999.777809
http://dx.doi.org/10.1109/JSSC.2004.826314
http://dx.doi.org/10.1109/JSSC.2006.870912
http://dx.doi.org/10.1109/ISQED.2007.53

27 Microarchitecture-Level SoC Design 909

solid-state circuits conference on Digest of technical papers, ISSCC 2003, vol 1, pp 146–484.
doi:10.1109/ISSCC.2003.1234242

35. Ernst D, Das S, Lee S, Blaauw D, Austin T, Mudge T, Kim NS, Flautner K (2004) Razor:
circuit-level correction of timing errors for low-power operation. IEEE Micro 24(6):10–20.
doi:10.1109/MM.2004.85

36. Gasteier M, Glesner M (1996) Bus-based communication synthesis on system-level.
In: Proceedings of 9th international symposium on system synthesis, pp 65–70.
doi:10.1109/ISSS.1996.565880

37. Gerards M, Hurink JL, Kuper J (2015) On the interplay between global DVFS and scheduling
tasks with precedence constraints. IEEE Trans Comput 64(6):1742–1754

38. Gronowski P, Bowhill W, Preston R, Gowan M, Allmon R (1998) High-performance
microprocessor design. IEEE J Solid State Circuits 33:676–686

39. Gunther S, Binns F, Carmean D, Hall J (2001) Managing the impact of increasing micropro-
cessor power consumption. Intel Technol J 5:1–9

40. Herbert S, Marculescu D (2007) Analysis of dynamic voltage/frequency scaling in chip
multiprocessors. In: ACM/IEEE international symposium on low power electronics and
design (ISLPED). IEEE

41. Hoffmann H, Sidiroglou S, Carbin M, Misailovic S, Agarwal A, Rinard M (2011) Dynamic
knobs for responsive power-aware computing. In: Proceedings of the sixteenth international
conference on architectural support for programming languages and operating systems,
ASPLOS XVI. ACM, New York, pp 199–212. doi:10.1145/1950365.1950390

42. HP Labs (2015) CACTI – An integrated cache and memory access time, cycle time, area,
leakage, and dynamic power model. http://www.hpl.hp.com/research/cacti/

43. Huang W et al (2006) Hotspot: a compact thermal modeling methodology for early-
stage VLSI design. IEEE Trans Very Large Scale Integr (VLSI) Syst 14(5):501–513.
doi:10.1109/TVLSI.2006.876103

44. Hussien A, Khairy M, Khajeh A, Amiri K, Eltawil A, Kurdahi F (2010) A combined
channel and hardware noise resilient Viterbi decoder. In: 2010 conference record of the forty
fourth Asilomar conference on signals, systems and computers (ASILOMAR), pp 395–399.
doi:10.1109/ACSSC.2010.5757543

45. Im S, Banerjee K (2000) Full chip thermal analysis of planar (2-D) and vertically integrated
(3-D) high performance ICs. In: International electron devices meeting 2000. Technical
digest. IEDM (Cat. No.00CH37138), San Francisco, pp 727–730.

46. ITRS International roadmap of semiconductors. http://www.itrs.net/
47. John JK, Hu JS, Ziavras SG (2005) Optimizing the thermal behavior of subarrayed data

caches. In: Proceedings of the 2005 international conference on computer design (ICCD’05).
IEEE computer society, Washington, pp 625–630. https://doi.org/10.1109/ICCD.2005.81

48. Kavvadias N, Neofotistos P, Nikolaidis S, Kosmatopoulos K, Laopoulos T (2003) Mea-
surements analysis of the software-related power consumption in microprocessors. In:
Proceedings of the 20th IEEE instrumentation and measurement technology conference,
IMTC ’03, vol 2, pp 981–986. doi:10.1109/IMTC.2003.1207899

49. Kaxiras S, Ju Z, Martonosi M (2001) Cache decay: exploiting generational behavior to
reduce cache leakage power. In: Proceedings of the 28th annual international symposium on
computer architecture (ISCA’01). ACM, New York, pp 240–251. http://dx.doi.org/10.1145/
379240.379268

50. Khajeh A, Cheng SY, Eltawil A, Kurdahi F (2007) Power management for cognitive
radio platforms. In: Global telecommunications conference, GLOBECOM ’07. IEEE,
pp 4066–4070. doi:10.1109/GLOCOM.2007.773

51. Khajeh A, Eltawil A, Kurdahi F (2011) Embedded memories fault-tolerant pre- and post-
silicon optimization. IEEE Trans Very Large Scale Integr (VLSI) Syst 19(10):1916–1921.
doi:10.1109/TVLSI.2010.2056397

52. Khajeh A, Kim M, Dutt N, Eltawil AM, Kurdahi FJ (2012) Error-aware algorithm/archi-
tecture coexploration for video over wireless applications. ACM Trans Embed Comput Syst
11S(1):15:1–15:23. doi:10.1145/2180887.2180892

http://dx.doi.org/10.1109/ISSCC.2003.1234242
http://dx.doi.org/10.1109/MM.2004.85
http://dx.doi.org/10.1109/ISSS.1996.565880
http://dx.doi.org/10.1145/1950365.1950390
http://www.hpl.hp.com/research/cacti/
http://dx.doi.org/10.1109/TVLSI.2006.876103
http://dx.doi.org/10.1109/ACSSC.2010.5757543
http://www.itrs.net/
https://doi.org/10.1109/ICCD.2005.81
http://dx.doi.org/10.1109/IMTC.2003.1207899
http://dx.doi.org/10.1145/379240.379268
http://dx.doi.org/10.1145/379240.379268
http://dx.doi.org/10.1109/GLOCOM.2007.773
http://dx.doi.org/10.1109/TVLSI.2010.2056397
http://dx.doi.org/10.1145/2180887.2180892

910 F. Kurdahi et al.

53. Kumar A, Shang L, Peh L, Jha NK (2008) System-level dynamic thermal management
for high-performance microprocessors. IEEE Trans Comput-Aided Des Integr Circuits Syst
27(1):96–108

54. Kurdahi F, Eltawil A, Yi K, Cheng S, Khajeh A (2010) Low-power multimedia system
design by aggressive voltage scaling. IEEE Trans Very Large Scale Integr (VLSI) Syst 18(5):
852–856. doi:10.1109/TVLSI.2009.2016665

55. Lahiri K, Raghunathan A, Lakshminarayana G, Dey S (2004) Design of high-performance
system-on-chips using communication architecture tuners. IEEE Trans Comput Aided Des
Integr Circuits Syst 23(5):620–636. doi:10.1109/TCAD.2004.826585

56. Lee KJ, Skadron K (2005) Using performance counters for runtime temperature sensing in
high-performance processors. In: 19th IEEE international parallel and distributed processing
symposium, pp 8. doi:10.1109/IPDPS.2005.448

57. Lee S, Das S, Pham T, Austin T, Blaauw D, Mudge T (2004) Reducing pipeline energy
demands with local DVS and dynamic retiming. In: Proceedings of the 2004 interna-
tional symposium on low power electronics and design, ISLPED ’04, Newport Beach,
pp 319–324.

58. Lee I, Kim H, Yang P, Yoo S, Chung EY, Choi KM, Kong JT, Eo SK (2006) Powervip: SoC
power estimation framework at transaction level. In: Asia and South Pacific conference on
design automation, pp 8. doi:10.1109/ASPDAC.2006.1594743

59. Leem L, Cho H, Bau J, Jacobson Q, Mitra S (2010) Ersa: error resilient system architecture
for probabilistic applications. In: Design, automation test in Europe conference exhibition
(DATE), pp 1560–1565. doi:10.1109/DATE.2010.5457059

60. Lienig J (2013) Electromigration and its impact on physical design in future technologies. In:
Proceedings of the 2013 ACM international symposium on physical design. ACM, 2013

61. Liou JJ, Krstic A, Jiang YM, Cheng KT (2000) Path selection and pattern generation for
dynamic timing analysis considering power supply noise effects. In: IEEE/ACM interna-
tional conference on computer aided design, ICCAD-2000, pp 493–496. doi:10.1109/IC-
CAD.2000.896521

62. Lloyd JR (1991) Electromigration failure. J Appl Phys 69:7601–7604
63. Long J, Memik S, Memik G, Mukherjee R (2008) Thermal monitoring mechanisms for chip

multiprocessors. ACM Trans Archit Code Optim (TACO) 5(2):9
64. Macii E, Pedram M, Somenzi F (1998) High-level power modeling, estimation, and

optimization. IEEE Trans Comput Aided Des Integr Circuits Syst 17(11):1061–1079.
doi:10.1109/43.736181

65. MacQueen J (1967) Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, vol 1, no 14

66. Makhzan M, Khajeh A, Eltawil A, Kurdahi F (2007) Limits on voltage scaling for caches
utilizing fault tolerant techniques. In: 25th international conference on computer design,
ICCD 2007, pp 488–495. doi:10.1109/ICCD.2007.4601943

67. Mamidipaka M, Khouri K, Dutt N, Abadir M (2004) Analytical models for leak-
age power estimation of memory array structures. In: International conference on
hardware/software codesign and system synthesis, CODES + ISSS 2004, pp 146–151.
doi:10.1109/CODESS.2004.240909

68. Markovic D, Stojanovic V, Nikolic B, Horowitz M, Brodersen R (2004) Methods
for true energy-performance optimization. IEEE J Solid-State Circuits 39(8):1282–1293.
doi:10.1109/JSSC.2004.831796

69. Memik SO, Mukherjee R, Ni M, Long J (2008) Optimizing thermal sensor allo-
cation for microprocessors. IEEE Trans Comput Aided Des Integr Circuits Syst 27:
516–527

70. Misailovic S, Roy D, Rinard M (2011) Probabilistically accurate program transformations.
In: Yahav E (ed) Static Analysis. Lecture notes in computer science, vol 6887. Springer,
Berlin/Heidelberg, pp 316–333. doi:10.1007/978-3-642-23702-7_24

71. Mukherjee R, Memik SO (2006) Systematic temperature sensor allocation and placement for
microprocessors. In: Proceedings of the 43rd annual design automation conference. ACM

http://dx.doi.org/10.1109/TVLSI.2009.2016665
http://dx.doi.org/10.1109/TCAD.2004.826585
http://10.1109/IPDPS.2005.448
http://dx.doi.org/10.1109/ASPDAC.2006.1594743
http://dx.doi.org/10.1109/DATE.2010.5457059
http://dx.doi.org/10.1109/ICCAD.2000.896521
http://dx.doi.org/10.1109/43.736181
http://dx.doi.org/10.1109/ICCD.2007.4601943
http://dx.doi.org/10.1109/CODESS.2004.240909
http://dx.doi.org/10.1109/JSSC.2004.831796
http://dx.doi.org/10.1007/978-3-642-23702-7_24

27 Microarchitecture-Level SoC Design 911

72. Mukherjee R, Mondal S, Memik S (2006) Thermal sensor allocation and placement for
reconfigurable systems. In: IEEE/ACM international conference on computer-aided design
(ICCAD’06). IEEE

73. Mukhopadhyay S, Mahmoodi H, Roy K (2004) Statistical design and optimization of SRAM
cell for yield enhancement. In: IEEE/ACM international conference on computer aided
design, ICCAD-2004, pp 10–13. doi:10.1109/ICCAD.2004.1382534

74. Mukhopadhyay S, Kim K, Mahmoodi H, Roy K (2007) Design of a process variation
tolerant self-repairing SRAM for yield enhancement in nanoscaled CMOS. IEEE J Solid-
State Circuits 42(6):1370–1382. doi:10.1109/JSSC.2007.897161

75. Mukhopadhyay S, Mahmoodi H, Roy K (2008) Reduction of parametric failures in sub-100-
nm SRAM array using body bias. IEEE Trans Comput Aided Des Integr Circuits Syst 27(1):
174–183. doi:10.1109/TCAD.2007.906995

76. Noble B (2000) System support for mobile, adaptive applications. IEEE Pers Commun
7(1):44–49. doi:10.1109/98.824577

77. Nowroz A, Cochran R, Reda S (2010) Thermal monitoring of real processors: techniques
for sensor allocation and full characterization. In: Proceedings of the 47th design automation
conference. ACM

78. Onouchi M, Yamada T, Morikawa K, Mochizuki I, Sekine H (2006) A system-level
power-estimation methodology based on ip-level modeling, power-level adjustment, and
power accumulation. In: Asia and South Pacific conference on design automation, pp 4.
doi:10.1109/ASPDAC.2006.1594742

79. Orio Rd, Ceric H, Selberherr S (2010) Physically based models of electromigration: from
black’s equation to modern TCAD models. Microelectron Reliab 50:775–789

80. Park YH, Pasricha S, Kurdahi F, Dutt N (2007) System level power estimation methodology
with h.264 decoder prediction IP case study. In: 25th international conference on computer
design, ICCD 2007, pp 601–608. doi:10.1109/ICCD.2007.4601959

81. Park Y, Pasricha S, Kurdahi F, Dutt N (2008) Methodology for multi-granularity embedded
processor power model generation for an ESL design flow. IEEE/ACM CODES+ISSS

82. Pasricha S, Dutt N, Ben-Romdhane M (2004) Extending the transaction level modeling
approach for fast communication architecture exploration. In: Proceedings of 41st design
automation conference, New York, pp 113–118

83. Pasricha S, Dutt N, Ben-Romdhane M (2006) Constraint-driven bus matrix synthesis for
MPSoC. In: Asia and South Pacific conference on design automation, pp 6. doi:10.1109/ASP-
DAC.2006.1594641

84. Pasricha S, Park YH, Kurdahi F, Dutt N (2006) System-level power-performance trade-offs
in bus matrix communication architecture synthesis. In: Proceedings of the 4th interna-
tional conference hardware/Software codesign and system synthesis, CODES + ISSS ’06,
pp 300–305. doi:10.1145/1176254.1176327

85. Pinto A, Carloni L, Sangiovanni-Vincentelli A (2003) Efficient synthesis of networks on
chip. In: Proceedings of 21st international conference on computer design, pp 146–150.
doi:10.1109/ICCD.2003.1240887

86. Powell MD, Biswas A, Emer JS, Mukherjee S, Sheikh B, Yardi S (2009) Camp: a technique
to estimate per-structure power at run-time using a few simple parameters. In: IEEE 15th
international symposium on high performance computer architecture (HPCA’09). IEEE

87. Rabaey JM (1996) Digital integrated circuits: a design perspective. Prentice-Hall, Inc., Upper
Saddle River

88. Rao R, Vrudhula S, Chakrabarti C (2007) Throughput of multi-core processors under thermal
constraints. In: Proceedings of the 2007 international symposium on low power electronics
and design. ACM

89. Ravi S, Raghunathan A, Chakradhar S (2003) Efficient RTL power estimation for large
designs. In: Proceedings of 16th international conference on VLSI design, pp 431–439.
doi:10.1109/ICVD.2003.1183173

90. Rinard M (2006) Probabilistic accuracy bounds for fault-tolerant computations that discard
tasks. In: Proceedings of the 20th annual international conference on supercomputing,
ICS ’06. ACM, New York, pp 324–334. doi:10.1145/1183401.1183447.

http://dx.doi.org/10.1109/ICCAD.2004.1382534
http://dx.doi.org/10.1109/JSSC.2007.897161
http://dx.doi.org/10.1109/TCAD.2007.906995
http://dx.doi.org/10.1109/98.824577
http://dx.doi.org/10.1109/ASPDAC.2006.1594742
http://dx.doi.org/10.1109/ICCD.2007.4601959
http://dx.doi.org/10.1109/ASPDAC.2006.1594641
http://dx.doi.org/10.1145/1176254.1176327
http://dx.doi.org/10.1109/ICCD.2003.1240887
http://dx.doi.org/10.1109/ICVD.2003.1183173
http://dx.doi.org/10.1145/1183401.1183447

912 F. Kurdahi et al.

91. Rinard M, Hoffmann H, Misailovic S, Sidiroglou S (2010) Patterns and statistical analysis for
understanding reduced resource computing. In: Proceedings of the ACM international con-
ference on object oriented programming systems languages and applications, OOPSLA ’10.
ACM, New York, pp 806–821. doi:10.1145/1869459.1869525

92. Rodriguez S, Jacob B (2006) Energy/power breakdown of pipelined nanometer caches
(90 nm/65 nm/45 nm/32 nm). In: Proceedings of the 2006 international symposium on low
power electronics and design, ISLPED’06, pp 25–30. doi:10.1109/LPE.2006.4271802

93. Rohou E, Smith M (1999) Dynamically managing processor temperature and power. In: 2nd
workshop on feedback-directed optimization

94. Sami M, Sciuto D, Silvano C, Zaccaria V (2000) Instruction-level power estimation for
embedded VLIW cores. In: Proceedings of the eighth international workshop on hardware/-
software codesign, CODES 2000, San Diego, pp 34–38

95. Sampson A, Dietl W, Fortuna E, Gnanapragasam D, Ceze L, Grossman D (2011) Enerj:
approximate data types for safe and general low-power computation. In: Proceedings of the
32nd ACM SIGPLAN conference on programming language design and implementation,
PLDI ’11. ACM, New York, pp 164–174. doi:10.1145/1993498.1993518

96. Sanchez H, Philip R, Alvarez J, Gerosa G (1997) A CMOS temperature sensor for PowerPC
RISC microprocessors. In: Proceedings of the symposium on VLSI circuits. IEEE, pp 13–14

97. Sarrigeorgidis K, Rabaey J (2004) Ultra low power cordic processor for wireless communi-
cation algorithms. J VLSI Signal Process Syst Signal Image Video Technol 38(2):115–130.
doi:10.1023/B:VLSI.0000040424.11334.34

98. Sarta D, Trifone D, Ascia G (1999) A data dependent approach to instruction level power
estimation. In: Proceedings of IEEE Alessandro volta memorial workshop on low-power
design, pp 182–190. doi:10.1109/LPD.1999.750419

99. Shanbhag N(2002) Reliable and energy-efficient digital signal processing. In: Proceedings of
39th design automation conference, pp 830–835. doi:10.1109/DAC.2002.1012737

100. Shatzkes M, Lloyd JR (1986) A model for conductor failure considering diffusion concur-
rently with electromigration resulting in a current exponent of 2. J Appl Phys 59, 3890–3893

101. Shin JY, Kurdahi F, Dutt N (2015) Cooperative on-chip temperature estimationusing multiple
virtual sensors. IEEE Embed Syst Lett 7(2):37–40. doi:10.1109/LES.2015.2400992

102. Skadron K, Stan MR, Huang W, Velusamy S, Sankaranarayanan K, Tarjan D (2003)
Temperature-aware computer systems: opportunities and challenges. IEEE Micro 23(6):
52–61

103. Skadron K, Stan M, Sankaranarayanan K, Huang W, Velusamy S, Tarjan D (2004)
Temperature-aware microarchitecture: modeling and implementation. ACM Trans Archit
Code Optim 1:94–125

104. Sloan J, Sartori J, Kumar R (2012) On software design for stochastic processors. In:
Proceedings of the 49th annual design automation conference, DAC ’12. ACM, New York,
pp 918–923. doi:10.1145/2228360.2228524

105. Uht A (2004) Going beyond worst-case specs with teatime. Computer 37(3):51–56.
doi:10.1109/MC.2004.1274004

106. Wan L, Chen D (2010) Analysis of circuit dynamic behavior with timed ternary decision
diagram. In: 2010 IEEE/ACM international conference on computer-aided design (ICCAD),
pp 516–523. doi:10.1109/ICCAD.2010.5653852

107. Wang H, Tan S, Swarup S, Liu X (2013) A power-driven thermal sensor placement algorithm
for dynamic thermal management. In: Design, automation & test in Europe conference &
exhibition (DATE’13). IEEE

108. Wu W, Jin L, Yang J, Liu P, Tan S (2006) A systematic method for functional unit power
estimation in mircoprocessors. In: 2006 43rd ACM/IEEE on design automation conference.
IEEE

109. Ye W, Vijaykrishnan N, Kandemir M, Irwin M (2000) The design and use of simplepower: a
cycle-accurate energy estimation tool. In: Proceedings of 2000 design automation conference,
pp 340–345. doi:10.1109/DAC.2000.855333

http://dx.doi.org/10.1145/1869459.1869525
http://dx.doi.org/10.1109/LPE.2006.4271802
http://dx.doi.org/10.1145/1993498.1993518
http://dx.doi.org/10.1023/B:VLSI.0000040424.11334.34
http://dx.doi.org/10.1109/LPD.1999.750419
http://dx.doi.org/10.1109/DAC.2002.1012737
http://dx.doi.org/10.1109/LES.2015.2400992
http://dx.doi.org/10.1145/2228360.2228524
http://dx.doi.org/10.1109/MC.2004.1274004
http://dx.doi.org/10.1109/ICCAD.2010.5653852
http://dx.doi.org/10.1109/DAC.2000.855333

27 Microarchitecture-Level SoC Design 913

110. Zaynoun S, Khairy M, Eltawil A, Kurdahi F, Khajeh A (2012) Fast error aware model for
arithmetic and logic circuits. In: 2012 IEEE 30th international conference on computer design
(ICCD), pp 322–328. doi:10.1109/ICCD.2012.6378659

111. Zhang Y, Li Y, Li X, Yao SC (2013) Strip-and-zone micro-channel liquid cooling of integrated
circuits chips with non-uniform power distributions. In: ASME 2013 heat transfer summer
conference

112. Zhang Y, Shi B, Srivastava A (2010) A statistical framework for designing on-chip thermal
sensing infrastructure in nano-scale systems. IEEE Trans Very Large Scale Integration (VLSI)
Syst 22(2):270–279

http://dx.doi.org/10.1109/ICCD.2012.6378659

Part VIII
Codesign Tools and Environment

28MAPS: A Software Development
Environment for Embedded Multicore
Applications

Rainer Leupers, Miguel Angel Aguilar, Juan Fernando Eusse,
Jeronimo Castrillon, and Weihua Sheng

Abstract

The use of heterogeneous Multi-Processor System-on-Chip (MPSoC) is a widely
accepted solution to address the increasing demands on high performance and
energy efficiency for modern embedded devices. To enable the full potential
of these platforms, new tools are needed to tackle the programming complex-
ity of MPSoCs, while allowing for high productivity. This chapter discusses
the MPSoC Application Programming Studio (MAPS), a framework that pro-
vides facilities for expressing parallelism and tool flows for parallelization,
mapping/scheduling, and code generation for heterogeneous MPSoCs. Two
case studies of the use of MAPS in commercial environments are presented.
This chapter closes by discussing early experiences of transferring the MAPS
technology into Silexica GmbH, a start-up company that provides multi-core
programming tools.

Acronyms

API Application Programming Interface
ASAP As Soon as Possible
AST Abstract Syntax Tree
CG Call Graph
CPN C for Process Networks

R. Leupers (�) • M.A. Aguilar • J.F. Eusse
Institute for Communication Technologies and Embedded Systems, RWTH Aachen University,
Aachen, Germany
e-mail: leupers@ice.rwth-aachen.de; aguilar@ice.rwth-aachen.de; eusse@ice.rwth-aachen.de

J. Castrillon
Center for Advancing Electronics Dresden, TU Dresden, Dresden, Germany
e-mail: jeronimo.castrillon@tu-dresden.de

W. Sheng
Silexica GmbH, Köln, Germany
e-mail: sheng@silexica.com

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_2

917

mailto:leupers@ice.rwth-aachen.de
mailto:aguilar@ice.rwth-aachen.de
mailto:eusse@ice.rwth-aachen.de
mailto:jeronimo.castrillon@tu-dresden.de
mailto:sheng@silexica.com

918 R. Leupers et al.

DCG Dynamic Call Graph
DFG Dependence-Flow Graph
DLP Data-Level Parallelism
DSP Digital Signal Processor
FIFO First-In First-Out
ICT Information and Communications Technology
IP Intellectual Property
IR Intermediate Representation
ISA Instruction-Set Architecture
KPN Kahn Process Network
LLVM Low-Level Virtual Machine
MAPS MPSoC Application Programming Studio
MIMO Multiple Input Multiple Output
MoC Model of Computation
MPSoC Multi-Processor System-on-Chip
NRE Non-Recurring Engineering
PE Processing Element
PLP Pipeline-Level Parallelism
PNG Portable Network Graphics
RAW Read-After-Write
RLD Run Length Decoding
SDF Synchronous Data Flow
SESE Single-Entry Single-Exit
TLP Task-Level Parallelism
TRM Trace Replay Module
WAR Write-After-Read
WAW Write-After-Write

Contents

28.1 Introduction . 919
28.2 Application Software Programming . 921

28.2.1 Streaming Models of Computation . 921
28.2.2 C for Process Networks (CPN) . 922

28.3 MPSoC Target Architecture Modeling . 924
28.4 Sequential Programming Flow . 925

28.4.1 Tool Flow Overview. 925
28.4.2 Program Model . 926
28.4.3 Parallelism Identification . 929

28.5 Parallel Programming Flow. 933
28.5.1 Tool Flow Overview. 933
28.5.2 Token Logging and KPN Tracing . 934
28.5.3 Trace Generation and Performance Estimation . 936
28.5.4 KPN Mapping . 937

28.6 Code Generation Flow. 940
28.7 Case Studies . 941

28 MAPS: A Software Development Environment for . . . 919

28.7.1 Parallelization of Android Software . 941
28.7.2 Mapping of Multi-domain Embedded Benchmarks . 943

28.8 Silexica: The Industrial Perspective . 945
28.9 Conclusion . 947
References . 947

28.1 Introduction

MPSoC Application Programming Studio (MAPS) is a package of advanced
embedded multi-core programming technologies and tools with dedicated support
for heterogeneous target platforms. Early research on MAPS started around a decade
ago, when it became obvious that multi-core architectures would be the clear
winner in almost all ICT applications, due to their power efficiency and scalability
advantages. Early multi-core designs, such as the Texas Instruments C80 video DSP,
already indicated the trend and possibilities but were initially not well accepted by
the market. Today, however, the multi-core trend seems irreversible: smartphones
do not sell without multi-core application processors, multi-core sensors assist the
human driver in a car, and much of the Internet traffic is routed over multi-core
wireless base stations. Multi-core-based devices with hundreds or even thousands
of programmable processor cores will soon be a commodity.

The major issue with the multi-core trend in hardware platforms is that software
programming technologies do not keep pace easily. Human programmers clearly
prefer sequential, not parallel, programming languages and models. Moreover, the
industry employs a huge amount of certified sequential legacy code, which cannot
be ported into new parallel languages at any reasonable time and effort. As a
consequence, software implementation for multi-core systems became a tedious and
error-prone task, demanding for major innovations in multi-core-aware software
compiler technology. This is not the first software productivity crisis of this kind:
For instance, when domain-specific processors like DSPs became popular in the
1990s, virtually no usable compiler (and not even simulator) support was available
at the beginning. Thus, DSPs had to be programmed “the hard way,” i.e., in
assembly language or using other low-level tools. Major R&D efforts from the
research community and the semiconductor makers afterward helped to make DSP
programming much more efficient via high-level languages like C/C++. Vice versa,
processors without appropriate programming tools support quickly disappeared
from the semiconductor market or even never fully made it there. The current
situation with embedded multi-core systems is somewhat similar. There is a strong
technology push from the semiconductor/IP segment, but the market adoption could
be much faster if there were more convenient programming tools. Taking into
account the 100CMillion US$ NRE cost for typical System-on-Chip designs today,
software development tools as an afterthought means a significant risk for the
semiconductor/IP industry.

Presently, three groups of actors aim at mitigating the “multi-core software
development crisis”:

920 R. Leupers et al.

1. The academic research community is working on novel parallelizing compiler
technologies, suitable for embedded multi-core applications, while meeting
specific constraints, e.g., real-time requirements and heterogeneous architectures.
Moreover, staying with sequential programming is clearly no viable option in the
long term, and new parallel, yet usable, programming languages (or multi-core-
friendly subsets/supersets of existing languages) are receiving interest.

2. Various start-up companies are commercializing research results and are
providing innovative tools and services to facilitate at least certain sub-tasks
in multi-core programming, e.g., parallel performance estimation or parallelism
detection.

3. The semiconductor/IP industry, in an effort to provide at least some “ad-hoc”
level of programming convenience to their customers, typically ships products
with native C/C++ compilers for the individual processor cores, variants of
parallel programming models, such as OpenMP, or customized “semi-standard”
programming APIs.

Currently, there is no clear winning programming standard in sight that would
play the role of the well-proven and widespread C/C++ languages at the beginning
of the multi-core era. Maybe multi-core programming will continue to be performed
with a variety of domain-specific tools. More research and practical experience with
industrial applications and user acceptance are clearly required. MAPS is aimed at
contributing to this development by exploring new avenues in programming, yet
taking practical issues into account. Like many similar projects, MAPS initially
focused solely on parallelism analysis and partitioning of sequential C code [12].
Later it turned out that code partitioning is actually just one aspect in multi-
core programming; hence, the technology was significantly enhanced by parallel
software task mapping and scheduling, specific language support, target architec-
ture modeling formalisms, profiling and performance estimation techniques, and
integration into legacy software stacks. Figure 28.1 shows an overview of the MAPS
framework. The following sections of this chapter provide details on these aspects:

• Section 28.2 analyzes programming model requirements for typical embedded
application domains and describes CPN, a domain-specific C language extension
for steaming-oriented applications.

• Section 28.3 briefly outlines the target platform modeling facilities in MAPS.
• Section 28.4 describes a MAPS-based sequential programming flow, including a

variety of features for parallelism pattern detection and exploitation.
• Section 28.5 shows a MAPS-based parallel programming flow, including CPN-

based task mapping and parallel software performance estimation techniques.
• Section 28.6 shows a MAPS-based code generation flow, which translates the

CPN specification into plain C code, which is then compiled with the toolchain
of the target platform.

• Section 28.7 provides results of two case studies, where MAPS has been applied
for code optimization in a typical Android software stack set-up as well as for
code parallelization for an advanced multi-core DSP platform.

28 MAPS: A Software Development Environment for . . . 921

Fig. 28.1 MAPS framework overview

Finally, Sect. 28.8 provides an early industrial perspective. Following significant
industrial interest in the MAPS technology (e.g., in the form of user workshops
or bilateral academia-industry projects), Aachen-based Silexica GmbH obtained
an exclusive license of the MAPS technology in 2014 in order to provide robust
software tool products for a fast-growing embedded developers’ market. Some
lessons learned from this technology transfer enable important feedback into further,
fundamental and applied, MAPS research activities.

28.2 Application Software Programming

MAPS focuses on streaming models typically found in wireless, multimedia, and
signal processing applications. The input application described in Fig. 28.1 is based
on these models. A short description of the streaming programming model used
within MAPS is presented in this section. After a thorough study of several different
approaches utilized to practically realize such models, a language-extension-based
approach was chosen because of its convenience and applicability. An overview of
the proposed language extensions is discussed throughout the section.

28.2.1 Streaming Models of Computation

Streaming (or data flow) models have gained acceptance in the embedded com-
munity (e.g., wireless and multimedia), since applications in this domain typically
follow a streaming-based computation approach [33]. Kahn Process Networks

922 R. Leupers et al.

a b

Fig. 28.2 Process network examples: (a) KPN example. (b) SDF example. Numbers indicate how
many tokens are consumed or produced per iteration

(KPNs) [21] are a widespread Model of Computation (MoC), used to describe, e.g.,
signal processing applications. A KPN is represented as a directed graph. Nodes
within the graph represent autonomous processes that perform computations, and
edges between nodes represent unbounded unidirectional First-In First-Out (FIFO)
channels that transmit data tokens. Reading from an empty FIFO channel results
in the process being blocked until data to read becomes available. A KPN example
composed of four processes is shown in Fig. 28.2a. The Synchronous Data Flow
(SDF) model, a subset of KPN, has also been defined [25]. An SDF requires that the
control flow of a process be an endless loop, which computes over predefined fixed
channel accesses. Figure 28.2b presents an example of an SDF with three processes.
For each iteration of the SDF shown in the figure, process P2 always consumes
10 tokens from P1 and produces 20 tokens for P3. The use of SDFs to specify
signal processing algorithms is widespread, given the large amount of algorithms
that strictly follow this model (e.g., signal sampling and filtering). KPNs and SDFs
resemble the way humans think of parallel processing and are therefore perceived
as intuitive ways to specify streaming programs.

28.2.2 C for Process Networks (CPN)

MAPS defines a lightweight C language extension called C for Process Networks
(CPN) to capture streaming models. CPN allows to describe the semantics of
process networks at a high level, by adding a small set of new keywords intended
to specify processes and channels. This design enables retargetability toward
embedded MPSoCs, where processing elements have different APIs and machine-
specific low-level primitives. Moreover, CPN programs are inherently portable,
which opens abundant opportunities for code transformations and optimizations.
A common criticism is that C is not an ideal programming language for parallelism
specification. Nonetheless, a compromise is needed considering the large legacy
C code base and the language popularity in the embedded industry. Some basic
elements of the CPN language are now introduced. The new keywords (prefixed
with __PN) are used for channels, processes, and channel accesses of the supported
streaming models.

28 MAPS: A Software Development Environment for . . . 923

Listing 1 CPN example code: channel declaration

1 typedef struct { int i; double d; } my_struct_t;
2

3 __PNchannel char B[3][3];
4 __PNchannel my_struct_t C;
5 __PNchannel int A = {1024, 2048, 4096}; /* Initial channel tokens */

Listing 2 CPN example code: KPN process template (run length decoding)

1 /* Run Length Decoding, e.g. 4A2B5C3D -> AAAABBCCCCCDDD */
2 __PNkpn RLD __PNin(int EncIn) __PNout(int DecOut)
3 {
4 int count, i;
5 while (1) {
6 __PNin(EncIn) /* read a token (# of appearances) from EncIn */
7 count = EncIn;
8 __PNin(EncIn) /* read a token (data itself) from EncIn */
9 for (i = 0; i < count; ++i) /* write data to DecOut */

10 __PNout(DecOut)
11 {
12 DecOut = EncIn;
13 }
14 }
15 }

28.2.2.1 Channels
Channel declarations in CPN are done using the __PNchannel keyword, which
is similar as declaring a global variable in C. Channel declaration examples are
presented in Listing 1. Elementary C types, such as int, char, float and
enumerations are valid channel types. Structures, unions, and arrays of valid channel
types are also valid. By default a channel is set to be empty at the beginning of
program execution. If initial channel tokens are desired (i.e., to avoid deadlocks),
the specification of initialization lists in the channel declaration (e.g., channel A at
Line 5 in Listing 1) is also supported by CPN.

28.2.2.2 Processes
The concept of process templates is used in CPN to allow code reuse, similar to a C
function. A process template describes the functionality of a process, the channels
accessed by this process, and their access type (read or write). Processes are then
created as instances of process templates. The readability and conciseness of the
CPN code is improved using this approach, when multiple processes in a network
perform identical computations.

Run Length Decoding (RLD) is used as an example to illustrate the concept
of process templates. RLD is a technique used in fax machines for data decom-
pression, where the input data is encoded into a stream of pairs composed of
the number of appearances and the data element itself. For example, the original
string AAAABBCCCCCDDD is compressed into 4A2B5C3D. Listing 2 shows a
possible implementation of RLD in CPN. The KPN process template (__PNkpn)

924 R. Leupers et al.

Listing 3 CPN example code: process instantiation

1 __PNchannel int dec1_in = {4, ’A’, 2, ’B’, 5, ’C’, 3, ’D’};
2 __PNchannel int dec2_in = {3, ’E’, 5, ’F’, 4, ’G’, 2, ’H’};
3 __PNchannel int dec1_out, dec2_out;
4

5 __PNprocess src = Src __PNout(dec1_in, dec2_in);
6 __PNprocess dec1 = RLD __PNin(dec1_in) __PNout(dec1_out);
7 __PNprocess dec2 = RLD __PNin(dec2_in) __PNout(dec2_out);
8 __PNprocess add = Add __PNin(dec1_out, dec2_out);

with identifier RLD is first declared (Line 2). The process reads integers from its
input channel EncIn and writes integers to the output channel DecOut. This is
indicated by keywords __PNin and __PNout, respectively. Arbitrary C code can
be embedded in the body of a KPN process template, which allows the accesses
to input and output channels at any point of the computation. Listing 3 shows
how process instances are created from the process templates and how channels
are connected to them. This CPN code corresponds to the KPN topology shown in
Fig. 28.2a.

28.3 MPSoC Target Architecture Modeling

A Multi-Processor System-on-Chip (MPSoC) is composed of processing elements
of multiple types, storage elements, interconnects, and peripherals. As described in
Fig. 28.1, MAPS takes as one of its inputs an MPSoC model. This model is required
to enable the analyses performed by the sequential and parallel flows presented
in Sects. 28.4 and 28.5, respectively. The architecture model provides a simplified
view of the target MPSoC, which describes it in terms of processing elements
and communication primitives. Before formally defining the MPSoC model, some
preliminary notions are required for clarity [8].

A processor type (PT) stands for a processor architecture that is instantiated
in an MPSoC, possibly multiple times. The PT specifies a cost model for every
operation in its Instruction-Set Architecture (ISA) and also attributes that provide
additional information about the run-time system, such as context switch time and
available scheduling policies. The set of all processor types in an MPSoC is denoted
as PT D fPT1; : : : ; P TNPT g. A processing element (PE) is an instance of a
given processor type, and it inherits its cost model and attributes. The set of all
PEs can be defined as the disjoint union of all the processor type instances PE D
tv2PT PE v , where PE v D fPEv

1 ; : : : ; PE
v
NPE
g is the set that contains all the

instances for a particular type (PTv 2PT).
Similarly, a communication primitive (CP) represents software APIs available to

allow communication between tasks within an application. It is defined as the triple
CP D .PEi ; PEj ;C M CP /, which expresses how the task in PEi communicates
with the task in PEj , where i D j is allowed. C M CP is the cost model of the
communication primitive that consists of functions that associate an amount of

28 MAPS: A Software Development Environment for . . . 925

communicated data with a numerical value. An example of a function contained
in C M CP , is denoted as �CP W N! N, such that �CP .b/ returns the cycle count of
transmitting b bytes over CP . The set of all CPs in the MPSoC is denoted as C P .
The MPSoC model is then defined as follows:

Definition 1 (MPSoC Model). The model of the target MPSoC is a multigraph
MPSoC D .PE ;E /, where E is a multiset over PE � PE that contains an
element eij D .PEi ; PEj / for every CP 2 C P . For convenience, let CPij denote
the communication primitive associated with eij .

28.4 Sequential Programming Flow

This section describes the details of the tool flow that is used to identify multiple
forms of parallelism within sequential C code in embedded applications. The
outcome of this parallelization flow are hints that guide the developer in the process
of deriving a CPN representation of the input application.

28.4.1 Tool Flow Overview

An overview of the sequential programming flow (or parallelization flow) is shown
in Fig. 28.3. Its inputs are the sequential C code of the application, a model of the
MPSoC, and constraints provided by the developer. A program model is constructed
based on static information gathered while performing source code compilation, and
dynamic information gathered through application profiling. Afterward, the program
model is analyzed by algorithms to detect and classify multiple forms of parallelism.

Fig. 28.3 Sequential programming flow

926 R. Leupers et al.

Finally, information in the form of source-level annotations is presented to the
developer to guide the process of deriving a CPN representation of the application.
The following sections describe the relevant details of the tool flow.

28.4.2 Program Model

The main data structure of the sequential programming flow is the Program Model.
This model describes the application in terms of performance information, and a
set of graphs that contain control and data dependency relationships between the
statements within functions in the application. In the following sections, the program
model is described in detail.

28.4.2.1 Performance Information
A key element for a profitable parallelization is performance information. It is
used for two purposes: identifying computationally intensive functions (termed here
parallelization candidates) and performing a cost-benefit analysis to evaluate the
potential speedup of parallelizing a given candidate. The sequential flow relies on
a microarchitecture-aware cost table model to derive a performance estimate of the
application, which is enabled by the MPSoC model and the dynamic information.

28.4.2.2 Dynamic Call Graph
In the context of parallelism extraction, a complete view of the application is
required [8]. This is enabled by a Call Graph (CG), which is composed of a set of
nodes that represent functions and edges that represent calling relationships among
functions. A Dynamic Call Graph (DCG) is used in the sequential programming
flow. This is a special type of CG, which only contains functions that were executed
in a given profiling run. In a DCG, each function node is annotated with its self
cost, which considers only actual computations within the function. The total
cost of the function is annotated as well, which also considers the computations
performed by called functions. The DCG edges also contain information about
the number of times and the source code location, where each call took place.
Building an application DCG enables the detection of computationally intensive
functions (i.e., parallelization candidates), which are extracted by applying a
user-defined threshold. This threshold sets the minimum percentage of the total
application workload that a given function must have in order to be considered as a
parallelization candidate.

28.4.2.3 Dependence-Flow Graph
To enable parallelism extraction, each parallelization candidate is represented as
a Dependence-Flow Graph (DFG) [20]. A DFG not only combines control and
data dependencies but also exploits the program structure by exposing Single-
Entry Single-Exit (SESE) regions. Before introducing the concepts of a DFG, some
definitions are needed for clarity. An intermediate representation .I RA/ of an

28 MAPS: A Software Development Environment for . . . 927

application A is a pair I RA D .SAstmt ; S
A
f /, where SAstmt D fs1; : : : ; sng is the

set of all IR statements generated by a C compilation. SAf D ff1; : : : ; fmg is the set

of all functions defined in the application. Each function f 2 SAf maps to a subset

of statements Sfstmt
 S
A
stmt and can be also expressed as a control-/data-flow graph

CDFGfj D .S
fj
stmt ; E

fj /, where the edge set Efj contains the control and data
dependencies for the function, as defined in the following.

Let ıc be a control dependency between two statements su and sv . It represents
the case where a condition present in statement su evaluates in a way that allows
the execution of statement sv . The set of all control dependencies in a function fj
is denoted as E

fj
c . Similarly, let ıd be a data dependency between two statements

su and sv . It represents the case where both statements access the same variable or
processor resource. The set of all data dependencies in a function fj is denoted

as E
fj
d . There are three different types of data dependencies, namely, Read-After-

Write (RAW), Write-After-Write (WAW), and Write-After-Read (WAR).
A Single-Entry Single-Exit (SESE) is a connected subgraph, such that there

exists a unique incoming control edge from outside the region and a unique outgoing
control edge to outside the region. The set of all the SESE regions of a function fj
is denoted here as Rfj D .r

fj
1 ; : : : ; r

fj
NR
/. Due to their structured control flow, SESE

regions are a convenient unit for parallelism detection. Moreover, SESE regions can
be identified based on the language construct that they represent (e.g., if-then-else,
or loops) as the examples in Fig. 28.4 show. Only data dependencies relevant for
the regions are considered within the SESE regions. In Fig. 28.4a the dependency

a b

Fig. 28.4 Dependence-Flow Graph (DFG) examples: (a) if-then-else and (b) loop

928 R. Leupers et al.

on variable x is redirected inside the region as there is an operation that utilizes it,
while the dependency on y bypasses the region. Based on the previous notions it is
now possible to define a DFG.

Definition 2 (Dependence-Flow Graph). A Dependence-Flow Graph (DFG) of a

function fj 2 F is a directed multigraphDFGfj D .S
fj
stmt ; E

fj
c [E

fj
d ; R

fj /, where

S
fj
stmt is the set of function statements, E

fj
c [E

fj
d is the union of control and data

dependency sets, and Rfj is the set of SESE regions. The set of all DFGs given an
application execution is defined as DFG F .

There are multiple types of nodes within a DFG. Statement nodes represent
operations and function calls, which are augmented with run-time execution counts.
Switch nodes are conditional jumps to multiple targets. In contrast to the original
definition of DFG in [20], additional loop entry and exit nodes are defined, which
enclose and redirect data dependencies within loop regions. This is illustrated in
Fig. 28.4b. Additionally, control edges are annotated with the direction of the control
flow (forward or backward) and their execution count obtained from dynamic
information. Finally, data edges are annotated with detailed information about the
carried dependency.

28.4.2.4 Loop Analysis
Loop analysis is an important step within the sequential programming flow, as loops
are typically one of the most interesting constructs for parallelization. Information
extracted during this analysis is annotated on the loop entry nodes, and is later used
during the parallelism identification phase. This information includes:

• Induction variables: these are typically used to control the iterations of loops and
they are modified as i D i ˚ exp, where i is the induction variable, ˚ is the
operator and exp can be either loop-invariant or derived from another induction
variable.

• Private variables: these are used only within the same iteration in which they are
defined [22]. Since they do not have to be exposed to other processes at run time,
it can be safely assumed that the loop-carried dependencies of these variables do
not prevent parallelization.

• Reduction variables: reduction operations are a common pattern found in many
loops [22]. A reduction variable accumulates values across iterations of a loop.
They have the form of r D r ˚ exp, where r is the reduction variable, which is
not defined or used anywhere else in the loop,˚ is a commutative and associative
operator, and exp is typically a loop-variant expression.

• Loop-carried dependencies: data dependencies across loop iterations that are
not related to induction, reduction, or private variables are annotated as actual
loop-carried dependencies. They can be identified by analyzing backward data
dependencies in the SESE that represents each loop.

28 MAPS: A Software Development Environment for . . . 929

• Profiling information: details about the average trip count and the number of
times a loop was entered in a given profiling run, are also annotated on the loop
entry node. This information is relevant to perform a cost-benefit analysis when
a given loop is considered for parallelization.

28.4.2.5 Program Model Definition and Construction
Using the aforementioned notions, it is possible to formally define the program
model, which is the basis for the parallelism discovery process in MAPS.

Definition 3 (Program Model). A program model is defined as the tuple PM D

.DFG F ;DCG/, where DFG F is the set of Dependence-Flow Graphs (DFGs)
and DCG is the Dynamic Call Graph (DCG).

The construction of the PM starts by creating statement nodes and control flow
edges for the executed functions at the compiler IR level. Information about the
definition and use of variables is annotated on the nodes by using the compiler
IR (i.e., static) and profiling (i.e., dynamic) information. SESE regions are then
extracted, and the nodes that delimit them are inserted (i.e., Switch, Merge, Loop
Entry and Exit). Finally, data dependency edges are created by using variable
access information. Once a DFG is built for each executed function, the DCG is
constructed taking into account the performance estimation.

In contrast to purely static analyses, approaches that involve dynamic information
are not fully safe. The reason is that dynamic analysis cannot guarantee that all
possible data dependencies in an application are discovered for a given input. In
order to mitigate this problem, code coverage analysis is performed to provide the
developer with feedback about the code parts that were actually executed.

28.4.3 Parallelism Identification

In this section, the heuristics used to identify multiple forms of parallelism within
sequential C code are presented. The heuristics use the DFGs and the performance
information contained in the program model to perform the analyses at the C
statement level of granularity. This provides great flexibility and allows a direct
correlation between the extracted processes and the source code. The final results
are source-level parallelization hints that guide the developers in the process of
transforming the input C code into a CPN representation. The heuristics described
in this section were introduced in [8] and later extended in [2, 3].

28.4.3.1 Task-Level Parallelism (TLP)
In TLP, a computation is divided into different processes that operate concurrently
as Fig. 28.5a shows. Here, Processes 1 and 2 are able to run in parallel as the
only dependency on variable x appears early in Process 1, thus allowing Process
2 to start its execution. Algorithm 1 shows the TLP extraction heuristic. As an

930 R. Leupers et al.

a

b c

Fig. 28.5 Forms of parallelism: (a) task-level parallelism, (b) data-level parallelism, and (c)
pipeline-level parallelism

Algorithm 1 Task-level parallelism extraction

1: procedure EXTRACTTLP(PM , MPSoC , wthld , 	thld)
2: DCG GETDCG(PM), PC GETPARALLELIZATIONCANDIDATES(DCG,wthld)
3: for fj 2 PC do
4: DFGfj GETDFG(fj)

5: DFG
fj
c COLLAPSESUBREGIONS(DFGfj)

6: P GETFIRSTPARTITION(DFG
fj
c)

7: while GETSUCCESSOR(P)¤ ; do
8: P 0 GETSUCCESSOR(P)
9: tseq GETSEQTIME(P;P 0;MPSoC)

10: tpar ASAP(P;P 0;MPSoC)
11: 	 tseq=.2 � tpar /
12: if .	 < 	thld / then
13: P P [P 0

14: end if
15: end while
16: end for
17: end procedure

input, it takes the program model (PM) and the user-defined threshold (wthld),
which specifies the minimum workload to consider a function as a parallelization
candidate. Then all the structures such as if-then-else blocks and loops are collapsed
as single partitions to get a linear control flow (Line 5). Afterward, two consecutive
partitions in the control flow are jointly analyzed. The parallel execution time is
computed by performing an ASAP scheduling of both partitions. In case that the
parallel efficiency 	 D tseq=.2 � tpar /, is below a user-defined threshold 	thld , the
partitions are merged (Lines 12 and 13).

28 MAPS: A Software Development Environment for . . . 931

28.4.3.2 Data-Level Parallelism (DLP)
This form of parallelism is typically found in scientific and multimedia applications.
It is exploited by splitting the iteration space of a loop into multiple workers,
provided that there are no loop-carried dependencies. Figure 28.5b shows an
example of a loop with DLP. Algorithm 2 shows the heuristic to extract DLP.
It takes as inputs the program model (PM), the model of the target platform
(MPSoC), and the user-defined threshold (wthld) for parallelization candidates.
For each parallelization candidate (fi 2 PC) the set of regions that represent loops
is extracted. Then for each region a loop annotation LArj is obtained (Line 7),
containing relevant information as described in Sect. 28.4.2.4. A loop has to meet
the following preconditions to be considered for DLP (Line 8): (i) there is only
one induction variable and thus one single iteration space, (ii) there are no loop-
carried dependencies, and (iii) the ratio between the average trip count and the
number of times the loop was entered is bigger than a given threshold. If these
preconditions are met, the algorithm iterates until the parallel efficiency () is below
a user-defined threshold (thld) or the number of workers is equal to the number
of cores in the target MPSoC (NPE). The execution time of the parallelized code
is modeled as tpar D tseq=workers C tcomm.workers; Eio/, where workers is
the number of utilized cores, Eio are the input and output data edges of the loop,
and tcomm is the communication overhead. Here source-level annotations include
details, such as the expected speedup and the list of induction, private, and reduction
variables. In case that DLP cannot be exploited, the reasons are also presented to the
developer.

Algorithm 2 Data-level parallelism extraction

1: procedure EXTRACTDLP(PM ;MPSoC , wthld , 	thld)
2: DCG GETDCG(PM), PC GETPARALLELIZATIONCANDIDATES(DCG,wthld)
3: NPE GETNUMCORES(MPSoC)
4: for fj 2 PC do

5: DFGfj GETDFG(fj), R
fj
L GETLOOPREGIONS(DFGfj)

6: for ri 2 R
fj
L do

7: LAri GETLOOPANNOTATIONS(ri)
8: if HASVALIDPRECONDITIONS(LAri) then
9: Eio GETIODATAEDGES(ri)

10: workers 0

11: while .	 > 	thld /_ .workers � NPE/ do
12: tseq GETEXCTIME(ri , MPSoC)
13: tpar tseq=workersC tcomm.workers; Eio/
14: 	 tseq=.workers � tpar /
15: workers workersC 1
16: end while
17: end if
18: end for
19: end for
20: end procedure

932 R. Leupers et al.

Algorithm 3 Pipeline-level parallelism extraction

1: procedure EXTRACTPLP(PM ;MPSoC , wthld)
2: DCG GETDCG(PM), PC GETPARALLELIZATIONCANDIDATES(DCG,wthld)
3: for fj 2 PC do
4: DFGfj GETDFG(fj), Rfj GETLOOPREGIONS(DFGfj)
5: for ri 2 Rfj do
6: LAri GETLOOPANNOTATIONS(ri)
7: rci COLAPSESUBREGIONS(ri)
8: Npart GETPARTNUMBER(rci)
9: if HASVALIDPRECONDITIONS(LAri) _ ISOUTERMOST(ri) _ .Npart > 2/ then

10: .tpar ; Pcfg/ LINEARPIPEBALANCE(rci , MPSoC)
11: Nstg GETNUMSTAGES(Pcfg)
12: Sdom GETDOMSTAGE(Pcfg)
13: if .Nstg < GETNUMCORES(MPSoC) _ HASLOOP(Sdom) then
14: .t 0par ; P

0

cfg/ OPTIMIZEDOMSTAGE(Pcfg)
15: end if
16: end if
17: end for
18: end for
19: end procedure

28.4.3.3 Pipeline-Level Parallelism (PLP)
This is an important form of parallelism in embedded systems, as many applications
in this domain perform stream-based computations [32]. In PLP, the computation
of a loop body is broken into a sequence of steps (called pipeline stages) that
can be executed in parallel as Fig. 28.5c shows. In this example the first stage
communicates its result to the second. In contrast to DLP, PLP can be exploited
in presence of loop-carried dependencies, which makes this pattern an interesting
parallelization alternative. Algorithm 3 describes the process of PLP extraction.
Similar to DLP, preconditions are evaluated for each loop region (Line 9). However,
in PLP loop-carried dependencies are allowed and only the outermost loop is
considered in first place. The heuristic continues by collapsing the sub-regions
within the loop body as independent blocks to get a linear control flow. Afterward,
the heuristic extracts the most balanced pipeline configuration (Pcfg) taking into
account the MPSoC model (Line 10). A pipeline configuration Pcfg describes the
number of pipeline stages and the mapping between the lines of code and the
pipeline stage to which they belong. However, the performance of the extracted
pipeline configuration could be limited by a dominating stage (Sdom), which is the
slowest one and could prevent achieving a well-balanced configuration. Therefore,
the configuration could be further optimized (P 0cfg), by analyzing nested loops
within the dominating stage. If the dominating stage contains a loop (Line 13), it
is possible to try to extract either DLP or PLP from it. This corresponds to stage
replication and multi-level pipeline extraction, respectively [34]. The procedure in
Line 14 performs the aforementioned optimization recursively, until all the available
cores in the MPSoC are used or the dominating stage cannot be further optimized.

28 MAPS: A Software Development Environment for . . . 933

28.5 Parallel Programming Flow

This section describes the tool flow to generate a mapping configuration from a
KPN application onto a heterogeneous MPSoC. The input application is described
in CPN, which may be obtained as a result of the sequential programming flow in
Sect. 28.4.

28.5.1 Tool Flow Overview

An overview of the parallel programming flow is shown in Fig. 28.6. Apart
from the application specification and the MPSoC model, the flow receives a
configuration file and a non-functional specification in form of application and
mapping constraints. The flow itself is divided into two phases, one for obtaining
traces that represent the interaction among KPN processes (see Sect. 28.5.2) and
the other for computing the actual mapping (see Sect. 28.5.4). These phases require
means for estimating or measuring performance to steer the optimization processes,
as discussed in Sect. 28.5.3. Before delving into the details, the extra input/output
specifications needed by the flow are introduced first in the following.

28.5.1.1 Constraints and Configuration
The flow supports multiple types of application constraints. This includes time,
mapping, and platform constraints. Time-related ones allow to set a throughput
constraint on a KPN process and a latency constraint along a path in the KPN or to
define processes that are triggered by timers. Mapping-related constraints enforce
a solution for application elements (processes and channels). That is, they fix a
processor to a process, or a communication primitive to a channel. Finally, platform
constraints restrict the available resources visible to the application (e.g., a subset of

Fig. 28.6 Parallel programming flow

934 R. Leupers et al.

processing elements or lower memory resources). The configuration of the tool gives
the user control over the optimization engine. This includes selecting the search
algorithm for obtaining the mapping, as well as the algorithm parameters.

28.5.1.2 Mapping Configuration
As output, the mapping flow produces a so-called mapping configuration, which is
used by the cpn-cc compiler to generate code accordingly, as discussed in Sect. 28.6.
The configuration describes how processes are to be mapped to processors, which
communication primitives are to be used for the logical channels, and the size of the
KPN FIFO buffers.

28.5.2 Token Logging and KPN Tracing

In contrast to static data-flow programming models, where actor interactions are
explicit in the specification, process interactions are hidden in a KPN specification.
Depending on the internal control flow and the incoming data, inter-process
communication may vary. This is illustrated in Fig. 28.7. The figure shows a sample
KPN specification and the control flow of its processes in Fig. 28.7a, together with
two hypothetical schedules in Fig. 28.7b, c. These schedules result from different
paths along the control flow graph of process P1. To characterize these interactions
we use token logging and KPN tracing, as described in the following.

28.5.2.1 Token Logging
Token logging refers to the process of capturing the tokens that flow through all the
channels of a KPN for a given execution. To achieve this, an instrumented Pthreads
implementation of the CPN application is generated and linked against a custom
FIFO library (one that writes the tokens to a binary file). Once the channel histories
have been collected, it is possible to execute each process in isolation (e.g., using
a simulator or a sequential performance estimator, as discussed in Sect. 28.5.3.1).
Since KPNs are determinate, the paths along the control flow graphs will not change
as a consequence of changing the schedule.

28.5.2.2 KPN Traces
As illustrated in Fig. 28.7, we are interested in capturing the events at which
processes interact with each other. Knowing the occurrence time of the events allows
the flow to reason about possible schedules (as shown in Fig. 28.7b, c). Channel
accesses are important because they can potentially change the state of processes in
the KPN application, e.g., a read from an empty channel would block the consumer
process, whereas a read from a full channel would unblock the producer process.
Apart from read and write accesses to channels, we also record the so-called time
checkpoints. Time checkpoints appear in the trace as a consequence of a call to a
function or a primitive that measures time (e.g., waitForNextPeriod in real-
time applications). These events are used in the flow to check for violations of the
time constraints specified by the programmer.

28 MAPS: A Software Development Environment for . . . 935

a

b c

Fig. 28.7 Control flow and process interactions. (a) Sample KPN application. (b, c) Possible
schedules

The execution of a process is then characterized by a sequence of events (trace),
separated by arbitrary computations (segments). More formally, given a KPN graph
KPN D .P;C /, with P the set of processes and C 2P�P the set of channels:

Definition 4 (Segment). A segment (S) of a process P 2 P is a sequence
of statements S D .s1; : : : ; sn/ that determine a path in its control flow graph,
where s1 follows immediately from a synchronization event (e.g., read, write, or
iteration finish events) and sn is the only statement in the sequence that generates a
synchronization event.

Definition 5 (Process trace). A process trace TP of a process P 2 P is a
sequence of segments TP D .SP1 ; : : : ; S

P
m / observed during the tracing process.

An application is represented as a set of traces, one for each process. This is
a common representation for applications modeled as KPNs, or dynamic data-
flow graphs [6, 9, 11, 14]. If different inputs are considered, then each process is
characterized by multiple traces. In this case, traces can be analyzed to identify
structure and derive mappings that are valid for sets of different traces [18]. In
general, traces help to understand how processes interact, i.e., communicate. To
really understand when the processes would interact, segments must be annotated
with time estimates or measurements. This is the matter of the following section.

936 R. Leupers et al.

28.5.3 Trace Generation and Performance Estimation

Mapping and scheduling generation are directly influenced by the times in which
different application processes interact. Such times depend on the processor type
on which they will be executed according to the mapping decisions. Therefore, the
aforementioned KPN traces must be generated for each of the processor types inside
the target MPSoC (See Sect. 28.3), for each application process. Such traces are
necessary for the success of the mapping and scheduling heuristics and are produced
by sequential performance estimation.

Furthermore, a fast mechanism to predict parallel execution time is also required
after mapping and scheduling have been performed. This is done to evaluate the
profitability of the decisions and to discard poor candidates. This section starts
by detailing the strategy through which KPN traces are generated for a parallel
CPN application (i.e., sequential performance estimation). A brief explanation of
the derivation of the execution times for an application that has been already
mapped/scheduled is then presented.

28.5.3.1 Sequential Performance Estimation
The sequential performance estimation stage receives the application and the
MPSoC model as an input and generates two outputs. The first is the aforementioned
token-logging (Pthreads) version of the application, which is executed to generate
an input/output token history that characterizes the activity in the FIFO channels.
The second output consists of a standalone C application for each CPN process,
which will read its corresponding input from the generated token history files. Each
one of these standalone applications is then instrumented using CoEx [15], a Multi-
Grained Source-Level Profiling tool. A trace containing function calls and basic
block executions is generated while executing the instrumented binary, and it will
be consumed as an input of the next stage in the estimation process.

The MPSoC model, the standalone applications, and their source-level execution
traces are available at this stage. They are fed to a performance estimation engine
[16], which calculates the clock cycles it takes to execute each basic block of a given
standalone application, given a processor type. The engine behaves as a pseudo-
compiler back-end, in the sense that it emulates one without performing code
emission. In order to generate the cost for a given basic block, lowering, resource-
constrained list scheduling, and code placement are performed. During lowering,
the IR instructions of the input application that do not match to those supported by
the processor model are transformed into simpler, supported ones. After lowering,
each of the resulting basic block instructions is assigned to an execution step using
list scheduling. Afterward, the position of basic blocks relative to each other (i.e.,
placement) is determined based on profiling information. This accounts for the fact
that contiguously placed basic blocks do not need a branch instruction, improving
the estimates.

After cost calculation, the estimation engine traverses the trace and accumulates
the number of clock cycles elapsed between two channel accesses. This number

28 MAPS: A Software Development Environment for . . . 937

is then dumped together with the type of channel access, the channel ID and the
source line where the access was performed, effectively creating a time-annotated
KPN trace. The estimation is repeated for each CPN process, until all the KPN traces
are available for each processor type of the MPSoC.

28.5.3.2 Parallel Performance Estimation
To provide an estimation of the parallel performance, a discrete event simulator is
used. As shown in Fig. 28.8, the simulator takes as input (i) the time-annotated KPN
traces, (ii) the MPSoC model (e.g., context switch and communication costs), and
(iii) a mapping configuration. The latter can be provided by the user or generated
automatically (see Sect. 28.5.4). The simulator replays the traces according to the
mapping configuration and produces a Gantt-Chart and other execution statistics.
This information can be used by the programmer to modify the application (or the
architecture) and is also used by iterative mapping algorithms.

28.5.4 KPN Mapping

A detailed view of the mapping and scheduling phase is presented in Fig. 28.9. This
phase starts with an initialization process in which, among others, a model of the
execution of the application in form of a trace graph is created. After initialization,
the mapping configuration is computed in an iterative way, as suggested by the
figure. With every iteration, the mapper is allowed to use more resources in order
to meet the constraints given by the user. Similar approaches have been described
in [9, 13, 26, 30]. The outer iteration adds more processing elements (PEs), whereas
the inner iteration makes more memory available, i.e., enlarges the FIFO buffers.
After every iteration, the TRM is used to evaluate the performance of every mapping
configuration. Further details are given in the following.

28.5.4.1 Initialization and Trace Graph Creation
During initialization, the starting amount of resources (processors and memories)
for the iterative mapping process is determined. The starting set of processors and
memories is defined by the platform constraints (see Sect. 28.5.1.1). The initial
amount of memory is determined in turn by the minimal buffer sizes that lead to
a deadlock-free execution.

Fig. 28.8 Trace Replay Module (TRM)

938 R. Leupers et al.

Fig. 28.9 KPN mapping flow

...
Blocking
reads
Blocking
writes

t

t...

...

size:1

size:1
size:2

a

b

Fig. 28.10 Trace graph. (a) Sample KPN, annotated buffer sizes and sample trace with named
segments. (b) Resulting trace graph

Plenty of authors have proposed buffer sizing strategies for KPN applications [5,
17, 28]. A common approach is to execute the application and selectively increase
buffer sizes as the application reaches an artificial deadlock. We use the information
collected in the traces to achieve a similar goal. To this end, a graph representation
of the events observed during tracing is constructed. This so-called trace graph is
then later used by mapping heuristics as discussed in Sect. 28.5.4.4.

In a trace graph nodes represent segments in the process traces and inter-
process communication. The edges represent sequential execution of the segments
and dependencies introduced by communication, i.e., a read can only succeed if
the write has happened (blocking reads semantics) and a write can only succeed
if there is enough space in the FIFO (blocking writes semantics), as Fig. 28.10
illustrates.

As can be seen from the example, the edges that represent blocking writes change
with the buffer sizes. For example, the edge .rC21 ; S

P1
4 / states that the first read

from channel C2 unblocks the fourth segment of process P1. This segment follows
immediately after the third write to channel C2, which would block if no token is

28 MAPS: A Software Development Environment for . . . 939

read, given the channel size of 2 in the example. If the buffer size for channel C2
were 1, then the edge would be .rC21 ; S

P1
3 /, i.e., it would unblock the second write

to the channel. At the same time, a new edge .rC22 ; S
P1
4 / would appear. A wrongly

dimensioned buffer would lead to deadlock, which appears as a cycle in the trace
graph. For this reason, we compute the initial buffer sizes, by iteratively constructing
the trace graph while ensuring absence of cycles.

28.5.4.2 Increasing the Amount of Processors
If a given platform subset is not enough to meet the constraints imposed by the
user, the mapping process tries again with more resources or a new set of different
ones. Note that for a platform with N processors, potentially of different type,
this procedure requires the mapping process to be run for 2N 	 1 subgraphs of
the MPSoC model. To avoid exponential complexity, hardware symmetries are
exploited as described in [18] to ignore equivalent subgraphs. Complexity is further
reduced by monotonically increasing the cardinality of the processor subset. That
is, for every two subsequent subsets PE i ;PE iC1 2 }.PE /; jPE i j � jPE iC1j.
To achieve this, we randomly select among all possible subsets at every iteration.

28.5.4.3 Enlarging Buffers
It is known that increasing buffer sizes may lead to a throughput improvement.
To exploit this fact, the buffer sizes are increased in a non-uniform way for every
platform subset. This is done by observing the TRM schedule, selecting the channel
that was full for the longer time and increasing its size by the biggest burst access.

28.5.4.4 Mapping Computation
The MAPS framework includes several heuristics for mapping KPN applications,
as described in [8, 9]. While several authors proposed evolutionary approaches
to address the mapping problem as in �Chap. 30, “DAEDALUS: System-Level
Design Methodology for Streaming Multiprocessor Embedded Systems on Chips”
of this book and in [29,31], here it was opted for simpler and faster heuristics based
on the execution traces.

Given aKPN D .P;C / and anMPSoC D .PE ;E /, we want to determine a
mapping of processes to processors �p W P ! PE and a mapping of channels
to communication primitives �c W C ! E , so that 8C D .Pi ; Pj / 2 C ,
with �c.C / D CP D .PEk; PEl/ 2 E , �p.Pi / D PEk ^ �p.Pj / D PEl .
The mapping heuristics strive at finding one such valid mapping, with the best
performance given the available resources (see Fig. 28.9).

The group-based mapping algorithm (GBM) [10] is one prominent heuristic for
jointly mapping processes and channels. This heuristic is based on the analysis of the
critical path of the trace graph introduced in Sect. 28.5.4.1, as many other mapping
algorithms for mapping Directed Acyclic Graphs (DAGs) [23]. The GBM algorithm
works by iteratively reducing the group of resources (processors or communication
primitives) to which an application element (process or channel) can be mapped.
Given these groups, one can compute the ASAP and ALAP times of every node

940 R. Leupers et al.

in the trace graph, for example, using the average cost across all resource types
in the group. This helps to identify all nodes that belong to the critical paths of
the graph. Among these nodes, the GBM algorithm then determines the bottleneck
application element. This element is the one that would contribute the most to the
reduction of the critical path length if its group were reduced. Groups are reduced
by removing slow resources, lowering the average cost of the nodes in the graph,
thereby shortening the critical path. After reducing the group of the bottleneck
element, new critical paths with new bottleneck elements may appear. This way,
groups are iteratively reduced until only one resource type is left available (for
critical elements) or no more improvements can be achieved. Having solved the
assignment of heterogeneous resources, a simpler heuristic is used afterward to
determine the final mapping (see [10] for details). This group-based strategy helps
dealing with highly heterogeneous platforms, by reserving specialized resources
(e.g., accelerators) for the most crucial application components.

28.6 Code Generation Flow

In this section, the compiler infrastructure of the CPN language (cpn-cc) is
presented. The cpn-cc compiler is a source-to-source (CPN-to-C) compiler im-
plemented based on Clang [24], which is the frontend of the LLVM compiler
infrastructure. Figure 28.11 shows the CPN compiler infrastructure. The inputs
are the CPN application itself (obtained with the sequential programming flow
described in Sect. 28.4) and a configuration that describes how the CPN application
is mapped to the target MPSoC (obtained with the parallel programming flow from
Sect. 28.5). The cpn-cc compiler itself consists of three stages, namely, the frontend,
generic and platform-specific transformations, and C code generation:

Fig. 28.11 CPN compiler infrastructure (cpn-cc)

28 MAPS: A Software Development Environment for . . . 941

• Frontend: The frontend starts with C preprocessing. The source code is then
analyzed by the tokenizer where CPN keywords are added. The code is also
analyzed by a parser that understands the new grammar rules for CPN syntax
elements, such as process templates and channel accesses. The CPN-aware
semantic analysis creates an Abstract Syntax Tree (AST) in the next stage. It will
contain all CPN language elements that appear in the source code.

• AST Transformations: The AST transformations do the actual source-to-source
translation. There are two categories for the AST transformations, generic and
platform-specific. This is similar to the sequence of code optimizations in a
classical compiler [4]. Generic transformations are platform independent, while
platform-specific transformations replace the AST nodes of CPN constructs with
C nodes that have platform-specific API calls according to the input mapping
configuration (e.g., processes creation and FIFO communication primitives). The
AST transformations result is a pure C AST that does not contain CPN elements.

• C Code Generator: The last step of the source-to-source translation is the AST
printer of Clang that emits C source code from the transformed AST. Other
additional auxiliary files such as makefiles are also generated to enable seamless
compilation, using the native C compilers of the individual target cores.

The cpn-cc compiler provides a clean and powerful infrastructure for source
code transformation based on ASTs. Code optimizations are possible thanks to the
preservation of the complete semantic information. Data type checking and variable
manipulation are enabled in the compilation, which is not soundly supported by
other textual replacement approaches. This also results in good readability of the
generated source code, as it is close to the original CPN specification.

28.7 Case Studies

This section describes case studies for the tool flows previously outlined in this
chapter. The parallelization of Android applications and the mapping of embedded
benchmarks from multiple application domains are presented as case studies for the
sequential and parallel programming flow, respectively.

28.7.1 Parallelization of Android Software

The usefulness of a tool flow is directly related to the systems and software
environments to which it can be applied. This section describes the extension
to the sequential programming flow for parallelization of Android software [3].
Android is an interesting case study as it became the “cornerstone” of the major
vendors in the mobile market [19]. One of the key aspects for this success is
its Java-based programming model, which allows to develop portable applications
across multiple hardware platforms. However, this portability comes at a price to
be paid in terms of performance. To overcome this problem, the Android software

942 R. Leupers et al.

Fig. 28.12 Extension to the dynamic analysis to support android (The Android Robot created by
Google is used under the terms of the Creative Commons 3.0 Attribution License)

Table 28.1 Characteristics
of the benchmarks

Benchmark LOC Functions Candidates Parallelism

Beamformer 2 K 7 2 DLP

Edge detection 1 K 4 2 TLP, DLP

JPEG decoder 2 K 32 3 PLP

LTE 4 K 39 1 DLP

PNG decoder 27 K 170 8 PLP

Webp decoder 23 K 149 6 PLP

environment provides APIs (e.g., Java Native Interface JNI) that allow to develop
computationally intensive portions of the applications (typically libraries) in native
C or C++ code, which exploits specific characteristics of the target MPSoCs.

Figure 28.12 shows the extension to the sequential programming flow for
Android-based devices. This is achieved by instrumenting the C portion of the
Android applications. There are two possible scenarios: (i) the application is
described as a combination of Java and C code (e.g., a library) using the JNI API, or
(ii) the application is described purely in C. With this extension the usual Android
development flow is not affected, since a set of scripts automate the whole process
of instrumentation, execution, and trace retrieval from the device. To evaluate the
performance of the sequential programming flow applied to Android, representative
embedded applications were analyzed on the Nexus 7 tablet [27], which is based on
a 1.5 GHz Quad-core Snapdragon MPSoC. For this evaluation the minimal threshold
for parallelization candidates was set to 50% of the total execution time. Then the
parallelism identified in the candidates was implemented using CPN taking into
account the hints provided by the sequential programming flow.

Table 28.1 shows the characteristics of the benchmarks considered for the
evaluation, in terms of the number of lines of code, number of functions, number
of parallelization candidates identified, and the forms of discovered parallelism.
The first observation from the table is that the number of parallelization candidates
identified was on average less than four. This result shows that the workload of
the applications is concentrated in few functions. This fact holds even for larger
benchmarks, such as the WebP decoder, where only 4% of the functions were

28 MAPS: A Software Development Environment for . . . 943

Beamformer

Edge Detection

JPEG Decoder
LTE

PNG Decoder

Webp Decoder
Average

0

1

2

3

4

Sp
ee

du
p

Fig. 28.13 Speedup results on the Nexus tablet

identified as parallelization candidates. This supports the idea that the sequential
programming flow is scalable, as it focuses only on the parallelization candidates.
Another interesting observation from Table 28.1 is that decoding benchmarks, such
as JPEG, PNG, and WebP, profit from PLP. Such benchmarks have to process the
compressed input bitstream, by performing a sequence of steps within a loop. The
way this bitstream is processed prevents the exploitation of DLP. PLP extraction is
fairly straightforward, as these steps or a combination of them can be implemented
as pipeline stages.

Figure 28.13 shows the speedup results after comparing the time of the par-
allelized version of the applications, against the sequential version running on a
single core. The average speedup gain among the evaluated benchmarks was 2.3�.
The best utilization of the cores was achieved by the Beamformer benchmark with
a speedup of 3.8�. This is because the workload of this benchmark is dominated
by a loop that allows the extraction of DLP, thus its parallel representation
scales very well on the four cores available. In particular, the result of the PNG
benchmark is important in the context of Android, as PNG is the preferred image
format in this framework. Therefore, the speedup gain on PNG impacts the entire
Android framework. It is worth mentioning that after a manual inspection of
the parallelization suggestions of the tool, no data dependency violations were
identified, which could compromise the functional correctness of the parallelized
benchmarks. Moreover, it was found through the case studies that the process of
deriving the CPN representation is straightforward, when taking the provided hints
into account.

28.7.2 Mapping of Multi-domain Embedded Benchmarks

In this section, the parallel programming flow is evaluated in terms of performance
and productivity improvements [1]. The evaluation is conducted by exploring the
CPN description mapping of the applications of an embedded benchmark set on

944 R. Leupers et al.

the C6678 multi-core DSP platform from Texas Instruments [7]. This MPSoC has
eight DSP cores and offers multiple alternatives for communication, such as on-chip
shared memory and a hardware controller for packet-based data movement.

The considered benchmarks for the evaluation belong to multiple application
domains, such as audio, image and video processing, radar, and wireless com-
munications. Table 28.2 shows a summary of their characteristics, such as the
number of processes, FIFOs, and the forms of exploited parallelism. The mapping
options column gives an idea of the mapping complexity. It considers both the
characteristics of the applications, such as the number of processes and the number
of FIFOs, the number of MPSoC processing elements (eight DSPs), and the types
of available FIFOs (e.g., shared memory and multi-core navigator). The number of
mapping options for each benchmark is computed with the expression: .8/P rocesses�
.2/FIFOs .

First the performance is evaluated in terms of speedup and efficiency of every
benchmark, by comparing the results of manual mapping against the automatic
mapping provided by the parallel programming flow. Figure 28.14a summarizes the
achieved speedups, taking as a baseline the sequential version of each benchmark
on a single DSP core. Furthermore, it is possible to establish a relationship between
the number of cores used in a given parallel implementation and the resulting
speedup, by computing the achieved efficiency (speedup=cores). Figure 28.14b
shows efficiency results both on the manual and automatic mapping scenarios. In
general, the automatic mapping shows a better performance and efficiency results.

Table 28.2 Characteristics of benchmarks

Benchmark Processes FIFOs Parallelism patterns Mapping options

Audio filter 8 8 DLP, PLP 4:3� 109

Sobel filter 8 10 TLP, DLP 1:7� 1010

JPEG 24 27 DLP, PLP 6:3� 1029

MJPEG 5 4 PLP 5:2� 105

MIMO OFDM 18 23 DLP, PLP 1:5� 1023

STAP 16 18 DLP, PLP 7:4� 1019

AudioFilter

Sobel Filter
JPEG

MJPEG

MIMO OFDM STAP
0

2

4

6

Sp
ee

du
p

Manual Automatic

Audio Filter

Sobel Filter
JPEG

MJPEG

MIMO OFDM STAP
0

50

100

E
ffi

ci
en

cy
(%

)

Manual Automatica b

Fig. 28.14 Mapping results on the C6678 Keystone platform. (a) Speedup. (b) Efficiency

28 MAPS: A Software Development Environment for . . . 945

Table 28.3 Productivity results

Manual Automatic Productivity
Benchmark Trials Time(h) Trials Time(s) Gain

Audio filter
1

0.5 1 0.80 2250

Sobel filter
3

1.5 1 0.57 3440

JPEG
6

3 1 2.00 5400

MJPEG
2

1 1 1.46 4932

MIMO OFDM 15 7.5 1 2.06 13,107

STAP 10 5 1 3.20 5625

This is especially true in complex KPNs, such as the JPEG, MIMO OFDM, and
STAP, where manual mapping is not able to achieve the best utilization of the
available DSP cores.

To evaluate the productivity gains provided by the parallel programming flow,
the time consumed to perform manual and automatic mapping is compared. While
automatic mapping usually requires just one execution of the tool flow, manual
mapping requires not only a priori knowledge of the benchmarks but also a
considerable effort as multiple trials are needed to find a proper result. Each trial
of manual mapping is an expensive task that involves defining a configuration,
generating code for the target device, executing it on the platform, and evaluating the
resultant performance. The duration of each manual mapping iteration is estimated
as approximately 30 min. Therefore, the time required to obtain a mapping solution
based on this approach could be in the order of hours. The achieved productivity
gains can be computed as the ratio of the time it takes to manually find a suitable
mapping, over the time the parallel programming flow consumes to achieve one
automatically.

Table 28.3 shows the productivity results. The highest productivity is achieved
with complex benchmarks, such as JPEG, MIMO OFDM, and STAP. The benefit of
using the tool flow is clear, since a mapping configuration is generated in a matter of
seconds with one single execution of the tool flow, while manual mapping requires
several trials that could take hours to achieve acceptable performance results.

28.8 Silexica: The Industrial Perspective

Programming multi-core computing systems has been known as a challenging
problem for decades. A great amount of efforts have been placed to address this
problem by the academia. Nevertheless, the industry is yet to benefit from the
research achievements. Converting academic results into industrial practice requires
significant amount of resources. Martijn De Lange (ACE) said in the Software

946 R. Leupers et al.

Tools for Next Generation Computing organized by the European Commission in
June 2014 that a full consistent heterogeneous parallel programming environment is
estimated to require 80Me initial development budget.

In this section, we take a look at the gap between the state-of-the-art research
results and industrial requirements for multi-core programming tools from the
perspective of Silexica, a start-up company providing multi-core software tools. By
sharing our early experience of commercializing the multi-core compiler research
results from MAPS, we explain how to bridge the gap not only technically but also
operationally. This short report serves as an industrial perspective in preparing and
planning future research roadmaps in multi-core computing research.

• The fundamental problem why current programming languages fall short for
multi-core computing systems is the lack of parallelism support. A natural
solution, which many academic approaches pursued, is to design new languages
that explicitly support parallelism and the necessary run-time information. While
the introduction of new information is absolutely necessary, the new language
approaches may hinder industry adoption as there is too much legacy software
that has been accumulated from the past decades.

Though a new language approach could be cleaner and more elegant in
expressing parallelism semantics, the pragmatic first step is to support parallelism
by extending existing ones. CPN, a lightweight C-based dialect, was developed
to introduce model-based parallelism (See Sect. 28.2). Silexica also provides
a partitioning tool, which helps end users to gradually convert and parallelize
legacy C sequential code to the new dialect. This closeness to C and gradual
software migration are favored by industry partners and certainly helped opening
the door to further opportunities to improve the tools.

• The introduction of parallelism support depends upon a use-model change for
end users. It means that often the existing software (or a software building
environment) has to be modified either to enable compiler analysis for more
parallelism or deploy parallelized results. Academic tools tend to overlook this
problem, leading to a large overhead incurred by this use-model change. The
first user experience by early industrial adopters suffers to some extent due
to this.

To cope with the use-model change by introducing new compilation tools,
one possible solution is a getting-started kit for adopters to gradually convert
their code base to use new tools. This could be, e.g., a prepared project structure,
which migrates current user software into a new environment. Or in more
complicated scenarios, current user software has to be divided into parts where a
new approach could apply to each part as a pilot project. Our experience also
showed that, as the compilation process for multi-core platforms is complex
and long, it is important to provide users an intuitive (preferably graphical)
user interface with comprehensive debugging information to improve the user
experience.

• Academic works in compiler research are usually demonstrated by using some
benchmarks on defined architectures. Unlike the relatively small number of

28 MAPS: A Software Development Environment for . . . 947

architecture types in the uni-processor time, the complexity and diversity nowa-
days in multi-core platforms is unprecedented. Most of those platforms are
either expensive to acquire or company proprietary, which makes them hardly
accessible by universities. What makes it even worse is that there are no
established benchmark suites for multi-core compilers which allow horizontal
comparison.

Though multi-core benchmark suites (e.g., MultiBench from EEMBC) have
started to get attention recently, it is hard to expect that those benchmarks would
be ported to a fairly large number of target platforms due to the amount of work
required. In general, it is difficult, if not impossible, to benchmark heterogeneous
multi-core platforms using simple metrics through common benchmarks. It is
quite difficult for industrial companies to evaluate academic results. To overcome
the problem of lacking reference comparison for academia to gain credit from
industry, it would be beneficial to be able to use industry benchmarks, possibly
through collaboration or professional associations early in the research cycle.

28.9 Conclusion

This chapter presented the MPSoC Application Programming Studio (MAPS),
which is a framework to close the software productivity gap for heterogeneous
MPSoCs. MAPS is composed of multiple tool-flows for parallelization, map-
ping/scheduling and code generation. In this chapter, two case studies were also
presented to show the applicability of MAPS in commercial environments. This
chapter closed by discussing early experiences of transferring the MAPS technology
into the industrial practice through Silexica GmbH, a start-up company that provides
programming solutions for multicore embedded systems.

References

1. Aguilar M, Jimenez R, Leupers R, Ascheid G (2014) Improving performance and productivity
for software development on TI multicore DSP platforms. In: 6th European embedded design
in education and research conference (EDERC), 2014, pp 31–35

2. Aguilar MA, Eusse JF, Leupers R, Ascheid G, Odendahl M (2015) Extraction of kahn process
networks from while loops in embedded software. In: 12th IEEE international conference on
embedded software and systems (ICESS)

3. Aguilar MA, Eusse JF, Ray P, Leupers R, Ascheid G, Sheng W, Sharma P (2015) Parallelism
extraction in embedded software for Android devices. In: Proceedings of the XV interna-
tional conference on embedded computer systems: architectures, modeling and simulation,
SAMOS XV

4. Aho AV, Lam MS, Sethi R, Ullman JD (2006) Compilers: principles, techniques, and tools,
2nd edn. Prentice Hall, Boston

5. Basten T, Hoogerbrugge J (2001) Efficient execution of process networks. In: Chalmers
A, Mirmehdi M, Muller H (eds) Communicating process architectures – 2001. IOS Press,
Amsterdam, pp 1–14

948 R. Leupers et al.

6. Brunet SC (2015) Analysis and optimization of dynamic dataflow programs. Ph.D. thesis,
Ecole Polytechnique Federale de Lausanne (EPFL)

7. C6678: Multicore fixed and floating-point digital signal processor. http://www.ti.com/product/
TMS320C6678/technicaldocuments

8. Castrillon J, Leupers R (2014) Programming heterogeneous MPSoCs: tool flows to close the
software productivity gap. Springer, Cham

9. Castrillon J, Leupers R, Ascheid G (2013) MAPS: mapping concurrent dataflow applications
to heterogeneous MPSoCs. IEEE Trans Ind Inf 9(1):527–545

10. Castrillon J, Tretter A, Leupers R, Ascheid G (2012) Communication-aware mapping of
KPN applications onto heterogeneous MPSoCs. In: Proceedings of the 49th annual design
automation conference, DAC’12. ACM, New York, pp 1266–1271

11. Castrillon J, Velasquez R, Stulova A, Sheng W, Ceng J, Leupers R, Ascheid G, Meyr H
(2010) Trace-based KPN composability analysis for mapping simultaneous applications to
MPSoC platforms. In: Proceedings of the conference on design, automation and test in Europe,
DATE’10. European design and automation association, pp 753–758

12. Ceng J, Castrillon J, Sheng W, Scharwächter H, Leupers R, Ascheid G, Meyr H, Isshiki T,
Kunieda H (2008) MAPS: an integrated framework for MPSoC application parallelization. In:
Proceedings of the 45th annual design automation conference. ACM, pp 754–759

13. Cheung E, Hsieh H, Balarin F (2007) Automatic Buffer Sizing for Rate-constrained KPN ap-
plications on multiprocessor System-on-Chip. In: Proceedings of the 2007 IEEE international
high level design validation and test workshop. IEEE, pp 37–44

14. Das A, Singh AK, Kumar A (2015) Execution trace–driven energy-reliability optimization for
multimedia MPSoCs. ACM Trans Reconfigurable Technol Syst 8(3):18:1–18:19

15. Eusse JF, Williams C, Leupers R (2015) CoEx: a novel profiling-based algorithm/architecture
co-exploration for ASIP design. ACM Trans Reconfigurable Technol Syst 8(3):17:1–17:16

16. Eusse J, Williams C, Murillo L, Leupers R, Ascheid G (2014) Pre-architectural performance
estimation for ASIP design based on abstract processor models. In: International conference on
embedded computer systems: architectures, modeling, and simulation (SAMOS XIV), 2014,
pp 133–140

17. Geilen M, Basten T (2003) Requirements on the execution of kahn process networks.
In: Proceedings of the 12th European symposium on programming, ESOP 2003. Springer,
pp 319–334

18. Goens A, Castrillon J (2015) Analysis of process traces for mapping dynamic kpn applications
to mpsocs. In: Proceedings of the IFIP international embedded systems symposium (IESS),
Foz do Iguaçu

19. International Data Corporation (IDC) (2015) IDC: smartphone OS market share, 2015 Q2.
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

20. Johnson R, Pingali K (1993) Dependence-based program analysis. In: Proceedings of the ACM
SIGPLAN 1993 conference on programming language design and implementation, PLDI’93.
ACM, New York, pp 78–89. doi:10.1145/155090.155098

21. Kahn G (1974) The semantics of a simple language for parallel programming. In: IFIP
congress, pp 471–475

22. Kennedy K, Allen JR (2002) Optimizing compilers for modern architectures: a dependence-
based approach. Morgan Kaufmann Publishers Inc., San Francisco

23. Kwok YK, Ahmad I (1999) Static scheduling algorithms for allocating directed task graphs to
multiprocessors. ACM Comput Surv 31(4):406–471. doi:10.1145/344588.344618

24. Lattner C (2008) LLVM and clang: next generation compiler technology. In: The BSD
conference, Ottawa

25. Lee EA, Messerschmitt DG (1987) Synchronous data flow. Proc IEEE 75(9):1235–1245
26. Moreira O, Valente F, Bekooij M (2007) Scheduling multiple independent hard-real-time jobs

on a heterogeneous multiprocessor. In: EMSOFT’07: Proceedings of the 7th ACM & IEEE
international conference on embedded software. ACM, pp 57–66

27. Nexus 7 (2013) http://www.asus.com/Tablets_Mobile/Nexus_7_2013/

http://www.ti.com/product/TMS320C6678/technicaldocuments
http://www.ti.com/product/TMS320C6678/technicaldocuments
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://dx.doi.org/10.1145/155090.155098
http://dx.doi.org/10.1145/344588.344618
http://www.asus.com/Tablets_Mobile/Nexus_7_2013/

28 MAPS: A Software Development Environment for . . . 949

28. Parks TM (1995) Bounded scheduling of process networks. Ph.D. thesis, EECS Department,
University of California, Berkeley

29. Pimentel A, Erbas C, Polstra S (2006) A systematic approach to exploring embedded system
architectures at multiple abstraction levels. IEEE Trans Comput 55(2):99–112

30. Stuijk S, Basten T, Geilen MCW, Corporaal H (2007) Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs. In: DAC’07: Proceedings of the 44th
annual design automation conference. ACM, New York, pp 777–782

31. Thiele L, Bacivarov I, Haid W, Huang K (2007) Mapping applications to tiled multiprocessor
embedded systems. In: International conference on application of concurrency to system
design, pp 29–40. doi:10.1109/ACSD.2007.53

32. Thies W, Chandrasekhar V, Amarasinghe S (2007) A practical approach to exploiting coarse-
grained pipeline parallelism in C programs. In: Proceedings of the 40th annual IEEE/ACM
international symposium on microarchitecture, MICRO 40. IEEE, pp 356–369

33. Thies W, Karczmarek M, Amarasinghe S (2002) StreamIt: a language for streaming applica-
tions. In: International conference on compiler construction, Grenoble

34. Tournavitis G (2011) Profile-driven parallelization of sequential programs. Ph.D. thesis,
University of Edinburgh

http://dx.doi.org/10.1109/ACSD.2007.53

29HOPES: Programming Platform Approach
for Embedded Systems Design

Soonhoi Ha and Hanwoong Jung

Abstract

Hope Of Parallel Embedded Software (HOPES) is a design environment for em-
bedded systems supporting all design steps from behavior specification to code
synthesis, including static performance estimation, design space exploration,
and HW/SW cosimulation. Distinguished from other design environments, it
introduces a novel concept of “programming platform” called Common Inter-
mediate Code (CIC), which can be understood as a generic execution model of
heterogeneous multi-processor architecture. In the CIC model, each application
is specified by a multi-mode Synchronous Data Flow (SDF) graph, called
MTM-SDF. Each mode of operation is specified by an SDF graph and mode
transition is expressed by an Finite-State Machine (FSM) model. It enables
a designer to estimate the performance and resource demand by constructing
static schedules of the application with varying number of allocated processing
elements at each mode. At the top level, a process network model is used to
express concurrent execution of multiple applications. A special process, called
control task, is introduced to specify the system-level dynamism through an FSM
model inside. With a given CIC model and a set of candidate target architectures,
HOPES performs design space exploration to choose the best HW/SW platform,
assuming that a hybrid mapping policy is used to map the applications to the
processing elements. HOPES synthesizes the target code automatically from the
CIC model with the mapping information. The overall design flow is verified by
the design of two real-life examples.

S. Ha (�)
Department of Computer Science and Engineering, Seoul National University, Gwanak-gu,
Seoul, Korea
e-mail: sha@snu.ac.kr

H. Jung
Seoul National University, Gwanak-gu, Seoul, Korea
e-mail: jhw7884@gmail.com

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_1

951

mailto:sha@snu.ac.kr
mailto:jhw7884@gmail.com

952 S. Ha and H. Jung

Acronyms

API Application Programming Interface
BDF Boolean Data Flow
CIC Common Intermediate Code
FSM Finite-State Machine
GA Genetic Algorithm
GUI Graphical User Interface
KPN Kahn Process Network
MTM Mode Transition Machine
NoC Network-on-Chip
OS Operating System
PIM Platform Independent Model
PSDF Parameterized Synchronous Data Flow
QoS Quality of Service
SADF Scenario-Aware Data Flow
SDF Synchronous Data Flow
SMP Symmetric Multi-Processing
SysteMoC SystemC Models of Computation
WCRT Worst-Case Response Time

Contents

29.1 Introduction . 952
29.2 Common Intermediate Code (CIC) Model . 957

29.2.1 Extended SDF Model for Application Specification 959
29.2.2 Dynamic Behavior Specification at the Top-Level Specification of

the CIC Model . 964
29.3 Design Space Exploration in HOPES. 966

29.3.1 Static Scheduling Technique of an MTM-SDF Graph 968
29.3.2 Dynamic Mapping . 972

29.4 CIC Translator: Automatic Code Synthesis from the CIC Model 973
29.5 Experimental Results . 975
29.6 Current Status and Conclusion . 978
References . 979

29.1 Introduction

HOPES is under development as a generic design environment to support a wide
range of embedded system architectures from system on a chip (SoC) to networked
embedded systems. Starting from a target-independent behavior specification and a
given set of candidate hardware architectures and available processing elements,
we can explore the design space to find an optimal system configuration and
mapping of applications, and synthesize the software and hardware components in
a unified framework. The abstract target architecture assumed in HOPES consists of
heterogeneous processing elements that are connected through a network. HOPES

29 HOPES: Programming Platform Approach for Embedded Systems Design 953

was originally introduced as a parallel programming environment for nontriv-
ial heterogeneous multiprocessors with various design constraints on hardware
cost, power, and real-time performance [15]. However, HW/SW codesign can
be naturally supported by HOPES, since a hardware IP can be regarded as a
processing element.

As the system complexity incessantly grows with more processing elements
integrated, design reuse of hardware platforms and IPs becomes the de facto
practice to mitigate the difficulty of hardware validation. Then the HW/SW code-
sign methodology is transformed to an embedded SW development methodology
for a given hardware platform. Since the proportion of software components
keeps increasing, HOPES puts more emphasis on the implementation of software
components unlike our previous HW/SW codesign environment, PeaCE (Ptolemy
extension as a Codesign Environment) [7]. While PeaCE focuses on the codesign
of hardware and software modules that includes HW/SW partitioning, HW/SW
cosynthesis, and HW/SW cosimulation, it takes little account of multi-processor
architecture that heavily affects the parallel execution of software.

A systematic design methodology can be understood as a sequence of steps that
refine a higher level of abstraction to a lower level from initial specification to
final implementation, which is summarized as the following phrase: “design is to
represent”. Since refinement keeps the properties of the higher abstraction, how
to specify the behavior is a key factor to distinguish various HW/SW codesign
methods. Actor models that specify an application as a set of concurrent actors
are widely adopted in the HW/SW codesign methodology since they express the
potential parallelism of an application explicitly and parallelizing an application
can be simply realized by mapping actors to the processing elements. Actors are
connected to each other through channels that represent the flow of data samples be-
tween actors. Among many actor models, Synchronous Data Flow (SDF) is chosen
as the baseline actor model of HOPES since it is a formal model that enables us to
evaluate each design decision through static analysis. General introduction to data-
flow models can be found in �Chap. 3, “SysteMoC: A Data-Flow Programming
Language for Codesign”.

In the SDF model [17], an application is specified with a data-flow graph where
a node represents a function module, or a task, and an arc is a FIFO queue that
delivers data samples from an output port of the source node to an input port of the
destination node. An input (or an output) port is associated with an integer number
that indicates how many samples to consume (or to produce) per task execution; the
number is called the sample rate of the port. Figure 29.1a shows a simple SDF graph
representation of an application. A node becomes runnable only when all input arcs
have no fewer samples queued than the specified sample rate. And the sample rates
are fixed at run time in the SDF model. Then we can determine the mapping and
scheduling of the SDF graph, which is to determine where and in what order to
execute the tasks on a given target architecture, at compile time. For each arc, we can
determine the relative execution rates between the source task and the destination
task, comparing the output sample rate of the source port and the input sample rate
of the destination port. For instance, the execution rate of task C should be twice

954 S. Ha and H. Jung

A B

C

1 1

2
1

2

1
D

1

1
A C

B

PE1

PE2

time

C

D D

AB AC BD CD

Buffer size 1 2 2 2

Latency: 7

A B

C

1 1

2
1

1

1
D

1

1

a b

c d

Fig. 29.1 (a) An example SDF graph with annotated sample rates on the arcs, (b) a mapping and
scheduling result of the SDF graph onto two processing elements, (c) an example SDF graph that
has a buffer overflow error, and (d) the buffer requirement of each arc and the estimated latency
for the static scheduling result of (b)

higher than that of task A in Fig. 29.1a, in order to make the number of samples
produced from the source task the same as the number of samples consumed by
the destination task. An iteration of an SDF graph is defined by the set of task
executions that satisfy the relative execution rates of tasks with minimum number
of executions.

An SDF graph is said to be consistent if the relative execution rates of tasks are
satisfied for all arcs. In case there is any possibility of buffer overflow on any FIFO
arc or deadlock, we cannot find a valid schedule of an SDF graph. Figure 29.1b
shows an example of a static scheduling result on a target architecture with two
processing elements. For a consistent SDF graph, we can repeat the schedule
iteratively without buffer overflow. Figure 29.1c shows an SDF graph example
that has a buffer overflow error on arc AC by giving a wrong sample rate at the
output port of node B. Such static analyzability is a very desirable feature for
embedded system design since it enables us to detect a class of design errors by
static analysis [17]. Moreover, once the mapping and scheduling decision is made,
we can determine the buffer requirements for all arcs and estimate the real-time
performance of the application. We can easily check whether the design constraints
on the hardware requirement and real-time performance can be satisfied or not. For
instance, the buffer requirement and the estimated latency associated with the static
scheduling result of Fig. 29.1b is summarized in Fig. 29.1d.

While the SDF model has the aforementioned benefits from its static analyzabil-
ity, it has severe limitations to be used as a general model for behavior specification.
First, it is not possible to specify the dynamic behavior of an application since the
sample rate of a port may not change dynamically. Second, it does not allow the use
of shared memory for inter-node communication since the access order to the shared
memory may change depending on the execution order of nodes. So the synthesized
code may require much larger memory than a manually written code that usually
uses shared variables for communication between function modules. To overcome
those limitations, we have proposed several extensions to the SDF model in HOPES.

29 HOPES: Programming Platform Approach for Embedded Systems Design 955

We use the Finite-State Machine (FSM) model in combination with the SDF model
to express the dynamic behavior of an application [10]. Furthermore, a special actor,
called library actor [20], is introduced to handle shared resources efficiently without
side effects.

Following the heritage of heterogeneous modeling of Ptolemy [3] and PeaCE [7],
HOPES uses a process network model at the top level to express concurrent
execution of multiple applications. An application is modeled as a single process
at the top level while the internal behavior of an application is specified by the
extended SDF model. The system-level dynamic behavior is specified by a control
task whose behavior is specified by the FSM model in the top-level task graph.
The overall specification model of HOPES is called the Common Intermediate
Code (CIC) model, which will be explained in the next section in detail.

There is a clear distinction between HOPES and the other model-based design
environments. As the name implies, the CIC model is not defined as a front-end
specification model, but an intermediate specification model, meaning that HOPES
design environment can accommodate various front-end specification models as
long as the front-end specification model can be translated into the CIC model.
In fact, the CIC model can be understood as an execution model of tasks at the
Operating System (OS) level. At the OS level, the system behavior is represented as
a set of tasks no matter what the front-end specification model is. Communication
and synchronization between tasks and scheduling of tasks are heavily dependent
upon the underlying software platform and hardware platform. In HOPES, we
propose to define the execution model of tasks at the OS level and enforce the system
to keep the semantics of the execution model. Then, the CIC model will be able to
run on any hardware and software platform since the execution model is defined
as platform-independent. So, we introduce a new notion of programming platform
that hides the underlying software and hardware platform from the application
programmer. As a program based on the von Neumann execution model can be run
on any von Neumann processor, any program based on the CIC execution model can
be run on any target architecture that keeps the CIC execution model, we envision.
Since the CIC model is based on formal models of computation, we can enjoy the
benefits of static analyzability of those models to reduce the design time and cost.

Even though the same SDF model is used for behavior specification in HOPES
and PeaCE, the granularity of a node is quite different. In HOPES, an SDF node is a
unit of mapping and scheduling at the OS level. It implies that the node granularity
should be as large as a thread to make the thread switching overhead insignificant.
On the other hand, PeaCE assumes mixed granularity of SDF nodes in the initial
specification of an application and clusters them to define a thread or a task at
the code synthesis step. In our previous work [15], an SDF graph specification of
PeaCE has been translated to the CIC model by clustering the nodes to increase
the granularity while keeping the potential parallelism as much as possible. It is
possible to specify the system behavior with the CIC model manually, regarding the
CIC model as the front-end specification. In this case, it is the responsibility of the
programmer to define the granularity of the node to trade-off the parallelism and the
scheduling overhead.

956 S. Ha and H. Jung

In the conventional model-driven software development approaches, the system
behavior is specified by a Platform Independent Model (PIM) that is translated
into a platform-specific model (PSM) manually for a given hardware platform.
Then the target code is generated from the translated PSM. Even though the CIC
model is a platform-independent model, there is no need to translate it to a PSM
since the CIC model can be executed in any hardware platform that supports the
proposed execution model. The HOPES framework is distinguished from other
model-based design frameworks that use a specific model of computation for
behavior specification, which include Daedalus [19], DAL [21], CompSOC [6],
and Koski [12]. On the other hand, as mentioned above, HOPES does not assume
any specific model for behavior specification as long as it can be translated into
the CIC model. Even though the CIC model is based on three different models
of computation, its model composition rule is different from that of Ptolemy [3]
which allows hierarchical composition of models without limitation on the depth of
hierarchy and on the kinds of models.

Figure 29.2 shows the overall design flow in HOPES. The input information
consists of the front-end specification of system behavior and the set of candidate
platforms and hardware components. As explained above, the CIC model is gener-
ated manually or by an automatic translator from a different front-end specification
of system behavior. We perform static analysis at the CIC level to detect the buffer
overflow and deadlock errors for SDF specifications and to analyze the timing
requirements that will be expressed in the proposed FSM model. The next step
is to explore the architectural design space by selecting the hardware platform
and processing elements and mapping the applications to the target architecture.
Note that the profiling information of tasks for all kinds of candidate processing
elements is assumed to be given. The DSE step produces a handful of selected target
architectures and associated mapping results of applications. Note that if a target

CIC model
(Behavior specifica�on)

Sta�c analysis

Design space explora�on

(HW pla�orm selec�on &
mapping/scheduling of

applica�on tasks

A set of
applica�ons

A set of
candidate

architectures

Constraints
(performance,
resource, etc)

CIC translator

Mul�-core host:
Func�onal
Simula�on

HSIM: HW/SW
cosimula�on

IBM Cell

CPU/GPU

Task profiling
informa�on

Fig. 29.2 Design flow of HOPES

29 HOPES: Programming Platform Approach for Embedded Systems Design 957

architecture is given as an input, it just determines the mapping of applications to
the target architecture.

For each candidate solution, the CIC translator generates a target C code for each
processor. We need to develop a separate CIC translator for each target architecture
as we need a different compiler for a different von Neumann processor. A multi-core
host processor is a base target platform for functional simulation. The CIC translator
generates a multi-threaded C code for functional simulation. Another target platform
that HOPES supports is the parallel simulator, called HSIM [26], that has been
developed to simulate the target architecture without real hardware platform. A
handful of selected architectures will be evaluated more accurately by HSIM
simulation. Other target platforms that HOPES supports will be explained later.

The rest of this chapter is organized as follows. The CIC model will be explained
in the next section, which will be followed by Sect. 29.3 that explains the mapping
and scheduling techniques of the CIC model. Section 29.4 explains the CIC
translator. Preliminary experimental results will be discussed in Sect. 29.5. The
current status of HOPES development is presented with concluding remarks in
Sect. 29.6.

29.2 Common Intermediate Code (CIC) Model

As explained above, the proposed CIC model adopts a hierarchical composition of
different models of computation to express the system behavior at two different
levels. At the top level, the CIC model expresses the system behavior with a
process network. If an application can be specified by the extended SDF graph,
the application is encapsulated as a super node that contains an extended SDF graph
at the bottom level. Note that the top-level process network and the extended SDF
model themselves can be specified in a hierarchical fashion.

The top-level process network consists of CIC tasks and channels as depicted in
Fig. 29.3. There are two types of CIC tasks depending on the triggering condition of
tasks: time-driven and data-driven. A time-driven task is triggered by a pre-defined
period that is given as a parameter. So it consumes the most recent sample from
the input buffer channel. The input channels of a time-driven task are single-entry
buffers that store the most recent data samples. An I/O task that interfaces with

Input task
(t)

Compute
task (d)

Output task
(t)

Task : �me-driven (t) or
data-driven (d)

Channel: FIFO queue (q) or buffer (b)

(q) (b)

Port: Fixed sample rate (f) or
unspecified (u) for varying sample rates

Fig. 29.3 CIC task graph

958 S. Ha and H. Jung

TASK_INIT{ /* task initialization code */ };

TASK_GO {
/* generic API for data read from an input port */
MQ_RECEIVE(port_name, data, size);
...
/* generic API for system service request */
SYS_REQ(command, argument_list);
...
/* generic API for data write to an output port */
MQ_SEND(port_name, data, size);

}

TASK_WRAPUP { /* task wrapup code */ };

Fig. 29.4 CIC task code template

the outside is usually designated as a time-driven task. On the other hand, a data-
driven task is triggered by the arrival of data samples on the input ports. The input
channels of data-driven tasks are assumed to be FIFO queues. A data-driven task
basically follows the semantics of the Kahn Process Network (KPN) model that
performs blocking read and non-blocking write access to the channels.

As shown in Fig. 29.4, the code template of a CIC task consists of three sections,
enclosed by three keywords, TASK_INIT, TASK_GO, and TASK_WRAPUP. As
the name implies, the TASK_INIT section is executed when the task is initialized
and the TASK_WRAPUP section is executed just before it is terminated. The
TASK_GO function is the main body that will repeat until the task is terminated.
A CIC task accesses a channel with target-independent generic APIs, MQ_SEND
and MQ_RECEIVE. The MQ_RECEIVE API performs blocking read operation to
the associated input port while the MQ_SEND API performs non-blocking write
operation to the associated output port. Since the CIC model is defined at the OS
level, the CIC task assumes that there is a supervisor that schedules the CIC tasks
and provides supervisory services to the CIC tasks. Thus, we define another generic
API, SYS_REQ, that requests a service to the supervisor. The first argument of
the SYS_REQ API defines the service command whose list will be shown later. In
principle, a CIC task does not use platform-specific APIs for portability. The generic
APIs will be translated into target-specific APIs at the code generation step. We may
define a CIC task that uses platform-specific APIs for efficient implementation at the
expense of portability.

The number of data samples consumed or produced per execution of a task can
be specified explicitly for each input or output port. The sample rate is specified, if
it is fixed and not changing at run time. Otherwise, the sample rate is assumed to
be varying at run time. If the input sample rates of all input ports are specified, the
data-driven task becomes an SDF task that follows the execution semantics of the
SDF model. If all tasks in a CIC subgraph are SDF tasks, the CIC subgraph becomes
an SDF subgraph. Since the SDF model has many merits from static analyzability,
it is highly recommended to identify SDF subgraphs as much as possible at the top
level until no more SDF subgraph can be identified. And each subgraph is replaced

29 HOPES: Programming Platform Approach for Embedded Systems Design 959

by a super node at the top level to make it a two-level hierarchical graph. To alleviate
the difficulty of identifying the SDF subgraph automatically, it is recommended to
specify an application with the extended SDF model manually inside a super node.

29.2.1 Extended SDF Model for Application Specification

In this subsection, we explain a couple of extensions that are made to overcome the
limitations of the SDF model while preserving the benefits of static analyzability.
The first extension is to use the FSM model to express the dynamic behavior of the
application. The second is to introduce a special actor, called library actor, to allow
tasks to share HW or SW resources.

29.2.1.1 Dynamic Behavior Specification
There exist several approaches that have been proposed to increase the expression
capability of the SDF model to support intra-application dynamism. One approach
is to extend the SDF model itself. Dynamic Data Flow (DDF) and Boolean Data
Flow (BDF) are two examples of this approach where they introduce special kinds
of nodes that may have varying sample rates [2]. Since BDF was proven to be
Turing equivalent and DDF is a super set of BDF, their expression capability
is maximal in theory. But they compromise some benefits of static analysis and
efficient implementation.

Another approach is to express the dynamism of an application as a set of
modes that the application takes and each mode is specified by an SDF graph.
This approach assumes that the number of possible dynamic behaviors, or modes,
is finite. Then the dynamic behavior can be expressed as dynamic mode change.
There are several ways to specify mode change. In Parameterized Synchronous Data
Flow (PSDF), the dynamic behavior of a task is modeled by parameters, and the
mode change is realized by changing the parameters at run time before starting an
iteration of a schedule [1]. An application is specified by a tuple of graphs, init
graph and body graph, where the body graph specifies the application behavior and
the init graph sets the parameter values to change the mode before a new iteration
starts.

The other way is to combine the SDF model with another computation model,
usually FSM to express the mode change. In the *-chart approach [5], each state
of a finite state machine contains an SDF graph inside to make a hierarchical
composition of SDF and FSM models. The state change in the FSM can be
understood as the mode change of the SDF model. In the SystemC Models of
Computation (SysteMoC) approach [9], a task is associated with an FSM that
determines the execution behavior of the task. FSM-based SADF, shortly FSM-
SADF, is a restricted form of Scenario-Aware Data Flow (SADF) that specifies
each mode of operation, called scenario, with an SDF graph [22, 23]. An SDF task
may have multiple versions of definition depending on the mode of operation while
a special control actor, called detector, that has an FSM inside sends the control
information to normal SDF tasks to change the mode of operation.

960 S. Ha and H. Jung

HOPES uses a similar approach as FSM-SADF; an SDF task may have multiple
behaviors and a tabular specification of an FSM, called Mode Transition Machine
(MTM), describes the mode transition rules for the SDF graph. An MTM is defined
as a tuple {Modes, Variables, Transitions} where Modes and Variables represent
a set of modes and a set of mode variables respectively, and Transitions is a set
of transitions that consists of the current mode, a Boolean function of conditions,
and the next mode. A Boolean function of transition condition is defined by a
simple comparison operation between a mode variable and a value. An MTM-SDF
specification of an H.264 decoder is shown in Fig. 29.5. The H.264 decoder has
two modes of operation: I-frame and P-frame. In the I-frame mode, the sample rate
of each port in red boxes becomes zero while the sample rate of each port in blue
boxes becomes zero in the P-frame mode. The MTM is quite simple since it needs
to distinguish two modes of operation by a single mode variable. Remind that the
granularity of a CIC task is large and the dynamic behavior inside a task is not
visible at the CIC level. Thus, an MTM is not complex in general for stream-based
applications.

Mode transition is enabled by setting the mode variable so as to satisfy the
transition condition. But actual mode transition occurs only at the iteration boundary
of the SDF schedule. Since an SDF graph has a well-defined notion of iteration
and each task knows how many times it should be executed in each iteration, mode
transition can be performed autonomously by individual tasks without global timing
synchronization. A mode variable can be set by the hidden supervisor, which will
be discussed in the next subsection. Or a designated task may set the mode variable.
A stream-based application usually starts with parsing a header information that
determines the mode of operation, followed by processing a stream of data. In this
case, the SDF task that parses the header information is designated as a special task
that may change the mode variable. To satisfy the restriction that the mode transition
occurs at the iteration boundary, the designated task should be the first task in the
SDF schedule. In the H.264 decoder of Fig. 29.5, RealFileH is designated as the
special task that determines the mode of operation.

The internal behavior of an SDF task should be defined manually depending
on the mode of operation. The code skeleton of an MTM-SDF task is shown in
Fig. 29.6; a task first checks the current mode of its MTM before starting the next
iteration. If it is designated as a special task, it may change the mode variable.
Based on the mode of operation, the sample rates of SDF graph can be changed.
For instance, the sample rates for the input and output arcs of IntraPredY/U/V tasks
become all zero for the P-frame mode and the sample rates for the output arcs of
InterPredY/U/V tasks become zero for the I-frame mode of operation. Note that the
feedback input arcs of InterPredY/U/V tasks do not change the sample rates since
they need to store the previous frame fed back from the Deblock task even in the
I-frame mode.

29.2.1.2 Library Task
In addition to dynamic behavior specification, another extension is made to the
SDF graph by introducing a special task, called library task, to allow the use of

29 HOPES: Programming Platform Approach for Embedded Systems Design 961

Fi
g

.
2

9
.5

A
n

M
T

M
-S

D
F

sp
ec

ifi
ca

tio
n

of
H

.2
64

de
co

de
r:

ca
pt

ur
ed

sc
re

en
fr

om
th

e
H

O
PE

S
en

vi
ro

nm
en

t

962 S. Ha and H. Jung

TASK_GO{

Mode = SYS_REQ(GET_CURRENT_MODE_NAME);

if Mode == “S1”:

MQ_RECEIVE(port_in, data, size);

…

MQ_SEND(port_out, data, size);

else if Mode == “S2”:

…

if specific conditions:

SYS_REQ(SET_MTM_PARAM_INT, task_name, var_name, value);

}

// get a current mode

// code for mode S1

// code for mode S2

// set a variable in an MTM

Fig. 29.6 Code skeleton of an MTM-SDF task

T1

T2

T3

L4 L5

L6

M11 M12

M31

M41 M51

T

L

CIC task

CIC Library Task

Data in/out port

Library master port

Library slave port

Fig. 29.7 An extended SDF graph that uses library tasks

shared resources in the SDF model. A library task is a sharable and mappable object
that defines a set of function interfaces inside. Figure 29.7 shows an SDF graph
that consists of three normal SDF tasks (T1–T3) and three library tasks (L4–L6).
Connection with a library task is made between a pair of library ports, library master
port and a library slave port that are represented by a white circle and a dark circle,
respectively. A library task should have a single slave port that can be connected
to multiple masters that share the library task. Since each library port has its own
type that defines a set of function interfaces, connection between a master port and
a slave port can be established only when their types are matched.

Unlike a normal SDF task, a library task is not invoked by input data but by a
function call inside an SDF task; it is a passive object. There are specific rules to
specify and use a library task in an SDF graph. Figure 29.8 illustrates code templates
associated with a library task. A library task has two separate files associated: a
library header file and a library code file. The library header file declares the library
functions, while the library code file defines the function bodies. The prototype

29 HOPES: Programming Platform Approach for Embedded Systems Design 963

T1

L

T2

extern LIBFUNC(void, init, void);
extern LIBFUNC(void, wrapup, void);

extern LIBFUNC(int, getValue, void);
extern LIBFUNC(void, setValue, int value);

static int my_value;

LIBFUNC(void, init, void) { .. }
LIBFUNC(void, wrapup, void) { .. }

LIBFUNC(int, getValue, void) {
return my_value;

}
LIBFUNC(void, setValue, int value) {

my_value = value;
}

CIC Library Header File (.cicl.h)

CIC Library Source File (.cicl)

TASK_GO {
:
val = LIBCALL(M21, getValue);
:
LIBCALL(M21, setValue, newVal);
:

}

Calling Code Example (From T 1)

M21M11

Fig. 29.8 Code templates associated with a library task

of a library function is defined by a directive, LIBFUNC(), that will be translated
into a regular function definition automatically by the CIC translator. A library task
should define init and wrapup functions like a normal SDF task for initialization and
finalization of the library task.

A caller task uses LIBCALL directive to call a library function as shown in
Fig. 29.8. The first parameter of LIBCALL() is the name of the library master port,
the second is the function name, and the others are the arguments. If the function
has a return value, it can be taken from the LIBCALL invocation. Note that pointers
may not be used for arguments and return values to make the SDF graph portable
to a variety of target architectures. For shared address space architectures, however,
the developer may use pointers for efficient implementation, giving up portability.

A library task may have a persistent internal state, simply called a state. Then
the access to the state should be protected by synchronization primitives, Lock()
and Unlock() to avoid data race problems. In case multiple masters access the same
library task that has a state, the return value of a library function may depend on the
execution order of the master actors, which is anathema to any deterministic model.
So, we explicitly specify a property of a library task whether it is deterministic or
not. In case the library task has no state or returns the same value to the master
tasks regardless of the calling order, the library task is classified as “deterministic.”
Otherwise, the developer should be aware that the library task does not guarantee
deterministic behavior. Even though a library actor is nondeterministic in the sense
that the return value to a master task depends on the scheduling order of master
tasks, the same behavior can be repeated if the same scheduling order is followed.

There are several use cases of library task. A library task provides a way to
share global variables or HW resources among multiple SDF tasks explicitly in a

964 S. Ha and H. Jung

systematic way. In a server-client application, the server task can be specified by
a library task that may be shared by multiple clients. Note that we may change
the number of clients arbitrarily since the number of master ports connected to a
slave port can vary at run time. Another use case of a library task is to make a
vertically layered software structure by providing a set of Application Programming
Interfaces (APIs) of the software layer below the application layer.

29.2.2 Dynamic Behavior Specification at the Top-Level
Specification of the CIC Model

In this subsection, we explain how to specify the system-level dynamic behavior
at the top level of CIC model. At the system level, the set of applications
running concurrently may change or applications may change their operation modes
according to user requests. Several approaches have been proposed to specify
the dynamic behavior of data-flow applications. FunState that was proposed as
an internal representation for codesign process [25] uses an FSM to control the
activation of data-flow tasks. In STATEMATE [8], an extended FSM model, called
statechart, specifies the entire system behavior and determines when to execute each
task in the activity chart. Distributed application layer (DAL) [21] uses an FSM to
add dynamism to distributed operation layer (DOL) [24] that is based on the KPN
model. The FSM model of DAL specifies all use cases and how transitions between
use cases occur, where a use case corresponds to a set of applications running
concurrently, assuming that the number of use cases of the system is finite.

HOPES inherits the approach of its predecessor, PeaCE [7], where a control task
is distinguished from application processes at the top level and plays the role of user-
level supervisor that controls the execution status of applications. A control task
uses an FSM model inside to specify the system-level dynamic behavior. Consider a
simple smartphone example of Fig. 29.9. The system consists of two input processes
running in the background, one control task, and six application processes. Each
application is specified by an extended SDF graph inside; Fig. 29.5 is the internal
specification of H.264 decoder application for instance. Suppose that there are four
use cases, modes of operations, for the smartphone system as shown in Fig. 29.9b.
In the Menu mode, there is no active application and the system waits for input
events to be caught by two input processes, UserInput and Interrupt (phone arrival).
Depending on the user input, the system changes the mode of operation and activates
the associated applications. When a phone signal is detected, the system suspends
the current mode of operation and switches its mode to the VideoPhone mode. After
the call is completed, the system goes back to the suspended mode and resumes
suspended applications.

The aforementioned description of the dynamic behavior is specified by an
FSM inside the control task. Figure 29.10 shows the captured screen for the FSM
specification in HOPES and the associated pseudocode automatically generated by
the CIC translator. It has four states that correspond to four use cases. The default
state is the Menu state, denoted by a bold circle. The control task is basically

29 HOPES: Programming Platform Approach for Embedded Systems Design 965

Use case Active applications

Menu -

VideoPhone
G.723 decoder, G.723 encoder,
H.264 decoder (Phone), x.264

encoder

VideoPlay MP3 decoder, H.264 decoder (VP)

MusicPlay MP3 decoder

a b

Fig. 29.9 (a) A simple smartphone example and (b) four use cases of the system

transition_VPhtoVP
a b

transition_VPtoVPh

transition_VPhtoUI

transition_UI
toVPh

transition_UI
toVP transition_VPh

toMP

transition_MPtoVPh
transition_VPtoUI

transition_MPtoUI

transition_UItoMP

Video
Play

Menu
Music
Play

Video
Phone

switch (current_state) {
case MENU:

if(in_UserInput== 1) next state = VideoPlay;
else if(in_UserInput ==2) next state = VideoPhone;
else if(in_UserInput ==3) next state = MusicPlay;

case VideoPlay:
Execute VideoPlay or resume VideoPlay;
if(in_Interrupt == On)
Suspend VideoPlay & next state = VideoPhone;

else if (terminated)
next state = Menu;

case VideoPhone:
Execute VideoPhone;
if (terminated)
if(previous_state == MusicPlay)

next state = MusicPlay;
else if(previous_state == VideoPlay)

next state = VideoPlay;
…
} // end switch

Fig. 29.10 (a) FSM specification of the control task in the smartphone of Fig. 29.9 and (b) the
pseudocode generated by the CIC translator

triggered by an event. There are three kinds of events. The first is an external event
that is received from the input port of the control task, which is explicitly drawn at
the top level of CIC model. The second kind is generated from the hidden supervisor
internally by monitoring the execution status of applications. For instance, the
system detects the termination of an application and generates an internal event.
The last is a timeout event. The CIC control task can initiate a timer at a certain
state. When the specified time is expired, a timeout event is generated by a timer
that is another hidden component assumed in HOPES.

At each state, the programmer may use APIs to define the control action, which
is similar to action scripts of the statechart in STATEMATE. The control APIs
currently defined in HOPES are listed in Table 29.1. The first category is to control
the execution status of an application and the second category is to change or
monitor a specific parameter of an application. The third category is defined to
explicitly specify the timing requirements of the system, and the last category
controls the timer modules that are assumed to exist in the system. Since timing
correctness is as important as value correctness in system functionality, explicit
specification of timing requirement has been recently advocated for real-time

966 S. Ha and H. Jung

Table 29.1 Control APIs currently defined in HOPES

Category APIs Description

Execution
status

SYS_REQ({RUN/STOP/SUSPEND/
RESUME} _TASK, task_name)

Run/stop/suspend/resume a task

status =
SYS_REQ(CHECK_TASK_STATE,
take_name)

Check the execution status

Parameter
control

SYS_REQ(SET_PARAM_{INT/FLOAT},
task_name, param_name, value)

Change the parameter value

p_value =
SYS_REQ(GET_PARAM_{INT
/FLOAT}, task_name, param_name)

Get the parameter value

Timing
requirement

SYS_REQ(SET_THROUGHPUT,
task_name, thr _val)

Set the throughput requirement

SYS_REQ(SET_DEADLINE,
task_name, lat_val , lat_unit)

Set the latency requirement

Timer control time_base =
SYS_REQ(GET_CURRENT_TIME
_BASE)

Get the current system time

timer_id = SYS_REQ(SET_TIMER,
time_base, offset)

Set timer to time_base + offset

ret =
SYS_REQ(GET_TIMER_ALARMED,
timer_id)

Check if the timer is expired

SYS_REQ(RESET_TIMER, timer_id) Reset the timer

embedded system design. While PTIDES [4] uses a discrete event model of
computation for timing specification, HOPES uses timing control APIs as a part
of control task specification. We may initiate a timer and read the timer. In addition,
we may set up the throughput or deadline requirement of an application. Note that
the timing requirement of an application may change depending on the use cases.
Those timing constraints are referred to in the design space exploration step when
constructing the static schedule of an MTM-SDF graph.

29.3 Design Space Exploration in HOPES

As overviewed in Fig. 29.2, HOPES uses a Y-chart approach [13] to explore the
design space by mapping applications to candidate architectures with a given
set of objectives. Since the dynamic behavior of a system is not predictable, it
is challenging to make a mapping decision and evaluate the decision. We have
developed a novel hybrid mapping technique that combines compile-time static
mapping of applications and run-time dynamic mapping of applications to available
resources. Remind that each application is specified by an MTM-SDF graph so that
each mode of operation can be statically scheduled. When we schedule each mode of

29 HOPES: Programming Platform Approach for Embedded Systems Design 967

30

A1

B2

40

A3

A2

A3

A2

B3 B3

B2 B2

A1

B4

B1

B4

B1

60 50

A2 A3

B3

A1

70

25

B1 B4

30

2eludehcS1eludehcS

P1

P2

P1

P2

P1

P2

P3

P1

P2

P3

throughput = 1/90

1/95

1/60

1/70

(Throughput constraint: 1/130)

30 90 140 30 90 140

30 70 100 30 70 100

a

b

running { , }
_P1

_P1

_P2

_P2

is suspended
_P1

_P3

_P2

PE1 PE2

PE3 PE4

A

A

A A B

BB

AB

B B

B

Fig. 29.11 An example of hybrid mapping: (a) Pareto-optimal mapping solutions of two applica-
tions, and (b) dynamic mapping results according to a given scenario of system status change

an application, we find a Pareto-optimal set of mapping decisions for each candidate
architecture. Suppose that we have multiple objectives of mapping, minimizing
the resource usage and maximizing the throughput performance for instance. Then
static scheduling is performed for each application independently to obtain a set
of Pareto-optimal solutions for multiple objectives. We assume that no processor
sharing is allowed, or a processing element is dedicated to an application, in the
current implementation of HOPES.

Figure 29.11 shows a simple example that consists of two applications, each
of which has a single mode of operation. For each application, two Pareto-
optimal mappings are found with varying number of processing elements. At run
time, dynamic mapping is performed by first identifying which applications are
running concurrently and next allocating the processing elements to the applications
based on their Pareto-optimal mapping solutions. In this example, four processing
elements are equally allocated to two applications, two to each. When application
A is suspended, we reallocate the processing elements to the remaining application,
B, to improve the throughput performance, which is also a Pareto-optimal mapping
of B.

Dynamic remapping is triggered at every system status change. Some causes of
the system status change are explicitly specified in the CIC model. For instance,
the change of execution status or QoS requirement of an application is specified by
a state transition defined in a control task. Thus, such a state transition triggers
dynamic mapping. The operation mode change of an application is explicitly

968 S. Ha and H. Jung

specified in the MTM-SDF model. There are other causes, however, that are not
specified in the CIC model. An example is the failure of a processing element.
If a processor failure is detected, remapping of applications is performed [16].
We assume that all system status changes are captured by the hidden supervisor
whatever the causes are.

29.3.1 Static Scheduling Technique of an MTM-SDF Graph

Since an application is specified by an MTM-SDF graph, we devised a novel
static scheduling technique of an MTM-SDF graph. An important objective is to
minimize the mode change overhead that may affect the real-time performance
of an application. Figure 29.12 shows a simple MTM-SDF graph that has two
modes of operation. When we use a naive technique that schedules each SDF
graph independently, we need to migrate three tasks when mode change occurs
as illustrated in Fig. 29.12b. It is better to consider the migration overhead when
finding a static schedule for each mode. Another extreme approach is to avoid task
migration by considering all modes simultaneously; this approach is assumed in the
previous work [22]. As shown in Fig. 29.12c, this approach maps a task to the same
processor at all modes and so requires more processors. The proposed approach is

A
(M1:17,
M2:12)

B
(M1:13,
M2:10)

C
(M1:14,
M2:8)

D
(M1:16,
M2:10)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 3)

(1, 1)

(1, 1)

(1, 3)

P0

P1

A B

C D

A C

Throughput
constraint: 1/35

D

B D D

(M1)

(M2)
P0

P1

Throughput: 1/30

Throughput: 1/30

a b

P0

P1

A B

C

D

A B

C

D D

(M1)

(M2)
P0

P1

Throughput: 1/30

Throughput: 1/30

P2

P2 D

P0

P1

A B

C D

A B D

C D D

(M1)

(M2)
P0

P1

Throughput: 1/30

Throughput: 1/32

dc

Fig. 29.12 (a) An MTM-SDF graph example and scheduling results for three cases: (b)
scheduling each mode independently, (c) scheduling all modes simultaneously disallowing task
migration, and (d) scheduling all modes simultaneously with task migration to minimize the
resource requirement

29 HOPES: Programming Platform Approach for Embedded Systems Design 969

A

B

C

D

E
A

B

C

D

A
C

D

E

∆∆

An MMDF graph example

Static scheduling results of mode m1 and m2

a

b

Fig. 29.13 An MMDF graph example with two modes of operation and their static scheduling
results. (a) An MMDF graph example taken from [11]. (b) Static scheduling results of mode m1

and m2

to consider all modes simultaneously, but allowing task migration to minimize the
resource requirement, which results in the schedule of Fig. 29.12d.

How to consider the task migration overhead is the key challenge in the
static scheduling of an MTM-SDF graph. Figure 29.13a shows a simple MMDF
graph example that consists of two modes of operation. For each mode, a static
schedule which satisfies the given throughput constraint is constructed as shown in
Fig. 29.13b. If the schedule of each mode is repeated forever, the output samples
will be produced periodically. The period is equal to the inverse of the throughput
performance, which is denoted as the initiation interval (II) in the figure. Even
though the static schedule of each mode satisfies the given throughput constraint, the
overall throughput performance of the MMDF graph may not satisfy the throughput
constraint because of the mode transition delay if a mode transition occurs.

The mode transition delay between two modes is defined how the time interval
between the last output production time of the previous mode and the first output
production time of the next mode is larger than the initiation interval of the next
mode. Suppose that the last iteration of the previous mode is started at t D 0. First
we formulate the start offset (�) of the first iteration of the next mode. The start
offset (�) is determined by the following three factors:

(1) Scheduling delay (Dsched): To keep the temporal property of the given static
schedule, we need to shift the start time of the subsequent mode. The time

970 S. Ha and H. Jung

Scheduling delay Task ordering delay Task migration delay

a b c

t = 0

Fig. 29.14 Mode transition delay between static schedules of modes m1 and m2 in Fig. 29.13b.
(a) Scheduling delay. (b) Task ordering delay. (c) Task migration delay, taken from [11]

interval, denoted by (1) in Fig. 29.14a, illustrates the scheduling delay between
modes m1 and m2 of Fig. 29.13.

(2) Task ordering delay (Dorder): Because the proposed technique allows task
migration between modes, a task can be mapped onto different processors in
each mode. So it needs to be guaranteed that two consecutive executions of the
same task are not overlapped or inverted during mode change. In Fig. 29.14a,
two executions of task D are overlapped between modes. Thus, the execution
of the next mode should be delayed by the task ordering delay denoted by (2) in
Fig. 29.14b.

(3) Task migration delay (Dmig): Tasks which are mapped onto different processors
between modes should be migrated during the time interval between the end
time in the previous mode and the start time in the next mode. If the time interval
is not long enough to migrate the task, additional time delay is required. In
Fig. 29.14b, task D should be migrated to another processor after the end of
execution in the previous mode, and additional time delay is needed, which is
the task migration delay denoted by (3) in Fig. 29.14c. In case of task C , no
additional time delay is required.

Summing up all three types of delay mentioned above, we compute the start
offset of the next mode as follows:

Definition 1 (Start offset of mode m in the case of mode transition n! m).

�nm D Dnm
sched CD

nm
order CD

nm
mig

Since the output production time of each mode equals to the latency of the static
schedule from the start time, the mode transition delay can be formulated as follows:

Definition 2 (Mode transition delay from mode n to mode m).

T ransDelay.n;m/ D Lat.m/C �nm 	 Lat.n/ 	 II .m/

whereLat.m/ represents the latency of modem and II .m/ represents the initiation
interval of mode m.

29 HOPES: Programming Platform Approach for Embedded Systems Design 971

Note that, if Lat.m/C �nm 	 Lat.n/ � II .m/, then T ransDelay.n;m/ will
be smaller than zero. It means that the time interval of the output production times
during a mode transition can be shorter than the output production time interval of
the next mode (II .m/).

The mode transition delay will be used to determine the new throughput
requirement for each mode of operation to satisfy the throughput constraint. When
the number of iterations performed in mode m is N , the average initiation interval
becomes MaxT ransDelay.m/CN � II .m/=N where MaxT ransDelay.m/
indicates the maximum value of all possible mode transitions to modem. Therefore,
we need to increase the throughput performance by decreasing II .m/, in order to
satisfy the given throughput requirement. In other words, the new initiation interval
IInew.m/, whose inverse is the new throughput requirement, should satisfy the
following inequality.

MaxT ransDelay.m/CN � IInew.m/ � N � 1=.throughput requirement/
(29.1)

When we schedule all modes of MTM-SDF graphs, we have to consider the
increase of throughput requirement for each possible pair of mode changes. The
proposed scheduling technique is based on a Genetic Algorithm (GA) [18], of which
the overall procedure is shown in Fig. 29.15. The chromosome for GA represents
which processor a task in each execution mode is mapped. Chromosomes of initial
population are randomly generated and selected from crossover and mutation. The
probabilities of crossover and mutation are given by a user with configuration
parameters. In the local optimization step, we shuffle the processor indexes for some

P0 P1 P2 P1 ... P1 P2 P2 P0

Mapping for mode 0 Mapping for mode N

MTM-SDF
graph

HW platform,
Profile information

Throughput
constraint

GA initialization (initial population generation)

Selection

Crossover and mutation

Local optimization (shuffle processor indexes)

Evaluation and replacement

Get Pareto-optimal solutions

chromosome configuration

Fig. 29.15 GA-based MTM-SDF scheduling framework in HOPES

972 S. Ha and H. Jung

selected modes in the chromosome in case shuffling reduces the migration cost at
mode change. Note that a hardware component is regarded as a special processing
element to which a limited set of tasks can be mapped.

In the evaluation step, we apply a list scheduling heuristic to find a static schedule
based on the mapping information of the chromosome. Once we construct a static
schedule, we evaluate the fitness value of each solution and check whether the
throughput constraint is satisfied or not. Chromosomes in the population are sorted
by their fitness value and poor chromosomes are eliminated.

For each Pareto-optimal solution, we record the mapping and scheduling result of
tasks for a given set of processing elements. And we determine the minimum buffer
size for each channel by finding out the maximum number of samples accumulated
on the channel during an iteration of the schedule. Note that we may expand
the design space by considering the variation of voltage and frequency for power
minimization, which has not been implemented in HOPES yet.

29.3.2 Dynamic Mapping

Actual mapping of tasks to processors is performed at run time based on the
scheduling information of all applications. When a system status change is detected,
the supervisor identifies the set of applications concurrently running and the set
of available processors. And it allocates the processors to applications in order to
maximize the overall Quality of Service (QoS) metric.

Run-time dynamic mapping is performed in two steps: processor allocation and
processor binding. In the processor allocation step, we determine the number of
processors allocated to each application. We first allocate the minimum number
of processors to each application in order to satisfy the throughput constraint. If
the sum of allocated processors is larger than the number of available processors,
all applications are not schedulable and we have to discard some applications
of low criticality. If there are remaining processors, we repeat the following
process until there are no remaining processors or no gain is expected with more
processors allocated to any application: find an application that would have the
maximum benefit with one more processor and allocate a remaining processor
to the application. Suppose that the number of available processors is five in
the example of Fig. 29.11. After allocating two processors to both applications
initially to satisfy the throughput constraints, one processor is left unallocated.
Since the throughput improvement of application A with one more processor
is larger than that of application B, we allocate the remaining processor to
application A.

After processor allocation is finished, we perform the processor binding step
where the physical position of the allocated processors is determined. A popular
objective of the binding step is to minimize the average communication overhead
over all applications and to minimize the task migration overhead. To minimize the
task migration overhead, the same binding is preserved for an application that has
no change in the number of allocated processors.

29 HOPES: Programming Platform Approach for Embedded Systems Design 973

29.4 CIC Translator: Automatic Code Synthesis from the CIC
Model

A key benefit of the proposed model-based design methodology is that the target
code can be synthesized automatically from the CIC model after the mapping and
scheduling decision is made for a given HW/SW platform. The code synthesis
step can be understood as model refinement, enjoying the benefit of “correct-by-
construction” design paradigm to relieve the designer of heavy burden of verifying
the correctness that can be checked by static analysis of the model. To this end,
the code should be synthesized in a way to preserve the interface and execution
semantics of the model. For an SDF task, for instance, it should be guaranteed
that the task starts its execution only after all input ports have as many number of
samples as are defined by the sample rates on the associated channels. It implies
that we may need to synthesize an interface module in front of the HW IP to
synchronize the arrival of input data samples if an SDF task is implemented by a
HW IP. Even though the SDF model assumes infinite size of channel buffers, we
can determine the buffer sizes at compile time from the static analysis. Then an
SDF task should check before starting its execution if there is available space at the
output buffers.

In HOPES, we assume that the internal code of an SDF task is given. It is up
to the designer to guarantee the correctness of the internal code. Then the CIC
translator synthesizes the interface code between tasks and the scheduler code to
determine the execution order of the mapped tasks on each processing element. The
interface code and the scheduler code depend on the mapping and scheduling policy
of the target platform. There are four policies to perform mapping and scheduling
of SDF tasks: fully static, self-timed, static assignment, and fully dynamic. If the
fully static policy is applied, the run-time scheduler keeps not only the mapping
and scheduling decision made at compile time but also the timing information. If a
task finishes earlier than the worst-case execution assumed in static scheduling, the
run-time scheduler delays the completion of the task until the assumed completion
time. By keeping the start and the completion time of tasks, the fully static policy
guarantees to produce the same scheduling result as expected at compile time. It
means that real-time performance is guaranteed to be correct by construction, which
is very desirable for hard real-time systems. The main drawback of this policy is that
we should sacrifice the processor utilization in case the worst-case task execution
scenario is very different from the average-case scenario. The run-time scheduler
simply executes the tasks at the predetermined starting times without checking the
buffer status.

Under the self-timed policy, on the other hand, the run-time scheduler does not
keep the starting times of tasks while preserving the mapping and scheduling result.
Before it starts the next task on the schedule list, it should check the availability of
the input data samples. Since the scheduling order is preserved, we may generate
a single thread that executes a sequence of function calls in the scheduling order
where each SDF task is implemented as a function call. Note that we do not resort
to any OS scheduler of the target platform under this policy.

974 S. Ha and H. Jung

The static assignment policy allows the change of task execution order while the
mapping decision is kept. In a self-timed policy, a processor can be idle waiting for
the arrival of input samples for the next task to execute in the scheduling order even
though there is an executable task. By changing the scheduling order at run time, we
may increase the processor utilization, which is the main reason of adopting a static
assignment policy particularly when the task execution times vary widely. The static
scheduling information can be used to assign the priority of the tasks, giving a higher
priority to the task that appears earlier in the scheduling order. If a static assignment
policy is used, we synthesize each task as a separate thread and may resort to the
thread scheduler that is provided by the SW platform of the target architecture. If
there is no built-in thread scheduler, we synthesize a simple run-time scheduler that
checks the execution status of all tasks when the processor receives a data sample
from the other processors and completes the execution of the current thread. Thus,
there is a trade-off between run-time scheduling overhead and processor utilization
between self-timed and static assignment policy.

The fully dynamic policy ignores the static scheduling information at run time
by allowing the change of mapping and scheduling of tasks. It is the same as
the global scheduling policy for an Symmetric Multi-Processing (SMP) processor,
distinguished from the partitioned scheduling policy where mapping of tasks does
not change at run time. Similarly to a static assignment policy, we may use the static
scheduling information to assign the priority of the tasks. And we synthesize each
task as a separate thread and use the global scheduler that is provided by the SW
platform of the target architecture. In the current implementation, the fully dynamic
policy can be used for an SMP target only.

Figure 29.16a shows the overall flow of automatic code synthesis by the CIC
translator, and Fig. 29.16b shows the structure of the synthesized code. We use
colors to show how the synthesized code is matched with the synthesis flow in
the figure. We first check which mapping and scheduling policy will be used and

Assigned tasks

For each processing element

Mapping &
scheduling policy

Single thread synthesis
to execute the tasks in

the schedule order

Synthesize one
thread per task

Synthesize run-time
scheduler

Thread
scheduler?

Task Channel Portmap Task
mapping

Communication APIs System request APIs

Main scheduler

Task
routine

Single thread
(w/ static schedule)

Target dependent functions
(e.g. thread manage, memory manage, …)

Task
code

Task
code

Task
code

Control
task code

MTM

MTM
functions

Data structure synthesis

Generic API and interface synthesis

fully static/self-timed static-assignment

no

a b

Fig. 29.16 (a) The overall flow of automatic code synthesis by the CIC translator and (b) the
structure of the synthesized code

29 HOPES: Programming Platform Approach for Embedded Systems Design 975

partitions the tasks based on the mapping information unless the fully dynamic
policy is used. Then the target code for each processing element is synthesized one
by one. In case the fully static or the self-timed policy is used for a processor, we
synthesize a single thread that executes the mapped tasks by function calls following
the scheduling order. In case the static assignment policy is used, a separate thread
is created for each task and a run-time scheduler code is synthesized if there is
no built-in thread scheduler in the SW platform. Depending on the policy and
the SW platform, we translate the generic APIs to the target APIs when the task
code is synthesized. Since the interface code with the other processing elements is
dependent on the target platform, we assume that the interface code is given as a part
of input information to the CIC translator. To this end, HOPES has target-specific
library folders that contain target-specific tasks as well.

The CIC translator can be understood as a high-level compiler of the CIC model
to generate the target-specific code automatically. As we need a different C compiler
to generate the target-specific binary from a target-independent C code, we need to
develop a different CIC translator for each target platform. As of now, the following
target platforms are supported in the HOPES environment: Linux-based SMP
processor, CPU-GPU heterogeneous architecture, IBM Cell processor, Network-
on-Chip (NoC)-based many-core virtual prototype, and a multi-robot platform with
Bluetooth communication links.

29.5 Experimental Results

In this section, we show two real-life examples to demonstrate the overall design
flow to verify the viability of the HOPES methodology. The first example is a
smartphone example shown in Fig. 29.9. This example is quite challenging since
it consists of multiple applications running concurrently, having inter-application
and intra-application dynamism. And each application has real-time constraints.
The profiling information of applications is obtained by preparatory experiments in
advance using a cycle-accurate ARM processor simulator. The WCET information
for each task is reported in Table 29.2 for the H.264 decoder application of
Fig. 29.5. Tables 29.3 and 29.4 show the WCET of each task in x264 encoder
and MP3 decoder application. Both applications are specified with an SDF graph
respectively, having only one mode of operation; the tables show how many tasks
each application consists of. For the x264 encoder application, we make a single task
for the most time-consuming algorithm, motion estimation (ME), in this experiment.
G.723 encoder and G.723 decoder applications are specified by a single task each,
and their execution times are profiled to 4 � 103 cycles/iteration and 6 � 103

cycles/iteration, respectively.
With the given profiling information, compile-time analysis is performed to

obtain the set of Pareto-optimal mapping and scheduling solutions for varying
number of processors for each application. The result of compile-time analysis is
summarized in Table 29.5.

To compare the performance of the proposed hybrid mapping technique with a
dynamic mapping technique, we tested the following scenario: (1) play a video clip,

976 S. Ha and H. Jung

Table 29.2 Profiling information of H.264 decoder application (unit: �103 cycles/frame)

Task

Time
(WCET/
average) Task Time(WCET/average) Task

Time
(WCET/
average)

ReadFile
I: 980/760
P: 590/420 IntraPredY I: 980/830 InterPredY

I: 80/60
P: 3940/1560

Decode
I: 7500/5010
P: 2990/920 IntraPredU I: 190/150 InterPredU

I: 20/20
P: 340/270

Deblock
I: 1550/1390
P: 1120/370 IntraPredV I: 180/150 InterPredV

I: 20/20
P: 340/270

WriteFile
I: 2240/2120
P: 2360/2100

Table 29.3 Profiling information of x264 encoder application (unit: �103 cycles/frame)

Task
Time
(WCET/average) Task

Time
(WCET/average) Task

Time
(WCET/average)

Init 250/170 Deblock 3020/2660 Encoder 4840/4470

ME 15170/14720 VLC 2350/1780

Table 29.4 Profiling information of MP3 decoder application (unit: �103 cycles/iteraion)

Task
Time
(WCET/average) Task

Time
(WCET/average) Task

Time
(WCET/average)

VLD 810/150 Antialias 40/10 Stereo 70/30

DeQ 690/300 Hybrid 1230/160 Reorder 50/10

Subband 630/270 WriteFile 150/20

Table 29.5 Summary of compile-time analysis

Application
Processors
(min, max) Throughput (min, max) Throughput constraint

H.264 decoder (1,2) (50.9, 52.8) frames/sec
VideoPlay: 30 frames/sec
VideoPhone: 15 frames/sec

MP3 decoder (1,6) (123.7, 569.1) iterations/sec 150 iterations/sec

x264 encoder (1,2) (27.3, 30.1) frames/sec 15 frames/sec

(2) a phone call preempts the video play, (3) resume the video play after the call is
finished, and (4) return to the Menu state when the video clip is finished. We assume
that the target HW platform has a 3� 3 NoC architecture in which there are seven
ARM processor tiles (700 Mhz for each) available for executing the applications.
Figure 29.17a shows the total sum of throughput excesses over the throughput
constraints for all applications. The throughput excess can be used to reduce the
power consumption of the system by lowering the voltage and frequency of the
processor. Figure 29.17b illustrates the relative latency achieved from the dynamic
mapping against the proposed hybrid mapping, varying the communication-to-

29 HOPES: Programming Platform Approach for Embedded Systems Design 977

0

1

2

3

4

5

6

1% 2% 3% 4%

Dynamic_Video Proposed_Video
Dynamic_Phone Proposed_Phone

CCR

ATS
a

b

1.05

1.1

1.15

1.2

1.25

1% 2% 3% 4%

Dynamic_Video
Dynamic_Phone

CCR

Latency (avg. per itera�on)

Fig. 29.17 (a) The aggregate throughput gain over the throughput constraints for both hybrid and
dynamic mapping techniques, and (b) the relative latency achieved by dynamic mapping against
the hybrid mapping

Load
Image
Load
Image

YUV to
RGB

YUV to
RGB GaussianGaussian SobelSobel

Non-
Maximum

Suppression

Non-
Maximum

Suppression

Hough
Transform

Hough
Transform

Draw
Lane
Draw
Lane MergeMerge

RGB to
YUV

RGB to
YUV

Store
Image
Store
Image

KNNKNN

NLMNLM

BlendingBlending SharpenSharpen

Image denoising filter chain

Edge detec�on filter chain

Fig. 29.18 A CIC modeling of lane detection algorithm

computation ratio (ccr). These experiments confirm that the hybrid mapping gives
significant gain in throughput and latency by utilizing the static scheduling results.

As another real example, a lane detection algorithm for driver assistance is
implemented by a CPU-GPU heterogeneous architecture. In this experiment, we
used Intel Core i7-930 CPU (2.80 GHz) and two Tesla M2050 GPUs. To run a task
on a GPU, we used a different version of the task that uses CUDA programming
in its internal definition. For CUDA programming, NVIDIA GPU Computing SDK
3.1 and CUDA toolkit v3.2 RC2 were used. The CIC model of the lane detection
application is displayed in Fig. 29.18 and the associated profiling information is
shown in Table 29.6.

The design space explored in this experiment is defined by the number of CPU
and GPU processing elements, task mapping, and communication methods between
CPU and GPU. Asynchronous communication between CPU and GPU is supported
by defining streams in CUDA programming. While operations with the same stream

978 S. Ha and H. Jung

Table 29.6 Profiling information of lane detection application (unit: usec)

Task CPU GPU Task CPU GPU

LoadImage 479 � KNN 2;999;704 7202

YUVtoRGB 53;111 8152 NLM 1;017;401 16,497

Gaussian 78;100 4591 Blending 16;093 5078

Sobel 10;041 5139 Sharpen 110;139 5455

Non-max 164;013 6611 Merge 32;340 5032

Hough 311;966 5653 RGBtoYUV 66;733 4888

Draw lane 1592 � StoreImage 1068 -

Table 29.7 Design space exploration of lane detection application (unit:sec)

Configuration Sync Async (2 streams) Async (3 streams) Async (4 streams)

CPU + 0 GPU 2109:5 � � �

CPU + 1 GPU 15:0 12.0 12.3 12.1

CPU + 2 GPUs 11:3 10.2 9.8 9.8

Table 29.8 Task mapping
onto 1 CPUC 2 GPUs

Processor Tasks

CPU LoadImage, Draw lane, StoreImage

GPU 0 YUVtoRGB, Gaussian, Sobel,
Non-maximum, Hough, Merge

GPU 1 KNN, NLM, Blending, Sharpen,
RGBtoYUV

should be serialized, those between different streams can be executed in parallel.
Thus, asynchronous communication promises potential throughput improvement
paying the overhead of memory space and stream management overhead. For this
experiment, we used a yuv video clip which consists of 300 frames of HD size
(1280� 720). We explored the design space manually to obtain the result as shown
in Table 29.7. It reveals that using two GPUs gives the best performance in which
task mapping is made as shown in Table 29.8.

29.6 Current Status and Conclusion

The HOPES design environment consists of various tools that realize individual
design steps in the design flow of Fig. 29.2. It has an eclipse-based Graphical User
Interface (GUI) to help a designer to follow the design flow conveniently. Interface
between design tools is made by xml files so that we may change or add a design
tool into the environment by accessing the interface files. We expect that the HOPES
environment can be improved by third-party tools.

Besides the techniques introduced in this chapter, there are other tools involved
in the HOPES design environment such as Worst-Case Response Time (WCRT)
analysis tool (STBA and HPA) [14] and a HW/SW cosimulation tool, HSIM [26].
The WCRT analysis tool is to estimate the latency of an application conservatively

29 HOPES: Programming Platform Approach for Embedded Systems Design 979

when a self-timed or a static assignment policy is adopted. Since the scheduling
anomaly may happen due to unexpected interference from the other processing
elements in the access to the shared resources, the worst-case performance estimated
from the static analysis step is not guaranteed if we change the scheduling times of
tasks or the execution order of tasks. Therefore, we use a separate tool to estimate
the response of an application after mapping decision is made. The HW/SW
cosimulation tool is used to run the target software without the real hardware
platform.

In this chapter, it is confirmed that the HOPES methodology is viable to design
complex real-time embedded systems with two real-life examples. But it is still far
from a general system-level design tool to be used in practice and there is much
room for improvement. First of all, we need to consider more real-life systems
with diverse characteristics in the system behavior and the target architecture,
which is not an easy job for academia. We are testing various types of hardware
platforms, including Intel Xeon-Phi, IBM cell processor, many-core simulator, and
cooperating heterogeneous robot platforms. The most time-consuming is to make a
CIC translator for each target platform. It is similar to building a new C compiler
for a new processor. Since the quality of design depends on the CIC translator,
generating a target code is not sufficient for practical use. We have to synthesize as
good quality code as a manually written code. Since the HOPES framework starts
with CIC specification of an application, it is necessary to translate the legacy code
to the CIC model for the reuse of a legacy code. If the legacy code is small enough
to compose a single CIC task, translation could be made easily by modifying the
interface code with the outside. Otherwise, it is necessary to restructure the legacy
code to partition it to a set of CIC tasks that follow the assumed execution model,
which should be done manually.

Even though the CIC model is independent of the target architecture, we may
need to define target-dependent tasks. For instance, a task that accesses I/O devices
usually needs to use OS-dependent APIs. To run a task on a special processing
element, such as GPU and hardware IP, we need to have multiple versions of the
same task that are dependent on the target architecture. Since the granularity of a
task is large, careful consideration needs to be made to make it target-independent.

References

1. Bhattacharya B, Bhattacharyya SS (2001) Parameterized dataflow modeling for DSP systems.
IEEE Trans Signal Process 49(10):2408–2421. doi:10.1109/78.950795

2. Buck JT (1993) Scheduling dynamic dataflow graphs with bounded memory using the token
flow model. Technical report, Department of EECS, UC Berkeley, Berkeley. Technical report
UCB/ERL 93/69, Ph.D dissertation

3. Buck JT, Ha S, Lee EA, Messerschmitt DG (1994) Ptolemy: a framework for simulating and
prototyping heterogenous systems. Int J Comput Simul 4(2):155–182

4. Eidson J, Lee EA, Matic Slobodan SSA, Zou J (2012) Distributed real-time software for cyber-
physical systems. Proc IEEE 100(1):45-59

http://dx.doi.org/10.1109/78.950795

980 S. Ha and H. Jung

5. Girault A, Lee B, Lee E (1999) Hierarchical finite state machines with multiple concurrency
models. IEEE Trans Comput Aided Des Integr Circuits Syst 18(6):742–760

6. Goossens S, Akesson B, Koedam M, Nejad AB, Nelson A, Goossens K (2013) The CompSOC
design flow for virtual execution platforms. In: Proceedings of the 10th FPGAworld conference.
ACM, p 7

7. Ha S, Kim S, Lee C, Yi Y, Kwon S, Joo YP (2008) Peace: a hardware-software codesign
environment for multimedia embedded systems. ACM Trans Des Autom Electron Syst
12(3):24:1–24:25. doi:10.1145/1255456.1255461

8. Harel D, Naamad A (1996) The STATEMATE semantics of statecharts. ACM Trans Softw Eng
Methodol (TOSEM) 5(4):293–333

9. Haubelt C, Falk J, Keinert J, Schlichter T, Streubühr M, Deyhle A, Hadert A, Teich J (2007) A
SystemC-based design methodology for digital signal processing systems. EURASIP J Embed
Syst 2007(1):1–22. doi:10.1155/2007/47580

10. Jung H, Lee C, Kang SH, Kim S, Oh H, Ha S (2014) Dynamic behavior specification and
dynamic mapping for real-time embedded systems: HOPES approach. ACM Trans Embed
Comput Syst (TECS) 13:135:1–135:26

11. Jung H, Oh H, Ha S (2017) Multiprocessor scheduling of a multi-mode dataflow graph
considering mode transition delay. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 22,
2, Article 37

12. Kangas T, Kukkala P, Orsila H, Salminen E, Hännikäinen M, Hämäläinen TD, Riihimäki J,
Kuusilinna K (2006) Uml-based multiprocessor soc design framework. ACM Trans Embed
Comput Syst 5(2):281–320. doi:10.1145/1151074.1151077

13. Kienhuis B, Deprettere E, Vissers K, Wolf PVD (1997) An approach for quantitative
analysis of application-specific dataflow architectures. In: Proceedings of the IEEE interna-
tional conference on application-specific systems, architectures and processors, pp 338–349.
doi:10.1109/ASAP.1997.606839

14. Kim J, Oh H, Choi J, Ha H, Ha S (2013) A novel analytical method for worst case response
time estimation of distributed embedded systems. In: Proceedings of the design automation
conference (DAC), Austin, pp 1–10

15. Kwon S, Kim Y, Jeun WC, Ha S, Paek Y (2008) A retargetable parallel programming
framework for MPSoC. ACM Trans Des Autom Electron Syst (TODAES) 13:39:1–39:18

16. Lee C, Kim H, Park H, Kim S, Oh H, Ha S (2010) A task remapping technique for
reliable multi-core embedded systems. In: Proceedings of the international conference on
hardware/software codesign and system synthesis (CODES+ISSS), Scottsdale, pp 307–316

17. Lee EA, Messerschmitt DG (1987) Synchronous data flow. Proc IEEE 75(9):1235–1245
18. Man KF, Tang KS, Kwong S (1996) Genetic algorithms: concepts and applications [in

engineering design]. IEEE Trans Ind Electron 43(5):519–534. doi:10.1109/41.538609
19. Nikolov H, Thompson M, Stefanov T, Pimentel A, Polstra S, Bose R, Zissulescu C, Deprettere

E (2008) Daedalus: toward composable multimedia MP-SoC design. In: Proceedings of the
design automation conference, pp 574–579

20. Park Hw, Jung H, Oh H, Ha S (2011) Library support in an actor-based parallel programming
platform. IEEE Trans Ind Inf 7:340–353

21. Schor L, Bacivarov I, Rai D, Yang H, Kang SH, Thiele L (2012) Scenario-based design
flow for mapping streaming applications onto on-chip many-core systems. In: Proceedings
of the international conference on compilers architecture and synthesis for embedded systems
(CASES), pp 71–80

22. Stuijk S, Geilen M, Theelen BD, Basten T (2011) Scenario-Aware dataflow: modeling, analysis
and implementation of dynamic applications. In: Proceedings of the international conference
on embedded computer systems: architectures, modeling, and simulation, ICSAMOS’11. IEEE
Computer Society, pp 404–411. doi:10.1109/SAMOS.2011.6045491

23. Theelen BD, Geilen M, Basten T, Voeten J, Gheorghita SV, Stuijk S (2006) A Scenario-aware
data flow model for combined long-run average and worst-case performance analysis. In:
Proceedings of international conference on formal methods and models for co-design, MEM-
OCODE’06. IEEE Computer Society, pp 185–194. doi:10.1109/MEMCOD.2006.1695924

http://dx.doi.org/10.1145/1255456.1255461
http://dx.doi.org/10.1155/2007/47580
http://dx.doi.org/10.1145/1151074.1151077
http://dx.doi.org/10.1109/ASAP.1997.606839
http://dx.doi.org/10.1109/41.538609
http://dx.doi.org/10.1109/SAMOS.2011.6045491
http://dx.doi.org/10.1109/MEMCOD.2006.1695924

29 HOPES: Programming Platform Approach for Embedded Systems Design 981

24. Thiele L, Bacivarov I, Haid W, Huang K (2007) Mapping applications to tiled multiprocessor
embedded systems. In: International conference on application of concurrency to system
design, pp 29–40. doi:10.1109/ACSD.2007.53

25. Thiele L, Strehl K, Ziegenbein D, Ernst R, Teich J (1999) FunState–an internal design
representation for codesign. In: White JK, Sentovich E (eds) ICCAD. IEEE, pp 558–565

26. Yun D, Kim S, Ha S (2012) A parallel simulation technique for multicore embedded systems
and its performance analysis. IEEE Trans Comput Aided Des Integr Circuits Syst (TCAD)
31:121–131

http://dx.doi.org/10.1109/ACSD.2007.53

30DAEDALUS: System-Level Design
Methodology for Streaming
Multiprocessor Embedded Systems on Chips

Todor Stefanov, Andy Pimentel, and Hristo Nikolov

Abstract

The complexity of modern embedded systems, which are increasingly based on
heterogeneous multiprocessor system-on-chip (MPSoC) architectures, has led
to the emergence of system-level design. To cope with this design complexity,
system-level design aims at raising the abstraction level of the design process
from the register-transfer level (RTL) to the so-called electronic system level
(ESL). However, this opens a large gap between deployed ESL models and RTL
implementations of the MPSoC under design, known as the implementation gap.
Therefore, in this chapter, we present the DAEDALUS methodology which the
main objective is to bridge this implementation gap for the design of streaming
embedded MPSoCs. DAEDALUS does so by providing an integrated and highly
automated environment for application parallelization, system-level design space
exploration, and system-level hardware/software synthesis and code generation.

Acronyms

ADG Approximated Dependence Graph
CC Communication Controller
CM Communication Memory
DCT Discrete Cosine Transform
DMA Direct Memory Access
DSE Design Space Exploration
DWT Discrete Wavelet Transform
ESL Electronic System Level
FCFS First-Come First-Serve

T. Stefanov (�) • H. Nikolov
Leiden University, Leiden, The Netherlands
e-mail: t.p.stefanov@liacs.leidenuniv.nl; h.n.nikolov@gmail.com

A. Pimentel
University of Amsterdam, Amsterdam, The Netherlands
e-mail: a.d.pimentel@uva.nl

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_30

983

mailto:t.p.stefanov@liacs.leidenuniv.nl; h.n.nikolov@gmail.com
mailto:a.d.pimentel@uva.nl

984 T. Stefanov et al.

FIFO First-In First-Out
FPGA Field-Programmable Gate Array
GA Genetic Algorithm
GCC GNU Compiler Collection
GUI Graphical User Interface
HW Hardware
IP Intellectual Property
IPM Intellectual Property Module
ISA Instruction-Set Architecture
JPEG Joint Photographic Experts Group
KPN Kahn Process Network
MIR Medical Image Registration
MJPEG Motion JPEG
MoC Model of Computation
MPSoC Multi-Processor System-on-Chip
OS Operating System
PIP Parametric Integer Programming
PN Process Network
PPN Polyhedral Process Network
RTL Register Transfer Level
SANLP Static Affine Nested Loop Program
STree Schedule Tree
SW Software
UART Universal Asynchronous Receiver/Transmitter
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
XML Extensible Markup Language
YML Y-chart Modeling Language

Contents

30.1 Introduction . 985
30.2 The DAEDALUS Methodology . 986
30.3 The Polyhedral Process Network Model of Computation for MPSoC

Codesign and Programming . 988
30.4 Automated Application Parallelization: PNGEN . 991

30.4.1 SANLPs and Modified Data-Flow Analysis . 991
30.4.2 Computing FIFO Channel Sizes . 993

30.5 Automated System-Level Design Space Exploration: SESAME 994
30.5.1 Basic DSE Concept . 994
30.5.2 System-Level Performance Modeling and Simulation 995

30.6 Automated System-Level HW/SW Synthesis and Code Generation: ESPAM 999
30.6.1 ESL Input Specification for ESPAM . 999
30.6.2 System-Level Platform Model . 1002
30.6.3 Automated System-Level HW Synthesis and Code Generation 1003
30.6.4 Automated System-Level SW Synthesis and Code Generation 1006

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 985

30.6.5 Dedicated IP Core Integration with ESPAM . 1010
30.7 Summary of Experiments and Results . 1014
30.8 Conclusions . 1015
References . 1015

30.1 Introduction

The complexity of modern embedded systems, which are increasingly based on
heterogeneous multiprocessor system-on-chip (MPSoC) architectures, has led to the
emergence of system-level design. To cope with this design complexity, system-
level design aims at raising the abstraction level of the design process to the
so-called electronic system level (ESL) [18]. Key enablers to this end are, for
example, the use of architectural platforms to facilitate reuse of IP components and
the notion of high-level system modeling and simulation [21]. The latter allows
for capturing the behavior of platform components and their interactions at a high
level of abstraction. As such, these high-level models minimize the modeling effort
and are optimized for execution speed and can therefore be applied during the very
early design stages to perform, for example, architectural design space exploration
(DSE). Such early DSE is of paramount importance as early design choices heavily
influence the success or failure of the final product.

System-level design for MPSoC-based embedded systems typically involves a
number of challenging tasks. For example, applications need to be decomposed into
parallel specifications so that they can be mapped onto an MPSoC architecture [29].
Subsequently, applications need to be partitioned into hardware (HW) and software
(SW) parts because MPSoC architectures often are heterogeneous in nature. To
this end, MPSoC platform architectures need to be modeled and simulated at ESL
level of abstraction to study system behavior and to evaluate a variety of different
design options. Once a good candidate architecture has been found, it needs to be
synthesized. This involves the refinement/conversion of its architectural components
from ESL to RTL level of abstraction as well as the mapping of applications onto
the architecture. To accomplish all of these tasks, a range of different tools and tool-
flows is often needed, potentially leaving designers with all kinds of interoperability
problems. Moreover, there typically exists a large gap between the deployed ESL
models and the RTL implementations of the system under study, known as the
implementation gap [32, 37]. Therefore, designers need mature methodologies,
techniques, and tools to effectively and efficiently convert ESL system specifications
to RTL specifications.

In this chapter, we present the DAEDALUS methodology [27, 37, 38, 40, 51]
and its techniques and tools which address the system-level design challenges
mentioned above. The DAEDALUS main objective is to bridge the aforementioned
implementation gap for the design of streaming embedded MPSoCs. The main
idea is, starting with a functional specification of an application and a library of
predefined and pre-verified IP components, to derive an ESL specification of an
MPSoC and to refine and translate it to a lower RTL specification in a systematic

986 T. Stefanov et al.

and automated way. DAEDALUS does so by providing an integrated and highly au-
tomated environment for application parallelization (Sect. 30.4), system-level DSE
(Sect. 30.5), and system-level HW/SW synthesis and code generation (Sect. 30.6).

30.2 The DAEDALUS Methodology

In this section, we give an overview of the DAEDALUS methodology [27, 37, 38,
40, 51]. It is depicted in Fig. 30.1 as a design flow. The flow consists of three
main design phases and uses specifications at four levels of abstraction, namely,
at FUNCTIONAL-LEVEL, ESL, RTL, and GATE-LEVEL. A typical MPSoC design
with DAEDALUS starts at the most abstract level, i.e., with a FUNCTIONAL-
LEVEL specification which is an application written as a sequential C program
representing the required MPSoC behavior. Then, in the first design phase, an
ESL specification of the MPSoC is derived from this functional specification
by (automated) application parallelization and automated system-level DSE. The
derived ESL specification consists of three parts represented in XML format:

1. Application specification, describing the initial application in a parallel form as a
set of communicating application tasks. For this purpose, we use the polyhedral
process network (PPN) model of computation, i.e., a network of concurrent
processes communicating via FIFO channels. More details about the PPN model
are provided in Sect. 30.3;

2. Platform specification, describing the topology of the multiprocessor platform;
3. Mapping specification, describing the relation between all application tasks in

application specification and all components in platform specification.

For applications written as parameterized static affine nested loop programs
(SANLP) in C , a class of programs discussed in Sect. 30.4, PPN descriptions
can be derived automatically by using the PNGEN tool [26, 56], see the top-right
part in Fig. 30.1. Details about PNGEN are given in Sect. 30.4. By means of auto-
mated (polyhedral) transformations [49, 59], PNGEN is also capable of producing
alternative input-output equivalent PPNs, in which, for example, the degree of
parallelism can be varied. Such transformations enable functional-level design space
exploration. In case the application does not fit in the class of programs, mentioned
above, the PPN application specification at ESL needs to be derived by hand.

The platform and mapping specifications at ESL are generated automatically as
a result of a system-level DSE by using the SESAME tool [8,39,42,53], see the top-
left part of Fig. 30.1. Details about SESAME are given in Sect. 30.5. The components
in the platform specification are taken from a library of (generic) parameterized
and predefined/verified IP components which constitute the platform model in
the DAEDALUS methodology. Details about the platform model are given in
Sect. 30.6.2. The platform model is a key part of the methodology because it allows
alternative MPSoCs to be easily built by instantiating components, connecting them,
and setting their parameters in an automated way. The components in the library are

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 987

Pμ

Pμ Pμ

specification

V
al

id
at

io
n

/ C
al

ib
ra

tio
n

Gate−level
specification

RTL
specification

MPSoC

Inter−

ESL

specification

Mem

connect

Functional

Mem

HW IP

in XML

RTL
Models

Models

C

PNgen

Application spec. in XML

System−level design space exploration: Parallelization:

RTL synthesis: commercial tool, e.g. Xilinx Platform Studio

program in C
Sequential

Platform spec.
in XML

Mapping spec.

Automated system−level synthesis: Espam

Sesame

Li
br

ar
y

IP
 c

om
po

ne
nt

s

Manually creating a PPN

Platform
netlist

IP cores
in VHDL

Auxiliary
files

code for
processors

High−level

Polyhedral Process Network

Fig. 30.1 The DAEDALUS design flow

represented at two levels of abstraction: high-level models are used for constructing
and modeling multiprocessor platforms at ESL; low-level models of the components
are used in the translation of the multiprocessor platforms to RTL specifications
ready for final implementation. As input, SESAME uses the application specification
at ESL (i.e., the PPN) and the high-level models of the components from the library.
The output is a set of pairs, i.e., a platform specification and a mapping specification
at ESL, where each pair represents a non-dominated mapping of the application onto
a particular MPSoC in terms of performance, power, cost, etc.

In the second design phase, the ESL specification of the MPSoC is systematically
refined and translated into an RTL specification by automated system-level HW/SW
synthesis and code generation, see the middle part of Fig. 30.1. This is done in
several steps by the ESPAM tool [25, 34, 36, 37]. Details about ESPAM are given
in Sect. 30.6. As output, ESPAM delivers a hardware (e.g., synthesizable VHDL
code) description of the MPSoC and software (e.g., C/CCC) code to program each
processor in the MPSoC. The hardware description, namely, an RTL specification
of a multi-processor system, is a model that can adequately abstract and exploit
the key features of a target physical platform at the register-transfer level of
abstraction. It consists of two parts: (1) platform topology, a netlist description
defining in greater detail the MPSoC topology and (2) hardware descriptions
of IP cores, containing predefined and custom IP cores (processors, memories,
etc.) used in platform topology and selected from the library of IP components.

988 T. Stefanov et al.

Also, ESPAM generates custom IP cores needed as a glue/interface logic between
components in the MPSoC. ESPAM converts the application specification at ESL to
efficient C/CCC code including code implementing the functional behavior together
with code for synchronization of the communication between the processors.
This synchronization code contains a memory map of the MPSoC and read/write
synchronization primitives. The generated program C/CCC code for each processor
in the MPSoC is given to a standard GCC compiler to generate executable code.

In the third and last design phase, a commercial synthesizer converts the
generated hardware RTL specification to a GATE-LEVEL specification, thereby
generating the target platform gate-level netlist, see the bottom part of Fig. 30.1. This
GATE-LEVEL specification is actually the system implementation. In addition, the
system implementation is used for validation/calibration of the high-level models in
order to improve the accuracy of the design space exploration process at ESL.

Finally, a specific characteristic of the DAEDALUS design flow is that the
mapping specification generated by SESAME gives explicitly only the relation
between the processes (tasks) in application specification and the processing
components in platform specification. The mapping of FIFO channels to memories
is not given explicitly in the mapping specification because, in MPSoCs designed
with DAEDALUS, this mapping strictly depends on the mapping of processes to
processing components by obeying the following rule. FIFO channel X is always
mapped to a local memory of processing component Y if the process that writes to
X is mapped on processing component Y. This mapping rule is used by SESAME

during the system-level DSE where alternative platform and mapping decisions are
explored. The same rule is used by ESPAM (the elaborate mapping step in Fig. 30.7)
to explicitly derive the mapping of FIFO channels to memories which is implicit (not
explicitly given) in the mapping specification generated by SESAME and forwarded
to ESPAM.

30.3 The Polyhedral Process Network Model of Computation
for MPSoC Codesign and Programming

In order to facilitate systematic and automated MPSoC codesign and programming,
a parallel model of computation (MoC) is required for the application specification
at ESL. This is because the MPSoC platforms contain processing components that
run in parallel and a parallel MoC represents an application as a composition of
concurrent tasks with a well-defined mechanism for inter-task communication and
synchronization. Thus, the operational semantics of a parallel MoC match very well
the parallel operation of the processing components in an MPSoC. Many parallel
MoCs exist [24], and each of them has its own specific characteristics. Evidently, to
make the right choice of a parallel MoC, we need to take into account the application
domain that is targeted. The DAEDALUS methodology targets streaming (data-flow-
dominated) applications in the realm of multimedia, imaging, and signal processing
that naturally contain tasks communicating via streams of data. Such applications
are very well modeled by using the parallel data-flow MoC called polyhedral process

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 989

network (PPN) [30, 31, 54]. Therefore, DAEDALUS uses the PPN model as an
application specification at ESL as shown in Fig. 30.1.

A PPN is a network of concurrent processes that communicate through bounded
first-in first-out (FIFO) channels carrying streams of data tokens. A process
produces tokens of data and sends them along a FIFO communication channel where
they are stored until a destination process consumes them. FIFO communication
channels are the only method which processes may use to exchange data. For each
channel there is a single process that produces tokens and a single process that
consumes tokens. Multiple producers or multiple consumers connected to the same
channel are not allowed. The synchronization between processes is done by blocking
on an empty/full FIFO channel. Blocking on an empty FIFO channel means that a
process is suspended when it attempts to consume data from an empty input channel
until there is data in the channel. Blocking on a full FIFO channel means that a
process is suspended when it attempts to send data to a full output channel until
there is room in the channel. At any given point in time, a process either performs
some computation or it is blocked on only one of its channels. A process may access
only one channel at a time and when blocked on a channel, a process may not access
other channels. An example of a PPN is shown in Fig. 30.2a. It consists of three
processes (P1, P2, and P3) that are connected through four FIFO channels (CH1,
CH2, CH3, and CH4).

The PPN MoC is a special case of the more general Kahn process network
(KPN) MoC [20] in the following sense. First, the processes in a PPN are uniformly
structured and execute in a particular way. That is, a process first reads data from
FIFO channels, then executes some computation on the data, and finally writes
results of the computation to FIFO channels. For example, consider the PPN shown

CH4

IP1
IP2

OP1
OP2P2

CH2

P1
CH1

IP1
OP1 CH3 IP1

OP1
P3

a

void main() {

read(IP1, in_0, size);
execute(in_0, out_0);
write(OP1, out_0, size);

1
2
3
4
5
6
7

// Process P1

} }

b

void main() {
// Process P21

2

} // for j14
} // main15

if (i−2 == 0)
read(IP1, in_0, size);

if (i−3 >= 0)
read(IP2, in_0, size);

if (−i+N−1 >= 0)
write(OP1, out_0, size);

if (i−N == 0)
write(OP2, out_0, size);

for (int i=2; i<=N; i++)3
4 for (int j=1; j<=M+i; j++) { CONTROL

5
6
7
8

READ

execute(in_0, out_0);9 EXECUTE

10
11
12
13

WRITE

c

for (int k=1; k<=L; k++) {

Fig. 30.2 Example of a polyhedral process network and program code of its processes. (a)
Polyhedral Process Network example. (b) Program code for process P1. (c) Program code for
process P2

990 T. Stefanov et al.

in Fig. 30.2a. The program code structure of processes P1 and P2 are shown in
Fig. 30.2b, c, respectively. The structure of the code for both process is the same and
consists of a CONTROL part, a READ part, an EXECUTE part, and a WRITE part.
The difference betweenP1 andP2, however, is in the specific code in each part. For
example, the CONTROL part ofP1 has only one for loop whereas the CONTROL
part of P2 has two for loops. The blocking synchronization mechanism, explained
above, is implemented by read/write synchronization primitives. They are the
same for each process. The READ part of P1 has one read primitive executed
unconditionally, whereas the READ part of P2 has two read primitives and if
conditions specifying when to execute these primitives.

Second, the behavior of a process in a PPN can be expressed in terms of
parameterized polyhedral descriptions using the polytope model [16], i.e., using
formal descriptions of the following form: D.p/ D fx 2 Z

d j A � x � B � pC bg,
where D.p/ is a parameterized polytope affinely depending on parameter vector p.
For example, consider process P2 in Fig. 30.2c. The process iterations for which
the computational code at line 9 is executed can be expressed as the following two-
dimensional polytope: D9.N;M/ D f.i; j / 2 Z

2 j 2 � i � N ^ 1 � j �

M C ig. The process iterations for which the read synchronization primitive at
line 8 is executed can be expressed as the following two-dimensional polytope:
D8.N;M/ D f.i; j / 2 Z

2 j 3 � i � N^1 � j �MCig. The process iterations for
which the other read/write synchronization primitive are executed can be expressed
by similar polytopes. All polytopes together capture the behavior of process P2,
i.e., the code in Fig. 30.2c can be completely constructed from the polytopes and
vice versa.

Since PPNs expose task-level parallelism, captured in processes, and make the
communication between processes explicit, they are suitable for efficient mapping
onto MPSoC platforms. In addition, we motivate our choice of using the PPN MoC
in DAEDALUS by observing that the following characteristics of a PPN can take
advantage of the parallel resources available in MPSoC platforms:

• The PPN model is design-time analyzable: By using the polyhedral descrip-
tions of the processes in a PPN, capacities of the FIFO channels in a PPN, that
guarantee deadlock-free execution of the PPN, can be determined at design time;

• Formal algebraic transformations can be performed on a PPN: By applying
mathematical manipulations on the polyhedral descriptions of the processes in a
PPN, the initial PPN can be transformed to an input-output equivalent PPN in
order to exploit more efficiently the parallel resources available in an MPSoC
platform;

• The PPN model is determinate: Irrespective of the schedule chosen to evaluate
the network, the same input-output relation always exists. This gives a lot of
scheduling freedom that can be exploited when mapping PPNs onto MPSoCs;

• Distributed Control: The control is completely distributed to the individual
processes and there is no global scheduler present. As a consequence, distributing
a PPN for execution on a number of processing components is a relatively simple
task;

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 991

• Distributed Memory: The exchange of data is distributed over FIFO channels.
There is no notion of a global memory that has to be accessed by multiple
processes. Therefore, resource contention is greatly reduced if MPSoCs with
distributed memory are considered;

• Simple synchronization: The synchronization between the processes in a PPN
is done by a blocking read/write mechanism on FIFO channels. Such synchro-
nization can be realized easily and efficiently in both hardware and software.

Finally, please note that the first and the second bullet, mentioned above, describe
characteristics that are specific and valid only for the PPN model. These specific
characteristics clearly distinguish the PPN model from the more general KPN model
which is used, for example, as an application model in �Chap. 28, “MAPS: A
Software Development Environment for Embedded Multicore Applications”. The
last four bullets above describe characteristics valid for both the PPN and the KPN
models.

30.4 Automated Application Parallelization: PNGEN

In this section, we provide an overview of the techniques, we have developed, for
automated derivation of PPNs. These techniques are implemented in the PNGEN

tool [26, 56] which is part of the DAEDALUS design flow. The input to PNGEN

is a SANLP written in C and the output is a PPN specification in XML format
– see Fig. 30.1. Below, in Sect. 30.4.1, we introduce the SANLPs with their
characteristics/limitations and explain how a PPN is derived based on a modified
data-flow analysis. We have modified the standard data-flow analysis in order to
derive PPNs that have less inter-process FIFO communication channels compared to
the PPNs derived by using previous works [23,52]. Then, in Sect. 30.4.2, we explain
the techniques to compute the sizes of FIFO channels that guarantee deadlock-free
execution of PPNs onto MPSoCs.

30.4.1 SANLPs and Modified Data-Flow Analysis

A SANLP is a sequential program that consists of a set of statements and function
calls (the code inside function calls is not limited), where each statement and/or
function call is possibly enclosed by one or more loops and/or if statements with
the following code limitations: (1) loops must have a constant step size; (2) loops
must have bounds that are affine expressions of the enclosing loop iterators, static
program parameters, and constants; (3) if statements must have affine conditions in
terms of the loop iterators, static program parameters, and constants; (4) the static
parameters are symbolic constants, i.e., their values may not change during the
execution of the program; (5) the function calls must communicate data between
each other explicitly, i.e., using only scalar variables and/or array elements of an
arbitrary type that are passed as arguments by value or by reference in function

992 T. Stefanov et al.

Fig. 30.3 SANLP fragment
and its corresponding PPN.
(a) Example of a SANLP. (b)
Corresponding PPN

c

for (int i=0; i<N; i++)
b[i] = F1();

for (int i=0; i<N; i++) {
if (i>0) tmp = b[i−1];

tmp = b[i];else
F2(b[i], tmp, &c[i]);

3
4
5
6

2
1

7 }

F1
b

F2

b_1b
a

calls; (6) array elements must be indexed with affine expressions of the enclosing
loop iterators, static program parameters, and constants. An example of a SANLP
that conforms to the abovementioned code limitations is shown in Fig. 30.3a. Other
examples can be found in [56]. Although the abovementioned code limitations
restrict the expressiveness of a SANLP, in many application domains this is
not a problem because it is natural to express an application in the form of a
SANLP. Examples are digital signal/image processing and audio/video stream-
based applications in consumer electronics, medical imaging, radio astronomy, etc.
Some specific application examples are mentioned in Sect. 30.7.

Because of the code limitations, mentioned above, SANLPs can be represented
in the well-known polytope model [16], i.e., a compact mathematical representation
of a SANLP through sets and relations of integral vectors defined by linear
(in)equalities, existential quantification, and the union operation. In particular, the
set of iterator vectors for which a function call is executed is an integer set called
the iteration domain. The linear inequalities of this set correspond to the lower and
upper bounds of the loops enclosing the function call. For example, the iteration
domain of function F1 in Fig. 30.3a is fi j 0 � i � N 	 1g. Iteration domains
form the basis of the description of the processes in the PPN model, as each process
corresponds to a particular function call. For example, there are two function calls in
the program fragment in Fig. 30.3a representing two application tasks, namely, F1
and F2. Therefore, there are two processes in the corresponding PPN as shown
in Fig. 30.3b. The granularity of F1 and F2 determines the granularity of the
corresponding processes. The FIFO channels are determined by the array (or scalar)
accesses in the corresponding function call. All accesses that appear on the left-
hand side or in an address of (&) expression for an argument of a function call
are considered to be write accesses. All other accesses are considered to be read
accesses.

To determine the FIFO channels between the processes, we may perform
standard array data-flow analysis [15]. That is, for each execution of a read operation
of a given data element in a function call, we need to find the source of the data,
i.e., the corresponding write operation that wrote the data element. However, to
reduce communication FIFO channels between different processes, in contrast to the
standard data-flow analysis and in contrast to [23,52], we also consider all previous
read operations from the same function call as possible sources of the data. That is
why we call our approach a modified array data-flow analysis [54,56]. The problem
to be solved is then: given a read from an array element, what was the last write to

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 993

or read from that array element? The last iteration of a function call satisfying some
constraints can be obtained by using parametric integer programming (PIP) [14],
where we compute the lexicographical maximum of the write (or read) source
operations in terms of the iterators of the “sink” read operation. Since there may
be multiple function calls that are potential sources of the data, and since we also
need to express that the source operation is executed before the read (which is not
a linear constraint but rather a disjunction of n linear constraints, where n is the
shared nesting level), we actually need to perform a number of PIP invocations.

For example, the first read access in function call F2 of the program fragment in
Fig. 30.3a reads data written by function call F1, which results in a FIFO channel
from process F1 to process F2, i.e., channel b in Fig. 30.3b. In particular, data
flows from iteration iw of function F1 to iteration ir D iw of function F2. This
information is captured by the integer relationDF1!F2 D f.iw; ir/ j ir D iw ^ 0 �
ir � N 	 1g. For the second read access in function call F2, after elimination of
the temporary variable tmp, the data has already been read by the same function
call after it was written. This results in a self-loop channel b_1 from F2 to itself
described as DF2!F2 D f.iw; ir/ j iw D ir 	 1 ^ 1 � ir � N 	 1g [f.iw; ir/ j

iw D ir D 0g. In general, we obtain pairs of write/read and read operations such that
some data flows from the write/read operation to the (other) read operation. These
pairs correspond to the channels in our process network. For each of these pairs,
we further obtain a union of integer relations

Sm
jD1 Dj .iw; ir/
 Z

n1 � Z
n2 , with

n1 and n2 the number of loops enclosing the write and read operation, respectively,
that connect the specific iterations of the write/read and read operations such that
the first is the source of the second. As such, each iteration of a given read operation
is uniquely paired off to some write or read operation iteration.

30.4.2 Computing FIFO Channel Sizes

Computing minimal deadlock-free FIFO channel sizes is a nontrivial global opti-
mization problem. This problem becomes easier if we first compute a deadlock-free
schedule and then compute the sizes for each channel individually. Note that this
schedule is only computed for the purpose of computing the FIFO channel sizes
and is discarded afterward because the processes in PPNs are self-scheduled due
to the blocking read/write synchronization mechanism. The schedule we compute
may not be optimal; however, our computations do ensure that a valid schedule
exists for the computed buffer sizes. The schedule is computed using a greedy
approach. This approach may not work for process networks in general, but since
we consider only static affine nested loop programs (SANLPs), it does work for any
PPN derived from a SANLP. The basic idea is to place all iteration domains in a
common iteration space at an offset that is computed by the scheduling algorithm.
As in the individual iteration spaces, the execution order in this common iteration
space is the lexicographical order. By fixing the offsets of the iteration domain in
the common space, we have therefore fixed the relative order between any pair of
iterations from any pair of iteration domains. The algorithm starts by computing for

994 T. Stefanov et al.

any pair of connected processes, the minimal dependence distance vector, a distance
vector being the difference between a read operation and the corresponding write
operation. Then, the processes are greedily combined, ensuring that all minimal
distance vectors are (lexicographically) positive. The end result is a schedule that
ensures that every data element is written before it is read. For more information
on this algorithm, we refer to [55], where it is applied to perform loop fusion on
SANLPs.

After the scheduling, we may consider all FIFO channels to be self-loops of the
common iteration space, and we can compute the channel sizes with the following
qualification: we will not be able to compute the absolute minimum channel sizes
but at best the minimum channel sizes for the computed schedule. To compute the
channel sizes, we compute the number of read iterations R.i/ that are executed
before a given read operation i and subtract the resulting expression from the
number of write iterations W .i/ that are executed before the given read operation,
so the number of elements in FIFO at operation i D W .i/ 	 R.i/.
This computation can be performed entirely symbolically using the barvinok
library [57] that efficiently computes the number of integer points in a parametric
polytope. The result is a piecewise (quasi-)polynomial in the read iterators and the
parameters. The required channel size is the maximum of this expression over all
read iterations: FIFO size D max. W .i/ 	 R.i/ /. To compute the maximum
symbolically, we apply Bernstein expansion [7] to obtain a parametric upper bound
on the expression.

30.5 Automated System-Level Design Space Exploration:
SESAME

In this section, we provide an overview of the methods and techniques we have
developed to facilitate automated design space exploration (DSE) for MPSoCs at
the electronic system level (ESL). These methods and techniques are implemented
in the SESAME tool [8, 11, 39, 42, 53] which is part of the DAEDALUS design flow
illustrated in Fig. 30.1. In Sect. 30.5.1, we highlight the basic concept, deployed
in SESAME, for system-level DSE of MPSoC platforms. Then, in Sect. 30.5.2, we
explain the system-level performance modeling methods and simulation techniques
that facilitate the automation of the DSE.

30.5.1 Basic DSE Concept

Nowadays, it is widely recognized that the separation-of-concerns concept [21]
is key to achieving efficient system-level design space exploration of complex
embedded systems. In this respect, we advocate the use of the popular Y-chart
design approach [22] as a basis for (early) system-level design space exploration.
This implies that in SESAME, we separate application models and architecture
(performance) models while also recognizing an explicit mapping step to map

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 995

application tasks onto architecture resources. In this approach, an application
model – derived from a specific application domain – describes the functional
behavior of an application in a timing and architecture independent manner.
A (platform) architecture model – which has been defined with the application
domain in mind – defines architecture resources and captures their performance
constraints. To perform quantitative performance analysis, application models are
first mapped onto and then cosimulated with the architecture model under investi-
gation, after which the performance of each application-architecture combination
can be evaluated. Subsequently, the resulting performance numbers may inspire
the designer to improve the architecture, restructure/adapt the application(s), or
modify the mapping of the application(s). Essential in this approach is that an
application model is independent from architectural specifics, assumptions on
hardware/software partitioning, and timing characteristics. As a result, application
models can be reused in the exploration cycle. For example, a single application
model can be used to exercise different hardware/software partitionings and can
be mapped onto a range of architecture models, possibly representing different
architecture designs.

30.5.2 System-Level Performance Modeling and Simulation

The SESAME system-level modeling and simulation environment [8, 11, 39, 42, 53]
facilitates automated performance analysis of MPSoCs according to the Y-chart
design approach as discussed in Sect. 30.5.1, recognizing separate application and
architecture models. SESAME has also been extended to allow for capturing power
consumption behavior and reliability behavior of MPSoC platforms [44, 45, 50].

The layered infrastructure of SESAME’s modeling and simulation environment
is shown in Fig. 30.4. SESAME maps application models onto architecture models
for cosimulation by means of trace-driven simulation while using an intermediate
mapping layer for scheduling and event-refinement purposes. This trace-driven
simulation approach allows for maximum flexibility and model reuse in the process
of exploring different MPSoC configurations and mappings of applications to these
MPSoC platforms [8, 11]. To actually explore the design space to find good system
implementation candidates, SESAME typically deploys a genetic algorithm (GA).
For example, to explore different mappings of applications onto the underlying
platform architecture, the mapping of application tasks and inter-task communica-
tions can be encoded in a chromosome, which is subsequently manipulated by the
genetic operators of the GA [9] (see also �Chap. 9, “Scenario-Based Design Space
Exploration”). The remainder of this section provides an overview of each of the
SESAME layers as shown in Fig. 30.4.

30.5.2.1 Application Modeling
For application modeling within the DAEDALUS design flow, SESAME uses the
polyhedral process network (PPN) model of computation, as discussed in Sect. 30.3,
in which parallel processes communicate with each other via bounded FIFO

996 T. Stefanov et al.

Architecture Model
Discrete Event

Application Model
Process Network

B CA

bufferbuffer

Mapping Layer
Dataflow

token−exchange channels
mapping

data channels

bus
FIFO

Virtual
Processor

for Process A

event
trace

Virtual
Processor

for Process C

Processor 1 Processor 3Processor 2

Memory

Fig. 30.4 The SESAME’s application model layer, architecture model layer, and mapping layer
which interfaces between application and architecture models

channels. The PPN application models used in SESAME are either generated by
the PNGEN tool presented in Sect. 30.4 or are derived by hand from sequential
C/C++ code. The workload of an application is captured by manually instrumenting
the code of each PPN process with annotations that describe the application’s
computational and communication actions, as explained in detail in [8, 11]. By
executing the PPN model, these annotations cause the PPN processes to generate
traces of application events which subsequently drive the underlying architecture
model. There are three types of application events: the communication events read
and write and the computational event execute. These application events typically
are coarse grained, such as execute(DCT) or read(pixel-block,channel_id).

To execute PPN application models, and thereby generating the application
events that represent the workload imposed on the architecture, SESAME features
a process network execution engine supporting the PPN semantics (see Sect. 30.3).
This execution engine runs the PPN processes, which are written in C++, as separate
threads using the Pthreads package. To allow for rapid creation and modification
of models, the structure of the application models (i.e., which processes are used
in the model and how they are connected to each other) is not hard-coded in the
C++ implementation of the processes. Instead, it is described in a language called

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 997

YML (Y-chart modeling language) [8], which is an XML-based language. It also
facilitates the creation of libraries of parameterized YML component descriptions
that can be instantiated with the appropriate parameters, thereby fostering reuse of
(application) component descriptions. To simplify the use of YML even further, a
YML editor has also been developed to compose model descriptions using a GUI.

30.5.2.2 Architecture Modeling
The architecture models in SESAME, which typically operate at the so-called
transaction level [6,19], simulate the performance consequences of the computation
and communication events generated by an application model. These architecture
models solely account for architectural performance constraints and do not need
to model functional behavior. This is possible because the functional behavior is
already captured in the application models, which subsequently drive the architec-
ture simulation. An architecture model is constructed from generic building blocks
provided by a library, see Fig. 30.1, which contains template performance models for
processing components (like processors and IP cores), communication components
(like busses, crossbar switches, etc.), and various types of memory. The performance
parameter values for these models are typically derived from datasheets or from
measurements with lower-level simulators or real hardware platforms [43]. The
structure of an architecture model – specifying which building blocks are used
from the library and the way they are connected – is also described in YML within
SESAME.

SESAME’s architecture models are implemented using either Pearl [33] or
SystemC [19]. Pearl is a small but powerful discrete-event simulation language
which provides easy construction of the models and fast simulation [42].

30.5.2.3 Mapping
To map PPN processes (i.e., their event traces) from an application model onto
architecture model components, SESAME provides an intermediate mapping layer.
Besides this mapping function, the mapping layer has two additional functions as
will be explained later on: Scheduling of application events when multiple PPN
processes are mapped onto a single architecture component (e.g., a programmable
processor) and facilitating gradual model refinement by means of trace event
refinement.

The mapping layer consists of virtual processor components and FIFO buffers for
communication between the virtual processors. There is a one-to-one relationship
between the PPN processes in the application model and the virtual processors in
the mapping layer. This is also true for the PPN channels and the FIFO buffers in
the mapping layer. The only difference is that the buffers in the mapping layer are
limited in size, and their size depends on the modeled architecture. As the structure
of the mapping layer is equivalent to the structure of the application model under
investigation, SESAME provides a tool that is able to automatically generate the
mapping layer from the YML description of an application model.

A virtual processor in the mapping layer reads in an application trace from a
PPN process via a trace event queue and dispatches the events to a processing

998 T. Stefanov et al.

component in the architecture model. The mapping of a virtual processor onto a
processing component in the architecture model is freely adjustable (i.e., virtual
processors can dispatch trace events to any specified processing component in
the architecture model), and this mapping is explicitly described in a YML-based
specification. Clearly, this YML mapping description can easily be manipulated by
design space exploration engines to, e.g., facilitate efficient mapping exploration.
Communication channels, i.e., the buffers in the mapping layer, are also explicitly
mapped onto the architecture model. In Fig. 30.4, for example, one buffer is placed
in shared memory, while the other buffer is mapped onto a point-to-point FIFO
channel between processors 1 and 2.

The mechanism used to dispatch application events from a virtual processor
to an architecture model component guarantees deadlock-free scheduling of the
application events from different event traces [42]. Please note that, here, we refer
to communication deadlocks caused by mapping multiple PPN processes to a single
processor and the fact that these processes are not preempted when blocked on,
e.g., reading from an empty FIFO buffer (see [42] for a detailed discussion of these
deadlock situations). In this event dispatching mechanism, computation events are
always directly dispatched by a virtual processor to the architecture component
onto which it is mapped. The latter schedules incoming events that originate
from different event queues according to a given policy (FCFS, round-robin, or
customized) and subsequently models their timing consequences. Communication
events, however, are not directly dispatched to the underlying architecture model.
Instead, a virtual processor that receives a communication event first consults the
appropriate buffer at the mapping layer to check whether or not the communication
is safe to take place so that no deadlock can occur. Only if it is found to be safe
(i.e., for read events the data should be available and for write events there should
be room in the target buffer), then communication events may be dispatched. As
long as a communication event cannot be dispatched, the virtual processor blocks.
This is possible because the mapping layer executes in the same simulation as the
architecture model. Therefore, both the mapping layer and the architecture model
share the same simulation-time domain. This also implies that each time a virtual
processor dispatches an application event (either computation or communication) to
a component in the architecture model, the virtual processor is blocked in simulated
time until the event’s latency has been simulated by the architecture model. In other
words, the individual virtual processors can be seen as abstract representations of
application processes at the system architecture level, while the mapping layer can
be seen as an abstract OS model.

When architecture model components need to be gradually refined to dis-
close more implementation details (such as pipelined processing in processor
components), this typically implies that the applications events consumed by the
architecture model also need to be refined. In SESAME, this is established by an
approach in which the virtual processors at the mapping layer are also refined.
The latter is done by incorporating data-flow graphs in virtual processors such that
it allows us to perform architectural simulation at multiple levels of abstraction
without modifying the application model. Fig. 30.4 illustrates this data-flow-based

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 999

refinement by refining the virtual processor for process B with a fictive data-flow
graph. In this approach, the application event traces specify what a virtual processor
executes and with whom it communicates, while the internal data-flow graph of a
virtual processor specifies how the computations and communications take place at
the architecture level. For more details on how this refinement approach works, we
refer the reader to [10,12,41] where the relation between event trace transformations
for refinement and data-flow actors at the mapping layer is explained.

30.6 Automated System-Level HW/SW Synthesis and Code
Generation: ESPAM

In this section, we present the methods and techniques, we have developed, for sys-
tematic and automated system-level HW/SW synthesis and code generation for MP-
SoC design and programming. These methods and techniques bridge, in a particular
way, the implementation gap between the electronic system level (ESL) and the reg-
ister transfer level (RTL) of design abstraction introduced in Sect. 30.1. The methods
and techniques are implemented in the ESPAM tool [25, 34, 36, 37] which is part
of the DAEDALUS design flow illustrated in Fig. 30.1 and explained in Sect. 30.2.
First, in Sect. 30.6.1, we show an example of the ESL input specification for ESPAM

that describes an MPSoC. Second, in Sect. 30.6.2, we introduce the system-level
platform model used in ESPAM to construct MPSoC platform instances at ESL.
Then, in Sect. 30.6.3, we present how an MPSoC platform instance at ESL is refined
and translated systematically and automatically to an MPSoC instance at RTL. This
is followed by a discussion in Sect. 30.6.4 about the automated programming of the
MPSoCs, i.e., the automated code generation done by ESPAM. It includes details on
how ESPAM converts processes in a PPN application specification to software code
for every programmable processor in an MPSoC. Finally, in Sect. 30.6.5, we present
our approach for building heterogeneous MPSoCs where both programmable
processors and dedicated IP cores are used as processing components.

30.6.1 ESL Input Specification for ESPAM

Recall from Sect. 30.2 that ESPAM requires as input an ESL specification of an MP-
SoC that consists of three parts: platform, application, and mapping specifications.
In this section, we give examples of these three parts (specifications). We will use
these examples in our discussion about the system-level HW/SW synthesis and code
generation in ESPAM given in Sects. 30.6.3 and 30.6.4.

30.6.1.1 Platform Specification
Consider an MPSoC platform containing four processing components. An example
of the ESL platform specification of this MPSoC is depicted in Fig. 30.5a. This
specification, in XML format, consists of three parts which define processing
components (four processors, lines 2–5), communication component (crossbar, lines

1000 T. Stefanov et al.

<platform "myPlatform" >
<processor

name =
name = "uP1" > <port

<processor name = "uP2" > <port
<processor
<processor <port

<port> name = "uP3"
> name = "uP4"

name = "IO1"
name = "IO1"
name = "IO1"
name = "IO1"

/>
/>
/>
/>

</processor>
</processor>
</processor>
</processor>

12 </network>
<port11 name = "IO4" />
<port name = "IO3" />
<port name = "IO2" />
<port name = "IO1" />

10
9
8

<network7 name = "CB" type = "Crossbar" >
6
5
4
3
2
1

13

</platform>30
29
28
27
26

</link>
<resource name = "uP4" <port name = "IO1" />
<resource name = "CB" <port name = "IO4" />

<link name = "BUS4"
</link>

<resource
<resource name = "CB"

name = "uP3" <port name = "IO1" />
<port name = "IO3" />

<link

25
24
23
22 name = "BUS3" >
21 </link>

<resource name = "uP2"
<resource name = "CB"

<port name = "IO1" />
<port name = "IO2" />

20
19
18 <link name = "BUS2" >

</link>17
<resource
<resource

name = "uP1"
name = "CB"

<port name = "IO1" />
<port name = "IO1" />

16
15
14 <link name = "BUS1" >

>

CM3

CC1

CM1

MC1

MEM1

uP1

CC2

CM2

uP2

MEM2

MC2 CC4

CM4

MC3

MEM3

uP3

uP4

MEM4

MC4

CB

CC3

MC

CC
MEM

CM

− Memory Controller

− Communication Memory

uP − Microprocessor

Legend:

− Program and Data Memory
− Communication Controller

CB − Crossbar Switch

a
b

Fig. 30.5 Example of a multiprocessor platform. (a) Platform specification. (b) Elaborated
platform

7–12), and links (lines 14–29). The links specify the connections of the processors
to the communication component. Every component has an instance name and
different parameters characterizing the component. The components’ parameters
are not shown in Fig. 30.5a for the sake of brevity. Note that in the specification,
there are no memory structures and interface controllers instantiated. The ESPAM

tool takes care of this during the platform synthesis described in Sect. 30.6.3. In
this way, unnecessary details are hidden at the beginning of the design, keeping the
abstraction of the input platform specification very high.

30.6.1.2 Application Specification
Consider an application specified as a PPN consisting of five processes communi-
cating through seven FIFO channels. A graphical representation of the application
is shown in Fig. 30.9a. Part of the corresponding XML application specification for
this PPN is shown in Fig. 30.6a. Recall that this PPN in XML format is generated
automatically by the PNGEN tool using the techniques presented in Sect. 30.4. For
the sake of clarity, we show only the description of process P1 and channel FIFO1
in the XML code. The other processes and channels of the PPN are specified
in an identical way. P1 has one input port and one output port defined in lines
3–8. P1 executes a function called compute (line 9). The function has one input
argument (line 10) and one output argument (line 11). There is a strong relation
between the function arguments and the ports of a process given at lines 4 and
7. The information how many times function compute has to be fired during the
execution of the application is determined by a parameterized iteration domain (see

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 1001

</application>

1

index = "k"

name =

<var

<application name = "myPPN"
<process "P1"

<port name = "p2" direction = "in"
<var name = "in_0" type = "myType"

</port>
<port name = "p1" direction = "out"

</port>
name = "out_0" type = "myType"

<process_code name = "compute"
<arg name = "in_0" type = "input"
<arg name = "out_0" type = "output"
<loop parameter = "N"

<channel
<fromPort name = "p1"
<fromProcess name = "P1"
<toPort name = "p4"

name = "P3"
</channel>

<!−− other channels omitted −−>

<toProcess

26

3
4
5
6
7
8
9

10
11
12

19
20
21
22
23

25
24

<loop_bounds matrix = "[1, 1,0,−2; 1,−1,2,−1]"
<par_bounds

</loop>
</process_code>

<!−− other processes omitted −−>

13
14
15
16

18

</process>17

2 >

/>

/>

>
/>

/>
>

/>
/>matrix = "[1,0,−1,384; 1,0,1,−3]"

>

>

>

/>

/>
/>

name = FIFO1 size = "1" >

/>

a b

<processor name = "uP1" >
name = "P4" />

<processor name = "uP2" >
<process name = "P2" />
<process name = "P5" />

</processor>

<process
</processor>

<processor name = "uP3" >
<proces name = "P3" />

</processor>

<processor name = "uP4" >
<process name = "P1" />

</processor>

10
11
12
13
14

16
17
18
19

15

20 </mapping>

9

5
6

4
3
2
1 <mapping name = "myMapping" >

7
8

Fig. 30.6 Example of application and mapping specifications. (a) Application specification.
(b) Mapping specification

Sect. 30.4.1) which is captured in a compact (matrix) form at lines 12–15. There are
two matrices representing the iteration domain which corresponds to a nested for-
loop structure. It originates from the structure of the initial (static and affine) nested
loop program. In this particular example, there is only one for loop with index k
and parameter N . The parameter is used in determining the upper bound of the
loop. The range of the loop index k is determined at line 13. This matrix represents
the following two inequalities, k 	 2 � 0 and 	k C 2N 	 1 � 0 and, therefore,
2 � k � 2N 	 1. In the same way, the matrix at line 14 determines the range
of parameter N , i.e., 3 � N � 384. Similar information for each port is used to
determine at which iterations an input port has to be read and consequently, at which
iterations, an output port has to be written. However, for brevity, this information is
omitted in Fig. 30.6a. Lines 19–24 show an example of how the topology of a PPN
is specified: FIFO1 connects processes P1 and P3 through ports p1 and p4.

30.6.1.3 Mapping Specification
An example of a mapping specification is shown in Fig. 30.6b. It assumes an MPSoC
with four processing components, namely, uP1, uP2, uP3, and uP4, and five PPN
processes: P1, P2, P3, P4, and P5. The XML format of the mapping specification
is very simple. Process P4 is mapped onto processor uP1 (see lines 3-5), processes
P2 and P5 are mapped onto processor uP2 (lines 7-10), process P3 is mapped
for execution on processor uP3, and, finally, process P1 is mapped on processor
uP4. In the mapping specification, the mapping of FIFO channels to communication
memories is not specified. This mapping is related to the way processes are mapped

1002 T. Stefanov et al.

to processors, and, therefore, the mapping of FIFO channels to communication
memories cannot be arbitrary. The mapping of channels is performed by ESPAM

automatically which is discussed in Sect. 30.6.3.

30.6.2 System-Level Platform Model

The platform model consists of a library of generic parameterized components and
defines the way the components can be assembled. To enable efficient execution
of PPNs with low overhead, the platform model allows for building MPSoCs that
strictly follow the PPN operational semantics. Moreover, the platform model allows
easily to construct platform instances at ESL. To support systematic and automated
synthesis of MPSoCs, we have carefully identified a set of components which
comprise the MPSoC platforms we consider. It contains the following components.

Processing Components. The processing components implement the functional
behavior of an MPSoC. The platform model supports two types of processing
components, namely, programmable (ISA) processors and non-programmable,
dedicated IP cores. The processing components have several parameters such as
type, number of I/O ports, program and data memory size, etc.

Memory Components. Memory components are used to specify the local
program and data memories of the programmable processors and to specify data
communication storage (buffers) between the processing components (commu-
nication memories). In addition, the platform model supports dedicated FIFO
components used as communication memories in MPSoCs with a point-to-point
topology. Important memory component parameters are type, size, and number of
I/O ports.

Communication Components. A communication component determines the
interconnection topology of an MPSoC platform instance. Some of the parameters
of a communication component are type and number of I/O ports.

Communication Controller. Compliant with our approach to build MPSoCs
executing PPNs, communication controllers are used as glue logic realizing the
synchronization of the data communication between the processors at hardware
level. A communication controller (CC) implements an interface between process-
ing, memory, and communication components. There are two types of CCs in our
library. In case of a point-to-point topology, a CC implements only an interface to
the dedicated FIFO components used as communication memories. If an MPSoC
utilizes a communication component, then the communication controller realizes a
multi-FIFO organization of the communication memories. Important CC parameters
are number of FIFOs and the size of each FIFO.

Memory Controllers. Memory controllers are used to connect the local program
and data memories to the ISA processors. Every memory controller has a parameter
size which determines the amount of memory that can be accessed by a processor
through the memory controller.

Peripheral Components and Controllers. They allow data to be transferred in
and out of the MPSoC platform, e.g., a universal asynchronous receive-transmit

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 1003

(UART). We have also developed a multi-port interface controller allowing for
efficient (DMA-like) data communication between the processing cores by sharing
an off-chip memory organized as multiple FIFO channels [35]. General off-chip
memory controller is also part of this group of library components. In addition,
Timers can be used for profiling and debugging purposes, e.g., for measuring
execution delays of the processing components.

Links. Links are used to connect the components in our system-level platform
model. A link is transparent, i.e., it does not have any type, and connects ports of
two or more components together.

In DAEDALUS we do not consider the design of processing components.
Instead, we use IP cores (programmable processors and dedicated IPs) developed
by third parties and propose a communication mechanism that allows efficient
data communication (low latency) between these processing components. The
devised communication mechanism is independent of the types of processing and
communication components used in the platform instance. This results in a platform
model that easily can be extended with additional (processing, communication, etc.)
components.

30.6.3 Automated System-Level HW Synthesis and Code Generation

The automated translation of an ESL specification of an MPSoC (see Sect. 30.6.1
for an example of such specification) to RTL descriptions goes in three main steps
illustrated in Fig. 30.7:

1. Model initialization. Using the platform specification, an MPSoC instance
is created by initializing an abstract platform model in ESPAM. Based
on the application and the mapping specifications, three additional abstract
models are initialized: application (ADG), schedule (STree), and mapping
models;

2. System synthesis. ESPAM elaborates and refines the abstract platform model to a
detailed parameterized platform model. Based on the application, schedule, and
mapping models, a parameterized process network (PN) model is created as well;

3. System generation. Parameters are set and ESPAM generates a platform instance
implementation using the RTL version of the components in the library. In
addition, ESPAM generates program code for each programmable processor.

30.6.3.1 Model Initialization
In this first step, ESPAM constructs a platform instance from the input platform
specification by initializing an abstract platform model. This is done by instantiating
and connecting the components in the specification using abstract components
from the library. The abstract model represents an MPSoC instance without taking
target execution platform details into account. The model includes key system
components and their attributes as defined in the platform specification. There are
three additional abstract models in ESPAM which are also created and initialized,
i.e., an application model, a schedule model, and a mapping model, see the top part

1004 T. Stefanov et al.

System
synthesis

RTL
specification

Model initialization
(Front−end)

specification

System generation
(Back−end)

ESL

Platform
netlist

IP cores
in VHDL

Memory
Map

Code Generation

in XML
Li

br
ar

y
of

 IP
C

om
po

ne
nt

s
in XMLin XML

Parsers and (Cross−)Consistency Check

Setting Parameters and External Interface

C code for
processors

Elaborate Platform Process Network Synthesis

Refine Platform

Platform Instance

Polyh. Proc. Network

Elaborated Mapping Model

Parameterized PN Model

Refined Platform Model

Elaborate Mapping

ADG model STree modelPlatform model Mapping model

Elaborated Platform Model

Platform specification Mapping specification

Fig. 30.7 ESL to RTL MPSoC synthesis steps performed by ESPAM

of Fig. 30.7. The application specification consists of two annotated graphs, i.e., a
PPN represented by an approximated dependence graph (ADG) and a schedule tree
(STree) representing one valid global schedule of the PPN. Consequently, the ADG
and the STree models in ESPAM are initialized, capturing in a formal way all the
information that is present in the application specification. Note that, in addition to
a standard dependence graph, the ADG is a graph structure that also can capture
some data dependencies in an application that are not completely known at design
time because the exact application behavior may depend on the data that is processed
by the application at run time. If such application is given to ESPAM where some
of the data dependencies cannot be exactly determined at design time, then these
dependencies are approximated in the ADG. That is, these dependencies are always
conservatively put in the ADG, although they may exist only for specific data values
processed by the application at run time.

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 1005

The mapping model is constructed and initialized from the mapping specifi-
cation. The objective of the mapping model in ESPAM is to capture the relation
between the PPN processes in an application and the processing components in
an MPSoC instance on the one hand and the relation between FIFO channels and
communication memories on the other. The mapping model in ESPAM contains
important information which enables the generation of the memory map of the
system in an automated way – see Sect. 30.6.4.

30.6.3.2 System Synthesis
The system synthesis step is comprised of several sub-steps. These are platform
and mapping model elaboration, process network (PN) synthesis, and platform
instance refinement sub-steps. As a result of the platform elaboration, ESPAM

creates a detailed parameterized model of a platform instance – see an example
of such elaborated platform instance in Fig. 30.5b. The details in this model come
from additional components added by ESPAM in order to construct a complete
system. In addition, based on the type of the processors instantiated in the first
step, the tool automatically synthesizes, instantiates, and connects all necessary
communication controllers (CC s) and communication memories (CM s). After
the elaboration, a refinement (optimization) step is applied by ESPAM in order to
improve resource utilization and efficiency. The refinement step includes program
and data memory refinement and compaction in case of processing components
with RISC architecture, memory partitioning, and building the communication
topology in case of point-to-point MPSoCs. As explained at the end of Sect. 30.2,
the mapping specification generated by SESAME contains the relation between
PPN processes and processing components only. The mapping of FIFO channels
to memories is not given explicitly in the mapping specification. Therefore, ESPAM

derives automatically the mapping of FIFO channels to communication memories.
This is done in the mapping elaboration step, in which the mapping model is
analyzed and augmented with the mapping of FIFO channels to communication
memories following the mapping rule described in Sect. 30.2. The PN synthesis is a
translation of the approximated dependence graph (ADG) model and the schedule
tree (STree) model into a (parameterized) process network model. This model is
used for automated SW synthesis and SW code generation discussed in Sect. 30.6.4.

30.6.3.3 System Generation
This final step consists of a setting parameters sub-step which completely deter-
mines a platform instance and a code generation sub-step which generates hardware
and software descriptions of an MPSoC. In ESPAM, a software engineering tech-
nique called Visitor [17] is used to visit the PN and platform model structures and
to generate code. For example, ESPAM generates VHDL code for the HW part, i.e.,
the HW components present in the platform model by instantiating components’
templates written in VHDL which are part of the library of IP components. Also,
ESPAM generates C/CCC code for the SW part captured in the PN model. The
automated SW code generation is discussed in Sect. 30.6.4. The HW description
generated by ESPAM consists of two parts: (1) Platform topology. This is a netlist

1006 T. Stefanov et al.

description defining the MPSoC topology that corresponds to the platform instance
synthesized by ESPAM. This description contains the components of the platform
instance with the appropriate values of their parameters and the connections
between the components in the form compliant with the input requirements of the
commercial tool used for low-level synthesis. (2) Hardware descriptions of the
MPSoC components. To every component in the platform instance corresponds
a detailed description at RTL. Some of the descriptions are predefined (e.g.,
processors, memories, etc.), and ESPAM selects them from the library of components
and sets their parameters in the platform netlist. However, some descriptions are
generated by ESPAM, e.g., an IP Module used for integrating a third-party IP core
as a processing component in an MPSoC (discussed in Sect. 30.6.5).

30.6.4 Automated System-Level SW Synthesis and Code Generation

In this section, we present in detail our approach for systematic and automated
programming of MPSoCs synthesized with ESPAM. For the sake of clarity, we
explain the main steps in the ESPAM programming approach by going through
an illustrative example considering the input platform, application, and mapping
specifications described in Sect. 30.6.1. For these example specifications, we show
how the SW code for each processor in an MPSoC platform is generated and present
our SW synchronization and communication primitives inserted in the code. Finally,
we explain how the memory map of the MPSoC is generated.

30.6.4.1 SW Code Generation for Processors
ESPAM uses the initial sequential application program, the corresponding PPN
application specification, and the mapping specification to generate automatically
software (C/CCC) code for each processor in the platform specification. The code
for a processor contains control code and computat ion code. The computat ion
code transforms the data that has to be processed by a processor, and it is grouped
into function calls in the initial sequential program. ESPAM extracts this code
directly from the sequential program. The control code (for loops, if statements,
etc.) determines the control flow, i.e., when and how many times data reading and
data writing have to be performed by a processor as well as when and how many
times the computat ion code has to be executed in a processor. The control code
of a processor is generated by ESPAM according to the PPN application specification
and the mapping specification as we explain below.

According to the mapping specification in Fig. 30.6b, process P1 is mapped onto
processor uP4 (see lines 16–18). Therefore, ESPAM uses the XML specification of
process P1 shown in Fig. 30.6a to generate the control C code for processor uP4.
The code is depicted in Fig. 30.8a. At lines 4–7, the type of the data transferred
through the FIFO channels is declared. The data type can be a scalar or more
complex type. In this example, it is a structure of 1 Boolean variable and a 64-
element array of integers, a data type found in the initial sequential program.
There is one parameter (N) that has to be declared as well. This is done at line 8

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 1007

12

14
13

#include "primitives.h"1
#include "memoryMap.h"2

3
4 struct myType {
5 bool flag;

int data[64];6
7 };

10 void main() {
11

15
16
17
18
19

myType in_0;
myType out_0;

for (int k=2; k<=2*N−1; k++)
read(p2, &in_0, sizeof(myType));
compute(in_0, &out_0);
write(p1, &out_0, sizeof(myType));

}
}

{

int N = 384;
9
8

}
port = (byte data)[i]; // write to a FIFO
while (*isFull)
// writing is blocked if a FIFO is full

for
*isFull = port + 1;int

void13
14
15
16
17
18
19
20 }

{ }

write(int* port, void* data, int length) {
12

1 void read(int* port, void* data, int length)

a b

9 }

11 }
10 *req_&_rd = 0x7FFFFFFF&(inPort);

8
while (*isEmpty) { }
// reading is blocked if a FIFO is empty

7
6

for

int2
3 int *isEmpty = req_&_rd + 1;
4 *req_&_rd = 0x80000000 | (port); // Write a request

5

{

{

{

*req_&_rd = 0xE0000000; // Address in a CC

(byte* data)[i] = *req_&_rd; // read from a FIFO

(int i=0; i<length; i++)

(int i=0; i<length; i++)

Fig. 30.8 Source code generated by ESPAM. (a) Control code for processor uP4. (b) Read and
write communication primitives

in Fig. 30.8a. Then, at lines 10–19 in the same figure, the behavior of processor
uP4 is described. In accordance with the XML specification of process P1 in
Fig. 30.6a, the function compute is executed 2�N 	 2 times. Therefore, a for loop
is generated in themain routine for processor uP4 in lines 14-18 in Fig. 30.8a. The
computat ion code in function compute is extracted from the initial sequential
program. This code is not important for our example; hence, it is not given here for
the sake of brevity. The function compute uses local variables in_0 and out_0
declared in lines 11 and 12 in Fig. 30.8a. The input data comes from FIFO2

through port p2, and the results are written to FIFO1 through port p1 – see
Fig. 30.9a. Therefore, before the function call, ESPAM inserts a read primitive to
read from FIFO2 initializing variable in_0 and after the function call, ESPAM

inserts a write primitive to send the results (the value of variable out_0) to FIFO1
as shown in Fig. 30.8a at lines 15 and 17. When several processes are mapped
onto one processor, a schedule is required in order to guarantee a proper execution
order of these processes onto one processor. The ESPAM tool automatically finds a
local static schedule from the STree model (see Sect. 30.6.3) based on the grouping
technique for processes presented in [48].

30.6.4.2 SW Communication and Synchronization Primitives
Recall from Sect. 30.6.2 that the FIFO channels are mapped onto the communication
memories of an MPSoC platform instances and the multi-FIFO organization of a
communication memory is realized by the corresponding communication controller
(CC). A FIFO channel is seen by a processor as two memory locations in its
communication memory address space. A processor uses the first location to read
the status of the FIFO. The status indicates whether a FIFO is full (data cannot
be written) or empty (data is not available). This information is used for the

1008 T. Stefanov et al.

inter-processor synchronization. The second location is used to read/write data
from/to the FIFO buffer, thereby, realizing inter-processor data transfer.

The described behavior is realized by the SW communication and synchro-
nization primitives interacting with the HW communication controllers. The code
implementing the read and write primitives used in lines 15 and 17 in Fig. 30.8a
is shown in Fig. 30.8b. Both read and write primitives have three parameters:
port , data, and length. Parameter port is the address of the memory location
through which a processor can access a given FIFO channel for reading/writing.
Parameter data is a pointer to a local variable and length specifies the amount of
data (in bytes) to be moved from/to the local variable to/from the FIFO channel.
The primitives implement the blocking synchronization mechanism between the
processors in the following way. First, the status of a channel that has to be
read/written is checked. A channel status is accessed using the locations defined
in lines 3 and 14. The blocking is implemented by while loops with empty bodies
(busy-polling mechanism) in lines 7 and 17. A loop iterates (does nothing) while
a channel is full or empty. Then, in lines 8 and 18 the actual data transfer is
performed. Note that the busy-polling mechanism, described above, to implement
the blocking is sufficient because PPN processes mapped onto a processor are
statically scheduled, and the busy-polling mechanism exactly follows/implements
the blocking semantics of a PPN process, discussed in the second paragraph of
Sect. 30.3, thereby guaranteeing deterministic execution of the PPN.

30.6.4.3 Memory Map Generation
Each FIFO channel in an MPSoCs has separate read and write ports. A processor
accesses a FIFO for read operations using the read synchronization primitive.
The parameter port specifies the address of the read port of the FIFO channel
to be accessed. In the same way, the processor writes to a FIFO using the write
synchronization primitive where the parameter port specifies the address of the
write port of this FIFO. The FIFO channels are implemented in the communication
memories (CMs); therefore, the addresses of the FIFO ports are located in the
processors’ address space where the communication memory segment is defined.
The memory map of an MPSoC generated by ESPAM contains the values defining
the read and the write addresses of each FIFO channel in the system.

The first step in the memory map generation is the mapping of the FIFO
channels in the PPN application specification onto the communication memories
(CMs) in the multiprocessor platform. This mapping cannot be arbitrary and should
obey the mapping rule described at the end of Sect. 30.2. That is, ESPAM maps
FIFO channels onto CMs of processors in the following automated way. First,
for each process in the application specification ESPAM finds all the channels
this process writes to. Then, from the mapping specification ESPAM finds which
processor corresponds to the current process and maps the found channels in the
processor’s local CM. For example, consider the mapping specification shown in
Fig. 30.6b which defines only the mapping of the processes of the PPN in Fig. 30.9a
to the processors in the platform shown in Fig. 30.9b. Based on this mapping
specification, ESPAM maps automatically FIFO2, FIFO3, and FIFO5 onto the

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 1009

p8p7

FIFO2

FIFO7

F
IF

O
3

FIFO1

FIFO5

FIF
O6

P2 P4

P5

p3

p1

p6

p4 p9

p13p2

p12FIFO4P1

p5

p14

p10
p11

P3

a

b

MC2 MC4

MEM3

MEM4

MEM1

MC1 MC31

2

3

4

MEM2

uP1

uP2

uP3

uP4

CC4

CC3

FIFO4

FIFO1

CC2

CC1

FIFO5

FIFO2

FIFO6

FIFO3

FIFO7

IN
T

E
R

C
O

N
N

E
C

T

Fig. 30.9 Mapping example. (a) Polyhedral process network. (b) Example platform

CM of processor uP1 because process P4 is mapped onto processor uP1 and
process P4 writes to channels FIFO2, FIFO3, and FIFO5. Similarly, FIFO4
is mapped onto the CM of processor uP3, and FIFO1 is mapped onto the CM
of uP4. Since both processes P2 and P5 are mapped onto processor uP2, ESPAM

maps FIFO6 and FIFO7 onto the CM of this processor.
After the mapping of the channels onto the CMs, ESPAM generates the memory

map of the MPSoC, i.e., generates values for the FIFOs’ read and write addresses.
For the mapping example illustrated in Fig. 30.9b, the generated memory map
is shown in Fig. 30.10. Notice that FIFO1, FIFO2, FIFO4, and FIFO6

have equal write addresses (see lines 4, 6, 10, and 14). This is not a problem
because writing to these FIFOs is done by different processors, and these FIFOs
are located in the local CMs of these different processors, i.e., these addresses
are local processor write addresses. The same applies for the write addresses of
FIFO3 and FIFO7. However, all processors can read from all FIFOs via a
communication component. Therefore, the read addresses have to be unique in the

1010 T. Stefanov et al.

#define

#ifndef

#define p1 0xe0000008 //write addr. FIFO1
p4 0x00040001 //read addr. FIFO1#define

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

p7 0xe0000008 //write addr. FIFO2
p2 0x00010001 //read addr. FIFO2
p8 0xe0000010 //write addr. FIFO3
p6 0x00010002 //read addr. FIFO3
p9 0xe0000008 //write addr. FIFO4
p12 0x00030001 //read addr. FIFO4
p10 0xe0000018 //write addr. FIFO5
p13 0x00010003 //read addr. FIFO5
p14 0xe0000008 //write addr. FIFO6
p11 0x00020001 //read addr. FIFO6
p3 0xe0000010 //write addr. FIFO7
p5 0x00020002 //read addr. FIFO7

5
6
7
8

10
9

4
3

_MEMORYMAP_H_
2
1

_MEMORYMAP_H_#define

11
12
13
14
15 #define
16
17

19 #endif
18

Fig. 30.10 The memory map of the MPSoC platform instance generated by ESPAM

MPSoC memory map and the read addresses have to specify precisely the CM in
which a FIFO is located. To accomplish this, a read address of a FIFO has two fields:
a communication memory (CM) number and a FIFO number within a CM.

Consider, for example, FIFO3 in Fig. 30.9b. It is the second FIFO in the CM of
processor uP1; thus this FIFO is numbered with 0002 in this CM. Also, the CM of
uP1 can be accessed for reading through port 1 of the communication component
INTERCONNECT as shown in Fig. 30.9b; thus this CM is uniquely numbered with
0001. As a consequence, the unique read address of FIFO3 is determined to be
0x00010002 – see line 9 in Fig. 30.10, where the first field 0001 is the CM number
and the second field 0002 is the FIFO number in this CM. In the same way, ESPAM

determines automatically the unique read addresses of the rest of the FIFOs that are
listed in Fig. 30.10.

30.6.5 Dedicated IP Core Integration with ESPAM

In Sects. 30.6.3 and 30.6.4 we presented our approach to system-level HW/SW
synthesis and code generation for MPSoCs that contain only programmable (ISA)
processing components. Based on that, in this section, we present an overview of
our approach to augment these MPSoCs with non-programmable dedicated IP cores
in a systematic and automated way. Such an approach is needed because, in some
cases, an MPSoC that contains only programmable processors may not meet the
performance requirements of an application. For better performance and efficiency,
in a multiprocessor system, some application tasks may have to be executed by

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 1011

dedicated (customized and optimized) IP cores. Moreover, many companies already
provide dedicated customizable IP cores optimized for a particular functionality that
aim at saving design time and increasing overall system performance and efficiency.
Therefore, we have developed techniques, implemented in ESPAM, for automated
generation of an IP Module which is a wrapper around a dedicated and predefined IP
core. The generated IP Module allows ESPAM to integrate an IP core into an MPSoC
in an automated way. The generation of IP Modules is based on the properties of the
PPN application model we use in DAEDALUS. Below, we present the basic idea in
our IP integration approach. It is followed by a discussion on the type of the IPs
supported by ESPAM and the interfaces these IPs have to provide in order to allow
automated integration. More details about our integration approach can be found
in [36].

30.6.5.1 IP Module: Basic Idea and Structure
As we explained earlier, in the multiprocessor platforms we consider, the proces-
sors execute code implementing PPN processes and communicate data between
each other through FIFO channels mapped onto communication memories. Using
communication controllers, the processors can be connected via a communication
component. We follow a similar approach to connect an IP Module to other IP
Modules or programmable processors in an MPSoCs. We illustrate our approach
with the example depicted in Fig. 30.11. We map the PPN in Fig. 30.2a onto the
heterogeneous platform shown in Fig. 30.11a. Assume that process P1 is executed
by processor uP1, P3 is executed by uP2, and the functionality of process P2 is
implemented as a dedicated (predefined) IP core embedded in an IP Module. Based
on this mapping and the PPN topology, ESPAM automatically maps FIFO channels
to communication memories (CMs) following the rule that a processing component

CM1

CM2

uP1

uP2

FIFO

FIFO

CCCC2

CC1

IN
T

E
R

C
O

N
N

E
C

T

IP1

IP2

CH3

CH2

HW Module

CH4

CH1

OP2

OP1

Heterogeneous MPSoC

ca

b

CONTROL

READ WRITE
IP1

IP2 OP2

OP1

(IP core)
EXECUTE

COUNTERSCOUNTERS

EVALUATION

LOGIC READ

M
U

X

OP2IP2

IP1

D
eM

U
X

DoneN,M
CONTROL

EXECUTE

OP1

WRITEREAD

IP CORE

EVALUATION
LOGIC WRITE

Fig. 30.11 Example of heterogeneous MPSoC generated by ESPAM. (a) Heterogeneous MPSoC.
(b) Top-level view of the IP module. (c) IP module structure

1012 T. Stefanov et al.

only writes to its local CM. For example, process P1 is mapped onto processing
component uP1 and P1 writes to FIFO channel CH1. Therefore, CH1 is mapped
onto the local CM of uP1 – see Fig. 30.11a. In order to connect a dedicated IP core
to other processing components, ESPAM generates an IP Module (IPM) that contains
the IP core and a wrapper around it. Such an IPM is then connected to the system
using communication controllers (CCs) and communication memories (CMs), i.e.,
an IPM writes directly to its own local FIFOs and uses CCs (one CC for every input
of an IP core) to read data from FIFOs located in CMs of other processors. The IPM
that realizes process P2 is shown in Fig. 30.11b.

As explained in Sect. 30.3, the processes in a PPN have always the same
structure. It reflects the PPN operational semantics, i.e, read-execute-write using
blocking read/write synchronization mechanism. Therefore, an IP Module realizing
a process of a PPN has the same structure, shown in Fig. 30.11b, consisting of
READ, EXECUTE, and WRITE components. A CONTROL component is added to
capture the process behavior, e.g., the number of process firings, and to synchronize
the operation of components READ, EXECUTE, and WRITE. The EXECUTE
component of an IPM is actually the dedicated IP core to be integrated. It is not
generated by ESPAM but it is taken from a library. The other components READ,
WRITE, and CONTROL constitute the wrapper around the IP core. The wrapper is
generated fully automatically by ESPAM based on the specification of a process to be
implemented by the given IPM. Each of the components in an IPM has a particular
structure which we illustrate with the example in Fig. 30.11c. Figure 30.2c shows
the specification of process P2 in the PPN of Fig. 30.2a if P2 would be executed on
a programmable processor. We use this code to show the relation with the structure
of each component in the IP Modules generated by ESPAM, shown in Fig. 30.11c,
when P2 is realized by an IP Module.

In Fig. 30.2c, the read part of the code is responsible for getting data from proper
FIFO channels at each firing of process P2. This is done by the code lines 5–8
which behave like a multiplexer, i.e., the internal variable in_0 is initialized with
data taken either from port IP1 or IP2. Therefore, the read part of P2 corresponds
to the multiplexer MUX in the READ component of the IP Module in Fig. 30.11c.
Selecting the proper channel at each firing is determined by the if conditions at lines
5 and 7. These conditions are realized by the EVALUATION LOGIC READ sub-
component in component READ. The output of this sub-component controls the
MUX sub-component. To evaluate the if conditions at each firing, the iterators of
the for loops at lines 3 and 4 are used. Therefore, these for loops are implemented
by counters in the IP Module – see the COUNTERS sub-component in Fig. 30.11c.

The write part in Fig. 30.2c is similar to the read part. The only difference is
that the write part is responsible for writing the result to proper channels at each
firing of P2. This is done in code lines 10–13. This behavior is implemented by the
demultiplexer DeMUX sub-component in the WRITE component in Fig. 30.11c.
DeMUX is controlled by the EVALUATION LOGIC WRITE sub-component which
implements the if conditions at lines 10 and 12. Again, to implement the for loops,
ESPAM uses a COUNTERS sub-component. Although, the counters correspond to
the control part of process P2, ESPAM implements them in both the READ and

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 1013

WRITE blocks, i.e., it duplicates the for-loops implementation in the IP Module.
This allows the operation of components READ, EXECUTE, and WRITE to
overlap, i.e., they can operate in pipeline which leads to better performance of the
IP Module.

The execute part in Fig. 30.2c represents the main computation in P2 encapsu-
lated in the function call at code line 9. The behavior inside the function call is
realized by the dedicated IP core depicted in Fig. 30.11c. As explained above, this
IP core is not generated by ESPAM but it is taken from a library of predefined
IP cores provided by a designer. An IP core can be created by hand or it can be
generated automatically from C descriptions using high-level synthesis tools like,
e.g., Xilinx Vivado [58]. In the IP Module, the output of sub-component MUX is
connected to the input of the IP core, and the output of the IP core is connected
to the input of sub-component DeMUX. In the example, the IP core has one input
and one output. In general, the number of inputs/outputs can be arbitrary. Therefore,
every IP core input is connected to one MUX and every IP core output is connected
to one DeMUX.

Notice that the loop bounds at lines 3–4 in Fig. 30.2c are parameterized. The
CONTROL component in Fig. 30.11c allows the parameter values to be set/modi-
fied from outside the IP Module at run time or to be fixed at design time. Another
function of component CONTROL is to synchronize the operation of the IP Module
components and to make them to work in pipeline. Also, CONTROL implements
the blocking read/write synchronization mechanism. Finally, it generates the status
of the IP Module, i.e., signal Done indicates that the IP Module has finished an
execution.

30.6.5.2 IP Core Types and Interfaces
In this section we describe the type of the IP cores that fit in our IP Module idea and
structure discussed above. Also, we define the minimum data and control interfaces
these IP cores have to provide in order to allow automated integration in MPSoC
platforms generated by ESPAM.

1. In the IP Module, an IP core implements the main computation of a PPN
process which in the initial sequential application specification is represented
by a function call. Therefore, an IP core has to behave like a function call as
well. This means that for each input data, read by the IP Module, the IP core is
executed and produces output data after an arbitrary delay;

2. In order to guarantee seamless integration within the data-flow of our heteroge-
neous systems, an IP core must have unidirectional data interfaces at the input
and the output that do not require random access to read and write data from/to
memory. Good examples of such IP cores are the multimedia cores at http://www.
cast-inc.com/cores/;

3. To synchronize an IP core with the other components in the IP Module, the IP
core has to provide Enable/Valid control interface signals. The Enable
signal is a control input to the IP core and is driven by the CONTROL component
in the IP Module to enable the operation of the IP core when input data is read

http://www.cast-inc.com/cores/
http://www.cast-inc.com/cores/

1014 T. Stefanov et al.

from input FIFO channels. If input data is not available, or there is no room to
store the output of the IP core to output FIFO channels, then Enable is used to
suspend the operation of the IP core. The Valid signal is a control output signal
from the IP and is monitored by component CONTROL in order to ensure that
only valid data is written to output FIFO channels connected to the IP Module.

30.7 Summary of Experiments and Results

As a proof of concept, the DAEDALUS methodology/framework and its individual
tools (PNGEN, SESAME, and ESPAM) have been tested and evaluated in experi-
ments and case studies considering several streaming applications with different
complexity ranging from image processing kernels, e.g., Sobel filter and discrete
wavelet transform (DWT), to complete applications, e.g., Motion-JPEG encoder
(MJPEG), JPEG2000 codec, JPEG encoder, H.264 decoder, and medical image
registration (MIR). For the description of these experiments, case studies, and the
obtained results, we refer the reader to the following publications: [36,37] for Sobel
and DWT, [34, 36, 37, 51] for MJPEG, [1] for JPEG2000, [38] for JPEG, [46]
for H.264, and [13] for MIR. In this section, we summarize very briefly the
JPEG encoder case study [38] in order to highlight the improvements, in terms of
performance and design productivity, that can be achieved by using DAEDALUS

on an industry-relevant application. This case study, which we conducted in a
project together with an industrial partner, involves the design of a JPEG-based
image compression MPSoC for very high-resolution (in the order of gigapixels)
cameras targeting medical appliances. In this project, the DAEDALUS framework
was used for design space exploration (DSE) and MPSoC implementation, both at
the level of simulations and real MPSoC prototypes, in order to rapidly gain detailed
insight on the system performance. Our experience showed that all conducted
DSE experiments and the real implementation of 25 MPSoCs (13 of them were
heterogeneous MPSoCs) on an FPGA were performed in a short amount of time,
5 days in total, due to the highly automated DAEDALUS design flow. Around 70%
of this time was taken by the low-level commercial synthesis and place-and-route
FPGA tools. The obtained implementation results showed that the DAEDALUS high-
level MPSoC models were capable of accurately predicting the overall system
performance, i.e., the performance error was around 5%. By exploiting the data-
and task-level parallelism in the JPEG application, DAEDALUS was able to deliver
scalable MPSoC solutions in terms of performance and resource utilization. We
were able to achieve a performance speedup of up to 20x compared to a single
processor system. For example, a performance speedup of 19.7x was achieved
on a heterogeneous MPSoC which utilizes 24 parallel cores, i.e., 16 MicroBlaze
programmable processor cores and 8 dedicated hardware IP cores. The dedicated
hardware IP cores implement the Discrete Cosine Transform (DCT) within the
JPEG application. The MPSoC system performance was limited by the available
on-chip FPGA memory resources and the available dedicated hardware IP cores in
the DAEDALUS RTL library (we had only the dedicated DCT IP core available).

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 1015

30.8 Conclusions

In this chapter, we have presented our system design methods and techniques that
are implemented and integrated in the DAEDALUS design/tool flow for automated
system-level synthesis, implementation, and programming of streaming multipro-
cessor embedded systems on chips. DAEDALUS features automated application
parallelization (the PNGEN tool), automated system-level DSE (the SESAME tool),
and automated system-level HW/SW synthesis and code generation (the ESPAM

tool). This automation significantly reduces the design time starting from a func-
tional specification and going down to complete MPSoC implementation. Many
experiments and case studies have been conducted using DAEDALUS, and we could
conclude that DAEDALUS helps an MPSoC designer to reduce the design and
programming time from several months to only a few days as well as to obtain
high quality MPSoCs in terms of performance and resource utilization.

In addition to the well-established methods and techniques, presented in this
chapter, DAEDALUS has been extended with new advanced techniques and tools
for designing hard-real-time embedded streaming MPSoCs. This extended version
of DAEDALUS is called DAEDALUSRT [2–5,28,47]. Its extra features are (1) support
for multiple applications running simultaneously on an MPSoC; (2) very fast, yet
accurate, schedulability analysis to determine the minimum number of processors
needed to schedule the applications; and (3) usage of hard-real-time multiprocessor
scheduling algorithms providing temporal isolation to schedule the applications.

References

1. Azkarate-askasua M, Stefanov T (2008) JPEG2000 image compression in multi-processor
system-on-chip. Tech. rep., CE-TR-2008-05, Delft University of Technology, The Netherlands

2. Bamakhrama M, Stefanov T (2011) Hard-real-time scheduling of data-dependent tasks in
embedded streaming applications. In: Proceedings of the EMSOFT 2011, pp 195–204

3. Bamakhrama M, Stefanov T (2012) Managing latency in embedded streaming applications
under hard-real-time scheduling. In: Proceedings of the CODES+ISSS 2012, pp 83–92

4. Bamakhrama M, Stefanov T (2013) On the hard-real-time scheduling of embedded streaming
applications. Des Autom Embed Syst 17(2):221–249

5. Bamakhrama M, Zhai J, Nikolov H, Stefanov T (2012) A methodology for automated design of
hard-real-time embedded streaming systems. In: Proceedings of the DATE 2012, pp 941–946

6. Cai L, Gajski D (2003) Transaction level modeling: an overview. In: Proceedings of the
CODES+ISSS 2003, pp 19–24

7. Clauss P, Fernandez F, Garbervetsky D, Verdoolaege S (2009) Symbolic polynomial maxi-
mization over convex sets and its application to memory requirement estimation. IEEE Trans
VLSI Syst 17(8):983–996

8. Coffland JE, Pimentel AD (2003) A software framework for efficient system-level performance
evaluation of embedded systems. In: Proceedings of the SAC 2003, pp 666–671

9. Erbas C, Cerav-Erbas S, Pimentel AD (2006) Multiobjective optimization and evolutionary
algorithms for the application mapping problem in multiprocessor system-on-chip design.
IEEE Trans Evol Comput 10(3):358–374

10. Erbas C, Pimentel AD (2003) Utilizing synthesis methods in accurate system-level exploration
of heterogeneous embedded systems. In: Proceedings of the SiPS 2003, pp 310–315

1016 T. Stefanov et al.

11. Erbas C, Pimentel AD, Thompson M, Polstra S (2007) A framework for system-level modeling
and simulation of embedded systems architectures. EURASIP J Embed Syst 2007(1):1–11

12. Erbas C, Polstra S, Pimentel AD (2003) IDF models for trace transformations: a case study in
computational refinement. In: Proceedings of the SAMOS 2003, pp 178–187

13. Farago T, Nikolov H, Klein S, Reiber J, Staring M (2010) Semi-automatic parallelisation for
iterative image registration with B-splines. In: International workshop on high-performance
medical image computing for image-assisted clinical intervention and decision-making
(HP-MICCAI’10)

14. Feautrier P (1988) Parametric integer programming. Oper Res 22(3):243-268
15. Feautrier P (1991) Dataflow analysis of scalar and array references. Int J Parallel Program

20(1):23–53
16. Feautrier P (1996) Automatic parallelization in the polytope model. In: Perrin GR, Darte A

(eds) The data parallel programming model. Lecture notes in computer science, vol 1132.
Springer, Berlin/Heidelberg, pp 79–103

17. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software. Addison-Wesley, Boston

18. Gerstlauer A, Haubelt C, Pimentel A, Stefanov T, Gajski D, Teich J (2009) Electronic
System-level synthesis methodologies. IEEE Trans Comput-Aided Des Integr Circuits Syst
28(10):1517–1530

19. Grötker T, Liao S, Martin G, Swan S (2002) System design with SystemC. Kluwer Academic,
Dordrecht

20. Kahn G (1974) The semantics of a simple language for parallel programming. In: Proceedings
of the IFIP Congress 74. North-Holland Publishing Co.

21. Keutzer K, Newton A, Rabaey J, Sangiovanni-Vincentelli A (2000) System-level design:
orthogonalization of concerns and platform-based design. IEEE Trans Comput-Aided Des
Integr Circuits Syst 19(12):1523–1543

22. Kienhuis B, Deprettere EF, van der Wolf P, Vissers KA (2002) A methodology to design
programmable embedded systems: the Y-chart approach. In: Embedded processor design
challenges, LNCS, vol 2268. Springer, pp 18–37

23. Kienhuis B, Rijpkema E, Deprettere E (2000) Compaan: deriving process networks from
Matlab for embedded signal processing architectures. In: Proceedings of the CODES 2000,
pp 13–17

24. Lee E, Sangiovanni-Vincentelli A (1998) A framework for comparing models of computation.
IEEE Trans Comput-Aided Des Integr Circuits Syst 17(12):1217–1229

25. Leiden University: The ESPAM tool. http://daedalus.liacs.nl/espam/
26. Leiden University: The PNgen tool. http://daedalus.liacs.nl/pngen/
27. Leiden University and University of Amsterdam: The DAEDALUS System-level Design

Framework. http://daedalus.liacs.nl/
28. Liu D, Spasic J, Zhai J, Stefanov T, Chen G (2014) Resource optimization for CSDF-modeled

streaming applications with latency constraints. In: Proceedings of the DATE 2014, pp 1–6
29. Martin G (2006) Overview of the MPSoC design challenge. In: Proceedings of the design

automation conference (DAC’06), pp 274–279
30. Meijer S, Nikolov H, Stefanov T (2010) Combining process splitting and merging transforma-

tions for polyhedral process networks. In: Proceedings of the ESTIMedia 2010, pp 97–106
31. Meijer S, Nikolov H, Stefanov T (2010) Throughput modeling to evaluate process merg-

ing transformations in polyhedral process networks. In: Proceedings of the DATE 2010,
pp 747–752

32. Mihal A, Keutzer K (2003) Mapping concurrent applications onto architectural platforms.
In: Jantsch A, Tenhunen H (eds) Networks on chip. Kluwer Academic Publishers, Boston,
pp 39–59

33. Muller HL (1993) Simulating computer architectures. Ph.D. thesis, Department of Computer
Science, University of Amsterdam

34. Nikolov H, Stefanov T, Deprettere E (2006) Multi-processor system design with ESPAM. In:
Proceedings of the CODES+ISSS 2006, pp 211–216

http://daedalus.liacs.nl/espam/
http://daedalus.liacs.nl/pngen/
http://daedalus.liacs.nl/

30 DAEDALUS: System-level Design Methodology for Streaming MPSoCs 1017

35. Nikolov H, Stefanov T, Deprettere E (2007) Efficient external memory interface for
multi-processor platforms realized on FPGA chips. In: Proceedings of the FPL 2007,
pp 580–584

36. Nikolov H, Stefanov T, Deprettere E (2008) Automated integration of dedicated hardwired IP
cores in heterogeneous MPSoCs designed with ESPAM. EURASIP J Embed Syst 2008(Article
ID 726096)

37. Nikolov H, Stefanov T, Deprettere E (2008) Systematic and automated multiprocessor system
design, programming, and implementation. IEEE Trans Comput-Aided Des Integr Circuits
Syst 27(3):542–555

38. Nikolov H, Thompson M, Stefanov T, Pimentel A, Polstra S, Bose R, Zissulescu C, Deprettere
E (2008) Daedalus: toward composable multimedia MP-SoC design. In: Proceedings of the
design automation conference (DAC’08), pp 574–579

39. Pimentel A, Erbas C, Polstra S (2006) A systematic approach to exploring embedded system
architectures at multiple abstraction levels. IEEE Trans Comput 55(2):99–112

40. Pimentel A, Stefanov T, Nikolov H, Thompson M, Polstra S, Deprettere E (2008) Tool
integration and interoperability challenges of a system-level design flow: a case study.
In: Embedded computer systems: architectures, modeling, and simulation. Lecture notes in
computer science, vol 5114. Springer, Berlin/Heidelberg, pp 167–176

41. Pimentel AD, Erbas C (2003) An IDF-based trace transformation method for communication
refinement. In: Proceedings of the DAC 2003, pp 402–407

42. Pimentel AD, Polstra S, Terpstra F, van Halderen AW, Coffland JE, Hertzberger LO (2002)
Towards efficient design space exploration of heterogeneous embedded media systems. In:
Embedded processor design challenges, LNCS, vol 2268. Springer, pp 57–73

43. Pimentel AD, Thompson M, Polstra S, Erbas C (2006) On the calibration of abstract perfor-
mance models for system-level design space exploration. In: Proceedings of the SAMOS’06,
pp 71–77

44. Piscitelli R, Pimentel AD (2011) A high-level power model for MPSoC on FPGA. In:
Proceedings of the IPDPS – IEEE RAW workshop 2011, pp 128–135

45. Piscitelli R, Pimentel AD (2012) A signature-based power model for MPSoC on FPGA. VLSI
Design 2012:1–13

46. Rao A, Nandy SK, Nikolov H, Deprettere EF (2011) USHA: unified software and hardware
architecture for video decoding. In: Proceedings of the SASP 2011, pp 30–37

47. Spasic J, Liu D, Cannella E, Stefanov T (2015) Improved hard real-time scheduling of CSDF-
modeled streaming applications. In: Proceedings of the CODES+ISSS 2015, pp 65–74

48. Stefanov T, Deprettere E (2003) Deriving process networks from weakly dynamic applications
in system-level design. In: Proceedings of the CODES+ISSS 2003, pp 90–96

49. Stefanov T, Kienhuis B, Deprettere E (2002) Algorithmic transformation techniques for
efficient exploration of alternative application instances. In: Proceedings of the CODES 2002,
pp 7–12

50. van Stralen P, Pimentel AD (2012) A SAFE approach towards early design space explo-
ration of fault-tolerant multimedia MPSoCs. In: Proceedings of the CODES+ISSS 2012,
pp 393–402

51. Thompson M, Nikolov H, Stefanov T, Pimentel A, Erbas C, Polstra S, Deprettere E (2007)
A framework for rapid system-level exploration, synthesis, and programming of multimedia
MP-SoCs. In: Proceedings of the CODES+ISSS 2007, pp 9–14

52. Turjan A, Kienhuis B, Deprettere E (2004) Translating affine nested-loop programs to process
networks. In: Proceedings of the CASES 2004, pp 220–229

53. University of Amsterdam: The SESAME tool. https://csa.science.uva.nl/download/
54. Verdoolaege S (2010) Polyhedral process networks. In: Handbook of signal processing

systems. Springer US, pp 931–965
55. Verdoolaege S, Bruynooghe M, Janssens G, Catthoor F (2003) Multi-dimensional incremental

loop fusion for data locality. In: Proceedings of the ASAP 2003, pp 17–27
56. Verdoolaege S, Nikolov H, Stefanov T (2007) pn: a tool for improved derivation of process

networks. EURASIP J Embed Syst 2007(1):1–13

https://csa.science.uva.nl/download/

1018 T. Stefanov et al.

57. Verdoolaege S, Seghir R, Beyls K, Loechner V, Bruynooghe M (2004) Analytical computation
of ehrhart polynomials: enabling more compiler analyses and optimizations. In: Proceedings
of the CASES 2004, pp 248–258

58. Xilinx, Inc. Vivado high-level synthesis from Vivado design suite. http://www.xilinx.com/
products/design-tools/vivado.html

59. Zhai J, Nikolov H, Stefanov T (2013) Mapping of streaming applications considering
alternative application specifications. ACM Trans Embed Comput Syst 12(1s):34:1–34:21

http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado.html

31SCE: System-on-Chip Environment

Gunar Schirner, Andreas Gerstlauer, and Rainer Dömer

Abstract

The constantly growing complexity of embedded systems is a challenge that
drives the development of novel design automation techniques. System-level
design can address these complexity challenges by raising the level of abstrac-
tion to jointly consider hardware and software as well as by integrating the
design processes for heterogeneous system components. In this chapter, we
present a comprehensive system-level design framework, the System-on-Chip
Environment (SCE), which is based on the influential SpecC language and
methodology. SCE implements a top-down digital system design flow based
on a specify-explore-refine paradigm with support for heterogeneous target
platforms consisting of custom hardware components, embedded software pro-
cessors, and complex communication bus architectures. Starting from an abstract
specification of the desired system, models at various levels of abstraction
are automatically generated through successive stepwise refinement, ultimately
resulting in a final pin- and cycle-accurate system implementation. The seamless
integration of automatic model generation, estimation, and validation tools
enables rapid Design Space Exploration (DSE) and efficient implementation of

G. Schirner (�)
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
e-mail: schirner@ece.neu.edu

A. Gerstlauer
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin,
TX, USA
e-mail: gerstl@ece.utexas.edu

R. Dömer
Center for Embedded and Cyber-Physical Systems, Department of Electrical Engineering and
Computer Science, The Henry Samueli School of Engineering, University of California, Irvine,
CA, USA
e-mail: doemer@uci.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_31

1019

mailto:schirner@ece.neu.edu
mailto:gerstl@ece.utexas.edu
mailto:doemer@uci.edu

1020 G. Schirner et al.

Multi-Processor Systems-on-Chips (MPSoCs). This article provides an overview
and highlights key aspects of the SCE framework from modeling and refinement
to hardware and software synthesis. Using a cellphone-based example, our
experimental results demonstrate the effectiveness of the SCE framework in
terms of system-level exploration, hardware, and software synthesis.

Acronyms

API Application Programming Interface
AST Abstract Syntax Tree
BFM Bus-Functional Model
BLM Block-Level Model
CE Communication Element
DB Database
DCT Discrete Cosine Transform
DSE Design Space Exploration
ESL Electronic System Level
FCFS First-Come First-Serve
FIFO First-In First-Out
FPGA Field-Programmable Gate Array
GUI Graphical User Interface
HAL Hardware Abstraction Layer
HDS Hardware-Dependent Software
HLS High-Level Synthesis
HW Hardware
IDE Integrated Development Environment
IP Intellectual Property
ISS Instruction-Set Simulator
MAC Media Access Control
MIPS Million Instructions Per Second
MoC Model of Computation
MPSoC Multi-Processor System-on-Chip
OOO PDES Out-of-Order Parallel Discrete Event Simulation
OS Operating System
PDES Parallel Discrete Event Simulation
PE Processing Element
PIC Programmable Interrupt Controller
PSM Program State Machine
RTL Register Transfer Level
RTOS Real-Time Operating System
SCE System-on-Chip Environment
SLDL System-Level Description Language
SW Software
TLM Transaction-Level Model

31 SCE: System-on-Chip Environment 1021

Contents

31.1 Introduction . 1021
31.2 Related Work . 1022
31.3 Design Flow Overview. 1023

31.3.1 SpecC Language and PSM Model of Computation . 1025
31.3.2 Target Platform Description . 1026
31.3.3 Stepwise Refinement . 1027

31.4 Model Validation . 1028
31.4.1 Simulation . 1030
31.4.2 Profiling . 1030
31.4.3 Estimation . 1031

31.5 Modeling and Refinement . 1031
31.5.1 Computation Modeling and Refinement . 1032
31.5.2 Communication Modeling and Refinement . 1035

31.6 Software Synthesis . 1037
31.6.1 Software Code Generation . 1038
31.6.2 Hardware-Dependent Software Generation . 1039
31.6.3 Software Optimization . 1040

31.7 Hardware Synthesis . 1040
31.7.1 Block-Level Synthesis . 1041
31.7.2 Protocol IP Generation . 1042
31.7.3 RTL Netlisting and Synthesis . 1042

31.8 Experimental Results . 1043
31.8.1 Software Synthesis . 1044
31.8.2 Hardware Synthesis . 1046

31.9 Conclusions . 1047
References . 1048

31.1 Introduction

Designing modern Multi-Processor Systems-on-Chips (MPSoCs) becomes increas-
ingly difficult. Challenges arise from both an increasing heterogeneity of the exe-
cution platform to meet stringent performance and power requirements, as well as
from the growing application complexity demanding to integrate more, increasingly
interrelated functions. Today’s MPSoCs are highly heterogeneous compositions
of general purpose processors, digital signal processors, graphics processors, and
custom accelerators, all connected through flexible and heterogeneous interconnect
systems. Designing and programming such platforms are a tremendous challenge
due to heterogeneity in programming paradigms, differences in exposed parallelism,
and tool suite compositions. The productivity gap between design capability and the
potential in chip complexity/capacity is increasing [15]. Traditional approaches of
manual implementation are tedious and error-prone as well as too time consuming
to meet the shortened time-to-market demands.

One key aspect to increase productivity is to raise the level of abstraction for sys-
tem design to an algorithmic level, irrespective of a later Hardware (HW)/Software
(SW) split, hiding the complexity of low-level implementation details. Moving to
the system level of abstraction reduces the complexity during development, enabling
designers to focus on important algorithmic properties and design decisions without

1022 G. Schirner et al.

being overwhelmed by the burden of low-level implementation issues. However,
raising the level of design abstraction requires tool suites that are vertically inte-
grated across all levels so as to enable a seamless codesign of software and hardware.

In this chapter, we present the System-on-Chip Environment (SCE), a vertically
integrated digital system design framework based on the SpecC language and
methodology [18]. SCE realizes a top-down refinement-based system design flow
with support of heterogeneous target platforms consisting of custom hardware
components, embedded software processors, dedicated Intellectual Property (IP)
blocks, and complex communication bus architectures.

Starting off with a high-level, abstract, formal, and sound parallel programming
model in SpecC language to capture the desired application behavior, the designer
can define various architecture and mapping alternatives. SCE then generates
Transaction-Level Models (TLMs) that realize the architecture and mapping de-
cisions. The generated TLMs allow for detailed, simulation-based validation and
performance analysis. After identifying suitable architecture and mapping candi-
dates for an application, SCE’s back-end synthesis aids in generating a cycle- and
pin-accurate implementation as an interconnected set of synthesized hardware and
software components down to final RTL descriptions and binary code images.

This chapter first introduces relevant related work in Sect. 31.2. It then provides
a general overview of the SCE design flow in Sect. 31.3, followed by highlighting
key features of the flow in more detail. Section 31.4 covers model validation with
performance estimation and simulation. Section 31.5 then describes the successive
model refinement for system-level architecture and communication aspects. Next,
Sect. 31.6 describes the SCE software synthesis highlighting target optimization po-
tentials, and Sect. 31.7 covers the hardware synthesis capabilities. Finally, Sect. 31.8
demonstrates the benefits of SCE with experimental results and Sect. 31.9 concludes
this chapter.

31.2 Related Work

Supporting the design process has been the aim of significant research efforts with
a wide range of approaches. To name a few, they range from high-level analysis
and synthesis approaches that are based on specialized models of computation.
Examples include POLIS [1] (Codesign Finite State Machine), DESCARTES [32]
(ADF and an extended SDF), and Cortadella et al. [9] (petri nets). Integrated
Development Environments (IDEs), at another end of the spectrum, typically
provide limited automation support but aim to simplify manual development (e.g.,
Eclipse IDE [16] with its wide range of plug-in modules). Several comprehensive
Electronic System Level (ESL) synthesis methodologies and tools [20] have been
developed for the system-level design of heterogeneous MPSoCs. Examples include
Deadalus [30], Koski [27], Metropolis [2], PeaCE/HoPES [25], SystemCoDesigner
[28], and OSSS [24].

Abstract models are an important means for early prototyping and performance
estimation. System-Level Description Languages (SLDLs), such as SystemC [23]

31 SCE: System-on-Chip Environment 1023

and SpecC [18], are often used for modeling of systems. At lower levels, virtual
platforms allow for a detailed analysis of the system before availability of real
hardware, often revealing details not available on the target [26]. While these
approaches focus on modeling, simulation, and validation, they do not offer an
integrated solution to generate the final implementation.

31.3 Design Flow Overview

Figure 31.1 outlines the design flow realized by the System-on-Chip Environment
(SCE) [13]. The SCE flow focuses on two major steps: refinement-based system-
level design space exploration in the front-end and software/hardware back-end
synthesis. In the front-end exploration phase, the input specification is refined into

SCE
Front-End

Component
DB

Specification

B2 C1

B1

B3
C2

B4C3

Architecture Ref.
Scheduling Ref.

Network Ref.
Link Ref.

Designer’s
Architecture Decisions
ARM9

B2

B3

IRQ
FIQ

B1 PIC Cust.
HW

INT0
INT31...

10
0M

H
z

AMBA AHB, 50MHz, 32bit

B4

SCE
Back-End

HW
DB

SW
DB

Software
Synthesis

ISS-based
System Model

IS IS ISS3

CP
CP

CPU_3.bin

Hardware
Synthesis

H
H

HW_3.v

TLM

Fig. 31.1 Overall system design flow in the System-on-Chip Environment (SCE)

1024 G. Schirner et al.

a TLM realizing the designer’s architecture and mapping decisions for detailed
performance estimation and early validation. The TLM then serves as an input
for back-end synthesis, including both software synthesis, which automatically
generates the final target software implementations for each system processor,
and hardware synthesis, which generates the Register Transfer Level (RTL) for
each custom hardware component. Both software and hardware synthesis generate
matching communication stacks to realize the application distributed across the
heterogeneous processing platform.

The input to the system design flow is a specification model containing the
application captured in SpecC [18]. The specification is an abstract, parallel,
platform-agnostic description of application algorithms. SpecC allows capturing
a wide range of application models with an arbitrary serial-parallel composition
of behaviors that communicate through abstract communication primitives for
synchronous or asynchronous message passing, shared variable access, or event
transfers (see Sect. 31.3.1 for an overview).

A second type of input contains the designer’s architecture decisions including
platform definition and specification mapping. For this, the designer defines the
number and type of processors in the system and the topology of their com-
munication and connectivity. In addition, the designer defines the mapping of
application computation and communication onto the target platform. This includes
decisions on the target software architecture (e.g., how to realize multitasking)
and communication refinement decisions, such as the routing of channels over
busses and the definition of essential communication parameters for each channel.
For example, the user can select the synchronization scheme, such as polling or
interrupt-based synchronization.

Based on the specification model, and the designers’ architecture decisions,
SCE then automatically generates a Transaction-Level Model (TLM) that realizes
these decisions. The generation process is aided by a rich component database
containing Processing Elements (PEs) (e.g., processors, DSPs), Communication
Elements (CEs) (e.g., bridges, routers), memory components, and interconnects.
In the generation process, the selected component models are instantiated and
connected to create the envisioned platform. On top of this, the application (as
defined in the specification) is distributed to the PEs and CEs according to the
mapping decisions. Communication between PEs is refined from the standardized
abstract channels in the specification down to distributed set of channels realizing
the specified communication semantics on the selected platform. In order to deal
with the tremendous complexity in the front-end exploration, the TLM generation
is subdivided into four successive refinement steps. Each step focuses on a particular
architecture aspect and by realizing, i.e., refining, that aspect, uncovers the next set
of architecture decisions to be made (see Sect. 31.3.3).

Overall, the generated TLM captures a model of the application mapped to the
envision platform realizing the architecture decisions. The application together with
generated communication stacks executes behaviorally with timing back annotation
on top of the timed abstract models of PEs, CEs, memories, and interconnects.

31 SCE: System-on-Chip Environment 1025

Section 31.5 illustrates the modeling in more detail. The TLM supports rapid
and accurate system simulations, providing the basis for exploration, performance
analysis, and debugging.

Once the designer has identified a suitable platform, the TLM also serves as
input for the back-end synthesis of both software and hardware. Software synthesis
produces a final binary image for each processor in the platform. The binary
includes the application code, all drivers for communication in a heterogeneous
system, as well as an off-the-shelf Real-Time Operating System (RTOS), if selected.
The produced binaries can directly execute on the target processor(s) of the final
hardware. For early binary validation, before availability of the real hardware,
Instruction-Set Simulator (ISS)-based system models (i.e., virtual platforms) can be
used. Section 31.6 discusses more details about SW synthesis. Hardware synthesis
produces RTL for the mapped portion of the application code and the necessary
communication stacks. This RTL can then be synthesized further down to a
gate-level netlist and final physical realization using standard logic and back-end
synthesis flows. More details about HW synthesis are described in Sect. 31.6.

The SCE flow vertically integrates from specification down to implementation
through a set of consistent models, all captured in the SpecC language. This
vertical integration lends itself for development of plugins at varying abstraction
levels. One such example is Algo2Spec [41, 42] which automatically synthesizes a
Simulink algorithm model into a SpecC specification. With this, Algo2Spec creates
an extended codesign flow offering additional opportunities for algorithm designers
to explore the platform suitability of algorithms and to tune algorithms to better
match platform requirements (e.g., in terms of parallelism).

31.3.1 SpecC Language and PSM Model of Computation

The SCE framework is based on and closely integrated with the SpecC language
and methodology [18]. It should be emphasized that this is a unique setting
in which the tools, the methodology, and the language have been specifically
created and designed together to address the needs of designing digital systems
consisting of both hardware and software. In fact, the SpecC language [12] has been
specifically designed to support the essential requirements for describing embedded
system models at different abstraction levels. In particular, SpecC features explicit
constructs and keywords for behavioral and structural hierarchy, concurrency and
pipelining, synchronization and communication, exception handling, timing, and
explicit state transitions. Moreover, SpecC precisely covers these requirements in
an orthogonal and thus minimal manner [19].

The benefit of SpecC’s language approach (in contrast to the library approach
of SystemC) is the ability to parse SpecC models and unambiguously recognize
the captured system modeling features. Notably, SpecC covers multiple abstraction
levels, from the abstract specification model in which only functionality and design
constraints are represented down to the cycle- and pin-accurate implementation

1026 G. Schirner et al.

models at RTL abstraction. In contrast to commercial multi-language tools in both
the hardware and software domains, the single language approach is a benefit since
only one compiler and run-time engine must be built and maintained. In other words,
the SCE framework can rely on a single-core data structure to represent the model
from the beginning to the end of the design flow.

Such a homogeneous methodology does not suffer from language interfacing
problems or cumbersome translations between languages with different semantics.
Instead, all models are consistent, and one set of tools can be used for all models
at all stages. Also, refinement tasks are merely transformations from one model
into a more detailed one specified with the same language. Using a single language
throughout the design process is beneficial for reuse of IP as well. Design models
from the component library can be reused in the system without modification
(“plug-and-play”) and a new design can be inserted immediately as a library
component.

The SpecC language used in the SCE design flow is based on the Program
State Machine (PSM) Model of Computation (MoC). Computation and commu-
nication are separately captured using distinct language constructs. This separation
enables an automatic refinement for mapping of computation to separate process-
ing elements and establishing the communication between PEs. Computation is
captured in the form of so-called behaviors, and communication is expressed in
channels.

Figure 31.1 contains a graphical representation of a simple specification model.
Boxes with rounded corners (B1-B4) symbolize behaviors. Each leaf behavior
basically contains ANSI-C code, which is omitted for brevity. Behaviors can also be
composed hierarchically to allow for complex structures. They can be behaviorally
composed to execute in sequence, parallel, pipelined, or as state machine [19].

Behaviors are statically connected and communicate through direct point-to-
point channels (C1, C2, C3). These channels are selected from a feature-rich set
of standardized channel types, which allow for a wide range of communication
mechanisms similar to what is found in an operating system. Communication
primitives include synchronous and asynchronous message passing, blocking and
non-blocking communication (e.g., FIFO), as well as synchronization only (e.g.,
semaphore, mutex, barrier).

31.3.2 Target Platform Description

The designer’s target architecture decisions, as shown on the left of Fig. 31.1, de-
scribe the digital target platform. These architecture decisions include the allocation
of PEs such as processors and HW components and the mapping of behaviors to
PEs. The example in Fig. 31.1 shows the allocation of an ARM9 processor and
one custom hardware component. The behaviors B1, B2, and B3 are mapped to
the processor. These behaviors are later wrapped into tasks, and the designer can
select important task parameters, such as scheduling policies and priorities.

More generally, SCE supports distributed Multi-Processor System-on-Chip
(MPSoC) target architectures as conceptually illustrated in Fig. 31.2. Target

31 SCE: System-on-Chip Environment 1027

Fig. 31.2 Generic MPSoC platform targeted in SCE

Refinement

Model n

DB

Model n+1

Optim. algorithm

GUI

Design decisions

Fig. 31.3 General stepwise refinement approach in SCE

platforms can consist of a set of processors, where each processor is connected
to a processor specific main bus. We assume that each processor has an associated
memory, which stores the execution binaries and local variables. Additionally, we
associate a customizable Programmable Interrupt Controller (PIC) and a timer
with each processor. Each processor communicates with external memory (holding
globally shared variables) and with hardware blocks over the processor main bus. A
processor also can communicate with other processors and external IPs or memories
connected to other busses through one or more Communication Elements (CEs),
such as a bridges or a routers. In extension to what is shown in Fig. 31.2, we assume
that the busses may be arranged as a hierarchy of busses.

31.3.3 Stepwise Refinement

The SCE framework implements a top-down design flow. SCE vertically integrates
from an abstract behavioral specification down to a detailed implementation through
a series of successive refinement steps. The general principle of this stepwise
refinement is outlined in Fig. 31.3.

SCE’s stepwise refinement separates decision-making and model refinement.
Design decisions are primarily made by the user, entered through a GUI, or
automatically determined by an optimization algorithm. Conversely, the realization
of the design decision, i.e., the refinement, is automated. For this, a dedicated

1028 G. Schirner et al.

refinement tool at a given abstraction level reads the input model (Modeln) and
refines it following the given architecture decisions, producing the refined model
(ModelnC1) which then exhibits additional implementation details that realize
and represent these decisions. Each refinement tool utilizes a Database (DB) of
components (such as a processor model, operating system model, etc.) to implement
the decisions (such as behavior mapping or task mapping). With this separation, the
tedious and error-prone part of model refinement is automated.

The SCE-internal refinement tools exchange design models in the form of a
Syntax Independent Representation (SIR) [10, 39], a binary representation of a
SpecC model. The SpecC compiler converts between the SpecC source code and
its binary representation (the SIR). In addition, the SpecC compiler suite provides a
rich Application Programming Interface (API) for convenient model transformation
(such as traversing the model hierarchy, adding behaviors, or manipulating their port
connectivity). Standardizing model manipulation dramatically simplifies building a
refinement tool.

Four refinement levels are distinguished within SCE’s front-end (Fig. 31.1). Each
refinement (i.e., model transformation fromModeln toModelnC1) realizes one set
of orthogonal architecture/mapping decisions and by that uncovers the set of design
decisions that have to be made to guide the next refinement step (which would then
create ModelnC2).

Starting from the Specification Model, Architecture Refinement realizes the map-
ping of behaviors to PEs and adds the necessary synchronization logic to maintain
the specified execution order. Mapping parallel executing behaviors to the same
PE necessitates dynamic scheduling. This prompts the user to specify scheduling
parameters and priorities. Scheduling refinement then implements these decisions,
integrating the selected RTOS model into the design, converting behaviors into tasks
and setting their scheduling parameters.

The next steps then focus on communication refinement. The user is prompted to
define the overall interconnect topology (bus interfaces, interconnects, communica-
tion elements). Network refinement realizes these decisions by inserting appropriate
models from the database and ensuring proper mapping. Given the interconnect
network, the final decision is mapping of channels to the interconnect structure,
defining addresses and synchronization principles. Link refinement realizes these
decisions generating the final TLM or a more detailed pin- and cycle-accurate Bus-
Functional Model (BFM). Section 31.5 covers the individual refinement steps and
resulting models in more detail.

31.4 Model Validation

As mentioned above, the design models used throughout the SCE flow are all
represented as executable models in the SpecC language [12], regardless of the
abstraction level they are specified at or refined to (The only exception is the final
design model at RTL abstraction which, in addition to SpecC, can also be exported
in VHDL or Verilog HDLs for hardware synthesis and the program code generated

31 SCE: System-on-Chip Environment 1029

Design Model

Simulation Model

Refinement
Step N

Refinement
Step N+1

Compilation

Validation,
Analysis,

Estimation

Fig. 31.4 SCE validation flow at any abstraction level: model compilation and simulation for
validation, analysis, and performance metrics estimation

in ANSI-C for software synthesis.). Therefore, all models are readily executable
for functional validation and evaluation through simulation. In addition, the formal
nature of the models and the availability of a compiler with a comprehensive internal
representation and corresponding API [10] also enables the application of formal
methods for model analysis, verification, and estimation.

At any stage, as shown in Fig. 31.4, the design model together with its testbench
can be fed into the compiler to generate an executable simulation model for dynamic
validation (see Sect. 31.4.1 below). Alternatively, static analysis can be applied to
the model for estimation and formal verification purposes. In contrast to dynamic
simulation, where the model is executed and actual input data and specific dynamic
behavior is observed, static analysis relies solely on the information stored in the
SLDL source code. Here, a compiler front end reads the model code, analyzes it,
and builds an Abstract Syntax Tree (AST) with control flow and typed symbol
information. Based on that, static information can be extracted that is generally valid
(and not just valid for a specific input). For example, where dynamic simulation
shows that a model works fine for a given test set, static model analysis may prove
the existence of potential deadlocks (or their absence) for any data input and thus
show a stronger property.

In general and in practice, both static and dynamic methods are typically used
together for the analysis and estimation of model metrics, in order to guide the
following design decisions so that the application’s requirements and goals are
achieved as needed.

Note that the tasks performed in the SCE validation flow are virtually identical
at any abstraction level and therefore can be performed by the same set of tools
[11]. At the same time, the system designer can rely on the same methods for model
validation and performance estimation, which significantly eases the learning curve
for system design in SCE. Last but not least, any model can be compared against its
predecessor or the golden specification model such that functional correctness and
meeting of critical design goals are maintained.

1030 G. Schirner et al.

31.4.1 Simulation

In system-level design, simulation is the most common form of design validation.
In contrast to static analysis, simulation is dynamic and requires the design model
to be executable.

In SCE, simulation is performed in two steps. First, the design model is compiled
into a corresponding simulation model. More specifically, the SpecC compiler
takes the design model, together with a corresponding testbench, and generates an
executable program that is linked against the simulation library. The simulation
library implements the execution semantics of the simulation. In particular, it
maintains an event queue, advances the simulation time, and also takes care of
concurrent execution and required synchronization. The generated simulation model
can be run on a host computer, simulating the execution of the corresponding
model. Typically, the testbench included in the simulation model supplies test
vectors, checks the computed output values, and reports any problems to the user. If
problems occur, a debugger can be used to set break points, interrupt the simulation,
and inspect intermediate values, so that the system designer can locate and fix the
errors in the model.

It should be noted that there is generally a trade-off between the run time and the
accuracy of the simulation. For example, compared to the initial specification model,
the refined communication model will need longer time for execution, because it
may perform the communication accurately in a clock-cycle manner.

Recently, the SCE compiler and simulator have been extended to support the
parallel execution of design models on multi- and many-core hosts [5, 7]. Parallel
simulation, known as Parallel Discrete Event Simulation (PDES) [17] in the
literature, exploits the parallelism exposed in the design model for parallel execution
and thus can gain up to an order of magnitude increased simulation speed. This
topic is discussed in detail in the �Chap. 17, “Parallel Simulation” in this book.
The advanced PDES technique specifically designed for and implemented in SCE
is called Out-of-Order Parallel Discrete Event Simulation (OOO PDES) [6, 8].

31.4.2 Profiling

SCE also includes profiling tools to obtain feedback about design quality metrics.
Based on a combination of static and dynamic analysis, a retargetable profiler
measures a variety of metrics across various levels of abstraction [4].

Initial dynamic profiling derives design characteristics through simulation of the
input model. The system designer chooses a set of target PEs, CEs, and busses
from the database, and the tool then combines the obtained profiles with the
characteristics of the selected components. Thus, SCE profiling is retargetable for
static estimation of complete system designs in linear time without the need for time
consuming re-simulation or re-profiling.

The profiling results can also be back-annotated into the model through refine-
ment. By simulating the refined model, accurate feedback about implementation

31 SCE: System-on-Chip Environment 1031

effects can then be obtained before entering the next design stage. Since the system
is only simulated once during the exploration process, the approach is fast yet
accurate enough to make high-level decisions, since both static and dynamic effects
are captured. Furthermore, the profiler supports multi-level, multi-metric estimation
by providing relevant design quality metrics for each stage of the design process [3].
Therefore, profiling guides the user in the design process and enables rapid and early
Design Space Exploration (DSE).

31.4.3 Estimation

The task of estimation is to calculate quality metrics from a design model. Although
these metrics should be accurate, the main emphasis of estimation is to deliver these
values quickly.

In SCE, estimated quality metrics are, for example, used for the task of archi-
tecture exploration. For instance, the trade-off between a software or a hardware
solution for each behavior in the design model requires metrics for performance
and cost. More specifically, the execution time and the area of each behavior are
estimated for a potential hardware implementation. Also, the execution time, code
size, and data size will be determined for a potential implementation in software,
for each allocated processor. In addition, metrics, such as bit width and throughput,
need to be determined for all channel and bus models, since these are needed for
the task of communication synthesis. All these estimation results are annotated in
the design model at the particular behaviors and channels. Thus, they are fed back
into the synthesis flow so that this data is immediately available when needed by the
synthesis algorithms.

Estimation is typically performed in form of static analysis of the design model.
However, by use of profiling, estimation data can also be obtained dynamically
during simulation. In SCE, profiling is used, for example, to count the execution
frequency of each behavior. Based on these counter values, branching probabilities
are determined, for example, for the conditional transitions in FSM behaviors. These
branching probabilities are then used to estimate the average execution time for such
behaviors.

Recently, the SCE profiling and estimation tools have been extended to support
energy dissipation and power consumption for processing elements [33, 34]. which
is essential for battery-powered mobile embedded systems. Dedicated power moni-
tors can be inserted into the design model to observe and monitor power dissipation
during the simulation. The system designer can then take these power characteristics
into account when making design decisions.

31.5 Modeling and Refinement

Modeling and refinement are at the core of the SCE framework. The SCE explo-
ration front end follows a successive, stepwise, and layer-based refinement process
that employs a series of consecutive implementation and optimization passes as

1032 G. Schirner et al.

Table 31.1 Summary of SCE system-level refinement steps

Ref. Design decisions Modeling layers

C
om

p. Arch.

 Number and type of PEs and memories

 Behaviors/variable to PE/memory mapping

PEs and memories (App.)
Basic channels and memory i/fs

Sched.

 Static behavior execution order

 Dynamic scheduling policy and parameters

Operating system (OS)
Basic channels and memory i/fs

C
om

m
. Net.

 Number and type of CEs and busses

 Connectivity and channel routing

PE drivers (HAL)
CE/PE transfers (Pres./Net.)

Link

 Bus addressing and bus transfer modes

 Bus arbitration and synchronization

PE hardware (HW)
Bus transactions (Link/MAC)

described in Sect. 31.3.3. Each refinement step (see summary in Table 31.1) gen-
erates a SpecC-based Transaction-Level Model (TLM) with a level of abstraction
appropriate to the refinement step. Each TLM captures an increasing amount of
layered implementation detail and thus covers a different point in the simulation
speed versus accuracy trade-off. These TLMs allow validation of the generated
implementations while simultaneously serving as input to the back-end synthesis
(see Sects. 31.7 and 31.6).

Following the general separation of computation and communication [18, 20],
computation design is performed before communication design in SCE. Compu-
tation design is split into two smaller steps named architecture refinement and
scheduling refinement. Communication design, similarly, is split into network
refinement and link refinement (see Sect. 31.3.3). The output of the computation
design, an intermediate scheduled architecture model, allows validation of the
main computation mapping while exposing all required inter-PE interactions as
input for further communication refinement. The final TLMs as an output of the
communication design combines all computation and communication aspects of
a system design in the form of PEs (modeled as SpecC behaviors) connected via
busses and CEs (modeled as TLM channels and behaviors, respectively). Table 31.1
summarizes the different refinement steps including decisions made and modeling
layers inserted in each step. In the following sections, we describe the computation
and communication modeling and refinement steps in more detail.

31.5.1 Computation Modeling and Refinement

On the computation side, refinement transforms application behaviors in the speci-
fication into tasks and blocks partitioned and scheduled to execute in corresponding
PE implementations, which are generated through a series of layer-based refinement
steps. Functionality is organized into layers according to inherent conceptual depen-
dencies. Generated output models are equally organized into layers of increasing
detail. Each individual refinement step thereby introduces an additional layer of
modeling and implementation detail.

31 SCE: System-on-Chip Environment 1033

SCE generally follows a host-compiled layering and modeling flow as de-
scribed in �Chap. 19, “Host-Compiled Simulation”. For software PEs, complex,
SpecC-based Operating System (OS) and processor models are automatically gen-
erated [38]. Within SCE, these models have been extended to support simulation and
code generation for state-of-the-art single- and multi-core OSs and processors [31]
(also discussed in �Chap. 19, “Host-Compiled Simulation”). Other hardware PEs
are generated as simplified variants of complete processor models that do not
include all layers.

Figure 31.5 depicts the final multi-core processor model generated by SCE for the
example of a dual-core ARM PE. The innermost application layer generated during
architecture refinement encapsulates the specification behaviors mapped onto the
processor. During scheduling refinement, these behaviors are converted into user
tasks running on top of scheduling services provided by an OS layer and OS model
(realized as a SpecC OS channel). As described in �Chap. 19, “Host-Compiled
Simulation”, the OS channel provides typical services for OS and task management,
synchronization, inter-process communication and timing via a canonical OS API
that is later translated into real OS calls during back-end software synthesis (see
Sect. 31.6). In the process of converting specification behaviors into OS tasks, the
code is also back-annotated with estimated delays as described in more detail in
�Chap. 19, “Host-Compiled Simulation”.

In addition to basic OS and task services, the OS layer also provides high-level
communication functionality for sending and receiving inter-processor application-
level messages via an underlying Hardware Abstraction Layer (HAL). During
architecture and scheduling refinement, only basic models for channel adapters,
drivers, interrupt tasks, and interrupt handlers are inserted as templates into the
OS layer and HAL. These templates are later filled with actual code during link
refinement, where HALs with pre-written, canonical models for Media Access
Control (MAC) and bus/TLM interfaces are taken out of SCE’s component database.
Together, the OS and HAL ultimately provide and realize timing-accurate models of
communication protocol stacks that transform application-level message channels
all the way down to corresponding transaction-level bus accesses plus interrupt-
driven or polling-based synchronizations, if required. See Sect. 31.5.2 for more
details.

Finally, the HAL is encapsulated into a Hardware (HW) layer that models
external bus communication via a bus channel. The HW layer of the processor model
also emulates monitoring of processor interrupt signals and associated processor
exceptions to model a general, timing-accurate multi-core interrupt handling logic
and chain. From the hardware side, core-specific interrupt requests are generated
by a generic multi-core interrupt controller (GIC) model, which manages the
distribution and dispatch of interrupt signals to processor cores. The HW layer in
turn contains core-specific interrupt detection logic (shown as interrupt interfaces
in Fig. 31.5) that triggers interrupt execution in the HAL. To emulate processor
suspension, hardware-triggered interrupts are modeled as special, high-priority
interrupt handlers associated with each interrupt source. Thus, when an interrupt
is detected by a core’s interrupt interface, the HAL will notify the OS model (via a

1034 G. Schirner et al.

HW
(T

LM
)

HA
L

Ta
sk

In
t_

A
Ta

sk
In

t_
B

Ta
sk

In
t_

C

T1

T3
T2

C1 C2

O
S

O
S

In
tr

.I
F

Ap
p

In
tr

.I
nt

er
fa

ce
0

In
tr

.I
nt

er
fa

ce
1

O
S

Ch
an

ne
l

In
tr

.B
IF

In
tr

.A
IF

FI
Q

0

FI
Q

1

Co
re

-1
IR

Q
In

te
rf

ac
e

Co
re

-0
IR

Q
In

te
rf

ac
e

TL
M

Bu
s

In
tr

.C
IF

Co
re

1
IS

R
Co

re
1

IS
R

Co
re

-0
IR

Q
In

tr
Ha

nd
le

r
Co

re
-1

IR
Q

In
tr

Ha
nd

le
r

Drv

In
tr

_A

TLM Adapter 0TLM Adapter

Media Acces (MAC)

Driver 0

Ge
ne

ric
M

ul
ti-

Co
re

In
te

rr
up

t
Co

nt
ro

lle
r(

GI
C)In

te
rr

up
t

Di
st

rib
ut

or
Co

re
-1

In
te

rr
up

t
Di

sp
at

ch

In
tr

1
In

tr
2

In
tr

n

In
tr

ID
&

Pr
io

rit
y

In
tr

.S
ta

tu
s

Ch
an

ge
s

IR
Q

0

IR
Q

1

Pr
oc

es
so

r
BU

S
In

te
rf

ac
e

Co
re

-0
In

te
rr

up
t

Di
sp

at
ch

TL
M

Ad
ap

te
r

Fi
g

.
3

1
.5

G
en

er
al

la
ye

r-
ba

se
d

m
ul

ti-
co

re
pr

oc
es

so
r

m
od

el

31 SCE: System-on-Chip Environment 1035

special OS interrupt interface) to preempt and switch execution to the corresponding
interrupt handler in the HAL. The interrupt handler, as generated during link
refinement, can then in turn communicate with the GIC and, through associated
OS layer interfaces, trigger corresponding secondary interrupt-specific OS tasks (as
shown for the example of interrupts A, B , and C in Fig. 31.5).

Overall, the application, OS, HAL, and HW layers all combined constitute the
host-compiled SpecC processor model. This processor model is then integrated into
a standard TLM backplane for simulation in the context of an overall multiprocessor
system environment.

31.5.2 Communication Modeling and Refinement

In the model generated after architecture and scheduling refinement, PEs still
communicate via high-level primitives at the message-passing level, where a
PE’s HAL and HW layers are still left out. Network and link refinement then
transform such abstract application-level communication channels all the way down
to transactions over busses or other (shared) communication media. In the process,
HAL and HW layers are added to PEs, and optimized code is generated for drivers,
interrupt handlers, and bus transactors inserted into software and hardware PEs,
respectively. All driver, interrupt handling, and transactor code is back-annotated
with estimated delay information to provide an overall timing-accurate simulation
of communication overheads.

Similar to the computation side, communication modeling and refinement
follow a layer-based organization adapted and derived from the ISO/OSI 7-layer
model [21]. At the output, low-level TLMs that include protocol stacks and inter-
PE communication at varying levels of detail depending on the number of included
layers are automatically generated. These TLMs are synthesized into actual software
or hardware during back-end synthesis.

Figure 31.6 shows the general organization of a final TLM including all layers as
generated by SCE for the example of a system architecture with two PEs, PE0 and
PE1, representing a software processor and a hardware accelerator, respectively. The
two PEs are connected via two busses and an intermediate transducer T. Application
behaviors P1 and P2 within each PE communicate with each other using abstract
send() or receive() primitives. Additional protocol layers are inserted into PEs to
realize all such channel communication over external busses. On the software side,
this protocol functionality is inserted into corresponding processor model layers as
described in Sect. 31.5.1 above.

Network refinement transforms end-to-end messages exchanged over abstract
communication channels into point-to-point packet transfers over individual bus
segments. In the process, additional CEs such as protocol-level bridges or network-
level transducers are inserted as necessary to interconnect, translate, and forward
packets between different bus segments or communication media. Communication
layers inserted during network refinement include a presentation layer for channel-
specific data conversion (c1, c2, and c3) and a network and transport layer (Net) for
packeting, routing, and end-to-end synchronization.

1036 G. Schirner et al.

Fi
g

.
3

1
.6

G
en

er
al

la
ye

r-
ba

se
d

tr
an

sa
ct

io
n-

le
ve

lc
om

m
un

ic
at

io
n

m
od

el

31 SCE: System-on-Chip Environment 1037

Subsequent link refinement then transforms all point-to-point transfers with each
bus segment into actual bus transactions. It inserts a link layer (Link) for addressing
and interrupt- or polling-based synchronization, a MAC layer for data slicing, and
a final Protocol layer implementing actual bus state machines. In case of interrupt-
driven synchronization, this further includes hardware-level interrupt detection and
generation logic (Int) as well as software-level interrupt handlers (Hdlr) as described
in previous sections.

TLMs of the system can be generated to model inter-PE communication at any of
these levels. For example, bus channels connecting PEs in a protocol TLM describe
communication at the level of individual bus transactions. By contrast, faster but
less accurate MAC or link TLMs describes communication at the level of larger
unsynchronized or synchronized whole-packet transfers [35]. Finally, a pin- and bus
cycle-accurate BFM can be generated by also including a low-level protocol layer
describing individual events of bus transactions on each wire.

Basic network and link refinement generates unoptimized code for protocol
stacks following a strict layer-based organization as shown in Fig. 31.6. Recent
extensions to SCE allow protocol code to be further optimized specifically for
efficient back-end synthesis [29]. Protocol stack optimizations flatten and merge
basic communication layers above the MAC and apply back-end-specific cross-
layer optimizations for message merging, protocol fusion, and interrupt hoisting.
Depending on the target PE, fused upper layers are later synthesized into optimized
software drivers or hardware transactors. By contrast, MAC and protocol layers
are usually provided as pre-designed software or hardware IP in the back-end
synthesis databases. In case of hardware PEs, higher-level protocol functionality
can be further coupled with and synthesized into low-level bus state machines using
protocol IP generators that support corresponding customizations.

31.6 Software Synthesis

Once the designer has settled on a set of architecture decisions and is satisfied with
the performance of the generated TLM, the back-end synthesis can be invoked as
illustrated on the bottom portion of the flow overview in Fig. 31.1. This includes
both software synthesis and hardware synthesis.

Software synthesis [37] uses the generated TLM (i.e., the output of link
refinement; see Sect. 31.5) as input and produces embedded code. It is invoked
for each programmable PE generating a SW stack matching the overall system.
For this, the synthesis approach implements the application modeled in the TLM,
which is captured in the SpecC SLDL, on a target processor. The TLM includes
SLDL-specific keywords and concepts, such as behaviors, events, channels, and
port mappings. To realize these SLDL concepts in target software, one approach
would be to replicate the SLDL simulation environment directly on the target
platform. This, however, potentially results in overhead for performance and code
size. Instead, our software synthesis directly generates embedded ANSI-C code out
of the SLDL to achieve compact and efficient code.

1038 G. Schirner et al.

Fig. 31.7 Software
generation flow in SCE

SW DB
(RTOS, RAL,

HAL)
Compiler and Linker

SLDL / TLM

C Code Build, Cfg.

Target Binary

Software Synthesis

Static Dispatch Analysis
Code Generation HdS Generation

We divide software synthesis into code generation and Hardware-Dependent
Software (HDS) generation, shown in Fig. 31.7. Code generation deals with the
code inside each task and generates flat ANSI-C code out of the hierarchi-
cal model captured in the SLDL. Meanwhile, HDS generation creates code for
processor-internal and processor-external communication, adjusts for multitasking,
and eventually generates configuration/build files (e.g., Makefiles) for the cross
compilation process. Software synthesis is supported by a SW database, which
contains static target-specific artifacts, such as an operating system, that will be
linked in when creating the final binary.

31.6.1 Software Code Generation

Code generation [40] produces sequential ANSI-C code for each task within a
programmable PE. It translates the hierarchical composition of behaviors in SpecC
into flat C-code consisting of functions and data structures. For SLDL features
not natively present in the targeted ANSI-C language (e.g., port/interface concept,
hierarchical composition), code generation realizes these SLDL features out of
available ANSI-C constructs.

While ANSI-C was chosen as it is widely used in the embedded context and has a
rich compiler support, some challenges emerge as ANSI-C does not have language
constructs to realize object-oriented programming. As one example, SpecC behav-
iors offer local variables visible within an instance of the behavior. This could be
realized with a class. ANSI-C, however, does not provide an encapsulation/scope
for class-local storage as it lacks the class concept. To overcome this limitation,
all behaviors’ local variables are added to a behavior-representing structure, and all
accesses to behavior-local variables are replaced with accesses to the corresponding
member of the behavior-representing structure.

Similar challenges appear for methods that are exposed as an interface on
the behavior’s port. Here, each port also becomes a member of the behavior-
representing structure. In addition, the structure includes a virtual function table
(VTABLE) pointing to the implementing methods. All calls to these methods are
replaced with function calls through the VTABLE entries. In principle, embedded

31 SCE: System-on-Chip Environment 1039

code generation realizes some basic object-oriented concepts on top of ANSI-C. As
such, it solves similar issues as C++ to C compilers that translate a class hierarchy
into flat ANSI-C code.

31.6.2 Hardware-Dependent Software Generation

The second portion, HDS generation [36, 37], generates code for processor-
internal and processor-external communication, including drivers and synchro-
nization (polling or interrupt). It also generates code to execute multiple tasks
on the same processor, realizing the task mapping defined in the computation
refinement (Sect. 31.3.3). To create the complete binary SW image, it finally
generates configuration and build files (e.g., Makefile) which select and configure
database components.

To realize the HDS generation, we distinguish code that is only platform
specific and code that is both platform and application specific. The former, i.e.,
platform-specific code, is instantiated from the SW database. This DB includes a
selection of RTOSs to provide multitasking and a basic HAL for canonical access
to common platform resources. During HDS generation, code for instantiating the
selected RTOS is generated, and the RTOS is configured toward the application
requirements. In order to unify the access to a wide variety of RTOSs, each
RTOS in the DB is accompanied by an RTOS Abstraction Layer (RAL). The RAL
abstracts from the particular RTOS’s function names and parameters. To ensure
a generic API, we investigated different RTOS APIs (uCOS-II, vx-Works, eCos,
ITRON, POSIX) and chose common primitives for task scheduling, communication,
and synchronization. Along similar lines, the HAL provides canonical access to
common platform resources, which we assume to be present in all target platforms
(such as timers and an interrupt controller). The canonical APIs (as realized by
RAL and HAL) limit the interdependency between HDS generation and the selected
target architecture, thus making HDS generation more scalable.

Code that is both application and platform specific is produced by the HDS
generation. This includes code for multitasking, internal communication, and
external communication. For multitasking, application-specific code is generated
to instantiate and control the tasks as defined the TLM (e.g., T1, T2, and T3 in
Fig. 31.5). Internal communication, which occurs within the same PE, is realized
along the same lines. Channels C1 and C2 in Fig. 31.5 are examples of PE-internal
communication. These channels are replaced with an implementation on top of
the RAL of the selected RTOS (e.g., using semaphores and memcpy). External
communication and synchronization occur between PEs. As part of communication
refinement (Sect. 31.5.2), external communication has been refined into a set of
stacked channels as visualized in Fig. 31.6. To realize the specified communication,
HDS generation traverses the TLM from the innermost layer (e.g., PE0’s presen-
tation layer with the stacked channels c1, c2, and c3 in Fig. 31.6) and generates a
matching driver stack. The generated driver stack utilizes the RAL (e.g., for interrupt
registration, handling, and synchronization) as well as the HAL (e.g., for accessing
the processor bus).

1040 G. Schirner et al.

Combining the outputs of code generation and HDS generation yields all code
for a PE. Using a cross-compiler, the final target binary is created. The SW synthesis
process repeats for each software PE in the TLM. The produced binaries can directly
execute on the target processor(s) of the final hardware. For early binary validation,
before availability of the real hardware, virtual platforms can be used. To facilitate
this step, our software synthesis also includes a model refinement step that converts
the input TLM into an ISS-based system model. For this, SW synthesis removes
the processor model for which it has generated the SW earlier (i.e., everything
inside the HAL layer of PE0 in Fig. 31.6) and replaces it with an ISS from the
database. The integrated ISS instance can then run the generated binary including
all platform-specific interactions (e.g., for communication with custom hardware)
for early binary validation and further codevelopment.

31.6.3 Software Optimization

Software synthesis offers several optimization opportunities across code generation
and HDS generation. One example is static dispatch analysis, which, if permissible,
eliminates the overhead of virtual function calls. Virtual function calls are common
in object-oriented code to allow multiple implementations for the same interface.
This is very frequently used in layered implementation of complex systems (such
as in our layer-based realization of communication between PEs). The overhead of
virtual functions appears in many languages, such as C++, SpecC, SystemC, as well
as in our generated code. Generally, the overhead for a virtual function call itself
is low (2 cycles [14]). More importantly, however, this indirection hinders inlining
optimizations. Especially when the callee function has only minimal computation,
the virtual function call overhead becomes quite significant on embedded platforms.

To improve the performance and quality of SLDL synthesized embedded SW,
we have enhanced our embedded ANSI-C code synthesis with a dispatch-type
analysis to reduce/eliminate this overhead [43]. Our approach utilizes the fact that
the complete model (with all connectivity) is known during SW synthesis and no
SW is linked later on top of the generated code. Hence, static dispatch-type analysis
can determine if a direct call is possible (i.e., the call target can be determined
statically) and replace a virtual call with a direct function call.

31.7 Hardware Synthesis

Hardware synthesis refines models of custom hardware processors in the TLM down
to complete RTL implementations following an extended High-Level Synthesis
(HLS) design step [29]. The generated RTL can then be further synthesized down to
a gate-level netlist and final physical realization using standard logic and back-end
synthesis flows. SCE integrates a hardware synthesis flow that combines existing
commercial, off-the-shelf HLS tools for synthesis of computation with the capability

31 SCE: System-on-Chip Environment 1041

Block-Level Synthesis

High Level Syn.

TLM

MAC
DB

Protocol
DB

Comp.
module

Block
Netlist

RTLRTLRTL

Block-Level Model (BLM)

Protocol IPProtocol IPProtocol IP

App

Protocol IPIntr

HWHW
RTL

Protocol IPIntr

AppHWBLM

App

Prot.Intr

TLM HW
Bus
TLM

High level synthesis

Block-level synthesis

Fig. 31.8 Hardware synthesis flow in SCE

to synthesize communication interfaces and hardware bus transactors supporting a
wide range of optimized target implementations [29].

Figure 31.8 shows the overall flow of hardware synthesis in SCE. We follow a
three-step methodology to transform the TLM into a SystemC/C++-based Block-
Level Model (BLM), further synthesize computation blocks in the BLM down to
cycle-accurate RTL using a traditional HLS tool, and then perform logic synthesis
to generate a final gate-level netlist.

31.7.1 Block-Level Synthesis

Block-level synthesis refines the TLM generated during front-end computation and
communication refinement (see Sect. 31.5) down to block-level modules, protocol
IPs, and a block-level netlist integrating all of these together. Low-level blocks for
protocol layer IPs are thereby taken directly out of a protocol database in pre-written
RTL form. By contrast, other higher-layer blocks are converted from SpecC into
synthesizable SystemC or C++ code to be further synthesized and as supported by
existing HLS tools.

Most HLS tools can synthesize multiple single-threaded C++/SystemC modules
with the capability to stitch blocks together. However, they cannot automatically
partition preexisting code. In order to provide a general approach that can be
easily adapted to different HLS back ends, we partition the code into separately
synthesized modules that are integrated through our own netlisting engine. In the
process, each computation or communication behavior in the TLM is converted
into a separate, synthesizable hardware block. After block partitioning, TLM
communication stacks are inlined into each accessing computation block. This
enables computation/communication cooptimizations in the following HLS step,
with the scheduling freedom to overlap computation with communication and to
perform general, joint optimizations, such as resource sharing or parallelization.

1042 G. Schirner et al.

Communication layers in the TLM connect to each other and to computation
behaviors via an interface mechanism. Such high-level functional interface and
variable ports are converted into low-level wire, register or First-In First-Out (FIFO)
interfaces between blocks in the BLM as supported by the underlying HLS engine.
At the lowest MAC and protocol levels, thin Media Access Control (MAC) layer
implementations inserted from a hardware database provide the glue logic between
application-specific higher layers and pre-written bus protocol IPs. Synthesizable
MAC database implementations thereby replace canonical MAC layer models and
interfaces in the TLM with code that provides equivalent, canonical MAC-level
bus interfaces to higher layers while internally translating each transaction into
corresponding pin- and wire-level interactions necessary to interface with a target-
specific bus protocol IP component.

31.7.2 Protocol IP Generation

Each bus protocol layer in the TLM is replaced with an actual protocol IP from
the protocol database. Based on parameters, such as the type and number of
ports, a protocol generator thereby creates a custom IP block from pre-written
RTL templates in the protocol database to implement external bus protocols and,
depending on the synchronization mechanism selected and defined in the TLM,
either interrupt generation or polling logic. The internal interface of bus protocol
IPs is designed to match associated protocol wrappers in the MAC database, which,
when synthesized together with other blocks, will realize appropriate pin- and wire-
level interactions with the generated IP.

31.7.3 RTL Netlisting and Synthesis

The connectivity of all blocks, IPs, and external ports is converted into an block-
based RTL netlist to complete the block-level synthesis step. As indicated in
Sect. 31.7.1 above, in the process high-level functional variable and channel inter-
faces between modules are converted into wires, registers, and glue logic connecting
the pin-level FIFO ports of synthesized blocks and protocol IPs. After block-level
synthesis, computation blocks in the generated BLM are further synthesized down to
cycle-accurate RTL descriptions using an external HLS tool. Generated RTL blocks,
RTL bus protocol IPs, and the block netlist are then synthesized into a gate-level
netlist using a traditional logic synthesis tool.

Utilizing tools and databases along with a HLS engine, our flow can be easily
adapted to different HLS back ends and synthesis targets. Our current SCE setup
includes support for Mentor (formerly Calypto) Catapult, and Xilinx Vivado HLS
tools targeting ASICs or FPGAs with Mentor Precision or Xilinx ISE as logic
synthesis back ends.

31 SCE: System-on-Chip Environment 1043

 HW HW HW

 HW HW HW HW HW

Cortex-A9

AHB Bus

C0 C1

MP3
Decoder

JPEG
Encoder

User
Interface

CH

CH

GIC
BMP IN

I/O Drv
Jpeg Out

RDCT

Keyboard

DisplayPCM
Out

DHS Bus
DHS Bus DHS Bus

 HW
MAD
OutLDCTMP3 IN

Fig. 31.9 Cellphone baseband example

31.8 Experimental Results

We demonstrate the benefits of SCE for fast and accurate system-level Design
Space Exploration (DSE) and synthesis as applied to a cellphone baseband example
running concurrent Motion-JPEG (M-JPEG), MP3, and user interface tasks on a
dual-core 650 MHz Cortex-A9 platform. The overall architecture of the system is
shown in Fig. 31.9 [31]. The MP3 decoder and JPEG encoder use optional hardware
accelerators to perform audio decoding or Discrete Cosine Transform (DCT) and
quantization acceleration, respectively. Tasks communicate with external hardware
and the rest of the system via an AHB bus and 12 interrupts. In this experiment,
MP3 decodes 13 frames at a bitrate of 384 kbit/s, and JPEG encodes 10 frames of a
movie with standard 352�288 resolution at a rate of 30 frames/s.

We explored a wide range of architectures by applying different OS and
processor configurations, including mapping of M-JPEG tasks and interrupts to
two different cores (C0 and C1) in a dual-core architecture. We explored both
First-Come First-Serve (FCFS)/FIFO and priority (Prty) scheduling. In dual-core
architectures with task-attached interrupts, application tasks are distributed among
two cores and a task, and its associated interrupts are mapped to the same core.
By contrast, dual-core architectures with a core-attached interrupt always handle all
interrupts on C1. Figure 31.10 summarizes the average frame delays and average
absolute errors in frame delays as well as maximum error bars of MP3 and JPEG
tasks. Frame delays and frame delay errors are reported both for high- and low-
level TLM simulations of the platform at a link and MAC level of communication
abstraction, respectively, as compared to an ISS simulation. Task delays were back-
annotated at the function level from measurements taken on the ISS. Moreover,
average Linux context-switch overhead was measured and back-annotated into the
OS model.

As can be seen, the best MP3 performance is achieved when a higher priority is
assigned to MP3, or MP3 and JPEG are running on separate cores. In other config-
urations, average MP3 frame delay is close to its deadline boundary (i.e., 26.1 ms).

1044 G. Schirner et al.

Dual-Core
Core-a�ached Interrupt

Single-Core Dual-Core
Task-a�ached Interrupt

0.1%

1.0%

10.0%

100.0%

1000.0%

0ms

8ms

16ms

24ms

Av
g.

 F
ra

m
e

Er
ro

r

M
P3

Av

g.
 F

ra
m

e
De

la
y

0.1%

1.0%

10.0%

100.0%

0ms

10ms

20ms

30ms

Av
g.

 F
ra

m
e

Er
ro

r

JP
EG

Av

g.
 F

ra
m

e
De

la
y

MAC TLM Link TLM Link TLM Error MAC TLM Error

MAC TLM Link TLM MAC TLM Error Link TLM Error

Fig. 31.10 Cellphone design space exploration

Minimized JPEG delay is obtained from configurations with FIFO scheduling,
when JPEG has higher priority or when it runs on a separate core. All combined,
explorations confirm that shortest-job-first or rate-monotonic scheduling guarantee
that MP3 and JPEG meet their performance requirements. Overall, optimized MP3
and JPEG performance is achieved when tasks run on separate cores. Finally, by
mapping all interrupts to a separate core (C1), we only see slight performance
benefits in MP3 and JPEG delays.

Overall, the SCE system design front end provides an efficient platform for rapid,
early, and accurate DSE. On average, low-level MAC TLMs generated by SCE
simulate with 1,400 Million Instructions Per Second (MIPS) at less than 1% error.
A model at higher level of abstraction that does not account for synchronization
overhead can achieve even higher simulation speeds, but errors can reach as high
as 100% in some configurations where inaccuracies lead to MP3 and JPEG tasks
executing in the wrong order.

With the definition of architecture and mapping in place, the SCE system design
back end is activated to generate both software and hardware for each processing
element.

31.8.1 Software Synthesis

SW synthesis has been used to create the implementation for the cellphone example
described above. To provide more insight into the optimization potential offered
by SW synthesis, we will look into the static dispatch analysis, which can convert

31 SCE: System-on-Chip Environment 1045

virtual function calls to direct calls and by that avoid the VTABLE indirection
overhead. For this, we look more closely into the JPEG compression task of the
cellphone platform.

We anticipate the most optimization potential in the generated drivers as they use
a layered approach and contain very little own computation. To gain more insight
into the influence of communication, we vary the communication granularity. The
input (BMP In to JPEG) can either operate on individual pixels or coarser on a
whole pixel row. The output (JPEG to JPEG Out) is configurable to operate on
individual bytes or more efficiently by using a queue for buffered communication
(queue size 256 bytes). If selected, the queue is mapped to the processor. This
increases efficiency as the processor writes with small operations (mostly bytes)
and the JPEG output retrieves larger blocks. The coarser granularity reduces the
number of transactions by using fewer, yet larger transactions. This results in fewer
calls into the layered drivers. Thus, we anticipate less optimization potential through
static dispatch analysis with fewer, larger transactions. Please note that varying the
communication granularity is only done for analysis purposes. A real product would
use the coarsest granularity to reduce overhead.

Table 31.2 quantifies the static dispatch analysis optimization for the JPEG en-
coder example in its four configurations. In addition to the execution time, it shows
the speedup as well as the number of virtual function calls converted into direct
calls.

Table 31.2 confirms the expectations. With the coarsest communication granu-
larity (row, queue), the JPEG encoder executes the fastest (39.6 ms), while the finest
granularity (pixel, byte) executes the slowest (57 ms). The number of MAC driver
calls gives an indication for the slowdown. With 41 K calls, the finest granularity
needs almost 4 times as many calls for the same amount of data as the coarsest
granularity. All configurations significantly benefit from static dispatch analysis.
The speedup through converting to direct calls ranges from 12.4% for the coarsest
to 16.1% for the finest grained communication. Although fewer port method calls
are converted to direct calls in the fine-grained case (81 instead of 89), the drivers are
called much more frequently (41 K calls instead of 11 K calls) leading to the larger
speed up through our optimization. Irrespective of the communication granularity,
our approach offers tremendous benefits as it eliminates the virtual function calls
for the generated embedded SW while also improving code readability.

Table 31.2 Static dispatch analysis optimization

Input Output Exec. time [ms]
Exec. time
(opt) [ms] Improvement # Direct calls

MAC drv.
calls

Row
Queue 39:64 34:74 12:4% 89 11469

Byte 42:69 36:89 13:6% 85 16560

Pixel
Queue 54:01 46:31 14:3% 85 36351

Byte 57:06 47:86 16:1% 81 41442

1046 G. Schirner et al.

31.8.2 Hardware Synthesis

To demonstrate the hardware back end of SCE, we have applied the flow to
synthesis of hardware accelerators for the JPEG encoder subsystem of the cellphone
example [29]. Specifically, the DCT and Quantize blocks (DCT-Q) in the JPEG
encoder are mapped into hardware while the rest of the application functionality
executes on the application processor. We used Mentor Catapult as HLS back end,
targeting an ARM+FPGA platform consisting of a Freescale i.MX21 applications
processor and a Xilinx Spartan-3 Field-Programmable Gate Array (FPGA) commu-
nicating over Freescale’s EIM bus.

Using our fully automated hardware synthesis flow, we were able to synthesize
the TLM into RTL ready for further FPGA download within minutes, yielding
substantial productivity gains compared to a manual design process. On the
processor side, software was automatically synthesized, combined with driver code,
and cross-compiled into a Linux executable (see Sect. 31.8.1 above).

We synthesized computation blocks and communication channels using polling-
or interrupt-based synchronization targeting a 50MHz clock frequency. We applied
protocol stack and protocol coupling optimizations as described in Sect. 31.5.2
during synthesis. We compare FPGA resource usage and hardware latency of the
optimized design (POPT) against an unoptimized design (NOPT) and a purely
manual implementation of communication interfaces (MAN). For a fair comparison,
the manual design utilizes the same computation block and the same firmware
code synthesized by a HLS tool and SCE, respectively. We evaluated end-to-end
hardware latency by instrumenting the JPEG encoder software to record the average
turnaround times over 180 DCT-Q invocations, including all communication and
synchronization overhead. Area and latency results of synthesized accelerator PEs
are summarized in Table 31.3.

We can observe that the latency of final, optimized hardware synthesized with
our flow is always significantly less than in a manual design. In contrast to a manual
design in which communication and computation blocks are designed separately
to manage complexities, our approach is able to perform cooptimizations across
computation and communication boundaries [29]. In the DCT-Q case, data is
processed strictly in the order it is received and sent, which allows computation
and communication to be pipelined and scheduled in parallel. This can overlap and
hide communication latencies behind computation delays. Due to its complexity

Table 31.3 JPEG hardware synthesis results

Synch. Opt. LUTs FFs Logic score Mem [bytes] Latency

Intr.
NOPT 5334 3197 8531 1024 59.9 ms

POPT 4091 2046 6137 (�28%) 1024 (0%) 59.7 ms (0%)

MAN 3284 2182 5466 (�36%) 1024 (0%) 89.0 ms (49%)

Poll.
NOPT 5407 3302 8709 1024 9.4 ms

POPT 4133 2341 6474 (�26%) 1024 (0%) 9.8 ms (4%)

MAN 3281 2179 5460 (�37%) 1024 (0%) 28.4 ms (203%)

31 SCE: System-on-Chip Environment 1047

and non-modularity, such optimizations are typically not applied in manual designs.
However, a naive, unoptimized realization of such computation/communication
codesign can lead to a large increase in total area. The proposed protocol stack
optimizations prove to be efficient in reducing this area overhead through resource
sharing, which results in up to average 26% logic reduction compared to an
unoptimized design. Overall quality of results is comparable to or better than a
manual design, where on average 2.2 times improvement in latency can be achieved.

31.9 Conclusions

Designing modern embedded systems is increasingly challenging due to hardware
complexity (e.g., increasing heterogeneity), functional complexity (increasingly
complex, integrated features), more stringent nonfunctional requirements, all while
reducing the time to market. Addressing the complexity challenges requires raising
the level of abstraction to jointly consider digital hardware and software while
paving a path to automated implementation.

In this chapter, we have presented our comprehensive system-level design
framework, the System-on-Chip Environment (SCE). SCE realizes a top-down
codesign flow, from an abstract, functional specification captured in the SpecC
language down to synthesized hardware and software. It supports a wide range
of heterogeneous target platforms consisting of custom hardware components,
embedded software processors, and complex communication bus architectures.

This chapter has provided an overview and highlighted key aspects of the SCE
framework: the underlying language and simulation principles as well as the layer-
based modeling and refinement. It also provided an overview of the software and
hardware synthesis processes. We have illustrated the capabilities of our SCE
codesign framework through a cellphone example targeted to a heterogeneous target
architecture.

The focus of SCE is on the modeling, refinement, and implementation synthesis
process. In its current form, all design decisions have to be entered manually
through SCE’s Graphical User Interface (GUI) or via an external scripting interface.
This complements other system-level design tools that have a focus on automated
Design Space Exploration (DSE) as presented in the book Part 3, ”Design Space
Exploration”. In order to leverage different strengths of existing tools [20], we
have combined SCE with other academic DSE engines to provide a comprehensive,
seamless, and fully automated system-level synthesis solution all the way from
high-level, data-flow-based system specifications down to concrete HW and SW
implementations for generic MPSoC platforms [22]. This provides a proof-of-
concept realization of a complete system-level synthesis solution. The authors thank
Dongwook Lee and Parisa Razaghi for their help in preparing this manuscript and
the anonymous reviewers for their valuable suggestions on its improvement. The
authors express gratitude to all members of the SpecC team who have contributed
to SCE over the years, namely Samar Abdi, David Berner, Lukai Cai, Pramod
Chandraiah, Che-Wei Chang, Vincent Chang, Weiwei Chen, Alexan- der Gluhak,

1048 G. Schirner et al.

Yitao Guo, Xu Han, Ran Hao, Eric Johnson, Jon Kleinsmith, Deepak Mishra,
Guantao Liu, Junyu Peng, Gautam Sachdeva, Yasaman Samei, Dongwan Shin,
Sanyuan Tang, Ines Viskic, Qiang Xie, Haobo Yu, Pei Zhang, Jiaxing Zhang,
Shuqing Zhao, Jianwen Zhu. Last but not least, the authors thank Daniel D. Gajski
for his visionary leadership.

References

1. Balarin F, Chiodo M, Giusto P, Hsieh H, Jurecska A, Lavagno L, Passerone C, Sangiovanni-
Vincentelli A, Sentovich E, Suzuki K, Tabbara B (1997) Hardware-software co-design of
embedded systems: the POLIS approach. Kluwer Academic Publishers, Boston

2. Balarin F, Watanabe Y, Hsieh H, Lavagno L, Passerone C, Sangiovanni-Vincentelli A (2003)
Metropolis: an integrated electronic system design environment. Trans Comput 36(4):45–52

3. Cai L, Gerstlauer A, Gajski D (2005) Multi-metric and multi-entity characterization of
application for early system design exploration. In: IEEE/ACM Asia and South Pacific design
automation conference (ASP-DAC)

4. Cai L, Gerstlauer A, Gajski DD (2004) Retargetable profiling for rapid, early system-level
design space exploration. In: Proceedings of the design automation conference (DAC), San
Diego

5. Chen W, Han X, Chang CW, Dömer R (2013) Advances in parallel discrete event simulation
for electronic system-level design. IEEE Des Test Comput 30(1):45–54

6. Chen W, Han X, Chang CW, Liu G, Dömer R (2014) Out-of-order parallel discrete event
simulation for transaction level models. IEEE Trans Comput Aided Des Integr Circuits Syst
(TCAD) 33(12):1859–1872. doi:10.1109/TCAD.2014.2356469

7. Chen W, Han X, Dömer R (2011) Multi-core simulation of transaction level models using the
system-on-chip environment. IEEE Des Test Comput 28(3):20–31

8. Chen W, Han X, Dömer R (2012) Out-of-order parallel simulation for ESL design. In:
Proceedings of the design, automation and test in Europe conference and exhibition (DATE)

9. Cortadella J, Kondratyev A, Lavagno L, Massot M, Moral S, Passerone, C, Watanabe Y,
Sangiovanni-Vincentelli A (2000) Task generation and compile time scheduling for mixed
data-control embedded software. In: Proceedings of the design automation conference (DAC),
Los Angeles

10. Dömer R (1999) The SpecC internal representation. Technical report, information and
computer science. University of California, Irvine. SpecC V 2.0.3

11. Dömer R (2000) System-level modeling and design with the SpecC language. Ph.D. thesis,
University of Dortmund

12. Dömer R, Gerstlauer A, Gajski D (2002) SpecC language reference manual, version 2.0. SpecC
Technology Open Consortium. http://www.specc.org

13. Dömer R, Gerstlauer A, Peng J, Shin D, Cai L, Yu H, Abdi S, Gajski D (2008) System-on-
chip environment: a SpecC-based framework for heterogeneous MPSoC design. EURASIP J
Embed Syst 2008:647953

14. Driesen K, Hölzle U (1996) The direct cost of virtual function calls in C++. SIGPLAN Not
31(10):306–323. doi:10.1145/236338.236369

15. Ecker W, Müller W, Dömer R (2009) Hardware dependent software: introduction and overview.
In: Ecker W, Müller W, Dömer R (eds) Hardware dependent software: principles and practice.
Springer, Berlin

16. Eclipse Foundation. Eclipse. http://www.eclipse.org/
17. Fujimoto R (1990) Parallel discrete event simulation. Commun ACM 33(10):30–53
18. Gajski DD, Zhu J, Dömer R, Gerstlauer A, Zhao S (2000) SpecC: specification language and

design methodology. Kluwer Academic Publishers, Boston

http://dx.doi.org/10.1109/TCAD.2014.2356469
http://www.specc.org
http://dx.doi.org/10.1145/236338.236369
http://www.eclipse.org/

31 SCE: System-on-Chip Environment 1049

19. Gerstlauer A, Dömer R, Peng J, Gajski DD (2001) System design: a practical guide with
SpecC. Kluwer Academic Publishers, Boston

20. Gerstlauer A, Haubelt C, Pimentel A, Stefanov T, Gajski D, Teich J (2009) Electronic
system-level synthesis methodologies. IEEE Trans Comput Aided Des Integr Circuits Syst
28(10):1517–1530

21. Gerstlauer A, Shin D, Peng J, Dömer R, Gajski DD (2007) Automatic layer-based generation
of system-on-chip bus communication models. IEEE Trans Comput Aided Des Integr Circuits
Syst (TCAD) 26(9):1676–1687

22. Gladigau J, Gerstlauer A, Haubelt C, Streubühr M, Teich J (2011) Automatic system-level
synthesis: from formal application models to generic bus-based MPSoCs. Trans High-Perform
Embed Archit Compil (Transactions on HiPEAC) 5(4):1–22

23. Grötker T, Liao S, Martin G, Swan S (2002) System design with SystemC. Kluwer Academic
Publishers, Dordrecht

24. Grüttner K (2015) Application mapping and communication synthesis for object-oriented
platform-based design. Ph.D. thesis, Carl von Ossietzky University Oldenburg

25. Ha S, Kim S, Lee C, Yi Y, Kwon S, Joo YP (2008) Peace: a hardware-software codesign
environment for multimedia embedded systems. ACM Trans Des Autom Electron Syst
12(3):24:1–24:25. doi:10.1145/1255456.1255461

26. Hong S, Yoo S, Lee S, Lee S, Nam HJ, Yoo BS, Hwang J, Song D, Kim J, Kim J, Jin H, Choi
KM, Kong JT, Eo S (2006) Creation and utilization of a virtual platform for embedded software
optimization: an industrial case study, Seoul

27. Kangas T, Kukkala P, Orsila H, Salminen E, Hännikäinen M, Hämäläinen TD, Riihimäki J,
Kuusilinna K (2006) UML-based multiprocessor SoC design framework. ACM Trans Embed
Comput Syst 5(2):281–320. doi:10.1145/1151074.1151077

28. Keinert J, Streubühr M, Schlichter T, Falk J, Gladigau J, Haubelt C, Teich J, Meredith M (2009)
SystemCoDesigner – an automatic ESL synthesis approach by design space exploration and
behavioral synthesis for streaming applications. Trans Des Autom Electron Syst 14(1):1:1–
1:23

29. Lee D, Park H, Gerstlauer A (2012) Synthesis of optimized hardware transactors from
abstract communication specifications. In: Proceedings of the international conference on
hardware/software codesign and system synthesis (CODES+ISSS)

30. Nikolov H, Thompson M, Stefanov T, Pimentel A, Polstra S, Bose R, Zissulescu C, Deprettere
E (2008) Daedalus: toward composable multimedia MP-SoC design. In: Proceedings of the
design automation conference (DAC 2008), pp 574–579

31. Razaghi P, Gerstlauer A (2014) Host-compiled multi-core system simulation for early real-time
performance evaluation. ACM Trans Embed Comput Syst (TECS) 13(5s):166:1–166:26

32. Ritz S, Pankert M, Zivojnvic V, Meyr H (1993) High-level software synthesis for the design of
communication systems. IEEE J Sel Areas Commun 11(3)348–358. doi:10.1109/49.219550

33. Samei Y, Dömer R (2014) Automated estimation of power consumption for rapid system level
design. In: Proceedings of the IEEE international performance computing and communications
conference

34. Samei Y, Dömer R (2014) Powermonitor: a versatile API for automated power-aware ESL
design. In: Proceedings of the forum on specification and design languages (FDL)

35. Schirner G, Dömer R (2009) Quantitative analysis of the speed/accuracy trade-off in transac-
tion level modeling. ACM Trans Embed Comput Syst (TECS) 8(1):4:1–4:29

36. Schirner G, Dömer R, Gerstlauer A (2009) High-level development, modeling and automatic
generation of hardware-dependent software. In: Ecker W, Müller W, Dömer R (eds) Hardware
dependent software: principles and practice. Springer, Berlin

37. Schirner G, Gerstlauer A, Dömer R (2008) Automatic generation of hardware dependent
software for MPSoCs from abstract system specifications. In: Proceedings of the design
automation conference. Asia and South Pacific (ASPDAC), Seoul

38. Schirner G, Gerstlauer A, Dömer R (2010) Fast and accurate processor models for efficient
MPSoC design. ACM Trans Des Autom Electron Syst (TODAES) 15(2):10:1–10:26

http://dx.doi.org/10.1145/1255456.1255461
http://dx.doi.org/10.1145/1151074.1151077
http://dx.doi.org/10.1109/49.219550

1050 G. Schirner et al.

39. Viskic I, Dömer R (2006) A flexible, syntax independent representation (SIR) for system level
design models. In: Proceedings of the EUROMICRO conference on digital system design
(DSD), pp 288–294

40. Yu H, Dömer R, Gajski D (2004) Embedded software generation from system level design
languages. In: Proceedings of the design automation conference. Asia and South Pacific
(ASPDAC), Yokohama

41. Zhang J, Schirner G (2014) Automatic specification granularity tuning for design space
exploration. In: Proceedings of the ACM/IEEE conference on design, automation & test in
Europe (DATE), Dresden. doi:10.7873/DATE.2014.227

42. Zhang J, Schirner G (2015) Towards closing the specification gap by integrating algorithm-
level and system-level design. Des Autom Embed Syst (DAEM) 19:389–419. Springer.
doi:10.1007/s10617-015-9161-1

43. Zhang J, Tang S, Schirner G (2015) Reducing dynamic dispatch overhead (DDO) of SLDL-
synthesized embedded software. In: Asia and South Pacific design automation conference
(ASPDAC), Chiba

http://dx.doi.org/10.7873/DATE.2014.227
http://dx.doi.org/10.1007/s10617-015-9161-1

32Metamodeling and Code Generation in the
Hardware/Software Interface Domain

Wolfgang Ecker and Johannes Schreiner

Abstract

In the HW/SW interface domain, specification of memory architecture and
software-accessible hardware registers are both relevant for the implementation
of hardware and the firmware running on it. Automated code generation of both
HW and SW artifacts from a shared data source is a well-established method
to ensure consistency. Metamodeling is a key technology to ease such code
generation and to formalize the data structures target code is generated from.
While this can be utilized for a wide range of automation and generation tasks, it
is particularly useful for bridging the HW/SW design gap.

Metamodeling is the basis for the construction of large model-driven automa-
tion solutions that go far beyond simple code generation solutions. Based on
the formalization metamodels provide, models can be incrementally transformed
and combined to create more refined models for particular design tasks. IP-
XACT and UML/SysML can be utilized within the scope of metamodeling.
The utilization of these standards and the development of custom metamodels
– targeted to specific design tasks – have proven to be highly successful and
promise large potential for further productivity increase.

Acronyms

AHB Advanced High-performance Bus
APB Advanced Peripheral Bus
API Application Programming Interface
AST Abstract Syntax Tree
AXI Advanced eXtensible Interface
BNF Backus-Naur Form
CIM Computation Independent Model

W. Ecker (�) • J. Schreiner
Infineon Technologies AG, Neubiberg, Germany
e-mail: wolfgang.ecker@infineon.com; johannes.schreiner@infineon.com

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_32

1051

mailto:wolfgang.ecker@infineon.com
mailto:johannes.schreiner@infineon.com

1052 W. Ecker and J. Schreiner

CPU Central Processing Unit
DMA Direct Memory Access
EBNF Extended Backus-Naur Form
EDA Electronic Design Automation
EMF Eclipse Modeling-Framework
GUI Graphical User Interface
HDL Hardware Description Language
HLS High-Level Synthesis
HTML Hypertext Markup Language
HW Hardware
IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property
JSON JavaScript Object Notation
MDA Model-Driven Architecture
MoC Model of Computation
MOF Meta Object Facility
OCL Object Constraint Language
OMG Object Management Group
PIM Platform Independent Model
PSM Program State Machine
RTL Register Transfer Level
SoC System-on-Chip
SPI Serial Peripheral Interface
SW Software
TLM Transaction-Level Model
UML Unified Modeling Language
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
XMI XML Metadata Interchange
XML Extensible Markup Language
XSD XML Schema
XSLT Extensible Stylesheet Language Transformations

Contents

32.1 Introduction . 1053
32.2 What Is Metamodeling About . 1054

32.2.1 A First Example . 1055
32.2.2 Terminology . 1061
32.2.3 History and Known Technologies . 1064
32.2.4 The Case for Metamodeling . 1065

32.3 A Formal Model of Metamodeling . 1066
32.3.1 Basic Definitions . 1066
32.3.2 A Formal Representation of a Model . 1068
32.3.3 Metamodel Constraints on Models . 1072

32 Metamodeling and Code Generation in the Hardware/Software : : : 1053

32.4 Metamodeling for HW/SW Codesign . 1074
32.4.1 Metamodeling Frameworks . 1074
32.4.2 Related Standards . 1082

32.5 Generation . 1087
32.6 Conclusion . 1089
References . 1089

32.1 Introduction

Productivity increases in the design of embedded systems always built on the idea
of predesigning modules from smaller components, providing an abstract model
and other views and packaging all that together for use in a higher-level design
environment.

First, semi-custom design prepacked transistors to logic gates and provided
models with logic functions, propagation delay, and a graphical representation
symbolizing the functionality of the gate. Typical representatives for prepacked
gates are AND gates with two, three, or four inputs and one output or a D flip-flop
with clock, reset, and data (normally called D) input and one output (normally called
Q). This packing also enabled the use of gates in a schematic editor which provides
a graphical view of the model. This stage of development permitted increasingly
complex designs which could no longer be manually handled on the lower levels
of abstraction. The final layouts were therefore done by fully automatic place and
route tools.

Next, gates were prepacked to RT components, associated with register-transfer
functionality and with untimed or clock-related timing. The packing was enriched
with schematic views, with operators or program constructs and their mapping to
the RT components. A good example for this is an adder which supports various
sized inputs and the associated information that a “C”-operator can be mapped to
it. The essential achievement of this abstraction is that RTL synthesis tools can map
RTL descriptions to gate-level netlists in an automated way.

Further pursuing this approach, IP components were introduced that were pre-
implemented in RTL and associated with more abstract TLM models to enable early
and efficient simulations of multimillion – if not billion – transistor chips. Although
that approach is now about 15 years old, this technique is not fully established.
If established, generation of TLM and RTL top levels – i.e., abstract model and
implementation – from a single source model is not a widely used approach. This
is one of the main reasons for delayed introduction of automated IP-based design
with TLM models: automation as provided by layout and RTL synthesis tools is
not available. Further abstraction – except for some prepacked subsystems – is not
widely used today [21].

Solely relying on the reuse of prepackaged items makes it very hard to implement
innovative products since innovation is limited to novel combination of pre-
implemented items. To address this limitation, RTL synthesis provided an additional

1054 W. Ecker and J. Schreiner

abstraction: the ability to describe the behavior of a design using sequential
constructs known from programming languages following a specific coding style.
By applying a mapping – called inference in the RTL domain – these sequential
constructs are mapped to RTL netlists and RTL primitive components that are then
further optimized and synthesized as described above. For example, an if-statement
causes the insertion of multiplexers for all signals assigned in the statement
blocks.

The increase of productivity in RTL-synthesis provided for a wide range of
digital designs through behavioral constructs could however not be repeated.
High-Level Synthesis (HLS) tools, state machine synthesizers, or processor gener-
ation tools – to name only some – could improve productivity only in very limited
fields of application. Moreover, reuse and composition of IP components do not
give the productivity increase that is often claimed since they help to design chips
with a lot of transistors, yet the transistors still need plenty of custom firmware and
software on top of them to work properly.

If a single tool cannot provide system-level automation – i.e., automation beyond
implementation level – for a wide range of applications, why not use a tool suite
with tools that follow the same concept, interact, and together provide a wide
range of automation [8]. This approach is exemplified by Office suites which
provide a collection of tools for presentations, text documents, spreadsheets, project
management, and much more.

However, simple scripting as successfully used by many designers (see, e.g.,
[27]) is too expensive to provide a sufficient number of tools at an acceptable
cost and effort. Metamodeling techniques [7] provide a substantial measure to
dramatically shorten the building time of such tools. Therefore metamodeling is
one key technology to enable system-level automation via tool suites and to ease the
interaction between tools which are part of these tool suites.

The goal of this book section is to introduce metamodeling in general and to
show how it helps to increase productivity around the HW/SW interface. In the
first subsection, we introduce the general concept of metamodeling and show early
metamodeling technologies. Afterward, we give a formal definition of a metamodel
illustrating the formalization and giving an idea, on how metamodels can be used in
a formalized design process. Finally, we describe some metamodeling techniques in
use, show the idea of automatic view generation around the HW/SW interface, and
illustrate the basic structure of a metamodeling framework.

32.2 What Is Metamodeling About

First of all, metamodeling is different from other modeling approaches and also uses
the term model differently than, e.g., in semi-custom or RTL design. This is further
elaborated in Sect. 32.2.2. In metamodeling, a model describes an entity, mostly
an intended design by its properties, its sub-entities, and the relationships between
them.

32 Metamodeling and Code Generation in the Hardware/Software : : : 1055

32.2.1 A First Example

32.2.1.1 A Simplified View on the HW/SW Interface
Figure 32.1 shows a very simple metamodel of an IP’s register interface. Compa-
rable register interfaces are a key component of generic HW/SW interfaces. The
HW/SW interface works basically as follows:

• By writing a value to the base address of the IP plus an internal offset, a
value is passed from software to hardware. From the SW point of view, this is
similar to writing to a memory cell. Therefore, SW can treat those addresses as
special variables. Additionally hardware can be attached to the register, e.g., to
trigger actions when the register is accessed or when a specific value is written.
Connection of the registers to the IP-HW is done via wires. IP-HW then processes
the values of those wires.

• Storing a value in the bitfield from the hardware side or giving access to HW
wires via the bitfield provides a way for the software to read a value from
hardware. After having read the register the bitfield resides in, the software can
further process the value. Similar to writing of values, SW handles the values
read from the IP-HW like values from a memory. They can thus be treated like
special variables in the software context.

In the following we focus on this basic mechanism, ignoring that there are
additional possibilities for HW/SW interfaces such as CPU accessible special
function registers, interrupts, or DMA request lines. When taking a closer look at
the conceptual description above and considering the abstraction levels mentioned
in the introduction, it becomes clear that several levels of abstraction with the same
or different Model of Computation are bridged:

• The software side follows primarily a sequential, control flow-oriented execution
order. The software is mostly developed in C and C++ – although assembler code

Component

Name : string [1]

Bitfield

Size : int [1]

Offset : int [1]

HWr : bool [1]

HWw : bool [1]

SWr : bool [1]

SWw : bool [1]

Description

Name : string [1]

Comment : string [0..1]

Register

Size : int [1]

Offset : int [1]
*

*

Fig. 32.1 Simple metamodel of register interfaces

1056 W. Ecker and J. Schreiner

is still used. These descriptions do not contain timing information and individual
threads of execution have no degree of parallelism.

• The hardware side follows several concepts. Depending on the level of abstrac-
tion the hardware is observed from, it uses different modeling languages:
– When observed from the gate-level perspective, connected timed primitives

mostly described in Verilog are used.
– On RTL, additional synchronous control flow or data flow is an appropriate

view, typically modeled in VHDL or SystemVerilog.
– TLM communicating processes are mostly coded in SystemC.

32.2.1.2 A First Metamodel
Instead of trying to make one model composed of sub-models, each following an
own model of computation and being interlinked with a multi-domain formalism
as proposed in [12], metamodels follow another idea: metamodels identify involved
entities and define their attributes and relations. Further, metamodels also define
constraints such as types, valid values, or valid multiplicity.

Figure 32.1 shows the definitions for the key entities involved in a HW/SW
interface: Component, Register, and Bitfield. Component is the root
node. In this model, it has a required string attribute Name and an unlimited number
of registers. The latter is shown by the association arrow and the multiplicity *.
Each Register has the mandatory attribute Offset, specifying the offset of
the register in the address space of the component. Since a register must have this
attribute, its multiplicity is set to 1. In addition, the offset must be a number which
is defined by the type int of the attribute. Similarly, the register has a definition of
its Size.

Finally, a register has one or more bitfields, again shown by the association
arrow pointing at Bitfield and the multiplicity 1..*. A Bitfield has an
offset Offset in the bit space of the register and a Size. Their type is int since
both must be an integer number. Both have multiplicity 1 since they are mandatory
attributes for a bitfield. To specify how a bitfield can be accessed, our register meta-
model has four mandatory Boolean attributes SWreadable, HWreadable, SWwritable,
and HWwritable.

Figure 32.1 also shows two Unified Modeling Language (UML) generaliza-
tion arrows. These arrows point from the entities Register and Bitfield
to Description. They indicate that the entities Register and Bitfield
acquire all attributes and associations from the arrow target Description.
Since Description has the mandatory string attribute Name and the optional
string attribute Comment, Register and Bitfield have these attributes too.
Of course, Register and Bitfield acquire all properties of these attributes as
well. Thus, inheritance does not provide additional measures to describe entities;
however, it simplifies and structures the description of their properties.

If you noticed that Fig. 32.1 resembles a UML class diagram, you are right:
Fig. 32.1 was captured with DoUML, an open-source UML editor [24]. Although
metamodels and UML class diagrams have many things in common, they are not the
same. As we will see later, metamodels are used in UML to define class diagrams.

32 Metamodeling and Code Generation in the Hardware/Software : : : 1057

32.2.1.3 A First Model
With a metamodel at hand, a so-called model can be built that meets the constraints
of the metamodel. In other words, legal instances of the metamodel can be built.
The metamodeling technique follows the idea of separation of model and view,
RTL models or SystemC-TLM models are thus called views in metamodeling terms.
Before we discuss views in Sect. 32.2.1.4, we take a closer look at a model.

Figure 32.2 shows an example of a model specified in a graphical way using a
UML object diagram. The model describes one instance of Component, its two
registers R1 and R2 and its four bitfields B1 to B4. All Name attributes are set,
i.e., the multiplicity constraints imposed from the metamodel are satisfied here. No
Comment is set here which is legal since its multiplicity defined in the metamodel
makes the attribute optional. All other mandatory attributes are set. The attributes
Offset and Size are set to integer values, and HWr, HWw, SWr, and SWw are set
to the Boolean values True or False.

There are further constraints originating from the semantics underlying the
domain modeled here. These constraints are also met, which are easily compre-
hensible when looking at the diagrams. For example, every bitfield can either be
read or written from each design domain, i.e., at least readable or the writable from
software, as well as at least readable or writable from hardware. Further, the size of
the bitfields is smaller than the size of the register. Since these additional constraints
cannot be shown in a graphical way, they can be annotated in the tool capturing
the metamodel either using a specific constraint language such as Object Constraint
Language (OCL) (see [33]) or a programming language.

The model describes a component called Simple. This component has two 16-
bit registers R0 and R1. R0 is at the relative address 0 and R1 at the relative address
1. In contrast to what one might assume, the register does not describe a storage
element in our model. Instead, it only describes an addressable shell. Bitfields are
responsible for holding data and therefore the access rights are specified here. In
our case, if a bitfield cannot be written from the SW side, the value intended to be
written via the register access is simply ignored. If it cannot be read, then the value

Simple:Component

Name = Simple

R1:Register

Name = R1

Offset = 1

Size = 16

R0:Register

Name = R0

Offset = 0

Size = 16

B1:Bitfield

HWr = False

HWw = True

Name = B1

Offset = 0

SWr = True

SWw = True

Size = 16

B2:Bitfield

HWr = True

HWw = False

Name = B2

Offset = 0

SWr = False

SWw = True

Size = 1

B3:Bitfield

HWr = False

HWw = True

Name = B3

Offset = 1

SWr = True

SWw = False

Size = 1

B4:Bitfield

HWr = False

HWw = True

Name = B4

Offset = 2

SWr = True

SWw = False

Size = 1

Fig. 32.2 Simple model of a register interface

1058 W. Ecker and J. Schreiner

0 is returned. On the HW side, read and write access flags determine if there is a line
from the register field to the HW core of the IP. The value written to HW is stored in
a temporary register and the read value is directly taken from the IP core. These are
all assumptions underlying our simplistic model. Industrial strength models such as
IP-XACT (see Sect. 32.4.2.1) offer a wider range of possibilities here.

In addition to the UML diagram specification, models can be specified in many
other ways, using, e.g., XML, JSON, or spreadsheets. It is important to assert that
there is only one place where – and only one way how – the model is defined. This is
called single source approach and prevents inconsistencies. It is especially important
on the HW/SW interface since several design domains are bridged here.

32.2.1.4 First Views

Documentation
For this model, several views exist in the design process. One of them is doc-
umentation. A tabular representation of such a documentation view is shown in
Table 32.1. This view is used, e.g., by the verification engineers validating the
interface, the software and hardware engineers making the interface, and by the
customer developing software for the product the IP is integrated in. This table and
all views shown here are simplified to provide a better perspective on the overall
methodology. For an industrial documentation, please take a look, e.g., at [17].

RTL Code
A possible RTL view of our model is shown in Fig. 32.3. The bus interface is
assumed to consist only of Addr, DataIn, DataOut, En, and Wr. En is “1” if
the IP is accessed and Wr is “1” if a register should be written. Bus and register are
assumed to have the same clock and reset signal and there is no pipelining or other
delay on the bus. Of course, component metamodels such as the aforementioned
IP-XACT have possibilities to define more sophisticated buses (e.g., AXI, AHB, or
APB) which then lead to more complex bus interfaces. However, they follow the
same basic concept that is introduced here.

The first process SW_WRITE is responsible for write accesses from the SW
side and the second process SW_READ for read accesses. The first process is also
responsible for the inference of the synchronous memory elements needed for

Table 32.1 Simple component register documentation table

Component : Simple

Register Bitfield

Name Offset Size Name Offset Size HWr HWw SWr SWw

R0 0 16 B1 0 16 False T rue T rue T rue

R1 1 16 B2 0 1 T rue False False T rue

B3 1 1 False T rue T rue False

B4 2 1 False T rue T rue False

32 Metamodeling and Code Generation in the Hardware/Software : : : 1059

1 e n t i t y SimpleRegs
2 port (
3 −− Gener i c I n t e r f a c e
4 Clk , Rs t : in s t d _ u l o g i c ;
5 −− \ acs {CPU} I n t e r f a c e
6 Addr : in s t d _ l o g i c _ v e c t o r (15 downto 0) ;
7 D a t a I n : in s t d _ l o g i c _ v e c t o r (15 downto 0) ;
8 En , Wr : in s t d _ l o g i c ;
9 DataOut : out s t d _ l o g i c _ v e c t o r (15 downto 0) ;

10 −− \ acs {HW} I n t e r f a c e
11 R0_B1_i : in s t d _ l o g i c _ v e c t o r (15 downto 0) ;
12 R0_B1_o : out s t d _ l o g i c _ v e c t o r (15 downto 0) ;
13 R1_B2_o : out s t d _ l o g i c ;
14 R1_B3_i : in s t d _ l o g i c ;
15 R1_B4_i : in s t d _ l o g i c
16) ;
17 end e n t i t y r e g s ;
18
19 a r c h i t e c t u r e \ a c s {RTL} of SimpleRegs i s
20 begin
21 SW_WRITE: p r o c e s s (Clk , Rs t)
22 i f Rst = ’1 ’ then
23 R1_B2_o <= ’ 0 ’ ; R0_B1_o <= (o t h e r s => ’ 0 ’) ;
24 e l s i f r i s i n g _ e d g e (Clk) then
25 i f En = ’1 ’ and Wr = ’1 ’ then
26 case Addr i s
27 when B" 0000 _0000_0000_0000 " => R0_B1_o <= D a ta In ;
28 when B" 0000 _0000_0000_0001 " => R1_B2_o <= D a ta In (1) ;
29 end cas e ;
30 end i f ;
31 e n d i f ;
32 end p r o c e s s ;
33 SW_READ: p r o c e s s (En , Addr)
34 begin
35 i f En = ’1 ’ and Wr = ’0 ’ then
36 case Addr i s
37 when B" 0000 _0000_0000_0000 " =>
38 DataOut <= R0_B1_i ;
39 when B" 0000 _0000_0000_0001 " =>
40 DataOut <= " 0 " & R1_B3_i & R1_B4_i & B" 0 _0000_0000_0000 " ;
41 when o t h e r s => DataOut <= X" 0000 " ;
42 end cas e ;
43 e l s e
44 DataOut <= X" 0000 " ;
45 end i f ;
46 end p r o c e s s ;
47 end a r c h i t e c t u r e RTL ;

Fig. 32.3 VHDL file

storing the bitfield values written by the software. The second process is responsible
for the multiplexers needed to provide the right value to SW via the port DataOut.
The bitfields which cannot be accessed from SW are simply omitted. Similarly,
only those bitfields marked to be SW readable contribute to the value to be passed
to SW. All bits of a register with no bitfield contribution are filled with 0 as shown
in line 40.

1060 W. Ecker and J. Schreiner

If a bitfield is written and read from the same party – as the case for bitfield B1
of our example – then the IP-HW is responsible to feed either the same value back
or a different one. It is worth noting that it is therefore not guaranteed that the same
value which is written is read back.

For each bitfield that is read by the hardware, a port is created. Port R0_B1_o in
line 12 illustrates the format of the names of these ports: They consist of the name
of the register the bitfield is part of (R0), the bitfield’s name (B1), and a character
indicating the direction (o). These elements are concatenated to the port name with
underscores (_).

Correspondingly, ports are created for bitfields written by the hardware. Finally,
for each bitfield’s port, a type is selected which both matches with its size and can
be merged to a legal value of DataOut.

C-Header File
Figure 32.4 shows a possible firmware view of the HW/SW interface. For each
register, a struct with elements representing the bitfields is created. The size of
a bitfield is defined using the “:” operator followed by the size. The type is
always uint16_t indicating a 16-bit wide unsigned integer. The keyword volatile
indicates that the bitfields may be modified outside the software. The compiler thus
cannot cache the values, e.g., in a CPU register or optimize the number of read
accesses and must access the raw bitfield every time it is used by the software (i.e.,
generally the C-code).

The registers are then combined to an overall register interface reg_t us-
ing another struct. Assuming an instance SimpleInst0 and a pointer called
SimpleInst0Ptr .see Line 17/, then bitfield b2 can be accessed by:

SimpleInst0Ptr	>r1.b2

However, different C compilers won’t accept this coding style since “:” is not
generally supported. Further, unit16_t may not result in the intended result.

1 s t r u c t r 0 _ t {
2 v o l a t i l e u i n t 1 6 _ t b1 : 1 6 ;
3 } ;
4
5 s t r u c t r 1 _ t {
6 v o l a t i l e u i n t 1 6 _ t b2 : 1 ;
7 v o l a t i l e u i n t 1 6 _ t b3 : 1 ;
8 v o l a t i l e u i n t 1 6 _ t b4 : 1 ;
9 c o n s t u i n t 3 2 _ t unused : 1 3 ;

10 } ;
11
12 s t r u c t r e g _ t {
13 v o l a t i l e r 0 _ t r0 ;
14 v o l a t i l e r 1 _ t r1 ;
15 } ;
16
17 r e g _ t ∗ S i m p l e I n s t 0 P t r ;

Fig. 32.4 C-header file

32 Metamodeling and Code Generation in the Hardware/Software : : : 1061

1 s t r u c t r e g _ t {
2 v o l a t i l e b u s _ t r0 ;
3 v o l a t i l e b u s _ t r1 ;
4 } ;
5
6 r e g _ t ∗ S i m p l e I n s t 0 P t r ;
7
8 i n l i n e boo l GetR1B3 (r e g _ t ∗ rp) {
9 re turn (boo l) ((rp −>r1) >> 1) & 0x01) ;

10 }

Fig. 32.5 Another C-header file

To address this, a style similar to Fig. 32.5 might be needed. Here, inline
functions are used to access the bitfields. Line 8 shows how access to the bitfields is
provided using a combination of shift, mask, and type cast.

There may be even more styles and variants of C’s HW/SW interface view since
bus_t and boolmay not be supported. For example, macros could be used instead
of inline functions. For an overview of different coding styles, see, e.g., Chap. 5
“Hardware/Software Interface” of [6]. The important aspect of the metamodeling
approach is the guaranteed consistency of all these views which is ensured by code
generation from the same specification source.

So far, we have only seen a model as instance of a metamodel and as an additional
view to all the existing views. Before identifying the case for metamodeling in
Sect. 32.2.4, let’s discuss the metamodeling terminology and take a look at the
evolution of metamodeling over the last decades.

32.2.2 Terminology

32.2.2.1 Metamodel
So far, we simply accepted the term metamodel as something that constrains a model
but we did not dig deeper into the prefix meta. As opposed to metaphysics, which
is not a specific domain of physics but a branch of philosophy, metamodeling is a
term from computer science.

The relationship between both terms is that meta stands for beyond . While
metaphysics deals with questions about the fundamental nature of being [13],
metamodeling deals with fundamental concept of a model. Therefore, a metamodel
models the domain of a model. In other words, a metamodel is a model of a model.

This definition is in line with the things that were already said about metamodel-
ing. Our simple metamodel example models the domain of the HW/SW interface. It
is a guide – and also a constraint – for each specific model of the HW/SW interface
of a component.

32.2.2.2 Metametamodel
There is however also a metamodeling domain. The models of this domain are
metamodels. These models of the metamodeling domain in turn have their own

1062 W. Ecker and J. Schreiner

SubClass

Name : string [0..1]

Metametamodel

Name : string [1]

Class

Name : string [1]

Attribute

Name : string [1]

Type : string [1]

Multiplicity

MinOccurs : int [1]

MaxOccurs : int [1]

root

1

*

1

*

Fig. 32.6 Meta-metamodel

metamodels describing them. In other words, each model of the metamodeling
domain (a metamodel) is an instance of its own metamodel; the metamodel thus
has a metamodel. When viewed from the modeling domain, each model m has a
metamodel mm. As this metamodel mm also has a metamodel, the latter is the
meta-metamodel mmm of m.

An example of a meta-metamodel is shown in Fig. 32.6. It describes that a
metamodel has a root class which has other classes and attributes, both of them
in any multiplicity. Therefore, a class references a container for a subclass, which
potentially redefines the name and specifies the multiplicity. For simplicity, base
classes are not shown here. This does not reduce the expressiveness of the meta-
metamodel since they do not contribute to the modeling possibilities as such.

Interestingly, this meta-metamodel can be defined using the formalism that is
also used for the metamodel. This concept is not unusual in computer science. For
example, the BNF grammar can be defined using an BNF grammar itself (see [34]).
This is a hint that there might not be a meta-meta-metamodel, although there is some
research to find this even more basic model.

Figure 32.7 shows the component metamodel from Fig. 32.1 as an instance of
the meta-metamodel shown in Fig. 32.7. The object ComponentMM is the root
node in the meta-metamodel instance named ComponentMM. Its only associated
object Register of type Class is the root node of the metamodel. Its associated
objects Offset, Size, and Name of type Attribute specify the attributes of
Register. The object Register also has an associated Subclass object defining
that the associated object Bitfield of type Class. The multiplicity 1..*
of this association is represented by MaxOccurs=1 and MinOccurs=-1. The
Bitfield class has seven attribute objects associated with, three of which are not
completely shown.

32.2.2.3 Metamodeling Layers
The relationships of the introduced artifacts, views, models, metamodels, and meta-
metamodels, are pictured in Fig. 32.8. Here, we see that the artifacts are labeled
from M0 to M3, a terminology introduced by OMG (see [22]). We also see that
the higher numbered artifacts define the structure of their directly lower numbered
artifact. In turn, the lower labeled artifacts are an instance of – or in other words
comply to – their directly higher numbered artifact. The M0-M1 relation differs as

32 Metamodeling and Code Generation in the Hardware/Software : : : 1063

R
eg

is
te

r:C
la

ss

N
am

e
=

R
eg

is
te

r

C
om

po
ne

nt
M

M
:M

et
am

et
am

od
el

N
am

e
=

C
om

po
ne

nt
M

M

S
iz

e:
A

ttr
ib

ut
e

M
ax

O
cc

ur
s

=
1

M
in

O
cc

ur
s

=
1

N
am

e
=

S
iz

e

Ty
pe

 =
 in

t

N
am

e:
A

ttr
ib

ut
e

M
ax

O
cc

ur
s

=
1

M
in

O
cc

ur
s

=
1

N
am

e
=

N
am

e

Ty
pe

 =
 s

tri
ng

O
ffs

et
:A

ttr
ib

ut
e

M
ax

O
cc

ur
s

=
1

M
in

O
cc

ur
s

=
1

N
am

e
=

O
ffs

et

Ty
pe

 =
 in

t

B
itf

ie
ld

:C
la

ss

N
am

e
=

B
itf

ie
ld

O
ffs

et
1:

A
ttr

ib
ut

e

M
ax

O
cc

ur
s

=
1

M
in

O
cc

ur
s

=
1

N
am

e
=

O
ffs

et

Ty
pe

 =
 in

t

S
iz

e1
:A

ttr
ib

ut
e

M
ax

O
cc

ur
s

=
1

M
in

O
cc

ur
s

=
1

N
am

e
=

S
iz

e

Ty
pe

 =
 in

t

N
am

e1
:A

ttr
ib

ut
e

M
ax

O
cc

ur
s

=
1

M
in

O
cc

ur
s

=
1

N
am

e
=

N
am

e

Ty
pe

 =
 s

tri
ng

H
W

r:A
ttr

ib
ut

e

M
ax

O
cc

ur
s

=
1

M
in

O
cc

ur
s

=
1

N
am

e
=

H
W

r

Ty
pe

 =
 b

oo
l

H
W

w
:A

ttr
ib

ut
e

S
W

r:A
ttr

ib
ut

e
S

W
w

:A
ttr

ib
ut

e

B
:S

ub
C

la
ss

M
ax

O
cc

ur
s

=
1

M
in

O
cc

ur
s

=
-1

Fi
g

.
3

2
.7

M
et

a-
m

et
am

od
el

in
st

an
ce

:c
om

po
ne

nt

1064 W. Ecker and J. Schreiner

Defines Modeling Elements and
Constraints of Meta-Model

M3:
MetaMeta-
Model

Defines Structure

(meta- meta model)

M2:
Meta-
Model

Defines Modeling Elements and
Constraints of Model

Defines Structure

M1:
Model

Defines content of view language
independently

Defines Content

M0:
View Implementation of content

“Real World”

number

0

200

400

600

800

1000

1200

Test Chip Card Wireless

number

Instance-of

Instance-of

Instance-of

Fig. 32.8 View, model, metamodel, and meta-metamodel

it is a content wise and not a structural dependency. In some cases, this dependency
may also be structural, as the introduction of model-to-model transformations in
Sect. 32.4.2.3 shows.

Although the depicted designation of layers is widely accepted, there are two
alternative approaches. A small set of publications follow the idea that HW design
deals with models, i.e., what we call a view is in their definition a model. Conse-
quently, what we refer to as models, metamodel, and meta-metamodels becomes
metamodel, meta-metamodel, and meta-meta-metamodel. This definition however
is not that useful in the HW/SW interface domain, since neither documentation nor
the C-code are models.

Another definition of layers is used in the Eclipse Modeling-Framework (EMF)
world (see Sect. 32.4.1.4). Here, the running program embedded in the Eclipse
framework is seen as world, i.e., being level M0. Unfortunately the data of the
program is nothing else than our model. Since they are part of the “world,” a
model in the Eclipse terminology defines the structure of the data, which is – in
our terminology – a metamodel. Consequently, the terminology is shifted one level
down and only has view, model, and metamodel.

For the rest of the book chapter, we will follow the widely used OMG definition
as depicted in Fig. 32.8.

32.2.3 History and Known Technologies

Metamodeling is not as new as it sounds. The basic idea was introduced about
40 years ago by Chen. In those days, it was called entity-relationship model (see

32 Metamodeling and Code Generation in the Hardware/Software : : : 1065

[3]). Most of the metamodeling concepts introduced above were either already
there or introduced some years later by Smith and Smith (see [29]). From there
on, they were continuously improved, especially in the domain of databases. It is
therefore no surprise that there is still a relationship between database schemas and
metamodels. Entity relationship diagrams were also used in the definition phase of
the Jessi Common Framework Initiative (see e.g., [35]), now used to define entities
in the hardware domain. First, mainly structurally oriented entities were modeled.
The definition of the EDIF Information Model by Kahn (see [18]) used the entity-
relationship methodology also named information model here. Due to complexity, it
was expressed in a textual form using the EXPRESS notation (see [26]). The entity-
relationship notation was however not limited to structural things. Soon later Kahn
and Guimale defined an information model for VHDL that covered behavior and
time as well [14]. A summary of all the work around entity-relationship models of
hardware was collected in [2]. Here, the term metamodeling was already used in
conjunction with hardware modeling.

Unfortunately, research activities around metamodeling in the hardware domain
cooled down for a while. The Open Access Database (see [15]), intended to store
hardware design data, was, for example, associated with an API, however not
with an unambiguous metamodel. Fortunately, metamodeling grew further in the
software world under the umbrella of the OMG. The design of XML, UML, and
other technologies was based on metamodels.

32.2.4 The Case for Metamodeling

After having seen that metamodeling is not that new a concept in hardware design,
this section now discusses the benefits of metamodeling in the design process.
We ended Sect. 32.2.1.2 with the statement that so far, metamodeling is just an
additional view in the design of the HW/SW interface. The following carves out
the benefits of metamodeling, making it a very useful technology in the TLM area
and HW/SW interface automation area.

The first benefit is that the views illustrated in this chapter’s examples – and many
more – can be generated from a model. Therefore, generators have to be built that
translate the content of the model to the syntax of the target view. So, all but one
view – the model – can be completely derived from the model and no longer need
to be developed manually.

The second benefit is that the content of the model must not necessarily be
entered manually. Often, parts of the model are already defined in a specification.
By providing a specification reader – or a single source for specification and model
– additional time can be saved and consistency between specification and design
views can be improved, if not guaranteed.

The third benefit is that big parts – especially the APIs – of the software needed
to read the specification and to write the views can be automatically generated
from a metamodel. Going hand in hand with that step, a good documentation via
the metamodel diagram and a consistent way of treating models is achieved. This

1066 W. Ecker and J. Schreiner

MODELInput
Specifica�on

Reader

so on

se
t A

PI Writer

get API

Meta
MODELse

t A
PI

get API
VHDL

C

Input
Specifica�on

Reader

Writer

Fig. 32.9 Concept of a metamodeling framework

is nothing else than the application of modeling and generation techniques to the
construction of the automation tools.

All this is summarized in Fig. 32.9. Since not stated explicitly yet, a further detail
worth noting, the APIs needed to handle different metamodels can be also generated
from the meta-metamodel.

In order to build such a framework in a safe way, a good formal basis is needed.
Diagrams, as shown so far, give a good overview but are less suited to define all
details. In the next part of this chapter, we therefore introduce the formal definition
of models and metamodels.

32.3 A Formal Model of Metamodeling

This section provides a formalization of metamodels, their models and the relation
between metamodel and model. The representation used in the following is based
on a set-oriented perspective on models. This approach was selected as it permits an
intuitive description of the constraints metamodels impose on their models.

32.3.1 Basic Definitions

Models consist of correlated objects which contain attributes. Both the correlations
and the attributes are named. Moreover, the attributes are multisets that contain some
values. The following definitions provide a formal definition of these names and of
the values that can be stored in model attributes.

32 Metamodeling and Code Generation in the Hardware/Software : : : 1067

32.3.1.1 Legal Names N of Correlations and Attributes
All legal names in a model are grouped in the set N . In this formal model, we
define this set as a set of words over an alphabet ˙ . The characters selected for
this alphabet can be picked from an arbitrary set. It is convenient to rely on a set
of words that can be easily mapped to potential view languages (i.e., words that are
legal identifiers in common programming and modeling languages). Equation 32.1
defines such a set N of valid names:

˙alphabet D fa; : : : ; z; A; : : : ; Zg; ˙numeric D f0; : : : ; 9g

N DL .˙alphabet .˙alphabet j˙numeric/
�/

(32.1)

where L .e/ describes the set of the regular language defined by the regular
expression e.

32.3.1.2 Legal Values for Attributes
Attributes in models are typed. These types define the possible values an attribute
can take and their interpretation. In this formal representation, type T0 is defined by
a set. This set contains all the values this type allows. An attribute of type T0 can
only take values v 2 T0.

In this formal model, some predefined types are provided. Each element in T D
fI; B; F; Sg defines such a type. Each type T0 2 T is a set, containing all the values
an attribute of the type T0 may take.

The predefined sets have the following content:

• S WD ˙� WD fw0 : : :wnjn 2 Ng [f�g is the set defining the language of all valid
strings. � is the empty word and ˙ is the alphabet of all possible characters.

• I is the set of all words representing valid integers.
• F is the set of all words representing valid floating point numbers.
• B WD fT rue; Falseg are the truth values of propositional logic.

The string type S occupies a special position here: It is a superset of any other
type. Consequently, it contains any value an attribute – regardless of its type – may
take:

8T0 2 T W T0 � S (32.2)

Each of sets introduced above has an infinite number of elements. Metamodeling
environments have predefined types such as integers of limited sizes and floating
point numbers of various precision, originating from the runtimes used or the
programming languages they are implemented in. They therefore provide subsets,
constraining the range of integers, the precision of floating point numbers, and the
length of elements in S which makes all type sets finite.

To work with attribute values, the metamodeling environment has to be able
to interpret the elements in the type sets. For example, integers are used in the

1068 W. Ecker and J. Schreiner

metamodel to define the minimum and maximum multiplicities of elements in the
model. To enforce these definitions and to work with the information they provide,
the metamodeling environment has to understand the integer type: It has to provide
a bijective mapping INTW I ! Z [f1g. Using this and other mappings, a runtime
environment can define operators such as addition and multiplication on integer or
floating point numbers.

32.3.2 A Formal Representation of a Model

32.3.2.1 The Set of All Models
This formal representation of models puts emphasis on the fact that everything is
a model. Section 32.2.2 illustrates that what is a model exclusively depends on the
point of view on the modeled system. Any model A becomes a metamodel not by
definition but because it is instance of a model we perceive as meta-metamodel.
Likewise, a model A can become a metamodel if there is a model C that is an
instance of A.

The set of all models M therefore contains models, metamodels, and the meta-
metamodel. Every modelm 2M that is part of this set has the same structure which
is defined in the following.

32.3.2.2 Definition of a Model
Each model m 2M is a tuple

m D .n;mm; O/ (32.3)

where n 2 N is the name of the model (an element from the set of all identifiers).
mm 2 M is the metamodel which m is instance of. The main part of the model is
the set of objects O . It contains the actual elements of a model.

32.3.2.3 The Set of All Objects O of a Model
Each object o 2 O is a tuple:

o D .c; i; A;K;R/ (32.4)

where

• c is the class definition of the object. This definition is an object of the metamodel
the model adheres to:

8m 2M; 8o 2 m:O W o:c 2 m:mm:O (32.5)

• i 2 I is the name or unique identifier of the object. As the name suggests, there
are never two objects in a model which have the same identifier:

8oi ; oj 2 m:O W oi :i D oj :i , oi D oj (32.6)

32 Metamodeling and Code Generation in the Hardware/Software : : : 1069

• A is a set of object specific attributes where each attribute a 2 A is a tuple of
name and assigned values:

a D .n 2 N;E/; E � S (32.7)

n is the name of the attribute and E is a multiset containing the attribute’s values.
If an attribute contains several identical values, the multiset E contains the value
several times. For each attribute, there is only one tuple in an object’s o:A set.
Equation 32.8 shows that if an attribute contains multiple values, these values are
all in the multiset of the same attribute tuple.

8ai ; aj 2 o:A W ai :n D aj :n) ai D aj (32.8)

The following will look at the elementsK andR of the object tuple o. Analogous
to the set of attributes A, both K and R are of a set of tuples .n 2 N;E/, where n is
a name and E is a set of values:

• K describes the children of the object o. Each element k 2 K is a tuple

k D .n 2 N;E/; E � I (32.9)

• R is the set of referenced objects. R describes referenced elements, a concept
we did not yet introduce. They are still included here as they are an essential
part of all modern metamodeling frameworks. References allow elements inside
models to refer to other elements at object granularity. They can be compared to
attributes containing a pointer to other objects instead of an attribute value. Each
element rk 2 R is a tuple

r D .n 2 N;E/; E � I (32.10)

Despite their largely similar structure, elements E which are part of tuples
belonging to K and R have a different interpretation than elements belonging to
tuples in A. The elements in E of an attribute contain actual values. In contrast, the
elements E in a reference tuple r or child tuple k contain unique identifiers of other
objects in the same model.

Example 1. The formal representation can now be used to describe any models as
an element m 2 M . Figure 32.10 provides an example for such a description. The
model depicted here is the same model we used for our introductory example in
Fig. 32.2.

Further Constraints Aside from the straightforward constraints already men-
tioned in the definition of the object tuple o, there are several further constraints:

• For every element e 2 E, there is an object in the same model which has an
identifier defined by the reference target t :

8m 2M; oi 2 m:O; r 2 oi :R; e 2 r:E W 9oj 2 m:O W oj :i D e (32.11)

1070 W. Ecker and J. Schreiner

m.O = {oSimple,oR0,oR1,oB1,oB2,oB3,oB4}

oSimple = (oComponent ,1,{(nName,{Simple})},

{(nRegister,{2,3})},f)

oR0 = (oRegister,2,{(nName,{R0}),(nO f f set ,{0}),(nSize,{16})},

{(nBit f ields,{4}})},f)

oR1 = (oRegister,3,{(nName,{R0}),(nO f f set ,{0}),(nSize,{16})},

{(nBit f ields,{5,6,7}})},f)

oB1 = (oBit f ield ,4,{(nName,{B1}),(nO f f set ,{0}),

(nHWr,{False}),(nHWw,{True}),

(nSWr,{True}),(nSWw,{True}),

(nSize,{16})},f ,f)

oB2 = (oBit f ield ,5,{(nName,{B2}),(nO f f set ,{0}),

(nHWr,{True}),(nHWw,{False}),

(nSWr,{False}),(nSWw,{True}),

(nSize,{1})},f ,f)

oB3 = (oBit f ield ,6,{(nName,{B3}),(nO f f set ,{1}),

(nHWr,{False}),(nHWw,{True}),

(nSWr,{True}),(nSWw,{False}),

(nSize,{1})},f ,f)

oB4 = (oBit f ield ,7,{(nName,{B4}),(nO f f set ,{2}),

(nHWr,{False}),(nHWw,{True}),

(nSWr,{True}),(nSWw,{False}),

(nSize,{1})},f ,f)

Fig. 32.10 An example of a model in its formalized representation

Because of Eq. 32.6, there is exactly one element for every identifier and the
reference is unique.

• Every object can be child of at most one element. In other words, every object
has at most one parent. If we pick any two different objects oi and oj of the
same model (therefore part of the same set m:O) and compare the intersection
of their sets of children oi :K and oj :K, we will find that it is the empty set.
Equation 32.12 illustrates that this is true if and only if we look at two different
objects oi and oj .

8oi ; oj 2 m:O 8ki 2 oi :K; kj 2 oj :K W ki :E \ kj :E ¤ � , oi D oj
(32.12)

32 Metamodeling and Code Generation in the Hardware/Software : : : 1071

• Every object is child of exactly one other object except for one object which is
said to be the model’s root. Equation 32.13 shows that there is exactly one object
for which no other object exists that contains the object in its set of children
(9Š is the uniqueness quantification operator stating that there is one and only one)

9Šoi 2 m:O Àoj 2 m:O; k 2 oj :K W oi :i 2 k:E (32.13)

• The child relationship defines a hierarchy. For any two objects oi ; oj 2 O where
oi is direct or indirect child of oj , oj must not be direct or indirect child of oi .
For any sequence of objects where each object is child of its predecessing object,
the first object and the last object must not be equal:

8.o0; : : : ; on/ 2 O
nC1 8i 2 Œ0; n 	 1� W 9k 2 oi :K W oiC1:i 2 k:E

) o0 ¤ on
(32.14)

• The constraint from Eq. 32.8 also applies to o:K and o:R.
In addition to that, the names n are not only unique within the attributes,

children, and references of one object but also across the whole object. If an
object has an attribute with the name n0, there must not be any reference or child
which has the same name. In other words, children, attributes, and references
share the same namespace. The pairwise intersection of all child names, all
attribute names, and all reference names must therefore be empty:

8o 2 O 8a; b 2 o:K [o:A [o:R W a:n D b:n, a D b (32.15)

Sets of All Models, Metamodels, and Meta-Metamodels This formal model
defines three layers of models as illustrated in Fig. 32.8 of Sect. 32.2.2. These three
layers are formalized here as three sets M , MM , and MMM . The largest of these
sets is the set of all models M which was already introduced in the beginning of
Sect. 32.3.2.

A metamodel mm 2 MM is a model that describes the structure of a model. A
model ma 2 M becomes a metamodel through the existence of a model mb 2 M

which is an instance of it. Metamodels are therefore also models and the set of
metamodels is given by

mm D fm 2M j 9mb 2M W mb:mm D mg (32.16)

A model becomes a meta-metamodel through the existence of a metamodel which
is instance of it. The set of meta-metamodels is therefore given by

MMM D fm 2M j 9mb 2 MM W mb:mm D mg (32.17)

It is obvious thatMM
M andMMM
M . As any meta-metamodel necessarily
has an instance, it is also a metamodel and the two equations simplify to MMM

MM
M :

1072 W. Ecker and J. Schreiner

8mmmi 2MMM 9m 2MM W m:mm D mmmi) mmmi 2MM

(32.18)

Based on this definition and the assumption that there is only one meta-metamodel,
it is trivial that the meta-metamodel is its own metamodel:

9 mmmj 2MMM j mmmi :m D mmmj

jMMM j D 1) mmmj D mmmi

(32.19)

The meta-metamodel can therefore be used to describe itself. Equivalent notations
for this are mmm: D mmm or mmm D .n;mmm;O/

8mm1;mm2 2 MM W mm1:mm D mm2:mm D mmm (32.20)

32.3.3 Metamodel Constraints on Models

In a bottom-up approach, the formal definition of models in formal models presented
section 32.3.2.2 already lists some constraints on models that originate from the
meta-metamodel we agreed on.

In the following, we complement this with other constraints a metamodel mm
imposes on its models m. Approaching the problem top-down, we first declare
names for attributes and objects of the meta-metamodel: nname , nref , ncomp , nat t r ,
nmin, nmax , ntype 2 N . Next, a formal description of the meta-metamodel mmm as
instance of itself is developed. Finally, a list of constraints is provided.

Meta-Metamodel Any metamodel can then be uniquely represented as instance of
this meta-metamodel mmm:

oclass; ocomposit ion; oreference; oat t ribute 2 mmm:O

oclass D .oclass; 1; Aname;Kclass; �/

ocomposit ion D .oclass; 2; Aname [Amult iplici ty ; �; Rclass/

oreference D .oclass; 3; Aname [Amult iplici ty ; �; Rclass/

oat t ribute D .oclass; 4; Aname [Amult iplici ty [Atypes; �; �/

Aname D f.nname; N /g

Amult iplici ty D f.nmax; I [f1g/; .nmin; I„ƒ‚…
Set of legal integer values I�S

/g

Atypes D f.ntype; S„ƒ‚…
Set of all possible strings. Superset of any possible type-set Ti :

/g

Kclass D f.ncomp; f2g/; .nref ; f3g/; .nat t r ; f4g/g

Rclass D f.ntype; f1g/g

(32.21)

32 Metamodeling and Code Generation in the Hardware/Software : : : 1073

Metamodels instantiate these uniquely named objects and provide values for their
attributes. What we described above is in fact both the description of the meta-
metamodel mmm and a metamodel mm (as it is instance of mmm).

We can now use the description of the meta-metamodel and provide formulae for
how metamodel objects constrain their models. These descriptions are simplified by
a set of helper functions.

Helper Functions The functions OA;mm, OK;mm, and OR;mm are defined for any
model m. They map any object of the model to the set of metamodel objects
that describe its attributes (OA;mm), children (OK;mm), and references (OR;mm) or
a combination thereof (OKR;mm, OKRA;mm). In programming, such a mapping is
called introspection. Each of them therefore maps from the pre-image set m:O of
any model to the image set P.m:mm:O/:

Oi W m:O !P.m:mm:O/ (32.22)

The function P.X/ WD fU j U � Xg maps any set X to its powerset.

OA;mmW o 7! foi 2 mm:O j 9k 2 o:c:K W oi :i 2 k:E ^ k:n D nat t rg

OK;mmW o 7! foi 2 mm:O j 9k 2 o:c:K W oi :i 2 k:E ^ k:n D ncompg

OR;mmW o 7! foi 2 mm:O j 9k 2 o:c:K W oi :i 2 k:E ^ k:n D nref g

OKRA;mmW o 7! OA;mm.o/ [OK;mm.o/ [OR;mm.o/

OKR;mmW o 7! OK;mm.o/ [OR;mm.o/
(32.23)

Moreover, the functionEname returns the set of all values of an attribute provided the
attribute name. The function obyid returns an object given by its unique identifiers:

EnameWO �N !P.S/; .o; n/ 7! fe 2 S j 9y 2 o:A [o:R [o:K;

y:n D n W e 2 y:Eg

obyid WM � I ! O .m; i/ 7! o 2 m:O j o:i D i
(32.24)

Constraints The following constraints are valid for any model m of meta-
model mm:

• For each attribute, composition, and reference, the metamodel restricts the
minimum and maximum number of elements that are contained or referenced.
This number is commonly referred to as multiplicity:

1074 W. Ecker and J. Schreiner

8y 2 o:A [o:K [o:R; omm 2 OKRA;mm.o/; emax 2 Ename.omm; nmax/ W

y:n 2 Ename.omm; nname/) INT.emax/ � jy:Ej

Y 2 fK;R;Ag 8omm 2 OY;mm.o/; emin 2 Ename.omm; nmin/ 9y 2 o:Y W

y:n 2 Ename.omm; nname/ ^ INT.emin/ � jy:Ej

(32.25)
• For each attribute, the metamodel constrains the values that it can take. To do

this, the metamodel object defining the attribute has a type property listing all
possible values:

8a 2 o:A; omm 2 OA;mm.o/ W a:n 2 Ename.omm; nname/

) a:E � Ename.omm; ntype/
(32.26)

• Compositions and target references are statically typed through the metamodel.
For each composition element and each reference, the metamodel constrains the
metamodel object the that the target is instance of:

8m 2M; y 2 m:o:K [m:o:R; itarget 2 y:E; omm 2 OKR;mm.o/ W

y:n 2 Ename.omm; nname/) obyid .m; itarget /:c:i 2 Ename.omm; ntype/
(32.27)

32.4 Metamodeling for HW/SW Codesign

32.4.1 Metamodeling Frameworks

The formal models presented in Sect. 32.3 lay the foundation for the correct
design and construction of metamodeling frameworks. A first framework has
already been sketched in Sect. 32.2.4. This section first discusses Model-Driven
Architecture (MDA) and its impact on metamodeling frameworks. It then describes
the metamodeling frameworks most widely used for automated design creation:
XML, UML, and EMF. Next, standardized metamodels covering the HW/SW
interface are introduced and the use of custom metamodels is motivated. Practical
experience gained from the use of metamodeling in industrial applications finishes
this section.

32.4.1.1 MDA
MDA – acronym for Model-Driven Architecture – is a vision of the Object
Management Group (OMG) (see [23] and [32]) for automation of code development
via metamodeling, model-to-model transformations, and code generation. In the
simple approaches toward metamodeling sketched in Fig. 32.9, a specification is
first read into a model via a reader and then translated to the view via a generator. To

32 Metamodeling and Code Generation in the Hardware/Software : : : 1075

CIM

XML

Re
ad

er

se
t A

PI

View

get API

Dump Check

GUI

PIM

M
2M

se
t A

PI get API

Dump Check

GUI

PSM

M
2M

se
t A

PI get API

Dump Check

GUI

W
rit

er

Spec

XML XML

Generated
from CIM

Metamodel

Generated
from PIM

Metamodel

Generated
from PIM

Metamodel

Libraries
Parser

EBNF
Derived

Semi
Automa�on

Semi
Automa�on

Fig. 32.11 An advanced metamodeling framework

implement the full MDA vision, this simple approach is extended: The target view
is not generated directly from the first model, which is still close to the specification.
Instead, the view is generated from a model that is closer to the target view’s struc-
ture and semantics. Since these two models may still differ too much, one or even
more intermediate models might be introduced to further partition the translation.
Figure 32.11 shows such a process with one additional intermediate model.

To structure this approach and to find criteria for the definition of the models
involved, MDA introduces three levels of models:

PSM: A Platform Specific Model is very close to the target view. Model and view
therefore have similar structure but different syntax. In addition, the Platform
Specific Model has sufficient information about the environment of the final view.
A good example for a PSM is the Abstract Syntax Tree (AST) of the view’s
underlying language which already includes references to libraries that are used
in the programming or modeling environment of the platform. For the example
of the hardware register view, the PSM would be the AST of VHDL with links
to VHDL’s synthesis packages and libraries of reusable components.

If view generation starts from a PSM, the view can also be seen as an instance
of the model and not just the content of the model since the view follows the
structure of the model.

PIM: A Platform Independent Model does not include platform details but already
depends on the targeted implementation’s semantics – or in SW terminology: It
depends on the kind of computation being targeted.

1076 W. Ecker and J. Schreiner

A good example is a view’s language independent structural model being
able to handle components, their instantiations and connections between them.
However, such a model does not consider language specifics as VHDL’s
component-based instantiation, its port signals types (e.g., std_logic) and out
semantics, or Verilog’s wire-based style.

CIM: A Computation Independent Model focuses on items in the modeled domain,
independent of their implementation. A very good example is the register model
of our simple component, since it is independent of the target semantics (i.e., of
a sequential programming language describing the SW access, of a TLM register
model interfaced by a method, or of an event-driven VHDL model describing
the HW part). This independence is precisely what is important for metamodels
describing interfaces between domains. It is also easier to parse specification data
into that model since a specification focuses on what the design should do and
not on how the design shall be implemented.

In MDA, for each of the CIMs, PIMs, and PSMs, a metamodel is defined. This
metamodel acts as the starting point and interface agreement for automation.

A metamodeling framework following the ideas of MDA is shown in Fig. 32.11.
Here, the models are encapsulated in APIs with separate interfaces for writing
and reading data (setAPI and getAPI). Using these interfaces, the data can
be dumped into an intermediate storage based on the XML format, edited with a
GUI or validated by check functions. These checks are derived from constraints
provided by the metamodel or the meta-metamodel in use. All these components
of metamodeling framework can be automatically generated using the metamodel
description. Additional checks can be generated from OCL constraints associated
with the metamodel or parts of it.

There are even several methods to automate the construction of translators. The
view generator, for example, can either be derived from a metasyntax notation like
EBNF or can be based on a template engine. The reader can, for example, make
use of libraries or parser generators. All together, a metamodeling framework is a
powerful tool that not only automates generation of views but also the construction
of parts of the automation solution.

The metamodeling approach described in [8] and entitled meta-synthesis goes
one step further. It also automates the building of automation tools by support-
ing merge and split of data during model-to-model transformation, dump and
reload utilities for models, checks of model consistency, and execution control.
Providing such a high level of automation makes it comprehensible how the
use of models which are instances of metamodels helps to dramatically improve
design productivity and design quality although the metamodels have to be built
upfront.

In the following, we introduce the three metamodeling frameworks. EMF,
synonym for Eclipse Modeling Framework, as well as XML and UML which
describe both modeling languages and a modeling framework.

32 Metamodeling and Code Generation in the Hardware/Software : : : 1077

1 <?xml ver s i on=" 1 . 0 " encod ing="UTF−8" ?>
2 <Component Name=" Simple ">
3 <R e g i s t e r Name="R0" S i z e =" 16 " O f f s e t =" 0 ">
4 < B i t f i e l d Name="B1" S i z e =" 16 " O f f s e t =" 0 "
5 HWr=" f a l s e " HWw=" t r u e " SWr=" t r u e " SWw=" t r u e " / >
6 < / R e g i s t e r >
7 < R e g i s t e r Name="R1" S i z e =" 16 " O f f s e t =" 1 ">
8 < B i t f i e l d Name="B2" S i z e =" 1 " O f f s e t =" 0 "
9 HWr=" t r u e " HWw=" f a l s e " SWr=" f a l s e " SWw=" t r u e " / >

10 < B i t f i e l d Name="B3" S i z e =" 1 " O f f s e t =" 1 "
11 HWr=" f a l s e " HWw=" t r u e " SWr=" t r u e " SWw=" f a l s e " / >
12 < B i t f i e l d Name="B4" S i z e =" 1 " O f f s e t =" 2 "
13 HWr=" f a l s e " HWw=" t r u e " SWr=" t r u e " SWw=" f a l s e " / >
14 < / R e g i s t e r >
15 < / Component>

Fig. 32.12 The simple component model in XML format

32.4.1.2 XML
XML, acronym for eXtensible Markup Language, is a markup language that is used
to store and annotate data. There are many books on XML and lots of web pages
detailing the usage of the language in different fields of application. Instead of
providing an overview over this vast area, this book focuses on the special features
of XML that can be used in the context of metamodeling.

One of XML’s initial goals was to separate content and view, an idea that also
underlies the metamodeling concept. The mix of formatting and data – as, e.g., used
in older versions of HTML – should be overcome to ease information retrieval and
to support different publishing styles. The resulting XML standards were therefore
shaped in a way that allowed storing data which could also be used to capture models
of metamodeling environments. Figure 32.12 provides an example of our simple
component model encoded in XML.

Of course, a representation similar to Fig. 32.12 can also be used to store meta-
models. UML, for example, defines the XML Metadata Interchange (XMI) format
as an XML-compatible markup language for storing models and metamodels. This
XML Metadata Interchange (XMI) format is also used in the Eclipse EMF domain.

In addition, XML has a mechanism called XML Schema Definition (XSD) to
define the valid structure of an XML document, effectively defining a metamodel
for XML documents. XSD has a set of powerful features for specification of valid
values. Similar to the formal definition in 32.3, XML and XSD only deal with
strings. All values in the pictured XML file are therefore embedded in double
quotes. An XSD schema specifies the valid strings an attribute may be assigned
with and how those then have to be interpreted, e.g., as a number or a Boolean
value. Figure 32.13 shows the XML schema defining the validity of the XML file in
Fig. 32.12. It carries the same information as the metamodel that was introduced
in the introductory example in Fig. 32.1. It is, however, not as intuitive as the
graphical view of the metamodel. In addition, the requirements on well-formed
XML documents make the format a bit verbose. XSD documents are formatted

1078 W. Ecker and J. Schreiner

1 <?xml ver s i on=" 1 . 0 " encod ing="UTF−8" ?>
2 <xsd : schema xmlns : x sd=" h t t p : / /www.w3 . org / 2 0 0 1 /XMLSchema">
3 < x s d : e l emen t name=" component " t yp e =" Component " / >
4 <xsd :complexType name="Component ">
5 < x s d : s e q u en c e >
6 < x s d : e l emen t name=" r e g i s t e r " t yp e =" R e g i s t e r " / >
7 < / x s d : s e q u en c e >
8 < x s d : a t t r i b u t e name="Name" t ype=" x s d : s t r i n g " use=" r e q u i r e d " / >
9 < / xsd :complexType>

10 <xsd :complexType name=" R e g i s t e r ">
11 < x s d : s e q u en c e >
12 < x s d : e l emen t name=" b i t f i e l d " t yp e =" B i t f i e l d " / >
13 < / x s d : s e q u en c e >
14 < x s d : a t t r i b u t e name="Name" t ype=" x s d : s t r i n g " use=" r e q u i r e d " / >
15 < x s d : a t t r i b u t e name=" O f f s e t " t ype =" x s d : i n t " use=" r e q u i r e d " / >
16 < x s d : a t t r i b u t e name=" S i z e " t yp e =" x s d : i n t " use=" r e q u i r e d " / >
17 < / xsd :complexType>
18 <xsd :complexType name=" B i t f i e l d " minOccurs=" 1 " maxOccurs=" unbounded ">
19 < x s d : a t t r i b u t e name="Name" t ype=" x s d : s t r i n g " use=" r e q u i r e d " / >
20 < x s d : a t t r i b u t e name=" O f f s e t " t ype =" x s d : i n t " use=" r e q u i r e d " / >
21 < x s d : a t t r i b u t e name=" S i z e " t yp e =" x s d : i n t " use=" r e q u i r e d " / >
22 < x s d : a t t r i b u t e name="HWr" t ype=" x s d : b o o l " use=" r e q u i r e d " / >
23 < x s d : a t t r i b u t e name="HWw" type=" x s d : b o o l " use=" r e q u i r e d " / >
24 < x s d : a t t r i b u t e name="SWr" t ype=" x s d : b o o l " use=" r e q u i r e d " / >
25 < x s d : a t t r i b u t e name="SWw" type=" x s d : b o o l " use=" r e q u i r e d " / >
26 < / xsd :complexType>
27 < / xsd : schema>

Fig. 32.13 Component metamodel in XSD format

in valid XML themselves. This allows existing XML parsers to read the schemas;
however, it is also responsible for XSD’s verbosity.

Specific to the XML-based MDA process is that the model is stored in a
file and not in an encapsulated data model that is part of a program. This is
shown in Fig. 32.14 on the same MDA flow as pictured in Fig. 32.11. Here, the
transformations are done by XML processors which read XSLT, a transformation
language for XML.

XSLT can also be used to translate XML to any kind of textual view such as
C-code or VHDL models. The only thing needed to build an XML CIM in the
depicted XML MDA flow is therefore a reader. If the specification is available as an
XML document, this reader might be an XSLT-based translation as well.

32.4.1.3 UML
UML is a widely used standard in the software world incorporating many concepts
and notations that have proven to be successful. UML also defines an aligned
graphical view on all the concepts included. The widespread adoption of UML
brought a significant benefit compared to the situation before where different
methodologies used different graphical notations for the same concepts or even the
same notation for different concepts. UML as a whole however has a disadvantage:
It is quite complex and some definitions are ambiguous.

All the notations – also called diagrams – are defined via a metamodel which in
turn is defined on basis of a meta-metamodel. This UML meta-metamodel is called
MOF (see [22]) – acronym for Meta Object Facility. Inside the MOF and essential
MOF called EMOF and a complete MOF called CMOF is defined. Based on MOF,
UML defines a standard intermediate called XMI which we already mentioned.

32 Metamodeling and Code Generation in the Hardware/Software : : : 1079

CIM
XMLRe

ad
er

ViewSpec

Represents
CIM

Metamodel

Parser or
XML

Processor

XM
L

Pr
oc
es
so
r

XSLT

CIM
XSL

PIM
XML

Represents
PIM

Metamodel

XM
L

Pr
oc
es
so
r

XSLT

PIM
XSL

PSL
XML

Represents
PSM

Metamodel

XM
L

Pr
oc
es
so
r

XSLT

PSM
XSL

CIM-to-PIM
Transforma�on

rules

PIM-to-PSM
Transforma�on

rules

PSM-to-View
Transforma�on

rules

Fig. 32.14 MDA using XML

UML influenced metamodeling in many ways. Since UML diagrams also support
behavioral notations like state or activity diagrams, it proves that metamodels are
not restricted to structural information. Instead, a structure can be defined which
has inherent execution semantics.

UML also supports class diagrams, which – or more precisely an extended subset
of which – can be used to define metamodels in a graphical way. UML’s EMOF
is thus conceptually very close to a class diagram. This is obvious since a class
diagram structures data and a metamodel structures its domain in entities (classes),
their properties (their attributes), and their relation to other entities (different kinds
of associations).

Last but not least, UML has a built-in extension mechanism, which permits the
adaption of UML to different needs and domains. The adaptability to different needs
in particular is a noteworthy benefit of a modeling-based approach over the tool-
based approach in system-level automation.

Stereotypes can be used to create new model elements, represented by «. . . »-
brackets. These model elements may also have their own graphical representation.
In addition, stereotypes can be used to create completely new diagrams including
their graphical representation.

The second mechanism is tagged values. They used to define additional prop-
erties for existing modeling elements or stereotypes. They include additional
information needed for specific use cases. This information can also influence
further processing of the model. When our simple component metamodel is used

1080 W. Ecker and J. Schreiner

for HW generation, it can be extended with tagged values describing how many
flip-flop instances should be generated for every bitfield:

• Zero: Only wires would be generated in both directions.
• One: Only one flip-flop group written by SW (as depicted in Fig. 32.3)
• One shared: Flip-flops writable by HW and SW
• Two: One flip-flop group being written by SW and read by HW as well as one

flip-flop group being written by HW and read by SW

Other tagged values might specify if SW read and write accesses trigger pulses
and edges at additional signals passed to the HW core.

It is important to note that tagged values modify the metamodel in an upward
compatible way since they only add items. In contrast, UML’s third adoption
mechanism called constraints adds new rules or modifies existing ones. Constraints
can be used to remove an attribute from a modeling element. Code generators that
rely on a removed field would fail.

A set of any of the defined extensions can be packed and provided as a so-called
profile. SysML (see Sect. 32.4.2.2) is one example of such a profile. These profiles
are called lightweight extensions since they don’t change UML’s metamodel. In
contrast, a heavyweight extension would add new items, concepts, and relationships
to UML’s MOF.

32.4.1.4 Eclipse Modeling Framework
EMF, synonym for Eclipse Modeling Framework, is a full-featured metamodeling
framework. EMF uses Java as implementation and glue language and generates a
Java API as well as other things for the specified metamodel (e.g., an editor model).
EMF is fully integrated in the Eclipse framework. EMF is a good starting point for
metamodeling since it is open source and can easily be obtained from the Eclipse
Foundation. EMF’s web page (see [9]) refers to many online tutorials, webcasts,
and video-casts. For those preferring old-style printed books, the key contributors
to EMF collected an overview on EMF in [30]. There are also many forums around
EMF helping with questions.

Diving into EMF is however not straightforward and it takes a while to get started
with the framework. Many consulting companies around EMF offer their help. If
someone prefers closed-source tools that come bundled with professional service,
then he/she might look at the tools from MetaCase [20]. An important contribution
of EMF to the metamodeling world is its meta-metamodel called ECORE. ECORE
was designed to be able to map XML schema, UML metamodels (diagram types
in UML terminology), and database schemas to one model. The ECORE model
shown in Fig. 32.15 is conceptually identical to our first meta-metamodel shown in
Fig. 32.6.

Figure 32.15 shows four additional modeling features: First, as already in-
cluded in our formal model, ECORE has a reference mechanism implemented via
EReference. This mechanism has similarities with association in EMOF. Via
containment, references and compositions (the only hierarchical element in our

32 Metamodeling and Code Generation in the Hardware/Software : : : 1081

Fig. 32.15 EMF ECORE meta-metamodel [10]

simple metamodel) can be distinguished. Second, ECORE supports inheritance via
eSuperTypes and eAllSuperTypes. Third, ECORE supports namespaces via
EPackage. Fourth and last, ECORE supports enumerations via the EEnum and
EEnumLiteral meta-classes.

Further, ECORE makes more use of inheritance. For example, all the
naming is defined in the virtual classes EClassifier, ENamedElement,
and EModelElement. Similarly, bounds and other features are derived from
EStructrualFeature and ETypedElement.

The meta-class EFactory does not describe a modeling feature but methods to
create the instances and to do string conversion. Finally, EAnnotation provides
a measure to add data to the model that can be used, e.g., for view generation or
model transformation.

Less obvious, yet just as important is that the API does not only permit access
to the model. Instead, it also permits access to the metamodel items which are
associated with the model items. In this way, introspection is supported for all model
elements and meta-programming techniques can be applied. This allows different
attributes to be handled by the same piece of code although they are differently

1082 W. Ecker and J. Schreiner

typed. This facilitates the implementation of translators and view generators that
support on any instance of one kind of meta-metamodel.

32.4.2 Related Standards

Around the XML metamodeling technology, two standards have been defined that
are widely used in the HW/SW area: IP-XACT and SysML. This section gives an
overview over the standards and afterward motivates the benefit of an application
specific metamodeling approach.

32.4.2.1 IP-XACT
IP-XACT (see [19]) is a standard supporting automation of IP Integration and
thereby automation of System-on-Chip (SoC) construction. A PDF version of the
standard is available from the IEEE [16]. IP-XACT has wide professional support.
Several Electronic Design Automation (EDA) tools support IP-XACT and almost all
IPs have an associated IP-XACT view. There are also open-source tools supporting
IP-XACT, e.g., Kactus2 (see [31]).

IP-XACT defines an XML Schema with additional semantic documentation of
the schema items. From the modeling standpoint, IP-XACT primarily supports the
definition of the following items:

• Signals, interfaces, and bus structures as elements for the connection of compo-
nents.

• RTL, TLM, or mixed RTL and TLM connections.
• Components describing hardware blocks of the IP. To interface with the HW

world components offer interfaces for complex signal bundles and simple ports.
Further, they can have parameters. Finally, components include the definition of
the register layout and thus define most parts of the IP’s SW interface.

• Definition of connection of IPs in a so-called System Model.

From HW/SW perspective, only a subset of the features IP-XACT provides are
of interest.

The System Model, since it defines the involved components, the number how
often they are instantiated and the instance names. The definition of the base address
for each instance and derived from that the based addresses of the register fields is
an important key for efficient software development.

The way how registers are specified is more advanced than in our simple
model. Components have addressable units specifying their own base address inside
the address space of the component and their own address range. Furthermore,
the addressable units can be connected to interfaces. Like this, registers can be
addressed via two or more CPU buses or over other protocols such as Serial
Peripheral Interface (SPI). Figure 32.16 illustrates that the registers in IP-XACT and
our register model share a similar underlying concept: Components have registers
and registers have bitfields.

32 Metamodeling and Code Generation in the Hardware/Software : : : 1083

1 < i p x a c t : r e g i s t e r >
2 < i p x a c t : n ame >R0< / s p i r i t : n am e >
3 < i p x a c t : a d d r e s s O f f s e t > 0x00 < / i p x a c t : a d d r e s s O f f s e t >
4 < i p x a c t : s i z e >16< / i p x a c t : s i z e >
5 < i p x a c t : f i e l d >
6 < i p x a c t : n ame >B1< / i p x a c t : n ame >
7 < i p x a c t : b i t O f f s e t >0< / i p x a c t : b i t O f f s e t >
8 < i p x a c t : b i tW i d t h >16< / i p x a c t : b i tW i d t h >
9 < i p x a c t : a c c e s s > read−wr i t e < / i p x a c t : a c c e s s >

10 < i p x a c t : v o l a t i l e > t r u e < / i p x a c t : v o l a t i l e >
11 < / i p x a c t : f i e l d >
12 < / i p x a c t : r e g i s t e r >
13 < i p x a c t : r e g i s t e r >
14 < i p x a c t : n ame >R1< / s p i r i t : n am e >
15 < i p x a c t : a d d r e s s O f f s e t > 0x01 < / i p x a c t : a d d r e s s O f f s e t >
16 < i p x a c t : s i z e >16< / i p x a c t : s i z e >
17 < i p x a c t : f i e l d >
18 < i p x a c t : n ame >B2< / i p x a c t : n ame >
19 < i p x a c t : b i t O f f s e t >0< / i p x a c t : b i t O f f s e t >
20 < i p x a c t : b i tW i d t h >1< / i p x a c t : b i tW i d t h >
21 < i p x a c t : a c c e s s >wr i t e−on ly< / i p x a c t : a c c e s s >
22 < i p x a c t : v o l a t i l e > f a l s e < / i p x a c t : v o l a t i l e >
23 < / i p x a c t : f i e l d >
24 < i p x a c t : f i e l d >
25 < i p x a c t : n ame >B3< / i p x a c t : n ame >
26 < i p x a c t : b i t O f f s e t >1< / i p x a c t : b i t O f f s e t >
27 < i p x a c t : b i tW i d t h >1< / i p x a c t : b i tW i d t h >
28 < i p x a c t : a c c e s s > read−on ly< / i p x a c t : a c c e s s >
29 < i p x a c t : v o l a t i l e > t r u e < / i p x a c t : v o l a t i l e >
30 < / s p i r i t : f i e l d >
31 < i p x a c t : n ame >B4< / i p x a c t : n ame >
32 < i p x a c t : b i t O f f s e t >2< / i p x a c t : b i t O f f s e t >
33 < i p x a c t : b i tW i d t h >1< / i p x a c t : b i tW i d t h >
34 < i p x a c t : a c c e s s > read−on ly< / i p x a c t : a c c e s s >
35 < i p x a c t : v o l a t i l e > t r u e < / i p x a c t : v o l a t i l e >
36 < / s p i r i t : f i e l d >
37 < / i p x a c t : r e g i s t e r >

Fig. 32.16 IP-XACT code fragment of registers

But IP-XACT also has some nice additional capabilities. For example, read and
write access can be specified for address fields, registers, and bitfields. Further, the
access is not defined via read and write flags but via access-field that can take the
values read-only, write-only, as well as read-write. Also, writeOnce
and read-writeOnce are supported.

In addition, IP-XACT allows to specify legal values for the bitfields. Each of the
value items has a name, a value, and a description. In software, they can be mapped
to enumeration types or macros making the SW access more readable.

Further, accesses can be byte accesses and bridge different types of endianness.
Therefore ipxact:endianness and ipxact:addressUnitBits are asso-
ciated with buses and address fields but not to singe registers.

Another important thing is the possibility to define the display name of registers
and bitfields in addition to name and description. This display name may be used in
the firmware headers since it can be easier to map it to target SW languages.

There is also a possibility to specify dimensions for registers, which allow –
together with address fields – the hierarchical specification of the software-side

1084 W. Ecker and J. Schreiner

register interface in a more structured way based on struct- and array-
constructs.

However, IP-XACT focuses on IP integration and therefore describes only the
SW side of the component. The hardware side is only covered by the attribute
volatile. This attribute tells if the hardware may change the value written by
the software. The way how and where the value is stored and how the HW access is
done cannot be specified in IP-XACT.

32.4.2.2 UML=SysML
This section focuses on SysML, an extended subset of UML, and describes where
SysML modifies, adds, and skips UML diagrams or their features. Although both
UML and SysML only speak of diagrams, these diagrams implicitly rely on an
underlying metamodel, which all valid diagrams have to adhere to. This metamodel
also provides semantics for the diagrams. There are many commercial and open-
source SysML and UML tools available. In the Eclipse domain, the plugin Papyrus
is widely used (see [11]).

UML and SysML diagrams can be subdivided into structural and behavioral
diagrams. To describe behavior, UML and SysML introduce the notion of actions
as basic items for functionality. SysML’s behavior diagrams are:

• Activity Diagrams: These diagrams are a bit different in SysML and UML. They
consist of activities that specify transformations of inputs to outputs and actions
responsible for the transformation. Activities produce and consume artifacts that
might be passed via flow ports. Based on an underlying semantic of colored
Petri nets, activities may have control and data flow inputs and outputs. Both can
trigger the execution of activities. Activity diagrams support the specification of
hierarchies as well.

Activities may be mapped to HW, SW, or mixed activities. In this case,
artifacts are data being transferred between HW and HW, SW and SW, and HW
and SW. Activity diagrams are therefore a measure to specify HW/SW partition.

• State-Machine Diagrams. They are the classical hierarchical (and parallel)
program state machines and are the same in UML and SysML. State machines are
primarily used for the specification of either HW or SW. Their hierarchy is used
to structure complex descriptions and to enable parallelism. Change of states via
transitions can be triggered by events. These events can be change, time, or signal
events but they cannot be flow driven.

• Sequence- and Use-Case Diagrams: They specify single scenarios outside or
inside a component (which may be, e.g., an activity or a block). These scenarios
show interactions between items and have timing and branch features. Sequence-
and use-case diagrams are also the same in UML and SysML.

The second group of diagrams are structural diagrams whose most important
representatives are block diagrams and package diagrams.

32 Metamodeling and Code Generation in the Hardware/Software : : : 1085

• Block Diagrams: SysML distinguishes block definition diagrams and internal
block diagrams. Both differ from their UML counterpart.

Blocks are basic structural elements like hardware and software and therefore
also used to define the HW/SW partitioning. Block definition diagrams visualize
the external connection and internal block diagrams – as the name says – internal
connections. Blocks have among others attributes and constraints. The block
and its items can be interlinked with functions implementing the block and
requirements to be fulfilled by the block.

Blocks have standard UML ports which describe the classical provides=requires
semantic. Blocks also have flow ports describing a data flow to and from the
component.

• Package Diagrams: They are the same in UML and SysML. Package diagrams
group model elements to a namespace which can also be used, e.g., for
visualization in the tree browser. Packages also support views and viewpoints
to group model elements from different packages by their relevance for a specific
stakeholder.

In addition, SysML has a third diagram type called Requirement Diagram.
Here, requirements can be interlinked with model items. Aside from a top-down
interlinking of specification and design items to requirements, this helps to analyze
the requirements by mapping to other model items.

Similar to IP-XACT, SysML has a lot of additional features that make the
diagrams more usable. From the HW/SW perspective, it is worth mentioning
that SysML also supports allocation of items to blocks, which are then called
resources. The mapping of SW to specific processing elements but also the overall
implementation of single blocks in hardware and software can be specified in this
way. From UML’s perspective, SysML lacks structural diagrams, object and class
diagrams, as well as behavioral and timing diagrams.

Essential for both UML and SysML is the profile diagram, which does not
provide new modeling features but the possibility to define new diagram types or
to extend and constrain existing diagrams further. This is important since specific
design challenges need additional information or additional capabilities for code
generation – despite the huge number of predefined UML features. This holds true
for IP-XACT as well.

32.4.2.3 Application Specific Metamodels
Sections 32.2 and 32.3 introduced metamodeling as a generic technology for
automation of tool development, which in turn automate the generation of views in
the HW/SW domain. The previous subsection describes standardized metamodels;
it however also mentioned that despite the richness of the existing metamodels,
they are not sufficient to cover wide ranges of the tasks necessary for system-level
automation.

The Need for Design-Task Specific Metamodels
Let’s recap why the existing point tools cannot cover the system-level automation
area: System level is too heterogeneous and too complex to be covered by one

1086 W. Ecker and J. Schreiner

or a small number of tools. Not mentioned there, but clearly understandable, is
that system automation tools operate in the area of concept engineering, overall
functionality, and architecture design and therefore have to target all ways and
styles an SoC can be designed in. In addition to the domain-specific issues, system-
level automation tools have to support many things specific to companies or even to
individual design groups to be able to widely automate the design process.

Moreover, design challenges steadily increase. Among others, power control and
energy management, reprogrammable architectures, reliability and safety issues of
modules, or access control must be supported. To make things worse, all these things
have different goals and measures in different domains. Due to the More Moore and
More than Moore trends, new automation will have to be supported, both in new
application domains and in new design techniques.

Does this mean that the metamodel standards are entirely useless? Definitely
not, since both UML and SysML provide extension mechanisms. For example, IP-
XACT allows putting additional data at specific places in the model. These places
are called vendor extensions as they are intended for IP Vendors and IP-
XACT tool providers. Since the range of these vendor extensions is a bit limited,
a metamodel designer does not have to exclusively rely on these places and can
simply extend the IP-XACT schema according to his=her needs and make use of the
existing concept in there. A simple filter with XSLT can remove the extensions and a
legal IP-XACT model can be derived whenever required. The availability of XML-
technology as open-source software, in many flavors and for many programming
languages, makes it easy to write custom code generators .

SysML and UML with their built-in profile mechanisms are even more powerful
in terms of extensions. Since the original metamodels do not need to be changed,
there is no need to do backward transformations for all the extensions.

To sum up, predefined metamodels do not render to construction of custom
metamodels – precisely tailored to ones need – unnecessary. Instead, they offer
a good starting point and simplify making metamodels fitting to domain-specific
models.

Utilization of Metamodels
Many very positive results in using metamodeling in SW design were reported.
Metamodeling approaches however also gain momentum in the hardware world and
thus in the SoC world covering hardware and software. The amount of research
work in that field increases and a growing number of companies show interest in
metamodeling.

At Infineon, a metamodeling framework was developed on the basis of Python.
To simplify view generation, the Mako template engine is used. The modeling
capabilities are about as powerful as in EMF, but no introspection layer is needed,
since Python is rich in introspection capabilities from scratch.

The Infineon framework supports the classical levels from meta-metamodeling
to view generation. Meta-metamodeling is also used to generate metamodels,
i.e., to further increase the productivity when using the technology. Furthermore,

32 Metamodeling and Code Generation in the Hardware/Software : : : 1087

several utilities such as model comparison or GUI generation are based on meta-
metamodels and thus provide automation for all designed metamodels.

More important, there are about 100 metamodels at the moment with even more
generators in use, covering all modeling aspects mentioned above – those supported
by standard metamodels and those not supported.

Benefits are formidable. Up to 60% effort reduction in implementing one chip
or over 95% effort reduction in selected design steps speak for itself. Continuously,
new metamodels are developed to further automate design.

32.4.2.4 A Peek into the Future of Metamodeling
Will metamodeling arrive in major EDA companies and subsequently as EDA
metamodeling frameworks at their customers? This is not inconceivable as EDA
companies already provide old-school imperative Tcl and other scripting interfaces
to their tools. However, the following three blocking points need to be resolved:

First, metamodeling requires good object-oriented modeling skills, which is not a
basic skill of every HW designer. The foundations for this have however been laid:
Object orientation is a basic concept of widely used languages such as SystemC
or SystemVerilog and related modeling techniques are gradually becoming a more
important part of higher-level education.

Second, metamodeling eases building and adopting tools, and metamodels asso-
ciated with intermediate formats help designers to do a lot of further automation.
Unfortunately, the isolation strategy of the big EDA companies prevents them
from properly supporting metamodeling. There are however small EDA companies
that provide building blocks such as HDLs parsers which are easily linkable with
metamodeling frameworks.

Third and last, metamodeling links design teams, concept engineers, and cus-
tomers much closer together. An integrated and aligned design flow is needed to
closely synchronize their activities. This is a matter of design culture and may take
longest.

It is clear that due to the high availability of the technology and due to
the growing amount of experience in its utilization, metamodeling will play a
dominant role in system-level automation. It is however not clear who will provide
metamodeling solutions to users: the big EDA companies or consulting companies
building their business model around open-source technologies.

32.5 Generation

So far, this book chapter gives an overview on metamodeling techniques around the
HW/SW interface including meta-metamodels, standard and specific metamodels,
and the abstraction inherent in models. It also mentions, yet does not cover in detail,
the aspect of generation, which we address in the concluding part of this chapter.

Early interest in generation was driven by VHDL-based reuse activities and uti-
lizing the generate statement for generation of component alternatives in hardware

1088 W. Ecker and J. Schreiner

design (see, e.g., [25]). Similar approaches, using generative approaches built in
languages, have been followed in SW domain and have been named generative
programming (see, e.g., [4]). An enhanced preprocessor [5] even supporting iterative
directives showed some improvements in coding productivity but didn’t result in a
breakthrough. Even though several more approaches have been made, generation
has a shadowy existence in hardware design. Main reasons are the insufficient
features of the built-in generation constructs, the verification challenge of the
parameter specs, and the complexity setting the configuration parameters correctly.

Two trends carried generation forward. First, the introduction of generator chains
in IP-XACT. They include treating the generator as a design view and support
component parameter and parameter propagation. The benefit is that any notation,
e.g., script language or advanced programming language, can be used to build the
generator. The limitation of built-in generator constructs is solved in this way. Also,
the generation of test benches have been introduced so that each parameter setting
could be verified automatically on demand.

Second, the introspection capabilities of programming languages increased.
Examples are Python, Scala, or the mentioned Java-based introspection in EMF.
One prominent representative in the hardware domain is the work on Chisel [1].
It proposes to use Scala to define a hardware description language with generation
capabilities based on introspection. This enables the generation of various design
views such as RTL or functional models.

Besides advances in technology, the demand for generation increases since
upfront estimations of the impact of architecture and component alternatives are
hard if even not impossible. Rethinking Digital Design [28] thus proposes the use
of generators as essential technology for future SoC designs.

Where these approaches share with metamodeling the idea of a need for
flexibility in design and generation of design views, interface to specification and
specification of interfaces, e.g., between HW and SW is not that well covered.

In this area, the idea of modeling entities, their attributes and associations, using
metamodels is simply more powerful. Since metamodels provide the possibility for
graphical entry, their usage and documentation is easier than that of their language-
based counterparts.

Also, any kind and strategy for target view generation can be applied in
metamodeling context. Popular strategies include:

• Simple writers as already mentioned in conjunction with IP-XACT generator
chains. These writers may be generated from a concrete or Abstract Syntax Tree.
Conformance to target languages is therefore guaranteed.

• Model-to-model translators as part of a Model-Driven Architecture approach.
Including them helps to partition the complexity of generators in a systematic
way.

• Template engines that allow to enter target code and extend it with generation
pragmas step-by-step. The benefit is that a mix of code typing and generation
can be easily established. Focus on these parts of the code that can take benefit
from generation can be easily achieved.

32 Metamodeling and Code Generation in the Hardware/Software : : : 1089

To sum up, generation is the missing piece in the jigsaw of metamodeling.
In addition to early structuring and analysis that can be done with metamodeling
alone, generation provides better consistency between specification and design and
between different but related design views – which is particularly important for the
HW/SW interface. Furthermore, generators provide better code quality which helps
reducing the number of bugs. Aside from the automation of typing, code generation
can help avoid debugging efforts which is an additional pillar in productivity
increase.

32.6 Conclusion

“Meta” – analogously translated as “beyond” – describes an abstraction by defini-
tion of the structure of the related view. A metamodel thus defines the structure of
a model and a metametamodel defines the structure of a metamodel. This means,
a metametamodel is the metamodel of a metamodel. Metamodels can be formally
defined giving them a sound theoretical foundation.

Metamodeling techniques are known for over a quarter of a century reflecting
their use in database schemas, XML schemas or the EXPRESS language. The
Eclipse Modeling Framework (EMF) is an open source option to make own
metamodels and build metamodel based applications.

The two major predefined in the HW/SW domain are IP-XACT and UM-
L/SysML. IP-XACT defines, inter alia, registers and their bit-fields, i.e., the physical
layer of the HW/SW interface. UML/SysML has graphical formalisms for the
definition of behavior and structure, e.g., state diagrams or activity diagrams such
as behavior diagrams and class diagrams or component diagrams.

Key for the productivity increase gained by metamodeling techniques is code
generation, either by code generation of views from models with code genera-
tors conforming to the model’s metamodel or by code generation of parts of a
metamodeling framework with code generators conforming to the metamodel’s
metametamodel.

Applying metamodeling to the HW/SW interface allows saving of up to 95% of
the design effort by generating various styles of documentation views, TLM-views
(or other views beyond RTL), RTL-views, firmware views and verification views.
UML/SysML expand the generation scope; however each of them is used only in
either the hardware or the software domain.

Although metamodeling is very successfully used in the HW/SW domain, there
are a lot of further opportunities to use metamodeling techniques in this domain,
e.g., for the generation of low level drivers.

References

1. Bachrach J, Vo H, Richards B, Lee Y, Waterman A, Avizienis R, Wawrzynek J, Asanovic K
(2012) Chisel: constructing hardware in a scala embedded language. In: DAC, pp 1216–1225

1090 W. Ecker and J. Schreiner

2. Bergé JM, Levia O, Rouillard J (eds) (1996) Meta-modeling – performance and information
modeling. Kluwer Academic Publishers, Dordrecht

3. shan Chen PP (1976) The entity-relationship model: toward a unified view of data. ACM Trans
Database Syst 1:9–36

4. Czarnecki K, Eisenecker U (eds) (2000) Generative programming: methods, tools, and
applications. ACM Press/Addison-Wesley Publishing Co., New York

5. Ecker W (1998) Generative structural modeling using a VHDL pre-processor. In: Proceedings
of the forum on design languages (FDL), Lausanne

6. Ecker W, Müller W, Domer R (eds) (2009) Hardware-dependent software: principles and
practice. Springer, Berlin. http://opac.inria.fr/record=b1129256

7. Ecker W, Velten M, Zafari L, Goyal A (2014) The metamodeling approach to system
level synthesis. In: Fettweis G, Nebel W (eds) DATE. European Design and Automation
Association, pp 1–2

8. Ecker W, Velten M, Zafari L, Goyal A (2014) Metasynthesis for designing automotive SoCs.
In: DAC. ACM, p 6. doi:10.1145/2593069.2602974

9. Eclipse Foundation (2016) Eclipse modeling framework. https://eclipse.org/modeling/emf
10. Eclipse Foundation (2016) ECORE relations. http://download.eclipse.org/modeling/emf/emf/

javadoc/2.9.0/org/eclipse/emf/ecore/doc-files/EcoreRelations.gif
11. Eclipse Foundation (2016) Papyrus – modeling environment. https://eclipse.org/papyrus
12. Eker J, Janneck JW, Lee EA, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S, Xiong

Y (2003) Taming heterogeneity – the ptolemy approach. In: Proceedings of the IEEE,
pp 127–144

13. Geisler NL (ed) (1999) Baker encyclopedia of Christian apologetics. Baker Books, Grand
Rapids

14. Guimale C, Kahn H (1995) Information models of VHDL. In: Proceedings of the 32nd annual
ACM/IEEE design automation conference

15. Guiney M, Leavitt E (2006) An introduction to openaccess: an open source data model and API
for ic design. In: Proceedings of the 2006 Asia and South Pacific design automation conference.
IEEE Press, pp 434–436

16. IEEE standard for IP-XACT, standard structure for packaging, integrating, and reusing IP
within tool flows. doi:10.1109/ieeestd.2014.6898803. http://standards.ieee.org/getieee/1685/
download/1685-2014.pdf

17. Infineon Technologies (2014) XMC1100 AA-step reference manual. http://
www.infineon.com/dgdl/Infineon-xmc1100-AA_rm-UM-v01_01-EN.pdf?fileId=
db3a30433cfb5caa013d1600856033eb

18. Kahn H (ed) (1995) EDIF version 350/400 and information modelling. EDIF Technical Centre,
Manchester University

19. Kruijtzer W, Van der Wolf P, De Kock E, Stuyt J, Ecker W, Mayer A, Hustin S, Amerijckx C,
De Paoli S, Vaumorin E (2008) Industrial IP integration flows based on IP-XACT standards.
In: Design, automation and test in Europe (DATE 2008). IEEE, pp 32–37

20. MetaCase (2016) MetaCase. https://www.metacase.com/de/
21. Nikolic B (2015) Simpler, more efficient design. In: ESSCIRC conference 2015 –

41st European solid-state circuits conference, Graz, 14–18 Sept 2015, pp 20–25.
doi:10.1109/ESSCIRC.2015.7313819

22. Object Management Group (2015) OMG meta object facility (MOF) core specification. http://
www.omg.org/spec/MOF/2.5

23. OMG (2016) MDA – the architecture of choice for a changing world. http://www.omg.org/mda
24. Pagès B, de Freitas LG, Yeşilyurt H (2016) DoUML. https://github.com/DoUML/douml
25. Preis V, Henftling R, Schütz M, März-Rössel S (1995) A reuse scenario for the

VHDL-based hardware design flow. In: Proceedings EURO-DAC’95, European design
automation conference with EURO-VHDL, Brighton, 18–22 Sept 1995, pp 464–469.
doi:10.1109/EURDAC.1995.527445

26. Schenck DA, Wilson PR (eds) (1993) Information modeling the EXPRESS way. Oxford
University Press, New York

http://opac.inria.fr/record=b1129256
https://eclipse.org/modeling/emf
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/doc-files/EcoreRelations.gif
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/doc-files/EcoreRelations.gif
https://eclipse.org/papyrus
http://standards.ieee.org/getieee/1685/download/1685-2014.pdf
http://standards.ieee.org/getieee/1685/download/1685-2014.pdf
http://www.infineon.com/dgdl/Infineon-xmc1100-AA_rm-UM-v01_01-EN.pdf?fileId=db3a30433cfb5caa013d1600856033eb
http://www.infineon.com/dgdl/Infineon-xmc1100-AA_rm-UM-v01_01-EN.pdf?fileId=db3a30433cfb5caa013d1600856033eb
http://www.infineon.com/dgdl/Infineon-xmc1100-AA_rm-UM-v01_01-EN.pdf?fileId=db3a30433cfb5caa013d1600856033eb
https://www.metacase.com/de/
http://www.omg.org/spec/MOF/2.5
http://www.omg.org/spec/MOF/2.5
http://www.omg.org/mda
https://github.com/DoUML/douml

32 Metamodeling and Code Generation in the Hardware/Software : : : 1091

27. Schneider C (1997) A parallel/serial trade-off methodology for look-up table based decoders.
In: DAC, pp 498–503. doi:10.1145/266021.266213

28. Shacham O, Azizi O, Wachs M, Richardson S, Horowitz M (2010) Rethinking digital design:
why design must change. IEEE Micro 30(6):9–24

29. Smith J, Smith D (1977) Database abstractions: aggregation. ACM Trans Database Syst
(TODS) 2(2):105–133

30. Steinberg D, Budinsky F, Paternostro M, Merks E (eds) (2008) EMF: eclipse modeling
framework. Pearson Education

31. Tampere University of Technology (2016) Kactus2. http://funbase.cs.tut.fi/
32. Truyen F (2006) The fast guide to model driven architecture. http://www.omg.org/mda/mda_

files/Cephas_MDA_Fast_Guide.pdf
33. Warmer J, Kleppe A (eds) (2003) The object constraint language: getting your models ready

for MDA 2. Addison-Wesley Longman Publishing Co., Inc., Boston
34. Wikipedia (2016) Backus-naur form – Wikipedia, the free encyclopedia. https://en.wikipedia.

org/wiki/Backus-Naur_Form?oldid=717943564#Further_examples
35. van der Wolf P (1994) Cad frameworks: principles and architecture. The Springer international

series in engineering and computer science. Springer, Boston. https://books.google.de/books?
id=R4BRAAAAMAAJ

http://funbase.cs.tut.fi/
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
https://en.wikipedia.org/wiki/Backus-Naur_Form?oldid=717943564#Further_examples
https://en.wikipedia.org/wiki/Backus-Naur_Form?oldid=717943564#Further_examples
https://books.google.de/books?id=R4BRAAAAMAAJ
https://books.google.de/books?id=R4BRAAAAMAAJ

33Hardware/Software Codesign Across Many
Cadence Technologies

Grant Martin, Frank Schirrmeister, and Yosinori Watanabe

Abstract

Cadence offers many technologies and methodologies for hardware/software
codesign of advanced electronic and software systems. This chapter outlines
many of these technologies and provides a brief overview of their key use
models and methodologies. These include advanced verification, prototyping –
both virtual and real, emulation, high-level synthesis, design of an Applica-
tion-Specific Instruction-set Processor (ASIP), and software-driven verification
approaches.

Acronyms

ADAS Advanced Driver Assistance System
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor
AXI Advanced eXtensible Interface
CNN Convolutional Neural Network
CPF Common Power Format
DMA Direct Memory Access
DSP Digital Signal Processor
DUT Design Under Test
ECO Engineering Change Order
EDA Electronic Design Automation
ESL Electronic System Level
FFT Fast Fourier Transform
FIFO First-In First-Out
FPGA Field-Programmable Gate Array

G. Martin (�) • F. Schirrmeister • Y. Watanabe
Cadence Design Systems, San Jose, CA, USA
e-mail: gmartin@cadence.com; franks@cadence.com; watanabe@cadence.com

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_33

1093

mailto:gmartin@cadence.com
mailto:franks@cadence.com
mailto:watanabe@cadence.com

1094 G. Martin et al.

HLS High-Level Synthesis
HSCD Hardware/Software Codesign
HVL Hardware Verification Language
HW Hardware
IDE Integrated Development Environment
IP Intellectual Property
ISA Instruction-Set Architecture
ISS Instruction-Set Simulator
JTAG Joint Test Action Group
LISA Language for Instruction-Set Architectures
MAC Multiply-Accumulator
NoC Network-on-Chip
OFDM Orthogonal Frequency Dependent Multiplexing
OS Operating System
OVM Open Verification Methodology
PCI Peripheral Component Interconnect
PC Personal Computer
RISC Reduced Instruction-Set Processor
RTL Register Transfer Level
SDK Software Development Kit
SDS System Development Suite
SIMD Single Instruction, Multiple Data
SW Software
TIE Tensilica Instruction Extension
TLM Transaction-Level Model
UML Unified Modeling Language
UPF Unified Power Format
USB Universal Serial Bus
UVM Universal Verification Methodology
VLIW Very Long Instruction Word
VMM Verification Methodology Manual
VP Virtual Prototype
VSIA Virtual Socket Interface Alliance
VSP Virtual System Platform

Contents

33.1 Overview. 1095
33.2 System Development Suite . 1100
33.3 Virtual Prototyping and Hybrid Execution with RTL . 1107
33.4 Hardware Accelerated Execution in Emulation and FPGA-Based Prototyping 1109
33.5 High-Level Synthesis . 1110
33.6 Application-Specific Instruction-Set Processors . 1114

33.6.1 ASIP Concept and Tensilica Xtensa Technology . 1114
33.6.2 DSP Design Using Xtensa . 1117

33 Hardware/Software Codesign Across Many Cadence Technologies 1095

33.6.3 Processor-Centric Design and Hardware/Software Design Space
Exploration . 1118

33.7 Software-Driven Verification and Portable Stimulus . 1121
33.8 Conclusion . 1124
References . 1125

33.1 Overview

Over the last couple of decades, the complexities of chip design have risen
significantly. Where in 1995 reuse of Intellectual Property (IP) blocks was just
starting and led to the foundation of the Virtual Socket Interface Alliance (VSIA)
[5] in 1996, promoting IP integration and reuse, design teams are now facing the
challenge of integrating hundreds of IP blocks. In 1996, most of the effort directly
associated with chip design was focused on hardware itself, but since then the
effort to develop software has become a budgetary item that can, depending on the
application domain, dominate the cost of the actual chip development.

The Electronic Design Automation (EDA) industry responded quite early. Syn-
opsys Behavioral Compiler, an early foray into high-level synthesis, was introduced
in 1994 and Aart De Geus optimistically predicted a significant number of tape-outs
before the year 2000. Gary Smith created the term Electronic System Level (ESL)
in 1996, the same year that the VSIA was founded. In 1997 Cadence announced
the Felix Initiative [17], which promised to make function-architecture codesign
a reality. The SystemC [12] initiative was formed in 1999 to create a new level
of abstraction above Register Transfer Level (RTL), but was initially plagued by
remaining tied to the signal level until 2008, when the standardization of the
TLM-2.0 Application Programming Interfaces (APIs) was completed. This helped
interoperability for virtual platforms (also known as a Virtual Prototype (VP)) and
made SystemC a proper backplane for IP integration at the transaction level. For
another view on virtual prototypes, please consult �Chap. 34, “Synopsys Virtual
Prototyping for Software Development and Early Architecture Analysis”.

When it comes to system and SoC design, at the time of this writing in 2016,
the industry has certainly moved up in abstraction, but in a more fragmented way
than some may have expected 20 years ago. The fundamental shortcoming of the
assumptions of 1996 was the idea that there would be a single executable speci-
fication from which everything could be derived and automated. What happened
instead is that almost all development aspects moved upward in abstraction, but
in a fragmented way, not necessarily leading to one single description from which
they can all be derived. As designers moved up in abstraction, three separate areas
emerged – IP blocks, integration of IP blocks, and software.

For IP blocks, i.e., the new functions to be included into hardware and software,
there is a split between IP reuse and IP development. With full-chip high-level
synthesis never becoming a reality, IP reuse really saved the day, by allowing
design teams to deal with complexities. It has developed into a significant market
today. For IP development, there are six basic ways to implement a great new
idea:

1096 G. Martin et al.

1. Manually implement in hardware.
2. Use high-level synthesis to create hardware.
3. Use an extensible or configurable processor core to create a hardware/software

implementation.
4. Use tools to create a design of an Application-Specific Instruction-set Processor

(ASIP).
5. Use software automation to create software from a system model.
6. Manually implement software and run it on a standard processor.

Interestingly enough, the nonmanual cases two to five all use higher-level
descriptions as the entry point, but each one is different. High-level synthesis is
driven by transaction-level descriptions in SystemC or C/C++, ASIPs as both IP and
an associated tool flow are generated using specific language-like descriptions such
as nML, Language for Instruction-Set Architectures (LISA), or the Tensilica In-
struction Extension (TIE) description language [22]. Software can be auto-generated
from Unified Modeling Language (UML) and MatLab/Simulink descriptions. The
closest high-level unifying notations for a complete hardware/software system are
SysML [10] or UML [16], as well as proprietary offerings such as MathWorks
Simulink, from which both hardware blocks and software blocks can be generated
automatically.

When it comes to connecting all the hardware blocks together, regardless of
whether they were reused or built with one of the six options above, the user has
five different options:

1. Connect blocks manually (good luck!).
2. Automatically assemble the blocks using interconnect auto-generated by ARM

AMBA Designer, Sonics, Arteris, or another interconnect IP provider.
3. Synthesize protocols for interconnect from a higher-level protocol description.
4. Create a Network-on-Chip (NoC), such as a mesh NoC.
5. Use a fully programmable NoC that determines connections completely at run

time.

Again, with the exception of the first (manual) and last (at run time) way to
create the interconnect, the other items raise the level of abstraction. The ARM
Socrates [23] and AMBA Designer environments feed information into Cadence
tools such as Interconnect Workbench to set up a scenario for which performance
analysis is needed, and there are specific tools to automatically create configurations
of different interconnect topologies from higher-level descriptions as well.

Figure 33.1 illustrates the different methods of IP creation and integration, and
the following sections of this chapter dive more deeply into two aspects – high-
level synthesis using the Cadence Stratus high-level synthesis environment and the
development of extensible processor cores using the Tensilica Xtensa technology.
A third aspect is the software that can be found in these designs, much of it
actually determining the functionality and the architecture of a chip. Efforts to
achieve continuous integration of hardware and software have created what the

33 Hardware/Software Codesign Across Many Cadence Technologies 1097

Requirements

Dedicated
Hardware

Dedicated
Hardware

Dedicated
Hardware

Specification SystemC, […]

Idea

Specification +
Extensions

NML, LISA,
LLVM

UML/SysML Specification Requirements

Fixed
Processor IP

Fixed
Processor IP

Fixed
Processor IP

Application
Specific

Processor
(ASIP)

Configurable
Extensible
Processor

HW Re-use from
IP Libraries

Manual Coding
High-Level
Synthesis

Re-use,
configuration &

extension

(Co)-Processor
Synthesis

Software
Synthesis

Manual SW
Development

SW Re-use from
IP Libraries

re-used RTL+
re-used SW

re-used RTL+
new SW

re-used RTL+
new SW

new RTL+
new SW

new RTL+
new SWnew RTL

Written
Specification

Manual
Assembly

Automated
Assembly

Interface
Synthesis

Network on
Chip

GUI, IP-XACT

Top-Level RTL plus SW

Set of Functions

Interface Spec
Written

Specification

new RTLre-used RTL

Fig. 33.1 IP creation and integration in modern chip design

industry refers to as a “shift left” – essentially, early representations or models of
the hardware allowing some level of software execution to occur on the models.
During a project flow today, shifting left has created various options for development
vehicles on which to bring up and execute software:

1. Software Development Kits (SDKs), which do not model hardware in complete
detail.

2. Virtual platforms that are register accurate and represent functionality of the
hardware accurately, but without timing. Architectural virtual platforms may add
cycle accuracy as a modeling style, slowing down execution, thus offering users
a trade-off between speed and accuracy for architectural analysis.

3. RTL simulation is technically a representation of the hardware but is not often
used for software development, unless for low-level drivers.

4. Emulation is the first platform that allows execution in the MHz range. Using
emulation, users can run AnTuTu on mobile devices and bring up Linux on server
chips. The intent is mainly to verify and optimize the hardware.

5. FPGA-based prototyping executes in the tens of MHz range, at times up to
100 MHz, and is a great vehicle for software development on accurate hardware.

6. The actual chip is often used in development boards to develop software.

All options except the last one use abstraction in one way or another to enable
software development as early as possible. The trade-offs are time of availability
during development, speed, and accuracy and the incremental effort needed for
development of the development vehicle.

In many cases, hardware must take the role of executing software in the best
possible way. This is why users deploy emulation and FPGA-based prototyping to

1098 G. Martin et al.

PerspecTM System-level Use-Case Verification

Plan & Management

Debug & Analysis

Verification IP

vManager

IndagoTM

Verification IP

TLM Design & Verification

Metric Driven Verification

ARM-based soC Development

Low Power &
Mixed Signal

Stratus, Incisive,Incisive-VSP, UVM-ML

vManager, Incisive, Palladium, VIP, JasperGold

Palladium Hybrid, DPA, AMBA VIP/IPK,IWB, Perspec

CPF & IEEE1801, Palladium DPA, JasperGold LP

Incisive DMS, AMS Designer, Spectre

Incisive Functional Safety Solution (IFSS)

Low Power

Mixed Signal

Functional Safety

Incisive
VSP

Virtual Prototyping

StratusTM

High-level
Synthesis

JasperGold
+ IFV/IEV

Formal
Verification

Incisive
Simulation

PalladiumTM

Emulation

ProtiumTM

FPGA Based

Prototyping

Fig. 33.2 System Development Suite

actually run mobile benchmarks like AnTuTu, as well as server benchmarks. The
results help designers make changes to the design before finalizing it, to optimize
performance, power, and thermal characteristics. So in a sense hardware/software
codesign has become somewhat of a reality, but needs to be looked at across a family
of platforms – some changes may not make it into the current design as it needs to
be rolled out to meet time to market. They make it instead into the next derivative
design.

Figure 33.2 shows the Cadence System Development Suite (SDS). This offers
a continuous integration of development engines for verification and software
development. The hardware-assisted aspects, to enable the industry demand for a
shift left of software development, will be described in the following sections of
this chapter.

The lessons of the last 20 years are twofold. First, no single human being is
capable of comprehending all aspects of the hardware/software mix in order to
generate a unified description. Complexity has simply grown too much and will
continue to do so for high-end designs. The industry is just at the beginning
of describing scenarios at higher levels of abstraction that can be used to allow
team members with different expertise to efficiently interact. Work in Accellera
on Portable Stimulus (see later details) looks promising, in defining scenarios for
software-driven testing.

Second, for use cases such as performance analysis and power optimization,
abstraction really has only provided a partial answer to the problem. When accuracy
and predictability of the actual implementation is required, implementation really
matters, to drive early design decisions, and execution at the RTL, or the level
of cycle-accurate SystemC, with models abstracted from the implementation flow
are predominant in order to determine power and performance. An example is a

33 Hardware/Software Codesign Across Many Cadence Technologies 1099

combination of activity data gathered from RTL simulation and emulation with
power characterizations abstracted from implementation representations such as .lib
files, as in the combination of Cadence Palladium emulation and Cadence Joules
power estimation. In contrast – for tasks such as software development of drivers
in a low-power context – abstraction offers a solution using Transaction-Level
Models (TLMs), sometimes combined in a hybrid fashion with RTL representations,
that allows early functional verification of software, ignoring some of the detailed
accuracy requirements. Examples are TLM virtual platforms annotated with low-
power information and hybrid configuration of virtual platforms with emulation. As
a result design teams are entering an era of both horizontal integration and vertical
integration.

Horizontal integration enables verification on different engines in the flow
using the same tests, sometimes referred to as “portable stimulus” as currently
standardized in the Accellera working group of the same name [2]. Here are found
UML-like descriptions, notations, and languages that describe scenarios. This is the
next level above SystemVerilog for verification and definitely will be a hallmark
of verification in the next decade, when verification shifts to the system level and
designers have to rely on IP being largely bug-free. IP itself also will rise from the
block level to subsystems, so the pieces to be integrated are getting bigger. The
flow between the horizontal engines and hybrid engine combinations will also grow
further in popularity.

Vertical integration keeps us grounded and may be the main obstacle in the way
of a unified high-level design description. While in the days of the Felix Initiative,
the team operated under the assumption that everything can be abstracted to enable
early design decisions, it turns out that is not the case in reality. Performance
analysis for chip interconnect has dropped down back to the RTL, or in the case
of architectural virtual platforms, to the cycle-accurate SystemC level, simply
because the pure transaction level does not offer enough accuracy to make the
right performance decisions. Tools like Cadence Interconnect Workbench [13] are
addressing this space today and vertically integrate higher-level traffic models
with lower-level RTL and SystemC representations. The same is true for power.
Abstracting power states to annotate power information to transaction-level models
in virtual prototypes may give enough relative accuracy to allow development
of the associated software drivers, but to get estimates accurate enough to make
partitioning decisions, one really needs to connect to implementation flows and
consider dynamic power. The integration of Palladium emulation with Joules power
estimation from the RTL is a good example here.

Bottom line, today and for the years to come, design teams will deal with blocks
to be integrated that will grow into subsystems; there will be even smarter inter-
connects to assemble systems on chip; and software development will have shifted
left earlier. However, the separation of reuse (grown to subsystems), automatic
creation (High-Level Synthesis (HLS)), and chip assembly (watch the space of
integration and verification automation), plus the creation of early representations of
the hardware to enable software development, will still be the predominant design
techniques for very complex designs. The following sections will give more details
on some of the areas touched above.

1100 G. Martin et al.

The rest of this chapter is organized as follows:

• Section 33.2 talks about the System Development Suite.
• Section 33.3 talks about virtual prototyping and hybrid execution
• Section 33.4 talks about hardware accelerated execution in emulation and FPGA-

based prototyping.
• Section 33.5 talks about high-level synthesis technology.
• Section 33.6 talks about Application-Specific Instruction-set Processor technol-

ogy.
• Section 33.7 talks about software-driven verification and portable stimulus.
• Section 33.8 concludes the chapter with an eye to future technology development.

33.2 System Development Suite

As indicated in the overview, a classic design flow for hardware/software projects
is divided into creation, reuse, and integration of IP. Figure 33.3 shows some of the
main development tasks during a project.

The horizontal axis shows the hardware-related development tasks starting with
specification, IP qualification and integration, and implementation tasks prior to
tape-out and chip fabrication. The vertical axis indicates development scope from
hardware IP blocks through subsystems, System on Chips (SoCs), and the SoC in
the actual end product (system) through software from bare-metal tasks to operating
systems and drivers, middleware, and the user-facing applications.

Fig. 33.3 Development tasks during a hardware/software development project

33 Hardware/Software Codesign Across Many Cadence Technologies 1101

Development starts with system modeling and trade-off analysis executed by
architects resulting in specifications. For system models, time of availability, speed,
and accuracy are most important. Hardware development and verification is per-
formed by hardware verification engineers for IP, subsystems, and the SoC. Initially,
hardware debug and fast turnaround time are most important; once software enters
the picture for subsystem verification, software debug and execution speed also
become crucial. Software development happens in two main areas: hardware-aware
software development for Operating System (OS) porting and utility development
and application software development, requiring various levels of speed and model
accuracy. The integration of hardware and software needs to be validated by
HW/SW validation engineers prior to tape-out and again on silicon once actual chip
samples are available. This flow can take 18–24 months; one of the major objectives
is to allow agile, continuous integration of hardware and software, so developers use
different execution engines and different combinations of these engines as soon as
they become available.

As one can see, today’s complex hardware/software designs involve many
different types of developers, all with different requirements and concerns that
cannot be satisfied by one engine alone. Here are the five main types of users:

1. Application software developers need a representation of the hardware as early
as possible during a project. The representation needs to execute as fast as
possible and needs to be functionally accurate. This type of software developer
would like to be as independent from the hardware as possible and specifically
does not need full timing detail. For example, detailed memory latency and bus
delays are generally not of concern, except for specific application domains for
which timing is critical.

2. Hardware-aware software developers would also like representations of the
hardware to be available as early as possible. However, they need to see the
details of the register interfaces, and they expect the prototype to look exactly
like the target hardware. Depending on their task, timing information may
be required. In exchange, this type of developer is likely to compromise on
execution speed to gain the appropriate accuracy.

3. System architects care about early availability of the prototype, as they have
to make decisions before all the characteristics of the hardware are defined.
They need to be able to trade off hardware versus software and make decisions
about resource usage. For them, the actual functionality counts less than some
of the details. For example, functionality can be abstracted into representations
of the traffic it creates, but for items like the interconnect fabric and the memory
architecture, very accurate models are desirable. In exchange, this user is willing
to compromise on speed and typically does not require complete functionality as
the decisions are often made at a subsystem level.

4. Hardware verification engineers typically need precise timing accuracy of the
hardware, at least on a clock cycle basis for the digital domain. Depending
on the scope of their verification task, they need to be able to model the
impact of software as it interacts with the hardware. In some cases they need to

1102 G. Martin et al.

assess mixed-signal effects at greater accuracy than standard cycle accurate RTL
provides. Accuracy is considered as more important than speed, but the faster
the prototype executes, the better the verification efficiency will be. This user
also cares about being able to reuse test benches once they have been developed,
across engines, to allow verification reuse.

5. Hardware/software validation engineers make sure the integration of hardware
and software works as specified, and they need a balance of speed and accuracy
to execute tests of significant length to pinpoint defects if they occur. This type
of user especially needs to be able to connect to the environment of the chip and
system to verify functionality in the system context.

Some characteristics are important to all users, but some of them are especially
sensitive to some users. Cost is one of those characteristics. While all users are
cost sensitive, software developers may find that a development engine may not
be feasible in light of cheaper alternatives, even though the engine may have the
desired accuracy or early availability in the project flow. In addition, the extra
development effort that engines require beyond standard development flows needs
to be considered carefully and weighed against benefits.

Figure 33.4 illustrates some of the dynamic and static development engines with
their advantages and disadvantages.

The types of development engines can be categorized easily by when they
become available during a project. Prior to RTL development, users can choose
from the following engines:

• SDKs typically do not run the actual software binary but require recompilation
of the software. The main target users are application software developers who
do not need to look into hardware details. SDKs offer the best speed but lack
accuracy. The software executing on the processors as in the examples given
earlier runs natively on the host first or executes on abstraction layers like Java.

Fig. 33.4 Hardware/software development engines

33 Hardware/Software Codesign Across Many Cadence Technologies 1103

Complex computation as used in graphics and video engines is abstracted using
high-level APIs that map those functions to the capabilities of the development
workstation.

Virtual platforms can be available prior to RTL when models are available and
come in two flavors:

• Architectural virtual platforms are mixed accuracy models that enable archi-
tecture decision-making. The items in question – bus latency and contention,
memory delays, etc. – are described in detail, maybe even as small portions
of RTL. The rest of the system is abstracted as it may not exist yet. The
main target users are system architects. Architectural virtual platforms are
typically not functionally complete, and they abstract environment function-
ality into their traffic. Specifically, the interconnect fabric of the examples
given earlier will be modeled in full detail, but the analysis will be done
per subsystem. Execution speed may vary greatly depending on the amount
of timing accuracy, but normally will be limited to tens to low hundreds of
KHz. Given that cycle-accurate SystemC can be as accurate as RTL, minus
sub-cycle timing annotations, automatic translation from RTL to SystemC is
sometimes used: technologies like Verilator and ARM Cycle Model Studio are
useful here.

• Software virtual platforms run the actual binary without recompilation at
speeds close to real time – fifties to hundreds of MHz. Target users are
software developers, both application developers and “hardware-aware software
developers.” Depending on the needs of the developer, some timing of the
hardware may be more accurately represented. This prototype can be also used
by hardware/software validation engineers who need to see both hardware and
software details. Due to the nature of “just in time binary translation,” the code
stream of a given processor can be executed very fast, natively on the host. This
makes virtual prototypes great for software development, but modeling other
components of the example systems – such as 3D engines – at full accuracy
would result in significant speed degradation.

Once RTL has been developed, RTL-based engines offer more accuracy:

• RTL simulation is the standard vehicle for hardware verification engineers.
Given its execution in software, it executes slowly – in the range of hundreds
of Hz – for all components in the system to be represented. It sometimes is
used as an engine for lower-level software development for which great accuracy
is required and appropriate length of execution can be achieved due to short
simulation runs.

• Simulation acceleration: When RTL simulation becomes too slow, acceleration
allows users to bring performance to the next orders of magnitude – 200 to
500 KHz. Acceleration is a mix of software-based and hardware-based execution.
Interfaces to the real world are added, but selectively.

1104 G. Martin et al.

• In-circuit emulation: Now everything transitions into the emulator, test benches
are synthesizable or the software executes as it will in the end product and users
get even more speed – 1 to 2 MHz. Debug – especially for hardware – is great
in emulation. More interfaces to the real world are added. For both in-circuit
emulation and acceleration, the speed is much superior to basic RTL simulation
and as such very balanced. However, when it comes to pure software execution on
a processor, transaction-level models of a processor on a Personal Computer (PC)
will execute faster.

• FPGA-based prototyping: When RTL has become mature, users can uti-
lize Field-Programmable Gate Array (FPGA)-based platforms as even faster
hardware-based execution environments. This works especially well for IP that
already exists in RTL form. Real-world interfaces are now getting to even higher
speeds of tens of MHz. Similarly to acceleration and in-circuit emulation, pure
software execution on a processor, or transaction-level models of a processor on
a PC, may still execute faster.

Finally, software development also happens on real silicon and can be split into
two parts:

• Chips from the last project can be used especially for application development.
This is like the SDK in the pre-RTL case. However, the latest features of the
development for the new chip are not available until the appropriate drivers, OS
ports, and middleware become available.

• Once the chip is back from fabrication, actual silicon prototypes can be used.
Now users can run at real speed, with all connections, but debug becomes harder
as execution control is not trivial. Starting, stopping, and pausing execution at
specific breakpoints is not as easy as in software-based execution and prototypes
in FPGA and acceleration and emulation.

To understand the benefits associated with each type of development engine, it is
important to summarize the actual concerns derived from the different users and use
models:

• Time of availability during a project: When can I get it after project start?
Software virtual prototypes win here as the loosely timed transaction-level model
(TLM) modeling effort can be much lower than RTL development and key IP
providers often offer models as part of their IP packages. Hybrid execution with
a hardware-based engine alleviates remodeling concerns for IP that does not yet
exist as TLMs.

• Speed: How fast does the engine execute? Previous generation chips and actual
samples execute at actual target speed. Software virtual prototypes without
timing annotation are next in line, followed by FPGA-based prototypes and
in-circuit emulation and acceleration. Software-based simulation with cycle
accuracy is much slower.

33 Hardware/Software Codesign Across Many Cadence Technologies 1105

• Accuracy: How detailed is the hardware that is represented compared to the
actual implementation? Software virtual prototypes based on TLMs with their
register accuracy are sufficient for a fair number of software development
tasks including driver development. However, with significant timing annotation,
speed slows down so much that RTL in hardware-based prototypes often is faster.

• Capacity: How big can the executed design be? Here the different hardware-
based execution engines differ greatly. Emulation is available in standard con-
figurations of up to several billion gates; standard products for FPGA-based
prototyping are in the range of several hundreds of millions of gates, as multiple
boards can be connected for higher capacity. Software-based techniques for RTL
simulation and virtual prototypes are only limited by the capabilities of the
executing host. Hybrid connections to software-based virtual platforms allow
additional capacity extensions.

• Prototyping development cost and bring-up time: How much effort needs
to be spent to build it on top of the traditional development flow? Here virtual
prototypes are still expensive because they are not yet part of the standard flow.
Emulation is well understood and bring-up is very predictable: in the order of
weeks. FPGA-based prototyping from scratch is still a much bigger effort, often
taking 3–6 months. Significant acceleration is possible when the software front
end of emulation can be shared.

• Replication cost: How much does it cost to replicate the prototype? This is
the actual cost of the execution vehicle, not counting the bring-up cost and
time. Pricing for RTL simulation has been under competitive pressure and is
well understood. TLM execution is in a similar price range; the hardware-based
techniques of emulation and FPGA-based prototyping require more significant
capital investment and can be measured in dollars per executed gate.

• Software debug, hardware debug, and execution control: How easily can soft-
ware debuggers be attached for hardware/software analysis and how easily can
the execution be controlled? Debugger attachment to software-based techniques
is straightforward and execution control is excellent. The lack of speed in RTL
simulation makes software debug feasible only for niche applications. For hard-
ware debug the different hardware-based engines are differentiated – hardware
debug in emulation is very powerful and comparable to RTL simulation, but
in FPGA-based prototyping it is very limited. Hardware insight into software-
based techniques are great, but the lack of accuracy in TLMs limits what can
be observed. With respect to execution control, software-based execution allows
one to efficiently start and stop the design, and users can selectively run only a
subset of processors, enabling unique multi-core debug capabilities.

• System connections: How can the environment be included? In hardware,
rate adapters enable speed conversion, and a large number of connections are
available as standard add-ons. RTL simulation is typically too slow to connect
to the actual environment. TLM-based virtual prototypes execute fast enough
and virtual I/O to connect to real-world interfaces such as Universal Serial Bus
(USB), Ethernet, and Peripheral Component Interconnect (PCI) have become a
standard feature of commercial virtual prototyping environments.

1106 G. Martin et al.

• Power analysis: Can users run power analysis on the prototype? How accurate
is the power analysis? With accurate switching information at the RTL level,
power consumption can be analyzed fairly accurately, especially when vertically
integrated with implementation flows. Emulation adds the appropriate speed to
execute long enough sequences to understand the impact of software. At the
TLM level, annotation of power information allows early power-aware software
development, but the results are by far not as accurate as at the RTL level.

• Environment complexity: How complex are the connections between the
different engines? The more hardware and software engines are connected (as in
acceleration), the complexity can become significant and hard to handle, which
needs to be weighed against the value.

Given the different types of users and their needs, the different engine capabili-
ties, and the different concerns for the various development tasks, it is easy to see
that there is no one “super”-engine that is equally suited for all aspects. Introduced
in 2011, the System Development Suite is a set of connected development engines
and has since then been enhanced to achieve closer integration between the engines
as illustrated in Fig. 33.5.

The System Development Suite is the connection of dynamic and static verifica-
tion platforms and starts with the Stratus HLS platform for IP development which
is also used to raise the level of verification abstraction. The JasperGold formal
verification platform is widely used throughout the flow with its different formal
applications, ranging from block to SoC level. The Incisive platform for advanced
verification extends from IP level to full SoCs and interacts with the Palladium
acceleration and emulation platform quite seamlessly, with technologies such as
hot swap between simulation and emulation.

Fig. 33.5 System Development Suite engine integrations

33 Hardware/Software Codesign Across Many Cadence Technologies 1107

The different engines tie together into the vManager verification center to collect
and assess coverage, planning and monitoring how well verification proceeds
throughout a project. Verification IP is usable across the different platforms, and
with debug enabled by the Indago platform, the suite is being worked toward unified
debug across the different verification engines.

Extending further into software development, the Palladium Hybrid technology
connecting virtual platforms with emulation and the Protium FPGA-based pro-
totyping technology enable software development at various levels of speed and
hardware accuracy. The Perspec platform for use-case-driven verification allows the
development of stimulus that is portable across the different dynamic verification
engines.

Finally, there are specific solutions that combine the different engines to optimize
development for ARM-based designs and low-power, mixed-signal, functional
safety, and metric-driven verification. The SoC factory service enables the automa-
tion of integration and verification of IP-based designs with interfaces to IP-XACT
and ARM’s Socrates [23] tools.

Two system-level aspects – behavioral modeling and design space exploration
– have attracted the attention of researchers for the better part of the last two
decades, but so far have not become broadly supported in commercial tools. The
adoption of behavioral modeling itself has been limited due to the absence of a
universally accepted higher-level system language or representation. SystemC –
while well adopted as an entry point for high-level synthesis and as glue for the
assembly of virtual platforms, utilizing back-door interfaces as provided in SystemC
TLM-2.0 APIs – has not been found suitable for higher-level descriptions. For
these, proprietary techniques such as provided by National Instruments and the
MathWorks and standardized entries like SysML or UML are more common. They
cater to system architects and abstract both hardware and software.

In the context of the System Development Suite, SystemC is supported natively
as part of multiengine simulation, while higher-level descriptions serve as references
for verification with connections of MatLab/Simulink models into verification. In
addition, UML style diagrams have become one option to describe system-level test
scenarios to create portable stimulus that can be executed as software in multiple
verification engines.

33.3 Virtual Prototyping and Hybrid Execution with RTL

Virtual prototyping was pioneered by start-ups like VasT, Virtutech, and Virtio,
all of which were acquired in the last decade. It turns out that the modeling
effort often is considered so high that these days “pure virtual prototypes” at
the transaction level have become somewhat unusual, and mixed abstraction-level
virtual prototypes, combining TLM and RTL have become predominant. Figure 33.6
shows the advantages of the different engines across the user concerns introduced in
the previous section, showing clearly how the speed of virtual platforms, combined
with the accuracy of RTL-based execution engines, can be advantageous.

1108 G. Martin et al.

Fig. 33.6 Advantages of hybrid engine combinations

The combination of RTL simulation and virtual prototyping is especially attrac-
tive for verification engineers who care about speed and accuracy in combination.
Software debug may be prohibitively slow on RTL simulation itself, but when
key blocks including the processor can be moved into virtual prototype mode, the
software development advantages can be utilized and the higher speed also improves
verification efficiency.

The combination of emulation/acceleration and virtual prototyping is attractive
for software developers and hardware/software validation engineers when proces-
sors, which would be limited to the execution speed of emulation or FPGA-based
prototyping when mapped into hardware-based execution, can be executed on a
virtual prototype. Equally, massive parallel hardware execution – as used in video
and graphics engines – is executed faster in hardware-based execution than in a
virtual prototype. For designs with memory-based communication, this combination
can be very advantageous, calling graphics functions in the virtual prototype and
having them execute in emulation or FPGA-based prototyping.

With hybrid techniques, users can achieve a greatly reduced time delay before
arriving at the “point of interest” during execution, by using accelerated OS boot

33 Hardware/Software Codesign Across Many Cadence Technologies 1109

(operating system boot-up). Billions of cycles of an operating system (OS) have to
be executed before software-based diagnostics can start; therefore, OS boot itself
becomes the bottleneck. The Palladium Hybrid solution combines Incisive-VSP
virtual prototyping and ARM Fast Models with Palladium emulation to provide this
capability.

Users such as NVIDIA [8], ARM, and CSR [20] have seen overall speedup
of tests by up to ten times, when combining graphical processor unit (GPU)
designs together with ARM Fast Models representing the processor subsystem.
They demonstrated up to two hundred times acceleration of “OS boot,” which
brought them to the point of interest much faster than by using pure emulation.
The actual speedup depends on the number of transactions between the TLM and
RTL domains. The time to the point of interest can be accelerated significantly
because during OS boot, the interaction between the TLM simulation and RTL
execution in emulation (which limits the speed) is fairly limited. When the actual
tests run after the OS is booted, the speedup depends again on how many interactions
and synchronizations are necessary between the two domains. Some specific smart
memory technology in the Palladium Hybrid solution with Virtual System Platform
(VSP) and ARM Fast Models allows synchronization between both domains to be
more effective (the concept can be likened to an advanced form of caching). Still,
tests get accelerated the most when they execute a fair share of functionality in
software.

33.4 Hardware Accelerated Execution in Emulation and
FPGA-Based Prototyping

As pointed out earlier, software-based execution is limited by the number of
events executed and hence has speed limitations. When considering hardware-based
execution techniques, a key measure is the throughput for a queue of specific tasks,
comprised of compile, allocation, execution, and debug.

Given thousands of verification and software development tasks, it is important
to consider how fast the user can compile the design to create an executable of the
job that then can be pushed into the execution queue. In emulation, these tasks are
automated and for processor-based emulation, users compile for the latest Palladium
Z1 emulation platforms at a rate of up to 140 million gates per hour, getting to
results quite quickly. For simulation, the process is similar and fast. For FPGA-
based prototyping, it may take much longer for manual optimization to achieve
the highest speeds, often weeks if not months. Flow automation for the Protium
platform, adjacent to Palladium, allows users to trade-off between bring-up and
execution speed. The benefit of fast bring-up is offset by speeds between 3 and
10 MHz, not quite as fast as with manual optimization that often results in speeds of
50 MHz or more.

Allocation of tasks into the hardware platform determines how efficiently it can
be used as a compute resource. For simulation farms, users are mostly limited by
the number of workstations and the memory footprint. Emulation allows multiple

1110 G. Martin et al.

users, but the devil lies in the details. For large numbers of tasks of different sizes,
the small granularity and larger number of parallel jobs really tips the balance here
toward processor-based emulation such as the Palladium Z1 platform. In contrast
the number of users per FPGA platform is typically limited to one.

The actual execution speed of the platform matters, but cannot be judged in
isolation. Does the higher speed of FPGA-based prototyping make up for the
slower bring-up time and the fact that only one job can be mapped into the
system? It depends. As a result FPGA-based prototyping is mainly used in software
development, where designs are stable and less in hardware verification. This usage
is later in the cycle, but runs faster. For FPGA-based emulation, often considered
faster than processor-based emulation, users have to look carefully how many
jobs can be executed in parallel. And in simulation farms, the limit is really the
availability of server capacity and memory footprint. The Palladium Z1 platform
introduced in late 2015 is an enterprise emulation platform scalable to 9.2 billion
gates for up to 2304 parallel tasks.

As the last steps of the throughput queue, debug is crucial. It is of the utmost
importance to efficiently trigger and trace the debug data for analysis. FPGA-
based prototyping and FPGA-based emulation slow down drastically when debug is
switched on, often negating the speed advantages for debug-rich cases found when
RTL is less mature. It all depends on how much debug is needed, i.e., when in the
project phase the user is running the verification queue set up above. In addition,
the way data is extracted from the system determines how much debug data is
actually visible. Also, users need to assess carefully how the data generation slows
down simulation. With processor-based emulation, debug works in a simulation-
like manner. For FPGA-based systems, slowdown and accessibility of debug data
need to be considered. Again, FPGA-based prototyping works great for the software
development side, but for hardware debug it is much more limited compared to
simulation and emulation.

As part of the System Development Suite, the Palladium platform for emulation
and Protium platform for FPGA-based prototyping offer a continuum of use models
as indicated in Fig. 33.7. These use models range from hardware-centric devel-
opment with simulation acceleration through detailed hardware/software debug
with the Palladium emulation series and faster throughput regressions as well as
software-centric development with the Protium platform.

33.5 High-Level Synthesis

The history of HLS is long [18]. It was already an active research topic in the EDA
community in the 1970s, and by the early 1990s it was often introduced as the
“next big thing”, following the significant and very successful adoption of logic
synthesis. However, only recently have commercial design projects started using
this technology as the primary vehicle in the hardware design flow. Even then, its
commercial use was limited to design applications that were historically considered
as its sweet spot, dominated by data-processing or datapath functions with little

33 Hardware/Software Codesign Across Many Cadence Technologies 1111

100%

workload

Design Creation

Hardware Debugging HW/SW Development
HW Regressions

Software Development
System Validation

RTL Ready

Closer to Final Product

Tapeout Test Chip

0%

Simulation

Software

Fig. 33.7 Continuum of hardware-assisted development engines

control logic. This might suggest that HLS has had limited commercial success. On
the other hand, industry users who have adopted this technology in their commercial
design projects unanimously state that they would never go back to the RTL-based
design flow. For them, HLS is an indispensable technology that enables them to
achieve a quality of designs in tight project schedules that are not possible with RTL.

The IP blocks in today’s complex designs are no longer just single datapath
components, but are subsystems that include local memories for efficient data
access, components that manage data transfers, and controllers for managing
operations in the IPs with the rest of the system, in addition to core engines that
implement algorithms to provide services defined by the IPs. These subsystems are
integrated into a broad range of SoCs, which impose very different requirements in
terms of implementation such as clock frequencies or performance constraints, as
well as functionality on specific features or I/O interface configurations. Further,
these requirements often change during the design projects. This is inevitable
because nobody can foresee precisely what would be required in such complex
systems before starting the projects, and details are often found when the designs
are implemented or integrated into larger systems. It is therefore necessary that the
design teams for those IP subsystems be able to support a broad range of design
requirements imposed by different SoCs that integrate their designs, while at the
same time responding to changes in requirements that arise throughout the design
phases for each of them.

StratusTM HLS, as illustrated in Fig. 33.8, addresses this need by providing three
relevant characteristics that are essential for using HLS as the primary design

1112 G. Martin et al.

SystemC, C, C++
Synthesizable Behavioral Models

FSM Datapath

MUL

FPU

ADD

DIV

RTL - Verilog

Stratus™ HLS

Technology Library

Constraints

Fig. 33.8 StratusTM HLS

technology in practice. First, it produces high-quality implementations for all
components of IP subsystems that design teams need to deliver. It is no longer a
tool for just datapath components. It takes as input behavioral descriptions of the
target functionality in a highly configurable manner. The descriptions are specified
using the SystemC language, where standard C++ techniques are used to define
features and microarchitectures that can be included in the design through simple
reconfiguration of the same descriptions. It also takes design requirements of the
target implementations and technology library and produces synthesizable RTL for
downstream implementation processes.

The breadth of configurations one can achieve with these descriptions is far
beyond what is possible with RTL or parameterized RTL models, because the
behavioral descriptions for Stratus HLS can result in totally different RTL structures
just by changing the design parameters. The level of abstraction of these behavioral
descriptions allows the designers to specify their design intent by focusing only on
a few key specifics of the architectures while leaving the tool to figure out all the
other details automatically. With this, they can easily evaluate various architectural
choices of not only individual components of the IP but the whole subsystem.

For example, in achieving high-performance hardware implementations of algo-
rithms, it is often important to take into account not only the cost of implementing
the arithmetic computation of the algorithms but also the impact of accessing
the data required for the algorithms. To address this concern, designers evaluate

33 Hardware/Software Codesign Across Many Cadence Technologies 1113

the architecture of the memory hierarchy. In RTL design, they typically consider
allocation of data to the memory hierarchy in such a way that data required by the
individual arithmetic operations can be located close to the resources for executing
the operations. This kind of exploration is easy in HLS, where one can change
the memory hierarchy using design parameter configurations and data allocation
to specific type of memories can be decided automatically.

The second aspect with which Stratus HLS provides strong value to IP design
teams is the integration of this technology with the rest of the design and verification
flow. Since HLS produces implementation from abstracted behavioral descriptions,
it inevitably lacks detailed information that becomes available only in subsequent
phases of the implementation flow. This causes a risk in general that design
decisions made by HLS could cause issues that are difficult to close later in the
design process. To mitigate this risk, one could either incorporate downstream tools
within HLS or establish a closed loop from those tools back to an HLS tool. Stratus
HLS does both. It uses the logic synthesis engine during the optimization process, so
that it makes design decisions by accurately taking into account the information of
actual resources implemented by logic synthesis. To cope with the wire congestion
issue, the tool provides a back annotation mechanism to correlate the resources that
cause high congestion during the layout phase to objects in the input behavioral
descriptions, so that the designer can evaluate the root causes of wire congestion
quickly.

The HLS design flow is also required to work with existing RTL designs, so that
if the components designed with HLS are adjacent to components already written in
RTL, the connections between them must be done seamlessly, despite the fact that
they are written in different languages and using different abstraction levels for the
interfaces. Stratus HLS provides features that automatically produce interlanguage
interface adapters between the behavioral and RTL components. The user can decide
on simulation configurations of a design that have mixtures of HLS components
and RTL components, and the tool automatically inserts the adapters to establish
the necessary connections. Such a mixture of behavioral and RTL descriptions also
arises within a component that is fully designed with HLS.

Typically, a behavioral description for the component is written in a hierarchical
manner, so that the design can be implemented gradually. When designers analyze
the quality of implementation, they often focus on a particular subcomponent,
leaving the rest of the design either at the behavioral level or at RTL depending
upon the progress of the design phase. Stratus HLS provides a capability where
the user can define multiple architectural choices in the individual subcomponents
and then specify for each of them whether they want to use the behavioral
description in simulating the subcomponent or the RTL description made for a
particular architectural choice defined for it. The tool then automatically synthesizes
the subcomponents as specified and combines the resulting RTL with behavioral
descriptions of the remaining subcomponents to produce a simulation image. With
this, the user can seamlessly verify the functionality of the component while
focusing on particular subcomponents to explore various architectural choices to
produce a high-quality implementation.

1114 G. Martin et al.

The third aspect that is extremely important for the adoption of HLS in practice is
the support for Engineering Change Orders (ECOs). In the context of HLS, the main
concern is support for functional ECOs, at a late stage, when design components
have already been implemented to the logic or layout level and verification has been
done, and the need arises to introduce small changes in the design functionality. In
the RTL-based design flow, the designers carefully examine the RTL code and find
a way to introduce the changes with minimal and localized modification of the code.
If the designer tries to do the same with HLS, by introducing small changes in the
behavioral description, when HLS is applied to the new description, the generated
RTL often becomes very different from the original one. The logic implemented in
RTL may change very significantly even if the functionality is very similar to the
original one.

Stratus HLS provides an incremental synthesis feature to address this issue. In
this flow, the tool saves information about the synthesis of the original design, and
when an ECO happens, it takes as input this information together with the newly
revised behavioral description. It then uses design similarity as the main cost metric
during synthesis and produces RTL code with minimal differences from the original
RTL code while meeting the specified functionality change.

High-quality implementations obtained from highly configurable behavioral
descriptions for the whole IP subsystem, the integration with the existing design
and verification flow, and the support for ECOs are the primary concerns that one
needs to address when adopting high-level synthesis technology for designing new
components of IPs. The fact that major semiconductor companies have successfully
adopted Stratus HLS as an indispensable technology in their critical design projects
is attributed to its strong capabilities in these aspects.

More information on HLS capabilities can be found in [6].

33.6 Application-Specific Instruction-Set Processors

This section discusses the concept of an ASIP and relates them specifically
to hardware/software codesign. This concept is used to develop a particular
codesign methodology: “processor-centric design.” For another view on ASIPs,
see �Chap. 12, “Application-Specific Processors”.

33.6.1 ASIP Concept and Tensilica Xtensa Technology

The foundation for processor-centric subsystem design is configurable, extensible
processor technology, which has been developed by a number of academic and
commercial groups since the 1990s [14, 22]. Tensilica technology [15, 27] dates
from the late 1990s and has been applied to a wide variety of ASIP designs.

33 Hardware/Software Codesign Across Many Cadence Technologies 1115

Instruction
Fetch / Decode

Base ISA
Execution
Pipeline

Base Register File

Data
Load/Store Unit

Base ALU

Optional
Function Units

Processor Controls

Interrupt Control

Instruction Memory Interfaces

Data Memory Interfaces

I/O Interfaces

Base ISA Feature

Pre-Designed Options

Designer-Defined Features (TIE)

On-Chip Debug Control

Data / Instruction
Watchpoint Registers

Timers

Real-Time Trace

JTAG/APB Access Port

Performance Monitor

Loop
Buffer

Designer-Defined Data
Load / Store Unit

TIE Queue

Designer-Defined
Function Units

System Bus Interface

System Bus
PIF, AHB, AXI

Prefetch

Write Buffer

Local
RAM
ROM I Cache

I MMU

Local
RAM
ROM

D Cache

D MMU

FIFO

FIFO

TIE
Lookup

TIE
Port

Lookup
Table

Designer-Defined
FLIX N-Way

Parallel Execution Pipelines

ISA
Extensions

Designer-Defined
ISA

…

Register Files
Processor State

Register Files
Processor State

…

Fig. 33.9 Xtensa ASIP concept

Configurable, extensible processors allow designers to configure structural pa-
rameters and resources in a base Reduced Instruction-Set Processor (RISC) archi-
tecture as shown in Fig. 33.9. Extensibility allows design teams to add specialized
instructions for applications. Automated tool flows create the hardware and software
tools required, using specifications for structural configuration, and instruction
extensions, defined by an architectural description language [21].

Configurable structural architecture parameters include:

• Size of register files
• Endianness
• Adding functional units, e.g., Multiply-Accumulators (MACs) and floating point
• Local data and instruction memory interfaces including configurable load-

store units and Direct Memory Access (DMA) access and memory subsystem
configuration

• Instruction and data cache attributes
• System memory and bus interfaces including standard buses such as Advanced

eXtensible Interface (AXI)

1116 G. Martin et al.

• Debug, tracing, Joint Test Action Group (JTAG)
• Timers, interrupts and exceptions
• Multi-operation Very Long Instruction Word (VLIW) operation bundling
• Pipeline depth and microarchitecture choice
• Port, queue, and lookup interfaces into the processor’s datapath

Instruction extensions, defined in Tensilica’s TIE language [30], define special-
ized register bank width and depth, special processor state, operations of almost
arbitrary complexity, their specification and optimized hardware implementation,
SIMD-width, encoding, scheduling (single or multi-cycle), usage of operands and
register ports, and bundling into multi-operation VLIW instructions. In addition,
a number of documentation descriptions and software properties that influence
operation scheduling in the compiler can be defined in TIE. Other aspects of the
user programming model using instruction extensions, such as support for new C-
types and operator overloading, and mapping of instruction sequences into a single
atomic operation or group of operations can also be defined in TIE. Aggressive use
of parallelism and other techniques in user-defined TIE extensions can often deliver
10X, 100X, or even greater performance increases compared to conventional fixed
instruction-set processors or Digital Signal Processors (DSPs).

The automated tool flow generates the tooling for compilers, assemblers,
instruction-set simulators, debuggers, profilers, and other software tools, along with
scripts for optimized hardware implementation flows targeting current Application-
Specific Integrated Circuit (ASIC) technologies [3].

Xtensa technology has been developed for over 17 years, from the founding of
Tensilica as a separate company and its acquisition in 2013 [27]. This technology
has been extensively verified [4, 24]. Designers perform their optimization and
create their ideal Xtensa processor by using the Xtensa processor generator. In
addition to producing the processor hardware RTL [11, 31], the Xtensa processor
generator automatically generates a complete, optimized software-development
environment. Two additional deliverables with Xtensa are:

1. Xtensa Xplorer Integrated Development Environment (IDE), based on Eclipse,
which serves as a cockpit for single- and multiple-processor SoC hardware
and software design. Xtensa Xplorer integrates software development, processor
optimization, and multiple-processor SoC architecture tools into one common
design environment. It also integrates SoC simulation and analysis tools.

2. A multiple processor (MP)-capable Instruction-Set Simulator (ISS) and C/C++
callable simulation libraries, along with a SystemC development environment
XTSC.

ASIPs support Hardware/Software Codesign (HSCD) methodologies, albeit not
quite in the classical sense of “all Hardware (HW)” vs. “all Software (SW)”.
ASIPs allow the computation and communications required by particular algorithms
and applications to be mapped into flexible combinations of classical SW and
application-oriented operations which are tuned to the application requirements.

33 Hardware/Software Codesign Across Many Cadence Technologies 1117

Algorithms which are control-dominated can be mapped into an ASIP which is
like a classical RISC machine, with configurability limited to aspects such as the
memory subsystem and debug attributes. Algorithms heavy on computation with
many application-specific operations can be mapped into ASIPs with extensive
instruction extensions that greatly reduce the number of cycles required to execute
and as a corollary, reduce the overall energy consumption of the algorithm by a
large fraction. Algorithms heavy on communications methods or needing ancillary
hardware execution units can utilize the port, queue and lookup interfaces to
both simplify and improve the performance possible in passing data and control
information from one core to another or to adjunct hardware blocks.

In this sense, ASIPs explode the design space exploration possibilities available
to designers. They no longer need to live with just hardware or just selecting one
from a list of predefined processor cores. They can tune one processor or a group of
homogeneous or heterogeneous processors specifically to the particular application
domain and algorithms their design is focused on. A good overview of design space
exploration using Xtensa processors can be found in Chap. 6 of [4]. Design space
exploration is discussed using this concept of processor-centric design.

33.6.2 DSP Design Using Xtensa

Xtensa ASIP technology has been applied by customers to create their own
application-specific processors. It has also been applied internally within the
research and development teams to create DSPs tuned to particular application
domains. The key domains addressed through the years have been audio processing,
communications, and video, imaging, and vision processing applications.

Audio [19] has been for many years a major focus of ASIP technology and audio
DSPs. Several variations of audio DSPs exist, with distinct tradeoffs of power,
speed performance, area, and cycle-time performance. As a result, the family of
audio DSPs allow distinct hardware/software tradeoffs to be made by choosing the
optimal audio DSP for a particular requirement. Software audio codecs and audio
post-processing applications are also an important part of the offering.

A video codec subsystem called 388VDO [7,9] was developed several years ago.
This consisted of two DSPs: a stream processor and a pixel processor, with adjunct
DMA block, and an optional front-end Xtensa control processor. Several video
encoders and decoders were offered as software IP with this subsystem, supporting
major standards (such as MPEG2, MPEG4, JPEG, H264) and resolutions up to D2.
The design of the Instruction-Set Architecture (ISA) for the two DSPs was done in
close collaboration with the software team developing the video codecs and drew
heavily on the concepts of hardware/software codesign, profiling, and performance
analysis.

More recently, advanced vision and image processing processors [26, 29], are
applicable to a wide variety of applications, have been developed. Computer
vision is one of the fastest-growing application areas as of 2016, with particular
attention being paid to Advanced Driver Assistance System (ADAS) in automotive

1118 G. Martin et al.

and security applications, gesture recognition, face detection, and many more.
For another view on embedded computer vision and its relationship to ASIPs,
see �Chap. 40, “Embedded Computer Vision”.

In the communications domain, a focus on wireless baseband processing was
the impetus for development of specialized configurable DSPs [25]. In fact a
family of DSPs was developed using a common ISA, variable Single Instruction,
Multiple Data (SIMD) widths (16, 32, and 64 MACs) and a scalable programming
model, based on evolving an earlier 16 MAC baseband DSP [28]. The basis is the
combination of a real and complex vector processor, with specialized instructions
for FFT for Orthogonal Frequency Dependent Multiplexing (OFDM).

33.6.3 Processor-Centric Design and Hardware/Software Design
Space Exploration

This section describes the processor-centric design approach enabled by config-
urable, extensible ASIP methodologies, drawing on details to be found in Chap. 6
of [4].

Processor-centric design is a family of design approaches that includes several
alternative methodologies. What is common to all of them is a bias toward
implementing product functionality as software running on embedded processor(s),
as opposed to dedicated hardware blocks. This does not mean that there are no
dedicated hardware blocks in a processor-centric design; rather, these blocks are
present as a matter of necessity rather than choice. In other words, dedicated
hardware blocks will be present in the design where they must be, rather than where
they could be. This could be to achieve the required level of performance, to achieve
the desired product cost target, or to minimize energy consumption.

Traditional fixed ISA processors offer very stark tradeoffs for embedded product
designers. They are generic for a class of processing and have few configurability
options to allow them to be tailored more closely to the end application. The rise
of ASIPs meant that designers could no longer consider the use of fixed embedded
processors for an increasing number of the end-product application. ASIPs can now
offer enough performance and sufficiently low energy consumption, at a reasonable
cost, to take over much of the processing load that would have heretofore relied on
dedicated hardware blocks. Thus ASIPs have been a key development enabling a
much more processor-centric design style.

Traditional fixed ISA processors can be simply divided into control- and data-
plane processors. Control processors, such as ARM and MIPS cores, are often used
for non-data intensive applications or parts of an application, such as user interfaces,
general task processing, high-level user applications, protocol stack processing,
and the like. Data-plane processors are often fixed ISA DSPs that have special
instructions and computational and communications resources that make them more
suitable for data-intensive computation, especially for real-time signal and image
processing.

33 Hardware/Software Codesign Across Many Cadence Technologies 1119

As demonstrated earlier, ASIPs have grown in variety, number, and importance
in recent years. Because an ASIP can be configured and extended to optimize its
performance for a specific application, ASIPs offer much greater performance (say,
10–100X) and much lower energy consumption (perhaps half to one-quarter) than
the same algorithm compiled for a fixed-ISA standard embedded processor – even
a DSP. There are a few simple reasons to account for this advantage:

1. ASIPs allow coarse-grained configuration of their basic structure to better
match the particular applications. If an application is mainly control processing,
an ASIP may offer a fairly basic instruction set, but if an application is mainly
intensive data processing (e.g., from the “data plane”) – for example, audio,
video, or other image processing – it may offer special additional instructions
(zero-overhead loops, MACs) tuned to media or DSP kinds of applications.

2. The size and widths of registers can be tuned to be appropriate for the particular
application domain.

3. Interfaces, such as memory interfaces, and caches can be configured or left out
of the design dependent on data and instruction locality and the nature of the
underlying algorithmic data access patterns. Sometimes caches may be more
effective than local instruction and data (scratchpad) memories; sometimes the
opposite may be the case.

4. Memory or bus interfaces may also be configured as to width and protocol –
e.g., AMBA AHB or AXI.

5. Diagnosis and debug features such as trace ports, JTAG interfaces, and the like
may be added or left out.

6. Interrupts and exception handling may be configured according to design need.
Often the elaborate exception recovery mechanisms used in general purpose
processors may be unnecessary in an ASIP tuned to run a very specific
algorithm deeply embedded in a system.

7. VLIW style multi-operation instructions may be added to processors to support
applications with a large amount of irregular instruction-level parallelism that
can take advantage of such features.

8. SIMD type instructions – e.g., 2-, 4-, 8-, 16-way, or larger – may be added
to processors to support vector-style simultaneous instructions acting on large
chunks of data at a time.

9. Instructions may be tuned to specific algorithmic requirements. For example,
if two 13-bit quantities need to be multiplied in an inner loop that dominates
an algorithm, use of a 32-bit multiplier is both wasteful of area and energy and
possibly performance.

10. Fine-grained instruction extensions including instruction fusions drawn from
very specific algorithmic code can lead to significant increases in performance
and savings in power. For example, a sequence of arithmetic operations in a tight
loop nest that might account for 90% of the cycles in executing the algorithm
on a data sample may be replaced with a single fused instruction that carries out
the sequence in one or a few clock cycles.

1120 G. Martin et al.

Use of ASIPs instead of general purpose processors can lead, for known
algorithms, to a radical improvement in performance and power consumption. This
is true whether an ASIP is totally designed to support one very specific algorithm
or if it is designed to support a class of applications drawn from a single domain. A
specialized audio processing ASIP could be designed just to support MP3 decoding
or could be slightly generalized so that it will support many different audio codecs
– possibly optimizing one codec such as MP3 that is very widely used, but with
general audio instructions added so that new codecs can still take advantage of the
specific instructions and hardware incorporated in the ASIP.

Sometimes the complexity of a specific application domain may lead to a
heterogeneous multi-processor, multi-ASIP design as being optimal for a certain
target range of process technologies. Video codecs, baseband, vision, and imaging
are examples.

A processor-centric design methodology needs to support design space explo-
ration when deciding whether particular functional requirements for a design can be
mapped to a single fixed ISA processor running at a suitable rate, a multi-processor
implementation (such as a cache-coherent symmetric multi-processing “multi-core”
cluster), a special fixed ISA processor such as a DSP, a single ASIP, a set of
ASIPs configured to work together as a heterogeneous multi-processor subsystem,
a combination of fixed ISA processor(s) and ASIP(s), and finally, mapping any
part of the function into dedicated hardware blocks, almost certainly working in
conjunction with the processors. A wide range of communications architectures,
from shared memory accessed via buses through dedicated local memories, DMA
blocks to permit concurrent data and instruction movement, direct communications
such as First-In First-Out (FIFO) queues between processors and from processors
to hardware, and NoCs may be used. In general, the processor-centric design flow
has the following steps:

1. Start with an algorithm description. This is often reference C/C++ code obtained
from a standards organization. Alternatively, it may be a reference code generated
from an algorithmic description captured in a modeling notation such as the
MathWorks’ MatLab or Simulink, or in UML or one of its profiles, and using
code generation to obtain executable C or C++.

2. Characterize the algorithm by running it on a very generic target processor. This
will give designers some idea of the general computational and communications
requirements of the algorithm (communications being defined as both data access
and control access communicating into and out of the algorithm).

3. Identify “hot spots” in the target application. These will very often be loop
nests in which multiple instructions are executed over large data samples.
Techniques such as instruction fusion (combining multiple instructions into one);
vectorization (SIMD) methods, where the same instruction is applied to many
data items; and multi-operation instructions – where several operations without
dependencies could be executed simultaneously on a VLIW-style architecture –
are commonly identified.

33 Hardware/Software Codesign Across Many Cadence Technologies 1121

4. Configure the processor and add instruction extensions to accelerate the exe-
cution of the algorithm. Re-characterize the code running on the new modified
target. It may be necessary to restructure the code or insert pragmas into it in
order that the compiler can take full advantage of vectorization (SIMD) or fused
instructions.

5. If the performance targets for the algorithm are met and the estimates of power
consumption and cost (area in terms of gates) are satisfactory, stop: this processor
is now a reasonable choice for the function. Otherwise, further code restructuring
and further configuration exploration and additional instruction extensions may
be important. In this case, repeat the last few steps until either a satisfactory result
is achieved, or it is necessary to add specialized hardware blocks as coprocessors
in order to achieve the desired results.

6. If hardware blocks are necessary, they may be created using high-level synthesis
tools, based on the algorithmic description for that part of the algorithm which
must migrate to hardware. The design team may explore a variety of mechanisms
for tying such accelerating blocks to the main processor – hardware FIFOs,
coprocessor interfaces, or loosely coupled with systems buses, or DMA.

33.7 Software-Driven Verification and Portable Stimulus

The industry is rapidly approaching a new era in dynamic verification as indicated
in Fig. 33.10.

Fig. 33.10 The eras of verification

1122 G. Martin et al.

In the early days of verification, the “Stone Age” directed testing dominated
verification. Design and verification engineers, at the time still emerging, were
developing simple ad hoc test benches and creating tests by hand. This approach
was not very scalable, as it required more engineers when more verification was
required. As a result, it was very difficult to achieve good quality, and the confidence
in how to get there and whether everything was verified was very hard to achieve.

In synchronization with the era of heavy IP reuse – sometime in the late 1990s to
the early 2000s – the era of Hardware Verification Languages (HVLs) began. This
is where specific verification languages such as VERA, e, Superlog, and eventually
SystemVerilog fundamentally changed the verification landscape. Methodologies
were developed, including the Verification Methodology Manual (VMM), Open
Verification Methodology (OVM), and later Universal Verification Methodology
(UVM). In this era of verification, constrained-random stimulus automated test
creation and coverage metrics were introduced to measure coverage closure. The
level of automation involved in this era allowed users to scale verification by
automatically generating more tests and made the HVL-based approaches ideal for
exhaustive “bottom-up” IP and subsystem verification.

By 2016 the objects to be verified – modern SoCs – have evolved. They now
contain many IP functions, from standard I/Os to system infrastructure and differ-
entiating IP. They include many processor cores, both symmetric and asymmetric,
both homogeneous and heterogeneous. Software executes on these processors, from
core functionality such as communication stacks and infrastructure components
such as Linux and Android operating systems all the way to user applications.
Experts seem to agree that the UVM, while great for verification of IP blocks, falls
short for SoC verification. The two main reasons are software and verification reuse
between execution engines. It is important to note that UVM will not likely go
away – it is fine for the “bottom-up” IP and some subsystem verification – and will
continue to be used for these applications. However, UVM does not extend to new
approaches for “top-down” SoC-level verification.

When switching from bottom-up verification to top-down verification, the
context changes. In bottom-up verification, the question to verify is how the block or
subsystem behaves in its SoC environment. In top-down verification, the correctness
of the integrated IP blocks itself is assumed, and verification changes to scenarios
describing how the SoC behaves in its system environment. An example scenario
may be “view a video while uploading it.” On top of the sequence of how the
hardware blocks in the system interact, this scenario clearly involves a lot of
software.

This is where traditional HVL-based techniques run up against their limits. They
do not extend well to the software that is key to defining scenarios. Scenarios
need to be represented in a way that they can be understood by a variety of users,
from SoC architects, hardware developers, and software developers to verification
engineers, software test engineers, and post-silicon validation engineers. They need
to be comprehended by a variety of different users to allow efficient sharing.
Also, the resulting test/verification stimulus needs to be portable across different

33 Hardware/Software Codesign Across Many Cadence Technologies 1123

verification engines and even the actual silicon once available, enabling horizontal
reuse. Software executing on the processors in the system – called software-driven
verification – is the most likely candidate. Third and finally, the next wave of
verification needs to allow both IP integration as well as IP operation within its
system context to be tested, i.e., vertical reuse.

The Perspec System Verifier platform is one means to achieve portable stimulus
by means of software-driven verification. Consider a use case from above: “view
a video while uploading it.” This six-word statement translates into bare-metal
actions at the SoC level that need to be executed in a form such as “take a video
buffer and convert it to MPEG4 format with medium resolution using any available
graphics processor. Then transmit the result through the modem via any available
communications processor and, in parallel, decode it using any available graphics
processor and display the video stream on any of the SoC displays supporting the
resulting resolution.”

The state space this scenario creates is vast. Various resolutions, different video
algorithms, different resources, different types of memory buffers, etc. need to
be considered. Writing such a test manually, if even feasible, is hard to do and
requires valuable system knowledge. And then the resolution, memory, or resources
change – which makes it harder. This is where UML-like use-case definitions and
constrained-random solving techniques to instantiate data and control flow with
valid combinations of parameters come in as shown in Fig. 33.11.

The abstract use case reads from a memory buffer, converts data into a second
memory buffer, and then in parallel transmits and decodes for display. The UML-
based description is intuitive and can be understood by the various stakeholders.
The automation involved transforms this description into an actual UML activity
diagram with randomized video buffers, specific choices of video conversion

Fig. 33.11 UML use-case definition in Perspec System Verifier

1124 G. Martin et al.

formats such as MPEG4 to save into specific buffers, randomized video stream
attributes, random selection of a display for the stream playback, and distribution
across available compute resources.

Perspec System Verifier automatically generates the associated tests that execute
on the processors in the design and run them on the various validation engines of
the System Development Suite – from virtual platforms through RTL simulation,
emulation, FPGA-based prototyping, and the actual silicon.

33.8 Conclusion

This chapter has surveyed a number of technologies for hardware/software codesign
and coverification. They are undergoing constant evolution, and new applications
are being found for these various technologies as technology and design practices
evolve and change. This snapshot from 2016 represents state of the art in these areas
as of that time. There are several new technology directions being explored.

Xtensa technology will evolve in two ways. First, it will support a wider range
of microarchitectural choices and features, giving users even more options for
creating ASIPs that meet their application needs. Secondly, it will be used in new
and emerging application domains to offer new types of DSPs to users. Vision
processing is a hot area in 2016 and likely to remain so, especially for emerging
automotive applications. An even hotter subset of vision processing is the use
of “AI” or deep-learning techniques such as Combinational Neural Networks and
variations to support automotive ADAS applications. Both general vision DSPs with
special Convolutional Neural Network (CNN) capabilities and highly application-
specific CNN or other neural network ASIPs are possibilities.

System Development Suite (SDS) continues to move toward closer integration of
different verification engines. The concept of “Continuum of Verification Engines”
(COVE) [1] has been publicly discussed. Further connection of virtual prototyping,
high-level synthesis, formal verification, RTL simulation, emulation, and FPGA-
based prototyping have been recent and ongoing trends:

• Verification acceleration: Connection of the verification computing platform
and RTL simulation to achieve accelerated execution is second only to in-circuit
emulation applications. The Design Under Test (DUT) resides on the emulator
and the test bench on the host; the host execution of the test bench controls the
overall speed and users report 200–300X speedup over pure simulation.

• Simulation/emulation hot swap: This is a unique capability with SDS; users
can run in one environment for a certain time, stop, and switch to the other.

• Virtual platform/emulation hybrid: This allows teams to reduce the time to the
point of interest using, for example, fast models from ARM in virtual platforms
connected to emulation.

• Multi-fabric compilation for hardware engines: In SDS, users have a multi-
fabric compiler that can target both emulation and FPGA-based prototyping for
in-circuit emulation, avoiding lengthy reengineering.

33 Hardware/Software Codesign Across Many Cadence Technologies 1125

• Unified Power Format (UPF)/Common Power Format (CPF) Low-Power
Verification: Power verification using either standard can be run in emulation
and RTL simulation, for example, to verify the switching on and off of various
power domains.

• Portable stimulus: Enables reuse of verification across various engines, includ-
ing the chip itself. Vertical reuse from IP to subsystems to full SoCs is possible.
Finally reuse is possible across various engineering disciplines.

• Interconnect performance analysis: Integrates verification IP (VIP) and RTL
simulation to enable performance optimization and verification for interconnect.

A key capability going forward will be the automation of integration in a general
way – for example, Interconnect Workbench (IWB) automatically generates test
benches targeting different platforms.

References

1. http://www.deepchip.com/items/0549-04.html
2. Andrews M, Hristov B (2015) Portable stimulus models for c/SystemC, UVM and emulation.

In: Design and verification conference and exhibition (DVCON). Accellera Systems Initiative
3. Augustine S, Gauthier M, Leibson S, Macliesh P, Martin G, Maydan D, Nedeljkovic N, Wilson

B (2009) Generation and use of an ASIP software tool chain. In: Ecker W, Müller W, Dömer R
(eds) Hardware-dependent software: principles and practice. Springer, Berlin, pp 173–202

4. Bailey B, Martin G (2010) ESL models and their application: electronic system level design
and verification in practice. Springer, Boston

5. Bailey B, Martin G, Anderson T (eds) (2005) Taxonomies for the development and verification
of digital systems. Springer, New York. The Virtual Socket Interface Alliance lasted from
1996 to 2008 but its archival web site is no longer functional as of 2015. This book may be all
that is left of its work

6. Balarin F, Kondratyev A, Watanabe Y (2016) High level synthesis. In: Scheffer L, Lavagno L,
Markov I, Martin G (eds) Electronic design automation for integrated circuits handbook, vol 1,
2nd edn. CRC Press/Taylor and Francis, Boca Raton

7. Bellas N, Katsavounidis I, Koziri M, Zacharis D (2009) Mapping the AVS video decoder on
a heterogeneous dual-core SIMD processor. In: Design automation conference user track.
IEEE/ACM. http://www.dac.com/46th/proceedings/slides/07U_2.pdf

8. Bianchi M, Snyder T, Grabowski D (2015) Denver IP acceleration leveraging enhanced debug.
In: CDNLive silicon valley. Cadence Design Systems

9. Ezer G, Moolenaar D (2006) Mpsoc flow for multiformat video decoder based on configurable
and extensible processors. In: GSPx Conference

10. Friedenthal S, Moore A, Steiner R (2014) A practical guide to SysML, 3rd edn. Morgan-
Kaufmann, Boston

11. Gonzales R (2000) Xtensa: a configurable and extensible processor. IEEE Micro 20(2):60–70
12. Grötker T, Liao S, Martin G, Swan S (2002) System design with SystemC. Kluwer Academic

Publishers, Dordrecht
13. Heaton N, Behar A (2014) Functional and performance verification of SoC intercon-

nects. Embed Comput Des. http://embedded-computing.com/articles/functional-performance-
verification-soc-interconnects/

14. Ienne P, Leupers R (2006) Customizable embedded processors: design technologies and
applications. Morgan Kaufmann/Elsevier, San Francisco

15. Leibson S (2006) Designing SOCs with configured cores: unleashing the Tensilica Xtensa and
diamond cores. Morgan Kaufmann/Elsevier, San Francisco

http://www.deepchip.com/items/0549-04.html
http://www.dac.com/46th/proceedings/slides/07U_2.pdf
http://embedded-computing.com/articles/functional-performance-verification-soc-interconnects/
http://embedded-computing.com/articles/functional-performance-verification-soc-interconnects/

1126 G. Martin et al.

16. Martin G, Müller W (eds) (2005) UML for SoC design. Springer, Heidelberg
17. Martin G, Salefski B (2001) System level design for SoC’s: a progress report – two years on. In:

Ashenden P, Mermet J, Seepold R (eds) System-on-chip methodologies and design languages.
Springer, Heidelberg, pp 297–306

18. Martin G, Smith G (2009) High-level synthesis: past, present, and future. IEEE Des Test
26(4):18–25

19. Maydan D (2011) Evolving voice and audio requirements for smartphones. In: Linley mobile
conference. The Linley Group

20. Melling L, Kaye R (2015) Reducing time to point of interest with accelerated os boot. In:
CDNLive silicon valley. Cadence Design Systems

21. Mishra P, Dutt N (2006) Processor modeling and design tools. In: Scheffer L, Lavagno L,
Martin G (eds) Electronic design automation for integrated circuits handbook, vol 1, 1st edn.
CRC Press/Taylor and Francis, Boca Raton

22. Mishra P, Dutt N (eds) (2008) Processor description languages. Elsevier-Morgan Kaufmann,
Amsterdam/Boston

23. Murray D, Boylan S (2013) Lessons from the field: IP/SoC integration techniques that work.
In: Design and verification conference and exhibition (DVCON). Accellera Systems Initiative

24. Puig-Medina M, Ezer G, Konas P (2000) Verification of configurable processor cores. In:
Proceedings of design automation conference (DAC). IEEE/ACM, pp 184–188

25. Rowen C (2012) Power/performance breakthrough for LTE advanced handsets. In: Linley
mobile conference. The Linley Group

26. Rowen C (2015) Instruction set innovation in fourth generation vision DSPs. In: Linley
processor conference. The Linley Group

27. Rowen C, Leibson S (2004) Engineering the complex SoC: fast, flexible design with
configurable processors. Prentice-Hall PTR, Upper Saddle River

28. Rowen C, Nuth P, Fiske S, Binning M, Khouri S (2012) A DSP architecture optimised for
wireless baseband. In: International symposium on system-on-chip (ISSOC)

29. Sanghavi H (2015) Baby you can drive my car: vision-based SoC architectures. In: Linley
processor conference. The Linley Group

30. Sanghavi H, Andrews N (2008) TIE: an ADL for designing application-specific instruction
set extensions. In: Mishra P, Dutt N (eds) Processor description languages. Elsevier-Morgan
Kaufmann, San Francisco

31. Wang A, Killian E, Maydan D, Rowen C (2001) Hardware/software instruction set configura-
bility for system-on-chip processors. In: Proceedings of design automation conference (DAC).
IEEE/ACM, pp 184–188

34Synopsys Virtual Prototyping for Software
Development and Early Architecture
Analysis

Tim Kogel

Abstract

This chapter summarizes more than 20 years of experience by the virtual proto-
typing group of Synopsys in the commercial deployment of Hardware/Software
Codesign (HSCD). The goal of HSCD has always been to reduce time to
market, increase design productivity, and improve the quality of results. From
all the different facets of HSCD, virtual prototyping – complemented by links to
emulation and FPGA prototyping – has so far proven to achieve the best return of
investment with respect to these goals. This chapter first gives an overview of the
main virtual prototyping use cases in the context of an end-to-end prototyping
flow, which also includes physical prototyping and hybrid prototyping. The
second part introduces the SystemC Transaction-Level Model (TLM) standard
and the Unified Power Format (UPF) as the main modeling languages for the
creation of Virtual Prototypes (VPs) and system-level power models. The main
body of this chapter focuses on the commercially deployed virtual prototyping
use cases for architecture exploration and system-level power analysis.

Acronyms

API Application Programming Interface
ASIC Application-Specific Integrated Circuit
AT Approximately Timed
AT-BP Approximately Timed Base Protocol
AV Architects View
AXI Advanced eXtensible Interface
CA Cycle Accurate
CPU Central Processing Unit
DDR Double Data Rate
DMA Direct Memory Access

T. Kogel (�)
Synopsys, Inc., Aachen, Germany
e-mail: tim.kogel@synopsys.com

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_34

1127

mailto:tim.kogel@synopsys.com

1128 T. Kogel

DMI Direct Memory Interface
DRAM Dynamic Random-Access Memory
DSP Digital Signal Processor
DVFS Dynamic Voltage and Frequency Scaling
ECU Electronic Control Unit
FPGA Field-Programmable Gate Array
FT Fast Timed
GFRBM Generic File Reader Bus Master
GPU Graphics Processing Unit
HAPS High-performance ASIC Prototyping System
HDL Hardware Description Language
HSCD Hardware/Software Codesign
HW Hardware
IP Intellectual Property
ISS Instruction-Set Simulator
LT Loosely Timed
MCO Multi-Core Optimization
MPSoC Multi-Processor System-on-Chip
OS Operating System
PMU Power Management Unit
QoS Quality of Service
RFTS Run Fast Then Stop
RTL Register Transfer Level
SCML SystemC Modeling Library
SLP System-Level Power
SMP Symmetric Multi-Processing
SoC System-on-Chip
SW Software
TCL Tool Command Language
TLM Transaction-Level Model
UPF Unified Power Format
VPU Virtual Processing Unit
VP Virtual Prototype

Contents

34.1 Introduction . 1129
34.1.1 Architecture Design . 1130
34.1.2 Software Development and Testing . 1131
34.1.3 Hardware/Software Integration and System Validation 1132
34.1.4 System-Level Power Analysis . 1133
34.1.5 Summary . 1134

34.2 Modeling for Virtual Prototyping . 1134
34.2.1 The SystemC Transaction-Level Modeling Standard 1134
34.2.2 Modeling Objects and Patterns . 1139

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1129

34.2.3 System-Level Power Analysis . 1140
34.2.4 Summary . 1144

34.3 Virtual Prototyping for Architecture Design . 1145
34.3.1 Introduction . 1145
34.3.2 Software-Based Performance Validation . 1149
34.3.3 Trace-Based Interconnect and Memory Optimization 1150
34.3.4 Task-Based Architecture Analysis and Exploration . 1152

34.4 Conclusions . 1157
References . 1158

34.1 Introduction

In a traditional development process, the hardware/software integration and valida-
tion can only start after the hardware development is finished and the first silicon
samples are available. This forces a sequential dependency between the Hardware
(HW) and Software (SW) development phases and puts a lot of stress on the overall
schedule. Prototyping offers a set of methodologies to overcome this dependency
by “shifting left” the architecture design and software development flows.

Today, the following variants of prototypes are in deployment by semiconductor
and electronic system companies:

• Virtual prototypes are fast, executable models of the System-on-Chip (SoC).
They are typically created from SystemC Transaction-Level Models (TLMs) that
are delivered by semiconductor Intellectual Property (IP) companies and are
extended with models that are specifically created for the SoC in development
(see Sect. 34.2.1). Different types of Virtual Prototypes (VPs) are created based
on the requirements for simulation speed and timing accuracy: Synopsys offers
Platform Architect for Multi-Core Optimization (MCO) for the creation and
usage of VPs for architecture design as well as VirtualizerTM for software
development related use cases.

• Physical prototypes provide specialized FPGA-based systems and tools to
execute Register Transfer Level (RTL) implementations at high speeds. This
way, Field-Programmable Gate Array (FPGA) prototypes are useful for system
validation and software development purposes. Synopsys provides the HAPS R�

high-performance Application-Specific Integrated Circuit (ASIC) prototyping
system.

• Hybrid prototypes combine a VP with a physical prototype; see also Sect. 3 in
the �Chap. 37, “Control/Architecture Codesign for Cyber-Physical Systems”.
For target use cases like IP driver development, hybrid prototypes offer users a
way to optimize the prototyping setup based on the availability of TLMs and RTL
implementations. Taken together, Synopsys VirtualizerTM and HAPS R� provide
a hybrid prototyping environment.

All three types of prototypes typically require a dedicated team inside a semicon-
ductor organization that specializes in providing these prototypes to the actual end
users.

1130 T. Kogel

Fig. 34.1 Design tasks and solutions in end-to-end prototyping

As depicted in Fig. 34.1, these prototyping methods can be applied for multiple
tasks in a software-driven SoC design flow: architecture design, software develop-
ment and testing, HW/SW integration, and system validation. The biggest value is
achieved when they are applied across all the stages of SoC design.

The following paragraphs review these tasks individually.

34.1.1 Architecture Design

Architect teams are typically working in several stages and have projects that deal
with generation N+2, where N refers to the current SoC generation in production.
Traditionally, architects rely on past experience and static spreadsheet analysis for
estimating power and performance of the next- or second-next-generation product.
This manual and static analysis is becoming increasingly difficult due to the
increasing complexity of electronic products. Virtual prototyping enables architects
to simulate the impact of critical application use cases and of specific design deci-
sions on the overall performance and power consumption; see also the paragraph
on architectural virtual platforms in Sect. 2 of �Chap. 33, “Hardware/Software
Codesign Across Many Cadence Technologies”.

To benefit from early architecture exploration using a VP, an architect needs
three fundamental ingredients: (1) performance models, (2) power models, and (3)
application scenarios.

Performance models describe relevant components of the SoC, such as the
interconnect and memory subsystems, with sufficient accuracy to enable critical
design decisions based on the latency and throughput data provided by simulating
these performance models.

Power models are needed to also analyze the expected power and energy
consumption for the main components that consume power on the SoC. These power

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1131

models rely on power modeling standards [11] augmented with power consumption
data from IP data sheets and with measurements during the implementation steps
from previous projects.

Finally, the processing and communication requirements of the software that will
actually run on the chip needs to be described at an abstract level in terms of an
application workload model. Virtual prototyping offers ways to either manually cap-
ture these task-based workload models or to extract them from software execution
traces.

The result is that the performance and power of the architecture can be explored
more accurately compared to relying on static spreadsheet-based exploration.
Thanks to their flexibility and high simulation speed, VPs enable the simulation of
orders of magnitude more architecture variations compared to doing the same at the
RTL. This typically leads to double-digit gains in terms of power and performance
trade-offs, reducing the cost and excessive power consumption of over-designed
products. Section 34.3 elaborates more on the different aspects of virtual prototyping
for architecture analysis and optimization.

34.1.2 Software Development and Testing

The software development schedule can achieve the biggest time to market gains by
applying prototyping. Starting software development earlier and, thus, shortening
the overall schedule as well as enabling earlier feedback between hardware and
software teams is a real game changer.

For many years, semiconductor companies have been using only physical
prototyping to do software development, typically for IP- and subsystem-related
software. Most of them have adopted commercial FPGA-based prototyping so-
lutions to benefit from existing design and debug automation tools to be able to
achieve the fastest time to first prototype and optimize for highest performance (see
also Sect. 4 in �Chap. 33, “Hardware/Software Codesign Across Many Cadence
Technologies”). The market is now shifting rapidly to using integrated commercial
solutions, comprised of hardware and software tools to achieve a high-performance
prototype in weeks rather than months, hence, significantly increasing the useful
time of prototyping before silicon arrival.

With the advent of larger FPGAs, these physical prototyping systems are usable
to prototype much larger portions of the SoC, including Graphics Processing
Units (GPUs), enabling more software development early in the design cycle.
While FPGA-based prototyping has proven to provide high value by enabling early
software development, virtual prototyping has been adopted by many semiconductor
vendors as a complimentary prototyping solution. By creating and deploying VPs,
semiconductor vendors are able to further shift left their software development and
start more than 12 months before silicon availability.

Where FPGA-based prototyping offers key benefits enabling HW/SW integration
and especially system validation, virtual prototyping provides key capabilities to
accelerate software development and scale software testing. Since VPs are based
on models, they are not dependent on RTL implementation availability, and, hence,

1132 T. Kogel

Virtualizer Development Kit

USB 3.0
device

IP Prototyping Kit Analog I/F

HAPS-DX Prototyping System

DesinWare USB 3.0 Host
Superspeed USB PHY

PCS board

PIPE3 and
UTMI+

Interface

Control and
test

Designware USB 3.0
Host Controller

AXI slave AXI master

PCle Endpoint & GTH Transceiver

Fig. 34.2 Example DesignWare hybrid IP prototyping kit

they enable software development much earlier in the design cycle. Another benefit
of using models rather than RTL execution on a physical prototype is the improved
control and debug visibility provided by VPs. They also allow for fault injection to
test how the system will react [21], and they scale more easily to massive parallel
testing and, thus, help increase software quality.

As shown in Fig. 34.2, virtual and physical prototyping environments can be
merged into a hybrid prototyping environment, which offers a great solution for
IP-specific software bring up. Early availability of models and thus VPs for new
processors combined with IP mapped on an FPGA offer an early and functionally
complete solution for IP-specific software development, testing, and HW/SW
integration.

34.1.3 Hardware/Software Integration and System Validation

Hardware/software integration typically starts at the subsystem level on an FPGA-
based prototype, when RTL IP blocks or subsystems that are considered to be
relatively stable are integrated with firmware or drivers. The bring-up time can

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1133

be significantly reduced when VPs or hybrid prototypes are used for the software
development so that the software is more or less functionally complete by the time
of the HW/SW integration step.

System validation deals with removing the uncertainty of how the SoC with the
software stack will perform in the target environment. The physical prototype is
plugged into the real-world environment and performs realistic scenarios. Examples
of this can be system validation of a networking SoC inside an actual networking
device for which execution speeds of multiple 10s of MHz are required. Or
validation of application processor SoCs that have to support many different
interface protocols such as USB, eMMC, and others.

34.1.4 System-Level Power Analysis

Energy proportional computing is a key concern for many electronic products, most
notably for any battery-driven mobile consumer device [6]. Any device should
consume only as much power as absolutely required to perform a certain task. The
increasing number of Central Processing Units (CPUs) with their high frequencies,
the increasing size of LCD screens and cameras, and the multitude of radios and
sensors are driving the total power consumption beyond what is acceptable by the
consumer. Only proper management of the power states within these devices allows
minimizing the total power consumption.

Both architecture and software have a significant impact on power consump-
tion:

• The key decisions impacting power consumption are taken during the archi-
tecture definition phase. For example, a relevant use case for a smartphone
could be the streaming of a video via the cellular network and displaying it
in HD resolution on a connected LCD screen. Each of the use cases requires
the services of a certain set of components. This use case analysis drives the
partitioning of the device into power domains and their respective operating
points. Typically, the supply voltage and frequency of the power domains can
be controlled individually to provide the flexibility to later optimize the power
dissipation and energy consumption of the different use cases. The optimal
definition of power domains and operating points is key to achieve the goal of
an energy proportional system.

• Software plays a significant role in the device power management at run time.
The software controls and drives hardware components which actually consume
power. Software stacks such as Android/Linux with millions of lines of code
implement various power saving strategies on almost each software layer starting
at the driver and ending up in the application layer [7]. A software power
inefficiency or malfunction can quickly cause a 5� drop in standby time.

Power consumption is an orthogonal aspect, which caters to all prototyping use
cases. Therefore the modeling of the power consumption should be as much as

1134 T. Kogel

possible independent of the actual prototyping itself. Section 34.2.3 shows how to
add component-level power models as an overlay to a VP based on the IEEE 1801-
2015 UPF-3.0 standard [11]. Using such power models enables architects as well
as software developers to take the impact of their design decisions and software
implementation on the power consumption into account.

34.1.5 Summary

By leveraging the different technologies in the context of an end-to-end prototyping
solution, the typical design time line is significantly reduced.

The shift left impact of end-to-end prototyping not only reduces the overall
design time line and hence the time-to-market but also helps companies that are
deploying this methodology validate that their products better match the original
design requirements. By optimizing the architecture early on in context of the
software scenarios and designing the hardware and software side by side, the
resulting product is better balanced.

By now, virtual prototyping for early software development is already a widely
deployed methodology [4,23]. Refer also to Sect. 2 in �Chap. 33, “Hardware/Soft-
ware Codesign Across Many Cadence Technologies”. Therefore the main body of
this chapter focuses more on the virtual prototyping use cases for architecture ex-
ploration and system-level power analysis. Before going there, the next section first
introduces the modeling methodologies, which are the foundation for creating VPs.

34.2 Modeling for Virtual Prototyping

Modeling is the key initial task for creating a VP. This task requires the specification
of the system or SoC to be modeled, the modeling tools, and knowledge of modeling
languages. This section first focuses on SystemC TLMs, which are the established
lingua franca for the creation of VPs. The second part gives an introduction to UPF-
3.0, the new modeling standard for system-level power analysis.

34.2.1 The SystemC Transaction-Level Modeling Standard

The IEEE 1666 standard for SystemC and TLM defines the widely accepted
modeling language for the creation of VPs [12]. SystemC is a C++ library providing
a set of classes to model system components and their communication interfaces,
plus a cooperative multitasking environment to model concurrent activity in a
system. On top of SystemC, the TLM library supports a modeling style where the
communication interfaces between system components is not based on individual
signals, but on a set of function calls and a payload representing the full semantics
of the communication interface. This reduces the number of synchronization points

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1135

between communicating component models, which in turn greatly improves the
overall speed of the event-driven SystemC simulation kernel. Since 2008, the TLM-
2.0 standard provides a well-defined set of Application Programming Interfaces
(APIs) and payload constructs to create interoperable TLMs for memory-map-based
communication protocols.

The IEEE Std 1666 TLM-2.0 Language Reference Manual [12] identifies the
following coding styles:

• The Loosely Timed (LT) modeling style aims to maximize the simulation
speed of a model by abstracting the communication to the highest level and by
minimizing the synchronization overhead.

• The Approximately Timed (AT) modeling style focuses on the timing of the
transactions between different components in a system by providing multiple
timing points for each transaction.

As illustrated in Fig. 34.3, both LT and AT modeling styles use the same concept
of sockets, generic payload, and an extension mechanism for modeling memory-
mapped communication protocols. The extension mechanism allows adding of
custom attributes to the generic payload, which is important to model protocol-
specific attributes, like the transaction id in the Advanced eXtensible Interface (AXI)
protocol [1]. This common infrastructure enables the smooth integration of models
using different modeling styles. On the other hand, LT and AT leverage specific
mechanisms to cater to the specific requirements of different virtual prototyping use
cases for software development and architecture analysis.

Fig. 34.3 TLM-2.0 modeling styles and mechanisms

1136 T. Kogel

34.2.1.1 Loosely Timed Modeling Style
VPs for software development are created in order to provide an abstract model of
the target hardware platform, which can execute the unmodified software. The key
requirements are:

• Simulation speed: It is important that the VP can execute software at a speed that
is as close as possible to real time of the actual target device.

• Register accuracy: In order to run embedded software correctly, the memory and
memory-mapped register layout and content should be modeled.

• Functional fidelity: All relevant responses of the target hardware should be
modeled.

The LT modeling style is intended to maximize the execution speed while providing
the minimal level of timing fidelity. The key concepts in the TLM-2.0 standard
to achieve high simulation speed on top of the event-driven SystemC simulation
kernel are temporal decoupling, the Direct Memory Interface (DMI), and blocking
communication:

• Temporal decoupling allows initiator components, like processor models, to run
ahead of the global time for a maximum quantum of time before synchronizing
with the SystemC kernel; see also Sect. 1.3 in �Chap. 19, “Host-Compiled
Simulation”.

• DMI allows initiator components to bypass the regular TLM interface and
directly access instruction and data memory via the simulation host address.

• For non-DMI access to memories and peripheral registers, the simple blocking
TLM transport interface is used. As depicted on the left side of Fig. 34.4, LT
communication is modeled using a single function call.

Fig. 34.4 TLM-2.0 Loosely Timed (left) and Approximately Timed (right) protocols

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1137

The LT modeling style reflects the hardware interactions with software and how
register content is updated. For example, timer interrupts happen roughly at the
intended time to simulate the timing calibration loop in a Linux boot or to execute
real-time software in automotive Electronic Control Units (ECUs).

34.2.1.2 Extended Loosely Timed Modeling Style
The TLM-2.0 generic payload only covers the common subset of transaction
attributes like address, data, and burst length. The extension mechanism allows to
include additional protocol-specific attributes to the generic payload, e.g., security
extensions, atomic transactions, coherency flags, etc. Based on this extension
mechanism, owners of on-chip bus protocols have defined a layer on top of TLM-2.0
for creating protocol-specific models in a interoperable way [2].

The loosely timed modeling style has been very successful in fostering the
availability of interoperable models from all major IP providers [3, 25]. The
availability of LT TLMs for off-the-shelf IP blocks has significantly reduced the
investment for creating VPs for software development.

34.2.1.3 Approximately Timed Modeling Style
VPs for early architecture analysis and exploration are created in order to provide an
abstract model of the target hardware, which reflects relevant performance metrics,
e.g., bandwidth, throughput, utilization, and contention. The key requirements
are:

• Scalable timing accuracy: The accuracy requirements depend on the goal of the
project. For example, an abstract model of a DRAM is good enough for exploring
HW/SW partitioning, but a highly accurate model is needed for optimizing the
configuration of the DRAM memory controller.

• Compositional timing: The end-to-end performance of a system can be obtained
from assembling a set of components which only model their individual timing.

Compared to the LT modeling style described previously, the AT modeling style
is intended to model the communication with more detailed timing. As shown on
the right side of Fig. 34.4, a single transaction is broken into multiple phases to
reflect the timing of a bus protocol in more detail. The non-blocking TLM transport
interface is used to mark start and end of each phase.

The TLM-2.0 initiator and target sockets bundle a forward and backward
path in one interface to enable bi-directional communication. The initiators calls
nb_transport to mark the begin of a request phase and sometime later the target
calls nb_transport to mark the end of a request phase. As depicted in Fig. 34.4, the
TLM-2.0 standard defines an Approximately Timed Base Protocol (AT-BP) with a
request and response phase marked by four distinct timing points. This enables the
modeling of basic communication aspects like throughput, latency, and transaction
pipelining.

1138 T. Kogel

34.2.1.4 Extended Approximately Timed
The TLM-2.0 AT-BP has limited expressiveness when it comes to accurately
representing any real-life on-chip bus protocols:

• It does not provide with timing points for the individual data beats of a
burst transfer. This becomes particularly problematic when interfacing TLM-2.0
AT-BP with Cycle Accurate (CA) or RTL models.

• It requires all address and data information to be available for writes at the start
of the transaction.

• It is not possible to have concurrent read and write requests, as required by, e.g.,
the AMBA AXI protocol [1].

To overcome these deficiencies of the AT-BP, the TLM-2.0 standard provides
an extension mechanism for the AT modeling style, which enables the definition
of additional protocol phases and timing points. Together with the extension
mechanism for the generic payload, which is also used for loosely timed modeling,
this enables the more accurate modeling of on-chip bus protocols. In fact, the AT
extension mechanism allows the definition of fully CA modeling of real-life bus
protocols.

The issue is that protocol-specific extensions break the interoperability between
AT-BP and extended AT models. Synopsys has defined a Fast Timed (FT) modeling
infrastructure. FT is based on the TLM-2.0 AT mechanism and enables the definition
of more accurate protocols while preserving interoperability with the AT-BP:

• Each protocol extends the generic payload with an attribute indicating the current
state in the protocol state machine.

• For each protocol, protocol-specific attributes are added as needed, e.g., for
cacheability, out-of-order transactions, etc. This should be limited to those
attributes that are not already covered by the TLM-2.0 AT-BP. These extensions
are ignorable in the sense that a model should assume they have a default value
in case they are not present in the payload.

The idea is that FT protocols remain compatible with the TLM-2.0 AT-BP and rely
on extended sockets and payload to provide the necessary protocol conversion logic
so that conversions are only done when required and can be inserted automatically.

34.2.1.5 Summary
The goal of the IEEE 1666 TLM-2.0 standard is to enable model interoperability at
the level of SoC building blocks, e.g., processors, buses, memories, peripherals. For
this purpose, TLM-2.0 standardizes the modeling interface for memory-mapped bus
communication, which is the prevalent SoC interconnect mechanism. The LT and
AT modeling styles cater to the different requirements of different use cases like
software development and architecture analysis. Although AT allows more detailed
timing modeling than LT, the modeling style of the communication interface should

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1139

not be confused with the abstraction level or timing accuracy of a model itself. LT
and AT only refer to the communication aspect, whereas abstraction and timing
accuracy also depend on the timing and granularity of the structure and behavior
inside the component.

34.2.2 Modeling Objects and Patterns

Thanks to the TLM-2.0 interoperability standard, today many TLM-2.0 compliant
models of standard SoC components like processors, buses, and memories are
available from the respective IP provider. However, there are still a significant
number of custom building blocks, e.g., timers, interrupt controllers, Direct Memory
Access (DMA) controllers, or HW accelerators, for which specific models need to
be created. TLM-2.0 defines the interoperability standard, but it does not prescribe
how to model the internal behavior. In order to reduce the actual modeling effort,
a well-defined modeling methodology and a library of reusable modeling objects
is required. In larger companies, this is especially important to unify the modeling
style across distributed modeling teams.

This section explains the concept of modeling objects and patterns based on the
publicly available SystemC Modeling Library (SCML) from Synopsys [27].

34.2.2.1 The SystemC Modeling Library (SCML)
SCML is a layer on top of SystemC and TLM-2.0. It hides a lot of the complexity
and common code that is required to correctly manage TLM-2.0 transactions, and it
provides with modeling objects that handle common aspects of VP modeling. The
modeling objects in the SCML promote the separating communication, behavior,
and timing [14]. This way, the models created based on this methodology support
different modeling styles like LT, AT, and FT.

Figure 34.5 illustrates the coding style, which is enabled by the SCML modeling
objects:

• The interface to the interconnect model is separated from the actual behavior of
the component. For the behavior of the component, a generic TLM-2.0 compliant
LT, AT, or FT bus interface can be used.

• The interface between the extended protocol and the generic TLM-2.0 protocol
used by the SCML storage objects is implemented by a protocol adaptation
layer.

• The actual behavior of the component can be separated into a storage and
synchronization layer and the pure functional behavior of the model.
– The storage and synchronization layer stores the data of write transactions and

returns the data in case of read transactions.
– The behavior models the algorithm or state machine of the component. The

behavior is triggered when certain memories or registers in the storage layer
are accessed.

1140 T. Kogel

Fig. 34.5 SCML-based modeling pattern for target peripherals

• Finally, the different needs in timing accuracy can be addressed by separating the
code that models the timing of the component from the pure functional behavior.
SCML supports this separation by providing modeling objects for each of these
layers.
– The adaptation layer handles communication-related and data-independent

timing aspects, e.g., the duration of a protocol phase or the number of
outstanding transactions.

– The behavior layer handles processing-related and data-dependent timing
aspects.

The SCML modeling library greatly helps to reduce the modeling effort. In
the context of commercial virtual prototyping projects, the effort for creating
models can be further reduced by using model generation tools. For example, an
SCML-based peripheral model can be automatically generated from an IP-XACT
description of the register interface. Note that for the purpose of generating the
register interface of a peripheral model, the IP-XACT importer only takes a subset
of the IP-XACT standard into account, which is related to meta-data, register, and
parameter information and which are supported by the SCML modeling objects.

34.2.3 System-Level Power Analysis

So far, the focus of this section has been on modeling functionality and timing,
where the requirements are quite different depending on whether the VP is used for
early architecture analysis or for software development. This section shows how to
enable early power analysis irrespective of virtual prototyping use case.

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1141

PMIC

PLL

PMU

CPU

Vdd Vdd Vdd

Load Load Load

Bus power modelCPU power model Memory power model

UPF 3.0 System-Level IP Power Models

CPU
power domain

Virtual Prototype

Bus
Power

Domain

Memory
Power

Domainf f f

Application

sleep idle idle

idleactive

active
active

page
miss

page
hit

B
us Memory

Fig. 34.6 Adding system-level power model as an overlay to VPs

The annotation of power information is performed through the use of system-
level IP power models, which are power models of IP components specifically for
use in system-level design. The format of system-level IP power models is defined
by the IEEE 1801-2015 standard [11]. Originally the IEEE 1801 Unified Power
Format (UPF) was defined to capture power intent for hardware implementation and
verification. UPF is a format based on the Tool Command Language (TCL) [28] and
defines the power supply and low power details as an overlay to the actual Hardware
Description Language (HDL) implementation [10]. The new System-Level Power
(SLP) features of the 1801-2015 “UPF-3.0” release extend the UPF TCL syntax to
model power consumption as an overlay to a “host.” Figure 34.6 shows an example
of a VP with a UPF-3.0 system-level power overlay model. In this context, the UPF-
3.0 power model calculates power consumption by observing the dynamic activity
in the VP.

34.2.3.1 UPF-3.0 System-Level IP Power Models
A context-independent UPF-3.0 system-level power model comprises the following
aspects:

1142 T. Kogel

• A set of buildtime and run-time parameters, which influence the power consump-
tion of the respective IP. Examples of buildtime parameters are technology, size
of a memory, or number of CPU cores. Examples of run-time parameters are
voltage, frequency, or temperature.

• The set of relevant power states of the IP. These are not necessarily identical
with the power supply states (e.g., off, sleep, active) but can also refer to
operating modes with distinct power consumption signatures, e.g., a CPU in WFI
(Wait For Interrupt) state or a video IP in encode or decode state.

• A set of functions to calculate the power consumption of the IP in the respective
state and based on the set of parameters. The power functions need to separately
return static and dynamic power consumption.

• The set of legal and illegal state transitions.

Now that the IEEE standard is ratified, it is expected that system-level IP power
models are developed and distributed by IP teams (whether they be IP vendors or IP
implementation teams within larger platform development groups).

34.2.3.2 UPF-3.0 System-Level Power Example
The example of a simple CPU power model in Fig. 34.7 illustrates the basic concepts
of a UPF-3.0 power model:

• The power model is defined inside the begin_power_model and
end_power_model commands.

• The create_power_domain command allows to represent hierarchy inside
the power model, e.g., to represent different power states for the core and the
cache inside one power model.

Fig. 34.7 Example of context-independent UPF-3.0 system-level power model

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1143

• The add_parameter command in the CPU power model defines three static
buildtime parameters and three dynamic run-time parameters.

• The add_power_state command in the CPU power model defines three
power states. The power consumption for the state OFF state is zero. For the other
two states, the power consumption is calculated by the respective wfi_power
and active_power functions. Both functions are sensitive to all of the three
run-time parameters. This implies that the power functions need to be reevaluated
whenever any of the run-time parameters in the sensitivity list changes.

• The add_state_transition command defines the set of legal and illegal
state transitions.

The actual power functions are implemented outside of the scope of the actual power
model and therefore not shown in this example.

In a second step, this context-independent power model can be instantiated in the
context of a VP, which contains a TLM of a CPU. The corresponding integration
layer of the CPU power model is depicted in Fig. 34.8

• The apply_power_model UPF command maps the run-time parameters in
the CPU power model to corresponding signals of the CPU TLM.

• The same command is used to initialize the buildtime parameters in the CPU
power model with static configuration parameters of the CPU TLM.

• The add_edge_expression command defines the conditions that cause a
state transition in the power model.

In this simplistic example, the power model is triggered from a signal port of the
TLM. This illustrates that the concept of UPF-3.0 IP power model is not limited
to a system model but can be also applied to a RTL or gate-level representation
of a component running in an HDL simulation, emulation, or FPGA prototyping
environment. On the other hand, in a virtual prototyping environment, the transition
of a power state can be triggered from all kinds of observable events in the TLM,
e.g., the start or end of a transaction, a register access, an event on an analysis

Fig. 34.8 Example of context-dependent UPF-3.0 integration layer

1144 T. Kogel

instrumentation point, a specific software symbol executed on an Instruction-Set
Simulator (ISS), etc. Due to the tool-specific nature of the edge expression, this
command is so far not part of the official UPF standard and therefore implemented
with a Synopsys-specific command.

Taken together, the context-independent power model and the context-dependent
integration layer create a power analysis overlay model of a VP as depicted in
Fig. 34.6.

34.2.3.3 Accuracy Considerations
The goal of system-level power analysis is not to provide 100% accurate power
measurements but to replace high-level power estimation currently done with static
spreadsheets. The actual accuracy of system-level power analysis depends mainly
on the granularity of the power model and on the characterization of the power
functions:

• The granularity of a SLP model is determined by the level of detail in the power
model. For example, a CPU power model can be modeled as
– a simple monolithic state machine as shown in the example above.
– multiple domains for cores, cache, coprocessor, etc., each with their own state

machine.
– a detailed instruction-level power model, which calculates power based on the

specific energy of each executed instruction.
• The characterization determines how the power expressions calculate the power

consumption based on power estimates and/or measurements.
– An early power characterization can be defined using high-level estimates,

e.g., based on the extrapolation of power measurements from previous
projects.

– Once RTL and technology libraries are available, RTL or gate-level power
estimation tools can be used to generate look-up tables, which determine
power consumption based on design parameter configuration and operating
mode.

– Post-silicon power measurements can still be valuable to characterize the
power consumption of a reusable IP block for usage in subsequent projects.

Despite the high level of abstraction, it turns out that VPs with system-level
power analysis models provide power estimates in the order of 85–90% accuracy,
which are good enough to steer architecture design decision and to guide software
development in the right direction [8, 22].

34.2.4 Summary

This section provided an overview of the modeling methodologies enabling virtual
prototyping. The first part surveyed the IEEE 1666 SystemC Transaction-Level
Model (TLM) standard, emphasizing the Loosely Timed (LT) and Approximately

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1145

Timed (AT) modeling styles and their respective extensions. The second part gave
an introduction to the new IEEE 1801-2015 UPF-3.0 modeling standard for system-
level power analysis. The subsequent section elaborates on how these modeling
techniques are applied to the creation and usage of VPs for early architecture
analysis.

34.3 Virtual Prototyping for Architecture Design

Incorporating more and more functions and features into electronic products directly
translates into increasing SoC design complexity. Devices integrate a multitude
of heterogeneous programmable cores to achieve the necessary flexibility and
power efficiency. The diverse communication requirements of all these cores lead
to a complex interconnect and memory infrastructure to provide the required
storage and communication bandwidth. For this purpose, the SoC interconnect and
memory subsystem feature complex mechanisms like distributed memory, cascaded
arbitration, and Quality of Service (QoS). As a result, dimensioning the SoC
architecture, and in particular the interconnect and memory infrastructure, poses
a variety of formidable design challenges:

Large Design Space
Due to the complexity and configurability of the SoC infrastructure IP (inter-
connect, memory), tailoring the SoC infrastructure to the specific needs of the
product requirements is a nontrivial task.

Dynamic Workload
Multiple applications running at different points in time are sharing a limited set
of available resources. Hence, the workload on the SoC architecture is difficult
to estimate due to the multitude of product use cases.

High Price of Failure
A weakly dimensioned SoC architecture leads to insufficient product perfor-
mance (under-design) or excessive cost and power consumption (over-design).
Both cases hamper the market opportunity of the final product.

High Potential for Optimization
All the design decisions, which impact power, performance, and cost in a big
way, need to be taken at the beginning of the development process.

This section first provides an introduction to virtual prototyping for architecture
design and then dives into more detail about specific methods for architecture
exploration, optimization, and validation.

34.3.1 Introduction

The introduction first discusses traditional methods for architecture design and then
introduces a state of the art flow and modeling methodology based on a commercial
virtual prototyping solution.

1146 T. Kogel

34.3.1.1 Traditional Methods
Architecture definition has always been a necessary step in any SoC design project.
Traditionally, the performance has been analyzed using spreadsheets or detailed
hardware simulation. However, the design complexity has reached a level where
these methods are not appropriate anymore. On the one hand, static spreadsheet
analysis does not take the dynamic behavior of multiple software applications and
multiple levels of scheduling and arbitration in the executing hardware platform into
account. This bears a great risk of mis-predicting the actual performance, which
can lead to under- or over- design of the system architecture. On the other hand,
hardware simulations are available late in the cycle, run very slow, and do not
provide system-level performance analysis results. Hence, this is also not a suitable
approach for early architecture analysis and optimization.

34.3.1.2 Virtual Prototyping Flow for Early Architecture Analysis
Synopsys Platform Architect for Multi-Core Optimization (MCO) is a virtual
prototyping environment for early and accurate system-level performance analysis.
This comprises libraries of simulation models for all relevant SoC components as
well as tools for the assembly, simulation, and analysis of complete SoC platforms.
A typical setup for memory subsystem performance analysis and optimization
is shown in Fig. 34.9 below. The following paragraphs briefly describe the key
elements in the model library and the architecture analysis flow. Please refer to [15]
for a more complete introduction.

The flow to systematically analyze and optimize the architecture in Platform
Architect is depicted in Fig. 34.9:

Fig. 34.9 Architecture analysis and optimization flow

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1147

1. Platform Assembly and Workload Modeling
In the first step, the SoC performance model is assembled, connected, and
configured in the Platform Architect authoring environment. This is quickly
done based on the available libraries for workload, interconnect, and memory
subsystem models.

2. Simulation Sweep
Platform Architect generates a SystemC-based simulation of the SoC perfor-
mance model. The simulation records a large variety of power and performance
metrics into an analysis data base.

3. Performance Analysis
The recorded data can be visualized and post-processed in the Platform Architect
analysis tool. Various charts for throughput, latency, utilization, and contention
allow the identification of performance issues. We can zoom on the time axis
and further slice the results into the contribution from individual components for
detailed root cause analysis.

4. Sensitivity Analysis
Apart from single simulation runs, Platform Architect can also generate parame-
ter sweeps, where a set of simulations is executed with user-defined configuration
scenarios. This allows to systematically analyze the impact of the selected design
parameters on high-level performance metrics. Each simulation result can be
analyzed individually, but the results from all simulations are also aggregated into
pivot chart tables for further post-processing in spreadsheet tools, e.g., Excel.

5. Are we done yet?
Based on the analysis results, the architect needs to decide if the performance
requirements in terms of throughput and latency cost are met. If this is confirmed,
there might still be potential to improve utilization or to reduce contention in
order to further optimize headroom, cost, or power consumption. In those cases,
the iterative optimization loop continues by further modifying configuration
parameters and setting up simulation sweeps until the design goals are reached.

6. Hand-off
At the end of the optimization process, the final design configuration is handed
off to the implementation team. As soon as the implementation becomes
available, it can replace the system-level performance model with the RTL
model. This allows the validation of the analysis results with the highest possible
accuracy.

This generic iterative exploration and optimization flow can be applied to all kinds of
architecture design problems. The next paragraph elaborates on how the architecture
model should be constructed, depending on the specific objective of the architecture
design project.

34.3.1.3 Modeling Methodologies for Early Architecture Analysis
The dimensioning of the SoC architecture is the first step in a design project. As
depicted in Fig. 34.10, the input comes from the marketing requirements in terms
of required features, supported features, performance numbers, and product cost.

1148 T. Kogel

Fig. 34.10 Modeling methodology for different architecture design use cases

The outcome of the architecture design process is a detailed specification of the
implementation. In between, three differentiated use cases have emerged over the
last two decades of commercial deployment of architecture design methodologies.

All three steps include the modeling of the interconnect and memory architecture,
because in many cases, this is the primary objective of the architecture design
project. This is because individual IP blocks and subsystems can be developed
independently, but when they are integrated into the SoC platform, the interconnect
and memory subsystems need to satisfy the accumulated requirements from all IPs.
Hence, the analysis of the interconnect and memory performance is typically the
“common denominator” of all architecture design use cases.

The fundamental difference between the architecture design use cases is in how
to model the remaining IP blocks and subsystems in the SoC:

• For the purpose of architecture validation, the actual software is executed on a
fully functional and timing accurate VP, which is similar in nature to a VP for
early software development: Instruction-Set Simulators (ISSs) are used for all
programmable components, and functional and bit-accurate peripheral models
are used for the nonprogrammable components. In addition, all models need to
be enhanced with timing, which greatly increases the modeling effort and impacts
the simulation speed.

• For the purpose of early architecture analysis and interconnect/memory opti-
mization, the IP blocks are represented as abstract workload models. These
task-based or trace-based workload models are nonfunctional and only represent
the processing and communication requirements of each IP component, irre-
spective of whether they are programmable or not. The nonfunctional modeling
of workloads is the key concept to achieve the necessary flexibility, modeling
productivity, and simulation speed with sufficient temporal accuracy for early
architecture analysis and exploration.

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1149

The following sections discuss the different architecture design use cases in more
detail.

34.3.2 Software-Based Performance Validation

Historically, performance validation was the first commercially deployed archi-
tecture design use case. The idea is to build a functional and cycle-accurate VP
of the complete SoC. The programmable IP subsystems require cycle-accurate
representation of the CPU, capable of running the actual software. Depending
on availability, this can be a Cycle Accurate (CA) SystemC TLM Instruction-Set
Simulator (ISS) or the RTL of the CPU running in cosimulation or coemulation
mode with the SystemC TLM platform. The nonprogrammable IP blocks need to
be modeled in terms of CA SystemC TLMs. The benefit of such a fully accurate VP
is that it allows the early validation of the final SoC performance. The analysis
visibility into hardware and software enables the identification of performance
issues and tuning of design and configuration parameters to optimize performance.

However, the overall return of investment (RoI) has proven to be challenging,
especially for the growing complexity of complex many-core SoC platforms:

• Creating such a fully functional and cycle-accurate platform model requires a lot
of initial modeling effort. Even if all models are available, it can be cumbersome
to configure the software such that all the relevant traffic scenarios are covered.

• The simulation speed and the turnaround time for any change to the hardware or
software is very slow.

For these reasons, performance validation is typically done using emulation or
hardware prototyping methods. A new trend is hybrid emulation and prototyping,
which allows to combine the best of both worlds:

• Leverage emulation and hardware prototyping for large IP blocks, e.g., CPU,
GPU, and custom IP, to achieve reasonable simulation speed and avoid the effort
to create cycle-accurate models.

• Leverage virtual prototyping for interconnect and memory subsystem to analyze
and optimize performance critical parameters with high analysis visibility and
fast turnaround time.

Architecture analysis with VPs starts very early in the development process. At
this point, neither the software nor the RTL of the major IP blocks is available.
Therefore, initial performance analysis is carried out using workload models instead
of real software. As the platform specification and implementation matures, the
workload models can be incrementally replaced by the cycle-accurate functional
models or the RTL. This gradually converts the architecture exploration model on
the left side of Fig. 34.10 into a cycle-accurate VP as depicted on the right. This way,
the initial assumptions in the workload model can be validated, and the architecture
can be fine tuned.

1150 T. Kogel

The following sections describe in more detail the creation of VPs for architec-
ture analysis using trace-based and task-based workload modeling.

34.3.3 Trace-Based Interconnect and Memory Optimization

In many cases, the interconnect and memory optimization is the key concern of
the architecture definition phase. For this purpose, it is often sufficient to model
the workload of all relevant initiator components in terms of transaction trace files,
which are replayed by Generic File Reader Bus Masters (GFRBMs). Trace-based
workload modeling has proven to be the most productive methodology to quickly
and accurately analyze and optimize this critical part of the SoC architecture. Traces
are available early in the development process, long before the actual software ex-
ists. They can be easily recorded or generated, they execute fast, and they represent
the transaction sequence and timing of the real application with sufficient accuracy.

34.3.3.1 Traffic Generation
A GFRBM is sufficient to model the traffic generated by all kinds of initiator
components like CPU, GPU, DMA, etc. The critical portion is the creation of elastic
traces, which accurately represent the actual traffic of the corresponding initiator
component. Here elasticity refers to the requirement, that the trace generator needs
to respond to a change in the interconnect and memory architecture in the same
way as the corresponding initiator component. An important aspect of elasticity
is the synchronization of different traffic flows: If one traffic flow is triggered by
another flow, then this dependency needs to be explicitly represented in the trace-
based workload model. An example of such an elastic trace is shown in Fig. 34.11.

Fig. 34.11 Elastic trace-based workload model (top) with deadline analysis (bottom)

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1151

The upper part of Fig. 34.11 shows an example of the transaction-level trace
format that is executed by the GFRBM. Each traffic flow is described as a
sequence of reads and writes with the relevant transaction attributes, e.g., burst size,
command, address, byte enables, etc. As opposed to using absolute time stamps,
the idle command defines the relative number of cycles between two subsequent
transactions.

Multiple traffic flows can be synchronized by using the raise and wait for internal
and external interrupt signals. In the example above, flow 0 on the GPU only starts
after flow 0 on the camera raises interrupt 0. In the same way, flow 1 on the GPU
waits for flow 0 to finish.

It is also important to capture performance constraints of traffic flows. For
example, the cam_0 timer in Fig. 34.11 expires after 9000 cycles to indicate that
the transaction sequence should be processed before this deadline. The lower part
of Fig. 34.11 shows the visualization of the deadlines: The end-to-end constraint of
the camera, GPU, and HD-LCD starts at 5�s and turns red at 205�s, indicating
that the 200�s deadline is just missed.

34.3.3.2 Transaction-Level Models for Interconnect and Memory
Subsystem

Obviously the key ingredient for analyzing and optimizing the performance of
the interconnect and memory subsystem are sufficiently accurate models of these
components. Commercially available virtual prototyping environments provide
libraries of SystemC TLMs at different levels of abstraction.

• Highly configurable approximately timed models, which can be used to mimic a
specific IP.

• Highly accurate model of a specific IP, which represent all relevant design and
configuration parameters

An example of a configurable approximately timed model is the generic Multi-Port
Memory Controller provided in the Synopsys Platform Architect model library.
This memory controller model is based on the Fast Timed (FT) TLM protocol to
support multiple bus protocols (see paragraph on Extended AT in Sect. 34.2.1).
It incorporates the features of modern memory controllers, e.g., transaction re-
ordering, address mapping, configurable number of ports, buffer sizes, frequency
ratio, and QoS. This also includes a timing model of all commonly used Double
Data Rate (DDR) standards (DDR2, DDR3, DDR4, mDDR, LPDDR2, LPDDR3,
LPDDR4, DDR3-3DS) with their respective speed bins and device types [16]. An
example of an accurate IP-specific model for architecture analysis is the Architects
View (AV) TLM model of the FlexNoC interconnect from Arteris [19]. The port
interfaces of the AV FlexNoC model use an extended TLM-2.0 AT protocol, which
accurately represents the FlexNoC NTTP protocol with extended attributes and
phases, but which is also compliant with the AT-BP (see Sect. 34.2.1). Internally
the AV FlexNoC model represents all the performance-relevant aspects of the NoC
architecture, like the topology, serialization, clock schemes, buffering, arbitration

1152 T. Kogel

schemes, pipeline stages, and transaction contexts. This also includes advanced
QoS schemes like run-time bandwidth regulation. The FlexNoC model is generated
from the NoC configuration tool, which is later used to generate the actual RTL
implementation. This way, the optimized interconnect configuration is seamlessly
used for implementation. The model library from Synopsys Platform Architect
contains similar models for other popular interconnect IP, e.g., ARM CoreLink
NIC-400.

Based on these kinds of available TLMs for architecture analysis, it is very
little effort to assemble a performance model of any SoC platform, which allows
to analyze and optimize the memory subsystem [17, 20, 24].

34.3.4 Task-Based Architecture Analysis and Exploration

The most recent commercially deployed architecture design methodology is the
early exploration and optimization of complex Multi-Processor System-on-Chip
(MPSoC) platforms using task-based workload models. This allows the quantitative
analysis of performance and power metrics to avoid SoC market failure due
to underperforming or overly power hungry architectures. The key architecture
questions that SoC hardware architects can analyze are:

• How to partition the application into fixed HW accelerators and software
executing on processors?

• What is the optimal number and type of CPUs, GPUs, Digital Signal Processors
(DSPs), and HW accelerators?

• How to dimension the interconnect and memory architecture?
• What is the expected performance/power curve?

34.3.4.1 Modeling Methodology
As depicted in Fig. 34.12, the modeling methodology for task-based architecture
analysis follows the Polis Y-chart approach [5], similar to the framework described
in the �Chap. 9, “Scenario-Based Design Space Exploration”.

• SoC application workloads such as CPU load, imaging, video encoding and de-
coding, modem, and network packet processing are represented as an application
task graph.

• The VP of the SoC platform contains all relevant processing elements as well as
interconnect and memory resources. The key component is the Virtual Processing
Unit (VPU), which represents all kinds processing elements such as CPUs,
GPUs, DSPs, and HW accelerators. VPUs are high-level processor models that
execute the portion of the task graph [13, 18].

• The task-based application workload model is mapped to the architecture model
to construct an executable specification of the application running on the
hardware platform.

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1153

Fig. 34.12 Early architecture analysis with task-based workload models

The following sections describe the different aspects of application modeling,
platform modeling, and mapping in more detail.

34.3.4.2 Task-Based Workload Models
In general, a task-based workload model captures the processing and communi-
cation requirements of the application. As showcased in Fig. 34.13, the overall
application is broken down into a set of tasks, which exhibits the available
coarse-grained parallelism. The connections in the task graph denote the execution
precedence, e.g., in this example Task C and D execute after B. In addition, each task
is characterized with a set of processing- and communication-related parameters. A
typical set of parameters is depicted in Fig. 34.13:

• A source task like Task A, the wait_cycles parameter specifies the delay
between two consecutive activations

• The processing_cycles specifies minimum number of cycles for which a
task occupies a resource.

• The load_ratio store_ratio specify the additional communication over-
head, e.g., on average Task B generates 50 load and store transactions per
activation.

1154 T. Kogel

Fig. 34.13 Specification, mapping, and execution of an application task graph

• The branch_ratio can be used to model jumps in the address sequence and
additional processing overhead for mis-predicted branches.

• The mem_region defines a logical name for the memory location.

In the mapping step, tasks are assigned to VPUs, which represent the execution
resources, and the logical memory regions assigned to physical memories in the
platform.

From the modeling perspective, tasks and connections are realized on top of
standard SystemC concepts like threads and events. In addition, tasks have explicit
states like Created, Ready, Running, Waiting, Suspended, and the ability to consume
processing time. This enables the modeling of software processes executing in the
context of an Operating System (OS). The task state trace on the right side of
Fig. 34.13 showcases the execution of the given example task graph:

• In the beginning, all task are in state Waiting
• At t1, the wait cycles of source Task A are expired. VPU 1 is available, so Task

A changes immediately into state Running.
• At t2, the processing cycles of Task A are finished. Task A triggers Task B, which

changes into state Running.
• At t3, the wait cycles of Task A are again expired, but this time VPU 1 is still

occupied with Task B, so Task A transitions into state Ready.
• At t4, Task B is done, so Task A becomes Running on VPU 1. Also, Task B

triggers Task C and D. C is blocked by Task A on VPU 1 and remains Ready, but
Task D can immediately transition into state Running on VPU 2.

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1155

In reality, more complex scheduling algorithms with priorities, preemption, time
slices, etc., influence the execution pattern. The actual duration a task remains
in state Running is further impacted by dynamic effects like bus arbitration and
dynamic memory latencies.

Synopsys provides a generic task library with a set of configuration parameters,
so users can rapidly compose a task graph without manual modeling effort. This
library provides a set of generic configurable tasks to create a nonfunctional
performance model of arbitrary application topology.

For data processing applications, such as audio, video, networking, or wireless
communications, it is typically straightforward to define the application task graph
using the elements in the generic task library. For control-oriented applications, e.g.,
in the automotive domain, and for higher-level applications running on top of an OS,
the application task graph can be automatically generated from software execution
traces.

34.3.4.3 Performance Model of the System-on-Chip
Multi-core architectures are composed of SystemC TLMs, such as interconnect,
memory controller, DMAs, and other components which are available in the
Platform Architect model library. The VPU models the processing elements (CPUs,
GPUs, DSPs, and HW accelerators), which can execute a task graph, or a portion
of the task graph. The VPU task scheduler supports preemption and time slicing
of tasks for modeling of interrupts and arbitrary OS scheduling algorithms. The
provided set of default scheduling algorithms can be extended by the user. The VPU
also comes with a library of components for traffic generation, cache modeling,
inter-VPU communication, and interrupt handling to model the realistic execution
of a task graph with sufficient accuracy.

34.3.4.4 Application to Architecture Mapping
The next step is to map the application task graph onto the VPUs. This way
the tasks are assigned to a physical execution resource, and the logical memory
regions in the task graph are mapped to physical memories in the platform. The
number of processing resources per VPU is configurable and determines how many
tasks can run in parallel. For example, a VPU with four resources represents a
Symmetric Multi-Processing (SMP) cluster with four cores. VPUs with different
parameters (scheduling algorithm, clock period, traffic generation, etc.) represent an
asynchronous multiprocessor (AMP) subsystem. A VPU with only one task mapped
to it can represent a dedicated hardware block.

The result is an executable system performance model, which simulates the
execution of a task-based workload model on a resource constraint platform. The
analysis monitors measure a variety of performance metrics like latency, throughput,
utilization, and contention. This way, an SoC architect can identify performance
issues, bottlenecks, or underutilization of resources [8].

1156 T. Kogel

34.3.4.5 Joint Power and Performance Analysis
The availability of the IEEE 1801-2015 UPF-3.0 standard for system-level power
analysis [11] enables the early estimation of the system power consumption by
adding power monitors as an overlay to a VP for performance analysis; see
Sect. 34.2.3 and Fig. 34.6). Compared to static power analysis based on spreadsheet,
this provides much more realistic power estimates, because the dynamic activity
of each component in the platform is taken into account. This way, architects can
analyze the impact of architecture design decision on the power consumption [9].
Many state-of-the-art SoC platforms optimize the power consumption using run-
time power management schemes, e.g., clock gating, power gating, and Dynamic
Voltage and Frequency Scaling (DVFS) [10]. These power management schemes
bear great potential to reduce power consumption, but they also come at additional
cost. Hence power management adds another dimension to the architecture design
space. Unfortunately, power consumption and performance cannot be considered in
isolation. For example, reducing voltage and frequency reduces power but increases
execution time. The resulting impact on the energy consumption is not obvious, so
without quantitative analysis, it is difficult to decide between power management
strategies like Run Fast Then Stop (RFTS) or DVFS.

As depicted in Fig. 34.14, adding a model of the power management to a VP
for architecture analysis enables the quantitative analysis of power management
strategies, including the impact of power management on power and performance:

• How should the SoC be partitioned into DVFS domains to best serve the target
application use cases?

• Based on the activity profile of a component, do the power savings justify the
additional cost for applying clock gating or power gating or both?

Fig. 34.14 DVFS modeling for joint power and performance analysis

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1157

• How many DVFS operating points are needed to effectively reduce power
consumption?

• How aggressive can the frequency be reduced before application violates real-
time requirements?

Figure 34.14 shows how to model the impact of DVFS and power management
in the context of a multi-core platform in Platform Architect for MCO. A functional
model of the Power Management Unit (PMU) is part of the SoC platform model
to take the performance and power aspect into account. The processing elements
(the VPUs) notify the PMU when they become active or idle. In response to this,
the PMU model controls the frequency of the processing elements and the voltage
levels of the power supply regulators. This captures the impact of the DVFS power
management on the performance: The execution time of the tasks running on the
VPU depends on the actual frequency. The same task takes longer when the clock
is running at a lower frequency. The frequency and voltage levels are also used
as run-time parameters in the UPF-3.0 power models to measure actual power
consumption.

The outcome of the early analysis of power and performance is an optimized
power architecture:

• An optimized specification of the system-level power intent, including the power
supply architecture and the grouping of the SoC into power domains.

• The definition of the most promising power management policies.
• A realistic estimation of the system-level power and energy consumption for a

given workload.

The UPF standard can also be used to export the resulting optimized system-
level power intent from the virtual prototyping environment to the subsequent
implementation and verification tools.

34.4 Conclusions

This section provided an overview of virtual prototyping for architecture design. It
introduced software-based performance validation, trace-based interconnect/mem-
ory optimization, and task-based architecture exploration as the three main archi-
tecture design use cases, which are in commercial deployment today. Especially
the joint power and performance analysis based on task-based application workload
models sees growing adoption, because it is the most effective approach to cope
with the “complexity wall” [26] under the given competitive landscape and time-to-
market pressures.

Acknowledgments The author acknowledges Tom De Schutter for contributing the sections on
software development and on system validation to the introduction of this chapter as well as Alan
Gibbons for contributing the section on system level power analysis to the introduction of this
chapter.

1158 T. Kogel

References

1. AMBA AXI and ACE Protocol Specification (2013). http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ihi0022e/index.html

2. AMBA-PV Extensions to TLM Developer Guide (2015). http://infocenter.arm.com/help/topic/
com.arm.doc.dui0846f/DUI0846F_ambapv_extensions_to_tlm_2-0_dg.pdf

3. ARM Fast Models. http://www.arm.com/products/tools/models/fast-models
4. Bailey B et al (eds) (2010) TLM-driven design and verification methodology. Cadence Design

Systems, San Jose. https://www.synopsys.com/vpbook
5. Balarin F et al (1997) Hardware-software co-design of embedded systems: the POLIS

approach. Kluwer Academic Publishers, Boston
6. Barroso L, Holzle U (2007) The case for energy-proportional computing. Computer 40(12):

33–37. doi: 10.1109/MC.2007.443
7. Datta S, Bonnet C, Nikaein N (2012) Android power management: current and future trends.

In: 2012 first IEEE workshop on enabling technologies for smartphone and internet of things
(ETSIoT), pp 48–53. doi: 10.1109/ETSIoT.2012.6311253

8. Fadi Aboud IC (2014) Balancing power performance and user experience using virtual
prototyping. In: Proceedings of the synopsys users group conference (SNUG), Israel. https://
www.synopsys.com/news/pubs/snug/2014/israel/B2_Aboud_pres_user.pdf

9. Fischer B, Cech C, Muhr H (2014) Power modeling and analysis in early design phases.
In: Proceedings of design, automation and test in Europe conference and exhibition (DATE),
pp 1–6. doi: 10.7873/DATE.2014.210

10. Flynn D, Aitken R, Gibbons A, Shi K (2007) Low power methodology manual for system-on-
chip design. Springer, New York

11. IEEE Standard for Design and Verification of Low-Power Integrated Circuits (2015). http://
standards.ieee.org/getieee/1801/download/1801-2015.pdf

12. IEEE Standard for Standard SystemC Language Reference Manual (2011). http://standards.
ieee.org/getieee/1666/download/1666-2011.pdf

13. Kempf T, Doerper M, Leupers R, Ascheid G, Meyr H, Kogel T, Vanthournout B (2005) A
modular simulation framework for spatial and temporal task mapping onto multi-processor
SoC platforms. In: Proceedings of design, automation and test in Europe, vol 2, pp 876–881.
doi: 10.1109/DATE.2005.21

14. Kogel T (2006) Peripheral modeling for platform driven ESL design. In: Burton M,
Morawiec A (eds) Platform based design at the electronic system level. Springer, Dordrecht,
pp 71–85

15. Kogel T (2013) Designing the right architecture, SoC interconnect and memory optimization
with synopsys platform architect. Synopsys whitepaper. https://www.synopsys.com/cgi-bin/
proto/pdfdla/pdfr1.cgi?file=pa_soc_v4_wp.pdf

16. Kogel T (2016) Optimizing DDR memory subsystem efficiency, Part 1: the unpredictable
memory bottleneck. Synopsys whitepaper. https://www.synopsys.com/cgi-bin/proto/pdfdla/
pdfr1.cgi?file=optimizing-ddr-efficiency-p1-wp.pdf

17. Kogel T (2016) Optimizing DDR memory subsystem efficiency, Part 2: case study. Synopsys
whitepaper. https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=optimizing-ddr-
efficiency-p2-wp.pdf

18. Kogel T et al (2005) Integrated system-level modeling of network-on-chip enabled multi-
processor platforms. Springer, Dordrecht

19. Lecler J-J, Baillieu G (2011) Application driven network-on-chip architecture exploration
& refinement for a complex SoC. Des Autom Embed Syst 15(2):133–158. doi:
10.1007/s10617-011-9075-5

20. Patel S, Sood B, Semiconductor F (2014) Quick, re-usable and cost effective approach to
create accurate models using synopsys platform architect framework for early system level
performance analysis. In: Proceedings of the synopsys users group conference (SNUG), India.
http://www.synopsys.com/news/pubs/snug/2014/India/paper_sood.pdf

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0846f/DUI0846F_ambapv_extensions_to_tlm_2-0_dg.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0846f/DUI0846F_ambapv_extensions_to_tlm_2-0_dg.pdf
http://www.arm.com/products/tools/models/fast-models
https://www.synopsys.com/vpbook
http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/10.1109/ETSIoT.2012.6311253
https://www.synopsys.com/news/pubs/snug/2014/israel/B2_Aboud_pres_user.pdf
https://www.synopsys.com/news/pubs/snug/2014/israel/B2_Aboud_pres_user.pdf
http://dx.doi.org/10.7873/DATE.2014.210
http://standards.ieee.org/getieee/1801/download/1801-2015.pdf
http://standards.ieee.org/getieee/1801/download/1801-2015.pdf
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://dx.doi.org/10.1109/DATE.2005.21
https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=pa_soc_v4_wp.pdf
https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=pa_soc_v4_wp.pdf
https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=optimizing-ddr-efficiency-p1-wp.pdf
https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=optimizing-ddr-efficiency-p1-wp.pdf
https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=optimizing-ddr-efficiency-p2-wp.pdf
https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=optimizing-ddr-efficiency-p2-wp.pdf
http://dx.doi.org/10.1007/s10617-011-9075-5
http://www.synopsys.com/news/pubs/snug/2014/India/paper_sood.pdf

34 Synopsys Virtual Prototyping for Software Development and Early: : : 1159

21. Reyes V (2012) Virtualized fault injection methods in the context of the ISO 26262 standard.
SAE Int J Passenger Cars Electron Electr Syst 5(1):9–16

22. Schurmans S, Zhang D, Auras D, Leupers R, Ascheid G, Chen X, Wang L (2013) Cre-
ation of ESL power models for communication architectures using automatic calibration.
In: 2013 50th ACM/EDAC/IEEE design automation conference (DAC), pp 1–6. doi:
10.1145/2463209.2488804

23. Schutter TD (ed) (2014) Better software. Faster! best practices in virtual prototyping. Synopsys
Press. https://www.synopsys.com/vpbook

24. Skrzeszewski TK, Intel Corp. (2015) ATOM mobile SoC performance and power architecture
exploration. In: Synopsys users group conference (SNUG), Santa Clara. http://www.synopsys.
com/news/pubs/snug/2015/silicon-valley/mb08_skrzeszewski_paper.pdf

25. Synopsys DW TLM library. http://www.synopsys.com/Prototyping/VirtualPrototyping/
VPModels/Pages/DW-TLM-Library.aspx

26. Teich J (2012) Hardware/software codesign: the past, the present, and predicting the future.
Proc IEEE 100(Special Centennial Issue):1411–1430. doi: 10.1109/JPROC.2011.2182009

27. The SystemC Modeling Library (SCML). http://www.synopsys.com/cgi-bin/slcw/kits/reg.cgi
28. Tool Command Language (TCL). http://www.tcl.tk

http://dx.doi.org/10.1145/2463209.2488804
https://www.synopsys.com/vpbook
http://www.synopsys.com/news/pubs/snug/2015/silicon-valley/mb08_skrzeszewski_paper.pdf
http://www.synopsys.com/news/pubs/snug/2015/silicon-valley/mb08_skrzeszewski_paper.pdf
http://www.synopsys.com/Prototyping/VirtualPrototyping/VPModels/Pages/DW-TLM-Library.aspx
http://www.synopsys.com/Prototyping/VirtualPrototyping/VPModels/Pages/DW-TLM-Library.aspx
http://dx.doi.org/10.1109/JPROC.2011.2182009
http://www.synopsys.com/cgi-bin/slcw/kits/reg.cgi
http://www.tcl.tk

Part IX
Applications and Case Studies

35Joint Computing and Electric Systems
Optimization for Green Datacenters

Ali Pahlevan, Maurizio Rossi, Pablo G. Del Valle, Davide Brunelli,
and David Atienza

Abstract

This chapter presents an optimization framework to manage green datacenters
using multilevel energy reduction techniques in a joint approach. A green
datacenter exploits renewable energy sources and active Uninterruptible Power
Supply (UPS) units to reduce the energy intake from the grid while improving its
Quality of Service (QoS). At server level, the state-of-the-art correlation-aware
Virtual Machines (VMs) consolidation technique allows to maximize server’s
energy efficiency. At system level, heterogeneous Energy Storage Systems
(ESS) replace standard UPSs, while a dedicated optimization strategy aims at
maximizing the lifetime of the battery banks and to reduce the energy bill,
considering the load of the servers. Results demonstrate, under different number
of VMs in the system, up to 11.6% energy savings, 10.4% improvement of QoS
compared to existing correlation-aware VM allocation schemes for datacenters
and up to 96% electricity bill savings.

Acronyms

AC Alternating Current
BFD Best-Fit-Decreasing
CVMP Correlation-aware VM Placement
CRAC Computer Room Air Conditioning
CTI Charge Transfer Interconnect
DC Direct Current
DoD Depth-of-Discharge

A. Pahlevan (�) • P. G. Del Valle • D. Atienza
Embedded Systems Laboratory (ESL), EPFL, Lausanne, Switzerland
e-mail: ali.pahlevan@epfl.ch; pablo.garciadelvalle@epfl.ch; david.atienza@epfl.ch

M. Rossi • D. Brunelli
Department of Industrial Engineering, University of Trento, Trento, Italy
e-mail: maurizio.rossi@unitn.it; davide.brunelli@unitn.it

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_35

1163

mailto:ali.pahlevan@epfl.ch
mailto:pablo.garciadelvalle@epfl.ch
mailto:david.atienza@epfl.ch
mailto:maurizio.rossi@unitn.it
mailto:davide.brunelli@unitn.it

1164 A. Pahlevan et al.

DP Dynamic Programming
DSO Distribution System Operator
DVFS Dynamic Voltage and Frequency Scaling
ESS Energy Storage Systems
HES Hybrid Electric Systems
IT Information Technology
MAPE Mean Average Percentage Error
NOCT Nominal Operating Cell Temperature
PCP Peak Clustering-based Placement
PDU Power Distribution Unit
PV Photovoltaic
QoS Quality of Service
SoC State of Charge
SoH State of Health
STC Standard Test Conditions
UPS Uninterruptible Power Supply
V/f Voltage/Frequency
VM Virtual Machine

Contents

35.1 Introduction . 1164
35.2 Related Work . 1166
35.3 The System Modeling Framework . 1168

35.3.1 Energy Management Models . 1169
35.3.2 Electrical Energy Storage System. 1170
35.3.3 Photovoltaic Module . 1171

35.4 Simulation Framework Description . 1172
35.4.1 Datacenter Energy Controller . 1173
35.4.2 Green Energy Controller . 1174

35.5 Experimental Results . 1176
35.5.1 Setup . 1176
35.5.2 Results . 1177

35.6 Conclusion . 1181
References . 1181

35.1 Introduction

Ever-increasing demands for computing and growing number of clusters and servers
in datacenters have ramped up the power consumption costs as an undesirable
effect [20]. On the other hand, traditional fossil fuel concerns, carbon emissions,
and global warming impose the introduction of more sustainable energy sources
and behavioral change of people [41], since 10% of the global consumption of
electrical energy has been estimated to be consumed by Information Technology
(IT) infrastructures [14].

35 Joint Computing and Electric Systems Optimization for Green Datacenters 1165

To optimize the operation of a datacenter, it is crucial to minimize both IT and
cooling energy consumptions. Server consolidation [26] is one of the widely used
techniques to reduce the energy overheads, which minimizes the number of active
servers by packing workloads or virtual machines (VMs) into the minimal number
of active servers exploiting a virtualized environment. Large virtualized datacenters
use renewable energy to reduce their dependence on costly and brown energy from
the grid [33].

In the recent years, all the big energy consumers in the IT market (Amazon,
Google, Rackspace, etc.) have already introduced renewable energy sources in their
supply chain, locating their infrastructures in suitable geographical locations around
the world. The penetration of renewable and green energy sources is almost none
for company-owned datacenters, IT infrastructures located in the same corporate
building where the business is run, mostly in urban environments.

Solar energy is the most effective renewable source employed in green datacen-
ters since Photovoltaic (PV) modules can be easily located close by the datacenter
and the converted energy can be immediately used without distribution. Moreover
it is the most suitable for small to medium datacenters (up to few hundreds kWs
of IT power) located in urban environments where wind turbines and water storage
infrastructures may not be built, given the space required for such infrastructures.

Renewable energy sources are not constant over the time; their intensity depends
on weather, geographical position of the plant, and seasons; moreover a maximum
in the energy intake rarely corresponds with a maximum in the demand. However,
estimating their short-term trend (one day ahead) with small error (Mean Average
Percentage Error (MAPE) close to 10%) is possible, as it has been demonstrated
in [11]. Similar results can be expected when dealing with electricity demand
prediction at building scale (few tens of kWs) [31]. To tackle the imbalance between
energy intake and demand, a widespread monitoring system of the produced
and consumed power over time is necessary, as well as efficient forecasting
algorithms of datacenters load consumption are required to optimize the usage of
energy storage systems (ESS) that collects the surplus of green energy for future
needs.

Variability and fast-changing characteristics of applications, for instance, scale-
out applications [17] (e.g., web search, MapReduce, etc.), affect the energy con-
sumption of servers due to the dependency on external factors, e.g., number of
clients/queries in the system. To this end, the impact of servers’ energy consump-
tion on the usage of green energy becomes more substantial, and management
of consumed energy will play a major role in lifetime and operation of ESS.
Consequently, without consideration of minimizing datacenter energy consumption,
many existing approaches to management of green energy and batteries are subop-
timal.

In this chapter, we introduce and propose a multilevel and multi-objective
framework for the optimization of green virtualized datacenters, to jointly minimize
the energy consumption and the carbon footprint, exploiting renewable energy
sources, state-of-the-art VMs allocation schemes and Hybrid Electric Systems
(HES). With HES, we refer to electrical ESS where different battery technologies
are employed together, allowing to compensate for the inherent drawbacks of

1166 A. Pahlevan et al.

each technology. We incorporated dynamic VM allocation into servers’ powers by
novel HES, and optimization methods to maximize the battery bank lifetime are
used. The framework consists of two modules running concurrently: the datacenter
energy controller which minimizes the energy consumption of datacenter without
any significant quality-of-service (QoS) degradation and shares the real energy
consumption data with the green energy controller and the green energy controller
that manages renewable sources and HES, providing feedback to the datacenter
energy controller.

The datacenter energy controller is based on a state-of-the-art correlation-aware
VM allocation scheme [21] due to a high correlation within a cluster of applications
in virtualized datacenters. Regarding load correlation, the authors demonstrate that
having detailed information about the applications characteristics, as opposed to
using stationary load values for the VMs (e.g., peak or average values), gives
the opportunity to further reduce the energy consumption of a datacenter. On the
other side, the QoS degradation occurs when the aggregated utilization among
colocated VMs is beyond the CPU capacity of a server. It means that there will be
some workloads which cannot be executed at the right time. Therefore, datacenter
providers take into account the service-level agreements requirements to satisfy the
customers. The green energy controller, based on [32], is a two-phase controller
that takes into account the cost policies of the grid energy and exploits forecasts
of both the datacenter’s load and of the incoming energy from renewables. The
framework uses PV modules as green energy source and two battery technologies
(lead-acid and lithium-ion) for the HES that are used with different priorities and
roles.

In current datacenters, not enough efforts have been dedicated to implement
adaptive energy reduction techniques and real-time resource scheduling to manage
efficiently IT equipment and renewable energy sources. The novelty of our work
consists in the introduction of a HES architecture to replace standard uninterruptible
power supply (UPS) systems, which allows an active management and the full
exploitation of the energy buffers for the locally generated renewable energy. We
also designed a dedicated control loop which connects the VMs allocation scheme
to the HES manager and optimizes the resources in real time. At the same time, the
modular structure allows to use both general-purpose models and high-end ones for
performance evaluation, model verification, and feasibility analysis.

35.2 Related Work

Renewable energy sources integration in the electricity grid and in particular green
datacenters are currently a hot topic. Different research ideas have been presented
in the last few years that address the problem of exploiting local energy generation
to mitigate grid energy demand of datacenters [18] and in general of any human
activity [12]. At the same time, HES have been addressed in several works available

35 Joint Computing and Electric Systems Optimization for Green Datacenters 1167

in the literature. The fundamental idea behind HES management is to use batteries
as energy buffers to store the amount of green energy that cannot be used directly
by the connected loads. Different management approaches have been proposed
to automatically control the energy flows from renewables to loads and storage
units [16], and also hybrid solutions for battery banks have been demonstrated [39].
This is particularly of interest nowadays because of the large availability of second-
life batteries from electric vehicles that can have up to 75% remaining capacity
available for storage applications [25, 40]. Despite the market availability of hybrid
storage systems is still far, the literature review demonstrates that these technologies
are worth the efforts for being implemented. In this work, we followed the approach
proposed in [32] to shape the active UPS (or HES) system presented in the
following. The authors in [32] propose a two-phase control scheme that exploits
intrinsic advantages of different battery technologies mitigating, at the same time,
their drawbacks.

A number of research works present methods for server consolidation based on
per-VM workload characteristics, i.e., the peak, off-peak, and average utilization
of workload [26, 35], which aims to reduce heat dissipation of hot spot zones and
improve overall power utilization in datacenters [9,22]. In [34], authors propose ab-
stract models to balance computing power in a datacenter by minimizing peak inlet
temperatures. A holistic approach that manages IT, power, and cooling equipment
by dynamically migrating servers’ workloads and adjusting cooling is presented
in [13]. Experimental results for a virtual datacenter demonstrate a reduction by
35% in power consumption and 15% in cooling. Authors in [27] present a control-
oriented model that considers cyber and physical dynamics in datacenters to study
the potential impact of coordinating the IT and cooling controls. To achieve further
power savings while maintaining the QoS level, joint relationships among VMs,
like load correlations, have been exploited in recent works [19,24,36]. For instance,
in [24], Meng et al. proposed a VM sizing technique that pairs two uncorrelated
VMs into a super-VM by predicting the workloads. However, once the super-VMs
are formed, this solution does not consider dynamic changes of the VMs’ load,
which limits further energy savings. Therefore, these approaches do not work well
with non-stationary and fast-changing VM behaviors in particular for scale-out
applications. In [21], a power-efficient solution is proposed based on the first-
fit-decreasing heuristic to separate load-correlated VMs especially targeting the
characteristics of the scale-out applications. They also exploit server’s dynamic
voltage and frequency scaling Dynamic Voltage and Frequency Scaling (DVFS)
techniques to achieve further energy savings. Note that these schemes do not take
into account the renewable energy sources and datacenter system model in modern
green datacenters.

There is no evidence in the literature of the joint application of HES optimization
and correlation-aware techniques to the optimization of datacenter energy consump-
tion, and the potential savings (both from environmental and money perspectives)
are clearly worth the effort for further investigation.

1168 A. Pahlevan et al.

35.3 The System Modeling Framework

We introduce a novel green datacenter system model where datacenter equipment,
PV modules, smart grid, and UPS are connected as shown in Fig. 35.1. The IT
equipment and cooling system inside this datacenter are the major contributors to
power consumption than the other facilities. These components are combined using
Power Distribution Units (PDUs) that eventually connect to the Charge Transfer
Interconnect (CTI) bus that serve the whole facility [15]. In this framework, the
UPS is designed as a HES to provide both supply in case of grid outages and a
buffer for green energy.

The system models two battery banks, a PV module and the bidirectional CTI
bus, managed by a dedicated controller, not shown, as presented in [37]. Each unit
is connected to the CTI by means of a bidirectional DC-DC converter for level
shifting and charge routing, while the PV’s one is unidirectional. Grid and PDUs
are modeled in terms of power source and load, connected with the CTI by means
of AC-DC and DC-AC converters, respectively.

We defined two constraints to the simulated system: (i) the exceeding renewable
energy cannot be injected into the main grid (if it cannot be stored) and (ii) a

Fig. 35.1 The complete system modeling framework

35 Joint Computing and Electric Systems Optimization for Green Datacenters 1169

peak/off-peak price scenario from a regulated electricity market for the energy taken
from the grid (we considered the Zurich’s tariff 7.5/14.9 CHFcent/kWh [1]).

Thus, renewable energy and batteries should completely sustain the load of
the datacenter or, at least, provide supply during outages and periods with the
highest price. These choices are justified by the fact that selling energy back to the
grid, namely, providing net-metering ancillary service to the Distribution System
Operators (DSOs), follows rules that are country-specific and strongly depend on
the interface between datacenter and energy network; moreover, datacenters are
usually big energy consumers, and it is unlikely to have enough excess green energy
to justify the effort (economically and technologically) of improving the electric
system to handle this task. The peak/off-peak price scenario in a regulated energy
market instead can be easily implemented also in a free energy market scenario
where the energy price is continuously evolving; in this case, our assumption can be
seen as a threshold on the freely variable price: while the free market price is below
the threshold, it is more convenient to buy from the grid, and the opposite when the
price rises.

We developed a discrete-time framework (cf. see �Chap. 6, “Optimization
Strategies in Design Space Exploration” for more details on different design space
exploration options) that simulates the target green datacenter, with hourly time
steps. The green energy controller manages the PV modules, the heterogeneous
batteries and the CTI, the HES considered in this framework, and has been
implemented using MATLAB. The datacenter energy controller, implemented
in C++, manages the datacenter and VMs allocation scheme. Both components
communicate using sockets for interprocess communication, while the time-step
length of one hour guarantees that the time for VMs relocation (several GBs) does
not overtake the actual execution time.

35.3.1 Energy Management Models

According to Fig. 35.1, the power management problem is solved at the CTI bus
level which is a DC path. Conversely, the system comprises both AC and DC
sources/loads; thus, for the former ones, it is required to consider the power
factor component in the conversion. For example, considering the power intake
from the grid, if we measure the total apparent power that enters the rectifier,
for example, on the grid side PGridŒVA� D VRMS � IRMS, this can be converted
into active power (the useful power available on the DC side) according to the
PGridŒW � D PGridŒVA� � cos.�/ where � is the angle between voltage and current
waveforms and cos.�/ is called power factor. In addition, the converter’s efficiency
	X.:/ must be added to any transformation, since it depends on the actual power
flowing with respect to the nominal one.

P CTI
Datacenter.t/ D P

CTI
Grid.t/C P

CTI
PV .t/C

nEESX
nD1

˛ � P CTI
EES;n.t/ (35.1)

1170 A. Pahlevan et al.

P CTI
Grid.t/ D PGrid.t/ � cos.�/ � 	ACDC .�.t// (35.2)

P CTI
PV .t/ D PPV .t/ � 	DCDC .�.t// (35.3)

P CTI
EES;n.t/ D PEES;n.t/ � 	DCDC .�.t// (35.4)

P CTI
Datacenter.t/ � 	DCAC .�.t// D PDatacenter.t/ (35.5)

�.t/ D
Pout

Pnom
� 100 (35.6)

Equation (35.1) represents the power balance of the system, it states that the
sum of the input from the grid, PV and battery arrays must be equal to the
datacenter requirements, additionally the ˛ is a directional parameter which can
be 	/+1 depending on the charging/discharging status (source or load of the
system), and nEES is the number of separated battery banks that compose the
HES. Equations (35.2), (35.3), (35.4) and (35.5) describe the AC-to-DC and DC-
to-DC conversion functions used for each system component, where the conversion
efficiency term 	X.:/ depends on �.t/, the ratio of power requested by the system
with respect to the nominal power delivered by the converter, which is expressed in
percentage as defined by Eq. (35.6).

In order to reduce the computational complexity and generalize the system’s
models, we considered fixed power factor equal to one; fixed CTI voltage level
and energy converters have been modeled considering a fixed 90% efficiency since
detailed efficiency curves for high-power equipment are not publicly provided by
manufacturers [2] but still are claimed to work in the range of 80–95% (with loads
down to �.t/ D20%).

35.3.2 Electrical Energy Storage System

The HES can exploit two heterogeneous battery banks managed in hierarchical
fashion: a lead-acid array (the battery bank n. 1) and a lithium-ion array (the battery
bank n. 2). The battery model is based on the Peukert’s law [29]. The goal is to
model HES that combine the advantages of the different battery technologies (lead-
acid and lithium-ion). The module, as all the modules in the framework, has been
conceived as a plug-and-play component; therefore, it can be easily replaced and
adapted.

Equation (35.7) defines the State of Health (SoH) of the battery as a ratio between
currently available charge capacity (Cref) and the nominal one. Equation (35.8)
defines the charge capacity as a linear combination of the previous charge and
a term that depends on the charge which is drained, where Cnom is the nominal
charge declared by manufacturer while Zb , linear aging coefficient, is a parameter
depending on the battery technology [30]. The following two equations (Eqs. 35.9
and 35.10) allow to determine the State of Charge (SoC) and the equivalent battery
current (Ieq), function of the current flowing from batteries (I), with respect to the

35 Joint Computing and Electric Systems Optimization for Green Datacenters 1171

nominal battery parameters: Iref the reference discharge current (provided by the
manufacturer and used to compute the reference charge), the Peukert’s coefficient
kb and the charge actually used by the system, computed as current Ieq times time
slot (tslot) length in seconds. The SoH of the battery decreases only during discharge,
so it is calculated only during discharge, whereas the SoC is updated during both
charge and discharge cycles. More details about the model and its utilization can be
found in [29, 30].

SoH.t C 1/ D
Cref.t C 1/

Cnom
(35.7)

Cref.t C 1/ D Cref.t/ 	 Cnom �Zb � .SoC.t/ 	 SoC.t C 1// (35.8)

SoC.t C 1/ D
Cref.t/ � SoC.t/ 	 .Ieq.t/ � tslot/

Cref.t/
(35.9)

Ieq.t/ D

�
jI .t/j

Iref

�.kb�1/
� I .t/ (35.10)

We tuned the parameters of the general-purpose model (maximum and reference
charge/discharge currents) according to commercial devices, a VARTA Professional
Dual Power (230 Ah @ 12 V) [3] as the lead-acid, and a StarkPower “UltraEnergy”
(100 Ah @ 12 V) [4] as the lithium-ion.

We preferred to double the size of the battery bank n. 1, with respect the
lithium-ion one, because lead-acid technology is cheaper, easier to recycle, and
has a wider working temperature range. However, lead-acid batteries suffer from
a limited number of sustainable cycles (i.e., lifetime). The lithium-ion technology
instead offers at least one order of magnitude higher number of cycles, but it is also
more expensive. To maximize the lifetime of the storage (in particular of the lead-
acid bank), we put some constraints on the allowed Depth-of-Discharge (DoD) for
both banks. To force both banks to work in the optimal range of SoC, we set the
minimum SoC to 65% for the bank n. 1 and 70% for the bank n. 2. The remaining
capacity is however available in the event of outage, thus providing standard UPS
support.

Moreover, in the simulations, we considered two configurations, the HES-1
where we have 48 kWh as lead-acid capacity (16.8 kWh available) and 24 kWh as
lithium-ion capacity (7.2 kWh available) and the HES-2 with 96 kWh (33.6 kWh)
and 48 KWh capacity (14.4 kWh), respectively.

35.3.3 Photovoltaic Module

The PV module provides green energy accordingly to the intensity of the solar
irradiance impinging on it, which in turn depends on the weather mostly. In this
framework, we implemented it as a linearly varying voltage source, with integrated
MPPT controller [32] and tuned accordingly to real device’s characteristics [5]. Sun

1172 A. Pahlevan et al.

irradiance [6] and temperature profiles [7] for the year 2005 in Zurich have been
used for tests.

PPV D

�
PPV;STC �

�
GT

1000

�
�
�
1 	 � � .Tj 	 25/

��
�NPV;S �NPV;P (35.11)

Tj D Tamb C

�
GT

800

�
� NOCT 	 20 (35.12)

Equation (35.11) presents the linear model of the PV array, the parameters
were evaluated in Nominal Operating Cell Temperature (NOCT) and Standard
Test Conditions (STC) which are the nominal output power (PPV;STC D 2:65W)
in this case, the cell temperature (Tj), irradiance level (GT D 1000W=m2 @
25 ıC), and the temperature coefficient (� D 0:0043%=ıC), while NPV;S and NPV;P

are the number of series and parallel cells in the module. The cell temperature
is then obtained using Eq. (35.12), where Tamb is the environmental temperature,
GT D 800W=m2 @ 20 ıC and NOCT D 45:5 ıC.

We tuned the PV module size considering two different cases of peak power
production (hence the number of cells and panels) that are 10 kWp for the HES-1
simulating scenario and 30 kWp for the HES-2.

35.4 Simulation Framework Description

The overall diagram of our simulating framework that jointly manages the green
energy and datacenter Energy Controllers is shown in Fig. 35.2. At the beginning of
the simulation time horizon (off-line phase), the green energy controller computes
the expected energy budget for the datacenter, processing historical datacenter
power profiles as well as the sun irradiance forecasts. This task is executed only
once and provides a preliminary energy budget for the whole simulation horizon.

The online phase starts when the off-line phase of the green energy controller
sends the available energy budget to the datacenter energy controller for the first
time slot. Next, it waits until the VMs allocation is completed according to the
prediction of upcoming loads of VMs and then receives back the real energy demand
of the datacenter computed based on the real workload. Therefore, the green energy
controller compensates the differences between (i) expected and available green
energy and (ii) real energy consumption and energy budget for the datacenter, using
the lithium-ion battery as additional energy reserve or the grid if both banks in the
HES have been drained. To this end, if the actual energy consumed by datacenter
is higher than the expected, the green energy controller compensates the datacenter
energy requirements. At the end of each time slot, the green controller provides an
updated budget to the datacenter energy controller for the VM allocation of the next
time slot.

On the other side, the datacenter energy controller tries to find the best allocation
for VMs on the servers at each time slot using the VMs specification from the

35 Joint Computing and Electric Systems Optimization for Green Datacenters 1173

Fig. 35.2 The simulating framework that jointly manages the green energy and datacenter energy
controllers. Off-line phase, as a starting point of simulation, is executed once at the beginning of
the simulation time to compute expected energy budget for datacenter. In online phase, at each
time slot, datacenter energy controller first receives forecasted workload and energy budget from
green energy controller to allocate VMs to servers and then sends back the real energy demand to
green energy controller

previous time slot as incoming workload and the energy budget provided by green
energy controller. The goal is to allocate VMs to the minimal number of servers that
yields in optimized total energy consumption of datacenter, as it will be explained in
the following. After the allocation was completed, the datacenter energy controller
communicates the actual energy demand for the current time slot to the green energy
controller. Both of the controllers are invoked periodically, at every time slot, i.e.,
tslot. The overall process of the framework and two controllers’ communication have
been shown in Fig. 35.3. In the following sections, we describe these two controllers
in detail.

35.4.1 Datacenter Energy Controller

In this section, we have considered the state-of-the-art correlation-aware VM
allocation scheme as a datacenter power management solution [21]. Correlation
refers to the VMs’ utilizations when the peaks of two VMs occur at the same
time during a certain time interval. Therefore, for using the server’s resources
efficiently during a time slot, highly correlated VMs should be placed apart, in
different servers. Thereby, based on the VMs’ utilization patterns, the aggregated
utilization of colocated VMs nearly reaches their server’s capacity during a time
slot. This favors consolidation and leads to power savings by lowering the number
of active servers. In this context, due to the distributed operations of multiple VMs

1174 A. Pahlevan et al.

tslot

1. Workload Forecast
2. VM Allocation
3. Simulation of Real Workload

Execution During a Time Slot
ith Time Slot

Off-line Phase

On-line Phase

1. Forecast Acquisition
2. Dynamic Programming (DP)

1st Time Slot

Datacenter Energy
Controller

Green Energy
Controller

Providing Energy Budget For All Time Slots
Based on Irradiance and Load Forecast Profiles

Energy budget optimization

Energy budget optimization

Fig. 35.3 Overall process of the proposed framework – joint datacenter and Green Energy
Controllers

in a cluster, a high correlation within a cluster of VMs is observed, called intra-
cluster correlation, rather than the correlation among different clusters targeted
in other correlation-aware schemes [19, 36]. The correlation-aware VM allocation
method has been proposed, in [21], while sharing cores among colocated VMs
based on defining a cost function depending on QoS requirement to efficiently
quantify the correlation between the VMs across a certain time horizon. Finally,
a way to scale the Voltage/Frequency (V/f) level is provided to achieve more power
savings without any QoS degradation. In this algorithm, the VMs are allocated
such that the correlation among the allocated VMs in the server is minimized,
while the server does not exceed its total CPU capability, as well as the number of
the active servers is minimized while satisfying performance requirements. Once
all the VMs are allocated into servers, an optimal V/f level for each server is
determined. This correlation-aware VM allocation algorithm is periodically invoked
at every tslot.

35.4.2 Green Energy Controller

The green energy controller is a two-phase scheduler – off-line and online phases –
that manages the CTI bus and provides guidelines to the datacenter energy con-

35 Joint Computing and Electric Systems Optimization for Green Datacenters 1175

troller, by recursively solving the set of equations presented in Sect. 35.3. Moreover,
see �Chap. 10, “Design Space Exploration and Run-Time Adaptation for Multicore
Resource Management Under Performance and Power Constraints” for more details
about combined design- and run-time exploration and adaptation approaches for
computing systems.

The off-line phase’s goal is to find the best resource allocation strategy to
minimize the energy intake from the grid (i) and to maximize the lifetime of the
lead-acid battery bank (ii) by minimizing the number of charge-discharge cycles
and using as much as possible uninterrupted cycles. This is based on Dynamic
Programming (DP) that is a strategy to solve complex problems by splitting
them into lower complexity ones, solving and storing each solution; thus, when
a previously solved problem occurs, the system looks up the previous solution
saving computational time. It takes as input the expected workload of the datacenter,
the price profile of the energy from the grid, and the irradiance forecasts for the
whole time horizon [32, 38]; in this phase, the scheduler manages the battery bank
n. 1 only. The algorithm ranks all the possible system states (charge to discharge,
charge to charge, discharge to charge, and discharge to discharge) for each time
slot in the simulation horizon that fulfills the above constraints. For each state
transition, it assigns a weight based on the battery usage; the higher the weight
the lower the ranking. At the end, it provides an optimal energy budget for each
time slot and the best utilization strategy for the lead-acid bank for the whole time
horizon. Only the budget for the first time slot is then sent to the datacenter energy
controller and this message triggers the online phase. All the other energy budgets
computed are kept in memory for the online phase to use them when the off-line
concludes.

The on-line phase, for each time slot, optimizes the initial energy budget,
computed by the off-line phase, trying to compensate the difference between
expected workload and irradiance forecast with respect to the real data measured
by the system. In the online phase, the scheduler manages also the battery bank
n. 2 mainly to compensate error in the forecasts and to maximize the lifetime of
the lead-acid bank. This is a constrained multivariate optimization problem that has
been solved numerically using the Matlab’s fmincon [8] solver. For each time slot,
the green scheduler must find the optimal current balance in the CTI to minimize
the energy taken from the grid (optimization goal), to fulfill the off-line lead-acid
battery scheduling and to supply the load. For each component of the system (grid,
PV, batteries and load), we set constrained boundaries for the currents and the
input power from the grid, linear constraints for the CTI based on the Kirchhoff
currents law, and nonlinear constraints to compute the effect of energy converters
and batteries’ SoC. Problem’s constraints (current flow direction for batteries and
use of the grid) change in accordance with the system state, in this way it is possible,
for example, to force the lithium-ion battery to be discharged when the lead-acid
battery is recharged and the green energy is unavailable or lower than the load. At
the end of the time slot, the actual energy balance is updated to the datacenter, and
this triggers also a new cycle of the simulator with the following tslot .

1176 A. Pahlevan et al.

35.5 Experimental Results

We validated the effectiveness and applicability of the proposed framework to
larger-scale problems using 2-week simulation horizon, workload traces obtained
from a real datacenter setup, and real irradiance and temperature profiles. We
arranged the simulations in two separate sets: firstly we evaluated the best VM
allocation algorithm in terms of energy and QoS; secondly we placed this best
scheme into the datacenter energy controller, and we executed the joint optimization
framework.

35.5.1 Setup

We modeled a green urban datacenter consisting of medium-sized facilities with
two components: computing power consumption (IT equipment) (i) and Computer
Room Air Conditioning (CRAC) power consumption as the cooling unit (ii). We
evaluated the effectiveness of the proposed solution with a virtual testbed consisting
of 250 servers where the servers are homogeneous. We targeted an Intel Xeon
E5410 server configuration which consists of eight cores and two frequency levels
(2.0 and 2.3 GHz) and used the power model proposed in [28].

To simulate the datacenter workload and energy demand, we sampled the CPU
utilization of a real datacenter setup every 5 min for 1 day; then we duplicated the
samples up to 14 days. Such assumption has been proved by real-trace studies,
since the real datacenter’s workload shows significant variability and a daily
pattern during 1 week [23]. Finally, to generate different samples for each day,
we synthesized fine-grained samples per 5 sec with a lognormal random number
generator [10], whose mean is the same as the collected value for the corresponding
5 min sample rate.

We computed the irradiance forecasts implementing the algorithm presented
in [11]; an example of the two resulting sequences is depicted in Fig. 35.4. At the

Fig. 35.4 Solar power profile, forecasted vs. real

35 Joint Computing and Electric Systems Optimization for Green Datacenters 1177

same time, we used hourly averaged energy consumption profile from the real
datacenter as forecast, which results in a smoothed profile compared to the original
one.

35.5.2 Results

As previously introduced, we split the performance evaluation in two separate sets
of experiments. To select the best VM allocation scheme for power management
to use with the datacenter energy controller, we compared the following three
approaches:

• Best-Fit-Decreasing (BFD): a conventional best-fit-decreasing heuristic
approach. In detail, after sorting VMs in decreasing order of their utilization,
the algorithm allocates each VM to a server that provides the closest resource
requirements with respect to this VM utilization (i.e., the server with the smallest
remaining capacity is sufficient to contain the VM).

• Peak Clustering-based Placement (PCP) [36]: a correlation-aware VM allocation
which clusters VMs using its envelope-based correlation classification. The
authors presented a static clustering-based VM allocation method by defining
VM utilization in a time series as a binary sequence where the value becomes “1”
when utilization is higher than a threshold value, otherwise “0”. This algorithm
first clusters VMs such that the envelopes of VM utilization included in different
clusters do not overlap. Then, it allocates VMs to servers in order to colocate
VMs in different clusters.

• Correlation-aware VM Placement (CVMP) [21] the correlation-aware VM allo-
cation considered as the state-of-the-art approach and explained in Sect. 35.4.1.

Figure 35.5 compares the total energy consumption of the three approaches
under different number of VMs (obtained by duplicating the trace for 250 VMs)
in the system for a horizon of 14 days when we set the V/f level at the time of
VM placement tslot. The CVMP algorithm provides up to 11.6 and 7.3% energy
savings compared to BFD and PCP, respectively, due to using the lower frequency
levels more frequently. It is noteworthy that PCP provides almost similar results
with BFD because, due to high and fast-changing correlations among VMs in our
utilization traces, PCP classifies VMs into only one cluster during most of the time
periods. When the number of clusters is one, PCP behaves exactly the same as BFD.
Note that the semi-linear trend of the energy consumption depends on the analogous
behavior of the workload among different days, in a typical datacenter.

Table 35.1 shows the maximum violation defined as maximum per-period ratio
of the number of over-utilized time instances (i.e., when the aggregated utilization
among colocated VMs is beyond the CPU capacity of a corresponding server)
to tslot, during the two weeks under different number of VMs in the system.
A graphical representation of these data is provided in Fig. 35.6. As a result, the
CVMP scheme provides a drastic reduction of the violations, up to 10.4 and 9.6%

1178 A. Pahlevan et al.

Fig. 35.5 Total energy consumption of datacenter under different number of VMs for a horizon
of 14 days

Table 35.1 Maximum violations (%) of ratio of over-utilized time instances to tslot, during the
entire periods, i.e., 336 h (14 days) under different number of VMs scenario

Approach
Number of VMs

250 500 750 1000

BFD 2.1 4.9 9.6 18.4

PCP 1.1 2.8 3.4 17.6

CVMP 0.85 2 3.1 8

Fig. 35.6 Trend of maximum violations (%) under different number of VMs for a horizon of
14 days

35 Joint Computing and Electric Systems Optimization for Green Datacenters 1179

Table 35.2 Overall framework results in terms of economic benefit of renewable-enabled data-
center with respect to a grid-connected one. Two HES configurations are evaluated, HES-1 with
48 kWh as lead-acid and 24 kWh as lithium-ion capacity and HES-2 with 96 kWh and 48 kWh
capacity, respectively

Configuration Winter savings (PV only) Summer savings (PV only)

250 VMs
HES-1 29.30% (25.54%) 76.46% (57.86%)

HES-2 62.22% (38.72%) 96.13% (66.45%)

500 VMs
HES-1 14.30% (13.16%) 55.92% (48.00%)

HES-2 38.43% (31.30%) 85.28% (61.59%)

750 VMs
HES-1 9.53% (8.76%) 43.49% (40.16%)

HES-2 27.69% (24.86%) 73.39% (57.35%)

1000 VMs
HES-1 7.05% (6.57%) 33.34% (32.51%)

HES-2 20.64% (19.16%) 65.28% (53.96%)

compared to BFD and PCP, respectively. In CVMP method, VMs are allocated
based on their peak utilizations, which were predicted from their history. Despite
the provision based on the peak utilization, we observed quality degradation over
the three approaches due to the mis-predictions of the peak utilization, especially
during abrupt workload changes under increasing the number of VMs in the
system. However, the CVMP method can statistically reduce the probability of the
violation by colocating uncorrelated VMs. Thus, the probability of joint under-
predictions among the colocated VMs is drastically decreased. Using the CVMP
algorithm, we performed the complete framework simulation (VM allocation,
green energy scheduling, and communication between the two controllers) with
tslot = 1 h, with predictions of upcoming workloads of datacenter using a last-value
predictor.

Table 35.2 summarizes the results in terms of cost savings depending on the
number of VMs, the HES size, and the season. The cost savings are computed as
the difference between electricity cost to sustain the datacenter workload with or
without the renewable energy sources. As expected with larger battery capacities
(HES-2 configuration), we get higher savings. We compared also with the cost
saving of using the PV panels without any storage (between brackets) to demonstrate
the advantage of the proposed approach. Although in winter scenario the low
irradiance and the cold weather strongly impact the renewable energy generation,
causing the batteries to rarely reach the full charge, they still provide advantages in
terms of savings. During summer instead the batteries are fully exploited resulting
in higher savings with respect to the previous scenario. According to the model,
during summer, when the HES system’s usage is more intensive, we experienced a
maximum SoH decrease of 0.07% (ratio between nominal and remaining capacity),
which means a lifetime longer than 15 years to reach the 70% of nominal capacity

1180 A. Pahlevan et al.

Fig. 35.7 Two-day framework evolution with 500 VMs, HES-2 (96 kWh lead-acid and 48 kWh
lithium-ion capacity) configuration, and summer irradiance (48 time slots). Power profile of the
datacenter components (top); percentage SoC of the battery bank n. 1 (SoC1) and n. 2 (SoC2)
(middle); cost per time slot (bottom)

(lead-acid battery near the end of life). Finally, Fig. 35.7 shows a 2-day view (48
time slots) of the framework evolution with 500 VMs, summer irradiance, and HES-
2 configuration. We can observe the role of the energy buffer that allows to use green
energy when there is no input from the PV panels (Fig. 35.7-top) and the resulting
money saving (Fig. 35.7-bottom). In the specific time horizon depicted (Fig. 35.7-
middle), we experienced a low level of irradiance compared to other days in the
overall horizon (cfr. Fig. 35.4); it results in a lower amount of energy available
to recharge the batteries, in particular the battery bank n. 1 which has a bigger

35 Joint Computing and Electric Systems Optimization for Green Datacenters 1181

capacity and a smaller recharge current with respect to the lithium-ion one. Similar
considerations can be made for the other three cases that are not reported for the
sake of summary.

35.6 Conclusion

In this chapter, we have presented a novel dynamic and multi-objective framework
to manage the energy consumption of datacenter, battery banks lifetime, and energy
bill cost. The datacenter energy controller minimizes the total energy consumption
using the state-of-the-art correlation-aware VM allocation scheme for the given
VMs’ specifications and energy budget provided by the green energy controller
while improving QoS requirements. In the green energy controller, we use a real-
time optimization technique to maximize the lifetime of battery banks and to
reduce the energy bill by managing the PV source, in price-varying scenarios,
and considering the energy consumed by the datacenter. Finally, we validated
the effectiveness and applicability of our proposed system with the utilization
traces obtained from a real datacenter setups. Our experimental results show that
the proposed framework provides up to 11.6% energy savings and up to 10.4%
improvement of QoS level compared to existing conventional solutions under
different number of VMs in the system and up to 96% money saving in the electricity
bill.

Acknowledgments This work has been partially supported by the EC FP7 GreenDataNet STREP
Project (Agreement No. 609000) and the YINS RTD Project (no. 20NA21_150939), funded by
Nano-Tera.ch with Swiss Confederation Financing and scientifically evaluated by SNSF.

References

1. [online] http://www.strompreis.elcom.admin.ch/PriceDetail.aspx?placeNumber=261&OpID=
565&-Period=2014&CatID=12

2. [online] http://www.schaeferpower.de/cms/en/produkte.html
3. [online] http://www.varta-automotive.com/en-gb/products/industrial/industrial-professional-

dual-purpose
4. [online] http://www.starkpower.com/spnews/energystoragebatt
5. [online] http://www.enfsolar.com/pv/cell-datasheet/429
6. [online] http://www.soda-is.com/eng/services/services_radiation_free_eng.php
7. [online] http://www.tutiempo.net/en/Climate
8. [online] http://www.mathworks.com/help/optim/ug/fmincon.html
9. Bash C, Forman G (2007) Cool job allocation: measuring the power savings of placing jobs at

cooling-efficient locations in the data center. In: 2007 USENIX annual technical conference on
proceedings, ATC’07. USENIX Association, Berkeley, pp 29:1–29:6

10. Benson T et al (2010) Understanding data center traffic characteristics. ACM SIGCOMM
Comp Commun Rev 40(1):92–99

11. Bergonzini C et al (2010) Comparison of energy intake prediction algorithms for systems
powered by photovoltaic harvesters. Microelectron J 41(11):766–777

http://www.strompreis.elcom.admin.ch/PriceDetail.aspx?placeNumber=261&OpID=565&-Period=2014&CatID=12
http://www.strompreis.elcom.admin.ch/PriceDetail.aspx?placeNumber=261&OpID=565&-Period=2014&CatID=12
http://www.schaeferpower.de/cms/en/produkte.html
http://www.varta-automotive.com/en-gb/products/industrial/industrial-professional-dual-purpose
http://www.varta-automotive.com/en-gb/products/industrial/industrial-professional-dual-purpose
http://www.starkpower.com/spnews/energystoragebatt
http://www.enfsolar.com/pv/cell-datasheet/429
http://www.soda-is.com/eng/services/services_radiation_free_eng.php
http://www.tutiempo.net/en/Climate
http://www.mathworks.com/help/optim/ug/fmincon.html

1182 A. Pahlevan et al.

12. Carpinelli G, Celli G, Mocci S, Mottola F, Pilo F, Proto D (2013) Optimal integration of
distributed energy storage devices in smart grids. IEEE Trans Smart Grid 4(2):985–995

13. Chen Y, Gmach D, Hyser C, Wang Z, Bash C, Hoover C, Singhal S (2010) Integrated
management of application performance, power and cooling in data centers. In: Network
operations and management symposium (NOMS). IEEE, pp 615–622

14. Clark J (2013) It now 10 percent of world’s electricity consumption, report finds. [online] http://
www.theregister.co.uk/2013/08/16/it_electricity_use_worse_than_you_thought/

15. Deng N et al (2011) Concentrating renewable energy in grid-tied datacenters. In: 2011 IEEE
international symposium on sustainable systems and technology (ISSST). IEEE, pp 1–6

16. Farhangi H (2010) The path of the smart grid. Power Energy Mag IEEE 8(1):18–28
17. Ferdman M et al (2012) Clearing the clouds: a study of emerging scale-out workloads on

modern hardware. ACM SIGARCH Comp Archit News 40(1):37–48
18. Goiri I, Katsak W, Le K, Nguyen TD, Bianchini R (2014) Designing and managing datacenters

powered by renewable energy. IEEE Micro 34(3):8–16
19. Halder K et al (2012) Risk aware provisioning and resource aggregation based consolidation of

virtual machines. In: 2012 IEEE 5th international conference on cloud computing (CLOUD),
pp 598–605

20. Katz RH (2009) Tech titans building boom. IEEE Spectr 46:40–54
21. Kim J et al (2013) Correlation-aware virtual machine allocation for energy-efficient datacen-

ters. In: Design, automation & test in Europe (DATE) conference, pp 1345–1350
22. Leverich J, Monchiero M, Talwar V, Ranganathan P, Kozyrakis C (2009) Power management

of datacenter workloads using per-core power gating. Comput Archit Lett 8(2):48–51
23. Liu Z, Chen Y, Bash C, Wierman A, Gmach D, Wang Z, Marwah M, Hyser C (2012)

Renewable and cooling aware workload management for sustainable data centers. In: Pro-
ceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint international conference on
measurement and modeling of computer systems, SIGMETRICS ’12. ACM, pp 175–186

24. Meng X et al (2010) Efficient resource provisioning in compute clouds via VM multiplexing.
In: Proceedings of the 7th international conference on autonomic computing. ACM, pp 11–20

25. Mukherjee N, Strickland D (2016) Control of cascaded DC-DC converter-based hybrid battery
energy storage systems – Part I: stability issue. IEEE Trans Ind Electron 63(4):2340–2349

26. Pakbaznia E et al (2009) Minimizing data center cooling and server power costs. In:
Proceedings of the 14th ACM/IEEE international symposium on low power electronics and
design. ACM, pp 145–150

27. Parolini L, Sinopoli B, Krogh B, Wang Z (2012) A cyber-physical systems approach to data
center modeling and control for energy efficiency. Proc IEEE 100(1):254–268

28. Pedram M et al (2010) Power and performance modeling in a virtualized server system. In:
2010 39th international conference on parallel processing workshops (ICPPW), pp 520–526

29. Riffonneau Y et al (2008) System modelling and energy management for grid connected PV
systems with storage. In: 23rd European photovoltaic solar energy conference and exhibition,
pp 3447–3451

30. Riffonneau Y, Bacha S, Barruel F, Ploix S (2011) Optimal power flow management for grid
connected PV systems with batteries. IEEE Trans Sustain Energy 2(3):309–320

31. Rossi M, Brunelli D (2013) Electricity demand forecasting of single residential units. In: 2013
IEEE workshop on environmental energy and structural monitoring systems (EESMS). IEEE,
pp 1–6

32. Rossi M et al (2014) Real-time optimization of the battery banks lifetime in hybrid residential
electrical systems. In: Design, automation & test in Europe (DATE) conference, pp 139–145

33. Stewart C et al (2009) Some joules are more precious than others: managing renewable energy
in the datacenter. In: Proceedings of the workshop on power aware computing and systems

34. Tang Q, Gupta S, Varsamopoulos G (2008) Energy-efficient thermal-aware task scheduling
for homogeneous high-performance computing data centers: a cyber-physical approach. IEEE
Trans Parallel Distrib Syst 19(11):1458–1472

35. Verma A et al (2008) pMapper: power and migration cost aware application placement in
virtualized systems. In: Middleware 2008. Springer, Berlin, pp 243–264

http://www.theregister.co.uk/2013/08/16/it_electricity_use_worse_than_you_thought/
http://www.theregister.co.uk/2013/08/16/it_electricity_use_worse_than_you_thought/

35 Joint Computing and Electric Systems Optimization for Green Datacenters 1183

36. Verma A et al (2009) Server workload analysis for power minimization using consolidation.
In: Proceedings of the 2009 conference on USENIX annual technical conference. USENIX
Association, pp 28–28

37. Wang Y et al (2011) Charge migration efficiency optimization in hybrid electrical energy
storage (HEES) systems. In: 2011 international symposium on low power electronics and
design (ISLPED), pp 103–108

38. Wang Y et al (2013) Optimal control of a grid-connected hybrid electrical energy storage
system for homes. In: Design, automation & test in Europe conference & exhibition (DATE).
IEEE, pp 881–886

39. Wang Y, Lin X, Kim Y, Xie Q, Pedram M, Chang N (2014) Single-source, single-destination
charge migration in hybrid electrical energy storage systems. IEEE Trans Very Large Scale
Integr VLSI Syst 22(12):2752–2765

40. Wang LY, Wang C, Yin G, Lin F, Polis MP, Zhang C, Jiang J (2016) Balanced control strategies
for interconnected heterogeneous battery systems. IEEE Trans Sustain Energy 7(1):189–199

41. Zhang Y et al (2011) Greenware: greening cloud-scale data centers to maximize the use of
renewable energy. In: Middleware 2011. Springer, pp 143–164

36The DSPCAD Framework for Modeling and
Synthesis of Signal Processing Systems

Shuoxin Lin, Yanzhou Liu, Kyunghun Lee, Lin Li, William Plishker,
and Shuvra S. Bhattacharyya

Abstract

With domain-specific models of computation and widely-used hardware accel-
eration techniques, Hardware/Software Codesign (HSCD) has the potential of
being as agile as traditional software design, while approaching the performance
of custom hardware. However, due to increasing use of system heterogeneity,
multi-core processors, and hardware accelerators, along with traditional software
development challenges, codesign processes for complex systems are often slow
and error prone. The purpose of this chapter is to discuss a Computer-Aided
Design (CAD) framework, called the DSPCAD Framework, that addresses some
of these key development issues for the broad domain of Digital Signal Process-
ing (DSP) systems. The emphasis in the DSPCAD Framework on supporting
cross-platform, domain-specific approaches enables designers to rapidly arrive at
initial implementations for early feedback, and then systematically refine them
towards functionally correct and efficient solutions. The DSPCAD Framework
is centered on three complementary tools – the Data-flow Interchange Format
(DIF), LIghtweight Data-flow Environment (LIDE) and DSPCAD Integrative
Command Line Environment (DICE), which support flexible design experimen-
tation and orthogonalization across three major dimensions in model-based DSP
system design – abstract data-flow models, actor implementation languages,
and integration with platform-specific design tools. We demonstrate the utility

S. Lin (�) • Y. Liu • K. Lee • L. Li • W. Plishker
Department of Electrical and Computer Engineering, University of Maryland, College Park, MD,
USA
e-mail: slin07@umd.edu; yzliu@umd.edu; leekh3@umd.edu; lli12311@umd.edu;
plishker@umd.edu

S.S. Bhattacharyya
Department of Electrical and Computer Engineering and Institute for Advanced Computer
Studies, University of Maryland, College Park, MD, USA

Department of Pervasive Computing, Tampere University of Technology, Tampere, Finland
e-mail: ssb@umd.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_36

1185

mailto:slin07@umd.edu
mailto:yzliu@umd.edu
mailto:leekh3@umd.edu
mailto:lli12311@umd.edu
mailto:plishker@umd.edu
mailto:ssb@umd.edu

1186 S. Lin et al.

of the DSPCAD Framework through a case study involving the mapping of
synchronous data-flow graphs onto hybrid CPU-GPU platforms.

Acronyms

ADT Abstract Data Type
API Application Programming Interface
BDF Boolean Data Flow
BPSK Binary PSK
CAD Computer-Aided Design
CAL Cal Actor Language
CFDF Core Functional Data Flow
CPU Central Processing Unit
CSDF Cyclo-Static Data Flow
CUDA Compute Unified Device Architecture
D2H Device-to-Host
DICE DSPCAD Integrative Command Line Environment
DIF Data-flow Interchange Format
DSP Digital Signal Processing
FCFS First-Come First-Serve
FIFO First-In First-Out
FIR Finite Impulse Response
FPGA Field-Programmable Gate Array
FSM Finite-State Machine
GLV Graph-Level Vectorization
GPU Graphics Processing Unit
H2D Host-to-Device
HDL Hardware Description Language
HSCD Hardware/Software Codesign
ITS Individual Test Subdirectory
LIDE LIghtweight Data-flow Environment
MDSDF Multi-Dimensional Synchronous Data Flow
MILP Mixed Integer Linear Programming
PREESM Parallel and Real-time Embedded Executives Scheduling Method
PSDF Parameterized Synchronous Data Flow
PSK Phase Shift Keying
PSM Parameterized Sets of Modes
QAM Quadrature Amplitude Modulation
QPSK Quadrature PSK
RVC Reconfigurable Video Coding
SADF Scenario-Aware Data Flow
SDF Synchronous Data Flow
SDR Software Defined Radio
SDTC Scheduling and Data Transfer Configuration
SysteMoC SystemC Models of Computation

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1187

VF Vectorization Factor
WSDF Windowed Synchronous Data Flow

Contents

36.1 Introduction . 1187
36.1.1 Data Flow. 1188
36.1.2 Data-Flow Modeling Variants . 1188
36.1.3 DSPCAD Framework . 1189

36.2 Related Work . 1191
36.2.1 Representative Tools . 1191
36.2.2 Distinguishing Aspects of the DSPCAD Framework 1192

36.3 Data-Flow Interchange Format Overview. 1193
36.3.1 Core Functional Data Flow. 1194
36.3.2 Reconfigurable Modulator Example . 1194
36.3.3 Data-Flow Graph Specification in the DIF Language 1196
36.3.4 Model-Based Design and Integration Using DIF . 1197

36.4 Lightweight Data-Flow Environment . 1199
36.4.1 Actor Design in LIDE . 1199
36.4.2 Parameterized Sets of Modes . 1200
36.4.3 Implementation in LIDE. 1201

36.5 DSPCAD Integrative Command Line Environment . 1205
36.5.1 Convenience Utilities . 1206
36.5.2 Testing Support . 1207

36.6 DSPCAD Framework Example: DIF-GPU . 1209
36.6.1 DIF-GPU Overview. 1209
36.6.2 Graph Transformations and Scheduling using DIF . 1210
36.6.3 Vectorization . 1210
36.6.4 Graph Scheduling and Mapping . 1212
36.6.5 Code Generation . 1213
36.6.6 Testing in DIF-GPU Using DICE. 1214

36.7 Summary . 1216
References . 1217

36.1 Introduction

Software design processes have evolved rapidly over the past two decades. In
many areas, agile programming [1] has shown how software development benefits
from going to implementation quickly. By writing core functionality for key use
cases, software engineers can gain early feedback from real implementations,
and, thereby, features, performance, and platforms may be refined effectively and
quickly. Hardware/Software Codesign (HSCD) stands to inherit these same benefits
from agile design but in practice has not kept pace with traditional software
development evolution. Domain-specific models and languages that support fast
application descriptions already exist. However, compared to traditional software,
Hardware/Software tools to translate those descriptions to implementations are
inherently more complex. They must deal with traditional software development
issues, as well as system heterogeneity, multiple cores, and hardware accelerators.
Because of the diversity of applicable tools and approaches, many of the steps are
manual, ad hoc, or platform specific.

1188 S. Lin et al.

The purpose of this chapter is to discuss a Computer-Aided Design (CAD)
framework for Digital Signal Processing (DSP) applications, called the DSPCAD
Framework, that addresses some of these key development issues for the broad
domain of DSP. The DSPCAD Framework achieves this by establishing a cross-
platform, domain-specific approach that enables designers to arrive at initial
implementations quickly for early feedback, and then systematically refine them
toward functionally correct and high-performance solutions. The keys to such an
approach include (a) lightweight design principles, which can be applied relatively
quickly and flexibly in the context of existing design processes and (b) software
techniques and tools that are grounded in data-flow models of computation.

36.1.1 Data Flow

Data-flow models have proven invaluable for DSP system design. Their graph-based
formalisms allow designers to describe applications in a natural yet semantically
rigorous way. As a result, data-flow languages are increasingly popular. Their
diversity, portability, and intuitive design have extended them to many application
areas and platform types within the broad DSP domain (e.g., see [3]). Modeling
applications through coarse-grain data-flow graphs is widespread in the DSP design
community, and a variety of data-flow models of computation have been developed
for DSP system design.

Common to each of these modeling paradigms is the representation of computa-
tional behavior in terms of data-flow graphs. In this context of DSP system design,
a data-flow graph is a directed graph G D .V;E/ in which each vertex (actor)
v 2 V represents a computational task, and each edge e 2 E represents First-In
First-Out (FIFO) communication of data values (tokens) from the actor src.e/ at the
source of e to the actor snk.e/ at the sink of e. Data-flow actors execute in terms of
discrete units of execution, called firings, which produce and consume tokens from
the incident edges. When data-flow graphs are used for behavioral modeling of DSP
systems, the graph represents application functionality with minimal details per-
taining to implementation. For example, how the FIFO communication associated
with each edge is mapped into and carried out through physical storage, and how
the execution of the actors is coordinated are implementation-related details that
are not part of the data-flow graph representation. Such orthogonalization between
behavioral aspects and key implementation aspects is an important feature of data-
flow-based DSP system design that can be leveraged in support of agile design
processes. For a detailed and rigorous treatment of general principles of data-flow
modeling for DSP system design, we refer the reader to [31], and for discussion on
the utility of orthogonalization in system-level design, we refer the reader to [28].

36.1.2 Data-Flow Modeling Variants

A distinguishing aspect of data-flow modeling for DSP system design is the
emphasis on characterizing the rates at which actors produce and consume tokens
from their incident edges, and the wide variety of different variants of data-flow

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1189

models of computation that has evolved, due in large part to different assumptions
and formulations involved in these data-flow rates (e.g., see [3, 49]). For example,
Synchronous Data Flow (SDF) is a form of data flow in which each actor consumes
a constant number of tokens from each input port and produces a constant number
of tokens on each output port on every firing [30]. SDF can be viewed as an
important common denominator that is supported in some fashion across most
data-flow-based DSP design tools, and a wide variety of techniques for analyzing
SDF graphs and deriving efficient implementations from them has been developed
(e.g., see [3]). However, the restriction to constant-valued data-flow rates limits
the applicability of the SDF model. This has led to the study of alternative data-
flow models that provide more flexibility in specifying inter-actor communication.
Examples of such models include Boolean Data Flow (BDF), Core Functional Data
Flow (CFDF), Cyclo-Static Data Flow (CSDF), Multi-Dimensional Synchronous
Data Flow (MDSDF), Parameterized Synchronous Data Flow (PSDF), Scenario-
Aware Data Flow (SADF), and Windowed Synchronous Data Flow (WSDF) [6, 7,
9, 27, 34, 43, 51].

36.1.3 DSPCAD Framework

The DSPCAD Framework is a CAD framework that helps designers to apply the
formalisms of the data-flow paradigm in DSP-oriented, HSCD processes. The DSP-
CAD Framework is specifically oriented toward flexible and efficient exploration
of interactions and optimizations across different signal processing application
areas (e.g., speech processing, specific wireless communication standards, cognitive
radio, and medical image processing), alternative data-flow models of computation
(e.g., Boolean Data Flow (BDF), Core Functional Data Flow (CFDF), etc., as
listed in Sect. 36.1.2), and alternative target platforms along with their associated
platform-based tools (e.g., field programmable gate arrays, graphics processing
units, programmable digital signal processors, and low-power microcontrollers).

The DSPCAD Framework is based on three complementary subsystems, which
respectively provide a domain-specific modeling environment for experimenting
with alternative, DSP-oriented data-flow modeling techniques; a lightweight, cross-
platform environment for implementing DSP applications as data-flow graphs;
and a flexible project development tool that facilitates DSP system integration
and validation using different kinds of platform-based development tools. These
subsystems of the DSPCAD Framework are called, respectively, the Data-flow In-
terchange Format (DIF), LIghtweight Data-flow Environment (LIDE) and DSPCAD
Integrative Command Line Environment (DICE). While DIF, LIDE, and DICE can
be used independently as stand-alone tools, they offer significant synergy when
applied together for HSCD. The DSPCAD Framework is defined by such integrated
use of these three complementary tools.

In the remainder of this section, we provide brief overviews of DIF, LIDE,
and DICE. We cover these tools in more detail in Sects. 36.3, 36.4, and 36.5,
respectively. Then in Sect. 36.6, we demonstrate their integrated use in the DSPCAD
Framework to develop a platform-specific data-flow framework for mapping SDF

1190 S. Lin et al.

graphs into Graphics Processing Unit (GPU) implementations. This case study is
presented to concretely demonstrate the DSPCAD Framework and its capability to
derive specialized data-flow tools based on specific data-flow modeling techniques
and target platforms. In Sect. 36.7, we summarize the developments of this chapter
and discuss ongoing directions of research in the DSPCAD Framework.

DIF – DIF provides application developers an approach to application specification
and modeling that is founded in data-flow semantics, accommodates a wide range
of specialized data-flow models of computation, and is tailored for DSP system
design [21, 22].

DIF is comprised of a custom language that provides an integrated set of
syntactic and semantic features that capture essential modeling information of
DSP applications without over-specification. DIF also includes a software package
for reading, analyzing, and optimizing applications described in the language.
Additionally, DIF supports mixed-grain graph topologies and hierarchical design
in specification of data-flow related, subsystem- and actor-specific information.
The data-flow semantic specification is based on data-flow modeling theory and
independent of any specialized design tool.

DIF serves as a natural design entry point for reasoning about a new application
or class of applications and for experimenting with alternative approaches to
modeling application functionality. LIDE and DICE complement these abstract
modeling features of DIF by supporting data-flow-based implementations on spe-
cific platforms.

LIDE – LIDE is a flexible, lightweight design environment that allows design-
ers to experiment with data-flow-based implementations directly on customized
programmable platforms. LIDE is “lightweight” in the sense that it is based on a
compact set of application programming interfaces that can be retargeted to different
platforms and integrated into different design processes relatively easily.

LIDE contains libraries of data-flow graph elements (“gems”), as described
in Sect. 36.1.1, and utilities that assist designers in modeling, simulating, and
implementing DSP systems using formal data-flow techniques. Here, by gems, we
mean actor and edge implementations. The libraries of data-flow gems (mostly actor
implementations) contained in LIDE provide useful building blocks that can be used
to construct signal processing applications and that can be used as examples that
designers can adapt to create their own, customized LIDE actors.

Schedules for LIDE-based implementations can be created directly by designers
using LIDE Application Programming Interfaces (APIs) or synthesized by DIF,
decreasing the time to initial implementation. Refinements based on initial imple-
mentations may occur at the data-flow level (e.g., using DIF) or at the schedule
implementation or gems level with LIDE, giving an application developer an
opportunity to efficiently refine designs in terms of performance or functionality.

DICE – DICE is a package of utilities that facilitates efficient management of
software projects. Key areas of emphasis in DICE are cross-platform operation,
support for model-based design methodologies, support for projects that integrate

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1191

heterogeneous programming languages, and support for applying and integrating
different kinds of design and testing methodologies. The package facilitates research
and teaching of methods for implementation, testing, evolution, and revision of
engineering software. The package is a foundation for developing experimental
research software for techniques and tools in the area of DSP systems. The package
is cross-platform, supporting Linux, Mac OS, Solaris, and Windows (equipped with
Cygwin) platforms. By using LIDE along with DICE, designers can efficiently
create and execute unit tests for user-designed actors.

36.2 Related Work

In this section, we review a number of representative data-flow-based tools that are
applied to modeling, simulation, and synthesis of DSP systems. The intent in this
review is not to be comprehensive but rather to provide a sampling of representative,
research-oriented data-flow-based tools that are relevant to DSP system design. We
also summarize distinguishing aspects of the DSPCAD Framework in relation to the
state of the art in data-flow research for DSP. For broader and deeper coverage of
different data-flow-based design tools and methodologies, we refer the reader to [3].

36.2.1 Representative Tools

Parallel and Real-time Embedded Executives Scheduling Method (PREESM) is an
Eclipse-based code generation tool for signal processing systems [37,41]. PREESM
provides architecture modeling and scheduling techniques for multi-core digital
signal processors. In PREESM, applications are modeled as a hierarchical extension
of SDF called an algorithm graph, while the targeted architectures are modeled
as architecture graphs, which contain interconnections of abstracted processor
cores, hardware coprocessors, and communication media. PREESM then takes the
algorithm graph, architecture graph, and application parameters and constraints
as its inputs to automatically generate software implementations on multi-core
programmable digital signal processors.

The multi-processor scheduler in PREESM is based on the List and Fast Schedul-
ing methods described by Kwok [29]. A randomized version of the List Scheduling
method is first applied to return the best solution observed during a designer-
determined amount of time. The obtained best solution can be applied directly for
software synthesis or be used to initialize the population of a genetic algorithm for
further optimization. The capabilities of PREESM are demonstrated, for example,
by the rapid prototyping of a state-of-the-art computer vision application in [38].

SystemC Models of Computation (SysteMoC) is a SystemC-based library that
facilitates data-flow-based HSCD for DSP systems. Actor design in SysteMoC
is based on a model that includes a set of functions and an actor Finite-State
Machine (FSM). The set of functions is partitioned into actions, which are used
for data processing and guards, which are used to check for enabled transitions in

1192 S. Lin et al.

the actor FSM. In [19], an MPEG-4 decoder application is provided as a case study
to demonstrate the capability of SysteMoC to support system synthesis as well as
design space exploration for HSCD processes. For more details about SysteMoC,
we refer the reader to �Chap. 3, “SysteMoC: A Data-Flow Programming Language
for Codesign”.

Cal Actor Language (CAL) is a data-flow programming language that can be
applied to develop hardware and software implementations [11]. Like designs in
SysteMoC, CAL programs incorporate an integration of data flow and state machine
semantics. Actor specification in CAL includes actions, guards, port patterns,
priorities, and transitions between actions. Thus, data-flow actor design in CAL is
similar to that in SysteMoC and (as we will see in Sect. 36.4) LIDE in terms of
an underlying, state-machine-integrated, data-flow model of computation. A major
advance provided by CAL has been through its use in a recent MPEG standard for
Reconfigurable Video Coding (RVC) [25].

36.2.2 Distinguishing Aspects of the DSPCAD Framework

Perhaps the most unique aspects of the DSPCAD Framework compared to other
data-flow tools such as PREESM, SysteMoC, and CAL are the (1) emphasis
on orthogonalization across three major dimensions in model-based DSP system
design – abstract data-flow models, actor implementation languages, and integration
with platform-specific design tools – and (2) support for a wide variety of different
data-flow modelings styles. Feature 1 here is achieved in the DSPCAD Framework
through the complementary objectives of DIF, LIDE, and DICE, respectively.

Support for Feature 2 in the DSPCAD Framework is threefold. First, DIF is
agnostic to any particular data-flow model of computation and is designed to
support a large and easily extensible variety of models. Second, LIDE is based on
a highly expressive form of data-flow CFDF, which is useful as a common model
for working with and integrating heterogeneous data-flow models of computation.
This is because various specialized forms of data flow can be formulated as
special cases of CFDF (e.g., see [44]). More details about CFDF are discussed
in Sect. 36.3.1. Third, LIDE contains flexible support for parameterizing data-flow
actors and manipulating actor and graph parameters dynamically. This capability is
useful for experimenting with various parametric data-flow concepts, such as PSDF,
and parameterized and interfaced data-flow [9] meta model, and the hierarchical
reconfiguration methodologies developed in the Ptolemy project [35].

The DSPCAD Framework can be used in complementary ways with other DSP
design environments, such as those described above. The modularity and specialized
areas of emphasis within DIF, LIDE, and DICE make each of these component tools
useful for integration with other design environments. For example, DIF has been
employed as an intermediate representation to analyze CAL programs and derive
statically schedulable regions from within dynamic data-flow specifications [16],
and, in the PREESM project, the CFDF model of computation employed by

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1193

LIDE has been used to represent dynamic data-flow behavior for applying novel
architectural models during design space exploration [39].

Although the DSPCAD Framework is not limited to any specific domain of signal
processing applications, the components of the framework have been applied and
demonstrated most extensively to date in the areas of wireless communications,
wireless sensor networks, and embedded computer vision. For elaboration on HSCD
topics in these latter two domains, we refer the reader to �Chap. 38, “Wireless
Sensor Networks” and �Chap. 40, “Embedded Computer Vision” respectively.

36.3 Data-Flow Interchange Format Overview

DIF provides a model-based design environment for representing, analyzing, simu-
lating, and synthesizing DSP systems. DIF focuses on data-flow graph modeling and
analysis methods where the details of actors and edges of a graph are abstracted in
the form of arbitrary actor and edge attributes. In particular, implementation details
of actors and edges are not specified as part of DIF representations.

The DIF environment is composed of the DIF language and the DIF package. The
DIF language is a design language for specifying mixed-grain data-flow models for
DSP systems. The DIF package, a software package that is built around the DIF
language, contains a large variety of data-flow graph analysis and transformation
tools for DSP application models that are represented in DIF. More specifically,
the DIF package provides tools for (1) representing DSP applications using various
types of data-flow models, (2) analyzing and optimizing system designs using data-
flow models, and (3) synthesizing software from data-flow graphs. The software
synthesis capabilities of DIF assume that actor implementations are developed
separately (outside of the DIF environment) and linked to their associated actor
models as synthesis-related attributes, such as the names of the files that contain the
actor implementation code.

Unlike most data-flow-based design environments, which are based on some
forms of static data-flow model or other specialized forms of data flow, DIF is
designed specifically to facilitate formal representation, interchange, and analysis
of different kinds of data-flow models and to support an extensible family of both
static and dynamic data-flow models. Models supported in the current version of
DIF include SDF [30], CSDF [6], MDSDF [34], BDF [7], PSDF [2], and CFDF.
DIF also provides various analysis, simulation, and synthesis tools for CFDF
models and its specialized forms. As motivated in Sect. 36.2, CFDF is useful as
a common model for working with and integrating heterogeneous data-flow models
of computation [44], which makes it especially useful for the purposes of the
DIF environment. Examples of data-flow tools within the DIF package are tools
for CFDF functional simulation [43], SDF software synthesis for programmable
digital signal processors [23], and quasi-static scheduling from dynamic data-flow
specifications [16, 42]. Due to the important role of CFDF in DIF, we introduce
background on CFDF in the following section.

1194 S. Lin et al.

36.3.1 Core Functional Data Flow

CFDF is a dynamic data-flow model of computation in which the behavior of an
actor A is decomposed into a set of modes modes.A/. Each firing of A is associated
with a specific mode in modes.A/. For each mode m 2 modes.A/, the data-
flow rates (numbers of tokens produced or consumed) for all actor ports are fixed.
However, these rates can vary across different modes, which allows for the modeling
of dynamic data-flow behavior.

When a CFDF actor A fires in a particular mode m, it produces and consumes
data from its incident ports based on the constant production and consumption rates
associated with m, and it also determines the next mode z 2 modes.A/ for the actor,
which is the mode that will be active during the next firing of A. The next mode
may be determined statically as a property of each mode or may be data dependent.
Combinations of data-dependent next mode determination and heterogeneous data-
flow rates across different modes can be used to specify actors that have different
kinds of dynamic data-flow characteristics.

A CFDF actor has associated with it two computational functions, called the
enable and invoke functions of the actor. These functions provide standard interfaces
for working with the actor in the context of a schedule for the enclosing data-flow
graph. The enable function for a given actorA returns a Boolean value that indicates
whether or not there is sufficient data on the input edges and sufficient empty space
on the output edges to accommodate the firing of A in its next mode.

The invoke function of an actor, on the other hand, executes the actor according
to its designated next mode and does so without any use of blocking reads or
writes on actor ports – that is, data is consumed and produced without checking for
availability of data or empty space, respectively. It is assumed that these checks will
be performed (a) either statically, dynamically (using the enable method), or using a
combination of static and dynamic techniques and (b) before the associated firings
are dispatched with the invoke function. Thus, overhead or reduced predictability
due to such checking need not be incurred during execution of the invoke function.
This decomposition of actor functionality into distinct enable and invoke functions
can be viewed as a formal separation of concerns between the checking of an actor’s
fireability conditions and execution of the core processing associated with a firing.

Various existing data-flow modeling techniques, including SDF, CSDF, and
BDF, can be formulated as special cases of CFDF [44]. For further details on CFDF
semantics, we refer the reader to [43, 44].

36.3.2 Reconfigurable Modulator Example

Here, we present a practical application as an example of CFDF modeling.
Figure 36.1a shows a dynamically reconfigurable modulator application (RMOD)
that supports multiple source rates and multiple Phase Shift Keying (PSK) and
Quadrature Amplitude Modulation (QAM) schemes. Actor C reads two run-time

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1195

a

b c

Fig. 36.1 CFDF modeling of a reconfigurable modulator (RMOD) application supporting multi-
ple source data rate and modulation schemes. (a) CFDF model of the RMOD application (b) Mode
transitions of actor S . (c) Mode transitions of actor T

S1

S2

ModeMode Edge:T→FEdge:S→TEdge:S→T Edge:C→TEdge:C→S
INITINIT

BPSK
QPSK

16QAM

a b

0
0

0

0

1

1
1

–1
–1

–1

–2

–4

00

0

0 2

1

Fig. 36.2 Data-flow tables. (a) Table for actor S . (b) Table for actor T

parameters, r and m, corresponding to the source data rate and modulation scheme,
respectively, and sends these parameter values to the actors S and T . S and T in
turn are two CFDF actors that each have multiple modes and data-dependent mode
transitions, as illustrated in Figs. 36.1b and c, respectively.

Both S and T are initialized to begin execution in their respective INIT modes.
In its INIT mode, S reads the source data rate r and switches to either S1 or S2
depending on the value of r . Similarly, in its INIT mode, T reads the modulation
scheme index m and switches to one of the 3 modes, Binary PSK (BPSK),
Quadrature PSK (QPSK), or 16-QAM, depending on m. S and T have different
production and consumption rates in different modes.

Figure 36.2 shows the data-flow tables for actors S and T . A data-flow table Z
for a CFDF actor A specifies the data-flow behavior for the available modes in the
actor. Each entry ZŒ�; p� corresponds to a mode � 2 modes.A/ and input or output
port p of A. If p is an output port of A, then ZŒ�; p� gives the number of tokens
produced on the edge connected to p during a firing of A in mode �. Similarly, if

1196 S. Lin et al.

p is an input port, then ZŒ�; p� D 	c, where c is the number of tokens consumed
during mode � from the edge connected to p.

In the column headings for the data-flow tables shown in Fig. 36.2, each port is
represented by the edge that is connected to the port. If m D 1, then T executes in
the BPSK mode and consumes only 1 token on its input edge. On the other hand, if
m D 4, then T executes in the 16-QAM mode and consumes 4 tokens on its input
edge. After firing in their respective BPSK or 16-QAM modes, S and T switch
back to their INIT modes and await new values of r and m for the next round of
computation. The remaining actors are SDF actors that consume/produce a single
token on each of their input/output edges every time they fire.

36.3.3 Data-Flow Graph Specification in the DIF Language

As discussed above, the DIF language is a design language for specifying mixed-
grain data-flow models in terms of a variety of different forms of data flow [22].
The DIF language provides a C-like, textual syntax for human-readable description
of data-flow structure. An XML-based version of the DIF language, called DIFML,
is also provided for structured exchange of data-flow graph information between
different tools and formats [17]. DIF is based on a block-structured syntax and
allows specifications to be modularized across multiple files through integration
with the C preprocessor. As an example, a DIF specification of the RMOD
application is shown in Listing 1.

Listing 1 DIF Language specification of the RMOD application

CFDF RMOD {
topology {
nodes = C, S, T, F, M, P, X, K;
edges = e1(C, S), e2(C, T), e3(S, T), e4(T, F),

e5(F, M), e6(F, P), e7(M, X), e8(P, X), e9(X, K);
}
actor C {
name = "mod_ctrl";
out_r = e1; out_m = e2; /* Assign edges to ports */

}
actor S {
name = "mod_src";
in_ctrl = e1; out_data = e3;
mode_count = 3;

}
actor T {
name = "mod_lut";
in_ctrl = e1; in_bits = e3; out_symbol = e4;
mode_count = 4;

}
/* Other actor definitions */
/* ... */

}

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1197

In this example, the RMOD application is described using CFDF semantics,
which is represented by the cfdf keyword in DIF. The topology block defines
the actors (nodes) and edges of the data-flow graph and associates a unique identifier
with each actor and each edge. Because data-flow graphs are directed graphs, each
edge is represented as an ordered pair .u; v/, where u is the source actor and v
is the sink actor. Each actor can be associated with an optional actor block,
where attributes associated with the actor are defined. The attributes can provide
arbitrary information associated with the actor using a combination of built-in and
user-defined attribute specifiers. In the example of Listing 1, the actor block
specifies the following attributes: (1) the name of the implementation associated
with the actor (to help differentiate between alternative implementations for the
same abstract actor model), (2) input/output port connections with the incident
edges, and (3) the number of CFDF modes for the actor.

In addition to the language features illustrated in Listing 1, DIF also supports
a variety of other features for specifying information pertaining to data-flow-based
application models. For example, DIF supports hierarchical specification, where an
actor in one graph can be linked with a “nested” subgraph to promote top-down
decomposition of complex graphical models and to help support different forms of
semantic hierarchy, such as those involved in parameterized data-flow semantics [2].
Another feature in DIF is support for topological patterns, which enable compact,
parameterized descriptions of various kinds of graphical patterns (e.g., chain, ring,
and butterfly patterns) for instantiating and connecting actors and edges [46].

36.3.4 Model-Based Design and Integration Using DIF

The DIF package provides an integrated set of models and methods, illustrated
in Fig. 36.3, for developing customized data-flow-model-based design flows tar-
geted to different areas of signal processing, and different kinds of target platforms.
As opposed to being developed primarily as a stand-alone data-flow tool, DIF is
designed for flexibility in integrating established or novel data-flow capabilities into
arbitrary model-based design environments for DSP. For example, Zaki presents
a DIF-based tool for mapping Software Defined Radio (SDR) applications into
GPU implementations, and integrating the derived mapping solutions into GNU
Radio, which is a widely used environment for SDR system design [52]. As another
example, DIF has been integrated to provide data-flow analysis and transformation
capabilities for the popular data-flow language called CAL, which was discussed
previously in Sect. 36.2.1. For details on this application of DIF to CAL, we refer
the reader to [16,17], while readers can find details about the CAL language in [10].

The DIF package consists of three major parts: the DIF representation, DIF-based
graph analysis and transformation techniques, and tools for simulation and software
synthesis.
DIF representation. The DIF package provides an extensible set of data structures
that represent data-flow-based application models, as they are specified in the DIF
language and as they are transformed into alternative models for the purposes of

1198 S. Lin et al.

Fig. 36.3 Overview of the DIF package

analysis, optimization, or software synthesis. These graphical data structures are
collectively referred to as the DIF intermediate representation or “DIF represen-
tation” for short. The initial DIF representation (before any transformations are
applied) for a given DIF language specification is constructed by the DIF front-
end tools, which are centered on a Java-based parser. This parser is developed using
the SableCC compiler framework [13].
Analysis and Transformation Techniques. The DIF package provides implemen-
tations of a large set of methods for data-flow model analysis and transformation,
including methods for scheduling, and buffer management. These methods operate
on the graphical data structures within the DIF representation. The analysis and
transformation techniques provided in DIF are useful in many aspects of data-flow-
based design and implementation.
Simulation and Software Synthesis. DIF presently includes a number of tools for
simulation and software synthesis from data-flow models. Functional DIF (FDIF)
simulates CFDF-based models where actor functionality is programmed in terms of
CFDF semantics using Java [43] along with CFDF-specific APIs. FDIF is designed
especially to help designers to efficiently prototype and validate alternative kinds of
static, dynamic, and quasi-static scheduling strategies. The DIF-to-C tool generates
C code that is optimized for efficient execution on programmable digital signal
processors [23]. The software synthesis capabilities in DIF-to-C are integrated
with a variety of analysis and transformation techniques in DIF so that designers

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1199

can apply different combinations of transformations to explore trade-offs among
data memory requirements, code size, and execution speed. DIF-GPU is a newly
developed software synthesis tool that is targeted to heterogeneous CPU–GPU
platforms. Currently, DIF-GPU generates multi-threaded Compute Unified Device
Architecture (CUDA) application code that can utilize both Central Processing
Units (CPUs) and GPUs for implementation of high-performance DSP systems.
Further details on DIF-GPU are discussed in Sect. 36.6.

36.4 Lightweight Data-Flow Environment

LIDE facilitates design and implementation of DSP actors and systems using a
structured, CFDF-based data-flow approach that can be integrated with a wide
variety of platform-oriented languages, such as C, CUDA, OpenCL, Verilog, and
VHDL [47, 48]. LIDE is centered on a compact set of abstract APIs for developing
data-flow actors and edges. These APIs are (1) defined in terms of fundamental
data-flow principles, (2) independent of any specific programming language, and
(3) readily retargetable across a wide variety of specific languages for DSP
implementation, including the platform-oriented languages listed above.

LIDE is designed with a primary objective of allowing DSP system designers
to apply and experiment with data-flow techniques relatively easily in the context
of their existing design processes, language preferences, and target platforms. This
objective is supported by the compact collection of retargetable, language-agnostic
APIs that LIDE is based on. LIDE also provides collections of pre-designed data-
flow gems, as described in Sect. 36.1.3.

When LIDE is integrated with a specific programming language XYZ for
implementing gems, we refer to the resulting integrated design tool as LIDE-XYZ
or in some cases as LIDE-X if X is used as an abbreviation for XYZ. Existing
subsystems within LIDE include LIDE-C, LIDE-CUDA, LIDE-V, and LIDE-OCL,
where the latter two represent the integration of LIDE with the Verilog Hardware
Description Language (HDL) and OpenCL, respectively.

36.4.1 Actor Design in LIDE

As described previously, actor implementation in LIDE is based on the CFDF model
of computation. This choice of CFDF as the modeling foundation for LIDE is
motivated by the high expressive power of CFDF, and its utility in working with
heterogeneous forms of data flow [44].

Actor design in LIDE includes four basic interface functions, which are referred
to as the construct, enable, invoke, and terminate functions of an actor. The construct
function instantiates an actor and performs pre-execution initialization of the actor,
such as initializing values of actor parameters and allocating storage that is related
to the state of the actor. Conversely, the terminate function performs any operations
that are required for “closing out” the actor after the enclosing graph has finished

1200 S. Lin et al.

executing. Such operations include freeing memory that has been allocated in the
corresponding construct function.

The enable and invoke functions provide direct interfaces for key concepts of
CFDF semantics, which were discussed in Sect. 36.3.1. As one would guess, the
enable and invoke functions in LIDE are defined to provide implementations for
the enable and invoke functions in CFDF semantics. We employ a minor abuse of
terminology here, where this pair of functions is defined with the same names in
both LIDE (a design tool) and CFDF (a model of computation). Where there may be
confusion, one may qualify a reference to the function with an appropriate reference
to the tool or model (e.g., “the LIDE enable function”).

The enable and invoke functions in LIDE provide flexible interfaces for imple-
menting arbitrary schedulers, including static, dynamic, and quasi-static schedulers,
for executing data-flow graph implementations. The enable function is implemented
by the actor programmer to check whether or not the actor has sufficient tokens on
its input ports and enough empty space on its output ports to support a single firing in
next CFDF mode of execution that is currently associated with the actor. Similarly,
the invoke function is implemented to execute a single firing of the actor according
to its next mode. The invoke function should also update the next mode of the actor,
which in turn determines the conditions that will be checked by the enable function
if it is called prior to the next actor firing.

When the invoke function is called, it is assumed that sufficient input tokens
and output space are available (since there is a separate API function dedicated
to checking these conditions). Thus, the actor programmer should not implement
checks for these conditions within the invoke function. These conditions should be
satisfied – as part of the design rules of any tool that implements CFDF semantics –
before calling the invoke function to execute a given actor firing.

We emphasize that in a given scheduler for an enclosing data-flow graph, it is not
always necessary to call the enable function of an actor before calling the invoke
function. In particular, such calls to the enable function can be bypassed at run
time if the corresponding conditions are guaranteed through other forms of analysis,
including any combination of static, dynamic, and hybrid static/dynamic analysis.
For example, when implementing the scheduler for a LIDE-based data-flow graph
that consists only of SDF or CSDF actors, the use of the enable function can be
avoided entirely if a static schedule is employed [6, 30]. This allows designers in
LIDE to more effectively utilize the large collection of available static scheduling
techniques for SDF and CSDF representations (e.g., see [3, 8, 12, 14, 36, 40, 45]).

For more details on actor implementation in LIDE, we refer the reader to [48].

36.4.2 Parameterized Sets of Modes

Actor design in LIDE naturally supports the concept of Parameterized Sets of
Modes (PSM), which is a modeling enhancement to CFDF that enables designers to
more concisely specify and work with actor behavior that involves groups of related
modes [33].

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1201

For example, consider an actor A that has two input ports in1 and in2, and a
single output port out. The actor starts execution in a mode called read_length,
which consumes a single, positive integer-valued token from in1, and stores this
consumed value in a state variable N . The value of the input token consumed from
in1 is restricted to fall in the range f1; 2; : : : ;M g, where M is a parameter of A.
In the next firing, the actor consumes a vector spanning N input tokens from in2,
computes the maximum of these N values, outputs the result (as a single token) on
out, and determines its next mode to be the read_length mode. Thus, intuitively,
the actor executes through alternate firings where (a) a vector length is read and
used to determine the consumption rate of a subsequent mode, and then in this
subsequent mode, (b) a vector is read and processed to produce a single output
token.

Using standard CFDF notation, we can represent this as an actor that has .MC1/
distinct modes, i.e., as M different “vector processing modes” in addition to the
read_length mode. However, such a representation can become unwieldy, especially
if M is large. A PSM is a level of abstraction that allows us to group together a
collection of related modes with one or more parameters that are used to select a
unique mode from the collection at run time. These parameters can be determined
statically or dynamically, allowing for significant flexibility in how PSMs are
applied to actor design.

In this simple vector processing example, the M vector processing modes can
be grouped together into a single PSM vect_proc, and with an associated parameter
vect_len whose value corresponds to the value of the actor state variable N .

Technically, an actor mode in LIDE corresponds to a PSM rather than an
individual CFDF actor mode. A LIDE actor can produce or consume different
numbers of tokens in the same mode as long as the data-flow rates are all uniquely
determined by the LIDE actor mode PSM and the values of the actor parameters that
are associated with that PSM. Such unique determination of data-flow rates ensures
that the underlying actor behavior corresponds to CFDF semantics, while allowing
the code to be developed and the actor functionality to be reasoned about in terms
of the higher-level PSM abstraction.

For a more formal and thorough development of PSM-based modeling, we refer
the reader to [33].

36.4.3 Implementation in LIDE

In this section, we discuss details of design and implementation of data-flow
components in LIDE using an example based on LIDE-C. In LIDE-C, data-flow
gems are implemented in the C language. A collection of gems and utilities is
provided as part of LIDE-C. These can be linked through various LIDE-C libraries
into data-flow graph implementations, and they can also serve as useful templates
or examples to help users develop new gems for their applications.

More specifically, LIDE-C contains a set of libraries called gems, and another
library called tools. Basic actor and edge FIFO implementations are provided in

1202 S. Lin et al.

gems, while basic utilities, including a simple scheduler, are accessible in tools.
The scheduler provided in LIDE-C is a basic form of CFDF scheduler, called a
canonical scheduler [44]. This form of scheduler can be applied to arbitrary data-
flow graphs in LIDE-C. Because it is general and easy to use, it is useful for
functional validation and rapid prototyping. However, it is relatively inefficient, as
it is designed for simplicity and generality, rather than for efficiency.

More efficient schedulers can be implemented by LIDE-C designers using the
core LIDE APIs, including the enable and invoke functions for the actors. Each
LIDE-C actor, as a concrete form of LIDE actor, must have implementations of
these functions. LIDE-C schedulers can also be generated automatically through
software synthesis tools.

36.4.3.1 Data-Flow Graph Components
In LIDE-C, gems (actors and FIFOs) are implemented as Abstract Data Types
(ADTs) in C. Such ADT-based implementation provides a C-based, object-oriented
design approach for actors and FIFOs in LIDE-C. As we discussed in Sect. 36.4.1,
each LIDE actor has four standard interface functions. The developer of an actor in
LIDE-C must provide implementations of these functions as methods – referred to
as the new, enable, invoke, and terminate methods – of the ADT for the
actor.

An analogous process is followed for FIFO design in LIDE-C and in related
targets of LIDE, including LIDE-CUDA and LIDE-OCL. In particular, users can
define any number of different FIFO types (e.g., corresponding to different forms
of physical implementation, such as mappings to different kinds of memories),
where each FIFO type is designed as an ADT. For example, in LIDE-OCL, which
is currently developed for hybrid CPU-GPU implementation platforms, two FIFO
ADTs are available – one for implementation of the FIFO on a CPU and another for
implementation on a GPU.

The abstract (language-agnostic) LIDE API contains a set of required interface
functions for FIFOs that implement edges in LIDE programs. In LIDE-C, FIFOs
are implemented as ADTs where the required interface functions are implemented
as methods of these ADTs. Required interface functions for FIFOs in LIDE include
functions for construction and termination (analogous to the construct and terminate
functions for actors), reading (consuming) tokens, writing (producing) tokens,
querying the number of tokens that currently reside in a FIFO, and querying the
capacity of a FIFO. The capacity of a FIFO in LIDE is specified through an
argument to the construct function of the FIFO.

Listing 2 shows the function prototypes for the new, enable, invoke, and
terminatemethods in LIDE-C. In addition to these interface functions, designers
can add auxiliary functions in their actor implementations. For working with actor
parameters, components in the LIDE-C libraries employ a common convention of
using corresponding set and get methods associated with each parameter (e.g.,
set_tap_count, get_tap_count).

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1203

Listing 2 The format for function prototypes of the new, enable, invoke, and terminate methods
of a LIDE-C actor

lide_c_<actor_name>_context_type *
lide_c_<actor_name>_new([FIFO pointer list],
[parameter list])

boolean lide_c_<actor_name>_enable(
lide_c_<actor_name>_context_type *context)

void lide_c_<actor_name>_invoke(
lide_c_<actor_name>_context_type *context)

void lide_c_<actor_name>_terminate(
lide_c_<actor_name>_context_type *context)

Each function prototype shown in Listing 2 involves an argument that points to a
data structure that is referred to as the actor context (or simply “context”). Each actor
A in a LIDE-C data-flow graph implementation has an associated context, which
encapsulates pointers to the FIFOs that are associated with the edges incident to A;
function pointers to the enable and invoke methods of A; an integer variable
that stores the index of the current CFDF mode or PSM of A; and parameters and
state variables of A.

For purposes of data-flow graph analysis or transformation (e.g., as provided by
DIF), a LIDE actor that employs one or more state variables can be represented by
attaching a self-loop edge to the graph vertex associated with the actor. Here, by a
self-loop edge, we mean an edge e for which src.e/ D snk.e/. In general, one can
also use such a self-loop edge to represent inter-firing dependencies for an actor that
can transition across multiple CFDF modes at run time (here, the mode variable acts
as an implicit state variable). On the other hand, if the mode is uniquely determined
at graph configuration time and does not change dynamically, then this “CFDF-
induced” self-loop edge can be omitted. Such an actor can, for example, be executed
in a data parallel style (multiple firings of the actor executed simultaneously) if there
are no state-induced self-loop edges or other kinds of cyclic paths in the data-flow
graph that contain the actor.

36.4.3.2 Actor Implementation Example
As a concrete example of applying LIDE-C, we introduce in this section a LIDE-
C implementation of a modulation selection actor. Recall that such an actor is
employed as actor T in the RMOD application that was introduced in Sect. 36.3.2.
This actor T is an example of CFDF semantics augmented with the concept of
PSMs. Recall that the data-flow graph and data-flow tables for this actor are shown
in Figs. 36.1 and 36.2.

Listing 3 and Listing 4 illustrate key code segments within the enable and
invoke methods, respectively, for actor T in our LIDE-C implementation of
the actor. These code segments involve carrying out the core computations for
determining fireability and firing the actor, respectively, based on the actor mode

1204 S. Lin et al.

or PSM that is active when the corresponding method is called. For conciseness,
each of these two listings shows in detail the functionality corresponding to a single
mode, along with the overall structure for selecting an appropriate action based on
the current mode (using a switch statement in each case). Lines marked with
“......” represent code that is omitted from the illustrations for conciseness.
Interface functions whose names start with lide_c_fifo are methods of a basic
FIFO ADT that is available as part of LIDE-C.

Listing 3 Code within the enable method for actor T in the RMOD application

/* context: structure that stores actor information. E.g.,
context->mode stores the actor’s current mode.

*/
switch (context->mode) {

case LIDE_C_RMOD_T_MODE_INIT:
result = (lide_c_fifo_population(context->fifo_ctrl_input)

>= 1);
break;

case LIDE_C_RMOD_T_MODE_BPSK:
result =
break;

case LIDE_C_RMOD_T_MODE_QPSK:
result =
break;

case LIDE_C_RMOD_T_MODE_QAM16:
result =
break;

default:
result = FALSE;
break;

}
return results;

Listing 4 Code within the invoke method for actor T in the RMOD application

switch (context->mode) {
case LIDE_C_RMOD_T_MODE_INIT:

/* scheme: variable indicating BPSK, QPSK or QAM16 */
lide_c_fifo_read(context->fifo_ctrl_input, &scheme);
context->mode = scheme;
/* nbits: number of bits to process for the given scheme

rb: remaining bits before switching scheme */
context->rb = context->nbits;
break;

case LIDE_C_RMOD_T_MODE_BPSK:
lide_c_fifo_read_block(context->fifo_data_input,

&bits, 1);
code.x = context->bpsk_table[bits].x;
code.y = context->bpsk_table[bits].y;
lide_c_fifo_write(context->fifo_data_output, &code);
context->rb --;

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1205

if (context->rb > 0) {
context->mode = LIDE_C_RMOD_T_MODE_BPSK;

} else {
context->mode = LIDE_C_RMOD_T_MODE_INIT;

}
break;

case LIDE_C_RMOD_T_MODE_QPSK:
......
break;

case LIDE_C_RMOD_T_MODE_QAM16:
......
break;

default:
context->mode = LIDE_C_RMOD_T_MODE_INACTIVE;
break;

}

36.5 DSPCAD Integrative Command Line Environment

In this section, we describe the DSPCAD Integrative Command Line Environment
(DICE), which is a Bash-based software package for cross-platform and model-
based design, implementation, and testing of signal processing systems [5]. The
DICE package is developed as part of the DSPCAD Framework to facilitate
exploratory research, design, implementation, and testing of digital hardware and
embedded software for DSP. DICE has also been used extensively in teaching of
cross-platform design and testing methods for embedded systems (e.g., see [4]).
DICE has been employed to develop research prototypes of signal processing
applications involving a wide variety of platforms, including desktop multi-core
processors, Field-Programmable Gate Arrays (FPGAs), GPUs, hybrid CPU-GPU
platforms, low-power microcontrollers, programmable digital signal processors, and
multi-core smartphone platforms. An overview of DICE is given in [5], and an
early case study demonstrating the application of DICE to DSP system design is
presented in [26]. In the remainder of this section, we highlight some of the most
complementary features of DICE in relation to LIDE and DIF.

Because DICE is based on Bash, it has various advantages that complement
the advantages of platform-based or language-specific integrated development
environments (IDEs). For example, DICE can be deployed easily on diverse
operating systems, including Android, Linux, Mac, Solaris, and Windows (with
Cygwin). The primary requirement is that the host environment should have a Bash
command line environment installed. DICE is also agnostic to any particular actor
implementation language or target embedded platform. This feature of DICE helps
to provide a consistent development environment for designers, which is particularly
useful when developers are experimenting with diverse hardware platforms and
actor implementation languages.

1206 S. Lin et al.

36.5.1 Convenience Utilities

DICE includes a collection of simple utilities that facilitate efficient directory
navigation through directory hierarchies. This capability is useful for working
with complex, cross-platform design projects that involve many layers of design
decomposition, diverse programming languages, or alternative design versions for
different subsystems. These directory navigation operations help designers to move
flexibly and quickly across arbitrary directories without having to traverse through
multiple windows, execute sequences of multiple cd commands, or type long
directory paths. These operations also provide a common interface for accelerating
fundamental operations that is easy to learn and can help to quickly orient new
members in project teams.

DICE also provides a collection of utilities, called the Moving Things Around
(MTA) utilities, for easily moving or copying files and directories across different
directories. Such moving and copying is common when working with design
projects (e.g., to work with code or documentation templates that need to be copied
and then adapted) and benefit from having a simple, streamlined set of utilities.
The MTA utilities in DICE are especially useful when used in conjunction with the
directory navigation utilities, described above.

Some of the key directory navigation utilities and MTA utilities in DICE are
summarized briefly in Table 36.1.

The items in Table 36.1 that are enclosed in angle brackets (<...>) represent
placeholders for command arguments. The abbreviation-based names of the first
three utilities listed in Table 36.1 are derived as follows: dlk stands for (create)
Directory LinK, g stands for Go, and rlk stands for Remove LinK. The other
two utilities listed in Table 36.1 use a naming convention that applies to many core
utilities in DICE where the prefix “dx” is used at the beginning of the utility name.
The name dxco stands for (CO)py (a file or directory), and dxparl stands for
paste and remove the last file or directory transferred.

Table 36.1 Selected navigation utilities and MTA utilities in DICE

Utility Description

dlk <label> Associate the specified label with the Current Working Directory
(CWD)

g <label> Change directory to the directory that is associated with the specified
label

rlk <label> Remove the specified label from the set of available directory navigation
labels

dxco <arg> Copy the specified file or directory to the DICE user clipboard

dxparl Paste (copy) into the CWD the last (most recent) file or directory that
has been transferred to the to the DICE user clipboard, and remove this
file or directory from the clipboard

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1207

36.5.2 Testing Support

One of the most useful sets of features in DICE is provided by its lightweight and
language-agnostic unit testing framework. This framework can be applied flexibly
across arbitrary actor implementation languages (C, CUDA, C++, Java, Verilog,
VHDL, etc.) and requires minimal learning of new syntax or specialized lan-
guages [26]. The language-agnostic orientation of DICE is useful in heterogeneous
development environments, including codesign environments, so that a common
framework can be used to test across all of the relevant platforms.

In a DICE-based test suite, each specific test for an HDL or software imple-
mentation unit is implemented in a separate directory, called an Individual Test
Subdirectory (ITS), which is organized in a certain way according to the DICE-
based conventions for test implementation. To be processed by the DICE facilities
for automated test suite execution, the name of an ITS must begin with test (e.g.,
test01, test02, test-A, test-B, test_square_matrix). To exclude a
test from test suite evaluation, one can simply change its name so that it does not
begin with test.

36.5.2.1 Required Components of an ITS
Here, we describe the required components of an ITS. Except for the set of input
files for the test, each of these components takes the form of a separate file. The
set of input files may be empty (no files) or may contain any number of files with
any names that do not conflict with the names of the required ITS files, as listed
below:

• A file called test-desc.txt that provides a brief explanation of what is being
tested by the ITS, that is, what is distinguishing about this test compared to the
other tests in the test suite.

• An executable file (e.g., some sort of script) called makeme that performs
all necessary compilation steps (e.g., compilation of driver programs) that are
needed for the ITS. Note that the compilation steps performed in the makeme
file for a test typically do not include compilation of the source code that is being
tested; project source code is assumed to be compiled separately before a test
suite associated with the project is exercised.

• An executable file called runme that runs the test and directs all normal output
to standard output, and all error output to standard error.

• Any input files that are needed for the test.
• A file called correct-output.txt that contains the standard output text

that should result from the test. If no output is expected on standard output, then
correct-output.txt should exist in the ITS as an empty file.

• A file called expected-errors.txt that contains the standard error text
that should result from the test. This placeholder provides a mechanism to test
the correct operation of error detection and error reporting functionality. If no

1208 S. Lin et al.

output is expected on standard error, then expected-errors.txt should
exist in the ITS as an empty file.

The organization of an ITS is structured in this same, language-independent,
form – based on the required items listed above – regardless of how many and what
kinds of design languages are involved in a specific test. This provides many benefits
in DSP codesign, where several different languages and back-end (platform-based)
tools may be employed or experimented with in a given system design. For example,
the DICE test suite organization allows a designer or testing specialist to switch
between languages or project subsystems without being distracted by language-
specific peculiarities of the basic structure of tests and their operation.

As one might expect from this description of required files in an ITS, a DICE-
based test is evaluated by automatically comparing the standard output and standard
error text that is generated by runme to the corresponding correct-output.
txt and expected-errors.txt files.

Note that because of the configurable runme interface, it is not necessary for all
of the output produced by the project code under test to be treated directly as test
output. Instead, the runme script can serve as a wrapper to filter or reorganize the
output generated by a test in a form that the user finds most efficient or convenient
for test management. This provides great flexibility in how test output is defined and
managed.

36.5.2.2 Relationship to Other Testing Frameworks and Methodologies
The DICE features for unit testing are largely complementary to the wide variety
of language-specific testing environments (e.g., see [18, 24, 50]). More than just
syntactic customizations, such frameworks are often tied to fundamental constructs
of the language. DICE can be used to structure, organize, and execute in a uniform
manner unit tests that employ language-specific and other forms of specialized test-
ing frameworks. For example, specialized testing libraries for Java in a simulation
model of a design can be employed by linking the libraries as part of the makeme
scripts in the ITSs of that simulation model. When a designer who works primarily
on hardware implementation for the same project examines such a “simulation ITS,”
he or she can immediately understand the overall organization of the associated unit
test and execute the ITS without needing to understand the specialized, simulation-
specific testing features that are employed.

DICE is also not specific to any specific methodology for creating or auto-
matically generating unit tests. A wide variety of concepts and methods have
been developed for test construction and generation (e.g., see [20]). By providing
a simple and flexible environment for implementing, executing, and managing
tests, the DICE unit testing framework can be used to prototype different kinds
of test development methodologies and apply them in arbitrary implementation
contexts.

For further details on the process of test implementation in DICE, and the
relationship of DICE to other testing frameworks, we refer the reader to [4, 5, 26].

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1209

36.6 DSPCAD Framework Example: DIF-GPU

In this section, we demonstrate the DSPCAD Framework by describing its use to
develop DIF-GPU, a software synthesis tool for mapping SDF graphs onto hybrid
CPU-GPU platforms. Using DIF-GPU, a DSP designer can specify a signal-flow
graph as an SDF graph in the DIF language; implement the individual actors of
the graph in LIDE-CUDA; automatically schedule and generate interacting CPU
and GPU code for the graph; and validate the generated implementation using the
cross-platform testing capabilities of DICE.

We note that the case study presented in this section is not intended to emphasize
details of a specific data-flow tool for GPU implementation but rather to demonstrate
how the complementary resources and capabilities in the DSPCAD Framework can
be applied to efficiently prototype such a tool. For a detailed presentation of the
DIF-GPU tool, we refer the reader to [32].

36.6.1 DIF-GPU Overview

DIF-GPU targets heterogeneous CPU-GPU platforms in which multi-core CPUs
and GPUs operate concurrently to provide high-performance signal processing
capability. Modern GPUs can contain hundreds or thousands of single instruction
multiple data (SIMD) multi-processor cores to process large amounts of data in
parallel. Such an architecture enables GPUs to obtain significant performance gain
over CPUs on data parallel tasks. Cooperation between a multi-core CPU and GPU
allows various types of parallelism to be exploited for performance enhancement,
including pipeline, data, and task parallelism.

DIF-GPU targets CPU-GPU platforms that are modeled as host-device architec-
tures where the CPU is referred to as the “host” and the GPU as the “device,” and
where the employed CPUs, main memory, and GPUs are connected by a shared bus.
CPUs control the GPUs by dispatching commands and data from main memory,
while GPUs perform their assigned computations in their local memories (device
memory). A GPU’s device memory is private to that GPU and separated from main
memory and the memories of other devices. Data transfers between the host and
individual devices are referred to as Host-to-Device (H2D) or Device-to-Host (D2H)
data transfers, depending on the direction. H2D and D2H data transfers can produce
large overhead and significantly reduce the performance gain provided by GPUs
(e.g., see [15]). To achieve efficient implementations in DIF-GPU, such overhead
is taken carefully into account in the processes of task scheduling and software
synthesis.

DIF-GPU is developed using the integrated toolset of the DSPCAD Framework,
including DIF, LIDE, and DICE. Methods for data-flow analysis, transformation,
scheduling, and code generation are developed by building on capabilities of the
DIF package. Implementation of GPU-accelerated actors and run time, multi-
threaded execution support are developed by applying LIDE-CUDA. Unit testing
and application verification are carried out using DICE.

1210 S. Lin et al.

36.6.2 Graph Transformations and Scheduling using DIF

Figure 36.4 illustrates the overall workflow of DIF-GPU. This workflow consists of
3 major steps, vectorization, Scheduling and Data Transfer Configuration (SDTC),
and code generation. Data parallelism is exploited by the vectorization step, while
pipeline and task parallelism are exploited by the SDTC step.

36.6.3 Vectorization

Data-flow graph vectorization can be viewed as a graph transformation that groups
together multiple firings of a given actor into a single unit of execution [45]. The
number of firings involved in such a group is referred to as the Vectorization Factor
(VF). Vectorization is a useful method for exploiting data parallelism in data-flow
models.

Suppose that A is an actor in an SDF graphG, andG0 represents the transformed
graph that results from replacing A with a vectorized version Ab of A with VF D b.
The edges inG0 are the same as those inG, except that for all input edges of Ab , the
consumption rates are effectively multiplied by b (relative to their corresponding
rates in G), and similarly, for all output edges of Ab , the production rates are
multiplied by b.

Vectorization exposes potential for exploiting parallelism across multiple firings
of the same actor. For example, when executing Ab on a GPU, blocks of b firings of
A can be executed together concurrently on stream processors in the GPU.

Fig. 36.4 The DIF-GPU workflow

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1211

DIF-GPU applies vectorization in a form called Graph-Level Vectorization
(GLV) [52] for SDF graphs. GLV involves a positive integer parameter J that is
called the GLV degree for the input SDF graphG. In GLV, J iterations of a minimal
periodic schedule for G are scheduled together, and the GLV degree is used in
conjunction with the repetitions vector q for G to derive the VF for each actor.
For background on periodic schedules and repetitions vectors for SDF graphs, we
refer the reader to [30].

More specifically, in GLV, the VF for each actor A is derived as J � q.A/,
where q.A/ represents the repetitions vector component that is indexed by A.
After transforming each actor by its VF associated with a given GLV degree J ,
the resulting vectorized graph Gvect, is a single-rate SDF graph that represents the
execution of J successive iterations of a minimal periodic schedule for G. Here,
by a single-rate SDF graph, we mean that the repetitions vector components are
uniformly equal to unity – that is, if r represents the repetitions vector for Gvect,
then for every actor A in Gvect, r.A/ D 1.

In DIF-GPU the input SDF graph is assumed to be acyclic (apart from the
possibility of self-loop edges induced by actor state) so that there are no cyclic paths
in the application graph that impose limitations on the GLV degree. A wide variety
of practical signal processing systems can be represented in the form of acyclic SDF
graphs (e.g., see [3]). The techniques employed in DIF-GPU can readily be extended
to more general graph topologies, e.g., by applying them outside of the strongly
connected components of the graphs. Such an extension is a useful direction for
further development in DIF-GPU.

Actors in DIF-GPU are programmed using a VF parameter, which becomes part
of the actor context in LIDE-CUDA. The actor developer implements vectorized
code for each actor in a manner that is parameterized by the associated VF parameter
and that takes into account any limitations in data parallel operation or memory
management constraints imposed by actor state. For example, to implement a
vectorized Finite Impulse Response (FIR) filter in DIF-GPU, a VF parameter is
included in the associated LIDE-C actor context such that the actor consumes and
produces VF tokens in each firing. Along with this VF parameter, the actor context
contains pointers to (1) an array of filter coefficients and (2) an array of past samples
for the filter. The past samples array, which contains .N 	 1/ elements, stores the
most recently consumed .N 	 1/ tokens by the actor. Here, N is the order of the
filter. Firing the vectorized GLV filter involves consuming b input tokens, generating
b output tokens, and updating the actor state that is maintained in the past samples
array, where b is the value of the VF parameter. Using careful buffer management
within the LIDE-CUDA actor implementation, the b output samples for the actor are
computed in parallel on the target GPU assuming that there are sufficient resources
available in the GPU in relation to N and b.

The GLV approach employed in DIF-GPU is useful because it provides a single
parameter (the GLV degree) that can be employed to control system-level trade-offs
associated with vectorization and thereby facilitates design space exploration across
a wide range of these trade-offs. For example, vectorization involves trade-offs
involving the potential for improved throughput and exploitation of data parallelism
at the expense of increased buffer memory requirements [45, 52].

1212 S. Lin et al.

36.6.4 Graph Scheduling and Mapping

After the GLV transformation is applied to the intermediate SDF graph repre-
sentation in DIF, DIF-GPU generates a schedule for the vectorized, single-rate
SDF graph Gvect. The schedule can either be generated from a user-specified
mapping configuration (assignment of actors to specific GPU and CPU resources)
or computed using a selected scheduling algorithm that is implemented in the DIF
package. When the user specifies the mapping configurations, DIF-GPU generates a
schedule by firing the actors on each processor according to their topological order
in Gvect.

When the user does not specify the mapping configuration, the user can select
a scheduling algorithm to automatically generate the mapping and schedule. DIF-
GPU integrates multiple scheduling algorithms, including a First-Come First-Serve
(FCFS) scheduler and Mixed Integer Linear Programming (MILP) [52] scheduler.
Providing multiple schedulers, automated code synthesis capability, and the ability
to easily extend the tool with new schedulers allows the user to experiment with
trade-offs associated with different scheduling techniques and select the strategy
that is most appropriate in relation to the complexity of the input graph and the
given design constraints.

DIF-GPU avoids redundant data transfer between CPUs and GPUs by comple-
mentary design of alternative FIFO implementations in LIDE-CUDA and usage
of specialized actors for managing data transfer. In particular, DIF-GPU incor-
porates special data-transfer actors that are designed for optimized, model-based
interprocessor communication between actors across separate memory subsystems.
These data-transfer actors are called the H2D and D2H actors (recall that these
abbreviations stand for host-to-device and device-to-host). H2D copies data from a
buffer allocated on the CPU (i.e., the host) memory to the GPU (i.e., the device)
memory; and conversely, D2H copies data from a GPU buffer to the host memory.
After the scheduling process in DIF-GPU is complete, H2D or D2H actors are
automatically inserted in the DIF representation for application data-flow graph
edges that involve communication between host and device memory. This insertion
of data-transfer actors is performed as an automated post-processing step both for
user-specified and automatically generated mappings.

For example, in Fig. 36.5d,F2 is mapped onto a GPU, so H2D is inserted between
src and F2, and D2H is inserted between F2 and snk. This method employed by
DIF-GPU to handle data transfer between processors aims to free the LIDE-CUDA
actor designer from having to implement details of interprocessor communication
and synchronization and to reduce data transfer overhead.

As a simple example to concretely demonstrate the DIF-GPU workflow,
Fig. 36.5a and b show an SDF graph with execution time estimates that are
proportional to the VF b. Such execution time profiles can be provided through
actor-level benchmarking and then used as input to the scheduling phase in DIF-
GPU. The target platform in this example is assumed to consist of a single CPU and
single GPU. Brackets above the actors indicate the repetitions vector components

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1213

a c

db

Fig. 36.5 An illustration of the DIF-GPU workflow using a simple SDF graph example. (a)
Original SDF graph. (b) VF-dependent execution times on CPU and GPU. (c) Vectorized graph
with VF D b. (d) Vectorized graph for b D 2 with data-transfer actors inserted, and the
corresponding schedule for CPU-GPU implementation

associated with the actors. Figure 36.5c shows the vectorized graph Gvect when
VF D b. Figure 36.5d shows the DIF representation that results from further
transformation through the insertion of H2D and D2H actors when b D 2 and when
F2 is mapped onto the GPU and other actors are mapped onto the CPU.

36.6.5 Code Generation

DIF-GPU generates well-structured, human-readable CUDA source code that can
be linked with LIDE-CUDA libraries and compiled with standard CUDA develop-
ment tools for implementation on CPU-GPU platforms.

Figures 36.6 and 36.7 show the generated LIDE-CUDA header and implemen-
tation file code for the sample graph in Fig. 36.5d. The generated code consists
mainly of the constructor, execute function, and destructor for the synthesized SDF
graph implementation. The constructor instantiates all of the actors and edges in the
data-flow graph and connects the actors and edges according to the graph topology.
The edges are assigned capacities, token sizes, and memory spaces automatically
based on information in the DIF language graph specification, and on graph analysis
techniques in the DIF package. The actors are assigned to processors based on the
user-specified or auto-generated mapping information.

The generated code also initializes data structures for the LIDE-CUDA
multi-thread scheduler. The execute function for the synthesized SDF graph

1214 S. Lin et al.

Fig. 36.6 Generated header file for the example SDF graph of Fig. 36.5d

implementation starts the multi-thread scheduler and creates the threads. The
threads then proceed to execute actor firings based on the mapping decisions
embodied in the generated code. The destructor terminates the threads and actor
structures and releases allocated memory.

36.6.6 Testing in DIF-GPU Using DICE

DIF-GPU employs DICE for unit testing in all parts of the workflow. The DIF-GPU
framework is developed using a combination of Java, C, and CUDA; therefore,
the multi-language support in DICE is useful for testing of the all components
within the DIF-GPU framework. Components in DIF-GPU that require unit testing
include (1) relevant data-flow transformation and scheduling techniques that apply

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1215

Fig. 36.7 Generated source code file for the example SDF graph of Fig. 36.5d

1216 S. Lin et al.

Table 36.2 Summary of standard files employed in ITSs for DICE-based testing in DIF-GPU

File name DIF LIDE-CUDA

dlcconfig N/A Specifies header and li-
brary paths

dljconfig Specifies class paths N/A

makeme Invoke javac with settings speci-
fied in dljconfig

Invoke nvcc compiler
with settings specified in
dlcconfig

runme Run test on Java VM Run compiled test exe-
cutable

correct-output.txt Standard output if test executes as expected

expected-errors.txt Standard error output if test executes as expected

the (Java-based) DIF package; (2) FIFO and actor implementations for applica-
tion graph components; and (3) synthesized software for the targeted CPU-GPU
implementation.

By applying the language-agnostic testing features of DICE described
in Sect. 36.5, DIF-GPU provides a unified approach to implementing and managing
tests for different components in DIF-GPU, as well as DSP applications and
subsystems that are developed using DIF-GPU. A summary of standard files that
are employed in the implementation of DICE-based tests in DIF-GPU is listed
in Table 36.2.

To automatically test components in the DIF-GPU framework, we use the
DICE dxtest utility. This utility recursively traverses all ITSs (individual
test subdirectories) in the given test suite. For each ITS, dxtest first
executes makeme to perform any compilation needed for the test, followed
by runme to exercise the test. The dlcconfig and dljconfig scripts
listed in Table 36.2 specify compiler configurations that are employed by
the corresponding makeme scripts. For each ITS, dxtest compares the
standard output generated by runme with correct-output.txt and
the actual standard error output with expected-errors.txt. Finally,
dxtest produces a summary of successful and failed tests, including the
specific directory paths of any failed tests. In this way, the test-execution
process is largely automated and simplified while operating within an integrated
environment across the different Java, C, and CUDA components that need to be
tested.

36.7 Summary

This chapter has covered the DSPCAD Framework, which provides an integrated set
of tools for model-based design, implementation, and testing of signal processing
systems. The DSPCAD Framework addresses challenges in Hardware/Software
Codesign (HSCD) for signal processing involving the increasing diversity in

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1217

relevant data-flow modeling techniques, actor implementation languages, and target
platforms. Our discussion of the DSPCAD Framework has focused on its three
main component tools – the Data-flow Interchange Format (DIF), Lightweight Data-
flow Environment (LIDE), and DSPCAD Integrative Command Line Environment
(DICE) – which support flexible design experimentation and orthogonalization
across abstract data-flow models, actor implementation languages, and integration
with platform-specific design tools, respectively. Active areas of ongoing develop-
ment in the DSPCAD Framework include data-flow techniques and libraries for
networked mobile platforms, multi-core processors, and graphics processing units,
as well as efficient integration with multimodal sensing platforms.

Acknowledgments Research on the DSPCAD Framework has been supported in part by the
US National Science Foundation, Laboratory for Telecommunication Sciences, and Tekes – The
Finnish Funding Agency For Innovation.

References

1. Beck K et al (2015) Manifesto for agile software development (2015). http://www.
agilemanifesto.org/. Visited on 26 Dec 2015

2. Bhattacharya B, Bhattacharyya SS (2000) Parameterized dataflow modeling of DSP systems.
In: Proceedings of the international conference on acoustics, speech, and signal processing,
Istanbul, pp 1948–1951

3. Bhattacharyya SS, Deprettere E, Leupers R, Takala J (eds) (2013) Handbook of signal
processing systems, 2nd edn. Springer, New York. ISBN:978-1-4614-6858-5 (Print); 978-1-
4614-6859-2 (Online)

4. Bhattacharyya SS, Plishker W, Shen C, Gupta A (2011) Teaching cross-platform design and
testing methods for embedded systems using DICE. In: Proceedings of the workshop on
embedded systems education, Taipei, pp 38–45

5. Bhattacharyya SS, Plishker W, Shen C, Sane N, Zaki G (2011) The DSPCAD integrative
command line environment: introduction to DICE version 1.1. Technical report UMIACS-TR-
2011-10, Institute for Advanced Computer Studies, University of Maryland at College Park.
http://drum.lib.umd.edu/handle/1903/11422

6. Bilsen G, Engels M, Lauwereins R, Peperstraete JA (1996) Cyclo-static dataflow. IEEE Trans
Signal Process 44(2):397–408

7. Buck JT, Lee EA (1993) Scheduling dynamic dataflow graphs using the token flow model.
In: Proceedings of the international conference on acoustics, speech, and signal processing,
Minneapolis

8. Choi J, Oh H, Kim S, Ha S (2012) Executing synchronous dataflow graphs on a SPM-based
multicore architecture. In: Proceedings of the design automation conference, San Francisco,
pp 664–671

9. Desnos K, Pelcat M, Nezan J, Bhattacharyya SS, Aridhi S (2013) PiMM: parameterized
and interfaced dataflow meta-model for MPSoCs runtime reconfiguration. In: Proceedings
of the international conference on embedded computer systems: architectures, modeling, and
simulation, Samos, pp 41–48

10. Eker J, Janneck JW (2003) CAL language report, language version 1.0 – document edition 1.
Technical report UCB/ERL M03/48, Electronics Research Laboratory, University of California
at Berkeley

11. Eker J, Janneck JW (2012) Dataflow programming in CAL – balancing expressiveness,
analyzability, and implementability. In: Proceedings of the IEEE Asilomar conference on
signals, systems, and computers, Pacific Grove, pp 1120–1124

http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
http://drum.lib.umd.edu/handle/1903/11422

1218 S. Lin et al.

12. Falk J, Keinert J, Haubelt C, Teich J, Bhattacharyya SS (2008) A generalized static data flow
clustering algorithm for MPSoC scheduling of multimedia applications. In: Proceedings of the
international conference on embedded software, Atlanta, pp 189–198

13. Gagnon E (1998) SableCC, an object-oriented compiler framework. Master’s thesis, School of
Computer Science, McGill University, Montreal

14. Ghamarian AH, Stuijk S, Basten T, Geilen MCW, Theelen BD (2007) Latency minimization for
synchronous data flow graphs. In: Proceedings of the Euromicro conference on digital system
design architectures, methods and tools, pp 189–196

15. Gregg C, Hazelwood K (2011) Where is the data? why you cannot debate CPU vs. GPU
performance without the answer. In: Proceedings of the IEEE international symposium on
performance analysis of systems and software, Austin, pp 134–144

16. Gu R, Janneck J, Raulet M, Bhattacharyya SS (2009) Exploiting statically schedulable regions
in dataflow programs. In: Proceedings of the international conference on acoustics, speech, and
signal processing, Taipei, pp 565–568

17. Gu R, Piat J, Raulet M, Janneck JW, Bhattacharyya SS (2010) Automated generation of an
efficient MPEG-4 reconfigurable video coding decoder implementation. In: Proceedings of the
conference on design and architectures for signal and image processing, Edinburgh

18. Hamill P (2004) Unit test frameworks. O’Reilly & Associates, Inc., Sebastopol
19. Haubelt C, Falk J, Keinert J, Schlichter T, Streubühr M, Deyhle A, Hadert A, Teich J (2007) A

SystemC-based design methodology for digital signal processing systems. EURASIP J Embed
Syst 2007: 22. Article ID 47580

20. Hierons RM et al (2009) Using formal specifications to support testing. ACM Comput Surv
41(2):1–22

21. Hsu C, Corretjer I, Ko M, Plishker W, Bhattacharyya SS (2007) Dataflow interchange format:
language reference for DIF language version 1.0, user’s guide for DIF package version 1.0.
Technical report UMIACS-TR-2007-32, Institute for Advanced Computer Studies, University
of Maryland at College Park. Also Computer Science Technical Report CS-TR-4871

22. Hsu C, Keceli F, Ko M, Shahparnia S, Bhattacharyya SS (2004) DIF: an interchange format
for dataflow-based design tools. In: Proceedings of the international workshop on systems,
architectures, modeling, and simulation, Samos, pp 423–432

23. Hsu C, Ko M, Bhattacharyya SS (2005) Software synthesis from the dataflow interchange
format. In: Proceedings of the international workshop on software and compilers for embedded
systems, Dallas, pp 37–49

24. Hunt A, Thomas D (2003) Pragmatic unit testing in Java with JUnit. The Pragmatic Program-
mers

25. Janneck JW, Mattavelli M, Raulet M, Wipliez M (2010) Reconfigurable video coding: a stream
programming approach to the specification of new video coding standards. In: Proceedings of
the ACM SIGMM conference on multimedia systems, New York, pp 223–234

26. Kedilaya S, Plishker W, Purkovic A, Johnson B, Bhattacharyya SS (2011) Model-based
precision analysis and optimization for digital signal processors. In: Proceedings of the
European signal processing conference, Barcelona, pp 506–510

27. Keinert J, Haubelt C, Teich J (2006) Modeling and analysis of windowed synchronous
algorithms. In: Proceedings of the international conference on acoustics, speech, and signal
processing, Toulous

28. Keutzer K, Malik S, Newton R, Rabaey J, Sangiovanni-Vincentelli A (2000) System-level
design: orthogonalization of concerns and platform-based design. IEEE Trans Comput Aided
Des Integr Circuits Syst 19:1523-1543

29. Kwok Y (1997) High-performance algorithms for compile-time scheduling of parallel proces-
sors. Ph.D. thesis, The Hong Kong University of Science and Technology

30. Lee EA, Messerschmitt DG (1987) Synchronous dataflow. Proc IEEE 75(9):1235–1245
31. Lee EA, Parks TM (1995) Dataflow process networks. Proc IEEE 83:773–799
32. Lin S, Liu Y, Plishker W, Bhattacharyya SS (2016) A design framework for mapping vectorized

synchronous dataflow graphs onto CPU–GPU platforms. In: Proceedings of the international
workshop on software and compilers for embedded systems, Sankt Goar, pp 20–29

36 The DSPCAD Framework for Modeling and Synthesis of Signal: : : 1219

33. Lin S, Wang LH, Vosoughi A, Cavallaro JR, Juntti M, Boutellier J, Silvén O, Valkama
M, Bhattacharyya SS (2015) Parameterized sets of dataflow modes and their application to
implementation of cognitive radio systems. J Signal Process Syst 80(1):3–18

34. Murthy PK, Lee EA (2002) Multidimensional synchronous dataflow. IEEE Trans Signal
Process 50(8):2064–2079

35. Neuendorffer S, Lee E (2004) Hierarchical reconfiguration of dataflow models. In: Proceedings
of the international conference on formal methods and models for codesign, San Diego

36. Oh H, Dutt N, Ha S (2006) Memory optimal single appearance schedule with dynamic loop
count for synchronous dataflow graphs. In: Proceedings of the Asia South Pacific design
automation conference, Yokohama, pp 497–502

37. Pelcat M, Aridhi S, Piat J, Nezan JF (2013) Physical layer multi-core prototyping. Springer,
London

38. Pelcat M, Desnos K, Heulot J, Nezan JF, Aridhi S (2014) Dataflow-based rapid prototyping
for multicore DSP systems. Technical report PREESM/2014-05TR01, Institut National des
Sciences Appliquées de Rennes

39. Pelcat M, Desnos K, Maggiani L, Liu Y, Heulot J, Nezan JF, Bhattacharyya SS (2015) Models
of architecture. Technical report PREESM/2015-12TR01, IETR/INSA Rennes. HAL Id: hal-
01244470

40. Pelcat M, Menuet P, Aridhi S, Nezan JF (2009) Scalable compile-time scheduler for multi-core
architectures. In: Proceedings of the design, automation and test in Europe conference and
exhibition, Nice, pp 1552–1555

41. Pelcat M, Piat J, Wipliez M, Aridhi S, Nezan JF (2009) An open framework for rapid
prototyping of signal processing applications. EURASIP J Embed Syst 2009:Article No. 11

42. Plishker W, Sane N, Bhattacharyya SS (2009) A generalized scheduling approach for dynamic
dataflow applications. In: Proceedings of the design, automation and test in Europe conference
and exhibition, Nice, pp 111–116

43. Plishker W, Sane N, Kiemb M, Anand K, Bhattacharyya SS (2008) Functional DIF for rapid
prototyping. In: Proceedings of the international symposium on rapid system prototyping,
Monterey, pp 17–23

44. Plishker W, Sane N, Kiemb M, Bhattacharyya SS (2008) Heterogeneous design in functional
DIF. In: Proceedings of the international workshop on systems, architectures, modeling, and
simulation, Samos, pp 157–166

45. Ritz S, Pankert M, Meyr H (1993) Optimum vectorization of scalable synchronous dataflow
graphs. In: Proceedings of the international conference on application specific array processors,
Venice

46. Sane N, Kee H, Seetharaman G, Bhattacharyya SS (2011) Topological patterns for scalable
representation and analysis of dataflow graphs. J Signal Process Syst 65(2):229–244

47. Shen C, Plishker W, Wu H, Bhattacharyya SS (2010) A lightweight dataflow approach for
design and implementation of SDR systems. In: Proceedings of the wireless innovation
conference and product exposition, Washington, DC, pp 640–645

48. Shen C, Wang L, Cho I, Kim S, Won S, Plishker W, Bhattacharyya SS (2011) The DSP-
CAD lightweight dataflow environment: introduction to LIDE version 0.1. Technical report
UMIACS-TR-2011-17, Institute for Advanced Computer Studies, University of Maryland at
College Park. http://hdl.handle.net/1903/12147

49. Sriram S, Bhattacharyya SS (2009) Embedded multiprocessors: scheduling and synchroniza-
tion, 2nd edn. CRC Press, Boca Rato. ISBN:1420048015

50. T Dohmke HG (2007) HG test-driven development of a PID controller. IEEE Soft 24(3):44–50
51. Theelen BD, Geilen MCW, Basten T, Voeten JPM, Gheorghita SV, Stuijk S (2006) A scenario-

aware data flow model for combined long-run average and worst-case performance analysis.
In: Proceedings of the international conference on formal methods and models for codesign,
Napa

52. Zaki G, Plishker W, Bhattacharyya SS, Clancy C, Kuykendall J (2013) Integration of dataflow-
based heterogeneous multiprocessor scheduling techniques in GNU radio. J Signal Process
Syst 70(2):177–191. doi:10.1007/s11265-012-0696-0

http://hdl.handle.net/1903/12147

37Control/Architecture Codesign for
Cyber-Physical Systems

Wanli Chang, Licong Zhang, Debayan Roy, and
Samarjit Chakraborty

Abstract

Control/architecture codesign has recently emerged as one popular research
focus in the context of cyber-physical systems. Many of the cyber-physical
systems pertaining to industrial applications are embedded control systems. With
the increasing size and complexity of such systems, the resource awareness in
the system design is becoming an important issue. Control/architecture codesign
methods integrate the design of controllers and the design of embedded platforms
to exploit the characteristics on both sides. This reduces the design conservative-
ness of the separate design paradigm while guaranteeing the correctness of the
system and thus helps to achieve more efficient design. In this chapter of the
handbook, we provide an overview on the control/architecture codesign in terms
of resource awareness and show three illustrative examples of state-of-the-art
approaches, targeting respectively at communication-aware, memory-aware, and
computation-aware design.

Acronyms

CFG Control-Flow Graph
CPS Cyber-Physical System
DSE Design Space Exploration
ECU Electronic Control Unit
E/E Electric and Electronic
EMB Electro-Mechanical Brake
ET Event-Triggered
FTDMA Flexible Time Division Multiple Access

W. Chang (�)
Singapore Institute of Technology, Singapore, Singapore
e-mail: wanli.chang@singaporetech.edu.sg

L. Zhang • D. Roy • S. Chakraborty
TU Munich, Munich, Germany
e-mail: licong.zhang@tum.de; debayan.roy@tum.de; samarjit@tum.de

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_37

1221

mailto:wanli.chang@singaporetech.edu.sg
mailto:licong.zhang@tum.de
mailto:debayan.roy@tum.de
mailto:samarjit@tum.de

1222 W. Chang et al.

LCS Live Cache States
MILP Mixed Integer Linear Programming
OS Operating System
PSO Particle Swarm Optimization
RCS Reaching Cache States
RTOS Real-Time Operating System
TDMA Time-Division Multiple Access
TT Time-Triggered
WCET Worst-Case Execution Time

Contents

37.1 Introduction . 1222
37.2 Embedded Control Systems . 1226

37.2.1 Embedded Systems Architecture . 1227
37.2.2 Feedback Control Systems . 1228

37.3 Communication-Aware Control/Architecture Codesign . 1231
37.3.1 Problem Setting . 1232
37.3.2 The Codesign Approach . 1235
37.3.3 Case Study . 1241

37.4 Memory-Aware Control/Architecture Codesign . 1243
37.4.1 Cache Analysis for Consecutive Executions of a Control Application 1244
37.4.2 Control Parameter Derivation . 1249
37.4.3 Case Study . 1251

37.5 Computation-Aware Control/Architecture Codesign . 1252
37.5.1 Time-Triggered Operating System . 1252
37.5.2 Multirate Closed-Loop Dynamics . 1254
37.5.3 Case Study . 1257

37.6 Conclusion . 1258
References . 1259

37.1 Introduction

Cyber-physical systems refer to systems where tight interaction between the
computational elements (cyber) and the physical entities (physical) is emphasized. A
typical example of a cyber-physical system is an embedded control system. In such
a system, software implementation of the controllers running on processing units are
used to control physical plants. As shown in Fig. 37.1, the processing units are con-
nected with sensors and actuators where the sensors measure the states of the plants,
the controllers compute the control input, and the actuators apply the control input
onto the physical plants. Today, cyber-physical systems have become commonplace
and can be found in the domains like automotive, avionics, industrial automation,
chemical engineering, etc. The automotive Electric and Electronic (E/E) system is
an example of such a system. In a modern vehicle, increasingly more functions are
realized by software mapped on the Electronic Control Unit (ECU). These include

37 Control/Architecture Codesign for Cyber-Physical Systems 1223

Processor on-chip memory

Bus

Flash I/O Sensor

Actuator
Processing Unit

Fig. 37.1 A processing unit with a processor and on-chip memory for program execution. Instruc-
tions are stored in the flash memory. Programmable I/O peripherals are used for communication
with sensors, actuators, and other processing units. For instance, Infineon XC23xxB Series, which
is widely used in automotive systems, has a single processor with a minimum operating frequency
of 20MHz. It is typically equipped with a small size of on-chip SRAM memory and up to 256 kB
flash memory [7].

the functions for vehicle dynamics control, body components control (e.g., doors
and lights), infotainment, and advanced driver assistance systems (ADAS). Some of
these functions have stringent timing requirements, and some demand processing
and transport of intensive data amount. The characteristics and performance of the
cyber part, i.e., the electronics and software, strongly influence the performance
of the physical part. In the case of safety-critical control functions, the timing
properties of the software implementation of the controllers, e.g., the sampling
period and the sensor-to-actuator delay, play a vital role in the control performance.
Therefore, with the Cyber-Physical System (CPS)-oriented thinking, more attention
is necessary for the implementation of the controllers in an embedded platform and
interplay between the embedded platform design and the control design.

The hardware architecture of the computational part of a cyber-physical system
consists mainly of one or more processing units. In case of a multiprocessor
architecture, the processing units are commonly connected by a communication
network, where data between different processing units can be transmitted. Typical
communication networks in this context include the FlexRay [3], CAN [13],
LIN [4], and MOST [5] in the automotive domain; AFDX i̧teAFDX and AS6802 [6]
in the avionics domain; and Profibus, Profinet [33], and EtherCAT in the industrial
automation domain. �Chapter. 24, “Networked Real-Time Embedded Systems”
provides a more detailed study on some important real-time communication pro-
tocols. These communication protocols implement different data transmission
approaches and are each suitable for a specific set of requirements. On each
processing unit, the computation is performed by tasks, each of which is typically
implemented by a piece of code. Multiple tasks can be grouped together to form
an application, where an independent function (e.g., a feedback control loop) is
performed. In a distributed application, where the tasks are mapped onto different
processing units, the data between the relevant tasks are transmitted over the
communication network. It is common that multiple tasks belonging to the same or
different applications are mapped on one processing unit. In this case, an operating
system (e.g., OSEK [1], eCos [18]) is sometimes used to coordinate task executions
and allocate resources for the tasks.

1224 W. Chang et al.

In many embedded systems in the context of cyber-physical systems, the applica-
tions are control applications, where the software implementation of the controllers
controls physical plants [28]. The design of controllers for these applications from a
control-theoretical perspective are well established. The control design methods can
be drawn from a large pool of research and practical expertise and experience that
have been accumulated in the control community in the past few decades. However,
little attention has been paid to the actual implementation of the controllers in the
embedded platforms. In this case, not only the control theoretical aspect of the
design problem needs to be taken into account, e.g., type of controllers and control
gains, but also the characteristics of the underlying embedded platforms. The design
aspects on the embedded system side include, for example, the task partitioning and
mapping, the scheduling of tasks and communication, and the allocation of memory
and cache. There is a tight interconnection between the control and the embedded
platform design [16]. For example, the results of the embedded platform design can
strongly influence the control performance through properties like sampling period,
delay, and jitter. Reversely, the requirements from the control design side also
influence the platform design. Conventionally the control and embedded platform
design are done separately and then integrated afterward. In this case, the engineers
on both sides need to make assumptions of the other side. Since most control
applications are safety critical, such assumptions are inevitably quite conservative
to guarantee the safety of the control applications. Due to this conservativeness,
usually the resources on the embedded platform, e.g., computation, communication,
memory, and energy resources, are not optimally utilized. On the other hand, these
resources on an embedded platform are quite limited, constrained by the size and
cost reasons. In recent years, both the size and complexity of the embedded systems
in industrial domains have increased drastically. In the automotive domain, for
example, a modern premium passenger car can contain up to 100 million lines of
software code [17]. In such a computation and data-intensive platform, resource-
efficient design has become a quite important issue. Therefore, the CPS community
has become increasingly conscious that some systematic design methods will be
necessary for design of resource-aware embedded control systems.

The resources on an embedded platform can be divided into different categories,
e.g., computation, communication, memory, energy, and input/output interfaces.
In the context of this chapter, three of the most important resources, namely, the
computation resource, the communication resource, and the memory resource, are
considered. In the following paragraphs, each of the aforementioned resources will
be explained in detail.

Communication resources can generally be represented as the bandwidth of a
communication bus or a network link, which denotes the number of bits that can be
transmitted per second. Therefore, there is only a limited amount of data that can be
transmitted within a specific time frame. More precise characterization of the com-
munication resource, however, is protocol specific. The communication protocols
implement different data transmission approaches, which can be broadly divided
into two different categories, namely, the Time-Triggered (TT) paradigm and the
Event-Triggered (ET) paradigm. For example, a Time-Division Multiple Access

37 Control/Architecture Codesign for Cyber-Physical Systems 1225

(TDMA) bus is a typical time-triggered bus communication. In this case, a period of
time is divided into multiple time slots, and the usage of the communication resource
can be represented directly by the number of utilized slots. In an industrial-sized
distributed embedded system, the communication resource is quite constrained. As
the size of the system increases, more processing units and data can be incrementally
mapped on to the communication bus or network. However, the bandwidth of a
communication protocol cannot be easily increased. Therefore, communication-
efficient design could enable the system to accommodate more applications or
enhance the performance of the applications. Related to this, in recent years,
there have been several works on integrated controller synthesis and task and
message scheduling of distributed embedded control systems, e.g., [20, 23, 34, 35].
However, most of these works, e.g., [20, 23, 34] only consider optimization of
control performance while satisfying communication constraints. In addition, there
have been several works, e.g., [29,39] on schedule optimization of distributed time-
triggered embedded systems where the objective is to minimize communication
bandwidth utilization while satisfying timing constraints. However, these works do
not consider control applications.

Memory resources mainly refer to the size of cache due to its high cost. Within a
processing unit, there are typically two levels of memory – cache and main memory.
In Fig. 37.1, the on-chip memory works as cache and the flash memory serves as
the main memory. The main memory has a large size and can thus store all the
application programs and data, but experiences high read/write latencies (hundreds
of processor cycles). The cache is faster (several processor cycles), but usually
limited in size. In this chapter, the focus is on instruction memory. It is assumed
that the access times of cache and main memory are tc and tm, respectively, where
tc
 tm. When a processor executes an instruction, it checks the cache first. If
this instruction is located in the cache, it is a cache hit and the access time is tc .
If this instruction is not in the cache, the memory block containing it is fetched
from the main memory and then written into cache. This is called a cache miss
and the access time is tm. Afterward, when the same instruction is called again by
the processor, the access time is tc if it is still in the cache without being replaced.
Increasing the cache size and improving the cache reuse are two general methods to
reduce the execution time of a program. A program usually has different execution
paths resulting in different execution times, depending on the input. The Worst-Case
Execution Time (WCET) is defined to be the maximum length of time a program
takes to be executed. The WCET constrains the sampling period of a control
application, which is defined to be the duration between two consecutive executions
of a control program, and thus has significant impact on the control performance.
In resource-aware embedded control systems design, it is desirable to minimize the
cache size while satisfying the performance requirement or, equivalently, improve
the performance for a given memory. Therefore, on one hand, the cache reuse should
be maximized, and on the other hand, the controller must be suitably designed
to exploit the shortened sampling periods. There have been some works on cache
reuse maximization by employing code positioning during compile time [22,26,32]
and also during run time [11], but these cannot directly be applied to embedded

1226 W. Chang et al.

control systems as code rearrangement would impact the timing properties, and this
is difficult to incorporate while designing the controllers.

Computation resources usually mean the available execution time of a processor,
when the processing speed is given. Considering multiple applications sharing
one single-core processing unit, each application is allocated a certain period of
execution time. In general, the performance of an application can be improved if
it is allowed to access the processor longer. On a processor sometimes runs an
Operating System (OS). For instance, ERCOSek [1, 19] is a widely used time-
triggered OS on ECUs and only offers a limited set of predefined periods. It
implies that the sampling periods of control applications have to be taken from
this set. Generally, a shorter sampling period allows the controller to respond to
its plant more frequently and is thus potentially able to achieve better control
performance with an appropriately designed controller. The obvious downside is
a higher processor utilization, which is defined to be the WCET of an application
divided by its sampling period. This prevents more functions and applications from
being integrated onto the processing unit. Therefore, the controller should use
the largest possible sampling period that is able to fulfill the control performance
requirement and satisfy the system constraints. In most cases, the optimal sampling
period is not directly realizable on the OS. The conventional way to handle it
is to use the largest sampling period offered by the OS that is smaller than the
optimal one. This is a straightforward method, but leads to a waste of computational
resources. Toward this, there have been several works on state-feedback-based
optimal resource allocation to the control loops sharing the same processor, e.g.,
[14, 15, 21, 25, 30, 31]. All these works focus on online assignment of sampling
periods of the control loops based on the system dynamics like plant states,
disturbance, or error. However, an online decision-making must be very fast to
be effective, and therefore, there must be some heuristics involved. Therefore, an
offline schedule computation that guarantees performance and reduces the processor
utilization will be more desirable.

The rest of this chapter is organized as follows. In Sect. 37.2, the basics
of feedback control applications are briefly reviewed. In the three sections that
follow, three state-of-art approaches of different aspects in terms of resource-aware
algorithm/architecture codesign are explained, namely, the communication-aware
design (Sect. 37.3), the memory-aware design (Sect. 37.4), and the computation-
aware design (Sect. 37.5). Finally, Sect. 37.6 contains the concluding remarks.

37.2 Embedded Control Systems

In this section, some background knowledge for the embedded control systems
considered in this chapter is provided. Firstly, a brief introduction in the embedded
systems architecture is provided. Then the basics of feedback control systems as
well as the control performance metrics and the method for optimal pole placement
are explained.

37 Control/Architecture Codesign for Cyber-Physical Systems 1227

37.2.1 Embedded Systems Architecture

The architecture considered in this chapter does not refer to the processor architec-
ture, but the design parameters for the underlying hardware and the communication
for the embedded controllers. The architecture can either be a single ECU, as
shown in Fig. 37.1, or a distributed system consisting of multiple ECUs connected
by a communication network, as shown in Fig. 37.2. An embedded controller
mapped on such an architecture is usually implemented with one or multiple
tasks, where each task is a piece of software code running on the processor. A
controller can be partitioned into the sensor task, the controller task, and the actuator
task. The sensor task measures the state of the physical plant, the controller task
computes the control input, and the actuator task applies the control input onto the
physical plant. In a single processor architecture, these tasks are executed on the
same ECU, while in a distributed architecture, the sensor, controller, and actuator
tasks can also be mapped on different ECUs and the data between the tasks are
transferred over the network as messages. It is also common that tasks of different
controllers are mapped on common ECUs, where the communication, computation,
and memory resources are shared between these control applications. Therefore,
how to allocate the resources for the software implementation of the controllers
forms the problem of architecture design. More specifically, these design parameters
may include the task partition and mapping, the task and network scheduling, the
use of the cache, etc. Towards the design of these parameters, �Chap. 7, “Hybrid
Optimization Techniques for System-Level Design Space Exploration” provides an
overview of successful approaches for system-level design space exploration for
complex embedded systems.

ECU1 ECU2 ECU3

FlexRay

τs,1 τs,2

τs,4

τs,5

τs,3τa,3

τa,5τc,5

ms,1 mc,1

τc,1

τc,4

τc,2

τc,3τa,4

τa,1 τa,2

Fig. 37.2 An example of a distributed architecture for the embedded control systems. This
example consists of 3 ECUs connected by a FlexRay bus. Five control applications are mapped
on this architecture, where �s;i , �c;i , and �a;i denote respectively the sensor task, controller task,
and actuator task of the i th control application. Two messages over the communication bus for first
control application as well as the data dependency are shown

1228 W. Chang et al.

37.2.2 Feedback Control Systems

Throughout this chapter, linear single-input single-output (SISO) control applica-
tions are considered. The dynamic behavior is modeled by a set of differential
equations,

Px.t/ D Ax.t/C Bu.t/; y.t/ D Cx.t/; (37.1)

where x.t/ 2 R
n is the system state, y.t/ is the system output, and u.t/ is the

control input. The number of system states is n. A, B , and C are system matrices
of appropriate dimensions. System poles are eigenvalues of A. In a state-feedback
control algorithm, u.t/ is computed utilizing x.t/ (feedback signals) and is then
applied to the plant, which is expected to achieve certain desired behavior. In an
embedded implementation platform, the operations (measure x.t/, compute u.t/,
and apply u.t/) of a control loop are performed only at discrete time instants. In the
case where the sensor-to-actuator delay d is ignored, the continuous-time system
in (37.1) can be transformed into a discrete-time system with the sampling period h
which can be represented as [10]

xŒk C 1� D AdxŒk�C BduŒk�; yŒk� D CdxŒk�; (37.2)

where sampling instants are t D tk (k D 1; 2; 3; � � �) and h D tkC1 	 tk . xŒk� and
uŒk� are the values of x.t/ and u.t/ at t D tk and

Ad D e
Ah; Bd D

Z h

0

.eAtdt/ � B; Cd D C: (37.3)

A system is asymptotically stable if the steady-state impulse response is zero,
i.e., limk!1 yıŒk� D 0. Toward this, uŒk� needs to be designed utilizing the states
xŒk� in a state-feedback controller. The general representation is as follows:

uŒk� D Kd � xŒk�C Fd � r; (37.4)

where Kd is the feedback gain, Fd is the feedforward gain, and r is the reference
value. Then, the system dynamics in (37.2) becomes

xŒk C 1� D .Ad C BdKd/xŒk�C BdFdr; (37.5)

i.e., closed-loop dynamics. Different locations of closed-loop system poles, i.e.,
eigenvalues of .AdCBdKd/, result in different system behaviors. Pole locations can
be decided by the pole-placement technique, and then the following characteristics
equation of H can be constructed with these poles as roots:

Hn C �1H
n�1 C �2H

n�2 C � � � C �n D 0: (37.6)

37 Control/Architecture Codesign for Cyber-Physical Systems 1229

Define

�c.Ad / D A
n
d C �1A

n�1
d C �2A

n�2
d C � � � C �nI; (37.7)

where I is the n-dimensional identity matrix. According to Ackermann’s for-
mula [8], the feedback gain to stabilize the system is calculated as

Kd D 	Œ0 � � � 0 1� �
�1 �c.Ad /; (37.8)

where � represents the controllability matrix of the system and is given by

� D ŒBd AdBd : : : An�1d Bd � (37.9)

The static feedforward gain F is designed to achieve yŒk�! r as k !1 and can
be computed by

Fd D
1

Cd .I 	 Ad 	 BdKd/�1Bd
: (37.10)

However, in a realistic implementation of a control application, a non-negligible
sensor-to-actuator delay needs to be taken into account. In the case, where the delay
is smaller or equal to one sampling period, i.e., 0 � d � h, the discrete-time system
in (37.2) becomes a sampled-data system [12] as

xŒk C 1� D AdxŒk�C Bd1.d/uŒk 	 1�C Bd0.d/uŒk�; (37.11)

where

Bd0.Dc/ D

Z h�d

0

eAtdt � B; Bd1.d/ D

Z h

h�d

eAtdt � B: (37.12)

In (37.11), it is assumed that uŒ	1� D 0 for k D 0. Notice that xŒk C 1�

depends on both uŒk� and uŒk 	 1�, since during the sensor-to-actuator delay,
uŒk� is not available and uŒk 	 1� is applied to the plant. A new system state

zŒk� D
�
xŒk� uŒk 	 1�

�T
is defined, and the transformed system becomes

zŒk C 1� D AaugzŒk�C BauguŒk�; yŒk� D CaugzŒk�; (37.13)

where

Aaug D

�
Ad Bd1.d/

0 0

�
; Baug D

�
Bd0.d/

I

�
; Caug D

�
Cd 0

�
: (37.14)

1230 W. Chang et al.

Next, apply the following input signal:

uŒk� D Kaug � zŒk�C Faug � r: (37.15)

The closed-loop system is then

zŒk C 1� D .Aaug C BaugKaug/zŒk�C BaugFaugr: (37.16)

The feedback gain Kaug can then be calculated according to (37.8) by replacing Ad
with Aaug and also replacing Ad and Bd with Aaug and Baug while computing the
controllability matrix � in (37.9). Similarly, the feedforward gain Faug is computed
according to (37.10) by replacing Ad , Bd , Cd , and Kd with Aaug , Baug , Caug , and
Kaug , respectively.

37.2.2.1 Control Performance Metrics
There are different metrics to measure the performance of a control system. In this
chapter, two common metrics to measure the control performance are considered.
(i) The steady-state performance of a control application which can be commonly
measured by a cost function [35], which in the discrete case can be represented as

J D

nX
kD0

Œ
uŒk�2 C .1 	
/�Œk�2�h; (37.17)

where
 is a weight taking the value between 0 and 1, uŒk� is the control input and
�Œk� D jr 	 yŒk�j is the tracking error. (ii) The settling time, � , where � denotes the
time necessary for the system to reach and remain within 1% of the reference value

J D �: (37.18)

37.2.2.2 Optimal Pole Placement
For a control application, in order to design the controller which optimizes the
control performance for a given sampling period, an optimization problem for the
pole placement can be formulated. Decision variables are poles of the closed-loop
system. Therefore, the number of dimensions in the decision space is equal to the
number of states in the closed-loop system. The objective is to optimize the value
of the selected control performance metric. Absolute values of all poles have to be
less than unity to ensure system stability. The control input saturation needs to be
respected as well.

It is challenging to solve such a constrained non-convex optimization problem
with significant nonlinearity. Here, the Particle Swarm Optimization (PSO) tech-
nique, which is highly efficient and scalable [36], can be used. A group of particles
are randomly initialized in the decision space with positions and velocities. They
search for the optimum by iteratively updating their positions. The search is led by

37 Control/Architecture Codesign for Cyber-Physical Systems 1231

two points. The first is the local best point that has been reached by a particle. Every
particle has its own local best point. The second is the global best point that has
been reached considering all particles. A point that respects all constraints is always
better than a point that violates at least one constraint, no matter what their objective
values are. When comparing two points that either respect all constraints or violate
at least one constraint, the point with a better objective value is better.

The velocity of a particle is determined by the following equation:

Vnew D ˛0Vcurrent C ˛1rand.0; 1/.Plbest 	 Pcurrent/

C ˛2rand.0; 1/.Pgbest 	 Pcurrent/;
(37.19)

where Vnew is the new velocity, Vcurrent is the current velocity, Pcurrent is the current
position, Plbest is the local best point of this particle, and Pgbest is the best point of
all particles. rand.0; 1/ is a random number with uniform distribution from the open
interval .0; 1/. ˛0, ˛1 and ˛2 are parameters that can be determined empirically. The
new position of this particle is

Pnew D Pcurrent C Vnew: (37.20)

The algorithm is terminated once all particles have converged or the maximum
number of iterations has been reached. The time complexity of PSO is clearly
polynomial.

37.3 Communication-Aware Control/Architecture Codesign

In this section, a codesign approach that synthesizes simultaneously controllers,
task, and communication schedules for a FlexRay-based ECU network will be
introduced. The approach consists mainly of two stages, namely, the control design
stage and the cooptimization stage. This separation is necessary because the problem
deals with a large design space combining the dimensions of both control and
platform design. Therefore, the whole space is partitioned into smaller subspaces
while considering all feasible regions in the design space by exploiting some
domain-specific characteristics. In the control design stage, an optimal controller
is synthesized at each possible sampling period for each control application. This
is done by using the pole-placement control design method and exploring the
design space for poles using heuristics. In the cooptimization stage, a bi-objective
optimization problem is formulated, and a customized method is employed to
generate a number of feasible design parameter sets, where each set represents a
Pareto point reflecting the trade-off between the objectives of control performance
and bus utilization. Here, we will first explain the problem setting and then discuss
in detail the state-of-the-art control-communication codesign technique applicable
to such a setting.

1232 W. Chang et al.

37.3.1 Problem Setting

Distributed implementation: Consider a distributed architecture where a set of
ECUs represented by pi 2 P are connected through a FlexRay bus. A number of
control applications denoted by Ci 2 C are mapped on such an embedded platform.
Each control application Ci can be partitioned into three dependent application
tasks: (i) sensor task, �s;i , measures the system states (using sensors) of the physical
system if measurable; (ii) controller task, �c;i , computes the controller input based
on the measured system states; and (iii) actuator task, �a;i , applies the control input
(using actuators) to the physical system. Without loss of generality, assume that the
three tasks are mapped on different ECUs. Then the sensor values measured by �s;i
are sent on the bus through message fs;i , and the control input calculated by �c;i
is sent as message fc;i . The time between the start of sensor task and the end of
actuator task is defined as the sensor-to-actuator delay, denoted as d . As shown in
Fig. 37.3, this delay depends on the interplay between the task and communication
schedules.

ECU task model: Here, consider the case where time-triggered non-preemptive
scheduling scheme is exhibited by the Real-Time Operating System (RTOS) on
the ECUs. Each task of the control applications is considered to be periodic and
is defined by the tuple �x;i D fOx;i ; Px;i ; Ex;ig, where Ox;i , Px;i , and Ex;i denote
respectively the offset, the period, and the WCET of the task. Here, the subscript
x 2 fs; c; ag where s, c, or a respectively identifies sensor, controller, or actuator
task. The subscript i identifies the control application Ci it constitutes. Thus, if
Nt .�x;i ; k/ and Qt .�x;i ; k/ are defined as the starting and the latest finishing time of the
kth (k 2 Z

�) instance of task �i , then

Nt .�x;i ; k/ D Ox;i C kPx;i ; Qt .�x;i ; k/ D Ox;i C kPx;i CEx;i : (37.21)

A set of communication tasks are required besides the application tasks. The
communication task on the sending ECU writes the data produced by the application
tasks into the corresponding transmit buffers of the communication controller, and
on the receiving ECU, it reads the data from the corresponding receive buffers and

Fig. 37.3 Distributed
embedded control application ECU 1

ECU 2

ECU 3

Bus

sensor-to-actuator delay d

τs,i

τc,i

τa,i

fc,ifs,i

37 Control/Architecture Codesign for Cyber-Physical Systems 1233

forwards them to the application tasks. The nature of these communication tasks
depends on the specific implementation. Here, consider that the execution time of
all communication tasks is bounded by �, and assume that a communication task is
scheduled directly after its corresponding application task at the sending side and
directly before the application task at the receiving side.

FlexRay communication: FlexRay [3] is an automotive communication protocol
usually applied for safety-critical applications. Although FlexRay communication
is discussed in detail in �Chap. 24, “Networked Real-Time Embedded Systems”,
few important points are reiterated here for better understanding of the problem
and the subsequent solution. Being a hybrid protocol, it offers both TT and
ET communication services. FlexRay is organized as a series of communication
cycles, the length of which is denoted as Tbus . Each communication cycle contains
mainly the static segment (ST) and optionally dynamic segment (DYN), where
the TT and ET communication services are implemented respectively. The static
segment applies the TDMA scheme and is split into a number of static slots
of equal length �. Here, the slots on the static segment can be represented as
SST D f1; 2; : : : ; Nsg, where Ns is the number of static slots. Once a static slot
is assigned, if no data is sent in a specific communication cycle, the static slot
will still be occupied. The dynamic segment follows a Flexible Time Division
Multiple Access (FTDMA) approach, where the segment is divided into a number
of mini-slots of equal length ı. A dynamic slot is a logical entity, which can
consist of one or more mini-slots, depending on whether data is sent on the slot
and how much data is sent. Once a dynamic slot is assigned, if no data is sent in
a communication cycle, only one mini-slot is consumed. If data is to be sent, a
number of mini-slots are occupied to accommodate the data. The dynamic slots can
be represented as SDYN D fNs C 1; : : : ; Ns C Nmsg, where Nms is the number of
mini-slots.

The communication cycles are organized as sequences of 64 cycles. In a se-
quence, each communication cycle is indexed by a cycle counter which counts from
0 to 63 and is then set to 0. A FlexRay schedule corresponding to the message fx;i
can be defined as �x;i D .sx;i ; qx;i ; rx;i /, where sx;i represents the slot number, qx;i
represents the base cycle, and rx;i represents the repetition rate. Here, the subscript
x 2 fs; cg where s or c respectively identifies sensor or control message. The
subscript i identifies the control application Ci it constitutes. Here, the repetition
rate rx;i is the number of communication cycles that elapse between two consecutive
transmissions of the same frame and takes the value rx;i 2 f2njn 2 f0; : : : ; 6gg. The
base cycle qx;i is the offset of the cycle counter. The sequence of 64 communication
cycles and some examples of FlexRay schedules are shown in Fig. 37.4. Here, the
FlexRay Version 3.0.1 [3] is considered, where slot multiplexing among different
ECUs is allowed. It means that a particular slot s 2 SST [SDYN can be assigned
to different ECUs in different communication cycles. Further consider all messages
are sent over the static segment of the FlexRay bus, i.e., on the static slots. The
starting and ending time of the kth instance (k 2 Z

�) of the FlexRay schedule �i ,
which are denoted respectively as Nt .�i ; k/ and Qt .�i ; k/, can be defined as

1234 W. Chang et al.

1 2 3 4 5 ...

......

......

......

......

......

0

1

2

3

63

...

Communication Cycle

Static Segment (ST) Dynamic Segment (DYN)

cy
cl

es
slots

........

Θs,1 Θc,1

Ns – 1 Ns + NmsNs

Fig. 37.4 An example of FlexRay schedules

Nt .�x;i ; k/ D qx;iTbus C krx;iTbus C .sx;i 	 1/�;

Qt .�x;i ; k/ D qx;iTbus C krx;iTbus C sx;i�: (37.22)

For FlexRay time-triggered communication, the bus utilization can be defined as
the percentage of bandwidth of the static segment that is allocated to the control
applications. This can be represented as the percentage of static slots allocated to
the control applications in 64 consecutive communication cycles. In this case, the
smaller the value of U , the better is the resource efficiency as more number of slots
can be left vacant for use by other non-control applications. Now, let � denote
the set of all FlexRay schedules allocated to the control applications on the static
segment, where �x;i 2 � ; then the bus utilization U can be defined as

U D
100

64Ns

X
�x;i2�

64

rx;i
; (37.23)

where 64Ns is the total number of static slots in 64 consecutive communication
cycles. Here, rx;i represents the repetition rate of the message fx;i , and therefore, 64

rx;i

represents the number of static slot allocated to the message fx;i in 64 consecutive
communication cycles.

Control performance: Depending on the specific requirements of the control
application, one of the two performance metric discussed in Sect. 37.2.2.1 can
be used. For a specific control application Ci , Ji depends both on the sampling
period hi and the control gains Kaug;i and Faug;i . In both the performance metrics,
smaller value of J implies better control performance. In a system consisting of
multiple control applications with different plant models and performance metrics,

37 Control/Architecture Codesign for Cyber-Physical Systems 1235

it is required to normalize the control performance in order to compare and combine
them. Each control systemCi with control performance Ji must satisfy some control
performance requirement J ri defined by the user. Thus, the control performance can
be normalized as follows:

J ni D
100 � Ji

J ri
(37.24)

and thus the overall control performance of a set of control applications C can be
represented as a weighted sum

Jo D
X
Ci2C

wi J
n
i ; (37.25)

where wi stands for the weight and
P

i wi D 1.

Cooptimization problem: The cooptimization problem boils down to finding a set
of parameters for each Ci 2 C , which can be denoted as pari D f�s;i ; �c;i ; �a;i ; �s;i ;
�c;i ; hi ; Kaug;i ; Faug;i g, while optimizing the total FlexRay bus utilization and the
overall control performance given by Eqs. (37.23) and (37.25), respectively. Here,
the control parameters of Ci can be further defined as parci D fhi ;Kaug;i ; Faug;ig

and similarly the embedded platform parameters as parsi D f�s;i ; �c;i ; �a;i ; �s;i ;
�c;ig, where pari D parsi [par

c
i . The parameter set of the whole system is

represented as P , where pari 2P .

37.3.2 The Codesign Approach

37.3.2.1 Design Flow
Figure 37.5 shows the design flow of the codesign approach. The whole design
process is divided into two stages. In the first stage, for each control application,
possible controllers that optimize the control performance at different sampling
periods are synthesized and the results are recorded in a look-up table. In the second
stage, the cooptimization stage, both the control and the platform parameters are
synthesized based on the constraints, objectives, and the look-up tables obtained
in the first stage. Here, a bi-objective optimization problem is formulated, and
a customized approach is used to generate a Pareto front of the two objectives
considered. In this stage, the fact that the bus utilization objective U can only
take selected discrete values is exploited, and therefore, for each of those values,
a nested two-layered optimization technique is employed to find a feasible set of
parameters that represents a Pareto point and optimizes the control performance or
to prove that a corresponding Pareto point is not possible. Here, Layer 1 tries to find
a set of values of sampling periods corresponding to the set of control applications
such that it can represent a Pareto point and it optimizes the overall system control
performance for a given value of bus utilization. Then, Layer 2 tries to find a

1236 W. Chang et al.

Pareto Front

Generate
Pareto Point Candicate

IF all values of bus
utilization exploredYES

YES

Optimize
Control Performance

IF feasible, not
dominated

Find
Feasible Schedules

IF feasible

Valid Pareto Point
Add to Pareto Front

NO

NO
YES

Not Valid Pareto Point

NO

Return Pareto Front

Layer 2

Layer 1

Controller Design

Co-Optimization

User Selection

Constraints,
Plant Models,
Objectives

Control and Platform
Parameters

Stage 1

Stage 2

Control Performance
Look-up Table

Fig. 37.5 Design flow of the cooptimization approach

feasible schedule set (by solving a constraint programming problem) and control
gains (from the look-up tables) corresponding to the sampling period values of the
control applications determined in Layer 1. The nested two-layered optimization
technique is discussed in further detail in Sect. 37.3.2.4. Based on the Pareto front
thus obtained, the designer can select one set of parameters that is the most suitable
for the overall design requirements. The control design stage and the cooptimization
stage of this approach will be explained in detail in the following sections.

37.3.2.2 Controller Design
Besides the control plant model, the performance Ji of the control application
Ci depends mainly on three factors: (i) the sampling period hi , (ii) the sensor-to-
actuator delay di , and (iii) the control gains Kaug;i and Faug;i . Depending on each
combination of the sampling period and delay, a set of optimal control gains needs to
be designed. Here, consider schedules for the control tasks and the messages leading
to the case where the delay equals to the sampling period, i.e., di D hi . This would
reduce the dimensions of the design space from all three factors (i)–(iii) to only
(i) and (iii), thus reducing the complexity and enhancing the scalability. It should be
noted that this approach can be easily adapted to other cases with a fixed delay value
(e.g., di D Di , where Di is a constant and Di � hi) or a delay value proportional
to the sampling period (e.g., di D hi , where � 1). With di D hi , the closed-
loop system experiences one sampling period delay, and the pole-placement method

37 Control/Architecture Codesign for Cyber-Physical Systems 1237

reported in Sect. 37.2 can be used for such delayed system. To the best of our
knowledge, there is no standard closed-form optimal control design framework that
can be directly applied in such a delayed system. Therefore, the PSO-based optimal
pole-placement technique described in Sect. 37.2.2.2 is employed, which can be
quite computationally costly for higher-order control plants. However, making use
of the fact that the sampling period can only take discrete values, the design
space can be pruned. Since each control application Ci is implemented by the
tasks �s;i , �c;i , and �a;i and messages fs;i , fc;i , there is a dependency between the
sampling period hi and the repetition rate of the messages rs;i , rc;i , which can be
represented as

hi D rs;iTbus D rc;iTbus : (37.26)

Due to the fact that rs;i , rc;i can only take discrete values in f2kjk 2 f0; : : : ; 6gg, the
choice of hi is also constrained to the corresponding discrete values.

Denote the control performance as Ji D f .hi ;Kaug;i ; Faug;i /. Then the control
performance at each discrete value hki D 2kTbus of the sampling period can be
represented as Ji .hki / D g.K

k
aug;i ; F

k
aug;i /. The purpose of the controller design step

is to determine the control gains for each possible value of the sampling period
that optimizes the control performance. Employing the optimal pole-placement
technique, determine the set of control gainsKk�

aug;i , F
k�
aug;i that optimizes the control

performance to Gk�
i at sampling period hki , then represent the optimal control

performance at hki as J �i .h
k
i / D G

k�
i . The control design problem can be translated

into the problem of finding for each discrete value hki , a set of gains Kk�
aug;i , F

k�
aug;i

that optimizes the control performance Ji .hki / to the value of Gk�
i .

After this stage, a look-up table for each control application Ci can be formulated
where for each of the possible sampling period hki an optimal control performance
Gk�
i corresponding to the control gains Kk�

aug;i , F
k�
aug;i can be assigned. In the

cooptimization stage, this set of tables will be used to formulate the objective of
overall control performance.

37.3.2.3 Optimization Problem Formulation
The system constraints for the FlexRay-based ECU system are well studied and
discussed in [23, 29, 35]. Here, we will state the majority of the constraints
formulated there.

(C1) Sampling period constraint: The tasks and messages of a control application
must have the same period of repetition which is also the sampling period of
the system. This constraint can be formulated as

8Ci 2 C ; x 2 fs; c; ag; y 2 fs; cg; Px;i D ry;iTbus D hi : (37.27)

(C2) Data-flow constraint: In a control application, all task executions and
message transmissions must be in correct temporal order, as illustrated in
Fig. 37.3. This can be formulated as set of constraints as

1238 W. Chang et al.

8k 2 Z
�; Ci 2 C ; Qt .�s;i ; k/C � < Nt.�s;i ; k/;

8k 2 Z
�; Ci 2 C ; Qt .�s;i ; k/ < Nt .�c;i ; k/ 	 �;

8k 2 Z
�; Ci 2 C ; Qt .�c;i ; k/C � < Nt .�c;i ; k/;

8k 2 Z
�; Ci 2 C ; Qt .�c;i ; k/ < Nt .�a;i ; k/ 	 �:

(37.28)

(C3) Sensor-to-actuator delay constraint: The constraint stating that the sensor-
to-actuator delay for the control applications is equal to exactly one sampling
period can be formulated as

8k 2 Z
�; Ci 2 C ; Qt .�a;i ; k C 1/ 	 Nt .�s;i ; k/ D hi : (37.29)

(C4) Non-overlapping task constraint: In a time-triggered non-preemptive
scheduling scheme as considered in this paper, when more than one task
is mapped on an ECU, they must be scheduled in such a way that they do not
overlap. This can be formulated as a constraint as

8 Ci ; Cj 2 C ; x; y 2 fs; c; ag; pk 2 P

8 fm 2 Z
�j0 � m < lcm.Px;i ; Py;j /=Px;ig;

fn 2 Z
�j0 � n < lcm.Px;i ; Py;j /=Py;j g

if �x;i ; �y;j 2 Tpk then Qt .�x;i ; m/C � � 1.x 2 fs; cg/ < Nt.�y;j ; n/

	 � � 1.y 2 fc; ag/

or Qt .�y;j ; n/C � � 1.y 2 fs; cg/ < Nt .�x;i ; m/ 	 � � 1.x 2 fc; ag/;
(37.30)

where Tpk denotes the set of all tasks mapped on ECUEk . 1.:/ is the indicator
function and takes the value of 1 if the input is true and 0 if otherwise.

(C5) Nonoverlapping message constraint: FlexRay messages must be scheduled
in such a way that no two messages share the same slot in the same cycle. This
constraint can be established as

8 Ci ; Cj 2 C ; x; y 2 fs; cg

8fn 2 Z
�j0 � n < max.rx;i ; ry;j /=rx;ig;

fm 2 Z
�j0 � m < max.rx;i ; ry;j /=ry;j g;

if sx;i DD sy;j then qx;i C nrx;i ¤ qy;j Cmry;j : (37.31)

(C6) FlexRay scheduling constraint: Taking into consideration the scheduling
constraints imposed by the FlexRay protocol, it is required to constrain sx;i
and qx;i as

37 Control/Architecture Codesign for Cyber-Physical Systems 1239

8 Ci 2 C ; x 2 fs; cg; 1 � sx;i � Ns

8 Ci 2 C ; x 2 fs; cg; 0 � qx;i < rx;i :
(37.32)

In addition, the bus utilization U is constrained by the total number of static
slots available in 64 communication cycles.

U � 100: (37.33)

(C7) ECU scheduling constraint: On ECUs, for task schedules, consider

8 Ci 2 C ; x 2 fs; c; ag; 0 � Ox;i CEx;i < Px;i : (37.34)

Moreover, the ECU load cannot be more than 100%.

8pk 2 P; x 2 fs; c; ag;
X

�x;i2Tpk

Ex;i C � C � � 1.x 2 fcg/

Px;i
� 1:; (37.35)

(C8) Performance constraint: For each control system Ci with sampling period
hi , user specifies a control performance requirement J ri . As mentioned in
Sect. 37.3.2.2, a look-up table for each control system is developed which
contains the performance of seven possible controllers corresponding to seven
possible sampling periods. Therefore, the domain of hi , denoted as domŒhi �
is constrained according to control performance requirement as

8k 2 f0; 1; : : : 6g; J �i .h
k
i / � J

r
i ” hki 2 domŒhi �: (37.36)

Now, let Ji represent the control performance of Ci . Therefore,

hi DD 2
kTbus ” Ji DD J

�
i .h

k
i /: (37.37)

As the objectives for the optimization problem, the overall system control perfor-
mance and the bus utilization are considered.

(O1) Overall system control performance:

Jo D
X
Ci2C

wi J
n
i D

X
Ci2C

wi
X
k

�i;kJ
n�
i .hki /; (37.38)

where �i;k are binary variables satisfying
P

k �i;k D 1 and J n�i .hki /

represents the normalized optimal control performance of Ci at hki , which can
be formulated as

1240 W. Chang et al.

J n�i .hki / D
100J �i .h

k
i /

J ri
: (37.39)

(O2) Bus utilization: The bus utilization in this case can be defined as

U D
100

64Ns

X
Ci2C

�
64

rs;i
C
64

rc;i

�
D

100

64Ns

X
Ci2C

128Tbus

hi
: (37.40)

The value of the bus utilization can only take certain discrete values and is
bounded by the upper and lower limit UC and U�, which can be expressed as

UC D
100

64Ns

X
Ci2C

128Tbus

max
hi2domŒhi �

.hi /
; U� D

100

64Ns

X
Ci2C

128Tbus

min
hi2domŒhi �

.hi /
:

(37.41)

37.3.2.4 Multi-objective Optimization
As discussed above, the control and system codesign of the setting considered
can be formulated as a constrained optimization problem with two objectives,
namely, the bus utilization and overall control performance. In this case, the two
design objectives are noticed to be often conflicting, and therefore, as discussed
in �Chap. 6, “Optimization Strategies in Design Space Exploration”, a much more
informative and designer-friendly cooptimization approach is to first generate a
Pareto front, and let the designer explore the trade-off between the two objectives
according to his customized preference.

�Chapters 6, “Optimization Strategies in Design Space Exploration”, � 7,
“Hybrid Optimization Techniques for System-Level Design Space Exploration”,
and � 9, “Scenario-Based Design Space Exploration” have emphasized on hybrid
optimization techniques to solve such a Design Space Exploration (DSE) problem.
Such techniques depend heavily on problem characteristics, desired accuracy and
scalability, etc. Consequently, for this problem, a customized hybrid optimization
approach as shown in Fig. 37.5 is employed to obtain the desired Pareto front. Since
the objective on bus utilization U is discrete and only takes a limited number of
integers, first compute the maximum and minimum bus utilization UC and U�,
which bound the set of U . For each possible value of U from U� to UC, i.e., given
the equality constraint on U , solve the optimization problem with Jo as the single
objective and obtain a solution. The additional constraint is that Jo of this solution
has to be better than Jo of the last solution (Pareto criterion), in order to ensure that
all solutions are non-dominated. Therefore, the cooptimization problem with two
objectives is turned into a series of single-objective optimization problems, where
each may generate a Pareto point on the Pareto front.

Popular approaches like Mixed Integer Linear Programming (MILP) or meta-
heuristic methods cannot be applied directly to solve each of the single-objective
optimization problems. However, considering that some decision variables only
appear in constraints, but are not related to the objective, a nested two-layered

37 Control/Architecture Codesign for Cyber-Physical Systems 1241

technique is employed to solve each of the problems. On Layer 1, the outer
layer, consider only constraint (C8) and an equality constraint on bus utilization
U translated from (O2), and optimize the (O1). Decision variables related to the
objectives, i.e., the sampling periods, are determined. On Layer 2, the inner layer,
the remaining decision variables are synthesized satisfying the constraints (C1)–
(C7) while substituting the values of sampling periods based on the results of Layer
1. This process is iterative in the way that if the synthesis fails in Layer 2, the
algorithm goes back to Layer 1 for the next best solution until Pareto criterion is
satisfied. This optimization technique ensures optimality and also efficiency.

37.3.3 Case Study

In the case study, five control applications denoted as C D fC1; C2; C3; C4; C5g
are considered. For each of the control applications, a plant model derived from
the automotive domain is used. C1 to C5 represent respectively the DC motor
speed control (DCM), servo motor position control (DCP), the electronic braking
control (EBC), the car suspension (CSS), and the adaptive cruise control (ACC).
The hardware platform consists of three ECUs fE1;E2;E3g connected by FlexRay
bus. Tables 37.1 and 37.2 show the task mappings and FlexRay bus configuration,
respectively.

Figure 37.6 shows the results of the normalized optimal control performance for
each control application as the sampling period increases. The thick red dashed
line in the plot shows the normalized required performance for all the control
applications (i.e., 100%). Only the points below the red line meet the design
requirement for performance, and only these points will be considered in the
following cooptimization stage. The Pareto front of the whole system in the case

Table 37.1 Task mapping ECUs Tasks

E1 �s;1, �c;2, �a;3,

�a;4, �c;5
E2 �a;1, �s;2, �c;3,

�s;4, �s;5
E3 �c;1, �a;2, �s;3,

�c;4, �a;5

Table 37.2 FlexRay bus
configuration

Bus parameters Values

Bus speed 10 Mbps

Tbus 5 ms

N 25

M 237

� 100 ms

ı 10 ms

1242 W. Chang et al.

Sampling Periods in log10 Scale [ms]

4

5 10 20 40 80 160 320

10

100

800

N
or

m
al

iz
ed

 C
on

tr
ol

 p
er

fo
rm

an
ce

 J
in

in
 lo

g 1
0

S
ca

le
 [%

]

DCM
DCP
EBC
CSS
ACC

Ji
r,n

Fig. 37.6 Control performance

5 10 15 20 25 30 35 40

Bus Resource Utilization
[as a % of static slots utilized]

40

45

50

55

60

65

A
ve

ra
ge

 C
on

tr
ol

 P
er

fo
rm

an
ce

[a
s

a
%

 o
f r

eq
ui

re
d

pe
rf

or
m

an
ce

]

Fig. 37.7 Pareto front

study obtained in the cooptimization stage is shown in Fig. 37.7. The value of the
bus utilization ranges from 5:25% to 40% of the bus bandwidth in the static segment.
The value of the control performance varies on an average from 42:92% to 62:54%
of the required value for each control application. It should be noted that for the
control performance defined here, the smaller the value, the better the performance.
It is obvious that there is a large freedom among these viable design points.

37 Control/Architecture Codesign for Cyber-Physical Systems 1243

37.4 Memory-Aware Control/Architecture Codesign

While the memory-aware optimization of embedded software has been discussed
in �Chap. 26, “Memory-Aware Optimization of Embedded Software for Multiple
Objectives”, in this section, how to exploit the instruction cache reuse to improve
the control performance is shown. Given a collection of control applications (e.g.,
C1, C2, C3) on one processing unit, it is conventional to run the control loops of
them in a round-robin fashion (C1, C2, C3, C1, C2, C3, � � �). Since the programs for
different control applications are different, the cache in this process is frequently
refreshed. This results in poor cache reuse and long WCET. In order to address
this issue, a memory-aware sampling order for the control applications can be
applied, using which cache reuse is improved and the WCET of each application is
reduced. In particular, we study a nonuniform sampling scheme, where the control
loop of each application is consecutively run multiple times – in order to increase
the cache reuse – before moving on to the next application (e.g., C1, C1, C1, C2,
C2, C2, C3, C3, C3, � � �). As illustrated in Fig. 37.8, where Ci.j / denotes the j th
execution of the control application Ci , before the first execution Ci.1/, the cache
is either empty (i.e., cold cache) or filled with instructions from other applications
that are not used by Ci (equivalent to cold cache). The WCET of Ci.1/ can be
computed by a number of existing standard techniques [9,37,38]. Before the second
execution Ci.2/, the instructions in the cache are from the same application Ci
and thus can be reused. This results in more cache hits and hence shorter WCET.
Depending on which path the program takes, the amount of WCET reduction varies.
Therefore, a technique is required to compute the guaranteed WCET reduction of
Ci.2/ and Ci.3/, independent of the path taken, which will be presented later in this
section. Control parameters of the systems, such as sampling periods and sensor-to-
actuator delays, are derived from the WCET results. A controller must be tailored
for the memory-aware nonuniform sampling orders, in order to improve the control
performance. In summary, two main techniques are required and explained as

START C1(3)

C2(3)

C1(1) C1(2)

C2(2) C2(1)

C3(3)C3(2)C3(1)

cold cache cache reuse cache reuse

cold cache
cache reusecache reuse

cold cache
cache reuse cache reuse

Fig. 37.8 An example memory-aware sampling order with three applications. Each application is
consecutively executed three times. After the first execution Ci .1/, some instructions in the cache
can be reused, and thus the WCETs of the following two executions are shortened

1244 W. Chang et al.

follows: (i) cache analysis to compute the guaranteed WCET reduction between two
consecutive executions of one program and (ii) controller design for the nonuniform
sampling.

37.4.1 Cache Analysis for Consecutive Executions of a Control
Application

As discussed in Sect. 37.1, a two-level memory hierarchy – cache and main
memory – is considered. More information about the memory architecture can be
found in �Chap. 13, “Memory Architectures”. There are Nc cache lines, denoted
as CL D fc0; c1; : : : ; cNc�1g, and the main memory has Nm blocks, denoted as
M D fm0;m1; : : : ; mNm�1g. Each memory block is mapped to a fixed cache line.
An example is shown in Fig. 37.9 for the illustration purpose, where there are four
cache lines and five memory blocks. A basic block is a straight-line sequence of code
with only one entry point and one exit point. This restriction makes a basic block

Entry

b1 :

Exit

c3

�

�

� � � �

� � �

� � �

m4

b3 : m4

m2

m2

m3

m3

m3

m1,m2,m3

m2m1m0

m0

c3

c3

c2c1c0

c0 c1 c2 c3

m4

m0

m0 m1 m2

m2 m3

m3

m3

b2 : m2,m3

b0 : m0

m2m0

m0

c0

c0

c0
c0 c3c2c1

c1

c1

c1

c1c0

c2

c2

c2

c2

c3

c3

c3

m1

�

RCSIN
b0

RCSIN
b2

RCSIN
b3

RCSOUT
b2

RCSOUT
b3

RCSOUT
b1

RCSIN
b1

Fig. 37.9 A motivational example for cache analysis. Five memory blocks are mapped to four
cache lines. Memory blocks executed by each basic block are shown. RCSIN and RCSOUT in
the initialization phase are illustrated

37 Control/Architecture Codesign for Cyber-Physical Systems 1245

highly amenable for program analysis. The presented Control-Flow Graph (CFG) in
Fig. 37.9, consisting of four basic blocks B D fb0; b1; b2; b3g, has all the three key
elements of a control program, i.e., sequential basic blocks, branches, and a loop.
Therefore, it is suitable for illustrating our cache analysis technique.

There are three key terms in cache analysis that are described as follows:

• Cache States: A cache state cs is described as a vector of Nc elements. Each
element csŒi �, where i 2 f0; 1; : : : ; Nc 	 1g, represents the memory block in
the cache line ci . When the cache line ci holds the memory block mj , where
j 2 f0; 1; : : : ; Nm 	 1g, csŒi � D mj . If ci is empty, it is denoted as csŒi � D ?. If
the memory block in ci is unknown, it is denoted as csŒi � D >. CS is the set of
all possible cache states.

• Reaching Cache States (RCS): RCS of a basic block bk , denoted as RCSbk , is
the set of all possible cache states when bk is reached via any incoming path.

• Live Cache States (LCS): LCS of a basic block bk , denoted as LCSbk , is the
set of all possible first memory references to cache lines at bk via any outgoing
path.

Since our focus is on WCET reduction between two consecutive executions of
Ci , it is necessary to compute RCS of the exit point in the first execution of
Ci and LCS of the entry point in the second execution of Ci . By comparing all
possible pairs of cache states, the guaranteed number of cache hits, and thus WCET
reduction can be calculated. In the following, computation of RCS and LCS is firstly
discussed.

In RCS computation, genbk is firstly defined as the cache state describing the last
executed memory block in every cache line for the basic block bk . Assuming that b0
in Fig. 37.9 executes m0 and then m4, instead of only m0, the last executed memory
block in c0 is m4. Therefore, genb0 is Œm4;?;?;?�. For the example in Fig. 37.9,

genb0 D Œm0;?;?;?�; genb1 D Œ?; m1;m2;m3�;

genb2 D Œ?;?; m2;m3�; genb3 D Œm4;?;?;?�:
(37.42)

There are two equations involved in the RCS computation that calculateRCSIN and
RCSOUT , where RCSIN of a basic block bk is the RCS before bk is executed and
RCSOUT is the set of all possible cache states after bk is executed. First, RCSOUTbk

can be calculated from RCSINbk as

RCSOUTbk
D fT .bk; cs/jcs 2 RCS

IN
bk
g; (37.43)

where T is a transfer function defined as follows: For any cache state cs 2 CS and
basic block bk 2 B , there is a cache state cs0 D T .bk; cs/, where for any cache
line ci 2 CL and i 2 f0; 1; : : : ; Nc 	 1g,

1246 W. Chang et al.

Table 37.3 RCS computation for the motivational example

Basic block RCSIN RCSOUT

Initialization

b0 fŒ>;>;>;>�g fŒm0;>;>;>�g

b1 fŒm0;>;>;>�g fŒm0;m1;m2;m3�g

b2 fŒm0;>;>;>�g fŒm0;>; m2;m3�g

b3 fŒm0;m1;m2;m3�; Œm0;>; m2;m3�g fŒm4;m1;m2;m3�; Œm4;>; m2;

m3�g

Fixed-point

b0 fŒ>;>;>;>�g fŒm0;>;>;>�g

b1 fŒm0;>;>;>�; Œm0;m1;m2;m3�g fŒm0;m1;m2;m3�g

b2 fŒm0;>;>;>�g fŒm0;>; m2;m3�g

b3 fŒm0;m1;m2;m3�; Œm0;>; m2;m3�g fŒm4;m1;m2;m3�; Œm4;>; m2;

m3�g

cs0Œi � D

�
csŒi � W if genbk Œi � D ?I

genbk Œi � W otherwise:
(37.44)

RCSINbk can be calculated as

RCSINbk D
[

p2predecessor.bk/

RCSOUTp ; (37.45)

where predecessor.bk/ is the set of all immediate predecessors of bk .
The RCS computation is composed of two phases: initialization and fixed-point

computation. As illustrated with the example in Fig. 37.9, the initialization phase
starts from the entry basic block b0 with RCSINb0 D fŒ>;>;>;>�g. The element is
> since our analysis is independent of the program executed before b0. According
to (37.43), RCSOUTb0

is calculated to be fŒm0;>;>;>�g. Since b0 is the only
immediate predecessor of b2, RCSINb2 is equal to RCSOUTb0

based on (37.45). Due
to the self-loop, b1 has both itself and b0 as immediate predecessors. However, since
RCSOUTb1

has not been initialized yet, RCSINb1 is equal to RCSOUTb0
. In the same

manner, RCSOUTb1
, RCSOUTb2

, RCSINb3 , and RCSOUTb3
can be computed, following

the program flow as shown both in Fig. 37.9 and Table 37.3. The initialization phase
is completed once all basic blocks have been visited. The next phase is fixed-point
computation. RCSIN and RCSOUT of all basic blocks are computed iteratively
with (37.45) and (37.43). This phase is terminated once the fixed point is reached,
i.e., RCSIN and RCSOUT of all basic blocks remain unchanged. Let the program
RCS be the RCSOUT of the exit basic block, i.e., RCS D RCSOUTb3

. Results are
reported in Table 37.3.

The LCS computation can be done in a similar fashion. genbk is defined as
the cache state describing the first executed memory block in every cache line
for the basic block bk . Taking the same assumption when defining genbk for RCS
computation that b0 in Fig. 37.9 executes m0 and then m4, instead of only m0, the

37 Control/Architecture Codesign for Cyber-Physical Systems 1247

Table 37.4 LCS computation for the motivational example

Basic block LCSIN LCSOUT

Initialization

b3 fŒ>;>;>;>�g fŒm4;>;>;>�g

b2 fŒm4;>;>;>�g fŒm4;>; m2;m3�g

b1 fŒm4;>;>;>�g fŒm4;m1;m2;m3�g

b0 fŒm4;m1;m2;m3�; Œm4;>; m2;m3�g fŒm0;m1;m2;m3�; Œm0;>; m2;

m3�g

Fixed-point

b3 fŒ>;>;>;>�g fŒm4;>;>;>�g

b2 fŒm4;>;>;>�g fŒm4;>; m2;m3�g

b1 fŒm4;>;>;>�; Œm4;m1;m2;m3�g fŒm4;m1;m2;m3�g

b0 fŒm4;m1;m2;m3�; Œm4;>; m2;m3�g fŒm0;m1;m2;m3�; Œm0;>; m2;

m3�g

first executed memory block in c0 ism0. Therefore, genb0 is Œm0;?;?;?�. LCSIN

of a basic block bk is the LCS after bk is executed and can be derived from

LCSINbk D
[

s2successor.bk/

LCSOUTs ; (37.46)

where successor.bk/ is the set of all immediate successors of bk . LCSOUT of bk
is the LCS before bk is executed with

LCSOUTbk
D fT .bk; cs/jcs 2 LCS

IN
bk
g: (37.47)

LCS computation also comprises two phases of initialization and fixed-point
computation. The only difference is that the initialization phase starts from the exit
basic block and ends in the entry basic block. Detailed results for the motivational
example are reported in Table 37.4. Let the program LCS be the LCSOUT of the
entry basic block, i.e., LCS D LCSOUTb0

. It is noted that since the presented cache
analysis technique is based on the fixed-point computation over the program CFG,
it inherently handles loop structures in the CFG.

Conceptually, the program RCS is the set of all possible cache states after the
program finishes execution by any execution path, and the program LCS is the set of
all cache states, where each cache state contains memory blocks that may be firstly
referenced after the program starts execution, for any execution path to follow. Both
RCS and LCS could contain multiple cache states. Each pair with one cache state
cs from the program RCS and one cache state cs0 from the program LCS represents
one possible execution path between the two consecutive executions. For any cache
line ci in a pair, if csŒi � is equal to cs0Œi � and they are not equal to >, then there
is certainly a hit and thus WCET reduction. Whether there is a hit for a particular
cache line can be determined by the function H defined as follows:
8cs 2 CS , cs0 2 CS and ci 2 CL, where i 2 f0; 1; : : : ; Nc 	 1g,

1248 W. Chang et al.

H .cs; cs0; ci / D

�
1 W if csŒi � D cs0Œi � ^ csŒi � ¤ ?I

0 W otherwise:
(37.48)

The number of hits can be counted with the function H T defined as
8cs 2 CS and cs0 2 CS ,

H T .cs; cs0/ D

Nc�1X
iD0

H .cs; cs0; ci /: (37.49)

The guaranteed number of hits among all possibilities is calculated as

G .RCS;LCS/ D min
cs2RCS;cs02LCS

.H T .cs; cs0//: (37.50)

Given that the main memory access time and the cache access time are respectively
tm and tc , the guaranteed WCET reduction is computed as

NEg D G .RCS;LCS/ � .tm 	 tc/

� G .RCS;LCS/ � tm;
(37.51)

where the approximation can be taken if tc
 tm.
For the motivational example, there are two cache states in RCS (RCSOUTb3

) and
two cache states in LCS (LCSOUTb0

). In total, there are four pairs, and the number
of hits is calculated to be 3, 2, 2, and 2 with (37.49). Taking one of them as an
example, H T .Œm4;m1;m2;m3�; Œm0;m1;m2;m3�/ D 3. Therefore, the guaranteed
number of hits is 2 according to (37.50), no matter which path the program takes.
From (37.51), the guaranteed WCET reduction is 2 � .tm 	 tc/, or approximately
2 � tm, when tc
 tm. It is noted that this result is obtained from the small example
used for illustration. More WCET reduction for larger realistic programs can be
expected.

Note that the direct-mapped cache (i.e., one-way set-associative cache) is as-
sumed in Fig. 37.9. The presented technique can be adapted to handle set-associative
cache. For example, considering fully associative cache, when computingRCSOUTb3

from RCSINb3 , the memory block m4 can be loaded to any cache line, which
gives RCSOUTb3

five more cache states, i.e., Œm0;m4;m2;m3�, Œm0;m1;m4;m3�,
Œm0;>; m4;m3�, Œm0;m1;m2;m4�, and Œm0;>; m2;m4�. From this, it can be ob-
served that the number of cache states in RCS and LCS is larger for set-associative
cache, which means that the guaranteed WCET reduction could be smaller. Details
can be found in [27]. Using the cache analysis technique presented in this section,
together with standard WCET analysis approaches, the effective WCET of Ci.2/
and subsequent executions of Ci can be derived. Shorter WCET leads to smaller
sampling period of the control system, which will be shown next.

37 Control/Architecture Codesign for Cyber-Physical Systems 1249

37.4.2 Control Parameter Derivation

We explore the relationship between WCET results and control parameters of two
example sampling schemes. S1 is the conventional memory-oblivious scheme and
summarized as follows:

C1.1/! C2.1/! C3.1/! C1.2/! C2.2/!

C3.2/! C1.3/! C2.3/! C3.3/! � � � :
(37.52)

There is no cache reuse in S1 in the worst case, considering that different control
applications typically have different instructions to execute. In other words, when
Ci.j / starts execution, all instructions of Ci need to be brought into the cache from
the main memory. Therefore,

Ewc
i .1/ D E

wc
i .2/ D � � � D E

wc
i ; (37.53)

where Ewc
i .j / is the WCET of the j th execution for Ci . The WCET of the

application Ci is denoted by Ewc
i , since all executions of the same application have

equal WCET. Clearly, all control applications run with a uniform sampling period
of

h D
X
iD1;2;3

Ewc
i : (37.54)

Moreover, the sensor-to-actuator delay, which is defined to be the duration between
measuring the system state x.t/ and applying the control input u.t/, is given by

di D E
wc
i : (37.55)

It can be seen that a safe estimation of WCET, which can be done with standard
static analysis techniques [37], is very important. If the actual execution time is
longer than the computed WCET, the correct control input will not be ready when
the actuation is supposed to occur. The consequence could be severe degradation
of control performance. This is not acceptable especially for safety-critical control
applications.

S2 is an example of memory-aware sampling order as shown in Fig. 37.8:

C1.1/! C1.2/! C1.3/! C2.1/! C2.2/!

C2.3/! C3.1/! C3.2/! C3.3/! � � � :
(37.56)

The effective WCET taking into account the cache reuse is denoted with NEwc
i .j /.

From the above discussion,
8i 2 f1; 2; 3g;

1250 W. Chang et al.

NEwc
i .1/ D E

wc
i ; (37.57)

since there is no cache reuse for the first execution of every application Ci.1/.
NEwc
i .2/ and NEwc

i .3/ are shorter than NEwc
i .1/ due to cache reuse. The amounts of

cache reuse are the same for Ci.2/ and Ci.3/ in the worst case. Denoting the
guaranteed WCET reduction as NEg

i ,
8i 2 f1; 2; 3g;

NEwc
i .2/ D

NEwc
i .3/ D

NEwc
i .1/ 	

NE
g
i : (37.58)

From these varying WCETs, the sampling periods of all three applications can be
calculated. Taking C1 as an example, there are three sampling periods h1.1/, h1.2/,
and h1.3/, which repeat themselves periodically:

h1.1/ D NE
wc
1 .1/; h1.2/ D

NEwc
1 .2/; h1.3/ D

NEwc
1 .3/C�; (37.59)

where � is computed as

� D
X
iD2;3

X
jD1;2;3

NEwc
i .j /: (37.60)

Similar derivation can be done for C2 and C3. The average sampling period of an
application havg is

havg D

P
iD1;2;3

P
jD1;2;3

NEwc
i .j /

3
< h: (37.61)

According to (37.57) and (37.58),

havg <

P
iD1;2;3

3 �Ewc
i

3
: (37.62)

From (37.54),

havg < h: (37.63)

Moreover, the corresponding sensor-to-actuator delay di .j / also varies with cache
reuse as
8i 2 f1; 2; 3g;

di .1/ D hi .1/ D NE
wc
i .1/; di .2/ D hi .2/ D

NEwc
i .2/; di .3/ D

NEwc
i .3/:

(37.64)

37 Control/Architecture Codesign for Cyber-Physical Systems 1251

As all control parameters have been derived, it can be observed that the sampling
period hi .j / of a control application is nonuniform for the memory-aware scheme.
The average sampling period of S2 is shorter than the uniform sampling period
of S1 as shown in (37.61), due to WCET reduction resulting from cache reuse. The
sensor-to-actuator delay di .j / varies as shown in (37.64). The next task is to develop
a controller design method to exploit shortened nonuniform sampling periods and
achieve better control performance. For the uniform sampling scheme, the sensor-
to-actuator delay di is shorter than the sampling period h. Therefore, the technique
reported in Sect. 37.2 is used. Details of the controller design technique considering
the nonuniform sampling are reported in the next section.

37.4.3 Case Study

Here a commonly used processing unit, equipped with a processor, on-chip memory
as cache and flash as main memory is considered, shown in Fig. 37.1 More about
the flash memory has been discussed in �Chap. 14, “Emerging and Nonvolatile
Memory”. As a case study, three control applications are considered. C1 is position
control of a servo motor. C2 is speed control of a DC motor. C3 is control of
an electronic wedge brake system. All three control applications run on the same
processor. The processor clock frequency is 20MHz. The cache is set to have 128
cache lines and each cache line is 16 bytes. When there is a cache hit, it takes 1
clock cycle to fetch the instruction, and when there is a cache miss, it takes 100
clock cycles. WCET results are reported in Table 37.5. Sampling periods of the two
sampling orders S1 and S2 are shown in Table 37.6. Control performances of three
applications under S1 and S2 are presented in Table 37.7, where the settling time
is taken as the performance metric. As an example, the system output responses of
C1 under both S1 and S2 are presented in Fig. 37.10. The control task considered
is to change the system output (i.e., the angular position of the servo motor) from
0 to 0.3 rad. From the above experimental results, it can be clearly seen that the

Table 37.5 WCET results with and without cache reuse for all three control applications

Application WCET without cache reuse WCET with cache reuse Reduction percentage

C1 907:55�s 452:15�s 50:18%

C2 645:25�s 175:00�s 72:88%

C3 749:15�s 234:35�s 68:72%

Table 37.6 Comparison of sampling periods between S1 and S2 for all three control applications.
The reduction percentage is computed according to the average sampling period

Application Sampling periods in S1 Sampling periods in S2 Reduction percentage

C1 2302�s 452�s – 452�s – 3121�s 42%

C2 2302�s 175�s – 175�s – 3675�s 42%

C3 2302�s 234�s – 234�s – 3557�s 42%

1252 W. Chang et al.

Table 37.7 Control performances for all three applications under S1 and S2

Application C1 C2 C3

Settling time for S1 31:2ms 26:8ms 25:2ms

Settling time for S2 21:5ms 21:1ms 20:4ms

Control performance improvement of S2 compared to S1 31:1% 21:3% 19:0%

0 1 1 2 2 3 3 4 4

·10−2

0.3

0.2

0.1

0

Time [s]

Sy
st

em
O

ut
pu

t y
[k

]
[r

ad
]

Memory-Oblivious Sampling Order S1
Memory-Aware Sampling Order S2

Fig. 37.10 Control system output of C1 under S1 and S2

memory-aware sampling order reduces the WCETs and sampling periods. With the
controller design method tailored for nonuniform sampling, control performances
are significantly improved.

37.5 Computation-Aware Control/Architecture Codesign

In this section, we show how to use a multirate controller to reduce the processor
utilization of a control application, while still fulfilling the control performance
requirement and system constraints. More information about the application-
specific processors can be found in �Chap. 12, “Application-Specific Processors”.

37.5.1 Time-Triggered Operating System

As an example, ERCOSek with the OSEK/VDX standard [1] is considered, which
specifies the basic properties of an OS to be used in the automotive domain.
In general, as an OSEK/VDX OS, ERCOSek supports preemptive fixed-priority
scheduling. That is, priorities are assigned to applications, and at any point in time,
the task with the highest priority among all active ones is executed. On ERCOSek,
tasks can be triggered by events (e.g., interrupts, alarms, etc.) or by time. In the
time-triggered scheme, each application gets released and is allowed to access
the processor periodically. There are various periods of release times and each
application is assigned one. Every time an application is released, its task gets the
chance to be executed. A time table containing all the periodic release times within

37 Control/Architecture Codesign for Cyber-Physical Systems 1253

Table 37.8 Example of an
ERCOSek time table

Time Release

0 ms Applications with periods of 2 ms/5 ms/10 ms

2 ms Applications with the period of 2 ms

4 ms Applications with the period of 2 ms

5 ms Applications with the period of 5 ms

6 ms Applications with the period of 2 ms

8 ms Applications with the period of 2 ms

10 ms Repeat actions at 0 ms

5ms
Sampling

2ms
Sampling

0

0 5 10 15 20

0 10 20

2 4 6 8 10 12 14 16 18 20

...

...

...
ms

10ms
Sampling

Allowed switching among 2ms, 5ms and 10ms

Fig. 37.11 Allowed switching instants among multiple sampling periods

the alleged hyperperiod (i.e., the minimum common multiple of all periods) needs to
be configured. An example with a set of three periods 2, 5, and 10 ms is illustrated in
Table 37.8. The hyperperiod is equal to 10 ms and the time table repeats itself every
10 ms by resetting the timer. Independent of the triggering mode (i.e., be it event
or time triggered), the assigned priority will still determine the execution order of
tasks. In the time-triggered scheme, a higher priority is typically assigned to the
application released with a shorter period, since this generally results in a more
efficient use of the processor.

Assuming the set of available periods restricted by ERCOSek to be �, control
applications have to be sampled with one period or a combination of multiple
periods from �. In the latter case, switching between two sampling periods can only
occur at the common multiplier of them, as illustrated in Fig. 37.11, considering
three sampling periods 2, 5, and 10 ms. Often, the optimal sampling period for a
control application does not belong to the set �. The simple and straightforward
method used in practice is to select the largest sampling period in � that is smaller
than the optimal one. This results in a higher processor load, which is another
important design aspect. Denoting Ewc

i to be the WCET of a control application
Ci , if the uniform sampling period is T , the processor load for Ci is

Li D
Ewc
i

T
: (37.65)

1254 W. Chang et al.

The upper bound on the load of any processor is 1. Considering a single processor p,

X
fi jCi runs onpg

Li � 1: (37.66)

Clearly, increasing the sampling period of a control application decreases its
processor load and thus potentially enables more applications to be integrated on
the processor.

37.5.2 Multirate Closed-Loop Dynamics

We consider a multirate controller switching between multiple sampling periods in
�, toward achieving an average sampling period close to the optimal one. The cyclic
sequence of sampling periods for a control application defines a schedule S :

S D fT1; T2; T3; : : : ; TN g; (37.67)

where 8j 2 f1; 2; : : : ; N g; Tj 2 �. It implies the sequence of sampling periods as

T1 ! T2 ! � � � ! TN ! T1 ! T2 ! � � � ! TN ! repeat

Following the assumption in (37.65) that the WCET of Ci isEwc
i , the processor load

for Ci over S is

Li D
NEwc

i

NP
jD1

Tj

: (37.68)

Dictated by the schedule S , N systems switch cyclically in a deterministic fashion.
When the sampling period tkC1 	 tk D Tk;j , the dynamics is

xŒk C 1� D Ad.Tk;j /xŒk�C Bd.Tk;j /Kj xŒk�C Bd.Tk;j /Fj r: (37.69)

The controller design needs to be performance oriented, and the key is to compute
the feedback gain Kj for each system with pole placement, based on which the
static feedforward gain Fj can be derived with (37.10).

Referring to Fig. 37.12, after the first sampling interval of a switching cycle,

xŒk C 1� D Ad.Tk;1/xŒk�C Bd.Tk;1/ OK1xŒk�C Bd.Tk;1/F1r: (37.70)

It is noted that K1 is the feedback gain based on the most recent system state xŒk�
and used to compute the control input. OK1 is the equivalent feedback gain based
on the starting system state xŒk� of a switching cycle. In this case that only one

37 Control/Architecture Codesign for Cyber-Physical Systems 1255

Repeat

A switching cycle

Tk,NTk,2Tk,1

tk tk+1 tk+2Sampling Instants:

Sampling Periods:

x[k+N − 1]

tk+N − 1 tk+N
Feedback State:

x[k+N]x[k]x[k]x[k]x[k]

x[k] x[k + 1] x[k + 2] x[k+N]

Feedback State:

(K1,F1)(KN,FN)(K3,F3)(K2,F2)(K1,F1)Controller Gain:

K̂2 K̂3 K̂N K̂1K̂1
Controller Gain:

Fig. 37.12 Cyclically switched linear systems

sampling period is considered, OK1 D K1. The feedforward gain F1, which is related
toK1, is also based on the most recent system state and used to compute the control
input. The closed-loop system matrix is denoted as Acl;1 and

Acl;1 D Ad.Tk;1/C Bd.Tk;1/ OK1: (37.71)

OK1 can be designed by pole placement. Poles to place are eigenvalues of Acl;1. F1
is computed as per (37.10).

After the second sampling interval,

xŒk C 2� D Ad.Tk;2/xŒk C 1�C Bd.Tk;2/K2xŒk C 1�C Bd.Tk;2/F2r: (37.72)

To consider the overall dynamics of the first two sampling periods, the relation
between xŒk C 2� and xŒk� can be derived as

xŒk C 2� D Ad.Tk;2/Acl;1xŒk�C Bd.Tk;2/K2Acl;1xŒk�

C .Ad .Tk;2/C Bd.Tk;2/K2/Bd .Tk;1/F1r C Bd.Tk;2/F2r:
(37.73)

Let

OK2 D K2Acl;1; (37.74)

and (37.73) becomes

xŒk C 2� D Ad.Tk;2/Acl;1xŒk�C Bd.Tk;2/ OK2xŒk�

C .Ad .Tk;2/C Bd.Tk;2/K2/Bd .Tk;1/F1r C Bd.Tk;2/F2r:
(37.75)

Similar to (37.71),

Acl;2 D Ad.Tk;2/Acl;1 C Bd.Tk;2/ OK2: (37.76)

1256 W. Chang et al.

It is noted that (37.75) has the same form as (37.70). OK2 can be designed by pole
placement and K2 is derived with (37.74), as long as Acl;1 is non-singular. Poles to
place are eigenvalues of Acl;2. F2 is computed as per (37.10). Continuing the above
analysis,
8j 2 f1; 2; : : : ; N g

Acl;j D Ad.Tk;j /Acl;j�1 C Bd.Tk;j / OKj ; (37.77)

and Acl;0 D I can be defined. OKj can be designed by pole placement. Poles to place
are eigenvalues of Acl;j . As long as Acl;j�1 is non-singular, Kj is derived by

Kj D OKjA
�1
cl;j�1: (37.78)

Fj is computed as per (37.10).
Here the sensor-to-actuator delay is approximately equal to the WCET of the

executed control program. Since the control law is computed during the design
phase, such a control program generally has a short WCET. The sensor-to-actuator
delay is often negligible compared to the sampling periods given by the OS. In
general, when the sensor-to-actuator delay of a control task is large compared to
the sampling periods (e.g., in the memory-aware controller design of Sect. 37.4,
where the sampling periods are directly constrained by WCETs), our proposed
controller design technique can be extended to consider the delayed control input
with a number of methods reported in the literature [24].

An optimization problem for the pole placement can be formulated as presented
in Sect. 37.2.2.2. The number of dimensions in the decision space is nN – the
number of states of the application multiplied by the number of sampling periods in
the schedule. The optimization objective is the settling time. Absolute values of all
poles have to be less than unity to ensure system stability and larger than 0 to make
all Acl;j non-singular.

Optimization strategies for design space exploration have been discussed in
�Chap. 6, “Optimization Strategies in Design Space Exploration”. In this section,
to solve one optimization problem, the PSO algorithm is run multiple times with the
same number of particles, and we do not set the limit on the number of iterations.
If the objective value variation of the solution points from these runs exceeds a
certain threshold (e.g., 1%), the number of particles is increased. Considering the
stochastic nature of PSO, it is very likely that the optimal point has been found
when multiple runs generate similar objective values. It is noted that if the number
of sampling periods in the schedule is very large, which makes the number of
dimensions in the decision space very large, this method aiming to ensure optimality
can be computationally expensive. In this case, the number of particles and iterations
has to be limited, resulting in a compromise in optimality.

37 Control/Architecture Codesign for Cyber-Physical Systems 1257

Table 37.9 Settling times of three schedules

Schedule Settling time [ms] Requirement

S1 D f5 msg 253:69 Violated

S2 D f2 msg 110:44 Satisfied

S3 D f2 ms; 2 ms; 2 ms; 2 ms; 2 ms; 5 ms; 5 msg 128.6 ms Satisfied

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

1

2
·10−3

Time [s]

Sy
st

em
O

ut
pu

ty
[k

][
m

]

Schedule S1 = {5ms}
Schedule S2 = {2ms}
Schedule S3 = {2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms}

Fig. 37.13 System outputs of different schedules

37.5.3 Case Study

The presented multirate controller design technique is evaluated with an Electro-
Mechanical Brake (EMB) system used in automobiles. It can be modeled as (37.1)
with five system states. The control input is the voltage output of the onboard
battery and thus cannot exceed 12 V. Different controllers require different battery
voltage output profiles, and only those that respect the input constraint are possible
to implement. The constraint on the settling time is 150 ms. In the optimization,
the settling time is still treated as the objective to minimize and check the optimal
solution against this requirement. The WCET of the control program is 0.2 ms. The
control task is to change the system output (i.e., the position of the lever) from 0 to
2 mm. The set of available sampling periods offered by ERCOSek is

� D f1 ms; 2 ms; 5 ms; 10 ms; 20 ms; 50 ms; 100 ms; 200 ms; 500 ms; 1 sg:
(37.79)

As shown in Table 37.9 and Fig. 37.13, the schedule S1 D f5msg cannot meet the
settling time requirement. The largest sampling period smaller than 5 ms in � is
2 ms. The schedule S2 D f2 msg is able to fulfill all the requirements. According
to (37.65), the processor load of S2 is 0:1. Then a schedule switching between
2 ms and 5 ms is considered, S3 D f2 ms; 2 ms; 2 ms; 2 ms; 2 ms; 5 ms; 5 msg. This
sequence of sampling periods satisfies the OS requirement. The multirate controller
is designed as discussed earlier in this section. The WCET (0.2 ms) is much shorter
than the sampling periods (2 ms, 5 ms), and thus we neglect the sensor-to-actuator

1258 W. Chang et al.

delay. S3 has a slightly longer settling time than S2, but still fulfills the requirement.
According to (37.68), the processor load is 0:07, achieving a 30% reduction
compared to S2.

37.6 Conclusion

In this chapter, a basic introduction into the subject of control/architecture codesign
in the context of cyber-physical systems is provided. The control/architecture
codesign is an emerging field of research, where the design of control parameters
and embedded platform parameters are integrated in a holistic approach to reduce
conservativeness and achieve more efficient design of embedded control systems.
As the size and the complexity of the cyber-physical systems increase, resource-
efficient design has become one of the most important aspects in this context. In
this chapter, the motivation is firstly explained, and some basic concepts of the
control/architecture codesign are introduced. In addition, a brief summary on the
type of resources that can be considered in the codesign approaches is provided.
Then three examples of state-of-art codesign approaches, targeting respectively
at communication-aware design, memory-aware design, and computation-aware
design, are used to illustrate the basic thinking behind the control/architecture
codesign. In Sect. 37.3, a cooptimization framework is explained to codesign control
and platform parameters by solving a constraint-based multi-objective optimization
problem. This framework considers two objectives, namely, the resource utilization
and the overall control performance, and generates a Pareto front depicting the trade-
off options between the two objectives. In Sect. 37.4, how to exploit the instruction
cache reuse in a memory-aware sampling order to improve the control performance
is shown. Cache analysis is used to compute the guaranteed WCET reduction
between two consecutive executions of one control program. Control parameters
are derived based on the WCET results. The controller design is tailored for the
nonuniform sampling scheme. In Sect. 37.5, the OS constraint that only a limited
set of sampling periods are provided is considered. It is shown how a multirate
controller is used to reduce the processor utilization of a control application, while
still fulfilling the control performance requirement and system constraints. The
control/architecture codesign is, of course, a relatively new and open research field,
and thus the state-of-art approaches are certainly not limited to the ones shown in
this chapter. There are also some other research directions in this context that can be
explored. For example, power consumption is quite an important design factor, and
thus power-aware codesign methods could potentially lead to more power-efficient
designs. Furthermore, safety and fault tolerance are also important factors in cyber-
physical systems which can also be considered in codesign methods. In addition, the
three approaches shown in this chapter address individually a single resource. If the
complexity of the problem due to many design dimensions can be tackled, it would
be interesting to try to address simultaneous two or more resources in the codesign
and thus offer an even greater freedom for design trade-offs.

37 Control/Architecture Codesign for Cyber-Physical Systems 1259

References

1. OSEK/VDX operating system specification 2.2.3 (2005)
2. 664P7-1 aircraft data network, part 7, avionics full-duplex switched Ethernet network (2009)
3. The FlexRay communications system protocol specification, Version 3.0.1 (2010)
4. LIN specification package revision 2.2A (2010)
5. MOST specification rev. 3.0 E2 (2010)
6. AS6802 (2011) Time-triggered Ethernet
7. Infineon Product Brief XC2300B – Series (Accessed 12 May 2016). http://www.infineon.com/

dgdl/Pb_XC2300B.pdf?fileId=db3a30432a7fedfc012ab3c3d7863706
8. Ackermann J, Utkin VI (1994) Sliding mode control design based on Ackermann’s formula.

In: Proceedings of the 33rd IEEE conference on decision and control, vol 4, Lake Buena Vista,
pp 3622–3627. doi:10.1109/CDC.1994.411715

9. Andalam S, Sinha R, Roop P, Girault A, Reineke J (2013) Precise timing analysis for
direct-mapped caches. In: 2013 50th ACM/EDAC/IEEE design automation conference (DAC),
Austin, pp 1–10. doi:10.1145/2463209.2488917

10. Astrom KJ, Murray RM (2008) Feedback systems: an introduction for scientists and engineers.
Princeton University Press, Princeton

11. Batcher KW, Walker RA (2008) Dynamic round-robin task scheduling to reduce cache misses
for embedded systems. In: 2008 Design, automation and test in Europe, Munich, pp 260–263.
doi:10.1109/DATE.2008.4484893

12. Bhave AY, Krogh BH (2008) Performance bounds on state-feedback controllers with network
delay. In: 47th IEEE conference on decision and control, CDC 2008, Cancun, pp 4608–4613.
doi:10.1109/CDC.2008.4739330

13. Bosch (1991) CAN Specification version 2.0. Stuttgart, Bosch
14. Castane R, Marti P, Velasco M, Cervin A, Henriksson D (2006) Resource management for

control tasks based on the transient dynamics of closed-loop systems. In: 18th Euromicro con-
ference on real-time systems (ECRTS’06), Dresden, pp 10, 182. doi:10.1109/ECRTS.2006.24

15. Cervin A, Velasco M, Marti P, Camacho A (2009) Optimal on-line sampling period assignment.
Research report, Lund University and Technical University of Catalonia

16. Chang W, Chakraborty S (2016) Resource-aware automotive control systems design: a cyber-
physical systems approach. Found Trends c� Electron Design Autom 10(4):249–369. http://dx.
doi.org/10.1561/1000000045

17. Charette RN (2009) This car runs on code. IEEE Spectrum. http://spectrum.ieee.org/
transportation/systems/this-car-runs-on-code

18. eCos. http://ecos.sourceware.org
19. Feiler PH (2003) Real-time application development with OSEK: a review of the OSEK

standards. Technical report, Carnegie Mellon University
20. Gaid MEMB, Cela A, Hamam Y (2006) Optimal integrated control and scheduling of

networked control systems with communication constraints: application to a car suspension
system. IEEE Trans Control Syst Technol 14(4):776–787. doi:10.1109/TCST.2006.872504

21. Gaid MEMB, Cela A, Hamam Y, Ionete C (2006) Optimal scheduling of control tasks
with state feedback resource allocation. In: 2006 American control conference, Minneapolis,
pp 310–315. doi:10.1109/ACC.2006.1655373

22. Gloy N, Smith MD (1999) Procedure placement using temporal-ordering information. ACM
Trans Program Lang Syst 21(5):977–1027. doi:10.1145/330249.330254

23. Goswami D, Lukasiewycz M, Schneider R, Chakraborty S (2012) Time-triggered implemen-
tations of mixed-criticality automotive software. In: 2012 Design, automation test in Europe
conference exhibition (DATE), Dresden, pp 1227–1232. doi:10.1109/DATE.2012.6176680

24. Goswami D, Schneider R, Chakraborty S (2014) Relaxing signal delay constraints in
distributed embedded controllers. IEEE Trans Control Syst Technol 22(6):2337–2345.
doi:10.1109/TCST.2014.2301795

http://www.infineon.com/dgdl/Pb_XC2300B.pdf?fileId=db3a30432a7fedfc012ab3c3d7863706
http://www.infineon.com/dgdl/Pb_XC2300B.pdf?fileId=db3a30432a7fedfc012ab3c3d7863706
http://dx.doi.org/10.1109/CDC.1994.411715
http://dx.doi.org/10.1145/2463209.2488917
http://dx.doi.org/10.1109/DATE.2008.4484893
http://dx.doi.org/10.1109/CDC.2008.4739330
http://dx.doi.org/10.1109/ECRTS.2006.24
http://dx.doi.org/10.1561/1000000045
http://dx.doi.org/10.1561/1000000045
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://ecos.sourceware.org
http://dx.doi.org/10.1109/TCST.2006.872504
http://dx.doi.org/10.1109/ACC.2006.1655373
http://dx.doi.org/10.1145/330249.330254
http://dx.doi.org/10.1109/DATE.2012.6176680
http://dx.doi.org/10.1109/TCST.2014.2301795

1260 W. Chang et al.

25. Henriksson D, Cervin A (2005) Optimal on-line sampling period assignment for real-time
control tasks based on plant state information. In: Proceedings of the 44th IEEE conference on
decision and control, Seville, pp 4469–4474. doi:10.1109/CDC.2005.1582866

26. Kalamationos J, Kaeli DR (1998) Temporal-based procedure reordering for improved in-
struction cache performance. In: Proceedings of fourth international symposium on high-
performance computer architecture, Las Vegas, pp 244–253. doi:10.1109/HPCA.1998.650563

27. Kleinsorge JC, Falk H, Marwedel P (2011) A synergetic approach to accurate analysis of cache-
related preemption delay. In: 2011 Proceedings of the international conference on embedded
software (EMSOFT), Taipei, pp 329–338. doi:10.1145/2038642.2038693

28. Liu X, Chen X, Kong F (2015) Utilization control and optimization of real-time embedded
systems. Found Trends c� Electron Design Autom 9(3):211–307. http://dx.doi.org/10.1561/
1000000042

29. Lukasiewycz M, GlaßM, Teich J, Milbredt P (2009) Flexray schedule optimization of the
static segment. In: Proceedings of the 7th IEEE/ACM international conference on hardware/-
software codesign and system synthesis, CODES+ISSS’09. ACM, New York, pp 363–372.
doi:10.1145/1629435.1629485

30. Marti P, Lin C, Brandt SA, Velasco M, Fuertes JM (2004) Optimal state feedback based
resource allocation for resource-constrained control tasks. In: Proceedings of 25th IEEE inter-
national on real-time systems symposium, Lisbon, pp 161–172. doi:10.1109/REAL.2004.39

31. Martí P, Lin C, Brandt SA, Velasco M, Fuertes JM (2009) Draco: efficient resource
management for resource-constrained control tasks. IEEE Trans Comput 58(1):90–105.
doi:10.1109/TC.2008.136

32. Pettis K, Hansen RC (1990) Profile guided code positioning. In: Proceedings of the ACM
SIGPLAN 1990 conference on programming language design and implementation, PLDI’90.
ACM, New York, pp 16–27. doi:10.1145/93542.93550

33. Pigan R, Metter M (2008) Automating with PROFINET, 2nd edn. Publicis Publishing,
Erlangen

34. Samii S, Cervin A, Eles P, Peng Z (2009) Integrated scheduling and synthesis of control
applications on distributed embedded systems. In: 2009 Design, automation test in Europe
conference exhibition, Nice, pp 57–62. doi:10.1109/DATE.2009.5090633

35. Schneider R, Goswami D, Zafar S, Lukasiewycz M, Chakraborty S (2011) Constraint-driven
synthesis and tool-support for flexray-based automotive control systems. In: Proceedings of the
seventh IEEE/ACM/IFIP international conference on hardware/software codesign and system
synthesis, CODES+ISSS’11. ACM, New York, pp 139–148. doi:10.1145/2039370.2039394

36. Sedighizadeh D, Masehian E (2009) Particle swarm optimization methods, taxonomy and
applications. Int J Comput Theory Eng 1(4):486–502

37. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C,
Heckmann R, Mitra T, Mueller F, Puaut I, Puschner P, Staschulat J, Stenström P (2008) The
worst-case execution-time problem – overview of methods and survey of tools. ACM Trans
Embed Comput Syst 7(3):36:1–36:53. doi:10.1145/1347375.1347389

38. Wilhelm R, Grund D, Reineke J, Schlickling M, Pister M, Ferdinand C (2009) Mem-
ory hierarchies, pipelines, and buses for future architectures in time-critical embedded
systems. IEEE Trans Comput Aided Des Integr Circuits Syst 28(7):966–978. doi:10.1109/T-
CAD.2009.2013287

39. Zeng H, Natale MD, Ghosal A, Sangiovanni-Vincentelli A (2011) Schedule optimization of
time-triggered systems communicating over the flexray static segment. IEEE Trans Ind Inf
7(1):1–17. doi:10.1109/TII.2010.2089465

http://dx.doi.org/10.1109/CDC.2005.1582866
http://dx.doi.org/10.1109/HPCA.1998.650563
http://dx.doi.org/10.1145/2038642.2038693
http://dx.doi.org/10.1561/1000000042
http://dx.doi.org/10.1561/1000000042
http://dx.doi.org/10.1145/1629435.1629485
http://dx.doi.org/10.1109/REAL.2004.39
http://dx.doi.org/10.1109/TC.2008.136
http://dx.doi.org/10.1145/93542.93550
http://dx.doi.org/10.1109/DATE.2009.5090633
http://dx.doi.org/10.1145/2039370.2039394
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1109/TCAD.2009.2013287
http://dx.doi.org/10.1109/TII.2010.2089465

38Wireless Sensor Networks

Mihai Teodor Lazarescu and Luciano Lavagno

Abstract

Versatile and effective, Wireless Sensor Networks (WSNs) witness a continuous
expansion of their application domains. Yet, their use is still hindered by issues
such as reliability, lifetime, overall cost, design effort and multidisciplinary
engineering knowledge, which often prove to be daunting for application domain
experts. Several WSN design models, tools and techniques were proposed to
solve these contrasting objectives, but no single comprehensive approach has
emerged. With these criteria in mind we review several of the most representative
ones, then we focus on two of the most effective hardware/software codesign
flows. Both offer high-level design entry interfaces based on StateCharts. One
allows manual module composition in a full application, and automates its map-
ping on a user-defined architecture for fast high-level design space exploration.
The other flow automates module composition starting from the application
specification and by reusing library modules. It can generate the hardware
specification and the software to program and configure the WSN nodes. For
these we show the typical use for the development of some representative
applications, to evaluate their effectiveness.

Acronyms

6LoWPAN IPv6 over Low Power Wireless Personal Area Network
ADC Analog-to-Digital Converter
ADM Abstract Design Module
API Application Programming Interface
ASCII American Standard Code for Information Interchange
BOM Bill of Materials
CAN Controller Area Network

M.T. Lazarescu (�) • L. Lavagno
Politecnico di Torino, Torino, Italy
e-mail: mihai.lazarescu@polito.it; luciano.lavagno@polito.it

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_38

1261

mailto:mihai.lazarescu@polito.it; luciano.lavagno@polito.it

1262 M.T. Lazarescu and L. Lavagno

CRC Cyclic Redundancy Check
DMA Direct Memory Access
DSML Domain-Specific Modeling Language
EEPROM Electrically Erasable Programmable Read-Only Memory
EMF Eclipse Modeling-Framework
FSM Finite-State Machine
GPIO General-Purpose Input/Output-pin
GPRS General Packet Radio Service
GPT General-Purpose Timer
HAL Hardware Abstraction Layer
I2C Inter-Integrated Circuit
ICU Input Capture Unit
ID Identifier
I/O Input/Output
IoT Internet of Things
IP Intellectual Property
ISR Interrupt Service Routine
MAC Media Access Control
MBD Model-Based Design
MMC/SD Multimedia/Secure Digital Card
NVIC Nested Vectored Interrupt Controller
OS Operating System
PWM Pulse-Width Modulation
QoS Quality of Service
RAM Random-Access Memory
RC Resistor-Capacitor
RFID Radio-Frequency Identification
RF Radio Frequency
RTC Real-Time Clock
RTOS Real-Time Operating System
SDC Secure Digital Card
SPI Serial Peripheral Interface
TCP/IP Transmission Control Protocol/Internet Protocol
TWI Two Wire Interface
UART Universal Asynchronous Receiver/Transmitter
UML Unified Modeling Language
USART Universal Synchronous/Asynchronous Receiver/Transmitter
USB Universal Serial Bus
WSDL Web Service Definition Language
WSN Wireless Sensor Network
XMI XML Metadata Interchange
XML Extensible Markup Language

38 Wireless Sensor Networks 1263

Contents

38.1 Introduction . 1263
38.2 Past Work . 1265

38.2.1 Programming Languages and Tools . 1265
38.2.2 Middleware and Operating System. 1268
38.2.3 Model-Driven Design . 1270

38.3 Model-Based WSN Application Design . 1272
38.3.1 Development Flow Overview . 1273
38.3.2 Component Structure . 1274
38.3.3 Design Flow. 1276

38.4 Automated WSN Application Composition . 1282
38.4.1 Development Flow Using Automated Application Composition 1282

38.5 Case Studies . 1291
38.5.1 Full-Custom WSN Gateway . 1292
38.5.2 WSN Sensor Node for Air Quality Monitoring . 1297

38.6 Conclusion . 1300
References . 1300

38.1 Introduction

Wireless Sensor Networks (WSNs) already covers a broad range of applications in a
variety of domains, which is continuously expanding, thanks to advances in research
and technology. The range of requirements and problems that WSN designers
must address are considerably more diversified today than when the Internet of
Things (IoT) paradigm was coined by Kevin Ashton [3] more than 15 years ago.
It is increasingly difficult to define “typical” application requirements for WSN
hardware and software [31], since both must continuously adapt to very diverse
WSN application requirements and operating conditions. Moreover, WSN platform
reusability for a wide class of derived applications is becoming more important to
lower development effort and time to delivery and to increase reliability.

Existing high-level WSN programming support of any kind is still seldom
used for applications deployed in the real world [24]. System and application
development and deployment using state-of-the art WSN technologies involve
several different and complementary views, yet lacking mature separation of
competencies between typical stakeholders and the various engineering disciplines
that cover the WSN domain. For various practical reasons, WSN deployments are
typically developed at a level very close to the embedded Operating System (OS),
which often requires mastering a mix of low-level system and distributed protocol
competencies that are seldom found among WSN application domain experts.
Figure 38.1 shows how such development flows divert significant development
efforts from the application logic, thus contributing to increase development time
and cost and lowering overall reliability.

Another factor limiting WSN widespread use are the difficulties faced when
porting an implementation to a different hardware platforms. They effectively

1264 M.T. Lazarescu and L. Lavagno

Field

WSN Application

Complete WSN Platform

S
en

so
rs

User

WSWFWH

Power

OS

Stds.

I/F

Proc.

MAC

Prot.

Power
I/F

MEMS

SoC

Assem.

uC
RF

Linux GIS

RTLS

AJAX

Proc.Web2.0

XML

HA

Cloud

Proprietary and Open: Technology, Standardization, Scientific Advances

DB

System Integrators

WSN Customers

Partial Value Partial Value Partial Value

WasteE
ffo

rt Value

Fig. 38.1 Value flow for a WSN application and platform

reduce programmers’ choices in terms of hardware platforms to those that are
explicitly supported by each tool, which often is a narrow range.

High-level programming tools for WSN applications generally lack composabil-
ity and the ability to be reused as building blocks. Code written according to a
given programming abstraction can typically be used within a single framework
because the collaboration between frameworks is still very limited. Although most
frameworks are well suited for specific application domains, they can rarely be
extended or composed with others. Consequently, their use is severely limited.

These are important aspects that limit the productivity of WSN application
designers; lead to suboptimal or ineffective designs; increase the development
time, cost, and risk; and reduce the WSN application reliability which, ultimately,
increases maintenance cost.

In this context, we explore in detail two innovative tools for WSN application
design. One is a model-based design framework for distributed WSN application
development, design space exploration, network simulation (including hardware
in the loop), and fast prototyping. It has a MATLAB Stateflow R�-based [22] user-
friendly interface for architecture-independent application entry, composition, and
simulation and is based on an abstract service-based specification model for the
application architecture. The framework can automatically map the application
on several very different node platforms, and it can generate the simulation and
implementation code for popular WSN simulators and operating systems. Hence, it
hides most low-level implementation details from the developer in order to increase
its usability by application domain experts and to allow fast high-level design space
exploration.

38 Wireless Sensor Networks 1265

The second toolset aims to further accelerate the development cycle and stimulate
component reuse by automating the module selection and composition phases
based on a high-level application specification. This flow does not make any
assumption on the language or format of the behavior specification. Instead, it
makes use of metadata that describe the behavior, interface and requirements of
each library module, as well as the application specification. Besides simulation and
implementation code, the system composition engine can generate nonfunctional
requirements, such as a bill of materials and specifications for the target hardware
or for the compilation toolchain.

Both frameworks are used to create several representative applications, in order
to evaluate their effectiveness.

38.2 Past Work

As we discussed above, WSN design must satisfy two contrasting requirements:

1. Short design time with as little electronics and telecommunications expertise as
possible. Many applications today are relatively small-scale and low-margin;
hence, the nonrecurrent engineering costs should be kept as low as possible.
Moreover, since application-specific aspects dominate both the difficulty and the
gains, the most useful design resources are the domain experts.

2. Produce a very optimized implementation, especially for cost, power, and
reliability. This is in order to minimize also the recurrent cost, both to procure
the nodes, to deploy them, and to keep them running in the field.

The only way to satisfy both requirements is through design automation of some
sort. As a result, the literature on WSN design is very rich of design aids, both in the
form of design languages and their compilers, and in the form of support software,
such as middleware, operating systems and so on. In this section, we review some
of this work, in particular by referring to existing survey articles.

38.2.1 Programming Languages and Tools

A first excellent survey of programming languages and tools for WSNs, by Sugihara
and Gupta, appeared in [34]. They classify devices and networks according to three
orthogonal aspects:

1. Node power consumption, which is of course also related to the computational
power, ranging from workstation-class computers, found typically at the “center”
of the network, where the most complex elaboration takes place, to small battery-
powered microcontrollers that have some ability to compute and route data,
to tiny nodes (e.g., Radio-Frequency Identifications (RFIDs)) which scavenge
energy from the environment. Most of the programming tools, including those

1266 M.T. Lazarescu and L. Lavagno

discussed in this chapter, apply to the middle group, where resources are scarce
but computations are nontrivial.

2. Node observables, which range from just the data and an “address” (a node
identifier), to the time and to the location of the observation. Satisfying real-
time constraints and being able to reason about the location of the node add
to the complexity of both the programming language and of the underlying
middleware.

3. Size of the network, which ranges from tens to potentially millions of nodes, and
which may require significant middleware support to ensure scalability.

At the lowest level of abstraction, namely, the individual node, the article lists
several examples of operating systems and programming languages, classifying
them according to the paradigm used for modularization: (1) message passing
among statically “bound” software components, as in nesC [13] and TinyOS [17];
(2) dynamic association between messages and services, as in SNACK [14]; or
(3) lightweight threads, as in Mantis OS [1]. Static binding requires the least
resources but goes against flexibility and reconfigurability. Moreover, thread-based
programming is more familiar to most developers but requires significantly larger
memory resources. Virtual machines have also been considered in this context,
although their portability advantages must be carefully weighed against their
performance and energy cost.

The next layer of abstraction is group-level programming, in which applica-
tion development, deployment, and maintenance are eased by the availability of
programming constructs or APIs to reason about groups of nodes, based both
on physical distance (neighborhood) and on logical properties. Making physical
or logical location a first-class citizen of course enables much easier application
development, since most WSN data processing must be aware of where the data
itself originates.

Finally, the most abstract level considered in that article is the network level,
where it describes:

1. database abstractions, where the network is viewed as a huge database, in which
nodes and time instants play the role of rows, while kinds of sensed data play
the role of columns, as in TinyDB [19]. User-level queries must be decomposed
and distributed to physical nodes and radio channels so that Quality of Service
(QoS) objectives, such as timeliness and energy consumption, are appropriately
optimized.

2. macroprogramming approaches, which provide transparent mechanisms, e.g., to
replicate and distribute data, so that the network is viewed as a single distributed
computing platform, as in Kairos [15]. This in principle can provide the best
optimization opportunities, allowing one to move both computation toward the
data and vice versa, depending on the application constraints and requirements.
But the huge optimization space makes low-level code generation an extremely
challenging task.

38 Wireless Sensor Networks 1267

Then the article classifies a large number of approaches based on the aspects
listed above and evaluates them by their energy efficiency, scalability, failure
resilience, and collaboration level (e.g., using centralized or distributed triangulation
among nodes to establish node and data location).

Mottola and Picco provide another excellent survey of programming languages
and tools for WSNs in [24]. They also include concrete examples to illustrate the
key aspects of each listed approach. In addition to the space and time aspects that
were discussed by [34], they also classify applications based on:

1. The goal, i.e., pure sensing or sensing and reacting (or actuation). The former
leads naturally to a single or a few sinks, while the latter encourages distributed
processing to improve resiliency and reduce communication costs.

2. The interaction pattern: many-to-one, often associated with sensing, one-to-
many, often associated with reacting, or many-to-many.

3. The need to support mobility of at least some nodes (e.g., in cattle monitoring
applications). This of course requires support for dynamic interaction and
reconfiguration, at least at the network level but often also at the application
level.

The article then proceeds to classify the programming languages based on
aspects such as:

1. the scope of communication: (1) physical neighborhood, (2) multihop within a
subset of nodes (again based on physical neighborhood or logical grouping), and
(3) network-wide.

2. the addressing mechanism: (1) physical, or statically assigned, versus (2) logical,
or dynamically assigned based on, e.g., current sensor readings or location.

3. whether communication is explicitly exposed, as in nesC, or implicit, as in
TinyDB.

4. the scope of a computation: whether a single statement in the programming
language can change the state of: (1) a single node, (2) a group of nodes, or (3) the
entire network. Again, the latter offers more scope for optimization, and moves
the burden from the programmer to the “compiler,” but requires the development
of more complex design tools.

5. the data access mode across nodes, via: (1) database abstractions, (2) shared
remote variables, (3) code that migrates to find its data, or (4) explicit message
passing. Database languages are easy to use, but lead to extremely complex low-
level code generation issues when efficiency is important, as is often the case in
energy-limited WSNs. Shared variables are also familiar to programmers but are
very difficult to synchronize and use correctly. This is especially true in a setting
where communication is slow and unreliable, and bandwidth is limited. Code
migration can increase the longevity of networks, which can be often expensive
to deploy. Code migration is best coupled with energy harvesting, because it can
adversely impact battery life. Finally, explicit message passing gives most control
to the programmer and is often the preferred choice for real-life deployments.

1268 M.T. Lazarescu and L. Lavagno

6. the programming paradigm: (1) imperative, (2) declarative (e.g., SQL-like or
functional), or (3) hybrid, where a declarative language, which provides faster
application development, can be extended with procedural mechanisms for the
most performance- or energy- and power-critical aspects.

Then the article looks briefly at the architectural aspects, e.g.:

1. whether the approach supports only the application programmers (as is often the
case with declarative languages and implicit communication) or can be used to
build all layers of the software (which normally requires an imperative paradigm
and explicit message passing).

2. the ability to access and tune lower layers (e.g., to allow cross-layer optimization
of the protocol stack).

Finally, a very large number of different approaches are mapped and classified
according to the criteria above.

The article concludes by outlining open areas for further research, such as:

1. tolerance to failures, which is essential for long-term real-life use in an often
harsh environment.

2. ease of debugging, which is especially problematic when the nodes are already
in the field.

3. real-world deployment, which is always needed to validate new ideas in realistic
settings.

4. evaluation methodology, which suffers again from the lack of well-recognized
benchmarks and of sensor data coming from real-world deployments.

38.2.2 Middleware and Operating System

Middleware and operating system are essential to support fast development
and deployment of WSN software. Hence, they are the foundation (explicitly or
implicitly) of all the approaches to WSN design that are outlined in the articles
listed above. These two aspects are the direct focus of several survey articles. We
will mention only a few of them.

First of all, Mohamed and Al-Jaroodi in [23] classify middleware types according
to lines that are very similar to those mentioned above, namely, virtual machine,
database, application-driven, and message-oriented. They list and discuss several
aspects that still challenge effective deployment and use of middleware for WSNs
(and of WSNs in general). These are, namely, (1) scarcity of hardware resources,
(2) dynamic changes of network topology and size, (3) heterogeneity, (4) network
lifetime, (5) application dependency, (6) security, (7) quality of service, and (8)
integration with the broader Internet context.

From this list, they derive several key requirements that should be satisfied by
the middleware, e.g.:

38 Wireless Sensor Networks 1269

1. run-time support for service registration, discovery, and use. This enables dy-
namic adaptation to changes both of the network topology and of the applications
themselves.

2. service transparency to client applications, in particular to hide the heterogeneity
of the underlying network.

3. configurability to support a variety of QoS, security, and resource consumption
requirements.

4. support for self-organization, in the presence of dynamic network changes due to
mobility, addition and retirement of nodes, and so on.

5. interoperability with a variety of underlying devices and network protocols.
6. efficient handling of huge volumes of data.
7. support for security, QoS requirement management, and interoperability with

other systems.

The article concludes by classifying and evaluating 15 middleware approaches
according to these requirements and by discussing the opportunities for future
work.

Along similar lines, Mottola and Picco in [25] provide an outlook into WSN
middleware research. One very interesting comment in this article is that most
WSN work, including almost all the approaches mentioned in the surveys above,
conspicuously ignores the ZigBee industrial standard that specifies how applications
can access the network stack and that is supported by several commercial node
platforms. While this can be explained by the difficulty to tune and exploit a closed
platform, at least the compatibility with its recommendations should be taken into
account.

They also analyze the state of the art, including their own TeenyLIME environ-
ment [7], and outline open research challenges, such as:

1. supporting one-to-many and many-to-many abstractions, as well as mobility.
2. providing high-level abstractions for application developers, who are often

domain experts, rather than electronics or telecommunications engineers, without
forgetting network deployers and maintainers.

3. the need for flexibility and expressive power without losing efficiency.
4. support for cross-layer optimizations and interactions within the network stack,

which is essential for simultaneous energy and performance optimization,
and is seen as a key differentiator between WSNs and telecommunication
networks.

5. the need to permit reliable and predictable implementations, since WSNs are
embedded systems, which often implement safety-critical applications.

6. support for multiple, concurrent applications, sometimes with very different
constraints. These may even have dynamic after-deployment installation and
update requirements.

7. integration within broader systems, including of course the Internet, which
would require a chapter in itself, especially for its industrial and transportation
application areas.

1270 M.T. Lazarescu and L. Lavagno

Finally, they again stress the need for all research on WSNs (including the
middleware) to be concretely demonstrated in real-world scenarios, not just with
simulation results.

Dong et al. [9] provide a good summary of challenges for WSN OSs. The
requirements that they pose are similar to those discussed for middleware but are
at a lower level: small footprint, energy efficiency, reliability, real-time guarantees,
reconfigurability, and programming convenience. First of all, they describe the main
components of an OS for WSNs:

1. Task scheduling, which may be event-driven as in TinyOS or thread-based as in
Mantis OS. As mentioned above, the former is more efficient, while the latter is
more familiar to programmers.

2. Dynamic linking and loading, which adds a lot of flexibility to the network but
has a cost in terms of complexity and overhead.

3. Memory management, in particular support for permanent storage, such as flash
memory, and for dynamic memory allocation, which may be a problem in
resource-constrained nodes.

4. Resource abstraction, to hide details of the underlying hardware and, in some
cases, virtualize its access.

5. Sensor interfaces, which provide similar abstraction and virtualization capabili-
ties for the more WSN-specific aspects of the hardware platform.

6. Networking stack, which is an essential part by definition of any WSN OS and
may provide higher-level services that cross into the middleware domain.

Then the authors describe and compare several notable examples of WSN OSs, such
as TinyOS [17], Contiki [10], SOS [16], Mantis OS [1], Nano-RK [11], RETOS [5],
and LiteOS [4].

The classification is based on various aspects, such as (1) static or dynamic
resource allocation, (2) event-driven versus multi-threaded scheduling, (3) mono-
lithic or modular architecture, (4) networking support, (5) real-time support, (6),
language support, (7) file system support, (8) reprogramming, and (9) remote
debugging.

The last part of the article evaluates each approach with respect to the require-
ments that were defined at the beginning, and provides several recommendations
to researchers interested in this domain, which range from keeping the design
simple and flexible to considering hardware requirements, application needs, and
development costs.

38.2.3 Model-Driven Design

Finally, we will mention three articles that are more specific to the topic of this
chapter, namely, model-driven and component-based design of WSN applications.

Shimizu et al. [32] describe a model-driven methodology and tool to speed
up design and optimization of WSN applications. Different from the approach

38 Wireless Sensor Networks 1271

described later in this chapter, which focuses only on the Model-Based Design
(MBD) of the node code, they define three different Domain-Specific Modeling
Languages (DSMLs), respectively, for the network level, the group level, and the
node level. Each DSML essentially offers a set of choices for key design parameters
at the corresponding layer:

• The DSML for the network considers (1) data source nodes, (2) aggregation and
fusion nodes, and (3) sink nodes. At this level, designers can choose how often
sensors are sampled and how often data are transmitted toward the sink by each
class of nodes.

• The DSML for the group (neighborhood) is similar, but at this level, designers
can also choose (1) the network topology (e.g., tree or mesh), (2) the amount of
in-network processing (aggregation and fusion), as well as (3) the geographical
grouping.

• The DSML for the node considers (1) sampling tasks, (2) aggregation and fusion
tasks, (3) sending and receiving tasks, and (4) sink tasks. Here, the designers
can make choices on every aspect covered by the approach; thus, they have full
customization capabilities.

The use of three DSMLs allows teams with different areas of expertise to hierarchi-
cally design and manage a large network, while retaining full control over the result.
Automated code generation for simulation completes the flow.

While this approach exploits nicely the advantages of MBD, it is not clear how
the user can define an application which cannot be generated simply by choosing
appropriate values for the model parameters. In other words, it basically offers a
single, albeit very parameterized, WSN “application,” which can be customized to
cover a broad range of requirements but is not (and most likely can never be) fully
general.

In Sect. 38.3, we will present a design framework that is focused on modeling the
code of the application tasks themselves and on smartly linking the tasks together at
node level.

Taherkordi et al. [35] describe REMORA, a component-based model that is much
more advanced than the basic static composition mechanism supported in TinyOS.
For example, it includes the ability to dynamically deploy and connect components.
Components and their interfaces are described in REMORA using an Extensible
Markup Language (XML) format that covers (1) offered and required services that
are activated through events, (2) the state that is retained by each component across
invocations, and (3) the component (in a C-like language).

The event modeling mechanism in XML is more flexible than its TinyOS
counterpart, allowing one to (1) specify event attributes, (2) distinguish between
application events and OS events, (3) configure events, and (4) define if they are
point-to-point or multicast.

The framework has a very low overhead with respect to Contiki, while providing
significantly better encapsulation capabilities, and thus designer productivity, than
bare bones multi-threading.

1272 M.T. Lazarescu and L. Lavagno

Finally, Compton et al. [6] survey semantics specifications for WSNs, i.e., the
ontologies that can be used to describe the requirements of a network and allow a
compositional design approach. This is very relevant for our methodology, which is
based on an ontology to implement the component search, constrained composition,
and parameter value selection capabilities.

The authors describe the capabilities of semantic sensor networks, including the
ability to:

1. classify sensors according to functionality, type of output, or method of measure-
ment.

2. find sensors than can perform some measurement.
3. collect data based on various criteria (spatial, temporal, . . .).
4. perform domain-specific inferences on low-level data.
5. react to specific inferred or measured events.

The article then lists 12 different ontologies, both general-purpose and
application-specific (e.g., for marine sensors), and compares them in terms of
the aspects of a WSN that each of them can describe. These aspects consider:

1. the logical aspects of each node and of the network as a whole, in terms of
hierarchy, node identity, node software, deployment, configurations, history, and
kind of processes it can support.

2. the physical aspects of each node, such as location, power supply, node platform,
physical dimensions, and operating conditions.

3. the observations that each node can make, in terms of accuracy, frequency,
response mechanism (periodic or event-triggered), and field of sensing.

4. the sensing domain, considering the measurement units, the features that are
measured, and the time.

Finally, the authors summarize how ontologies are supported by various reasoning
mechanisms. Later in this chapter, we will discuss an approach where ontology use
is extended to describe both the functional and nonfunctional elements that compose
WSN nodes in order to allow the automatic synthesis of both node hardware and
software needed to support the application functions.

38.3 Model-Based WSN Application Design

The need to improve important metrics of WSN application development such as
cost, time to market, lifetime and reliability, as well as its accessibility to domain
application experts, can be satisfied using high-level design flows that support some
degree of automation.

In Sect. 38.2, we reviewed several models, tools, and techniques that have been
proposed in this regard. Although a significant variety of tools was proposed, no
single comprehensive approach has emerged.

38 Wireless Sensor Networks 1273

In this chapter, faithful to the principles of hardware/software codesign that are
discussed in the entire book, we present an MBD framework that can speed up and
facilitate application development, design space exploration, simulation (including
hardware in the loop), and fast prototyping of distributed WSN applications. The
framework is based on tools widely used in industry like MATLAB Simulink R� [21]
and Stateflow R� [22]. In addition, the architecture of the application is described
using the standard Web Service Definition Language (WSDL).

38.3.1 Development Flow Overview

In the approach presented here, the Simulink R� and Stateflow R� graphical design
tools are used for design entry using high-level abstract concurrent models, which
simplify the design, simulation, and prototyping phases.

The abstract model can be automatically translated to simulation models that
can be used on widely used network simulators such as OMNeT++/MiXiM [36].
The same model can also be translated for direct implementation on embedded
operating systems, like TinyOS and Contiki, for hardware-in-the-loop simulation
and deployment.

The framework shown in Fig. 38.2 provides support for target application design
using high-level abstract models, without requiring knowledge of the low-level

Fig. 38.2 Overview of the development flow based on Simulink R
� framework

1274 M.T. Lazarescu and L. Lavagno

specifications of the underlying hardware and software platforms or communication
protocol stacks. It also allows one to automatically reuse the code generated from
the same model for different simulation environments and deployment platforms.

Within the framework, the target application is first decomposed into a set of
interconnected high-level object-oriented abstract models. These can exchange mes-
sages in a service-driven fashion. The model internal logic is described intuitively
using a visual programming language based on Stateflow R� StateCharts [20] and
Simulink R� block diagrams, as shown in Fig. 38.2.

38.3.2 Component Structure

The framework allows the designer to define the structure and the behavior of the
WSN application by means of self-contained high-level abstract functional modules
(Simulink R� blocks) like the one shown in Fig. 38.3. Each module is seen as a “black
box” by the other modules, being externally characterized by its tunable attributes
and by the used and provided services.

Services used by the module are imported through its inbound service ports, such
as InServ_1, . . . , InServ_Y in Fig. 38.3. Services provided are exported through the
outbound service ports of the module, such as OutServ_1, . . . , OutServ_Z. A mod-
ule can use also bidirectional service ports (e.g., InOutServ_1, . . . , InOutServ_X) to
connect an inbound service port and an outbound one to represent an instance of a
combined service. This service is both used by the module and requires a response
by its provider. Each service instance of a module (used, provided, or combined) is
associated to an interface, which defines the contents of the messages transmitted
by that service.

Fig. 38.3 Self-contained
high-level abstract functional
module (Simulink R

� block)

38 Wireless Sensor Networks 1275

A module can also expose tunable attributes (e.g., Attr_1, . . . , Attr_N in
Fig. 38.3) which are meant to allow the developer to adjust the performance of the
module without significant changes to its internal logic. Like the services, attributes
are associated to an interface that defines their constituents.

The WSN applications running on nodes can be modeled as an interconnected
set of modules. Therefore, the internal details of the modules do not depend on
the external entities and they can be loosely interconnected. Each Abstract Design
Module (ADM) carries out part of the functions of the target application by
exchanging service messages with the connected modules, through its service ports.
An outbound service port of a module can be connected to any inbound service
port of another module, as long as they share the same interface type. Inbound and
outbound service ports can remain disconnected, which means that no incoming
service messages are imported by the floating inbound service port and that the
outgoing service messages on the floating outbound service port will be discarded
(of course the designer must make sure that these missing connections do not impair
the overall application functionality). These are similar to unidirectional function
calls and can be used to transmit service-specific messages between modules
without exposing the internal implementation details.

Module behavior is represented using an event-driven hierarchical Finite-State
Machine (FSM) in the form of a StateChart, as shown in Fig. 38.4. The logic
flow, i.e., the change of the active state, is determined by either its internal default
transitions or by external service messages imported from other modules. These
are processed by the FSM based on the values of its tunable attributes, and the
computation results are attached to the appropriate outgoing service messages which
are sent out through the corresponding outbound service ports.

Fig. 38.4 A StateChart implements a finite state machine which defines the behavior of a
functional module

1276 M.T. Lazarescu and L. Lavagno

User-defined operations can be attached to each state or to state transitions. They
will be executed upon the entry, permanence, or the exit phases of each state.

The module has a different representation in the various steps of the workflow,
serving different purposes. For instance, it can be viewed as a native Simulink R�/
Stateflow R� block for modeling and single-node functional simulation, as an OM-
NeT++/MiXiM module for large network simulations, or as a TinyOS component
or Contiki OS process for deployment on the target WSN node.

38.3.3 Design Flow

The workflow illustrates the basic operation of the framework. It uses an iterative
V-shape flow that starts with the requirement analysis, as shown in Fig. 38.5. It is
made of three development task types:

• Manual tasks include development activities that are not directly supported by
the framework and must be manually performed by the designers using other
development tools.

• Supported tasks include some activities performed by the designers, with direct
tool support from the framework.

• Automatic tasks are fully supported and performed by tools in the framework.

In the following, we describe the steps of the workflow in more detail.

38.3.3.1 Requirement Analysis
Requirement analysis is the first step in the workflow. It is a manual task and
it consists in the analysis of the requirements of the target WSN application. It
includes a list of the required functions and attributes supported by the application,
such as:

Fig. 38.5 Framework development flow is based on a V-shape iterative model

38 Wireless Sensor Networks 1277

• what measurements will be performed by the node;
• what operations are expected from the nodes;
• what state variables (attributes) will be exposed as the tunable attributes by the

application;
• what kind of criteria will be employed to validate the application and evaluate its

performance.

When these requirements are defined, the designer can move to the next step, to
describe the modules.

38.3.3.2 Module Description
Module description is based on the results of previous analysis. The developer
can decompose the target application into a set of interconnected modules, each
implementing a part of the target application functions by exchanging service
messages with other connected modules through its service ports.

In this step, the developer lists the services and the attributes that are included
in each module or includes them from a library of preexisting descriptions (e.g.,
defined in previous designs). For each module, the developer defines a description
file with all services and tunable attributes of the module, such as the service name,
interface, and type of associated service ports.

For instance, for an application that can be decomposed into a set of modules
as shown in Fig. 38.6, the developer will define the content of the service messages
exchanged among the modules and obtains a model description file for each module.
Once defined, the description files are provided to the framework to automatically
generate the skeleton templates for the modules in the next step.

38.3.3.3 Generation of an Application Skeleton
The skeleton template is defined in terms of Stateflow R� blocks. In the generated
skeleton template, all the services and attributes defined by the developer for that
module in the previous step will be interpreted as a port. A combined service will
be mapped to a pair of input and output ports in the skeleton template. For instance,
the module shown in Fig. 38.4 is instantiated as shown in Fig. 38.6.

Each inbound service will be mapped to an input port associated with the
specified data type defined by its interface (e.g., InServ_1 in Fig. 38.3 to InServ_1
in Fig. 38.7), each outbound service is mapped to an output port (e.g., OutServ_1
in Fig. 38.3 to OutServ_1 in Fig. 38.7), and a combined service is mapped to a pair
of input and output ports (e.g., InOutServ_1 in Fig. 38.3 to InOutServ_1_IN and
InOutServ_1_OUT in Fig. 38.7). For each input and output port, a corresponding
driver function is automatically generated, such as those shown in Fig. 38.7:

• driver_InServ_1 for InServ_1
• driver_OutServ_1 for OutServ_1
• driver_InOutServ_1_IN and driver_InOutServ_1_OUT for InOutServ_1

These driver functions are used to detect the incoming service messages and
to send out the outgoing service messages for the input ports and output ports,

1278 M.T. Lazarescu and L. Lavagno

Fig. 38.6 Example of WSN node application decomposition in functional modules

respectively. Similar to the inbound services, for each tunable attribute, the frame-
work will generate an input port and a port state variable (e.g., Attr_1 and var_Attr_1
in Fig. 38.7 for Attr_1 in Fig. 38.3), through which the developer can externally set
the desired value for that attribute.

38.3.3.4 Customization of the Application Skeleton
The skeleton template can be customized through a supported task that includes
two types of activities in the Simulink R�/Stateflow R� environment, namely, skeleton
template completion, to create a full module, and module composition.

Skeleton template completion is done by the developers by modifying the
automatically generated skeleton template with the desired internal functions. This
consists in processing the imported service messages based on the values of
the exposed tunable attributes and generating the corresponding outgoing service
messages.

The internal logic of a module is defined by the developer using StateCharts and
block diagrams, without knowing the details of the target platform (WSN node).

As shown in Fig. 38.7, the developer-defined operations implemented within the
states are executed upon entry, permanence, or exit phases of each state, while
the developer-defined operations implemented between two connected states are
executed when the state transfer occurs through that state connection. All these
developer-defined operations can execute any developer-defined local functions

38 Wireless Sensor Networks 1279

Fig. 38.7 Example of complete WSN node application skeleton

(e.g., loc_func_1 and loc_func_2 in Fig. 38.7) to perform computational tasks,
as well as generate outgoing service messages. Besides the externally tunable
attributes, additional local variables (e.g., loc_var_1 and loc_var_2 in Fig. 38.7) and
local events (e.g., loc_Evt_1 in Fig. 38.7) can be freely defined within each module.

If a single FSM is not sufficient to model the desired function, a single
Simulink R� block can contain one or more sub-charts which can be integrated into
the main FSM in either sequential or parallel execution order, sharing the set of
incoming and outgoing messages, attributes, local variables, and local events.

The module composition phase creates the final application. This is done by
wiring each outgoing port of each module to the relevant incoming port(s) of other
modules and by assigning proper values to the attribute port(s) of each module.

Then the high-level application model can be used in the next step to automati-
cally generate an implementation for different platforms.

38.3.3.5 Code Generation and Deployment
Since the framework helps the developers to automatically port the same high-
level design to different platforms, the developers can easily refine their design
and explore the hardware/software trade-off space almost without low-level detail
knowledge. This is an important benefit, since design porting to a different platform
is often effort-intensive and error-prone.

1280 M.T. Lazarescu and L. Lavagno

Fig. 38.8 Module structure of example node-level WSN application

We will analyze a use case in which the nodes collect and perform a distributed
processing of the data from a temperature sensor. Each WSN node wakes up
periodically to carry out the following tasks:

1. sample the temperature values with the desired sampling frequency;
2. collaboratively average these values with those from its one-hop neighbors within

a sliding time window;
3. broadcast the calculated average temperature value to the neighbors.

The requirement analysis is used to drive the application architectural design
phase, where the developer decomposes the application into a set of interconnected
ADMs, each carrying out a part of the entire functionality. Since the ADMs
are characterized by services and attributes exposed on their boundary, their
internal behavior may not be detailed in this step. The developer just assigns the
requirements listed earlier to the constituent ADMs by defining their boundaries.
This can be done describing the ADM services and attributes either manually or by
importing them from a library (e.g., created in previous designs).

In the proposed use case, the following parameters have been identified as
potential tunable attributes for each node:

1. its own node identifier (NodeID);
2. sample refresh interval inside the averaging algorithm (SenseInterval);
3. the sampling period of the temperature sensor (SamplingInterval);
4. the size of the time window to compute averages, which is equal to the node duty

interval (DutyInterval).

Based on requirement analysis (first step in Fig. 38.5), the design is split in three
interconnected ADMs: a Sensor module, a Radio module, and an Algorithm
(TempAverager) module, as shown in Fig. 38.8. The Sensor module samples and
preprocesses temperature data. The Radio module interfaces with the protocol stack
for short-range communication with neighbor nodes. The TempAverager module

38 Wireless Sensor Networks 1281

Fig. 38.9 Overview of the generated skeleton template

handles all onboard data processing. Both the Sensor and the Radio modules are
connected to the TempAverager module to exchange service messages (e.g., Sense
and Msg in Fig. 38.8).

The developer manually defines a boundary description file for each ADM. These
are imported in the framework for the next step, template generation.

ADM description files are then supplied to the framework which maps them
automatically to skeleton templates that are defined as Stateflow R� blocks. All ADM
services and attributes defined in the ADM templates are interpreted as ports or port
pairs for a request-response service.

For each port, a driver function is automatically created inside the skeleton
template, which hides the low-level Simulink R� handling of signals and service
messages. These functions handle the service messages exchanges through ports.
Like the input services, each tunable attribute has an input port and a state variable
allowing to set the attribute value from outside the ADM.

Figure 38.9 shows the skeleton template generated automatically for Stateflow R�.
Each skeleton template is created with three FSMs that run in parallel:
InputDrivers, Application, and OutputDrivers which can be used
to implement the application logic.

Once the skeleton template has been filled with functional details, simulated, and
debugged, it can be used for automatic code generation. A framework tool converts
the high-level and platform-independent design into target code that runs in different
network simulation environments or on different target OSs and platforms. These
can be:

• Simulink R�/Stateflow R� can be used for node-level and small-scale network
simulation;

• OMNeT++/MiXiM can be used for large-scale network simulation. Each ADM
in the WSN application is mapped to a component, which is the programming
unit used by all these simulators;

1282 M.T. Lazarescu and L. Lavagno

Table 38.1 Code size and
the memory usage for the use
case application implemented
on top of TinyOS using a
Telos B node

ROM RAM

[bytes] [bytes]

Handwritten 17,220 492

Framework-generated 20,562 526

• TinyOS [17] can be used for code deployment on target nodes. Each ADM of the
application is automatically converted to a TinyOS module written in nesC [13]
containing the ADM internal logic;

• Contiki OS [10] can also be used for deployment. In that case, each ADM is
instantiated as a protothread. The generated code can also be run in the COOJA
simulator.

For instance, we used the framework code generation function to convert the
high-level design ADMs to nesC modules that are suitable for a simple network
composed of Memsic Telos rev. B nodes running TinyOS. The generated nesC
modules (Radio, Sensor, and TempAverager) are configured, interconnected,
and encapsulated in a wrapper nesC module that is then wired in TinyOS to use the
existing radio communication services.

Table 38.1 shows the code size and memory usage measured for the binary
code generated using the development framework and the same application logic
implemented manually. The results show a penalty for the generated code of less
than 20% in terms of code size and less than 7% in terms of data Random-Access
Memory (RAM) requirements.

38.4 Automated WSN Application Composition

The MBD tool presented in Sect. 38.3 requires the designer to explicitly compose
the modules to implement a full application, which is an effort-intensive process.

A different set of tools can automate the application composition phase starting
from a high-level application specification and an existing library of reusable
modules. The toolset can further speed up WSN application development and the
exploration of the design space, as will be discussed next.

38.4.1 Development Flow Using Automated Application
Composition

Figure 38.10 compares the automated design flow (shown in the lower part) with
a typical node-level WSN application development flow (shown in the upper part).
The automated flow accepts a high-level application-centric system description at
node level and can be integrated with various external tools, each of them used to
assist the developer in specific tasks.

38 Wireless Sensor Networks 1283

38.4.1.1 Development Flow Overview
The automated flow [2] starts with the input of the application-specific behavior
encapsulated in a component format (described later in Sect. 38.4.1.4).

The top-level component and all library components have the same format, with
two major sections: a code section and a metadata section. In the first step of the
flow in Fig. 38.10, the designer fills both of them for the top-level component, as
follows.

The code section can store different types of code (behavioral, simulation
models, etc.). These are always considered as (possibly parameterized) black boxes
by the system synthesis engine; thus, there are no restrictions on the coding language
or the representation format (which can be also binary code for one or more

Application
Simulation

Network
Simulation

System
Composition

Target Code
Generation

Behavior
Entry

State chart
or textual

Component

B
eh

av
. 1

B
eh

av
. N

B
eh

av
. 2

Requires
Provides
API
Constraints
…

Composition
Engine

Component

B
eh

av
. 1

B
eh

av
. N

B
eh

av
. 2

Requires
Provides
API
Constraints
…

Top-level
behavior Library

Behavioral
simulation

Network
Simulation

Target
Tools

Typical WSN Application Development Flow

External toolsM
id

dl
ew

ar
e

Planning Deployment

Automatic Synthesis-based WSN Application Development

Fig. 38.10 Comparison of the main stages of manual (top) and automated (lower part) node-level
WSN application design flows. A human body tags manual phases while a gear tags automatic
ones. The automated flow accelerates mainly the system composition and the preparation of the
network simulation

1284 M.T. Lazarescu and L. Lavagno

target platforms). Hence, the behavioral code of the component can come from
various sources, ranging from manually written source code (e.g., legacy C or nesC
code) to code generated by high-level development flows (e.g., metaprogramming
approaches [24], Unified Modeling Language (UML)-based or ad hoc high-level
modeling flows [8, 29, 32], �Chap. 5, “Modeling Hardware/Software Embedded
Systems with UML/MARTE: A Single-Source Design Approach”). MBD tools can
also generate suitable behavioral code, for example, the Stateflow R� tools used in
Sect. 38.3 or the Yakindu Statechart Tools [26] (both provide a state chart-based
integrated modeling environment for the specification and development of event-
driven systems).

The metadata section of the components is used by the subsequent phase of
the flow in Fig. 38.10, namely, the automated system composition. This phase uses
only the semantics of the metadata to automatically select the components (more
precisely, through parameter-based selection and customization) to compose the
node system, both as hardware and software. If the designer uses the flow described
in Sect. 38.3, then the component metadata are generated automatically from the
module description. Otherwise, the designer should manually enter the metadata.

Figure 38.11 shows one possible integration of the automatic flow with external
WSN development tools. The flow shown on the left side of the figure supports
WSN network planning using specific tools for input of geographical data (e.g., of a
topographic map), selection of node locations in the field, and Radio Frequency (RF)
propagation simulation to estimate node connectivity.

Fig. 38.11 The main phases
of the application
development flow based on
automated system
composition and one possible
interaction with external
tools. The application
developer describes both the
network layout and
composition using external
tools (flow on the left) as well
as the node-level application
(flow on the right). Where
necessary, the application
development flow can extract
from network description the
distinct types of nodes and
the network connectivity
information. The former is
used to create projects for
node-level application
development, while the latter
is needed to prepare the
network simulations

38 Wireless Sensor Networks 1285

The application development flow shown on the right side of Fig. 38.11 can
retrieve the network planning data from the project repository. It uses it to extract
the number of distinct node types in the network and to create a skeleton project for
node-level application development for each type.

For each project, the developer inputs the application in the format of a top-level
component, as we mentioned earlier. When the developers use model-based design
flows for application input, such as Stateflow R� or Yakindu SCT, they can use the
features of these design environments to test and refine the application at this high
level of abstraction.

The next step, system composition, is fully automated by the composition engine.
The engine starts by processing all metadata of the top-level component, such as
requires, provides, and conflicts. These encode what is needed by the component
in order to operate properly in terms of hardware, interfaces, configurations,
etc. (requires), what the component can provide to satisfy the requires of other
components (provides), and in which conditions the component cannot operate at
all (conflicts).

These properties drive the composition process, which iteratively looks for all
subsets of the library of components that do not have any unsatisfied requirements
left and, at the same time, satisfy all constraints imposed by the top-level and the
other selected components. Each such subset represents a possible system solution
that satisfies application specifications. These solutions are automatically saved and
can be further examined or manually modified by the developer or used as they are.

For each generated solution, the composition tool can create simulation projects,
as shown in the next steps of the flow. The simulations are set up to run on external
simulators (e.g., OMNeT++ [36]) and can be at various levels of abstraction.
Basically, this consists of the extraction and configuration of the suitable simulation
views from the components of the solution and their assembly in simulation projects.

Using a similar mechanism, the composition engine generates the projects that
can be compiled with the target tools to create the programs for the WSN nodes.
These projects are typically generated in the format expected by the target tools,
which often is a make-based project.

Moreover, the components that are instantiated in the solution can include a bill
of materials (e.g., compatible hardware nodes, RF and transducer characteristics)
or software dependencies on specific compilation toolchains or underlying OS.
The composition engine can collect all these, e.g., into a solution-specific Bill of
Materials (BOM) and compilation requirements.

As shown in Fig. 38.11, after each step, the developer can analyze the results and
attempt to optimize them either by changing the specification (and rerunning the
composition) or by manually editing the generated projects.

As mentioned, the benefits of WSN application automated composition are
compounded by its integration with external tools, such as simulators, target
compilation chains that can provide inputs or assist the developer in other phases
of the flow. For instance, Fig. 38.10 shows some typical interfaces with middleware
[23, 25], WSN planning tools [30], or deployment and maintenance tools [18]. An
example of integration is presented in [2].

1286 M.T. Lazarescu and L. Lavagno

However, the wide variety of the existing tools and models makes it very difficult
to define an exhaustive set of toolset external interfaces. Moreover, rigid toolset
interfaces or operation models can reduce its value and hamper its adoption in
the rapidly evolving WSN context, which does not seem to be slowed down by
standardization efforts or proprietary Application Programming Interface (API)
proposals. Thus, as we will show later on, an optimal tool integration in existing
and future development flows would base its core operation on a model expressive
enough to encode both high-level abstractions and low-level details. Moreover,
it is also important to provide well-defined interfaces and semantics to simplify
its maintenance, updates, integration with other tools, and extensions to other
application domains.

38.4.1.2 Automated Composition Tool Overview
The main functions of the tool are application input (interface and processing),
automated hardware-software composition, and code and configuration generation.

Application domain experts can benefit most from an interactive user-friendly
interface for the description of the WSN application top-level behavior. Stateflow R�,
as described in Sect. 38.3, are well established in this regard for their intuitive use,
and they can also provide suitable high-level models to facilitate the description of
the desired application domain behavior. On the other hand, the tool can accept
application descriptions generated by other tools, such as middleware [12] or
metaprogramming [24].

Automated composition of hardware-software systems able to support WSN
application specification shields the developer from most time-consuming and error-
prone implementation details. At the same time, the composition increases the reuse
of functional components from the library, which can be software components
(e.g., OS, functional blocks, software configurations, project build setup), hardware
components (such as WSN nodes, transducers, radio types or specific devices,
hardware configurations), and specifications (e.g., target compilation toolchain, RF
requirements).

While the tool performs some consistency and satisfiability checks of application
specifications in order to reject early those that cannot have a solution, other
incomplete specifications are accepted because the tool can typically infer default
parameters based on the values provided by the library components and heuristics.
This allows the developer to refine the specifications during successive design
iterations using also the results of previous underspecified composition runs.

Incomplete specifications may lead to the composition of incomplete systems,
which nevertheless satisfy every requirement. This can save effort for experienced
developers, who can use the resulting incomplete projects as starting points for
manual refinements.

Code generation can produce simulation or target compilation projects. Network
simulations can be configured using the simulation models of the components of the
solutions, their parameters, and the actual configurations. Realistic communication
channels defined by a planning tool [30] can be used, if available. In a similar way,

38 Wireless Sensor Networks 1287

the tool uses the implementation code of the components instantiated in a solution
to generate and configure the project that compiles the code for the WSN nodes.

Besides this highly automated process, the tool allows the experienced devel-
opers to take over manually the application development at any stage: design
entry, testing and debug, system composition, node application simulation, network
simulation, and target code generation. Basically, this is achieved by:

• making use of textual data formats that can be edited with general purpose or
specialized editors;

• documenting the data formats, their semantics, and processing during each phase
of the development flow;

• including well-known tools in the flow with clean and well-documented inter-
faces to simplify their update or replacement for the specialization of the flow;

• allowing one to run manually the individual tools, even outside the integrated
flow, e.g., to explore options and operation modes that are not supported by the
integrated flow.

38.4.1.3 Automated Composition Tool Input Interface
As argued above, abstract concurrent Stateflow R� are an intuitive and efficient high-
level means to specify the top-level application behavior. Besides the behavior, the
tool should support the specification of interfaces and other requirements of the
behavior. These are necessary because the flow does not make any assumptions
about the format, the language, or the modeling of the behavioral part.

All these data are captured in the top-level component of the design that is then
used to drive the system composition engine. Using library components, the engine
attempts to automatically compose a hardware and software system that supports
the application-specific behavior and provides all its requirements.

For instance, let us consider a WSN application that collects and sends every five
minutes the environmental temperature during four intervals of two hours spread
evenly during the day. The functional description of this application consists of a
periodic check if the temperature collection is enabled. If it is enabled, then it checks
if five minutes have elapsed from previous reading, and if so then it acquires a
new reading and sends it to the communication channel. The whole application
behavior can be encoded in just a few condition checks and data transfers, plus
some configuration requirements to support them (such as timers, a temperature
reading channel, a communication channel). The rest of the node application and
communications are not application-specific; hence, the developer should not spend
effort developing or interfacing with them. In this flow (see Figs. 38.10 and 38.11),
these tasks are automatically handled by the composition engine, which attempts to
build a system that satisfies all specifications by reusing library components, as will
be explained later.

The top-level component can include also several types of metadata prop-
erties. For instance, if the IPv6 over Low Power Wireless Personal Area Net-
work (6LoWPAN) protocol is a specification of the WSN application, a require-
ment for 6LoWPAN can be added to the top-level component, regardless if the

1288 M.T. Lazarescu and L. Lavagno

top-level component functional code interfaces directly with the field commu-
nication protocol. This way, the 6LoWPAN requirement directs the application
composition to instantiate the functional components from the library that pro-
vide this communication protocol. However, the tool will instantiate only those
6LoWPAN components that satisfy other system requirements that are collected
from both the top-level and other instantiated components.

38.4.1.4 Structure of Top-Level and Library Components
Library components are central to the operation of the system composition engine
(see Fig. 38.12). They are used for:

• the definition by the developer of the behavior and requirements of the node-level
WSN application, modeled as a top-level component;

• the definition of library blocks that can be instantiated by the composition tool to
compose a hardware-software system that satisfies all design specifications;

• the interface with OS or middleware services when necessary, to support the
functionality of the application;

• providing the simulation models, at different levels of abstraction;
• providing the target code that is used to build the projects as well as to configure

and compile the code for the target nodes;
• providing code generators that can be run by the composition tool to either:

– check if the component can be configured to satisfy the requirements derived
for the current partial solution during composition, so that it can be instanti-
ated in the solution;

– build specialized code stubs, e.g., for API translation and component code
configuration, that are based on the actual parameters of the solution in which
they are instantiated;

• providing hardware component specifications, which are collected in a BOM;

Fig. 38.12 Top-level
application specification
component and library
components share the same
structure: a variable set of
views (shown darker on the
bottom) that are handed as
black boxes by the system
composition process and a set
of metadata that express the
requirements and the
capabilities of the component.
The components are encoded
in XML (EMF XMI)

38 Wireless Sensor Networks 1289

• providing nonfunctional requirements, such as for special radio-frequency re-
quirements or compilation toolchains.

Yakindu SCT was used in this specific case to generate and modify the library
components, including their metadata. Hence, the components are encoded using
extensions of Yakindu projects, which use the Eclipse Modeling-Framework (EMF)
XML Metadata Interchange (XMI) format [27]. XMI is an XML interchange format
well supported especially by UML-based tools. Components in other formats can
be supported using suitable translators, as long as those formats can adequately
represent the meanings of the metadata and the functional models of the Yakindu
components.

The library components are designed to be compatible with the concurrency and
communication models provided by the underlying OS or middleware abstractions.
To achieve a consistent system composition, all external communications among
and with the components need to go through their exposed interfaces in order to be
visible to the system composition engine.

38.4.1.5 System Composition Process
To exemplify the composition process, we show in Fig. 38.13 a simplified represen-
tation of just a few metadata properties for both the library components (bottom)
and the top-level specification component (top).

At the begin of the system composition process, the system composition engine
is driven by the metadata specifications of the top-level component of the design,
and its selections are guided by the metadata of the components in the toolset
library. As system composition progresses by instantiating library components in
the partial solution, the metadata of the instantiated components will drive the search
performed by the engine alongside with the still unsatisfied specifications of the top-
level component. During the entire composition process, the top-level component
and its metadata are considered mandatory. However, the library components can
be instantiated and removed from the solution as necessary, to satisfy the design
requirements.

More specifically, at the begin of the system composition process, the engine
loads all metadata from the top-level component and all library components. Then
the recursive solver of the engine starts to build a partial solution by looking
for library components that match the requirements of the top-level specification
component. It instantiates these components, one at a time, into the partial solution,
and then it repeats the process. This time, it considers the specifications of all the
components that are currently instantiated in the partial solution, including the top-
level component.

The solution becomes complete when all the requirements of its components are
satisfied. Once a complete solution is found, it is saved along with the actual values
for all its configuration parameters. Then the solver resumes the search for other
solutions by removing components from the current solution and replacing them
with alternatives, if any. The solver basically stops when all possible combinations
have been tried. As a future development, the composition engine can be coupled

1290 M.T. Lazarescu and L. Lavagno

DE Comp. 1

Require:
feature 1

Provide:
feature 1R

Lib. Comp. 13

Require:

Provide:
feature 13

Lib. Comp. 2

Require:
feature 8

Provide:
feature 2

Lib. Comp. 10

Require:
feature 13

Provide:
feature 9
feature 10

Lib. Comp. 12

Require:

Provide:
feature 11
feature 12

Lib. Comp. 9

Require:

Provide:
feature 9

Lib. Comp. 4

Require:

Provide:
feature 4

Lib. Comp. 5

Require:
feature 9

Provide:
feature 4
feature 5

Lib. Comp. 6

Require:
feature 7

Provide:
feature 5
feature 6

Lib. Comp. 8

Require:

Provide:
feature 8

Lib. Comp. 3

Require:
feature 8

Provide:
feature 3

Lib. Comp. 1

Require:
feature 2
feature 3
feature 4
Provide:
feature 1

Lib. Comp. 11

Require:
feature 13

Provide:
feature 11

Lib. Comp. 7

Require:
feature 10
feature 11
Provide:
feature 7

Design Entry component

Library Components

System Synthesis Engine Solution
1, 2, ...

Fig. 38.13 Simplified example of metadata for the design specification component and some
library components

with design space exploration tools, e.g., [28], �Chap. 6, “Optimization Strategies
in Design Space Exploration” and �Chap. 7, “Hybrid Optimization Techniques for
System-Level Design Space Exploration”.

For example, considering the top-level specification and the library components
shown in Fig. 38.13, the system composition engine loads first the design entry
top-level component and all 13 components of the library. Then the engine
explores all component combinations that can lead to a complete solution, i.e., a
component composition where all mandatory component requirements are satisfied.
All complete solutions found are saved. For the example shown in Fig. 38.13, these
are:

1. solution using components 1, 2, 3, 4, 8;
2. solution using components 1, 2, 3, 5, 8, 9;
3. solution using components 1, 2, 3, 5, 8, 10, 13.

The format of the saved solutions includes all the elements necessary to
instantiate, connect, and configure the selected library components. By revisiting
these data and the instantiated components, the engine is able to:

• extract some figures of merit for the solutions from the instantiated components
metadata and their actual configuration within the solution, e.g., FLASH and
RAM requirements, communication protocol characteristics, etc.;

38 Wireless Sensor Networks 1291

• generate the BOM and nonfunctional specifications, such as what are the
compatible compilation chains;

• generate and configure network simulation models;
• generate make-based projects that can build the programming and configuration

code for the target nodes.

The developers can use these data to decide which solution, if any, is suitable.
Alternatively, they may decide to change the application specifications in order to
improve the solutions or to manually optimize a promising solution.

38.5 Case Studies

In the following, we will present the application of the automated composition flow
to two different representative WSN applications of practical interest, which are
described in [2].

One application is a self-powered WSN gateway designed for long-term event-
based environmental monitoring. It can handle up to 1000 sensor nodes, process,
and aggregate their messages, bidirectionally communicate with a server over the
Internet using Transmission Control Protocol/Internet Protocol (TCP/IP) through
a General Packet Radio Service (GPRS) modem, and receive remote updates. Its
hardware requirements are very small, comparable to those commonly used to
implement a WSN sensor node. To satisfy these requirements, the original gateway
code was handwritten fully in C, without using an embedded OS or external libraries
besides the low-level standard C libraries.

The other application is a typical WSN sensor node for remote environmental
monitoring. It has transducers for some pollutant gases and it is designed to operate
near industrial sites adjacent to urban areas. The node was developed on top of
ChibiOS [33], a real-time, preemptive, small, and fast embedded OS.

In both applications, we have started from an existing implementation. However,
the flow presented below can be used both for porting legacy code on the toolset and
adding toolset support for new hardware:

Create library components. The system composition engine is designed to make
extensive use of the components in the library. Hence, the quality of its library
strongly determines the quality of the composed systems.
A good quality library should include enough variety of building blocks to
support most sensing requirements (e.g., various types of sensor interfaces),
processing requirements (e.g., queues, stats, encryption), in-field and out-of-field
communication protocols, etc.
The libraries can and should be reused for several designs. Thus, once a library
is created, it may receive incremental updates (e.g., support for new sensors or
new algorithms) or significant additions (e.g., support for new hardware nodes or
embedded OSs).

1292 M.T. Lazarescu and L. Lavagno

Create the top-level specification component. This component is application-spe-
cific and drives the whole system synthesis process. It needs to include enough
requirements to cover all application needs without being over-specified, which
would restrict too much the search space of the synthesis engine.

Run the system composition engine. The engine attempts to solve all require-
ments of the top-level component using the existing components from the library.

Evaluate the solutions. As shown in Sect. 38.4.1.5, the toolset can extract and
calculate various figures of merit for each solution which can be used by the
developer in order to select a suitable solution. Moreover, the solutions can also
be manually analyzed and further tuned.

The applications that we consider here are based on existing projects. In these
cases, particular attention should be given to the creation of the components from
the existing hardware or software Intellectual Property (IP) blocks in order to allow
the toolset to find at least a solution that matches the existing projects. One obvious
and easy-to-automate way is to pack the IP code in an appropriate component model
(see Fig. 38.12). Then, for each component, it is important to properly describe its
functional elements, such as its interfaces and configuration capabilities, and the
semantics associated to component behavior and data exchanges.

38.5.1 Full-Custom WSN Gateway

The original gateway project was implemented with limited hardware resources,
which are typical for WSN sensor nodes. It included an AVR ATmega1281
microcontroller, two CC1101 radio modems operating in the 433 MHz band using
a proprietary communication protocol. These connected the gateway, on separate
channels, both with the peer gateways and with much smaller sensor nodes, which
were used for high-density environmental monitoring. The gateway included also a
GPRS TCP/IP-enabled modem for long-range communication with the server and
for remote updates.

The application software of the node is written entirely in C, without an
embedded OS. It is made of 49 modules, each of them implementing a well-
defined function: generic functions that are used by most applications (like the task
scheduler, oscillator calibration, or the message queue) or specialized functions that
are used for specific applications (such as drivers for specific onboard sensors).

Instead of an embedded OS, the code uses a module that implements a round-
robin scheduler that can periodically run statically assigned tasks. Most tasks
are implemented as FSMs using the coroutine approach. Each task executes for
a minimum amount of time when started and voluntarily yields the processor
whenever it completes its processing or it needs to wait for some reason. Also, each
task is responsible for maintaining its own state and persistent data between calls,
in order to be able to resume its execution upon its next scheduling slot.

Besides the functional blocks needed to implement the main gateway behavior,
the code has several modules that implement safety and error recovery functions.

38 Wireless Sensor Networks 1293

Also, there are several driver and processing modules for several sensors and
auxiliary devices that can be mounted directly onboard the gateway node:

adc Drivers for the Analog-to-Digital Converter (ADC) peripherals.
The module captures the ADC interrupt and calls the conversion data processing function.

anemometer Weather anemometer sensor handling functions.
Driver and controller for the anemometer transducer.

battery Utilities for battery reading processing.
The module provides the battery-specific voltage-to-capacity conversion tables and the func-
tions to perform the conversion.

cc Field and mesh radio drivers.
The module handles everything related to the field and mesh radio onboard the gateway.

crc Cyclic Redundancy Check (CRC) utilities.
Processing utilities (CRC calculation).

eeprom Electrically Erasable Programmable Read-Only Memory (EEPROM) driver.
EEPROM data structure and low-level I/O drivers.

eeprom_ext External EEPROM driver.
Driver for external EEPROM module.

fc10 FC10 sensor handling functions.
It has both the top-level application and drivers for the FC10 transducer.

field Communication protocol with sensor nodes.
Processing of messages received from sensor nodes.

geophone Geophone sensor driver.
It has both the top-level application and drivers for the geophone transducer.

gw Node status.
Controls the state and configuration of the node.

hal Hardware high-level interface.
It processes asynchronous events from the network and onboard switches.

humidity Weather humidity sensor handling functions.
Driver and controller for the humidity transducer.

hygrometer Hygrometer sensor.
It has both the top-level application and drivers for the transducer.

igwc Internode communication.
Internode messaging and network formation.

inst Node installation mode.
Top-level application that runs during the installation of the node in the field.

mesh internode communication protocol.
Processing of node-level messages.

modem GPRS modem driver.
Driver for the GPRS modem.

msg_filter Messages queue filter.
Configurable application-specific processing of the queued messages.

obs Onboard sensor driver.
Drivers for various onboard sensors (not application-specific).

oc_link Operating center communication controller.
Controller of the connection with the server and server message preprocessor.

power Power module driver.
Driver for the power module.

pressure Weather pressure sensor handling functions.
Driver and controller for the pressure transducer.

queue Message queue.
Storage and processing of the messages queued to be delivered to the server.

rain Weather rain sensor handling functions.
Driver and controller for the rain transducer.

1294 M.T. Lazarescu and L. Lavagno

rccal Main Resistor-Capacitor (RC) oscillator calibration.
Performs the calibration of the internal RC oscillator.

rel_mesh Multihop message queue transfer via mesh, with acknowledge.
Bidirectional internode communication protocol.

rpc Remote procedure call.
Processors for remotely setting and querying (monitoring) node data and for sending remote
commands.

run_state Execution health controller.
Module to monitor the state of the current run, i.e., how far the software execution has
progressed since the last boot.

sched Task scheduler.
Scheduler.

sensor Sensor state and data processing.
Maintains the state of the sensors in range based on the contents of their messages (or lack
thereof).

sensor_ppc Path passage counter sensor.
It has both the top-level application and drivers for a passage detector.

service Internal service requests handler.
Implements a service request/dispatch controller that can change the state of the node

sio Serial link for operating central message transfer.
Communication with the server over a wired serial line.

spi Master Serial Peripheral Interface (SPI) driver.
Driver for the SPI port.

sr Save-restore of RAM contents across watchdog resets.
Saves the contents of specific RAM areas before a watchdog reset and restores them after the
reboot.

sw External switch driver.
Driver for the on-node switches.

testing Node testbench mode.
Various top-level applications that act as node and sensor node tester.

test_tx_hw Sensor testbench mode.
Top-level application for the node in testing mode.

theft Node antitheft detector.
Process that detects possible node theft actions.

timer Timer handler.
Provides several timers for use within the node.

twi Two Wire Interface (TWI) interface.
Driver for the TWI interface.

usart Universal Synchronous/Asynchronous Receiver/Transmitter (USART) drivers.
Drivers for the node USART ports.

util Utilities.
Various processing functions (e.g., conversion of bin values to American Standard Code for
Information Interchange (ASCII) hex).

version Firmware version utilities.
It provides the version of node software.

wd Watchdog driver.
Driver for various functions attached to the watchdog timer.

weather Weather station handlers.
Top-level application that implements a weather station.

zlist RAM-efficient mapping of the Identifiers (IDs) of the sensor nodes in range.
Optimized storage and processing of the messages queued to be delivered to the server.

38 Wireless Sensor Networks 1295

Most of these modules are made of several functions and may include sizable
amounts of data. For example, module queue includes the data structures for
buffering the messages in queues by priority, waiting to be transmitted, and the
functions for the operation of the queues (such as query, addition, or removal).
Similarly, the sensor module maintains the data structure with the status of all sensor
nodes in range and provides the functions for their management, such as query or
update.

Figure 38.14 shows the metadata of the library component that was generated
for a very simple module, version. The module implements the function to store the
gateway version information and provides methods to access it.

<sgraph:Gss xmi:id="_b2b65395f30689ed09f02e">
<properties>

<name>version_component</name><description />
</properties>
<views xmi:id="_08f5c2612c510ac5e105e7">

<behavior>
<view xmi:id="_5c39ae70c147735f28ad4b" name="version.c"

type="source" language="C" encoding="base64">
<description></description>
<mem>LyoqCiAqIEBmaWxlIHZ [...]</mem>

</view>
<view xmi:id="_44e6770ca6e62fc2db54e9" name="version.h"

type="source" language="C" encoding="base64">
<description></description>
<mem>LyoqCiAqIEBmaWxlIHZlc [...]</mem>

</view>
</behavior>

</views>
<resources>

<behavior>
<require><name>avr_libc</name><description /></require>
<provide><name>version_component</name>

<description /></provide>
</behavior>

</resources>
<interfaces>

<behavior>
<provide>

<description />
<function>

<name>version_get</name>
<return><type>char *</type></return>
<port><ord>1</ord><type>char *</type></port>

</function>
</provide>

</behavior>
</interfaces>

</sgraph:Gss>

Fig. 38.14 Example of a simple library component that includes properties and a code view

1296 M.T. Lazarescu and L. Lavagno

At the top level, we can see the categories properties, views, resources, and
interfaces. This simple component has only one property that contains the name
of the module. The list of behavioral views includes two files corresponding to the
source code of the module. The resources include one nonfunctional requirement to
track the dependency of the component on a toolchain that supports the C functions
used in the source code and a symbolic resource provided by the component which
can be used, for instance, to directly require this component in design specifications
or in other components. In terms of interfaces, the component provides a behavioral
function, which retrieves and returns the version data. Additionally, for most
metadata properties, one can enter a description that can be used, for instance, to
help the developer understand the semantics of the component, when it is displayed
in a component or solution editor.

Figure 38.15 shows the result of the composition of a minimal gateway system
for which the specification was just to include the core gateway functions. Moreover,
the composition tool ran the configuration helpers of the components, to set up their
instances according to the actual values of their parameters, as found by the solver.
For instance, the scheduler is automatically configured to support the actual tasks.

For this minimal requirement, the solver found a suitable composition with
a maximum recursion depth of 888, matching 230 abstract requirements, 472
functional requirements, and two data requirements in less than 0.8 s on an 1.8 GHz
Intel R� CoreTM i7-2677M processor.

In addition to software solution composition, the tool collects other requirements
of the instantiated components into a BOM list that includes the hardware node type,
radio specifications, and the target compilation toolchain.

By changing just the top-level specification component, we used the toolset to
automatically compose systems for different application requirements (for different
gateway compositions in this application).

adc hygrometer rccal test_tx
anemometer igwc rel_mesh theft
battery inst rpc timer
cc main run_state twi
crc mesh sched usart
eeprom modem sensor util
eeprom_ext msg_filter sensor_ppc version
fc10 obs service wd
field oc_link sio weather
geophone power spi zlist
gw pressure sr
hal queue sw
humidity rain testing

Fig. 38.15 Result of system composition using only the requirements of the main gateway
component as specification. Just 36 out of all 49 modules were included by the engine in the
final project (emphasized), correctly leaving out, e.g., drivers for optional sensors, test suites, and
interfaces

38 Wireless Sensor Networks 1297

38.5.2 WSN Sensor Node for Air Quality Monitoring

Also for this application, we followed the flow outlined in Sect. 38.5. The existing
application software of the node was developed in C for a real-time embedded OS,
ChibiOS. This OS has some important features that help increasing the reliability of
the applications. For instance, the APIs of the OS are designed to require minimal
parameters and to do just one function, with no options and no error conditions.

Since the application was using an Real-Time Operating System (RTOS),
we converted several OS modules into library components so that the system
composition engine can consider them when searching for a solution to problem
specifications. Besides the RTOS modules, we created library components for
several application-specific elements, such as the transducer drivers and some
special interfaces required by the OS:

comm Application layer of the node communication protocol.
globals Global definitions and initialization.
hwcfg/board Board-specific configurations, e.g., General-Purpose Input/Output-pin (GPIO)

and clock setup, and peripherals check.
crc8 Helper functions for node interface, e.g., CRC calculation.
if Interface functions for the node.
transport Transport layer for node interface.
DHT11 Driver for the temperature and humidity sensor.
GroveDust Driver for the particulate matter sensor.
GroveMQ5 Driver for the gas sensor (H2, LPG, CH4, CO, alcohol).
GroveMQ9 Driver for the gas sensor (CO, coal gas, LPG).
sensors Higher-level abstraction of sensor drivers.
thRdProbes Periodic reader for sensor data.

Along with these components, we have created library components for an
extensive set of OS modules, e.g.:

can_lld STM32 Controller Area Network (CAN) subsystem low-level driver source.
ext_lld STM32 EXT subsystem low-level driver source.
adc_lld STM32F4xx/STM32F2xx ADC subsystem low-level driver source.
ext_lld_isr STM32F4xx/STM32F2xx EXT subsystem low-level driver Interrupt Service

Routine (ISR) code.
hal_lld STM32F4xx/STM32F2xx Hardware Abstraction Layer (HAL) subsystem low-level

driver source.
stm32_dma Enhanced Direct Memory Access (DMA) helper driver code.
pal_lld STM32L1xx/STM32F2xx/STM32F4xx GPIO low-level driver code.
i2c_lld STM32 Inter-Integrated Circuit (I2C) subsystem low-level driver source.
mac_lld STM32 low-level Media Access Control (MAC) driver code.
usb_lld STM32 Universal Serial Bus (USB) subsystem low-level driver source.
rtc_lld Real-Time Clock (RTC) low-level driver.
sdc_lld STM32 Secure Digital Card (SDC) subsystem low-level driver source.
spi_lld STM32 SPI subsystem low-level driver source.
gpt_lld STM32 General-Purpose Timer (GPT) subsystem low-level driver source.
icu_lld STM32 Input Capture Unit (ICU) subsystem low-level driver header.
pwm_lld STM32 Pulse-Width Modulation (PWM) subsystem low-level driver header.
serial_lld STM32 low-level serial driver code.
uart_lld STM32 low-level Universal Asynchronous Receiver/Transmitter (UART) driver

code.
adc ADC Driver code.

1298 M.T. Lazarescu and L. Lavagno

can CAN Driver code.
ext EXT Driver code.
gpt GPT Driver code.
hal HAL subsystem code.
i2c I2C Driver code.
icu ICU Driver code.
mac MAC Driver code.
mmcsd Multimedia/Secure Digital Card (MMC/SD) cards common code.
mmc_spi MMC/SD over SPI driver code.
pal Input/Output (I/O) Ports Abstraction Layer code.
pwm PWM Driver code.
rtc RTC Driver code.
sdc SDC Driver code.
serial Serial Driver code.
serial_usb Serial over USB Driver code.
spi SPI Driver code.
tm Time Measurement driver code.
uart UART Driver code.
usb USB Driver code.
chcond Condition Variables code.
chdebug ChibiOS/RT Debug code.
chdynamic Dynamic threads code.
chevents Events code.
chheap Heaps code.
chlists Thread queues/lists code.
chmboxes Mailboxes code.
chmemcore Core memory manager code.
chmempools Memory Pools code.
chmsg Messages code.
chmtx Mutexes code.
chqueues I/O Queues code.
chregistry Threads registry code.
chschd Scheduler code.
chsem Semaphores code.
chsys System-related code.
chthreads Threads code.
chvt Time and Virtual Timers related code.
nvic Cortex-Mx Nested Vectored Interrupt Controller (NVIC) support code.
chcore ARM Cortex-Mx port code.
chcore_v7m ARMv7-M architecture port code.
crt0 Generic ARMvx-M (Cortex-M0/M1/M3/M4) startup file for ChibiOS/RT.
vectors Interrupt vectors for the STM32F4xx family.
chprintf Mini printf-like functionality.

Figure 38.16 shows an example of a library component that was created for this
project. Its structure is similar to the one shown in Fig. 38.14 in terms of dependency
and interface data declarations. Besides these, the component includes a parameter
definition under the rpcs tag. These parameters are made available by the functional
code of the component to allow their remote control by a middleware layer or by a
monitoring server, using specific protocols. The data associated to these parameters
in the library component, which is enclosed in an rpc tag, is extracted by the
composition tool and is attached to each solution that was generated. These data
are later used by external tools for their run-time configuration to properly interface

38 Wireless Sensor Networks 1299

<sgraph:Gss xmi:id="_c3cd36f777bdea1a5ae079">
<properties>

<name>comm_component</name>
<cmt><rpcs><rpc>
<description>Set sensor sampling frequency.</description>
<name value="RATE" /><values><set type="integer" /></values>
</rpc></rpcs></cmt>

</properties>
<views xmi:id="_190b8090159699e0b68bce">

<behavior>
<view xmi:id="_b860c0e4a20a75489a5f76" name="comm.c"
type="source" language="C" encoding="base64">

<mem>LyoNCiAqIENvbW [...]</mem></view>
<view xmi:id="_37a76b4ed27649239a0554" name="comm.h"
type="source" language="C" encoding="base64">

<mem>LyoNCiAqIENvbW0uaA0KICo [...]</mem></view>
</behavior>

</views>
<interfaces>

<behavior>
<provide><data>

<name>m_sPacket</name><base>t_PktHeader</base><size>6</size>
</data></provide>
<provide><function>

<name>Comm_Init</name><return><type>void</type></return>
<port><ord>1</ord><type>void</type></port>

</function></provide>
<provide><function>

<name>Comm_Write</name><return><type>void</type></return>
<port><ord>1</ord><type>t_u8 *</type></port>
<port><ord>2</ord><type>t_u8</type></port>

</function></provide>
<require><function>

<name>Crc8</name><return><type>unsigned char</type></return>
<port><ord>1</ord><type>void *</type></port>
<port><ord>2</ord><type>int</type></port>
<port><ord>3</ord><type>unsigned char</type></port>

</function></require>
<require><data>

<name>g_Kau8Sync</name><base>t_u8</base><size>4</size>
</data></require>
<require><data>

<name>g_pSApp</name><base>SerialDriver *</base><size>4</size>
</data></require>

</behavior>
</interfaces>

</sgraph:Gss>

Fig. 38.16 Example of a library component used for the air quality monitoring application. It
includes a parameter that can be remotely accessed at run time

with the component. The data can also include human readable descriptions for the
developers or the beneficiaries of the WSN application.

These library components were added to the same library that was used for the
first application. In this way, the synthesis engine is able to compose systems for
both hardware node types by selecting suitable compatible components to match
the specification requirements.

For this application, the solver found a suitable system composition with a
maximum recursion depth of 109, matching 22 abstract requirements, 50 functional

1300 M.T. Lazarescu and L. Lavagno

requirements, and 12 data requirements, in less than 0.2 s on an 1.8 GHz Intel R�

CoreTM i7-2677M processor.
We used the toolset to compose nodes with different sensors, sensor combi-

nations, sensing periods, and remote monitoring interfaces (as the one mentioned
above). The synthesis engine used the high-level requirements in the top-level
component (which were provided by the developer) to automatically select and
compose suitable hardware, software, and configuration for the node.

38.6 Conclusion

Wireless sensor networks can be used for many applications in a variety of domains,
but their reliability, lifetime, overall cost, and design effort limit their actual use.
Moreover, WSN design flows often lack a well-defined separation between the
application designers and the multidisciplinary engineering knowledge needed to
cover the operation of the underlying technology. This considerably reduces the use
of WSN solutions by the application domain experts, even though WSNs would
provide very effective solutions for their applications.

We briefly overviewed some of the most important existing WSN development
techniques, abstractions, and tool categories to evaluate how well they respond to
these requirements. From the review, the importance of the trade-off between im-
plementation optimization and accessibility to application domain experts became
apparent. On the one hand, the development flows that allow significant design
optimizations imply a level of hardware, software, and network design knowledge
that is seldom found among application domain experts. On the other hand, highly
abstracted design flows may often lead to poorly optimized WSN designs and are
difficult to port to target platforms outside the (often) narrow range supported by the
tool. Also, most of the tools themselves generally lack composability and the ability
to be used as building blocks within new development flows.

Model-based design flows seem to provide effective trade-offs between the
manual effort that is required to optimize the designs and the availability of a
high-level development flow that increases designer productivity. In this context, we
presented in more detail two innovative toolsets that offer user-friendly high-level
design entry interfaces as well as various degrees of automation to hide the low-level
implementation details from the developer. Both flows allow design optimization to
various degrees and also manual optimization for skilled developers to increase the
performance of the resulting WSN designs. To evaluate their effectiveness, we have
illustrated the use of both tools for the development of some typical applications.

References

1. Abrach H, Bhatti S, Carlson J, Dai H, Rose J, Sheth A, Shucker B, Deng J, Han R (2003)
MANTIS: system support for multimodAl NeTworks of In-situ Sensors. In: Proceedings of the
2nd ACM international conference on wireless sensor networks and applications, WSNA ’03.
ACM, New York, pp 50–59. doi:10.1145/941350.941358

http://dx.doi.org/10.1145/941350.941358

38 Wireless Sensor Networks 1301

2. Antonopoulos C, Asimogloy K, Chiti S, D’Onofrio L, Gianfranceschi S, He D, Iodice A,
Koubias S, Koulamas C, Lavagno L, Lazarescu MT, Mujica G, Papadopoulos G, Portilla J,
Redondo L, Riccio D, Riesgo T, Rodriguez D, Ruello G, Samoladas V, Stoyanova T, Touliatos
G, Valvo A, Vlahoy G (2016) Integrated toolset for WSN application planning, development,
commissioning and maintenance: the WSN-DPCM ARTEMIS-JU project. Sensors 16(6):804.
doi:10.3390/s16060804

3. Ashton K (2009) That ‘Internet of Things’ thing. Expert view RFID J http://www.rfidjournal.
com/article/view/4986

4. Cao Q, Abdelzaher T, Stankovic J, He T (2008) The LiteOS operating system: towards
Unix-like abstractions for wireless sensor networks. In: Proceedings of the 7th international
conference on information processing in sensor networks, IPSN ’08. IEEE Computer Society,
Washington, DC, pp 233–244. doi:10.1109/IPSN.2008.54

5. Cha H, Choi S, Jung I, Kim H, Shin H, Yoo J, Yoon C (2007) RETOS: resilient, expandable, and
threaded operating system for wireless sensor networks. In: Proceedings of the 6th international
conference on information processing in sensor networks, IPSN ’07. ACM, New York,
pp 148–157. doi:10.1145/1236360.1236381

6. Compton M, Henson C, Lefort L, Neuhaus H, Sheth A (2009) A survey of the semantic
specification of sensors. In: 2nd international semantic sensor networks workshop

7. Costa P, Mottola L, Murphy AL, Picco GP (2007) Programming wireless sensor networks with
the TeenyLime middleware. In: Proceedings of the ACM/IFIP/USENIX 2007 international
conference on middleware, middleware ’07. Springer, New York, pp 429–449.

8. Doddapaneni K, Ever E, Gemikonakli O, Malavolta I, Mostarda L, Muccini H (2012) A model-
driven engineering framework for architecting and analysing wireless sensor networks. In:
Proceedings of the third international workshop on software engineering for sensor network
applications, SESENA ’12. IEEE Press, Piscataway, pp 1–7

9. Dong W, Chen C, Liu X, Bu J (2010) Providing OS support for wireless
sensor networks: challenges and approaches. Commun Surv Tuts 12(4):519–530.
doi:10.1109/SURV.2010.032610.00045

10. Dunkels A, Gronvall B, Voigt T (2004) Contiki – a lightweight and flexible operating system
for tiny networked sensors. In: Proceedings of the 29th annual IEEE international conference
on local computer networks, LCN ’04. IEEE Computer Society, Washington, DC, pp 455–462.
doi:10.1109/LCN.2004.38

11. Eswaran A, Rowe A, Rajkumar R (2005) Nano-RK: an energy-aware resource-centric
RTOS for sensor networks. In: Proceedings of the 26th IEEE international real-time
systems symposium, RTSS ’05. IEEE Computer Society, Washington, DC, pp 256–265.
doi:10.1109/RTSS.2005.30

12. Gámez N, Cubo J, Fuentes L, Pimentel E (2012) Configuring a context-aware middleware for
wireless sensor networks. Sensors 12(7):8544–8570

13. Gay D, Levis P, von Behren R, Welsh M, Brewer E, Culler D (2003) The nesC lan-
guage: a holistic approach to networked embedded systems. SIGPLAN Not 38(5):1–11.
doi:10.1145/780822.781133

14. Greenstein B, Kohler E, Estrin D (2004) A sensor network application construction kit
(SNACK). In: Proceedings of the 2nd international conference on embedded networked sensor
systems, SenSys ’04. ACM, New York, pp 69–80. doi:10.1145/1031495.1031505

15. Gummadi R, Gnawali O, Govindan R (2005) Macro-programming wireless sensor net-
works using Kairos. In: Proceedings of the first IEEE international conference on dis-
tributed computing in sensor systems, DCOSS’05. Springer, Berlin/Heidelberg, pp 126–140.
doi:10.1007/11502593_12

16. Han CC, Kumar R, Shea R, Kohler E, Srivastava M (2005) A dynamic operating system for sen-
sor nodes. In: Proceedings of the 3rd international conference on mobile systems, applications,
and services, MobiSys ’05. ACM, New York, pp 163–176. doi:10.1145/1067170.1067188

17. Hill J, Szewczyk R, Woo A, Hollar S, Culler D, Pister K (2000) System architec-
ture directions for networked sensors. SIGARCH Comput Archit News 28(5):93–104.
doi:10.1145/378995.379006

http://dx.doi.org/10.3390/s16060804
http://www.rfidjournal.com/article/view/4986
http://www.rfidjournal.com/article/view/4986
http://dx.doi.org/10.1109/IPSN.2008.54
http://dx.doi.org/10.1145/1236360.1236381
http://dx.doi.org/10.1109/SURV.2010.032610.00045
http://dx.doi.org/10.1109/LCN.2004.38
http://dx.doi.org/10.1109/RTSS.2005.30
http://dx.doi.org/10.1145/780822.781133
http://dx.doi.org/10.1145/1031495.1031505
http://dx.doi.org/10.1007/11502593_12
http://dx.doi.org/10.1145/1067170.1067188
http://dx.doi.org/10.1145/378995.379006

1302 M.T. Lazarescu and L. Lavagno

18. Lazarescu MT (2013) Design of a WSN platform for long-term environmental monitoring
for IoT applications. IEEE J Emerg Sel Top Circuits Syst 3(1):45–54. doi:10.1109/JET-
CAS.2013.2243032

19. Madden SR, Franklin MJ, Hellerstein JM, Hong W (2005) TinyDB: an acquisitional
query processing system for sensor networks. ACM Trans Database Syst 30(1):122–173.
doi:10.1145/1061318.1061322

20. Mathworks (2013) Generate C and C++ code from simulink and stateflow models. The
MathWorks. https://it.mathworks.com/products/simulink-coder/

21. MATLAB and Simulink Release 2010a (2010) The MathWorks, Inc., Natick, Massachusetts,
United States

22. MATLAB and Stateflow Release 2010a (2010) The MathWorks, Inc., Natick, Massachusetts,
United States

23. Mohamed N, Al-Jaroodi J (2011) A survey on service-oriented middleware for wireless sensor
networks. Serv Oriented Comput Appl 5(2):71–85. doi:10.1007/s11761-011-0083-x

24. Mottola L, Picco GP (2011) Programming wireless sensor networks: fundamental concepts
and state of the art. ACM Comput Surv 43(3):19:1–19:51. doi:10.1145/1922649.1922656

25. Mottola L, Picco GP (2012) Middleware for wireless sensor networks: an outlook. J Internet
Serv Appl 3(1):31–39. doi:10.1007/s13174-011-0046-7

26. Mülder A, Nyßen A (2011) TMF meets GMF. Eclipse Mag 3:74–78. https://svn.codespot.com/
a/eclipselabs.org/yakindu/media/slides/TMF_meets_GMF_FINAL.pdf

27. OMG, XML (2007) Metadata Interchange (XMI) Specification. http://www.omg.org/spec/
XMI/2.1.1/PDF/index.htm. (Accessed 4 June 2016)

28. Palermo G, Silvano C, Valsecchi S, Zaccaria V (2003) A system-level methodology for
fast multi-objective design space exploration. In: Proceedings of the 13th ACM great lakes
symposium on VLSI, GLSVLSI ’03. ACM, New York, pp 92–95. doi:10.1145/764808.764833

29. Paulon A, Fröhlich A, Becker L, Basso F (2013) Model-driven development of WSN
applications. In: 2013 III Brazilian symposium on computing systems engineering (SBESC),
pp 161–166. doi:10.1109/SBESC.2013.27

30. Ray A (2009) Planning and analysis tool for large scale deployment of wireless sensor network.
Int J Next-Gener Netw (IJNGN) 1(1):29–36

31. Romer K, Mattern F (2004) The design space of wireless sensor networks. IEEE Wirel
Commun 11(6):54–61. doi:10.1109/MWC.2004.1368897

32. Shimizu R, Tei K, Fukazawa Y, Honiden S (2011) Model driven development for rapid
prototyping and optimization of wireless sensor network applications. In: Proceedings of the
2nd workshop on software engineering for sensor network applications, SESENA ’11. ACM,
New York, pp 31–36. doi:10.1145/1988051.1988058

33. Sirio G (2013) ChibiOS/RT. http://www.chibios.org/ (Accessed 4 June 2016)
34. Sugihara R, Gupta RK (2008) Programming models for sensor networks: a survey. ACM Trans

Sen Netw 4(2):8:1–8:29. doi:10.1145/1340771.1340774
35. Taherkordi A, Loiret F, Abdolrazaghi A, Rouvoy R, Le-Trung Q, Eliassen F (2010) Program-

ming sensor networks using REMORA component model. In: Proceedings of the 6th IEEE
international conference on distributed computing in sensor systems, DCOSS’10. Springer,
Berlin/Heidelberg, pp 45–62. doi:10.1007/978-3-642-13651-1_4

36. Varga A, Hornig R (2008) An overview of the OMNeT++ simulation environment. In: Proceed-
ings of the 1st international conference on simulation tools and techniques for communications,
networks and systems & workshops, Simutools ’08. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), ICST, Brussels, pp 60:1–60:10

http://dx.doi.org/10.1109/JETCAS.2013.2243032
http://dx.doi.org/10.1145/1061318.1061322
https://it.mathworks.com/products/simulink-coder/
http://dx.doi.org/10.1007/s11761-011-0083-x
http://dx.doi.org/10.1145/1922649.1922656
http://dx.doi.org/10.1007/s13174-011-0046-7
https://svn.codespot.com/a/eclipselabs.org/yakindu/media/slides/TMF_meets_GMF_FINAL.pdf
https://svn.codespot.com/a/eclipselabs.org/yakindu/media/slides/TMF_meets_GMF_FINAL.pdf
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm
http://dx.doi.org/10.1145/764808.764833
http://dx.doi.org/10.1109/SBESC.2013.27
http://dx.doi.org/10.1109/MWC.2004.1368897
http://dx.doi.org/10.1145/1988051.1988058
http://www.chibios.org/
http://dx.doi.org/10.1145/1340771.1340774
http://dx.doi.org/10.1007/978-3-642-13651-1_4

39Codesign Case Study on Transport-
Triggered Architectures

Jarmo Takala, Pekka Jääskeläinen, and Teemu Pitkänen

Abstract

Application-specific processors are used to obtain the efficiency of fixed-function
application-specific integrated circuits and flexibility of software implementa-
tions on programmable processors. The efficiency is achieved by tailoring the
processor architecture according to the requirements of the application while
the flexibility is provided by the programmability. In this chapter, we introduce
a hardware/software codesign environment for developing application-specific
processors, which is using processor templates based on the transport-triggering
paradigm, hence the name transport-triggered architecture (TTA). Fast Fourier
transform (FFT) is used as an example application to illustrate the customization.
Specific features of FFTs are discussed, and we show how those can be exploited
in FFT implementations. We have customized a TTA processor for FFT, and
its energy efficiency is compared against several other FFT implementations to
prove the potential of the concept.

Acronyms

ADF Architecture Description File
ASIC Application-Specific Integrated Circuit
ASP Application-Specific Processor
CORDIC COordinate Rotational DIgital Computer
DFT Discrete Fourier Transfrom
DIF Decimation-in-Frequency
DIT Decimation-in-Time
DSP Digital Signal Processor

J. Takala (�) • P. Jääskeläinen
Tampere University of Technology, Tampere, Finland
e-mail: jarmo.takala@tut.fi; pekka.jaaskelainen@tut.fi

Teemu Pitkänen
Ajat Oy, Espoo, Finland
e-mail: teemu.pitkanen@ajat.fi

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_39

1303

mailto:jarmo.takala@tut.fi; pekka.jaaskelainen@tut.fi
mailto:teemu.pitkanen@ajat.fi

1304 J. Takala et al.

FFT Fast Fourier Transform
HDB Hardware Database
IR Intermediate Representation
OSAL Operation Set Abstraction Layer
RTL Register Transfer Level
TCE TTA-based Codesign Environment
TTA Transport-Triggered Architecture

Contents

39.1 Introduction . 1304
39.2 Transport-Triggered Architecture Template . 1305
39.3 Design Flow for Customizing Transport-Triggered Architectures 1310
39.4 Discrete Fourier Transform and Its Fast Algorithms . 1312

39.4.1 Radix-p Algorithms . 1313
39.4.2 Radix-2r Algorithms . 1314
39.4.3 Mixed-Radix FFT. 1317

39.5 Building Blocks and Optimizations . 1320
39.5.1 In-Place Computations . 1320
39.5.2 Permutations and Operand Access . 1320
39.5.3 Twiddle Factors . 1324

39.6 Customized FFT Architecture Based on Transport Triggering 1330
39.7 Energy Efficiency Comparison . 1333
39.8 Conclusions . 1335
References . 1335

39.1 Introduction

Application-Specific Processors (ASPs) are used to obtain the efficiency of fixed-
function Application-Specific Integrated Circuits (ASICs) and flexibility of soft-
ware implementations on programmable processors. The efficiency is obtained by
tailoring the processor architecture according to the requirements of the appli-
cation as discussed earlier in �Chap. 12, “Application-Specific Processors” and
�Chap. 33, “Hardware/Software Codesign Across Many Cadence Technologies”.
The simplest customization is to start with existing architecture and remove all
the resources, which are not needed to execute the given application. In a similar
fashion, an ASP may be constructed from library components, i.e., components
are reused; thus the design process is shorter than in ASIC design. Even better
efficiency can be obtained if the specific computation patterns in the application
are identified and those are converted as accelerators or user-specific function units
in the architecture.

The design space for application-specific processors is huge, and finding a su-
itable architecture for a given application will be an exhaustive work. The optimiza-
tion strategies for design space exploration are covered in �Chap. 6, “Optimization
Strategies in Design Space Exploration” and architecture design space exploration

39 Codesign Case Study on Transport-Triggered Architectures 1305

in �Chap. 8, “Architecture and Cross-Layer Design Space Exploration”. Determin-
ing the machine code for an arbitrary processor architecture is extremely a difficult
and time-consuming task especially when the processor contains parallelism. This
work can be alleviated by limiting the search space. Such a constraint can be created
by defining a processor template, which provides a set of customization parameters
to vary the processor candidates. The limited set of parameters allows retargeting
the software development toolchain; thus machine code of the given application
can be generated on the customized architecture. The processor customization is an
iterative process, thus during each iteration there is a need to port the application
program to the new processor. This calls either for a manual assembly language
program rewrite or a retargetable compiler, which can adapt to the changes in the
architecture.

In this chapter, we introduce a processor template based on transport triggering
paradigm and a software/hardware codesign environment supporting this template.
We illustrate the use of the template and design environment by using Fast
Fourier Transform (FFT) as an example application. FFT is used to compute
Discrete Fourier Transfrom (DFT) of a sequence, which in turn converts the time
domain representation of a digital signal to a frequency domain representation. The
definition of DFT contains redundancy, and several methods have been proposed
to avoid these redundancies. In general any method for computing DFT with lower
arithmetic complexity than DFT is called a fast Fourier transform. FFT has been
considered as “the most important numerical algorithm of our lifetime” [36], and
nowadays it has gained popularity as frequency division has been used in many
modern wireless communications standards.

In this chapter, we discuss FFT algorithms and illustrate some of their properties,
which can be exploited when implementing the transform. This chapter shows
how these properties can be exploited in implementations and a processor tailored
for FFT is described. The energy efficiency of the tailored processor is compared
against several implementations from the literature to show the efficiency of the
approach.

39.2 Transport-Triggered Architecture Template

In this chapter, we use exposed data path as one of the characteristics of the
architectural template, i.e., a template where many processor data-path details are
visible to the programmer who can directly control those resources. Examples of
such architectures are, e.g., MOVE [11], MOVE-Pro [18], FlexCore [42], STA [8],
and ELM [12]. In particular, we exploit transport triggering paradigm [10], which
defines that operation execution is initiated by data transport rather than operation
defining the data transports as in traditional programming models. In Transport-
Triggered Architecture (TTA) programming model, the program defines only data
moves and the operations occur as side effects of data transports. In a way, transport
triggering evokes the traditional data-flow model of execution. Operands to a
function unit are moved via an interconnection network to input ports, and one of

1306 J. Takala et al.

ALU0

RF0

LSU0 LSU1

Data Memory

 RF1 RF2

Immediate
Unit

Instruction
Unit

ALU1

Instruction Memory

Socket

Transport Bus

Functional Unit

Port

Triggering Port

Connection

Fig. 39.1 TTA processor organization

the ports is dedicated as a trigger. Whenever data is moved to the trigger port, the
operation execution is initiated. The program defines only the data moves on the
interconnection network; thus the TTA processor has only one instruction: move.
As the program defines moves in the interconnection network, the TTA processors
have a programmer-exposed interconnection network.

An example TTA processor is depicted in Fig. 39.1. The interconnection network
in this processor contains five transport buses implying that at most five data
transports can be executed simultaneously. This also implies that each instruction
contains five move slots, where each slot specifies the data transport carried out in
each bus. The figure illustrates execution of an instruction with three parallel moves,
i.e., instruction has three move slots:

#4! ALU1.i0.ADD; RF2.r3! ALU1.i1; RF0.r1! LSU0.i0.STW

On the first transport bus, an immediate value is moved to the input port 0 of the
function unit ALU1. The immediate value is actually obtained from the immediate
unit, which has only one output port. As the function units can perform several
operations, the move carries also information about the operation to be executed;
opcode ADD is transported to function unit along with the operand. The second
bus transports an operand from register r3 through the output port 0 of the register
file RF2 to the input port 1 of the ALU1. The third bus is used to transport a value
from register r1 in the register file RF0 through the output port 1 to the input port
0 of the load-store unit LSU0. The third move contains an opcode indicating that
the transported word is to be stored to memory. The actual store address has been
defined by another move to port 1 of the LSU0. The remaining two move slots are
empty; thus the corresponding two buses are not used in this instruction. Thus they
can be considered executing a NOP.

39 Codesign Case Study on Transport-Triggered Architectures 1307

bus#0

a

b

bus#1
bus#2
bus#3
bus#4

i0 i1

address
decode

control buses

...

o0 opcode

bus#0
bus#1
bus#2
bus#3
bus#4

Fig. 39.2 Principal socket interface for function units: (a) high-abstraction-level representation
and (b) structure

Figure 39.1 shows that the instructions control the operation of each transport
bus through the instruction unit. The connection to each bus convoys control
information, e.g., the source and destination of the transport move, possible opcode
for the operation to be executed, etc. The function units are connected to the trans-
port buses with the aid of sockets. The interconnection network in the architectural
template consists of buses and sockets. The principal concept of sockets is illustrated
in Fig. 39.2; each port of a function unit has a socket, which defines the connections
to the buses. When the control information in a bus indicates that the port is the
destination for the current move instruction, data from the bus is passed to the port.
In a similar fashion, data from the source port is forwarded to the bus.

The architecture template defines that one of the input ports is a trigger port and
a move to this port triggers the specified operation. The concept is illustrated in
Fig. 39.3, where the trigger port is indicated by a cross in the input port. It should
be noted that a function unit has only one trigger port. A move to this port will
latch data from the bus to trigger register, and the operation execution starts with
operands from the trigger port and other operand registers; the function unit in
Fig. 39.3 expects two operands; thus there is one trigger register and one operand
register. The operand to the operand register can be moved by an earlier instruction.
The operand can also be moved in the same instruction as the trigger port moves
if there are buses available to carry out the move. In Fig. 39.1, the first bus is used
to transport an operand to trigger port of ALU1. The second bus moves the other
operand from RF3; thus the operands for the specified ADD operation are moved
to function unit at the same cycle. The move over the third bus triggers the store
operation, but the actual store address has been moved to the input port 1 of LSU0
by an earlier instruction.

1308 J. Takala et al.

FU

b

a

i0 i1

logic

logic

operand

result

logic

o0

pipeline register

pipeline register

glbl_lock

rqst_lock

t_load

o_load

V

V

V

trigger
opcode

Fig. 39.3 Pipelined function unit based on semi-virtual latching: (a) high-abstraction-level
representation and (b) principal block diagram. The result register in the output is optional

In TTAs, function units can be pipelined, and in the template, semi-virtual time
latching [10] method is used, where valid bits control the pipeline as depicted
in Fig. 39.3b. The pipeline starts an operation whenever there is a move to the
trigger port, i.e., the o_load signal is active. As valid bits control the pipeline,
a single pipeline stage is active only once for one trigger move. For example,
Fig. 39.3b illustrates a case, where the result can be read from the result register
three instructions after the trigger move.

An external or internal event can lock the processor (glbl_lock signal is active);
all the function units in the processor have their pipelines stalled. The architectural
template requires each operation in a function unit to have a deterministic latency
such that the result read for the operation can be scheduled properly. If the function
unit faces an unexpected longer latency operation, e.g., a memory refresh cycle or
a function unit has iterative operation of which latency depends on the inputs, the
unit can request the processor to be locked by activating the rqst_lock signal until
the ongoing operation is completed.

In traditional statically scheduled machines, the timing between operand load,
operation execution, and result store is fixed at design time. In TTAs, the timing is
defined at compile time. For example, multiplication instruction defines completely
when the operands are read from the registers R0 and R1 and result is stored to
register R3:
MUL R3, R2, R1
while in TTA the corresponding operation can be specified with three different
moves. When assuming a single transport bus and a function unit, which performs
only multiplication and that the input port 0 is the trigger port, the previous
instruction would be:

RF.r2!MUL.i1;
RF.r1!MUL.i0;
MUL.o0! RF.r3

39 Codesign Case Study on Transport-Triggered Architectures 1309

or if two transport buses are available:

RF.r2!MUL.i1; RF.r1!MUL.i0;
MUL.o0! RF.r3;

However, the moves can even be scheduled over a large block of instructions:

RF.r2!MUL.i1; . . . ; . . . ;
:::

. . . ; . . . ; RF.r1!MUL.i0;
:::

MUL.o0! RF.r3; . . . ; . . . ;

The previous examples show that there is a high degree of freedom on scheduling
the moves over move slots in neighboring instructions compared to traditional
statically scheduled machines, which makes the TTA scheduling a challenging
problem.

The TTA instruction format reminds horizontal microcode, which usually shows
poor instruction density. However, experiments show that the instruction overhead
due to the exposed data-path control is negligible when comparing to the savings
if the workload is data-intensive and the interconnection network is carefully
optimized [21, 43].

The exposed data-path template opens unique optimization opportunities. For
example, due to the explicit result transfers, the function units are independently
executing isolated modular components in the data path. In the point of view of
processor design methodology, the modularity allows point-and-click style tailoring
of the data-path resources from existing processor component databases. It also
means the function units can have arbitrary latencies and pipeline lengths from a
single cycle because there is no hazard detection hardware. There is no practical
limit to the number of outputs produced by operations.

The TTA template allows the processor to be customized in various ways. User
can define the sets of basic TTA components to be included in the architecture. The
number of register files can be varied, and each register file can have additional
specifications: the number of registers, word width, and the number of read/write
ports. Function units can be tailored by varying the number of function units, and
for each function unit, it is possible to define the operation set implemented by the
function unit, the number of input and output ports, the width of the ports, resource
sharing/pipelining, and accessed address space (in case of a load-store unit). The
operation set can be varied, and for each operation the number of operands, the
number and data type of results and operands, and operation state data can be
parametrized. Instruction encoding can be varied and the core can support a number
of instruction formats. For each instruction format, the immediate (constant) support
can be determined. Parameters related to address spaces include the number of
address spaces. For each address space, size, address range, and the numerical id
(referred to from program code) can be varied. Finally the parametrization allows
even specification of multi-core systems.

1310 J. Takala et al.

An interesting customizable aspect in TTA processors is the interconnection
network. As it is visible to the programmer, user can carefully tailor the connectivity
according to the application. Another useful feature is the support for multiple
disjoint address spaces: one can add one or more private address spaces for local
memories inside a core that can be accessed using address space type qualifier
attributes in the input C code.

39.3 Design Flow for Customizing Transport-Triggered
Architectures

The design work described in this chapter is carried out with the TTA-based Code-
sign Environment TTA-based Codesign Environment (TCE) [40]. The codesign
process supported by the TCE tools is illustrated in Fig. 39.4. Initially, the designer
has a set of requirements and goals placed to the end result.

The iterative customization process starts with an initial predesigned architecture,
which contains minimal resources to compile an arbitrary C program to run on
the machine. The designer can add, modify, and remove architecture components
using a graphical user interface tool called Processor Designer (ProDe) shown
in Fig. 39.5, which creates the processor description in Architecture Description
File (ADF) format. Each iteration of the processor can be evaluated by compiling
the application code on the architecture with retargetable high-level language
compiler and simulating the resulting parallel assembly code with the instruction-set
simulator.

The simulator shows statistics of the run time of the program and the utilization
of the different data-path components, indicating bottlenecks in the design. The
processor simulator provides a compiled simulation engine for fast evaluation cycles
and a more accurate interpretive engine for software debugging which supports
common software debugging features such as breakpoints.

An essential feature in the processor customization process is the inclusion
of custom operations. For a completely new processor operation, the designer
describes the operation simulation behavior in C/C++ to Operation Set Abstraction

Architecture
Customization

(ProDe)

Retargetable
Compiler
(tcecc)

Retargetable
Simulator

(ttasim/proxim)

Processor
RTL Generator

(ProGe)

Requirements Hardware Databases
(HDB)

Architecture
Definition File (ADF)

HLL Program HDL Description

Statistics
Target technology

synthesis and
evaluation

Operation Set DB
(OSAL)

Checks UsesUses & edits

Evaluates

Uses

Creates

C
reates

Creates
Adds

Designer

Fig. 39.4 TCE design flow for tailoring TTA processors

39 Codesign Case Study on Transport-Triggered Architectures 1311

Fig. 39.5 Graphical user interface for ProDe tool

Layer (OSAL) database, estimates its latency in instruction cycles when imple-
mented in hardware, and adds the operation to one of the function units in the
architecture. This way it is possible to see the effects of the custom hardware to
the cycle count, before deciding whether to include it in the design or not.

When a design point fulfilling the requirements has been found, or more accurate
statistics of a design point is needed, the designer can generate synthesizable
Register Transfer Level (RTL) description of the processor with processor generator
(ProGe). For this step, the designer has to add RTL descriptions of the user-
specific custom function units to Hardware Database (HDB). In order to alleviate
this process, the function unit implementation is automatically verified against
its architecture simulation model. The generated RTL can be synthesized with
third party synthesis and simulation tools to obtain more detailed statistics of
the processor. The TCE environment has an automated process to optimize the
interconnection network, e.g., merging buses [43], removing function units until
the performance does not increase, or removing connections which do not decrease
the performance. The connectivity between components in larger TTA designs is
hard to manage manually due to the huge space of options.

Manual assembly language coding would be the last optimization step after the
final processor architecture has been selected. During the design process, however,
assembly language is not feasible due to the architecture iteration process; whenever
the architecture is changed, the affected parts of the assembly code would need to
be rewritten.

In general, high-level language compilers cannot automatically exploit the
complex custom operations in the processor for accelerating the program execution.
Often compilers cannot extract all the inherent parallelism from the program de-
scription to exploit all the parallel processor resources. As high-level programming
is typically preferred, the key tool in TCE is the retargetable software compiler,
tcecc. The compiler uses LLVM [29] compiler framework as a backbone. The
compiler supports C/C++ languages and has also support for the parallel OpenCL
standard [22], in particular with pocl library [23]. The frontend supports the ISO

1312 J. Takala et al.

C/C++,
OpenCL C

Bitcode libs:
libc (newlib), etc. LLVM Passes

Compiler
frontend

Clang, llvm-gcc,...

LLVM bitcode
linker

LLVM optimizer
(whole program)

bit-
code

bit-
code

Architecture
description

ADF

Operation
descriptions

OSAL

Parallel
TTA program

Instruction
selector

Register
allocator

Other
target opts.

LLVM IR
to

TCE IR
conversion

Instruction
scheduler +

TTA specific opts.

TCE libraries
LLVM code generation framework

Retargetable TTA backend

bitcode

Standard L LVM tools

TCE code generation

Fig. 39.6 tcecc compiler

C99 standard with a few exceptions, most of the C++98 language constructs, and a
subset of OpenCL C. Although TCE tools support multi-threading and multi-core
systems [24], in this chapter we limit the discussion to single thread operation.

The main compilation phases of tcecc are shown in Fig. 39.6. Initially, LLVM’s
Clang frontend converts the source code to the LLVM internal representation. After
the frontend has compiled the source code to LLVM bytecode, the utility software
libraries are linked in, producing a fully linked self-contained bytecode program.
Then standard LLVM Intermediate Representation (IR) optimization passes are
applied to the bytecode-level program, and the whole-program optimizations can be
applied aggressively. The optimized bytecode is then passed to the TCE retargetable
code generation.

User-specific custom operations can be described in OSAL database as data-
flow graphs consisting of primitive operations, which the LLVM instruction selector
automatically attempts to detect and replace in the program code. Complex custom
operations consisting of several primitive operations and dependencies between
them or custom operations producing multiple results may not be automatically
detected from intermediate code. Therefore, tcecc produces intrinsics that can be
used manually in the source code.

39.4 Discrete Fourier Transform and Its Fast Algorithms

DFT is used to convert a finite sequence of equally spaced samples to a sequence
of coefficients of a finite combination of complex sinusoids. In other words, the
time domain representation of an N -point discrete time signal x.n/ is converted to
frequency domain representation X.r/ as follows [31]:

39 Codesign Case Study on Transport-Triggered Architectures 1313

X.r/ D

N�1X
nD0

x.n/W rn
N ; r D 0; 1; � � � ; N 	 1; (39.1)

where the coefficients WN are defined as

WN D e
�j 2�=N D cos .2�=N/ 	 j sin .2�=N/ ; (39.2)

where j denotes the imaginary unit. As the coefficients WN are composed of
sine and cosine functions, the coefficients W rn

N have symmetry and periodicity
properties, which implies that the DFT defined in (39.1) contains redundancy. By
exploiting the underlying properties of the coefficients W rn

N , several fast algorithms
for DFT, i.e., FFTs, have been developed over the years. The most popular FFT
is the Cooley-Tukey algorithm [9], where divide and conquer paradigm is used
to decompose DFT into a set of smaller DFTs. In particular, the Cooley-Tukey
principle states that a DFT of length N D PQ can be computed with the aid of
P -point DFT and Q-point DFT.

39.4.1 Radix-p Algorithms

If a factor N is not a prime, the Cooley-Tukey principle can be recursively applied
and the larger DFT will be computed with the aid of several smaller DFTs.
Especially, when the DFT length is a power of a prime, i.e., N D pq , then the
N -point DFT can be computed with the aid of p-point DFTs constructed in q
computing stages. As the resulting fast algorithm contains only p-point DFTs, it is
called a radix-p FFT. The most popular approach is radix-2 FFT algorithm, where
the DFT is decomposed recursively until the entire algorithm is computed with the
aid of 2-point DFTs as follows:

X.r/ D

N
2 �1X
nD0

x.2n/W 2nr
N C

N
2 �1X
nD0

x.2nC 1/W 2nrC1
N

D

N
2 �1X
nD0

x.2n/W 2nr
N
2

CW r
N

N
2 �1X
nD0

x.2nC 1/W 2nr
N
2

; r D 0; 1; � � � ; N 	 1:

(39.3)

This equation shows coefficients

WN D e
�j 2�=N (39.4)

for the N -th root of unity. Its powers are referred to as twiddle factors.
The DFT decomposition can be carried out with two principal approaches:

Decimation-in-Time (DIT) and Decimation-in-Frequency (DIF). In DIT approach,

1314 J. Takala et al.

W 0
8

0
a b

W 0
8

W 0
8

W 0
8

W 0
8

W2
8

W 0
8

W2
8

W 0
8

W1
8

W2
8

W3
8

4

2

6

1

5

3

7

0

1

2

3

4

5

6

7

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

W 0
8

0

-1

W 0
8

-1

W 0
8

-1

W 0
8

-1

-1

-1

-1

-1

W 0
8

W2
8

W 0
8

W2
8

-1

-1

-1

-1

W 0
8

W1
8

W2
8

W3
8

4

2

6

1

5

3

7

0

1

2

3

4

5

6

7

Fig. 39.7 Signal-flow graphs of 8-point radix-2 FFT: (a) decimation-in-time and (b) decimation-
in-frequency algorithm. Circles represent addition

the decomposition is started in time domain sequence, while in DIF approach, the
decomposition is started on frequency domain sequence. Both the approaches are
illustrated in Fig. 39.7, where the signal-flow graphs of 8-point FFT derived with
both approaches are shown. In the 8-point transform, the computations are carried
out in three computing stages, where each column contains four 2-point DFTs. The
principal computation building block in the radix-2 FFT is 2-point DFT in (39.3),
which is also called a radix-2 butterfly. In Fig. 39.7, the weights 	1 and W r

N denote
multiplication.

This work concentrates on the DIT approach, while both the DIT and DIF
approaches result in the same arithmetic complexity but can be some other
implementation-related differences. When implementing the algorithms with fixed-
point arithmetic, there will be difference in the numeric accuracy due to quanti-
zations carried out during the computations. Although the differences in signal-to-
noise ratio (SNR) can be small, the DIT approach will result in better SNR in radix-2
algorithms [2]. Therefore, in this chapter, we exploit the DIT algorithms.

In the radix-2 butterfly, one complex multiplication and two complex additions
are needed, each stage contains N=2 butterflies, and the number of the stages is
log2 N , which gives the total of N

2
log2 N complex multiplications and N log2 N

additions for an N -point transform.

39.4.2 Radix-2r Algorithms

Traditionally the most popular FFT have been the radix-2 FFTs, where computations
are based on 2-input, 2-output butterflies depicted in Fig. 39.8. The radix-2 FFT is
a special case in the class of radix-2s FFTs [7]. The arithmetic complexity of FFT
can be reduced by using greater than two radix if many of the complex coefficients
turn out to be trivial (˙1 or ˙j). Let us consider the basic equation of the DFT in

39 Codesign Case Study on Transport-Triggered Architectures 1315

x0

x1 -1WN
b

y1

y0 x0

x1 -1 WN
b

y1

y0

x

a b

c
0

x1 -i
-1

i

-1

-1

i

-i

-1
x2

x3

y2

y1

y0

y3

WN
b

WN
2b

WN
3b

Fig. 39.8 FFT butterflies according to (a) radix-2 DIT algorithm in Fig. 39.7a, (b) radix-2 DIF
algorithm in Fig. 39.7b, and radix-4 DIT algorithm in Fig. 39.9b

(39.1) and divide the original N -point problem to four partial sums by dividing the
system to four sub problems, where the length of problem is N=4:

X.r/ D

N�1X
nD1

x.n/W rn
N

D

N=4�1X
nD0

x.4n/W
r.4n/
N C

N=4�1X
nD0

x.4nC 1/W
r.4nC1/
N C

N=4�1X
nD0

x.4nC 2/W
r.4nC2/
N

C

N=4�1X
nD0

x.4nC 3/W
r.4nC3/
N ; r D 0; 1; � � � ; N 	 1: (39.5)

This method results in a radix-4 algorithm, where computations are based on 4-
point DFT. This approach has benefits in terms of arithmetic complexity as 4-point
DFT can be computed with trivial coefficients. In matrix form, the 4-point and 2-
point DFT, F4 and F2, respectively, can be defined as

F4 D

0
BB@
1 1 1 1

1 	i 	1 i

1 	1 1 	1

1 i 	1 	i

1
CCA IF2 D

�
1 1

1 	1

�
: (39.6)

While the radix-2 FFT has log2 N computing stages, the radix-4 algorithm has
only log4 N stages, which results in significant savings in arithmetic complexity;
e.g., a 64-point FFT can be computed in three stages while the radix-2 algorithm
requires six computing stages. The arithmetic complexity for an N -point radix-4
FFT is 3N

4
log4 N complex multiplications and 3N log4 N complex additions. The

savings in multiplications (twiddle factors) are illustrated in Fig. 39.9.
From the implementation point of view, the lower number of arithmetic oper-

ations provides potential for faster computation and energy savings. In addition,

1316 J. Takala et al.

F2

F2

a b

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F4

F4

F4

F4

F4

F4

F4

F4

Fig. 39.9 Signal-flow graphs of in-place DIT FFTs: 16-point (a) radix-2 and (b) radix-4 FFT.
Triangles represent a non-trivial twiddle factor

the latency of computations can be shorter. Besides lower arithmetic complexity,
the radix-4 FFT provides also other advantages. The lower number of butterfly
computation stages implies that, in memory based systems, less memory accesses
are required. This speeds up the computations, reduces energy consumption, and
relaxes the memory bandwidth requirements.

In this chapter, we exploit the in-order input, permuted output DIT radix-4 FFT
defined as

F22n D R22n

"
0Y

sDn�1

ŒP s
22n
�T .I2.2n�2/ ˝ F4/D

s
22n
P s
22n

#
; (39.7)

where RN is a permutation matrix defined as

R4n D

nY
kD2

I4.n�k/ ˝ P4k;4; (39.8)

P s
N is a permutation matrix of order N defined as

P s
2n D I4s ˝ P2.n�2s/;2.n�2s�2/ ; (39.9)

and Ds
N is a diagonal matrix containing N D 4n twiddle factors as follows:

Ds
N D Q

s
N

2
4N=4�1M

kD0

diag
	
1;W

bk2sC1=N c

4sC1 ; W
2bk2sC1=N c

4sC1 ; W
3bk2sC1=N c

4sC1

35 I (39.10)

Qs
N D

sY
kD0

P4.s�k/;4 ˝ IN=4.s�k/ : (39.11)

39 Codesign Case Study on Transport-Triggered Architectures 1317

In the previous, ˝ denotes tensor product, i.e.,

�
0 1

2 1

�
˝ A D

�
0 A

2A A

�
(39.12)

and˚ denotes direct sum, i.e.,

A˚ B D

�
A 0

0 B

�
: (39.13)

An example of FFT from (39.7) is depicted in Fig. 39.10.
The arithmetic complexity can further be reduced by selecting on even higher

radix. However, in radix-8 and higher, the butterflies will contain nontrivial
coefficients, and therefore, the relative arithmetic complexity is not decreasing as
much. While radix-8 computations are applicable as they provide some advantages
in specific implementation styles, higher radices are seldom used.

The main drawback of the radix-p FFTs is the fact that the length of the transform
has to be a power of radix, N D ps; i.e., radix-4 algorithms can only be applied
when the transform length is a power of four. When the radix is higher, there are
less sequence sizes where the algorithm can be applied. Due to this fact, radix-2
FFTs have been popular.

39.4.3 Mixed-Radix FFT

A method to reduce the arithmetic complexity compared to radix-2 FFT but still to
support power of two transform lengths is mixed-radix approach, where the DFT
decomposition contains several radices, e.g., the results of a 32-point FFT can be
computed with two radix-4 stages and a single radix-2 stage. An example of mixed-
radix FFT is shown in Fig. 39.11, where the signal-flow graph of a 32-point in-order
input, permuted output DIT FFT based on radix-4 and radix-2 is illustrated.

In this chapter, we exploit the mixed-radix approach consisting of radix-4 and
radix-2 computations, which provides best of the both worlds: lower arithmetic
complexity of radix-4 FFTs and support for all the power-of-two transform sizes
of radix-2 FFTs. The mixed-radix FFT consisting of radix-4 processing columns
followed by a single radix-2 column can be defined as

F22nC1DO2.2nC1/ .I22n ˝ F2/C2.2nC1/

"
0Y

sDn�1

ŒP s
2.2nC1/ �

T .I2.2n�1/ ˝F4/D
s
2.2nC1/P

s
2.2nC1/

#
;

(39.14)

where the matrices P s
N and Ds

N are defined in (39.9) and (39.10), respectively. The
matrix ON is a permutation matrix given as

ON D .I2 ˝R4n/ PN;2 ; N D 2
2nC1: (39.15)

1318 J. Takala et al.

F4

F4

F4

F4

4
8

12

4
8

12

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

4
8
12

4
8
12

F4

F4

F4

8
16
24

F4

8
16
24

F4

8
16
24

F4

8
16
24

F4

12
24
36

F4

12
24
36

F4

12
24
36

F4

12
24
36

F4

4
8
12

F4

8
16
24

F4

12
24
36

F4

1
2
3

F4

5
10
15

F4

9
18
27

F4

13
26
39

F4

2
4
6

F4

6
12
18

F4

10
20
30

F4

14
28
42

F4

F4

3
6
9

F4

7
14
21

F4

11
22
33

F4

15
30
45

0
16
32
48
4

20
36

56
12
28
44
60
1

17
33
49
5

21
37
53
9

25
41
57
13
29
45
61
2

18
34
50

52
8

24
40

6
22
38
54
10
26
42
58
14
30
46
62
3

19
35
51
7

23
39
55
11
27
43
59
15
31
47
63

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

W64
W64
W64

Fig. 39.10 Signal-flow graph of 64-point radix-4 DIT FFT. Numbers in the processing columns
denote exponent k of twiddle factor, W k

64

39 Codesign Case Study on Transport-Triggered Architectures 1319

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

F4

F4

F4

F4

F4

F4

F4

F4

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F4

F4

F4

F4

F4

F4

F4

F4

0
16
4

20
8

24
12
28
1

17
5

21
9

25
13
29
2

18
6

22
10
26
14
30
3

19
7

23
11
27
15
31

2
4
6

2
4
6

4
8
12

4
8
12

6
12
18

6
12
18 15

11

7

3

14

10

6

2

13

9

5

1

12

8

4

W32

W32
W32

W32

W32
W32

W32

W32
W32

W32

W32
W32

W32

W32
W32

W32

W32
W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

W32

Fig. 39.11 Signal-flow graph of 32-point mixed-radix DIT in-place FFT algorithm

The matrix CN contains the twiddle factors for the radix-2 processing stage, and it
is defined as

CN D Q
log4.N=2/
N

N=2�1M
kD0

diag
�
1;W k

N

�
; N D 22nC1; (39.16)

where the permutation matrix Qs
N is defined in (39.11).

The mixed-radix approach allows us to design a system supporting multiple
power-of-two FFT sizes. For example, in order to support the IEEE 802.16.1
OFDMA PHY [20], 256-point and 2048-point FFT transforms have to be realized,
but the radix-4 FFT cannot be used to compute a 2048-point FFT, while mixed-radix
approach is usable.

1320 J. Takala et al.

39.5 Building Blocks and Optimizations

In TTAs, application-specific function units could be exploited. One possible
candidate for a special unit can be found by chaining up the operations executed;
if an operation pattern is repeated in the application, it is a good candidate
for a user-specific function unit. Such operation patterns can be, e.g., memory
address generation, complex-valued addition, and complex-valued multiplication.
The special units can also contain more specialized and complex functions like
twiddle factor generator. The TTA template supports different latencies; thus the
special function units can be pipelined to an arbitrary number of stages.

In this section, we discuss several properties of the previous FFT algorithms,
which can be exploited when implementing the algorithm. In particular, the special
features are used to construct user-specific functional units, which can be used in a
TTA processor to speed up FFT computations.

39.5.1 In-Place Computations

In general, FFT algorithms are block processing algorithms, where computing
is performed in processing stages consisting of butterfly computations. This is
depicted in the signal-flow graphs of the algorithms, e.g., Figs. 39.9 and 39.11.
Often in software implementations, double buffering [16] is used, i.e., operands are
stored in an array and results are stored to another array and the role of buffers is
exchanged for the next iteration. However, the previous signal-flow graphs illustrate
that after the input operands for the butterfly operations are available and read
from the memory locations, those operands are not needed any more, and the
corresponding memory locations can be used to store the results of the butterfly. The
results are used as operands for the butterflies in the following computing stage, i.e.,
computations can be performed in-place [26]. Exploitation of this property reduces
significantly the memory requirements of software implementations.

39.5.2 Permutations and Operand Access

The FFT computations can be divided in butterfly computations, e.g., radix-2 FFT
shown in Fig. 39.9a consists of 2-point butterfly computations, which each requires
two operands and produces two results. The operands for butterflies are obtained
with stride access, i.e., if the input sequence is stored in a memory array in order,
the operands for butterfly computations in the first computing stage are locatedN=2
apart in the memory. In the second stage, the operands are N=4 apart. In software
implementations, the operand index computation requires arithmetic operations, but,
in application-specific implementations, this can be realized with lower complexity.
When investigating the index addressing at bit level, it can be noted that addresses
N=2 apart can be obtained from a linear address simply with the aid of rotation [7].

39 Codesign Case Study on Transport-Triggered Architectures 1321

A linear address .aN�1; aN�2; : : : ; a0/ is rotated to the right to obtain the operand
access index .a0; aN�1; aN�2; : : : ; a1/. For example, the 2nd butterfly in the first
processing stage in Fig. 39.9a reads operands from addresses 1 and 9; thus the
mappings are 210 D 00102 ! 110 D 00012 and 310 D 00112 ! 910 D 10012.
It should be noted that the access pattern of the operands for butterfly computations
depends on the butterfly state s in the FFT signal-flow graph.

Different FFT algorithms have different operand access patterns. The operand
indices for the first two processing stages of 64-point radix-4 DIT FFT in Fig 39.10
are listed in Fig. 39.12. The figure shows the decimal and binary representations of
the indices, which reveal that the address mapping from linear address to operand
index is a rotation. In the first stage shown in Fig. 39.12a, the bit-level mapping
is rotation of two bits to the right in a 6-bit address. In the second stage listed in
Fig. 39.12b, we can still see the same rotation of two bits to the right, but at this time
the field to be rotated contains only four bits. This can be extended to a systematic
method illustrated in Fig. 39.13; operand address mapping in 22k-point radix-4 DIT
FFT in bit level is a rotation of two bits to the right in the .2.k	 s// least significant
bits in the 2k-bit linear address.

The mixed-radix approach uses yet another mechanism. Let us consider the
mixed-radix FFT in Fig. 39.11. It should be noted that the length of the transform
is now N D 22kC1, i.e., the index has an odd number of bits. The operand access
sequence in the first processing stage is listed in Fig. 39.14a, which shows that the
mapping in the bit level is rotation of two bits to the right in the 5-bit address.
The addressing sequence in the second processing stage is listed in Fig. 39.14b,
which indicates that the mapping is again 2-bit rotation, but the bit field to be rotated
contains the three least significant bits in the address. The systematic mapping for
mixed-radix FFT defined in (39.14) is illustrated in Fig. 39.15: operand address

0
a b

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
16
32
48
1
17
33
49
2
18
34
50
3
19
35
51

000000 000000
000001 010000
000010 100000
000011 110000
000100 000001
000101 010001
000110
000111
001000
001001
001010
001011
001100

001110
001101

001111

100001
110001
000010
010010
100010
110010
000011

100011
010011

110011

Linear idx Operand idx
000000
000001
000010
000011
000100

000110
000101

000111
001000
001001
001010
001011
001100

001110
001101

001111

000000
000100
001000
001100
000001

001001
000101

001101
000010
000110
001010
001110
000011

001011
000111

001111

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Linear idx Operand idx
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
15

Fig. 39.12 Operand address sequences 64-point FFT in Fig. 39.10: (a) the first computation stage,
s D 0, and (b) the second computation stage, s D 1

1322 J. Takala et al.

...s = n-1

s = n-2

s = 0

linear

a2a3a4a5a6

... a0an-1an-2an-3 a1a2a3a4a5a6

... a4a5a6

... a7a1 a0 an-1 a8 a2a3a4a5a6

a2a3a0a1

s = 1 ... a7a0 an-3 a8 a2a3a4a5a6

an-2an-3
an-1an-2 a1

an-4an-5

an-1an-2an-3an-4an-5

an-1an-2an-3an-4an-5
a0a1

s = n-3 ... a4a5a6 a2a3a0a1an-1an-2an-3an-4an-5

Fig. 39.13 Bit-level operand address mapping for a 22k-point in-order, permuted output radix-4
DIT FFT. n D 2k

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
8
16
24
1
9
17
25
2
10
18
26
3
11
19
27

00000 00000
00001 01000
00010 10000
00011 11000
00101 00001
00110 01001
00110
00111
01000
01001
01010
01011
01100

01110
01101

01111

10001
11001
00010
01010
10010
11010
00011

10011
01011

11011

Linear idx Operand idx
00000
00001
00010
00011
00100

00110
00101

00111
01000
01001
01010
01011
01100

01110
01101

01111

00000
00010
00100
00110
00001

00101
00011

00111
01000
01010
01100
01110
01001

01101
01011

01111

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Linear idx Operand idx
0
2
4
6
1
3
5
7
8
10
12
14
9
11
13
15

a b

Fig. 39.14 Operand address sequences for 32-point mixed radix-4 and radix-2 FFT in Fig. 39.11:
(a) the first computation stage, s D 0, and (b) the second computation stage, s D 1

...s = n-1

s = n-2

s = 0

linear

a2a3a4a5a6

... a0an-1an-2an-3 a1a2a3a4a5a6

... a4a5a6

... a7a1 a0 an-1 a8 a2a3a4a5a6

a2a3 a0a1

an-2an-3

an-4an-5

an-1an-2an-3an-4an-5

an-1an-2an-3an-4an-5
a0a1

s = n-3 ... a4a5a6 a2a3a0a1an-1an-2an-3an-4an-5

s = 1 ... a7a0 an-3 a8 a2a3a4a5a6an-1an-2 a1

Fig. 39.15 Bit-level operand address mapping for a 22kC1-point in-order, permuted output mixed
radix-4 and radix-2 DIT FFT. n D 2k C 1

mapping in 22kC1-point mixed-radix DIT FFT in bit level is a rotation of two bits to
the right in the .2.k	 s/C1/ least significant bits in the .2kC1/-bit linear address.

There is yet another address mapping-related property in FFTs; the transforms
contain permutations either in input or output or both. In radix-2 FFTs, the input
or output permutations are the well-known bit-reversed permutations as seen in

39 Codesign Case Study on Transport-Triggered Architectures 1323

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
16
32
48
4
20
36
52
8
24
40
56
12
28
44
60

000000 000000
000001 010000
000010 100000
000011 110000
000100 000100
000101 010100
000110
000111
001000
001001
001010
001011
001100

001110
001101

001111

100100
110100
001000
011000
101000
111000
001100

101100
011100

111100

Linear idx Operand idx

010000 00000116 1

reversed

linear

a

b
... a0an-1an-2an-3 a1a2a3a4a5a6

... an-5a1 a0 a3 an-2an-1an-4an-3an-6a2 a5

an-4an-5

an-8

Fig. 39.16 Bit-level address mapping for output permutation in a 2n-point in-order, permuted
output radix-4 DIT FFT. n D 2k

Fig. 39.9a. The address mapping is obtained simply by reversing the bit-level
representation of the address. For example, in Fig. 39.9a, the addressing sequence
is (0; 8; 4; 12; 2; : : : ; 15), which is obtained from the linear address in bit level as
010 D 00002 ! 010 D 00002, 110 D 00012 ! 810 D 10002, 210 D 00102 ! 04 D

01002, 310 D 00112 ! 1210 D 11002, etc. It should also be noted that the inverse
permutation of bit reversal is the same bit reversal.

The transforms considered in this chapter, radix-4 and mixed-radix algorithms
defined in Eqs. (39.7) and (39.14), respectively, contain output permutations, and
the permutations are different than in radix-2 algorithms. The output reordering in
64-point radix-4 algorithm illustrated in Fig. 39.10 is listed in Fig. 39.16a. The bit-
level representation shows that the 6-bit linear address is reversed in 2-bit fields to
obtain the index of the permuted element. The general method for address mapping
for output permutation in a 22k-point radix-4 DIT FFT is depicted in Fig. 39.16b;
the address mapping is reversal of 2-bit fields in a 2k-bit address.

The mixed-radix FFT has a different output permutation. The 32-point FFT in
Fig. 39.11 has the output index sequence listed in Fig. 39.17a, which again shows the
reversal of 2-bit fields. However, this time the address field contains an odd number
of bits; thus the least significant bit is moved to the most significant bit. The general
case for 22kC1-point FFT is depicted in Fig. 39.17b. By using the previous bit-level
presentations, the complexity of address generation can be reduced significantly
compared to using worldwide arithmetic operations.

1324 J. Takala et al.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
16
4
20
8
24
12
28
1
17
5
21
9
25
13
29

00000 00000
00001 10000
00010 00100
00011 10100
00100 01000
00101 11000
00110
00111
01000
01001
01010
01011
01100

01110
01101

01111

01100
11100
00001
10001
00101
10101
01001

01101
11001

11101

Lineaa

b

r idx Operand idx

10000 0001016 2

reversed

linear ... a0an-1an-2an-3 a1a2a3a4a5a6

... an-5a0 a2 a1 an-2an-1an-4an-3an-6a4 a3

an-4an-5

an-8

Fig. 39.17 Bit-level address mapping for output permutation in a 2n-point in-order, permuted
output mixed-radix DIT FFT. n D 2k C 1

39.5.3 Twiddle Factors

The twiddle factors defined in (39.4) are an integral part of FFT algorithms, and
often these coefficients are stored in a look-up table and fetched during computation
of the algorithms. While this is a simple and quick method for short transforms, the
table size increases superlinearly with the transform size. Therefore, the coefficients
are created at run time when working with longer transforms.

The twiddle factors are actually complex roots of unity evenly spaced in the unit
circle on complex plane [7] as seen in Fig. 39.18. The number of different factors
depends on the FFT size N and the type of the fast algorithm. For example, radix-2
algorithms contain N

2
log2 N twiddle factors, but there are only N

2
different factors.

According to (39.10), in a radix-4 algorithm, there are three nontrivial twiddle
factors in each butterfly, thus there is a total of 3

4
N log4 N nontrivial twiddle factors

while only
�
N
2
	 1

�
are unique.

The twiddle factors can be formed by using trigonometric functions, which are,
however, expensive. The coefficients can be computed with fast algorithms, which
exploit the trigonometric identities of twiddle factors, e.g., Singleton’s method [35].
Then the coefficients can be computed on the fly, when they are needed. The twiddle
factors can be generated as piecewise polynomial approximation of a function.
Polynomial approximation requires multiplications and additions to compute the
value of a function with given parameters. It should also be noted that the com-
plexity of the polynomial-based algorithm increases significantly with the required

39 Codesign Case Study on Transport-Triggered Architectures 1325

W 0
16

W 1
16

W 2
16

W 3
16W 4

16W 5
16

W 6
16

W 7
16

B0
B1B2

B3

W64
5

W64
6

W64
7

W64
8

W64
4

W64
3

W64
2

W64
1

W64
0

W64
10

W64
12

W64
14

W64
15

W64
9

W64
11

W64
13

W64
16W64

18W64
20

W64
22

W64
24

W64
26

W64
21

W64
28

W64
30

W64
33

W

a

b

64
36

W64
39

W64
42

W64
45

W64
27

-1

+j

B0
B1B2

B3

B4
B5

Fig. 39.18 Twiddle factors of (a) 16-point radix-2 and (b) 64-point radix-4 FFT in the complex
plane

output precision. In [14], second-order polynomial approximation is combined with
Horner’s rule to compute the sine and cosine values.

Recursive twiddle factor generation is based on recursive feedback difference
equations for sine and cosine functions. This approach is less complex compared
to the polynomial, one iteration uses two real-valued multiplications and two real-
valued additions to produce a complex-valued result. The drawback of the algorithm

1326 J. Takala et al.

is error propagation of the finite numbers due to the feedback structure of the
algorithm. In [6], a method to reduce the complexity of error propagation circuit
is proposed. The accuracy is improved with a correction table containing N

8
3-bit

entries. The area cost is reduced by sharing the same multiplier and adder for both
real and imaginary parts, which doubles the latency. The method uses two look-up
tables for cosine and sine values, and both tables require log2 N 	 2 entries. The
drawback is that the method generates an ordered sequence of twiddle factors; thus
it supports only a specific type of FFT algorithms and the reported unit supports only
radix-2 DIF FFT. In these algorithms, the large number of iterations will increase
the length of computation kernel. This might increase the need for intermediate
storage, i.e., registers. Also the large number of multiplications will increase the
power consumption of twiddle factor generation.

Another method to compute the twiddle factors is to exploit the COordinate
Rotational DIgital Computer (CORDIC) algorithm [13, 25, 44]. All of the trigono-
metric functions can be evaluated by rotating a unit vector in complex plane. This
operation is effectively performed iteratively with the CORDIC algorithm. The
general rotation transform at iteration t can be given as

�
XtC1 D Xt cos� 	 Yt sin�
YtC1 D Yt cos� CXt sin�

; (39.17)

where .XtC1; YtC1/ is the resulting vector generated by rotation of an angle � from
the original vector .Xt ; Yt /, i.e., the resulting vector rotates in the unit circle in
similar fashion as the twiddle factors. Therefore, the CORDIC algorithm can be used
to compute the twiddle factors, generating the sine and cosine values. In particular,
CORDIC is used for replacing the twiddle factors with rotation information and,
therefore, avoids multiplication with the twiddle factor by replacing it with rotation
realized with additions.

The CORDIC multiplier consumes less power compared to a traditional mul-
tiplier. For example, in [47], a pipelined CORDIC unit consumed roughly 20%
less power than the traditional complex-valued multiplier while the area cost was
about the same. Recursive CORDIC iteration saves area compared to look-up-
based twiddle factors, but it introduces longer latency. In [47], the rotation angle
constants for generating all the twiddle factors for an N -point FFT are stored in a
look-up table with log2 N entries, while in [15], the twiddle factors are generated
without pre-calculated coefficients. The CORDIC algorithm is iterative; thus it can
be pipelined easily and it lends itself to pipelined FFT architectures. However, the
dynamic power consumption with a large number of iterations and/or long pipeline
will be higher than in a look-up table-based approach. This will be the case, when
longer word widths are used, i.e., increased accuracy calls for more iterations.
Traditionally the CORDIC has mainly been used in fixed-function ASICs, but it
can be used to accelerate computations in a programmable processor as reported

39 Codesign Case Study on Transport-Triggered Architectures 1327

in [34]. The authors describe instruction extensions for CORDIC operations, and
there are separate instructions for vectoring and rotation mode.

Another approach is to exploit look-up tables and read the coefficients from
the tables. In many cases, the look-up tables are stored in ROM, but, in software
implementations, data memory is used to store the coefficients. The simplest design,
radix-2, requires N

2
log2 N twiddle factors to be stored in the table. However, such

a table contains redundancy as many of the coefficients are the same. In [27, 46],
a method to reduce the number of coefficients in radix-2 algorithms to N

2
is

proposed. Such a table can be used only for a sequential implementation, but, in
[28], a method is proposed, which allows the N=2 entries to be distributed over
2P ; P D 0; 1; : : : ; log2

�
N
2

�
	 1 sub-tables such that those can be accessed by 2P

butterfly units simultaneously.
The previous twiddle factor table contains still redundancy: as the twiddle factors

are equally spaced in unit circle on the complex plane, there is symmetry as
illustrated in Fig. 39.18a. We can note that the real and imaginary parts of the twiddle
factors in the octants B0 and B1 can be used to obtain the twiddle factors required
in the octants B2 and B3. The number of look-up table entries in the radix-2 case
can be reduced down to N

4
C 1. Such an approach has been presented in [3, 30, 39].

In this method, the twiddle factors from the octants B0 and B1 in Fig. 39.18 are
stored to the look-up table, and the rest of twiddle factors are generated simply by
interchanging the real and imaginary parts of the coefficient and changing the sign
according to the octant.

In the previous, the symmetry among different quadrants is exploited, but the
symmetry between real and imaginary parts of the twiddle factors is not exploited.
This would allow all the twiddle factors to be generated from only one octant, B0
in Fig. 39.18a. In [17], method is shown, which avoids these redundancy twiddle
factors for radix-2 FFTs are created with the aid of N

8
C1 complex-valued constants.

In [32], this is extended to cover also radix-4 FFTs. The method can be used to
construct twiddle factors for several transform sizes.

The redundancy in twiddle factors can easily be seen in Fig. 39.19; in order
to represent all the different twiddle factors in 64-point radix-4 FFT, only the
nine twiddle factors in the octant B0 are needed. For example, twiddle factor
W 14
64 in the octant B1 is obtained with the aid of W 2

64 in octant B0: W 14
64 D

	iW 2
64

�
, where � denotes complex conjugate. In a similar fashion, W 18

64 D 	iW
2
64.

In general case, for an N -point transform, we store the values from B0 to a
table M :

M D .M0;M1; : : : ;MN=8/; (39.18)

where an entry Mk in the table represents a twiddle factor W k
N , which is computed

based on the exponent k as follows:

1328 J. Takala et al.

(1
.0

0,
0.

00
)

(1
.0

0,
-0

.1
0)

(0
.9

8,
-0

.2
0)

(0
.9

6,
-0

.2
9)

(0
.9

2,
-0

.3
8)

(0
.8

8,
-0

.4
7)

(0
.8

3,
-0

.5
6)

(0
.7

7,
-0

.6
3)

(0
.7

1,
-0

.7
1)

0 64
W

1 64
W

2 64
W

3 64
W

4 64
W

5 64
W

6 64
W

7 64
W

8 64
W

(0
.0

0,
-1

.0
0)

(0
.1

0,
-1

.0
0)

(0
.2

0,
-0

.9
8)

(0
.2

9,
-0

.9
6)

(0
.3

8,
-0

.9
2)

(0
.4

7,
-0

.8
8)

(0
.5

6,
-0

.8
3)

(0
.6

3,
-0

.7
7)

(-
1.

00
,0

.1
0)

(-
0.

92
,0

.3
8)

(-
0.

77
,0

.6
3)

B
0

B
1

B
2

B
3

B
4

B
5

(-
0.

20
,-0

.9
8)

(-
0.

38
,-0

.9
2)

(-
0.

47
,-0

.8
8)

(-
0.

56
,-0

.8
3)

(-
0.

71
,-0

.7
1)

(-
0.

98
,-0

.2
0)

(-
0.

92
,-0

.3
8)

(-
0.

88
,-0

.4
7)

(-
0.

83
,-0

.5
6)

(-
0.

29
,0

.9
6)

(-
0.

56
,0

.8
3)

16 64
W

15 64
W

14 64
W

13 64
W

12 64
W

11 64
W

10 64
W

9 64
W

18 64
W

20 64
W

21 64
W

22 64
W

24 64
W

30 64
W

28 64
W

27 64
W

26 64
W

33 64
W

36 64
W

39 64
W

45 64
W

42 64
W

ra
di

x-
4

FF
T-

64
M

ix
ed

-ra
di

x
FF

T-
32

ra
di

x-
4

FF
T-

16
Fi

g
.

3
9

.1
9

Tw
id

dl
e

fa
ct

or
s

in
16

-p
oi

nt
ra

di
x-

4
FF

T,
32

-p
oi

nt
m

ix
ed

-r
ad

ix
,a

nd
64

-p
oi

nt
ra

di
x-

4
FF

T
s

in
th

e
di

ff
er

en
to

ct
an

ts
in

co
m

pl
ex

pl
an

e
in

Fi
g.

39
.1

8b

39 Codesign Case Study on Transport-Triggered Architectures 1329

W k
N D

8̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
:̂

MA , when 0 � k � N
8

	jMA
� , when N

8
< k < N

4

	jMA , when N
4
� k � 3N

8

	MA
� , when 3N

8
< k < N

2

	MA , when N
2
� k � 5N

8

jMA
� , when 5N

8
< k

; (39.19)

where A is an index to the look-up table M obtained from the given exponent k.
For N -point FFT, N D 2n, k is represented with n bits; thus when using two’s
complement representation, the .n 	 2/-bit index A is obtained simply as

A D

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂:

kŒn 	 3 W 0� , when 0 � k � N
8

� kŒn 	 3 W 0�C 1 , when N
8
< k < N

4

kŒn 	 3 W 0� , when N
4
� k � 3N

8

� kŒn 	 3 W 0�C 1 , when 3N
8
< k < N

2

kŒn 	 3 W 0� , when N
2
� k � 5N

8

� kŒn 	 3 W 0�C 1 , when 5N
8
< k

; (39.20)

where kŒa W b� denotes the bit field .ka; ka�1; : : : ; kbC1; kb/ of a two’s complement
number k D .kn�1; : : : ; k1; k0/ and � is the bit-wise complement operation.

The look-up table can be used to create the twiddle factors in all the power-
of-two FFTs smaller than N . This can be seen in Fig. 39.19: the twiddle factors
in a 32-point mixed-radix FFT are a subset of twiddle factors in 64-point radix-4
FFT. The access to the table requires only a simple manipulation of parameter k
as the twiddle factors in a 32-point FFT are every second twiddle factor in a 64-
point FFT. In a similar fashion, the twiddle factors in a 16-point radix-4 FFT are a
subset of twiddle factors in the 32-point FFT. A block diagram of a twiddle factor
unit supporting all the power-of-two FFTs with 16-bit real and 16-bit imaginary
precision is illustrated in Fig. 39.20. The actual twiddle factor generation requires
only negation of sine and cosine values read from the look-up table as defined in
(39.18). According to (39.20), the index to the look-up table is formed with simple
operations: increment and complement, and modification of complex entries from
the table uses only few simple gates and two full adders.

R

3
k(5:0)

q(2:0)

r(2:0)
w(3:0)

q(0)

LUT M0
1

M0
1

msb
lsb

msb
lsb3

16

q(2)q(0)q(2)q(0) q(2)

1616

16

Re(WN
k)

Im(WN
k)

Re
Im

ci
co

ci

ci

R

Fig. 39.20 Twiddle factor unit supporting all the power-of-two FFTs up to 64-points [32]

1330 J. Takala et al.

39.6 Customized FFT Architecture Based on Transport
Triggering

The properties and optimizations discussed in the previous section can be used to
tailor a single-thread transport-triggered processor for FFT computations. In this
section, we describe the architecture, which is tailored by incorporating special
function units discussed in the previous section.

The TTA template has been tailored according to the needs of radix-4 and
mixed-radix FFT, and the resulting architecture can be seen in Fig. 39.21. The
processor contains a set of standard function units, which has simply been taken
from TCE hardware database, i.e., no design effort has been used to those units.
The standard units include an instruction unit for controlling the operation, an
immediate unit for extracting an immediate value from an instruction and passing
it to the interconnection network, load/store units for accessing the data memories,
a logical unit for standard logical operations, a comparator unit, and a shifter unit
for arithmetic and logical shifts. There are several register files, which imply that
the several temporary variables are accessed in the iteration kernel. There is one
Boolean register for storing results of comparison, and this register can be used for
predication to avoid costly branches.

The processor uses 32-bit arithmetic and packs a complex number in a single
32-bit word. There are 18 buses in the interconnection network; 17 are 32-bit buses
(many of those are point-to-point buses), and there is a single 1-bit bus, which is
used to transfer the Boolean results from comparisons. All these buses are generated
by the ProGe tool once the processor architecture has been described with ProDe
tool. The data memory is organized as a parallel memory consisting of two single-
port memories with switching, which allows memories to be accessed through either
of the two load/store units. This organization allows two memory accesses per clock

cadd

instruction memory

ld/st

iuinst u

agfgen

17 32-bit buses , one 1-bit bus

rf1 rf2 rf3 rf4 rf5 rf6 rf7 rf8

cmulld/st

rf9

data memory

rf10 rf11 rfb

cmp shift

add

lu

Fig. 39.21 Block diagram of TTA processor tailored for FFT computations. fgen twiddle
factor generation unit, ld/st load/store unit, lu logical unit, cmp compare unit, shift shift unit,
cadd complex-valued butterfly adder, ag operand address generation unit, cmul complex-valued
multiplier, rf register file, rfb Boolean register, add adder unit, inst u instruction unit, iu immediate
unit

39 Codesign Case Study on Transport-Triggered Architectures 1331

+/- M

+/-
+/-

j

j

O1

O2

O3

O4
TO

a b

pcode
+O

O

Transform Length
rotator

Linear Index

O

T

Base Address

Butterfly Stage
Absolute Address

Fig. 39.22 Block diagram of (a) complex-valued butterfly adder and (b) operand address
generator

cycle. The energy efficiency of the parallel memory is significantly better than the
corresponding dual-port memory.

Finally, the processor has four special function units. The hardware structure of
the units has been designed manually by exploiting the standard unit interface of
the TTA template. There are separate units for complex-valued multiplication and
complex-valued butterfly addition. The complex adder unit computes for different
additions of four operands defined in 4-point DFT and two summations from 2-
point DFT in (39.6). The block diagram of the complex butterfly unit is depicted
in Fig. 39.22a. The unit has four operand ports and computes one of the outputs
of butterfly operation when the opcode is transferred to the trigger port. The idea is
that the four operands can be stored in the input registers over four consecutive clock
cycles; thus there is no need to move operands, which reduces power consumption.
The same unit can also be used to compute radix-2 butterflies when realizing mixed-
radix FFTs.

The operand addresses are computed with a dedicated address generator unit
illustrated in Fig. 39.22b. This is simply a rotator with an adder for adding the
rotated index to the base address of the memory array. Once again, the linear index
address is used as trigger port; thus during the FFT computations, all the other
parameters are kept in input registers and operand moves can be avoided. If standard
native arithmetic operations would be used for operand generation, it would take up
to six operations. Here the customized unit can generate operand address at every
clock cycle, which is sufficient to support two load/store units, as we perform in-
place computations, i.e., the same address is used to read operand and store result.

The complex-valued twiddle factors are generated with a dedicated twiddle factor
unit, which is based on the principle illustrated in Fig. 39.20. The unit can generate a
new twiddle factor at rate of one per cycle. There are also some standard functional
units for supporting control code. Many of the functional units are pipelined to
support high clock frequency. The units have been designed such that during the
FFT kernel computations, the throughput is one operation per clock cycle.

The programmability of the processor is usually limited if heavy customizations
are used, i.e., when general-purpose functional units are removed. However, this
architecture is still programmable, but the performance in general applications is
limited. The TCE tools can be used to compile code on the customized architecture.

The code for FFT application is developed by exploiting heavily software
pipelining and loop unrolling. Figure 39.23 shows the reservation table of the 17
buses during the computation of radix-4 FFT. Each color in the figure denotes move

1332 J. Takala et al.

prolog kernel epilog

Fig. 39.23 Reservation table for the radix-4 FFT code

instructions related to computation of a single radix-4 butterfly with twiddle factors.
The figure shows that the many of the resources are fully reserved during the kernel
computation. The actual computation kernel contains 16 instructions while it could
have been also shorter. However, the intermediate results are stored in register files
over few clock cycles; thus the shorter kernel would require that the intermediate
values would be stored in a FIFO type of storage. This would need data to be moved
from register to register every cycle, which would consume extra power. Therefore,
the intermediate values are kept in registers and kernel code need to be accessed
from memory. However, in this specific case, we exploited code compression [19];
thus the instruction word is short.

Two versions of processors are developed: one with larger memory for supporting
all the power-of-two FFT up to 16k-points and another version with smaller memory
to support only 1-point FFT. Both the processors have the same processor core, but
data memory and software are different.

Both the processors can perform two memory accesses per cycle; thus the
overhead of the system can be compared by determining the theoretical lower
bound for the number of memory cycles required for computing 1024-point radix-4
FFT. The radix-4 computation requires 1024 log4.1024/memory reads and memory
writes; thus for a two-port memory, a total of 5121 memory accesses are needed. In
the customized TTA core, computation of 1k-point FFT takes 5208 cycles; thus it
shows really low overhead. The processors have been synthesized on a 130nm IC
technology, and analysis shows maximum clock frequency of 250 MHz at 1.5 V
supply voltage and 140 MHz at 1.1 V. The processor core takes 33 kgates, and in
the smaller memory configuration for 1k-point FFT, memory is 30 kgates, while
the larger memory supporting 16k-point FFT takes 240 kgates. The total power
consumption for 1k-point FFT is 59 mW@250 MHz with 1.5 V supply voltage,
where the smaller memory uses 16 mW. The most power hungry unit in the core
is the twiddle factor generator, which takes about 23% of the core area and 7% of
the power consumption. When several transform sizes are supported with the larger

39 Codesign Case Study on Transport-Triggered Architectures 1333

memory, the power consumption is higher when mixed-radix code is executed, e.g.,
computing

The major effort in the actual design work was spent on finding out the specific
features of the algorithm, which can be exploited to speed up the computations. The
effect of candidate features was analyzed by creating a high-abstraction-level model
of the function unit, which was then used in simulator. Once the unit was verified
to be useful, only then RTL code for the unit was developed; thus there was a need
to develop RTL code only for four units. The RTL for the processor was generated
with ProGe tool, and the design was synthesized with commercial IC design tools.

39.7 Energy Efficiency Comparison

Power consumption is a usual design metric when designing energy-efficient
systems. However, power consumption depends on several issues: computing
resources, memories, caches, computation cycles, operating voltage, and operation
frequency. The energy efficiency can be compared by measuring the energy
consumed for performing a reference task. Here we compare the energy efficiency
by measuring how many 1024-point FFTs can be computed with energy of 1 mJ.
This approach tries to compensate the effect of computational speed, but there are
other implementation-specific parameters, which have a great effect on the result.

There are still some parameters, which may differ, such the implementations
should be normalized. Although exact scaling of the characteristics of an implemen-
tation on a specific IC technology to another technology is difficult, even impossible,
there are several normalization methods proposed in the literature. A normalization
method for IC technologies is proposed in [38], which tries to take into account
many architectural aspects and implementation-specific features; the normalized
energy consumption of a system, EN , is defined as

EN D E
LrU

2
r

�
1
3
W 2
r C

2
3
Wr

�
LU 2

�
1
3
W 2 C 2

3
W
� ; (39.21)

where E is the energy consumption of the system implemented on a specific IC
technology, W is the word length of the system, U is the supply voltage of the
implementation, and L is feature size of the specific IC technology on which the
system has been implemented. The energy consumption of the implemented system
is normalized for the same system implemented on reference technology, where
Lr is the feature size of the reference IC technology, Ur is the supply voltage of
reference technology, and Wr is the word length of the reference design.

We have compared the energy efficiency of the developed TTA processor
against several other FFT implementations by using the previous normalization. The
following parameter set has been used: Lf = 130 nm, Ur = 1.5 V, and Wr = 16 bits.

The energy efficiency comparisons are shown in Table 39.1. As expected FFT
implementation on a general-purpose processor [5] has low energy efficiency.

1334 J. Takala et al.

Table 39.1 Energy efficiency comparison of various normalized FFT implementations measured
as the number of executed 1024-point FFTs with energy of 1 mJ.

Design Tech. Class WL VCC tclk tFF T Efficiency

[nm] [bits] [V] [MHz] [�s] [FFT/mJ]

[5] 65 GPP 16 1:2 1000 63 1 #

[41] 130 DSP 16 1:5 720 8 100 #

[37] 45 ASIC 32 0:9 650 2 1007

[4] 180 ASIC 13 1:8 51 61 748

[38] 180 ASIC 14 1:8 5 220 755

[45] 65 ASP 16 1:2 150 6 633 #

[16] 130 ASP 16 1:5 320 14 1170 #

[1] 180 ASP 16 1:8 280 37 61 #

TTA [33] 130 ASP 16 1:5 250 21 809

VCC Supply voltage, WL Word length, tclk Clock period, tFFT FFT execution time, GPP General-
purpose processor, DSP Digital signal processor, ASIC Application-specific integrated circuit, ASP
Application-specific processor
Energy does not include memories.

The Digital Signal Processor (DSP) in [41] can achieve high performance, but
the energy efficiency in high-speed mode is lower than in low-power mode, i.e.,
lower frequency and supply voltage. In addition, the high performance calls for
manually optimized assembly code. It should be noted that the energy figures
exclude memories.

The application-specific processor in [1] contains user-specific function units,
e.g., for address generation and butterfly computations. There are two complex-
valued multipliers and three complex-valued adders. The twiddle factors are stored
in the main memory. The pipeline architecture in [37] realizes data permutation with
the aid of delay lines, where data traverses through the registers introducing high
dynamic power consumption. It is not known if the twiddle factor memories and
address generators are included in the energy figures. Another pipelined processor
is proposed in [38], which uses block floating-point number representation with
10-bit mantissa and 4-bit shared exponent. The short floating-point word allows
CORDIC pipeline to be shortened. If larger word lengths are needed, e.g., to support
larger FFTs or to improve the signal-to-noise ratio, the pipeline depth needs to be
increased, which increases the power consumption.

A cache-memory architecture is described in [4], where a small data cache is used
to reduce accesses to the main memory. The processor uses 13-bit complex data type
and supports FFT size up to 1024-points. In [45], a small cache memory is also used.
The twiddle factors are stored in the main memory, which adds power consumption.
Unfortunately, caches or memories are excluded from the energy figures.

The application-specific processor in [16] has two small caches to reduce access
to the main memory, and these are accessed in ping-pong fashion to avoid stall
cycles when transferring the results to the main memory. The processor uses�
N
8
C 1

�
complex-valued coefficients to compute the twiddle factors. External data

39 Codesign Case Study on Transport-Triggered Architectures 1335

memories are not included in the energy figures. In addition, the power consumption
figures are coarse estimates obtained from a processor design tool.

39.8 Conclusions

In this chapter, we described transport-triggered architecture template, which can be
used to develop application-specific processors. In addition, we introduced the TCE
hardware/software codesign environment for developing tailored implementations
based on TTA processors. The TCE provides tool support for iterative processor
customization starting from high-level programming languages and contains retar-
getable compiler, which speeds up the iterative customization significantly. The
tools produce synthesizable RTL description of the TTA processor and generates
instruction parallel binary code. TCE is available as a liberally licensed open-source
project and can be downloaded from the web page [40]. We also customized a
TTA processor for FFT application and showed that the highly customized but still
programmable processor possesses energy efficiency close to fixed-function ASIC
implementations.

Acknowledgments The authors thank the Finnish Funding Agency for Innovation in the context
of the FiDiPro project StreamPro (decision no. 40142/14).

References

1. Baek JH, Kim SD, Sunwoo MH (2008) SPOCS: application specific signal pro-
cessor for OFDM communication systems. J Signal Process Syst 53(3):383–397.
doi: 10.1007/s11265-008-0240-4

2. Chang WH, Nguyen TQ (2008) On the fixed-point accuracy analysis of FFT algorithms. IEEE
Trans Signal Proc 56(10):4673–4682

3. Chang YN, Parhi KK (1999) Efficient FFT implementation using digit-serial arithmetic. In:
Proceedings of IEEE international workshop signal processing system, Taipei, pp 645–653.
doi: 10.1109/SIPS.1999.822371

4. Chen CM, Hung CC, Huang YH (2010) An energy-efficient partial FFT processor for the
OFDMA communication system. IEEE Trans Circuits Syst II 57(2):136–140. doi: 10.1109/TC-
SII.2010.2040318

5. Cheng KT, Wang YC (2011) Using mobile GPU for general-purpose computing: a case study
of face recognition on smartphones. In: Proceedings of international symposium VLSI design
automation test, Hsinchu, pp 1–4. doi: 10.1109/VDAT.2011.5783575

6. Chi JC, Chen SG (2004) An efficient FFT twiddle factor generator. In: Proceeding of European
signal processing conference, Vienna, pp 1533–1536

7. Chu E, George, A (2000) Inside the FFT black box: serial and parallel fast Fourier transform
algorithms. CRC Press, Boca Raton

8. Cichon G, Robelly P, Seidel H, Matúš E, Bronzel M, Fettweis G (2004) Synchronous
transfer architecture (STA). In: Computer systems: architectures, modeling, and simulation.
Lecture notes in computer science, vol 3133. Springer, Berlin/Heidelberg, pp 193–207.
doi: 10.1007/978-3-540-27776-7_36

9. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier
series. Math Comput 19(90):297–301

http://dx.doi.org/10.1007/s11265-008-0240-4
http://dx.doi.org/10.1109/SIPS.1999.822371
http://dx.doi.org/10.1109/TCSII.2010.2040318
http://dx.doi.org/10.1109/VDAT.2011.5783575
http://dx.doi.org/10.1007/978-3-540-27776-7_36

1336 J. Takala et al.

10. Corporaal H (1997) Microprocessor architectures: from VLIW to TTA. Wiley, Chichester
11. Corporaal H, Mulder H (1991) MOVE: a framework for high-performance processor design.

In: Proceedings of ACM/IEEE conference on supercomputing, Albuquerque, pp 692–701.
doi: 10.1145/125826.126159

12. Dally W, Balfour J, Black-Shaffer D, Chen J, Harting R, Parikh V, Park J, Sheffield D (2008)
Efficient embedded computing. Computer 41:27–32. doi: 10.1109/MC.2008.224

13. Despain AM (1974) Fourier transform computers using CORDIC iterations. IEEE Trans
Comput C-23(10):993–1001. doi: 10.1109/T-C.1974.223800

14. Fanucci L, Roncella R, Saletti R (2001) A sine wave digital synthesizer based on a quadratic
approximation. In: Proceedings of IEEE international frequency control symposium PDA
exhibition, pp 806–810. doi: 10.1109/FREQ.2001.956385

15. Garrido M, Grajal J (2007) Efficient memoryless CORDIC for FFT computation. In: Proceed-
ings of IEEE international conference acoustics speech signal processing, Honolulu, vol 2,
pp 113–116. doi: 10.1109/ICASSP.2007.366185

16. Guan X, Fei Y, Lin H (2012) Hierarchical design of an application-specific instruction set
processor for high-throughput and scalable FFT processing. IEEE Trans VLSI Syst 20(3):
551–563. doi: 10.1109/TVLSI.2011.2105512

17. Hasan M, Arslan T (2002) FFT coefficient memory reduction technique for OFDM appli-
cations. In: IEEE international conference acoustics speech signal process, Orlando, vol 1,
pp 1085–1088

18. He Y, She D, Mesman B, Corporaal H (2011) MOVE-Pro: a low power and high code density
TTA architecture. In: Proceedings of international conference on embedded computer system:
architectures modeling simulation, pp 294–301. doi: 10.1109/SAMOS.2011.6045474

19. Heikkinen J, Takala J, Corporaal H (2009) Dictionary-based program compression
on customizable processor architectures. Microprocess Microsyst 33(2):139–153.
doi: 10.1016/j.micpro.2008.10.001

20. IEEE 802.16.1 (2012) IEEE standard for wireless MAN – advanced air interface for broadband
wireless access systems. Std 802.16.1–2012. IEEE

21. Jääskeläinen P, Kultala H, Viitanen T, Takala J (2014) Code density and energy efficiency of
exposed datapath architectures. J Signal Process Syst 1–16. doi: 10.1007/s11265-014-0924-x

22. Jääskeläinen P, de La Lama C, Huerta P, Takala J (2011) OpenCL-based design methodology
for application-specific processors. Transactions on HiPEAC 5. Available online

23. Jääskeläinen P, de La Lama CS, Schnetter E, Raiskila K, Takala J, Berg H
(2014) pocl: a performance-portable OpenCL implementation. Int J Parallel Prog 1–34.
doi: 10.1007/s10766-014-0320-y

24. Jääskeläinen P, Salminen E, de La Lama C, Takala J, Ignacio Martinez J (2011) TCEMC: a
co-design flow for application-specific multicores. In: Proceeding of international conference
on embedded computer system: architectures modeling and simulations, Samos, pp 85–92.
doi: 10.1109/SAMOS.2011.6045448

25. Jiang RM (2007) An area-efficient FFT architecture for OFDM digital video broadcasting.
IEEE Trans Consum Electron 53(4):1322–1326. doi: 10.1109/TCE.2007.4429219

26. Johnson H, Burrus C (1984) An in-order, in-place radix-2 FFT. In: IEEE international con-
ference on acoustics speech signal processing, vol 9, San Diego, pp 473–476. doi: 10.1109/I-
CASSP.1984.1172660

27. Johnsson SL, Krawitz RL, Frye R, MacDonald D (1989) A radix-2 FFT on connection
machine. In: Proceeding of ACM/IEEE conference on supercomputing, Reno, pp 809–819.
doi: 10.1145/76263.76355

28. Jui PC, Wey CL, Shiue MT (2013) Low-cost parallel FFT processors with conflict-free ROM-
based twiddle factor generator for DVB-T2 applications. In: Proceedings of IEEE international
midwest symposium circuits system, Columbus, pp 1003–1006

29. Lattner C, Adve V (2004) LLVM: a compilation framework for lifelong program analysis &
transformation. In: Proceedings of the 2004 international symposium on code generation and
optimization (CGO’04), Palo Alto

http://dx.doi.org/10.1145/125826.126159
http://dx.doi.org/10.1109/MC.2008.224
http://dx.doi.org/10.1109/T-C.1974.223800
http://dx.doi.org/10.1109/FREQ.2001.956385
http://dx.doi.org/10.1109/ICASSP.2007.366185
http://dx.doi.org/10.1109/TVLSI.2011.2105512
http://dx.doi.org/10.1109/SAMOS.2011.6045474
http://dx.doi.org/10.1016/j.micpro.2008.10.001
http://dx.doi.org/10.1007/s11265-014-0924-x
http://dx.doi.org/10.1007/s10766-014-0320-y
http://dx.doi.org/10.1109/SAMOS.2011.6045448
http://dx.doi.org/10.1109/TCE.2007.4429219
http://dx.doi.org/10.1109/ICASSP.1984.1172660
http://dx.doi.org/10.1145/76263.76355

39 Codesign Case Study on Transport-Triggered Architectures 1337

30. Ma Y, Wanhammar L (2000) A hardware efficient control of memory address-
ing for high-performance FFT processors. IEEE Trans Signal Process 48(3):917–921.
doi: 10.1109/78.824693

31. Oppenheim AV, Schafer RW (2010) Discrete-time signal processing, 3rd edn. Pearson, Upper
Saddle River

32. Pitkänen T, Partanen T, Takala J (2007) Low-power twiddle factor unit for FFT computation.
In: Vassiliadis S, Berekovic M, Hämäläinen T (eds) Embedded computer systems: archi-
tectures, modeling, and simulation. Proceeding of 7th international workshop SAMOS VII,
vol LNCS 4599. Springer, Berlin, pp 233–240. doi: 10.1007/978-3-540-73625-7_9

33. Pitkänen T, Takala J (2011) Low-power application-specific processor for FFT computations.
J Signal Process Syst 63(1):165–176. doi: 10.1007/s11265-010-0528-z

34. Senthilvelan M, Sima M, Iancu D, Schulte M, Glossner J (2013) Instruction set extensions
for matrix decompositions on software defined radio architectures. J Signal Process Syst
70:289–303. doi: 10.1007/s11265-012-0665-7

35. Singleton R (1967) A method for computing the fast Fourier transform with auxiliary memory
and limited high-speed memory. IEEE Trans Audio Electroacoust 15(2):91–98

36. Strang G (1994) Wavelets. Am Sci 82(3):250–255
37. Suleiman A, Saleh H, Hussein A, Akopian D (2008) A family of scalable FFT ar-

chitectures and an implementation of 1024-point radix-2 FFT for real-time communica-
tions. In: IEEE international conference on computer design, Lake Tahoe, pp 321–327.
doi: 10.1109/ICCD.2008.4751880

38. Tang SN, Liao CH, Chang TY (2012) An area- and energy-efficient multimode FFT pro-
cessor for WPAN/WLAN/WMAN systems. IEEE J Solid-State Circuits 47(6):1419–1435.
doi: 10.1109/JSSC.2012.2187406

39. Tang Y, Qian L, Wang Y, Savaria Y (2003) A new memory reference reduction method
for FFT implementation on DSP. In: Proceedings of ISCAS, Bangkok, vol 4, pp 496–499.
doi: 10.1109/ISCAS.2003.1205932

40. TTA-based co-design environment (2015). http://tce.cs.tut.fi. Accessed: 15 Jan 2016
41. Texas Instruments, Inc. (2003) TMS320C64x DSP Library programmer’s reference, Dallas
42. Thuresson M, Själander M, Björk M, Svensson L, Larsson-Edefors P, Stenström P (2007)

FlexCore: utilizing exposed datapath control for efficient computing. In: Proceedings of
international conference on embedded computer system: architectures modeling simulation,
Samos, pp 18–25. doi: 10.1109/ICSAMOS.2007.4285729

43. Viitanen T, Kultala H, Jääskeläinen P, Takala J (2014) Heuristics for greedy transport triggered
architecture interconnect exploration. In: Proceedings of international conference compilers ar-
chitecture synthesis embedded system, New Delhi, pp 2:1–2:7. doi: 10.1145/2656106.2656123

44. Volder JE (1959) The CORDIC trigonometric computing technique. IRE Trans Electron
Comput EC–8(3):330–334. doi: 10.1109/TEC.1959.5222693

45. Wang W, Li L, Zhang G, Liu D, Qiu J (2011) An application specific instruction set processor
optimized for FFT. In: IEEE international midwest symposium circuits and systems, Seoul,
pp 1–4. doi: 10.1109/MWSCAS.2011.6026391

46. Wanhammar L (1999) DSP integrated circuits. Academic Press, San Diego
47. Yu CY, Chen SG, Chih JC (2006) Efficient CORDIC designs for multi-mode OFDM FFT. In:

Proceedings IEEE international conference acoustics speech signal processing, vol 3, Toulouse,
pp III-1036–III-1039. doi: 10.1109/ICASSP.2006.1660834

http://dx.doi.org/10.1109/78.824693
http://dx.doi.org/10.1007/978-3-540-73625-7_9
http://dx.doi.org/10.1007/s11265-010-0528-z
http://dx.doi.org/10.1007/s11265-012-0665-7
http://dx.doi.org/10.1109/ICCD.2008.4751880
http://dx.doi.org/10.1109/JSSC.2012.2187406
http://dx.doi.org/10.1109/ISCAS.2003.1205932
http://tce.cs.tut.fi
http://dx.doi.org/10.1109/ICSAMOS.2007.4285729
http://dx.doi.org/10.1145/2656106.2656123
http://dx.doi.org/10.1109/TEC.1959.5222693
http://dx.doi.org/10.1109/MWSCAS.2011.6026391
http://dx.doi.org/10.1109/ICASSP.2006.1660834

40Embedded Computer Vision

Marilyn Wolf

Abstract

Embedded computer vision is a challenging application domain, requiring high
computation rates, high memory bandwidth, and support for a wide range
of algorithms. This chapter reviews basic concepts in computer vision, de-
sign methodologies for embedded computer vision, platform architectures, and
application-specific architectures.

Acronyms

CGA Coarse-Grained Array
CNN Convolutional Neural Network
CPU Central Processing Unit
CV Computer Vision
DRAM Dynamic Random-Access Memory
FPGA Field-Programmable Gate Array
GOPS Giga Operations Per Second
GPU Graphics Processing Unit
HSCD Hardware/Software Codesign
MAC Multiply-Accumulator
MPSoC Multi-Processor System-on-Chip
NoC Network-on-Chip
QoS Quality of Service
RC Reconfigurable Cell
RISC Reduced Instruction-Set Processor
SoC System-on-Chip
SPI Signal Passing Interface
VLIW Very Long Instruction Word

M. Wolf (�)
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA,
USA
e-mail: wolf@ece.gatech.edu

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9_40

1339

mailto:wolf@ece.gatech.edu

1340 M. Wolf

Contents

40.1 Introduction . 1340
40.2 Computer Vision Concepts . 1341
40.3 Methodologies . 1341
40.4 Platform Architectures . 1342

40.4.1 Multiprocessor Systems on Chips . 1343
40.4.2 Networks on Chips . 1343
40.4.3 FPGAs and Coarse-Grained Arrays . 1344

40.5 Application-Specific Architectural Solutions . 1345
40.5.1 Foreground Detection . 1345
40.5.2 Face Detection and Recognition . 1345
40.5.3 Convolutional Neural Networks . 1347

40.6 Comparison . 1348
40.7 Design Methodologies . 1349
40.8 Conclusion . 1350
References . 1350

40.1 Introduction

Embedded Computer Vision (embedded CV) is well-suited to Hardware/Software
Codesign (HSCD). Computer vision is highly compute intensive and memory
intensive. A diverse set of algorithms is used to build computer vision applications.
And computer vision is often required to perform in real-time and on limited power
budgets. Thanks to all these requirements, codesign is an important approach for the
design of embedded computing systems.

Design methodologies and architectures are closely coupled in this domain. The
high bandwidth and compute performance required by vision often pushes us to
nonstandard architectures. Different architectural models require different types of
synthesis algorithms.

Embedded computer vision is well-suited to HSCD and also presents signif-
icant challenges. The high-throughput and low-power consumption required for
embedded CV make it a natural candidate for the customized solutions offered
by HW/SW codesign. However, those intensive computational requirements also
make it difficult to apply totally automated approaches to the design of embedded
CV systems. Any design must address several important problems simultaneously:
memory system organization, low power, and numerical accuracy. Not only do most
codesign systems address only some of these issues but managing the trade-offs
between these aspects is inherently challenging. HSCD is often used in two ways:
to explore the design space and identify good hardware and software architectures
and to design subsystems that can be integrated into larger systems.

We will start with a review of concepts in computer vision. We will then consider
work on methodologies for the design of computer vision systems. We will next
evaluate the range of architectures proposed for computer vision systems. We
will then look at application-specific solutions to various problems in computer
vision. We then compare approaches followed by a discussion of practical codesign
methodologies for embedded computer vision.

40 Embedded Computer Vision 1341

40.2 Computer Vision Concepts

Computer vision applications can be roughly grouped into several categories:

• Detection categorizes classes of objects but not the identity within that class –
for example, a generic vehicle but not its make or model.

• Recognition identifies specific types of objects, such as a type of vehicle.
• Tracking determines the movement of an object over time.

Computer vision applications can often be divided into several phases:

• Feature extraction performs relatively local operations to identify features in
the image. Static features in a single frame include lines, curves, and textures.
Analysis of motion provides features over a set of frames. Background elim-
ination, in which pixels are classified as either foreground (motion exhibiting
certain characteristics) or background (other pixels), is another form of feature
extraction.

• Classification identifies sets of features as belonging to a category of interest:
faces, vehicles, etc.

Although the human visual cortex can perform many different types of complex
vision tasks, computer vision research has not yet identified a unified model for
vision algorithms. Different vision applications have different requirements, and
different types of algorithms are often used to solve those problems. Many vision
systems are complex pipelines with multiple stages of processing. The algorithms
at different stages of the pipeline can vary significantly, as can vary their required
data rates. Early stages generally consume the most bandwidth, while later stages
may use more abstract, compact representations. Algorithmic kernels at each stage
may also contain a significant amount of control – filtering is not an adequate
computational model for computer vision kernels. However, we can identify a stable
of useful computational kernels that can be applied in different combinations to a
wide range of vision applications.

40.3 Methodologies

Higher-level programming models have been very successful in the signal process-
ing domain. Models such as data flow are well-matched to algorithmic expression
and allow compilers to compile operator and data schedules, buffer sizes, and other
program characteristics.

Bhattacharyya and colleagues have developed an extensive methodology around
advanced versions of synchronous data flows; they have also conducted several
demonstrations on computer vision applications. The signal passing interface [20]
(SPI) extends synchronous dataflow models for varying rates of data transfer.

1342 M. Wolf

A variable data rate with an upper bound on the rate is modeled as a virtual token;
conditions are developed under which this model may be converted to a traditional
synchronous dataflow model for which schedules and buffer sizes can be found.
Kianzad et al. [5] used the synchronous dataflow design-flow model to design a face
detection accelerator. A face is modeled as an ellipse; a double exponential filter
is used to detect the ellipse. Saha et al. [21] designed an architecture for particle
filters. A particle filter module performs three steps: a set of particles (samples) are
generated using a sampling function; an importance weight is calculated for each
particle; the set of particles is resampled. A module includes a core processor, noise
generator, weight update unit, and memory interfaces.

Networks on chips have received some attention for application-specific design
given the high bandwidth and heterogeneous characteristics of vision applications.
Xu et al. [33] developed a design methodology for application-specific networks on
chips. They start by analyzing the communication patterns between the processing
elements to determine communication rates, frequencies, and volumes. They use
a recursive algorithm to design a hierarchical network topology with switches
mediating between units in a cluster. They also generate a packet format. They then
estimate the NoC floor plan to give both areas and link delays. They then use a
network simulator to perform a detailed analysis of network operation. The final
step is to analyze network performance and area based on a component library.

Numerical accuracy is an important concern in all aspects of digital signal
processing as well as computer vision. Choosing the numerical representation
appropriate to each algorithmic stage reduces hardware requirements and allows
more computational units to be placed on chip. Schlessman and Wolf [22] describe
a methodology for the analysis of trade-offs between numerical accuracy, perfor-
mance, and power in computer vision modules. They applied their methodology
first to the Kanade-Lucas-Tomasi optical flow algorithm [15]. Their analysis showed
that the 18 � 18 integer multipliers available on the target FPGA did not provide
enough dynamic range. They instead used a 24-bit floating-point format with a
six-bit exponent. They then applied their methodology to mixture-of-Gaussians
background elimination [10], for which they were able to eliminate all floating-point
operations and substantially reduce memory requirements as compared to direct
synthesis from Matlab code. Their cost analysis for floating-point operations was
based on the work of Soderquist and Leeser [23].

40.4 Platform Architectures

A number of platform architectures are used or have been proposed for computer
vision. Given the high-performance requirements for computer vision, these plat-
forms tend to be significantly different from those used for IT-oriented workloads.
We will first look at multiprocessor system-on-chip architectures and then networks
on chips and finally Field-Programmable Gate Arrays (FPGAs) and coarse-grained
arrays.

40 Embedded Computer Vision 1343

40.4.1 Multiprocessor Systems on Chips

A Multi-Processor System-on-Chip (MPSoC) is a single chip that contains multiple
complex processing elements as well as some amount of on-chip memory and off-
chip memory control. Wolf et al. [31] survey the development of MPSoCs. Many
video-oriented chips are heterogeneous MPSoCs that combine several types of
processors. MPSoCs are widely used for commercial embedded computing systems.

A well-known example of a traditional MPSoC for multimedia and computer
vision is the Texas Instruments TMS320DM816x DaVinci family [11]. This
architecture combines a Central Processing Unit (CPU), a Very Long Instruction
Word (VLIW), and accelerators. An ARM Cortex-A8 provides in-order dual-issue
processing and NEON multimedia instructions. The TMS320C674x VLIW has six
function units, two multiply units, and 46 general-purpose registers. Accelerators
provide operations for video encoding and decoding.

The Mobileye’s EyeQ processor [24] is designed for automotive computer vision.
It includes two ARM CPUs, accelerators for image scaling, tracking, lane detection,
and image filtering.

40.4.2 Networks on Chips

Networks-on-Chips (NoCs) are widely used in cellphone processors to support
multimedia data. NoCs often have application-specific topologies with varying
bandwidths in different parts of the system. They also use smart adapters that
directly handle packet scheduling without the intervention of the host processor.
van der Wolf and Geuzebroek [26] analyzed Quality of Service (QoS) mechanisms;
they identified key parameters as bandwidth, latency, number of transactions per
burst, time between bursts, maximum number of pending transactions, and ratio of
read to write traffic. Weber et al. [29] designed an epoch-based scheduling algorithm
for NoCs that takes into account both the QoS requirements and the network state
in that epoch.

Xu et al. [32] studied the design space of NoC architectures for smart cameras.
They used as their test case the gesture recognition system of Wolf et al. [30].
They compared bus and crossbar architectures for the switches. They evaluated
several different switch configurations with port widths ranging from 5 to 55 bits.
They also evaluated a crossbar design with two shared memory: four processing
elements share one of the memories, while the other three PEs share the other.
They used the OPNET network simulator to evaluate network behavior using traces
generated from the smart camera application. They judged the designs based on
utilization and the required network frequency to support 150 frames/sec operation.
Their results showed a wide variation in network characteristics for the various
NoC architectures. A 16-bit/port design with a 3 � 3 crossbar and two memories
gave 85.7% higher performance than the baseline processor-controlled network and
required only a 443 MHz clock frequency to achieve the required frame rate. This

1344 M. Wolf

network had the lowest maximum throughput, which results in lower worst-case
hardware requirements and a smaller-area implementation.

40.4.3 FPGAs and Coarse-Grained Arrays

FPGAs have been used as the fabrics for many computer vision systems. Gudis
et al.[9] use a crossbar-connected set of processing elements and a video DMA
controller. Farabet et al. [8] use a dataflow-oriented architectural style.

Coarse-Grained Arrays (CGAs) have been developed by a number of groups
to provide more efficient implementations of certain classes of applications. As
compared to FPGAs, a larger block of logic is predesigned to reduce the overhead of
reconfigurability; these coarse-grained units often include some amount of memory.
Like FPGAs, many of them have separate configuration and execution modes.
While a multi-core processor may route packets dynamically, with sources and
destinations varying continually, CGAs generally commit interconnection resources
at configuration time.

MorphoSys [14] uses reconfigurable array controlled by a Reduced Instruction-
Set Processor (RISC) processor. The control processor initiates all data transfers
and generates control signals for the reconfigurable array processing elements. A
processing element includes an ALU, a multiplier, and register files.

The ADRES architecture [3] uses a coarse-grid array controlled by a VLIW-style
control unit. The control unit array is a two-dimensional mesh processing elements.
Each processing element includes a function unit and a register file. The processing
elements also share global data and program register files. The VLIW control starts
and stops loops to be executed on the coarse-grid array. A suite of compilation tools
can be used to map application code onto ADRES.

The MORA architecture [13] is designed for a large number of data operations
and distributed internal memory with large internal bandwidth. A Reconfigurable
Cell (RC) includes a data path, a RAM, and a control unit. Connections between
the RCs are determined statically at configuration time; routing resources allow
connections to vertical, horizontal, and diagonal neighbors. A memory controller
feeds the RCs from internal controller.

Park et al. [19] proposed a polymorphic pipeline array for multimedia processing.
A core consists of a set of four processing elements each with a function unit and
register file, a loop buffer, and an instruction cache. The PEs in a core are connected
with a mesh network. Cores are also interconnected using a mesh network. Vertical
connections through the mesh connect several columns of cores to a memory arbiter.

Tabhki et al. [25] propose a function-level processor architecture for video and
computer vision. A set of function blocks perform data operations. A function block
typically performs operations at the granularity of computational kernels such as
convolution. The function block can operate either under the control of a CPU or
using its own program. Each function block includes registers for configuration and
control and a buffer for parameters that can be written by other blocks. Data is fed
into and out of the function block using streaming controllers. Parameter data is

40 Embedded Computer Vision 1345

cached while streaming data is not. Function blocks communicate with each other
using a sparse multiplexer network.

The EGRA architecture [2] makes use of heterogeneous reconfigurable ALU
clusters. These clusters may contain several different types of ALUs and can be
chained together combinationally to operate on large expressions.

Networks on chips are widely used in cellphone processors to handle quality-
of-service (QoS)-oriented multimedia traffic [26, 27, 29]. These networks generally
allow prioritization and QoS parameterization. Flow control is handled directly by
the network adapters, not by the host processors.

40.5 Application-Specific Architectural Solutions

A great deal of work has concentrated on accelerators for particular applications or
computational kernels. We will consider foreground/background detection and then
face detection and recognition. We will conclude with a survey of architectures for
convolutional neural networks.

40.5.1 Foreground Detection

Many computer vision systems use motion to segregate pixels at an early stage, a
process known as foreground detection. In tracking, for example, pixels with only
a small amount of motion are less likely to be part of an object of interest. Fore-
ground/background analysis classifies pixels: foreground pixels have a significant
amount of interesting motion, while background pixels do not.

Casares et al. [4] developed a foreground detection algorithm with a small
memory footprint. Each pixel is given a binary-valued state s.i; j /. A counter for
each pixel location keeps track of the number of times the pixel’s state has changed
in the last 100 frames. An image is classified as foreground only if its change count
falls below a threshold. A pixel may be added to the foreground model with partial
weight based upon its activity counter.

40.5.2 Face Detection and Recognition

Face detection and recognition are both useful computer vision operations. Face
detection determines the location of a human face in the scene, while face
recognition identifies the person associated with that face.

Amir et al. [1] developed a hardware design for a real-time eye tracker. Their
algorithm makes use of synchronized illuminators, one on axis and the other off
axis. Pupils appear much brighter with on-axis illumination than with off-axis
illumination. The algorithm captures a pair of frames, one with each type of
illumination, and then subtracts the off-axis illuminated image from the on-axis
illuminated frame. They generate a binary image of the difference by thresholding

1346 M. Wolf

the pixel values and then use a connected components algorithm to identify regions.
Their connected components algorithm operates on pairs of lines; they identify line
segments in the two lines by comparing the start and end points of the line segments.
Region identifications are maintained vertically to generate consistent component
labels. As regions are merged, the moment of the newly enlarged region is created.
Moments are used to identify possible pupils; the centroid of each identified region
is also computed.

EFFEX [7] is an accelerator for feature extraction algorithms. It includes a one-
to-16 comparison unit, a convolution Multiply-Accumulator (MAC), and a gradient
unit. By storing data in the off-chip Dynamic Random-Access Memory (DRAM) in
the proper order, a patch of data can be read by accessing a single DRAM row.

Yang et al. [34] developed an AdaBoost-based algorithm for face detection.
The AdaBoost approach to face detection was originally proposed by Viola and
Jones [28]. Their algorithm makes use of Haar-like features that they represent
in the form of integral images. The basic Haar-like feature is defined on a 2 � 2
set of pixels, although it can also be defined on larger image patches. Figure 40.1
shows the four regions of a 2 � 2 patch. The value of each region is the sum of
the pixels in the fourth quadrant relative to that region (above and to the left). The
sum of any rectangular area in the image is computed as S D C C A 	 B 	 D.
These features can be applied at any image scale. Their face detection algorithm
detects Haar-like features at multiple image resolutions. At each stage, a classifier is
composed of the response of a set of feature responses. The classifiers are tested at
multiple locations with classifiers that pass the threshold test being passed onto the
next stage of image resolution. The highest-valued classifier is selected as the face
location in the final stage. Yang et al. developed heuristics to control the number of
features propagating through the architecture in order to ensure that face detection
time remained constant while retaining high accuracy. They give preference in later
stages to image regions that pass all the classifiers in the previous stages. They also
assume that face motion is relatively small from frame to frame. They implemented
several additional optimizations: they rescaled image frames rather than features;
they used fixed-point arithmetic for coefficients (15 bits) and thresholds (30 bits);

Fig. 40.1 Areas in a x � 2
Haar-like feature

40 Embedded Computer Vision 1347

they also used an approximation of the image window normalization factor. Their
system architecture includes a classifier pipeline, an image rescaler, RAM for the
image windows and for the classifiers, and a control FSM.

40.5.3 Convolutional Neural Networks

A great deal of work has studied the design of Convolutional Neural Network (CNN)
algorithms on GPUs. A more recent body of work has developed FPGA-based
architectures for CNNs.

Chetlur et al. [6] developed a library of functions for convolutional neural net-
works implemented on Graphics Processing Units (GPUs). The principal function
to be optimized is a spatial convolution which consists of a seven-way nested loops
of four independent loops and three accumulation loops. Given that GPUs have a
limited amount of onboard memory, their implementation is designed to provide
high performance without requiring auxiliary memory. They map the convolutions
onto a matrix multiplication formulation to leverage efficient implementations of
the matrix multiply. Mapping the convolution components into the matrix requires
a nontrivial indexing scheme that is performed as the data is loaded into the GPU
memory from off chip. They reported performance on three different convolution
algorithms in the range of 1.5-2 TFlops on the Maxwell-based GTX 980.

NVIDIA [16] presents the energy and performance of Tegra X1-based CNNs
for inference. They make use of the GPU’s FP16 reduced-precision floating-point
format to reduce memory bandwidth. Because inference is performed one image at
a time, the layer activations are represented by a vector. In contrast, classification is
typically performed on batches of images, resulting in an array of layer activations.
matrix-vector operations are potentially less efficient than matrix-matrix operations.
To minimize inefficiencies, they make use of a generalized matrix-vector product
operation. For Alexnet, they reported that their Tegra X1 implementation with 16-
bit floating point ran at 258 images/sec compared to 242 images/sec for an Intel
Core i7 6700 K; the Tegra X1’s efficiency was 45.0 images/sec/W compared to 3.9
images/sec/W for the Core i7 6700 K.

Zhang et al. [35] used loop analysis to optimize the design of an FPGA-
based CNN. Their design makes use of the CNN architecture of Krizhevsky
et al. [12]. They use a roofline model to guide their exploration of the design
space. Given a graph of available performance vs. computation to communication
ratio, the roof line of the design space is bounded by two limiting curves: at
low computation/communication, performance is limited by I/O bandwidth; at
high computation/communication, performance is limited by internal computing
resources. They use polyhedral data dependency analysis to generate a set of loop
structures that vary in their loop scheduling and tile size. They analyzed data reuse to
optimize the use of on-chip memory. Their final architecture has a set of processing
elements whose inputs and outputs are connected to crossbars. Inputs are fed to
the PEs through two sets of input buffers. Similarly, two sets of output buffers
capture outputs. Their design provided substantially higher performance density, as

1348 M. Wolf

Fig. 40.2 Structure of Microsoft CNN FPGA [17]

measured in Giga Operations Per Second (GOPS) per slice, than previously reported
designs. Their design also consumed 18.61 W as compared to 95 W for an Intel
Xeon running at 2.2 GHz.

Ovtcharov et al. [17] describe the design of an FPGA-based CNN. Their design
is based on the CNN topology of Krizhevsky et al. [12]. As shown in Fig. 40.2, their
architecture uses a set of processing elements to perform dot-product operations.
The results of the PEs are reordered by a network on chip and returned to the input
buffer for the next round of processing. An external DRAM provides bulk storage.
Their design is based on the Stratix V D5 FPGA augmented with 8 GB of DDR3
DRAM. Their design was tested on several data sets, including ImageNet 1 K. For
that benchmark, their system ran at 134 images/sec at 25 W; in comparison, a Tesla
K20 implementation ran at 376 images/sec at 235 W.

40.6 Comparison

We can compare these various approaches to embedded computer vision system
design in several aspects.

Programmability of these approaches varies widely. GPUs use nontraditional
programming models but do provide a fully programmable model; the charac-
teristics of their memory systems is one important constraint on their practical
programmability. Many systems make use of fully hardwired accelerators. A
fixed accelerator provides high-performance and low-power consumption. These
systems are, however, limited in two ways: they can operate on only limited data
sizes and their data and control flow cannot be modified. FPGAs provide high
density and flexibility but not true programmability. MPSoCs provide heterogeneous
architectures for system designers who are unable to design their own hardware
platforms.

40 Embedded Computer Vision 1349

Power consumption of these approaches also varies widely. Accelerators typ-
ically provide the highest power efficiency. The power efficiency of FPGAs
continues to improve as their levels of integration increase. GPU power consumption
is higher than that of hardwired systems but considerably lower than that provided
by CPUs.

40.7 Design Methodologies

Embedded computer vision systems require translating concepts across a very deep
stack of abstractions, from recognition requirements down to software and logic.
Design methodologies must keep in mind the large number of translation steps
and focus on the right tasks at appropriate points in the design process. Due to the
complexity of the design process, embedded CV design tends to be more iterative,
combining top-down and bottom-up phases, than are some other types of system
design. Ozer and Wolf [18] described the design of one embedded computer vision
system.

Embedded computer vision systems typically start with algorithm development
in a standard language such as Matlab or OpenCV. The algorithm flow must be
determined at this point – what sequence of steps is applied to the image stream.

Architecture planning starts during algorithm development and continues beyond
into system design. Some aspects of the algorithms will be guided by the available
architectural choices. In many cases, parameter values such as window sizes will
be chosen at these early stages. As the algorithm block diagram develops, system
designers can start to decide what implementation style is best suited for each block.

Memory system design is a critical component of architecture planning. Com-
puter vision systems require large memory bandwidths. The feasibility of real-time
operation may be determined by memory bandwidth; power consumption is also
driven by the memory system. Not only must overall bandwidth be satisfied, but
the architecture must provide pathways that allow all components to obtain the
bandwidth they need. Real-time systems cannot solve memory bottlenecks by
sequentializing operations – the required concurrency guides the design of the
memory system and internal interconnect.

Hardware and software implementation must pay careful attention to the design
goals for each block that were determined during the architecture planning phase.
Module design must be tailored to three key design goals: real-time performance,
memory performance, and power consumption. Algorithms may be adjusted during
this phase as the limits of the platform become clear. A certain number of trade-offs
between accuracy, real-time performance, and power can only be made at this later
stage when more information is available.

1350 M. Wolf

40.8 Conclusion

Heterogeneous architectures are a good match for embedded computer vision given
the wide range of algorithms used in the vision pipeline. MPSoCs are widely used,
leveraging both programmable cores and video-oriented accelerators. FPGAs have
recently gained attention as platforms well-suited to convolutional neural networks.

References

1. Amir A, Zimet L, Sangiovanni-Vincentelli A, Kao S (2005) An embedded system for an eye-
detection sensor. Comput Vis Image Underst 98(1):104–123. doi:10.1016/j.cviu.2004.07.009.
Special issue on Eye Detection and Tracking

2. Ansaloni G, Bonzini P, Pozzi L (2011) Egra: a coarse grained reconfigurable archi-
tectural template. IEEE Trans Very Large Scale Integr VLSI Syst 19(6):1062–1074.
doi:10.1109/TVLSI.2010.2044667

3. Bouwens F, Berekovic M, Kanstein A, Gaydadjiev G (2007) Architectural exploration of the
adres coarse-grained reconfigurable array. In: Reconfigurable computing: architectures, tools
and applications. LNCS, vol 4412. Springer, pp 1–13

4. Casares M, Velipasalar S, Pinto A (2010) Light-weight salient foreground detec-
tion for embedded smart cameras. Comput Vis Image Underst 114(11):1223–1237.
doi:10.1016/j.cviu.2010.03.023. Special issue on Embedded Vision

5. Chellappa R, Bhattacharyya S, Saha S, Wolf W, Aggarwal G, Schlessman J, Kianzad V
(2005) An architectural level design methodology for embedded face detection. In: Third
IEEE/ACM/IFIP international conference on hardware/software codesign and system synthe-
sis, CODES+ISSS’05, pp 136–141. doi:10.1145/1084834.1084872

6. Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro B, Shelhamer E (2014)
cuDNN: efficient primitives for deep learning. CoRR abs/1410.0759. http://arxiv.org/abs/1410.
0759

7. Clemons J, Jones A, Perricone R, Savarese S, Austin T (2011) Effex: an embedded processor
for computer vision based feature extraction. In: 2011 48th ACM/EDAC/IEEE design automa-
tion conference (DAC), pp 1020–1025

8. Farabet C, Martini B, Corda B, Akselrod P, Culurciello E, LeCun Y (2011) Neuflow:
a runtime reconfigurable dataflow processor for vision. In: 2011 IEEE Computer Society
conference on computer vision and pattern recognition workshops (CVPRW), pp 109–116.
doi:10.1109/CVPRW.2011.5981829

9. Gudis E, Lu P, Berends D, Kaighn K, van der Wal G, Buchanan G, Chai S, Piacentino M
(2013) An embedded vision services framework for heterogeneous accelerators. In: 2013 IEEE
conference on computer vision and pattern recognition workshops (CVPRW), pp 598–603.
doi:10.1109/CVPRW.2013.90

10. Horprasesert T, Harwood D, Davis LS (1999) A statistical approach for real-time robust
background subtraction and shadow detection. In: IEEE international conference on computer
vision FRAME-RATE workshop

11. Texas Instruments (2015) TMS320DM816x DaVinci Digital Media Processors Technical
Reference Manual, SPRUGX8C, March 2015

12. Krizhevsky A, Sutskever I, Hinton GE (2013) Imagenet classification with deep convolutional
neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural
information processing systems 25. NIPS 2012: neural information processing systems. https://
books.google.com/books?id=glsymwEACAAJ

http://dx.doi.org/10.1016/j.cviu.2004.07.009
http://dx.doi.org/10.1109/TVLSI.2010.2044667
http://dx.doi.org/10.1016/j.cviu.2010.03.023
http://dx.doi.org/10.1145/1084834.1084872
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://dx.doi.org/10.1109/CVPRW.2011.5981829
http://dx.doi.org/10.1109/CVPRW.2013.90
https://books.google.com/books?id=glsymwEACAAJ
https://books.google.com/books?id=glsymwEACAAJ

40 Embedded Computer Vision 1351

13. Lanuzza M, Perri S, Corsonello P, Margala M (2007) A new reconfigurable coarse-grain
architecture for multimedia applications. In: 2007 second NASA/ESA conference on adaptive
hardware and systems, AHS 2007, pp 119–126. doi:10.1109/AHS.2007.10

14. Lee MH, Singh H, Lu G, Bagherzadeh N, Kurdahi FJ, Filho EM, Alves VC (2000) Design and
implementation of the morphosys reconfigurable computing processor. J VLSI Signal Process
Syst Signal Image Video Technol 24(2):147–164

15. Lucas B, Kanade T (1981) An iterative image registration technique with an application to
stereo vision. In: International joint conference on artificial intelligence. AAAI

16. nVidia (2015) GPU-based deep learning inference: a performance and power analysis.
Technical report

17. Ovtcharov K, Rowase O, Kim JY, Fowers J, Straus K, Chung ES (2015) Accelertaing deep
convolutional neural networks using specialized hardware. http://research.microsoft.com/pubs/
240715/CNN

18. Ozer B, Wolf M (2014) A train station surveillance system: challenges and solutions. In:
2014 IEEE conference on computer vision and pattern recognition workshops, pp 652–657.
doi:10.1109/CVPRW.2014.99

19. Park H, Park Y, Mahlke S (2009) Polymorphic pipeline array: a flexible multicore accelerator
with virtualized execution for mobile multimedia applications. In: 42nd annual IEEE/ACM
international symposium on microarchitecture, 2009 MICRO-42, pp 370–380

20. Saha S, Puthenpurayil S, Schlessman J, Bhattacharyya S, Wolf W (2008) The signal passing
interface and its application to embedded implementation of smart camera applications. Proc
IEEE 96(10):1576–1587. doi:10.1109/JPROC.2008.928744

21. Saha S, Bambha NK, Bhattacharyya SS (2010) Design and implementation of embedded
computer vision systems based on particle filters. Comput Vis Image Underst 114(11):1203–
1214. doi:10.1016/j.cviu.2010.03.018. Special issue on Embedded Vision

22. Schlessman J, Wolf M (2015) Tailoring design for embedded computer vision applications.
Computer 48(5):58–62. doi:10.1109/MC.2015.145

23. Soderquist P, Leeser M (1997) Division and square root: choosing the right implementation.
Micro IEEE 17(4):56–66. doi:10.1109/40.612224

24. Stein G, Rushinek E, Hayun G, Shashua A (2005) A computer vision system on a chip:
a case study from the automotive domain. In: Proceedings of IEEE Computer Society
conference on computer vision and pattern recognition – workshops (CVPR 2005), pp 130–
130. doi:10.1109/CVPR.2005.387

25. Tabkhi H, Bushey R, Schirner G (2014) Function-level processor (FLP): a high performance,
minimal bandwidth, low power architecture for market-oriented MPSoCs. IEEE Embed Syst
Lett 6(4):65–68. doi:10.1109/LES.2014.2327114

26. van der Wolf P, Geuzebroek J (2011) SoC infrastructures for predictable system integra-
tion. In: Design, automation test in Europe conference exhibition (DATE), 2011, pp 1–6.
doi:10.1109/DATE.2011.5763146

27. van der Wolf P, Henriksson T (2008) Video processing requirements on SoC infras-
tructures. In: Design, automation and test in Europe, 2008, DATE ’08, pp 1124–1125.
doi:10.1109/DATE.2008.4484827

28. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In:
Proceedings of the 2001 IEEE Computer Society conference on computer vision and pattern
recognition, CVPR 2001, vol 1, pp I–511–I–518. doi:10.1109/CVPR.2001.990517

29. Weber WD, Chou J, Swarbrick I, Wingard D (2005) A quality-of-service mechanism for
interconnection networks in system-on-chips. In: Proceedings of the design, automation and
test in Europe, vol 2, pp 1232–1237. doi:10.1109/DATE.2005.33

30. Wolf W, Ozer B, Lv T (2002) Smart cameras as embedded systems. IEEE Comput 35(9):48–53
31. Wolf W, Jerraya A, Martin G (2008) Multiprocessor system-on-chip (MPSoC) technology.

IEEE Trans Comput Aided Des Integr Circuits Syst 27(10):1701–1713. doi:10.1109/T-
CAD.2008.923415

http://dx.doi.org/10.1109/AHS.2007.10
http://research.microsoft.com/pubs/240715/CNN
http://research.microsoft.com/pubs/240715/CNN
http://dx.doi.org/10.1109/CVPRW.2014.99
http://dx.doi.org/10.1109/JPROC.2008.928744
http://dx.doi.org/10.1016/j.cviu.2010.03.018
http://dx.doi.org/10.1109/MC.2015.145
http://dx.doi.org/10.1109/40.612224
http://dx.doi.org/10.1109/CVPR.2005.387
http://dx.doi.org/10.1109/LES.2014.2327114
http://dx.doi.org/10.1109/DATE.2011.5763146
http://dx.doi.org/10.1109/DATE.2008.4484827
http://dx.doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org/10.1109/DATE.2005.33
http://dx.doi.org/10.1109/TCAD.2008.923415

1352 M. Wolf

32. Xu J, Wolf W, Henkel J, Chakradhar S, Lv T (2004) A case study in networks-on-chip design
for embedded video. In: Proceedings of the design, automation and test in Europe conference
and exhibition, vol 2, pp 770–775. doi:10.1109/DATE.2004.1268973

33. Xu J, Wolf W, Henkel J, Chakradhar S (2006) A design methodology for
application-specific networks-on-chip. ACM Trans Embed Comput Syst 5(2):263–280.
doi:10.1145/1151074.1151076

34. Yang M, Crenshaw J, Augustine B, Mareachen R, Wu Y (2010) Adaboost-based
face detection for embedded systems. Comput Vis Image Underst 114(11):1116–1125.
doi:10.1016/j.cviu.2010.03.010. Special issue on Embedded Vision

35. Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J (2015) Optimizing FPGA-based accelerator
design for deep convolutional neural networks. In: Proceedings of the 2015 ACM/SIGDA
international symposium on field-programmable gate arrays, FPGA ’15, pp 161–170. ACM,
New York. doi:10.1145/2684746.2689060

http://dx.doi.org/10.1109/DATE.2004.1268973
http://dx.doi.org/10.1145/1151074.1151076
http://dx.doi.org/10.1016/j.cviu.2010.03.010
http://dx.doi.org/10.1145/2684746.2689060

Index

A
Abstract Syntax Tree (AST), 548, 941,

1075, 1088
Accellera, 1098
Action, 76
Activation backlog, 786
Activation event, 727
Activation trace, 727
Actor, 63, 512, 520, 521, 953

enabled, 64
fireable, 64
firing, 63
FSM, 79
functionality, 77

Actuator, 152
AdaBoost, 1346
Adaptive Logic Module (ALM), 341, 342
Adaptive windows Pareto Random Search

(APRS), 194
ADRES, 351, 355, 357, 1344
Advanced Driver Assistance System (ADAS),

1117–1118
Advanced eXtensible Interface

(AXI), 1119
Advanced Risc Machine (ARM), 1107,

1109, 1343
Advanced Silicon Modular BLock (ASMBL),

341
Agile, 143, 145
Algo2Spec, 1025
Algorithm, 338, 360–364, 366, 368, 369
Allocation, 221, 222, 227, 358, 360, 361
Allocation graph, 222
Altera, 348
AMBA, 1096, 1119
Amdahl’s law, 837
Amorphous, 447, 448
Analytical model, 253
Android, 941–943
AnTuTu, 1097, 1098

Application, 351, 354, 357, 362, 364–368, 370,
494, 508, 509

control, 525
events, 996
graph, 220, 225
mapping, 368
modeling, 996
non-real-time, 493, 494, 520, 525
real-time, 493, 494, 498, 522
specification, 986, 1000–1001
task, 1232

Application Programming Interface (API),
339, 1065, 1066, 1076, 1081–1082

Application scenario(s), 273
coexploration, 278
database, 277
subset selection, 285

Application-Specific Instruction-set Processor
(ASIP), 339, 379, 1114–1121

Application-Specific Integrated Circuit
(ASIC), 337–340, 350, 379

Application-specific NoC design, 481
Application-Specific Processor (ASP), 1304
Approximated Dependence Graph

(ADG), 1004
Arbiter

composable, 495
predictable, 495

Arbitration, 495, 498, 500, 503
centralized, 503
composable, 497, 498, 507, 510, 512
cooperative, 510–512, 517
credit-controlled-static-priority, 495, 501
distributed, 497, 503
dynamic, 500, 510, 512
frame-based-static-priority, 495
non-work-conserving, 495, 496
predictable, 496, 497, 507, 510, 513
round-robin, 495, 500
single-level, 496, 504, 507, 510–512

© Springer Science+Business Media Dordrecht 2017
S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,
DOI 10.1007/978-94-017-7267-9

1353

1354 Index

Arbitration (cont.)
static, 510, 512
static-order, 511, 512
time-division-multiplexing, 495, 501,

502, 512
two-level, 496, 500, 504, 507, 510–512
work-conserving, 495, 496

Architectural mapping, 145
Architecture, 448, 449, 451, 452, 454–455

analysis, 1146–1149
design, 1130–1131
design use-cases, 1148
graph, 220, 225
heterogeneous, 353
homogeneous, 353
modeling, 997
optimization, 1145
validation, 1148

Architecture Description File (ADF), 1310
Archive, 227
Area-critical, 367, 369
Arithmetic-Logic Unit (ALU), 351, 353, 365,

367, 1344
ARM fast models, 1109
ARM-11, 426–427
Arrival function, 728
Arteris, 1096
As Late As Possible (ALAP), 360, 366
As Soon As Possible (ASAP), 360, 366, 930
Assertion, 699
Assertion-Based Verification (ABV), 687
Asynchronous scheduling, 765–766
Atom, 495, 498
Atomicity, 505–506, 516

of computation, 506
of storage, 507

Atomizer, 495, 498, 505, 512
Automated application parallelization,

991–994
Automatic Repeat Request (ARQ), 788
Automatic stimuli generation, 711–715
Automaton, 691
AutoPilot, 359
Average Distance from Reference Set (ADRS),

202–203
Averest, 35
Avionics Full-Duplex Switched Ethernet

(AFDX), 755
AVISPA, 351

B
Back-annotation, 601, 604–605
Background elimination, 1342

Background theory, 236
Backlog, 737
Backtracking, 231
Balance equation, 66
Bandwidth, 339, 366
Bank, 455
Barrier, 508, 516, 519, 520
Base cycle, 1233
Basic Block (BB), 384, 571, 626, 661

characterization, 604
level, 604

Battery, 1165–1168, 1170–1172, 1175,
1179–1181

Behavioral diagram, 691–692
BilRC, 353
Binary to source mapping, 600–602
Bin-covering problem, 773, 777–779
Binding, 221, 222, 227, 358–361, 367, 369
Bipartition problem, 220
Bit-reversed permutation, 1322–1323
Bitstream, 341, 351
Blocking time, 760, 772
Board Support Package (BSP), 171
Boolean Data Flow (BDF), 68–69
Boolean ranking, 288
Bootloader, 508, 522, 523
Boot processor, 517
Branching strategy, 231
Branch prediction, 584, 605
Budget, 495, 496, 503, 508

identifier, 515
manager, 514, 515

Budget Descriptor (BD), 514
Bufferless NoC, 479
Buffer size requirement, 786
Bundle, 508, 514, 522
Bus

interconnect, 464
utilization, 1234, 1240

Busy period, 731–733, 759, 772
Bytecode, 571

C
C, 354, 357–359, 367, 1055, 1060–1061
C for Process Networks (CPN), 922–924, 926,

929, 940, 941, 943, 946
compiler, 940

CCC, 357, 359, 1055
Cache, 165, 448–450, 452, 453, 455, 501, 581,

604, 605, 881
block, 419
capacity miss, 434
conflict, 431

Index 1355

conflict miss, 434
customization, 436–438
direct-mapped, 420
dirty, 453
evict, 453
hit, 420
line, 419
locking, 835, 843, 848–852, 854
memory, 160
miss, 420
model, 603, 611
out-of-order simulation, 612
partitioning, 449, 844, 852–855
pollution, 611
reconfiguration, 436–438
Resistive Random-Access Memory

(RRAM), 446
reuse, 1225, 1243, 1249–1251
set-associative, 420
Spin-Transfer Torque Random-Access

Memory (STT-RAM), 445–446,
448–450

ways, 420
Cache-Related Preemption Delay (CRPD), 852
CACTI, 432
Cadence, 1095
Cal Actor Language (CAL), 1192
Call edge, 629
Call Graph (CG), 926
Call string, 629
CAN identifier, 759
Capacity

unreserved, 495
unused, 496

Carrier Sense Multiple Access/Collision
Detection (CSMA/CD), 779

Causality analysis, 31, 32, 45
Cellphone, 1044–1045
CELL processor, 427
Cell size, 445, 449
Central Processing Unit (CPU), 1343
Chameleon, 351
Channel, 157, 170
Characteristic function, 122
Checkers, 687
CHESS, 351, 353
Chimaera, 351
Chip Multi-Processor (CMP) systems, 872
Classification, 1341
Classification candidate, 85
Client-server port, 157
Clock

consistency, 31
network, 343

Clock Domain Crossing (CDC), 499
Close-page policy, 418
Clustering, 94, 361
CMOF. See Meta Object Facility (MOF)
Coarse-grained, 354, 363
Coarse-Grained Array (CGA), 1344–1345
Coarse-Grained Reconfigurable Architecture

(CGRA), 337, 338, 350–357,
362–370, 425

Code coverage analysis, 929
Code generation, 987, 999, 1003–1006,

1038–1039
Column address, 417
Column decoder, 417
Combinatorial problem, 257
CoMik, 509, 510, 525
Commercial NoC, 476–477
Common Intermediate Code (CIC), 955

translator, 973–975
Common Power Format (CPF), 1125
Communication, 345, 349–351, 358

behavior, 65
behavior of an actor, 77
cycle, 767, 768
and synchronization primitives, 1007–1008
task, 1232

Communication-aware mapping, 479–480
Compiler, 357, 360, 362, 367, 835, 843, 846,

849, 852, 863, 1030, 1060
Compiler framework, 360
Compiler-In-the-Loop (CIL), 798, 813–814,

823–825
Compiler-orchestrated static routing, 354
Complementary Metal-Oxide-Semiconductor

(CMOS), 444, 447, 448, 450
Component-based functional modeling, 147
Component timing model, 726–729
Composability, 494, 496, 498, 506, 756, 765

of an arbiter, 495
of a resource, 495

CompOSe, 510–512
Composite actor, 70
Compositional, 501
Compositional Performance Analysis (CPA)

activation/termination event, 727
activation/termination event model, 727
activation/termination trace, 727
analysis of weakly-hard real-time systems,

747
arrival function, 728
backlog, 737
busy period, 731, 732
component timing model, 726–729
critical instant, 731

1356 Index

Compositional Performance Analysis (CPA)
(cont.)

distance function, 728
event propagation, 726
execution time (ET), 724
extensions, 740
functional inter-task dependencies,

726, 739
global analysis, 739–740
jitter, 736
local analysis, 730
method, 723, 730
mode change analysis, 742–743
non-functional inter-task dependencies, 726
platform, 729
q-activation processing time, 734
q-activation scheduling horizon, 733
queuing delay, 735
resources, 726
response time (RT), 731, 734, 737
scheduler, 726
shared resource analysis, 740–742
system timing model, 724, 725
task chain analysis, 745–746
task timing model, 724–726
timing impact of errors, 743–744
utilization, 730–731

Compulsory miss, 434
Computation Independent Model (CIM), 1076
Computer Vision (CV), 1341
Concentration, 203
Concolic execution, 713
Concrete execution, 711, 712
Configurable Logic Block (CLB), 341, 343
Configuration bitstream, 357
Configuration Cache Element (CCE), 367
Connection, 499, 503
Connection, control, 499
Conservative OS modeling, 608
Conservative temporal decoupling, 597
Consistent SDF graph, 66, 953–954
Consolidation,1165, 1167, 1173
Constrained combinatorial problem, 225–229
Constraint, 165

functions, 226
handling, 227
linear, 227
non-linear, 236

Consumer, 516–520
Consumption rate, 65
Consumption rate function, 66
Context link, 629
Continuous time model of computation,

113–115

Control/architecture codesign, 1231–1258
Control-/Data-Flow Graph (CDFG), 357, 358,

361, 366, 367
Control dependency, 927
Control-Flow Graph (CFG), 55, 384, 601, 626
Control-Flow Graph (CFG) mapping, 602
Control gains, 1234
Control performance, 1223–1226, 1231,

1234–1235, 1237, 1239–1244,
1249, 1251, 1252, 1258

Controller Area Network (CAN), 757–764
Convergence, 226
Convolutional Neural Network (CNN),

1347–1348
Cooling schedule, 363
Cooling system, 1165, 1167, 1168, 1176
Cooptimization problem, 1235
COordinate Rotational DIgital Computer

(CORDIC), 1326
Core, 338, 339, 342
Core Functional Data Flow (CFDF), 1195
Correlation, 1166, 1167, 1173, 1174, 1178,

1181
Covering stage, 364
Critical instant, 731, 759
Critical path, 361, 366, 367, 369
Critical region, 506, 510
Criticality, 493
Crossbar interconnect, 465–466
Cross-Layer Design Space Exploration

(CLDSE), 253
Cross-layer optimization, 250
Cross-layer prediction models, 250
Crystalline, 446–448
CSR Ltd., 1109
Current (electric), 446, 447
Custom Functional Unit (CFU), 380
Custom instructions, 380
Custom processor, 379
Cyber-physical system, 1222
Cycle Accurate (CA) simulation, 251
Cyclo-Static Data Flow (CSDF), 67–68

D
D2H actor, 1212
Daedalus, 22
Daedalus methodology, 986–988
DAPDNA-2, 351
DaSiM, 321
Data array, 433
Data dependency, 927

read-after-write (RAW), 927
write-after-read (WAR), 927

Index 1357

write-after-write (WAW), 927
Data-Dependency Graph (DDG), 384
Data flow, 496, 520, 525, 1344

constraints, 1237
model, 921
model of computation, 111
table, 1195

Data-Flow Graph (DFG), 63, 357,
363–366, 384

Data-Flow Graph (DFG) vectorization,
1210–1211

Data-flow Interchange Format (DIF), 1193
Data path, 359, 367
Data plane, 1119
Data routing, 218, 357
Datacenter energy controller, 1166, 1169,

1172–1177, 1181
Davis-Putnam-Logemann-Loveland

(DPLL), 230
Deadline, 759
Deadlock, 364
Deadlock-free SDF graph, 66
Debug information, 601
Decimation-In-Frequency (DIF), 1313
Decimation-In-Time (DIT), 1313
Decompose Multi-Input Gate (DMIG), 362
Defect, 362
Delay, 63
Delay block, 498–501, 507, 510, 512
Delay-less cycle, 65
Delta cycle, 538
Dennard scaling, 381
Dennis Data Flow (DDF), 69–71
Denotational semantics of KPN, 71
Density, 444, 446, 448–450
Dependability, 833
Dependence-Flow Graph (DFG), 926–928
Design explorer, 278
Design flow, 145, 149
Design methodology, 1342, 1349
Design of Experiments (DoE), 252–253
Design refinement, 120–124
Design space, 167–170
Design Space Exploration (DSE), 91, 145,

147, 149, 150, 167, 190, 191, 193,
219, 248, 272, 304, 305, 322, 326,
798, 799, 813–825, 859, 985, 986,
994–995, 1031

iteration, 167
parameter, 167
rule, 169

Design time, 303
algorithm, 306
analysis, 306, 328

application profiling, 320, 328
dark silicon-aware resource

management, 321
decision, 305–306, 322
optimization, 305
technique, 318
thermal safe power, 319

Destination state of a transition, 79
Detection, 1341
DIF-GPU, 1199, 1209
Digital Signal Processor (DSP), 307, 339–341,

343, 350, 351, 354, 358, 365, 919,
944, 945

Direct and indirect NoC topologies, 468
Direct Memory Access (DMA), 422
Direct Memory Interface (DMI), 1136
DirectDrive, 345
Directory navigation utilities, 1206
Discrete Event (DE), 535, 538, 562
Discrete Event Simulation (DES),

535–540, 558
Discrete Fourier Transform, 1312–1319
Distance function, 728
Diversity, 226
Domain Wall Memory (DWM), 446–447
Domain-Specific Language (DSL), 143
Dominance, 226
Dominance depth, 283
Double-buffering, 366
DReAM, 351
Driver, 508, 509, 512–515, 609
DSPCAD Integrative Command Line

Environment (DICE), 1190–1191,
1205–1208

test suite, 1207
DsRem, 321
Dxtest utility, 1216
Dynamic application workloads, 272
Dynamic binary translation (DBT), 567
Dynamic Call Graph (DCG), 926
Dynamic data flow, 68
Dynamic energy, 445
Dynamic information, 925
Dynamic minislot, 769
Dynamic Partial Reconfiguration (DPR), 347,

348, 370
Dynamic power, 477
Dynamic Power Management (DPM), 316
Dynamic Random-Access Memory (DRAM),

416, 444, 451–455, 500
command, 500
page, 417

Dynamic reconfiguration, 338
Dynamic routing, 354

1358 Index

Dynamic scheduling, 61
Dynamic sequential oscillating search, 293
Dynamic Thermal Management (DTM), 313,

886–888
Dynamic Voltage and Frequency Scaling

(DVFS), 316–318, 322,
324–328, 1156

for NoCs, 477
Dynamically Reconfigurable ALU Array

(DRAA), 365
Dynamically Reconfigurable Embedded

System Compiler (DRESC), 363
Dynamically reconfigurable modulator, 1194
DYVIA, 326, 327

E
e, verification language, 698, 1122
Earliest Deadline First (EDF)

scheduler, 160
Eclipse, 1116
Eclipse Modeling-Framework (EMF), 1076
ECORE, 1080, 1081
Edge Centric Modulo Scheduling (EMS),

364–366
EFFEX, 1346
Electric and Electronic (E/E), 1222
Electricity bill, 1179
Electronic System Level (ESL), 144, 147, 219,

534, 536, 985, 1095
design, 872

Embedded computer vision, 1340–1350
Embedded control system, 1222
Embedded System (ES), 144
Embedded systems-on-chip, 985
EMOF. See Meta Object Facility (MOF)
Emulation, 1149
Enable function, 1194, 1200
Enabled actor, 79
Enabled transition, 79
End-to-end path latency, 785
End-to-end prototyping, 1134
Endurance, 444–446, 449–450, 452

PCM, 451–455
RRAM, 446, 450
STT-RAM, 446, 448

Energy, 165, 445, 446, 448–450, 452–455
consumption, 832, 834, 838–840, 843, 844,

854–863, 1165–1167, 1172, 1173,
1178, 1179, 1181

proportional computing, 1133
Energy-Delay Product (EDP), 263
Energy-Delay Square Product (EDSP), 263
Energy Storage Systems (ESS), 1165,

1170–1171

Engineering Change Order (ECO), 1114
Equally-Worst-Fit-Decreasing

(EWFD), 327
Espam tool, 999
Esterel, 32, 35
Estimation, 1031
Ethernet, 755, 757, 781

AVB, 755, 789
TSN, 787

Event, 103
model, 727
propagation, 726

Event-Triggered (ET), 755, 1234
Evolutionary Algorithm (EA), 192, 219

SPEA, 198
Execution, 495
Execution time (ET), 494, 495, 724

actual, 494
constant, 501
infinite, 498
of a requestor, 494
worst case, 494

Experiment, 252
Explore-then-synthesise, 147
Expression Grained Reconfigurable Array

(EGRA), 351, 354, 1345
Extended Finite State Machine (EFSM),

689–690
Extensible Markup Language (XML),

1058, 1065, 1075–1078, 1080,
1082, 1086

External fragmentation, 349
Extra-Functional Properties (EFPs), 143,

162–167
Extremal Optimization meta-Heuristic

(EOH), 326

F
Fabric, 347, 349
Face detection, 1345–1347
Face recognition, 1345
Fall-back, 609
Fast Fourier Transform (FFT), 1313
Feasible implementation, 232
Feature extraction, 1341
Feedback control loop, 1223
Felix Initiative, 1095
Fermi processor, 428
Ferromagnetic, 445, 446
Field-Programmable Gate Array (FPGA),

149, 151, 337, 338, 340–351,
354, 357–362, 370, 1104, 1143,
1344–1345, 1348, 1349

Index 1359

graph-based technology mapping,
361–362, 365

LUT-based function, 342
LUT-based technology mapping, 361

Figure of merit, 253
Fine-grained (gate level) reconfigurable

architecture, 337, 370
Finite-State Machine (FSM), 367
Fireable, 64
First-In First-Out (FIFO), 64, 81, 517–519,

521, 763, 922
buffer memory, 82
channel capacity, 63
computing channel sizes, 993–994
random-access region, 81
read pointer, 81
ring buffer, 82
write pointer, 81

Fixed-point computation, 1247
Fixed-priority scheduler, 160
Flash memory, 418
Flexible TDMA, 1233
FlexRay, 755, 757, 764, 1223, 1232–1234,

1238–1239, 1241
distributed system, 1227
dynamic segment, 756, 764–765
static segment, 765

Flit, 503
FLoRA, 351, 353, 354, 356, 366–368
Force-Directed Scheduling (FDS), 360
Forecast, 1165, 1166, 1172, 1173,

1175–1177
Foreground detection, 1345
Formal System Design (ForSyDe), 10, 100
Fragmentation, 348–350
Frame preemption, 787
Frame transmission latency, 785
Framework, 359, 365, 1087, 1165, 1166,

1168–1175, 1179–1181
Fully dynamic execution, 974
Fully dynamic reconfiguration, 356, 357
Fully static execution, 973
Functional inter-task dependencies, 726, 739
Functional language, 105, 135
Functionality guard, 80
Functionality state, 80
Functions Driven by State Machines

(FunState), 79

G
Garp, 351, 354
GAUT, 358
Gem5, 308, 311, 312, 324

General-Purpose Processor (GPP), 307,
337–339, 379

Generator, 1065, 1074, 1076, 1080, 1082,
1086–1089

Genetic Algorithm (GA), 192, 196, 282–284,
360, 995

NSGA, 197
NSGA-II, 197, 283

Giga Operations Per Second (GOPS), 351,
1348

Global analysis, 737–740
Global clock network, 345
Global simulation time, 597
Globally Asynchronous Locally Synchronous

(GALS), 503, 506, 519
GNU radio, 1197
Goldberg’s ranking, 288
Granularity, 338, 370, 604
Graph-Level Vectorization (GLV), 1211
Graphics Processing Unit (GPU), 339, 340,

672, 1348
Green datacenter, 1164–1181
Green energy controller, 1166, 1169,

1172–1175, 1181
Grid, 1165, 1166, 1168–1170, 1172, 1175,

1179
Grid-style reconfiguration, 349–350
Guard, 76
Guarded commands, 35

H
H2D actor, 1209
Haar-like features, 1346
Hardware Abstraction Layer (HAL), 606, 1033
Hardware architecture features, 260
Hardware-Dependent Software (HDS)

generation, 1039–1040
Hardware Resource Modeling (HRM), 149
Hardware/Software Codesign (HSCD), 91–94,

219, 1098
Hardware/software integration, 1132–1133
Hardware/software partitioning, 1085, 1152
Hardware synthesis, 125–126, 987, 999–1014,

1024, 1040–1043, 1046–1047
Hardware Verification Language (HVL), 1122
Haskell, 103, 135–137
Haskell-ForSyDe, 102
Heap, 603

allocation, 603
manager, 603

Heterogeneity-aware task allocation, 256–258
Heterogeneous, 349, 353, 356
Heterogeneous architecture, 353

1360 Index

Heterogeneous Multi-core Processor
(HMP), 248

architecture, 254
composition problem, 255
configurations, 251

Heuristic, 360, 365, 367, 368
algorithm for HLS, 360
algorithm for Steiner trees, 369
approaches for DFG-to-CGRA mapping,

364, 365
High-Level Synthesis (HLS), 148, 357–361,

367, 1042, 1099, 1106, 1113
High-performance ASIC Prototyping System

(HAPS), 1129
Higher-order function, 105, 136
Homogeneous (Synchronous) Data Flow

(HSDF), 65
Homogeneous architecture, 353
Homogeneous Data Flow (HDF), 65
HOPES, 22
Host, 351, 596
Host-compiled simulator, 605
Host processor, 351, 354, 355, 362
HotSpot, 315, 318, 324
HSRA, 351
Hybrid automaton, 691
Hybrid main memory, 451–455
Hybrid prototype, 1129–1130
Hyperperiod, 766, 770

I
Idle, 495
IEEE 802.1Q, 784–787
IEEE 802.1Qbu, 787
IEEE 802.1Qbv, 787
IEEE 802.1Qch, 787
IEEE 802.3br, 787
IMMOGLS, 196–197
Implementation gap, 985, 999
In-circuit emulation, 1104
In-order processor, 605
Incisive, 1106
Incisive-VSP, 1109
Incoming transition, 79
Incremental modeling, 146–147
Indago, 1107
Individual Test Subdirectory (ITS), 1207
Information and Communications Technology

(ICT), 919
Initial token, 63
Initiation Interval (II), 363, 364, 366, 969
Initiator, 595
Input guard, 80

Input ports, 68
Input predicate, 80
Institute of Electrical and Electronics

Engineers (IEEE), 535
Instruction Per Second (IPS), 307
Instruction-Level Parallelism (ILP), 261, 308,

321, 339
Instruction-level reconfiguration, 365
Instruction-Set Architecture (ISA), 171, 249,

307, 316, 379, 572, 573, 796–798,
814, 924

Instruction-set extensions (ISE), 380
Instruction-set simulator (ISS), 567, 584,

596, 598
Integer Linear Program (ILP), 192, 227,

360, 362, 364–369, 839, 840, 842,
844–850, 853, 855

Integrated Development Environment
(IDE), 1116

Intel, 1348
Intellectual Property (IP), 338, 354, 920, 1095

integration, 1084
module, 1011
reuse, 869

Inter-application scenario, 273
Interconnect, 338, 345, 354–356, 359, 369

optimization, 1150
topology, 356

Interconnection, 350
Interconnect Workbench (IWB), 1096, 1125
Interference, 494, 500

worst case, 500
Interleaving, 497

requests, 497
responses, 498, 503
service units, 505

Intermediate Representation (IR), 384, 599,
601, 929

Internal fragmentation, 348
International Technology Roadmap for

Semiconductors (ITRS), 303
Interprocedural Control-Flow Graph

(ICFG), 626
Inter-Process Communication (IPC), 307, 606
Interrupt controller, 608
Interrupt handler, 608
Intra-application scenario, 273
Invoke function, 1194, 1200
I/O Element (IOE), 343
IP core

integration, 1010–1011
types and interfaces, 1013–1014

IP-XACT, 23, 1058, 1082–1086, 1088,
1089, 1108

Index 1361

IPC, 307, 607
IPC, See Inter-Process Communication (IPC)
IR mapping, 601
Isolate, 494
IT infrastructures, 1164–1168, 1176
Iteration, 65
Iteration, SDF, 954
Iterative, 360, 361
Iterative Modulo Scheduling (IMS), 363

J
JasperGold, 1106
Java native interface, 942
Jitter, 737, 755
jMetal, 212–213
Job, 519, 521, 522
Joint Test Action Group (JTAG),

1116, 1119
Joules, 1099
Justification, 242

K
K-cofamily-based, 361
K-LUT, 361
Kahn Process Network (KPN), 71–73, 277,

520, 921–922, 933, 934, 945,
958, 989

mapping, 933
traces, 934–935

Kernel, 339, 354, 362–368
Kernighan and Lin, 360
KressArray, 356

L
Language for Instruction-Set Architectures

(LISA), 1096
Largest Task First (LTF), 324, 326
Latency, 446, 449, 451–454, 475, 755
Laying-out, 364
Leakage power, 444, 448, 478, 873
Learning, 238–242

early, 239–241
simple, 239–240

Left-edge algorithm, 361
LegUp, 359, 360
Length of a signal, 71
Library task, 960–964
LIDE-C, 1202
LIDE-CUDA, 1202
LIDE-OCL, 1202
Lifetime of battery, 1165, 1166, 1171, 1175,

1179, 1181

LIghtweight Data-flow Environment (LIDE),
1189, 1199–1205

List Scheduling (LS), 360, 368–369
Load a bundle, 514
Load a virtual resource, 508, 515, 523
Load-based heuristic, 773–778
Local, 351, 354, 360, 366, 367

analysis, 730–737
simulation time, 597

Locality, 449, 453
Locality of reference, 419
Location, 519
Logic Array Block (LAB), 345
Logic Element (LE), 341–342
Logic utilization, 342
Logical time, 595
Look-Up Table (LUT), 341, 361, 362
Loop analysis, 928–929

induction variables, 928
loop-carried variables, 928
private variables, 928
reduction variables, 928

Loop blocking, 429
Loop tiling, 429
Low-Level Virtual Machine (LLVM), 359,

360, 940

M
Mandelbrot, 559–562
Manufacturing, 338, 341, 362
Mapping, 162, 362–370, 934, 945, 988,

997–999, 1005, 1155
algorithm, 365–368
edges, 220
function, 420
layer, 997
specification, 986, 1001–1002
table, 604

Marked graph, 65
Markov Decision Process (MDP), 193,

198–199
MARTE, 11

assign stereotype, 169
profile, 144

Master, 497, 499, 595
Mathematical framework, 253
Matlab, 1342
Matlab/Simulink, 1096, 1120
MATRIX, 351, 353
Matrix multiplication, 430
Maxwell (GPU), 1347
McPAT, 309–312, 318, 324
Mean Time to Failure (MTF), 885

1362 Index

Media Access Control (MAC) layer, 1042
Memory, 504, 678–679

access, 451, 454, 455
access trace, 602, 609
controller, 1151
distributed, 504
distributed shared, 504, 505, 509, 517
hierarchy, 419
local, 501, 517
optimization, 1150–1152
remote, 501, 518
shared, 504
tightly-coupled, 501
trace reconstruction, 602–603

Memory-aware mapping, 366
Memory map, 499, 500, 503, 504,

515, 525
generation, 1008–1010
multiple, 505

Mesh NoC, 476, 477
Meta Object Facility (MOF), 1078
Metamodeling, 1054, 1057, 1061–1066, 1068,

1069, 1074–1082, 1086–1089
Meta-synthesis, 1076
Microarchitecture, 251
Microbenchmarks, 261
MicroBlaze, 358
Microkernel, 508, 510–512, 525, 526
Microoperation, 571, 575
Middleware, 143
Migration, 449, 454
Million Instructions Per Second (MIPS), 360
Minicore, 356
Miss, 451, 453
Mission-critical, 148
Mixed-Criticality System (MCS), 148, 150,

496
budget, 496, 501
composability, 496
concepts, 526
decoupling, 496
efficient arbitration, 496–497
efficient resource sharing, 497
finite scheduling interval, 496
predictability, 496
scalability, 503, 506

Mixture-of-Gaussians, 1342
Mobileye EyeQ, 1343
Mode change analysis, 743
Mode transition delay, 969
Mode Transition Machine (MTM), 960
Model

generation, 1019
initialization, 1003

specification, 1024, 1026
transaction level, 1024

Model-Based Design (MBD), 143
Model-Driven Architecture (MDA), 143, 1075
Model of Computation (MoC), 61, 102,

109–111, 496, 508, 693, 922, 988,
1026, 1056

Boolean Data Flow (BDF), 68–69
Cyclo-Static Data Flow (CSDF), 67–68
data flow, 62, 508, 509, 512, 520, 521
Dennis Data Flow (DDF), 69–71
dynamic data flow, 68–73
interface, 115–117
Kahn Process Network (KPN), 71–73, 508,

509, 512, 520, 521
Non-Determinate Data Flow (NDF), 73
static data flow, 65–68
Synchronous Data Flow (SDF), 66–67
SysteMoC, 73–79
threads, 508
Time-Triggered (TT), 506, 508, 519, 521,

522, 524
Model-to-Model (M2M), 149

transformation, 1064, 1074, 1076, 1088
Modeling, 1032
Modeling methodology, 144, 152, 169
Modelview, 152
Modified array data-flow analysis, 992
Modulo Resource Routing Graph (MRRG),

363, 366
Modulo scheduling, 362, 363, 366
MOGLS, 196
MOHMLibCC, 213
MOLEN, 351
MOMDP, 199
Montium, 351
Moore’s law, 379
MOPSO, 195
MORA, 351, 353, 1344
MorphoSys, 351, 353, 355, 357, 1344
MOSA, 195
MPSoC Application Programming Studio

(MAPS), 21, 919–921
MTM-SDF, 960
Multi-core systems, 249, 339, 919

programming, 946
Multi-Level Back Jumping (MLBJ), 713
Multi-processor architecture, 1223
Multi-Processor System-on-Chip (MPSoC),

149, 191, 328, 594, 924–925, 942,
985, 1026, 1343

Multi-Processor System-on-Chip (MPSoC),
model, 924–925, 933

Multiple Input Multiple Output (MIMO), 945

Index 1363

MultiTrack interconnect, 345
Mutant, 703–706
Mutation

analysis, 702
testing, 702

N
NASA, 213–214
Nearest neighboring, 367
Nested two-layered optimization technique,

1240–1241
Network, 340, 361, 362
Network graph, 73
Network Interface (NI), 473–474, 499, 503
Network-on-Chip (NoC), 303, 308, 339, 1096,

1151, 1152, 1343
defining features of, 467–476
flow control, 471
performance metrics, 475–476
router synthesis, 473
routing, 470
topologies, 467–470

Neutral state, 502
Node-centric, 364
Non-Determinate Data Flow (NDF), 73
Non-dominated sorting, 283, 288
Non-functional inter-task dependencies, 726
Non-overlapping message constraint, 1238
Non-overlapping task constraint, 1238
Non-preemptive scheduling, 758, 782,

783, 1232
Non-Recurring Engineering (NRE), 337, 338
Non-uniform sampling, 1243, 1244, 1251,

1252, 1258
Non-uniformity, 203
Non-Volatile Memory (NVM), 443–455
Normalized energy consumption, 1333
not a Machine Language (nML), 1096
NSGA genetic algorithm, 197
NSGA-II genetic algorithm, 197, 283
Numerical accuracy, 1342
NVIDIA, 672, 676, 1109, 1347

O
Object Management Group (OMG), 143, 1062,

1064, 1065, 1074
Objective, 831–833, 836, 839, 842, 843, 845,

847, 849, 853, 856–863
Objective space, 226
On-chip interconnect design challenges,

462–464
On-chip memory, 448–450, 455

Open access database, 1065
Open-page policy, 418
Open Verification Methodology (OVM), 1122
Operating System (OS), 159, 171, 251
Operation Table (OT), 816–823
OPNET, 1343
Optimal allocation, 257
Optimistic OS modeling, 608
Optimistic temporal decoupling, 597
Optimization, 357, 361, 448–450, 455, 831,

833–838, 841–843, 850, 855–863
framework, 1172–1176
hybrid, 219, 229
metaheuristic, 227
multi-objective, 226

Orthogonal Frequency Dependent Multiplexing
(OFDM), 945, 1118

OS model, 606–608, 1033
Outgoing transition, 79
Out-of-Order Parallel Discrete Event

Simulation (OOO PDES), 536, 537,
543–546, 558, 562

Out-of-order processor, 605
Output

guard, 80
ports, 68
predicate, 80

P
PACT XPP, 351
Page fault, 453
Page policy, 500

close-page, 500
open-page, 500

PaGMO, 213
Pairwise execution, 604
Palladium, 1099, 1106
Palladium hybrid solution, 1109
Parallel and Real-time Embedded Executives

Scheduling Method (PREESM),
1191

Parallel Discrete Event Simulation (PDES),
535–537, 540, 541, 558, 562, 1030

asynchronous, 536
conservative, 536
optimistic, 536
synchronous, 535

Parallel patterns, 929
Data-Level Parallelism (DLP), 931, 932
Pipeline-Level Parallelism (PLP), 932
Task-Level Parallelism (TLP), 929–930

Parallel programming flow, 933–940, 944
Parallelization, 925, 941–943

1364 Index

Parametric Integer Programming (PIP), 993
Parameterized Sets of Modes (PSM),

1200–1201
Pareto criterion, 1240, 1241
Pareto dominance, 275
Pareto front, 862, 1235, 1240
Pareto Memetic Algorithm (PMA), 197–198
Pareto optimality, 225, 833
Pareto set, 200, 202–204, 214
Pareto Simulated Annealing (PSA), 195–196
PARSEC, 261, 308–312, 324
Partial, 347–350, 357

dynamic reconfiguration, 356–357
implementation, 239, 240
reconfiguration, 347–350

Partition
memory, 455
variable, 455

Partitioning, 361, 364, 367
Path

history, 604, 605
simulation, 602

PathFinder, 363
PeaCE, 22
Penalty function, 228
Performance, 447–455, 496

actual-case, 494
analysis, 145, 1147
average, 494
events counters, 260
modeling, 995–999
requirements, 165
simulation, 995–999
validation, 1149–1150
worst case, 494

Performance estimation, 926, 936–937
parallel, 937
sequential, 936–937

Performance, Power, and Area (PPA)
models, 251

Periodic or sporadic activation, 759
Perspec, 1107, 1123
Perspectives, 146
Phase Change Memory (PCM), 417
Phase Locked Loop (PLL), 343
Phase of a CSDF actor, 67
Physical prototype, 1129
Pipeline, 495, 500, 515, 932
Pipeline execution graph, 666–668
Pipelined routing, 363
PipeRench, 351, 353
Placement, 349, 350, 363–366
Platform, 338, 354, 365, 493, 729, 1027

architect, 1146

mixed-criticality, 493
model, 1002–1003
specification, 986, 999
virtual execution, 497

Platform Independent Model (PIM), 152, 165,
169, 956, 1076

Platform Specific Model (PSM), 1075
PNgen tool, 991
Pole-placement, 1228, 1230–1231, 1236, 1237,

1254–1256
Polyhedral Process Network (PPN), 988–991
Port, 68, 497

master, 497
slave, 497

Power, 1340
consumption, 166, 1164, 1167, 1168, 1176
gating, 877
gating in NoCs, 478
management, 1156
optimization in NoCs, 477–479

PpUnit, 154
Predecessor, 604
Predictability, 494, 496, 498

of arbiter, 495
of resource, 495

Prediction, 254, 609, 1165, 1172, 1179
Predictive Transistor Model (PTM), 895
Preemption, 496, 501–503, 505, 510–512,

608, 612
Priority, 366, 368, 369, 758
Priority-based mapping, 366
Priority-based scheduling, 758
Process, 104–109, 512, 520, 521

composition, 106–109
constructor, 105–106

Process Network (PN), 921, 922
Processing Element (PE), 338, 351–357,

363–365, 367, 369
Processor

host, 566
load, 1253, 1254, 1257, 1258
model, 609, 1033
target, 566

Producer, 516–520
Production rate, 65
Production rate function, 66
Productivity gap, 147
Profiling, 362, 1030, 1031
Profiling information, 929
Program

model, 926–929
phases, 256
virtual resource, 508, 512, 514–515

Programmable, 337–339, 350, 354, 361

Index 1365

Programmable cores, 919
Programmable Interrupt Controller (PIC), 1027
Programming platform, 955
Program State Machine (PSM), 1025–1026
Property

coverage, 708
qualification, 708

Protium, 1107, 1110
Pseudo-Boolean (PB)

encoding, 219, 231
solver, 219

Push through interference, 761
PV modules, 1166, 1168, 1169, 1171, 1172
Process/Voltage/Temperature (PVT)

variations, 337
PyGMO, 213
Pysical time, 595

Q
Q-activation

processing time, 734
scheduling horizon, 733

Quality of Service (QoS), 328, 474, 833,
855, 863, 1166, 1167, 1174, 1176,
1181, 1343

Quantum, 597, 613
giver, 612, 614, 615
keeper, 613

Quantum-inspired Evolutionary Algorithm
(QEA), 367–370

Quartz, 10, 31–35
Quasi-static schedule, 94
Queue, 454
Queuing

delay, 735, 760, 784, 786
jitter, 759

QuickRoute, 363
Quiescence, 515

R
RAC, 354
Randomization, 252
RaPiD, 351, 355, 357
Raw, 351, 354, 365
Read, 446, 447, 454
Ready state

of a virtual execution platform, 514, 515
of a virtual resource, 514, 515

Real-time, 144, 831, 832, 834, 835, 857, 863
Real-time NoC, 477
Real-Time Operating System (RTOS), 159,

171, 508–512, 526

Recoding Infrastructure for SystemC (RISC),
536, 546–558, 562

Recognition, 1341
Reconfigurable, 337–340, 347–350, 356,

365, 367
Reconfigurable architecture, 337–340, 370
Reconfigurable Cell (RC), 1344
Reconfigurable Computing Module (RCM),

366, 367
Reconfigurable processes, 117–119
Reconfiguration, 338, 340, 347–351, 354,

356–357, 370
coarse-grained, 337
fine-grained, 337

Recurrence, 364, 366
constrained lower bound, 364
cycle, 364
cycle-aware scheduling, 364

Reduced Instruction-Set Processor (RISC),
367, 1344

Refinement, 1031–1037
architecture, 1032
link, 1035, 1037
network, 1035, 1037
scheduling, 1032

Refresh, 449, 452, 453
REGIMap, 364
Register, 413
Register allocation, 366
Register File (RF), 350, 351, 353, 413

partitioning, 435–436
Register Transfer Level (RTL), 337, 357,

359, 360
Release a budget, 508, 512, 515
Release jitter, 759
ReMAP, 351, 353
REMARC, 351, 353
reMORPH, 354, 365
Remove a virtual execution platform, 508
Renewable energy, 1165–1169, 1179
Reoptimization, 345
Repair strategy, 228
Repetition

rate, 1233
vector, 67

Replacement policy, 420
Representative scenario subset, 277
Request, 494, 495, 497

aligned, 498, 505
complete, 498
finite size, 498
fixed-size, 498
infinite-size, 494, 496, 498

Requestor, 494, 495

1366 Index

Requirement
non-real-time, 493, 520
real-time, 493, 522

Reserve a budget, 495, 496, 508, 514
Reserved state

of a virtual execution platform, 514
of a virtual resource, 514–515

Reset a virtual resource, 512, 513, 515
Resource, 494, 495, 509, 726

allocation, 218, 277
binding, 277
blocking, 513, 518
composable, 495
management, 508, 515
manager, 509
non-blocking, 513, 519
pipelined, 495
predictable, 495
reservation, 366
shared, 495

Resource-efficient design, 1224
ReSPIR, 198
Response, 495, 497
Response Surface Modeling (RSM), 253
Response Time (RT), 495, 731, 734, 737, 755

of a requestor, 495
worst case, 495, 500

Reusability, 145
Ring-based NoC, 476
Robustness, 494
ROCCC, 358
ROSE, 548
Round Robin (RR) scheduler, 160
Router microarchitecture, 471
Routing, 221, 222, 227, 345, 355,

363–366, 369
Row address, 417
Row decoder, 417
RTL-synthesis, 1053, 1054
RtUnit, 154, 170
Run Fast Then Stop (RFTS), 1156
Run time, 303, 304, 316, 317, 319, 322, 323

adaptation, 305–306, 322
algorithm, 306
boosting technique, 322
communication establishment, 350
decisions, 306
hardware-functionality extension, 340
management, 350
methodologies, 305
optimization, 321
optimization algorithms, 305
performance optimization, 324–327
performance requirement, 322

refinement, 320
scheme, 318
statistics, 364
task migration, 316
temperature prediction mechanism, 321
usage, 322

Running state
of virtual execution platform, 514
of virtual resource, 514, 515

S
Safety, 833
Safety analysis, 929
Safety-critical, 148, 151
Sampling period, 1223–1226, 1228–1231,

1234–1239, 1241, 1243, 1249–1258
SAT decoding, 219, 229–230
SAT solver, 230
Satisfiability Modulo Theories (SMT), 236
Scalability, 444, 448, 496
Scenario, 150
Scenario-based DSE, 273
Schedulability analysis, 143, 145
Schedule, 221
Schedule function, 222
Schedule Tree (STree), 1004
Scheduling, 160, 218, 223, 227, 339, 350, 358,

360, 361, 363–367, 369, 606, 726
EDF, 160
events, 596
fixed priority, 160
RR, 160
technique, 366

Scheduling Interval (SI), 495–497, 504
constant, 501, 510
finite, 496

Scratchpad allocation, 838–848
Scratchpad Memory (SPM), 364, 421–422
Search space, 231

feasible, 226
seBoost, 322
Security, 833
Segment Graph (SG), 548–551
Select actor, 68
Self-timed execution, 973
Sensitivity analysis, 1147
Sensor, 152
Sensor-to-actuator delay, 1223, 1228, 1229,

1232, 1236, 1238, 1243, 1249–1251,
1256–1258

Separation-of-concerns, 146
Sequence

concatenation, 71

Index 1367

determinate, 72
head, 71
tail, 71

Sequential programming flow, 925–932, 942
Service unit, 494, 495, 497, 502–505

complete, 498
composable, 501
predictable, 501

Sesame framework, 274, 278
Sesame tool, 994
Shared memory, 254
Shared resource analysis, 741
Shell, 499, 503
Signal, 71, 103
Signal Passing Interface (SPI), 1341
Simulated Annealing (SA), 191, 192, 194, 258,

360, 363
Simulation, 1030

framework, 366
host, 596
overhead, 605
parallel, 562, 1030
time, 595

Simulator, 1030
Simulink, 1025
Single Chip Cloud computer (SCC), 311, 316
Single-Entry Single-Exit (SESE) region,

926–929
Single Frequency Approximation (SFA),

325, 326
Single Instruction, Multiple Data (SIMD), 339,

353, 357, 573–576, 1121
Single Instruction, Multiple Threads

(SIMT), 339
Single Program, Multiple Data (SPMD), 339
Single-source, 145, 146
Single-thread, multiple data (STMD), 339
Slave, 497, 499, 595
Slot id, 1233
Slot multiplexing, 767, 771, 777, 778, 1233
Smart camera, 1343
SmartCell, 351
SMOSA, 196
SMT decoding, 219, 236–239
Sniper, 309
Socrates, 1096, 1107
Software, 422

development, 1131–1132
queue, 759, 763
synthesis, 146, 159, 170–171, 987, 999,

1006, 1024, 1037–1040, 1044–1045
Software Cache (SWC), 422–424
Software-defined networking (SDN), 788
Software Development Kit (SDK), 1097

Solver
Integer Linear Program (ILP), 230
Pseudo-Boolean (PB), 230

Sonics, 1096
Source-level software simulation, 598–605,

665, 670
Source state of a transition, 79
Spanning tree, 369
Spatial locality, 419
SPEA evolutionary algorithm, 198
SpecC, 22, 534, 536, 1022–1025, 1028, 1047
Specific application domain, 367
Speed, 445, 448, 450
Spin-Transfer Torque Random-Access

Memory (STT-RAM), 417
Split & Push, 365
Split & Push Kernel Mapping (SPKM), 365
SRP, 351, 353, 354, 356
Stack, 603
Stack pointer, 603
Start a virtual execution platform, 515,

522, 523
Start a virtual resource, 508, 515, 522, 523
Start an application, 508, 523
Static, 350, 356

assignment execution, 974
data flow, 65–68
data-flow actor, 65
information, 925
mapping, 363
partial reconfiguration, 347
scheduling, 61
slot, 766, 768

Static Affine Nested Loop Program (SANLP),
986, 991

Static Random-Access Memory (SRAM), 338,
416, 500

Statistical Static Timing Analysis (SSTA), 895
Steiner points, 365, 368
Steiner tree, 369
Stereotype, UML, 144, 160
Stimuli generation, 713
Stop a virtual resource, 508, 515
Stop an application, 508, 515
Stratus, 1106, 1111–1112
Streaming applications, 1014
Streaming model, 921
Streaming multi-processors, 985
Structural analysis, 602
Structural diagram, 692
SUIF2, 367
Superlog, 1122
Superscalar, 339
Switch actor, 68

1368 Index

Switch matrix, 341
Switched ethernet, 755, 779
Switching, 343
Symbolic execution, 712
Symmetric Multi-Processing (SMP), 584, 587
Synchronization, 506, 516–522

blocking, 517, 518, 520, 521
data, 506, 516–518, 520
non-blocking, 517, 518, 520–522
time, 506, 519, 520, 522

Synchronous Data Flow (SDF), 66–67, 111,
366, 922, 953

Synchronous model of computation, 30,
109–111

Synchronous scheduling, 766, 767
Synthesis

code generation, 999, 1003–1006
Espam tool, 999
ForSyDe models, 124–129
hardware, 125–126, 987, 999, 1003, 1024,

1041, 1046–1047
software, 146, 159, 170–171, 987, 999,

1006, 1024, 1037–1040, 1044–1045
System-Level Synthesis (SLS), 220–225

SYSCORE, 351, 353
SysML, 23, 150, 1080, 1082, 1084–1086, 1107
System application, 508, 509, 525
System Development Suite (SDS), 1098
System generation, 1005–1006
System stack, 254
System synthesis, 1005
System timing model, 724
System validation, 1133
System-Level Description Language (SLDL),

534, 595, 606, 1022
System-Level Design (SLD), 985
System-Level Power (SLP) analysis,

1133–1134, 1141, 1156
System-Level Synthesis (SLS), 91, 124, 147
System-on-Chip (SoC), 22, 190, 303, 306,

869, 1022
factory, 1107
performance model, 1155

System-on-Chip Environment (SCE), 1022,
1024, 1030, 1031, 1044, 1047

SystemC, 16, 50–51, 357, 359, 534, 536,
543, 546, 558, 562, 590, 595, 1022,
1095, 1134

SystemC-ForSyDe, 129–130
SystemC Modeling Library (SCML),

1139–1140
SystemC Models of Computation (SysteMoC),

10, 1191–1192
action, 76

actor communication behavior, 77–79
actor FSM, 79
actor functionality, 77
guard, 76
modeling language, 73
network graph, 73

SystemCoDesigner, 91
SystemVerilog, 1099
Systolic, 353, 358, 366

T
Tabu search, 360
Tag, 103
Tag array, 433
Target, 596

metrics, 604
processor, 594

Task, 494, 511, 512, 520, 521, 594
binding, 218
chain analysis, 746
graph, 1153
scheduling, 455
timing model, 724

Task-level parallelism, 339
Task-level reconfiguration, 365
Technology transfer, 921
Temporal Decoupling (TD), 597–598, 612,

613, 1136
Temporal locality, 419
Tensilica, 1096, 1114–1117
Tensilica Instruction Extension (TIE), 1096
Termination event, 727
Termination trace, 727
Testbench qualification, 703–706
Texas instruments TMS320DM816x

DaVinci, 1343
TFLOPS, 340
Thermal Design Power (TDP), 312, 318, 322
Thermal Safe Power (TSP), 319, 320
Thread, 597, 606
Thread-Level Parallelism (TLP), 308, 316, 321
Threshold, 446, 454, 455
Throughput, 475, 495, 1340
Tile, 497

memory, 498–501
slave, 500

Time slice, 502, 506, 510
Time-Division Multiple Access (TDMA), 1233
Time-Triggered (TT), 755

scheduling, 1232
Time-Triggered Ethernet (TTEthernet), 756
Timing analysis, 759–762, 771–777
Timing impact of errors, 744

Index 1369

Token, 63, 516–521
Tool, 350, 358–360, 363
Topological patterns, 1197
Topology, 355, 356, 366
Trace-driven simulation, 995
Tracking, 1341
Traffic generation, 1150–1151
Training, 254
Training data, 261
Transaction, 494, 497

infinitely-long, 498
read, 497
write, 497

Transaction-based Bus Cycle Accurate
(T-BCA) models, 870

Transaction-Level Model (TLM), 149, 150,
566, 581, 584–589, 595, 606, 608,
612, 704, 870, 1022, 1024, 1035,
1095, 1099, 1134

Approximately Timed Base Protocol
(AT-BP), 1137

approximately timed modeling style, 1137
blocking transport interface, 1137
bus protocol, 1037
interconnect, 1151–1152
loosely timed modeling style, 1136–1137
memory subsystem, 1151–1152
non-blocking transport interface, 1137
whole-packet transfer protocol, 1037

Transformational design refinement, 120–124
Transition contraction condition, 86
Translation Block (TB), 570
Transport-Triggered Architecture (TTA),

1305–1312
TTA-based Codesign Environment (TCE),

1310
Turbo boost, 323–324
Twiddle factor, 1313
TxObject, 759, 763

U
Unified Modeling Language (UML), 11, 23,

143, 692, 1078–1080, 1096, 1107
Unified Power Format (UPF), 1141

example, 1143
integration layer, 1143
parameters, 1143
power states, 1142

UNIVERCM, 693
Universal Asynchronous Receiver/Transmitter

(UART), 504, 525
Universal Verification Methodology

(UVM), 1122

Untimed model of computation, 112
Utilization, 348, 353, 367, 730–731

V
Vacuity analysis, 708
Validation flow, 1029
Value Specification Language (VSL), 165, 167
Variant management, 244
VasT, 1107
Vector processing modes, 1201
Vectorization Factor (VF), 1210
VERA, 1122
Verification, 145
Verification Intellectual Property (VIP), 1125
Verification Methodology Manual

(VMM), 1122
Very Long Instruction Word (VLIW),

339, 351, 355, 362, 363, 1121,
1343, 1344

Very-Large-Scale Integration (VLSI), 337
Viewpoints, 146
Violation, 1177–1179
Virtio, 1107
Virtual Execution Platform (VEP), 497,

507–509, 522, 523
Virtual Inlining and Virtual Unrolling (VIVU)

context, 629–630
Virtual Machine (VM), 569
Virtual platform, 568, 594, 1097, 1099, 1103
Virtual Prototype (VP), 94, 594, 1095,

1129, 1130
Virtual prototyping for architecture design,

1145–1157
Virtual resource, 496, 508, 509, 511, 512,

514–515
hierarchical, 514

Virtual Socket Interface Alliance (VSIA), 1095
Virtual System Platform (VSP), 1109
Virtualization, 568, 569
Virtutech, 1107
Vivado HLS, 359
VM allocation, 1166, 1172, 1174, 1177,

1179, 1181
vManager, 1107
Voltage, 446
Von Neumann, 339
VPR, 363

W
Waiting time, 495
Weakly-hard real-time system analysis, 747
Wear leveling, 449, 450

1370 Index

Weighted round robin, 787
Wireless sensor network (WSN), 1263

classification, 1265
component-based automatic composition,

1282–1291
full custom legacy code, 1292–1296
design-flow overview, 1283–1286
design input interface, 1287–1288
OS-based design, 1297
specification and library components,

1288–1289
system composition example,

1291–1292
system composition process,

1289–1291
tool overview, 1286–1287

component-based design, 1271
design automation, 1265
group-level programming, 1266
low-level programming, 1266
model-driven design, 1270–1272

abstract functional modules, 1274, 1277
application code generation, 1281
application skeleton optimization, 1279
application skeleton template, 1278
requirement analysis, 1277
use case, 1280

network-level programming, 1266
programming, 1263

addressing mechanism, 1267
architectural aspects, 1268
communication scope, 1267
communication specification, 1267
computation scope, 1267
data access model, 1268
middleware approaches, 1269
middleware challenges, 1270
middleware classification, 1269
middleware requirements, 1269
Operating System (OS), 1268–1270

paradigm, 1268
state-of-the-art middleware, 1269

Work conservation. See Work-conserving
arbitration

Work-conserving arbitration, 495
Workload, 256
Workload modeling, 1147

task-based, 1152
trace-based, 1150

Wormhole router, 472–473
Worst-Case Execution Path (WCEP), 832,

843–845
Worst-Case Execution Time (WCET),

599, 604, 831, 832, 835, 843–854,
857, 863

Worst-Case Response Time (WCRT), 755,
759, 761, 772

Worst-case transmission time, 759
Wrapper, 170
Write, 446, 448–455
Write-After-Read (WAR), 577

X
Xilinx, 341–343, 348, 358, 359
XML Metadata Interchange (XMI),

1077, 1078
XML Schema (XSD), 1077, 1078, 1082
XPP, 353
Xtensa, 1096, 1117–1118
XTensa SystemC (XTSC), 1116

Y
Y-chart, 224, 1152

design approach, 278

Z
Zynq platform, 151

	Foreword
	Preface
	Contents
	About the Editors
	Section Editors
	Part I: Introduction to Hardware/Software Codesign
	Part II: Models and Languages for Codesign
	Part III: Design Space Exploration
	Part IV: Processor, Memory, and Communication Architecture Design
	Part V: Hardware/Software Cosimulation and Prototyping
	Part VI: Performance Estimation, Analysis, and Verification
	Part VII: Hardware/Software Compilation and Synthesis
	Part VIII: Codesign Tools and Environment
	Part IX: Applications and Case Studies

	Contributors
	List of Acronyms
	Part I Introduction to Hardware/Software Codesign
	1 Introduction to Hardware/Software Codesign
	1.1 Introduction
	1.2 Models and Languages for Codesign
	1.3 Design Space Exploration
	1.4 Processor, Memory, and Communication Architecture Design
	1.5 Hardware/Software Cosimulation and Prototyping
	1.6 Performance Estimation, Analysis, and Verification
	1.7 Hardware/Software Compilation and Synthesis
	1.8 Codesign Tools and Environments
	1.9 Applications and Case Studies
	1.10 Conclusion
	References

	Part II Models and Languages for Codesign
	2 Quartz: A Synchronous Language for Model-Based Design of Reactive Embedded Systems
	2.1 Introduction
	2.2 The Synchronous Language Quartz
	2.3 Compilation
	2.3.1 Intermediate Representation by Guarded Actions
	2.3.2 Surface and Depth
	2.3.3 Compilation of the Control Flow
	2.3.4 Compilation of the Data Flow
	2.3.5 Local Variables and Schizophrenia

	2.4 Semantic Analysis
	2.5 Synthesis
	2.5.1 Symbolic Model Checking
	2.5.2 Circuit Synthesis
	2.5.3 SystemC Simulation
	2.5.4 Automaton-Based Sequential Software Synthesis

	2.6 Conclusions and Future Extensions
	References

	3 SysteMoC: A Data-Flow Programming Language for Codesign
	3.1 Introduction
	3.2 Overview of Basic Data-Flow Models
	3.2.1 Data Flow
	3.2.2 Static Data Flow
	3.2.2.1 Homogeneous Data Flow
	3.2.2.2 Synchronous Data Flow
	3.2.2.3 Cyclo-Static Data Flow

	3.2.3 Dynamic Data Flow
	3.2.3.1 Boolean Data Flow
	3.2.3.2 Dennis Data Flow
	3.2.3.3 Kahn Process Networks

	3.3 Informal Introduction to SysteMoC
	3.3.1 Specification of the Network Graph
	3.3.2 Specification of Actors
	3.3.3 Specification of the Communication Behavior

	3.4 Semantics and Execution Behavior of SysteMoC
	3.5 Analysis of SysteMoC Models
	3.5.1 Representing SDF and CSDF Actors in SysteMoC
	3.5.2 SDF and CSDF Semantics Identification for SysteMoC Actors

	3.6 Hardware/Software Codesign with SysteMoC
	3.7 Conclusions
	References

	4 ForSyDe: System Design Using a Functional Language and Models of Computation
	4.1 Introduction
	4.2 The ForSyDe Modeling Framework
	4.2.1 Signals
	4.2.2 Processes
	4.2.2.1 Process Constructors
	4.2.2.2 Process Composition

	4.2.3 ForSyDe Models of Computation
	4.2.3.1 Synchronous Model of Computation (MoC)
	4.2.3.2 Data-Flow Models of Computation
	4.2.3.3 Continuous Time Model of Computation

	4.2.4 Model of Computation Interfaces
	4.2.5 Reconfigurable Processes
	4.2.6 Modeling Case Study

	4.3 Transformational Design Refinement
	4.4 Synthesis of ForSyDe Models
	4.4.1 General ForSyDe Synthesis Concepts
	4.4.2 Hardware Synthesis
	4.4.3 ForSyDe Hardware Synthesis Tool

	4.5 SystemC-ForSyDe
	4.6 Related Work
	4.7 Conclusion
	Appendix: Introduction to Haskell
	References

	5 Modeling Hardware/Software Embedded Systems with UML/MARTE: A Single-Source Design Approach
	5.1 Introduction
	5.2 Modeling Requirements
	5.2.1 Single-Source Approach
	5.2.2 Separation of Concerns
	5.2.3 Incremental Modeling
	5.2.4 Component-Based Functional Modeling
	5.2.5 Support of System-Level Design Activities
	5.2.6 Support of Mixed-Criticality

	5.3 State of the Art
	5.4 Single-Source Modeling Methodology
	5.4.1 Introductory Example: Quadcopter System
	5.4.2 Introduction
	5.4.3 Platform-Independent Model
	5.4.4 Platform Resources
	5.4.5 Platform-Specific Model
	5.4.6 Extra-Functional Properties and Performance Constraints
	5.4.7 Design Space
	5.4.8 Modeling for Software Synthesis
	5.4.9 Verification Environment
	5.4.10 Mixed-Criticality
	5.4.11 Modeling for Schedulability Analysis

	5.5 Single-Source Design Framework
	5.6 Conclusions
	References

	Part III Design Space Exploration
	6 Optimization Strategies in Design Space Exploration
	6.1 Introduction
	6.2 Classification of Multi-objective DSE Strategies
	6.3 Multi-objective DSE Algorithms
	6.3.1 Heuristics and Pseudo-random Optimization Approaches
	6.3.1.1 Adaptive Windows Pareto Random Search (APRS)
	6.3.1.2 Multi-objective Multiple Start Local Search (MOMSLS)
	6.3.1.3 Multi-objective Particle Swarm Optimization (MOPSO)
	6.3.1.4 Multi-objective Simulated Annealing (MOSA)
	6.3.1.5 Pareto Simulated Annealing (PSA)
	6.3.1.6 Serafini's Multiple Objective Simulated Annealing (SMOSA)

	6.3.2 Evolutionary Algorithms
	6.3.2.1 Multiple Objective Genetic Local Search (MOGLS)
	6.3.2.2 Ishibuchi-Murata Multi-objective Genetic Local Search (IMMOGLS)
	6.3.2.3 Non-dominated Sorting Genetic Algorithm (NSGA)
	6.3.2.4 Controlled Non-dominated Sorting Genetic Algorithm (NSGA-II)
	6.3.2.5 Pareto Memetic Algorithm (PMA)
	6.3.2.6 Strength Pareto Evolutionary Algorithm (SPEA)

	6.3.3 Statistical Approaches Without Domain Knowledge
	6.3.3.1 Response Surface Pareto Iterative Refinement (ReSPIR)

	6.3.4 Statistical Approaches with Domain Knowledge
	6.3.4.1 Markov Decision Process Optimization (MDP)
	6.3.4.2 Multi-objective Markov Decision Process (MOMDP)

	6.4 Experimental Comparison
	6.4.1 Objectives
	6.4.2 Benchmark Applications
	6.4.3 Target Computing Platform
	6.4.4 Metrics to Evaluate Approximate Pareto Sets
	6.4.4.1 Average Distance from Reference Set
	6.4.4.2 Non-uniformity
	6.4.4.3 Concentration

	6.4.5 Performance of the Algorithms Under Test
	6.4.5.1 Initial Setup Effort and Parameter Sensitivity
	6.4.5.2 Convergence Rate
	6.4.5.3 Quality of the Approximate Pareto Set
	6.4.5.4 Scalability

	6.5 Discussion
	6.6 Existing Frameworks
	6.6.1 jMetal
	6.6.2 PaGMO/PyGMO
	6.6.3 MOHMLib++
	6.6.4 NASA

	6.7 Conclusions
	References

	7 Hybrid Optimization Techniques for System-Level Design Space Exploration
	7.1 Introduction and Motivation
	7.2 Fundamentals and Problem Formulation
	7.2.1 System Model and the System-Level Synthesis Problem
	7.2.1.1 System Model
	7.2.1.2 System-Level Synthesis

	7.2.2 Constrained Combinatorial Optimization

	7.3 Hybrid Optimization
	7.3.1 SAT Decoding: The Key Idea
	7.3.2 Solver
	7.3.3 Pseudo-Boolean Encoding of Allocation, Binding, Routing,and Scheduling

	7.4 Satisfiability Modulo Theories During Decoding
	7.4.1 SMT Decoding: The Key Idea
	7.4.2 SMT Decoding Formulation
	7.4.3 Learning Schemes
	7.4.3.1 Simple Learning
	7.4.3.2 Early Learning
	7.4.3.3 Deducing Justifications

	7.5 Applications
	7.6 Conclusion
	References

	8 Architecture and Cross-Layer Design Space Exploration
	8.1 Introduction
	8.2 Design Space Exploration of Heterogeneous Multi-core Processors
	8.2.1 Design of Experiments
	8.2.2 Response Surface Models

	8.3 Cross-Layer Predictive Model Building Approach
	8.3.1 Problem Formulation
	8.3.2 Application and Workload Models
	8.3.3 Heterogeneity-Aware Task Allocation
	8.3.3.1 Optimization Methodology
	8.3.3.2 Simulated Annealing-Based Optimization

	8.3.4 Predictive Modeling of Performance and Power of Different Core Types
	8.3.5 Training Methodology and Benchmarks
	8.3.6 Selecting the HMP Configuration

	8.4 Case Study: Experimental Evaluation of Cross-Layer DSE of HMPs
	8.5 Conclusions
	References

	9 Scenario-Based Design Space Exploration
	9.1 Introduction
	9.2 Application Dynamism
	9.3 Scenario-Based DSE Framework
	9.4 Design Explorer
	9.4.1 System Model
	9.4.2 Mapping Procedure
	9.4.3 Exploring Mappings Using a Genetic Algorithm

	9.5 Subset Selector
	9.5.1 The Updater Thread
	9.5.2 Subset Quality Metric
	9.5.3 The Selector Thread
	9.5.3.1 GA-Based Search for Scenario Subset
	9.5.3.2 FS-Based Search for Scenario Subset
	9.5.3.3 A Hybrid Approach for Searching Scenario Subsets

	9.6 Related Work
	9.7 Discussion
	References

	10 Design Space Exploration and Run-Time Adaptation for Multicore Resource Management Under Performance and Power Constraints
	10.1 Introduction
	10.1.1 Centralized and Distributed Techniques
	10.1.2 Design-Time Decisions and Run-Time Adaptations
	10.1.3 Parallel Applications

	10.2 Optimization Goals and Constraints
	10.2.1 Computational Performance
	10.2.2 Power and Energy Consumption
	10.2.3 Temperature
	10.2.4 Optimization Knobs

	10.3 Performance Optimization Under Power Constraints
	10.3.1 Traditional Per-Chip Power Constraints
	10.3.2 Efficient Power Budgeting: Thermal Safe Power

	10.4 Performance Optimization Under Thermal Constraints
	10.4.1 Techniques Based on Thermal Modeling
	10.4.2 Boosting Techniques

	10.5 Energy Optimization Under Performance Constraints
	10.6 Hybrid Resource Management Techniques
	References

	Part IV Processor, Memory, and Communication ArchitectureDesign
	11 Reconfigurable Architectures
	11.1 Why Reconfigurable Architectures?
	11.2 FPGA Architecture
	11.2.1 Building Blocks
	11.2.1.1 Logic Elements
	11.2.1.2 Interconnects

	11.2.2 Partial Reconfiguration in FPGA
	11.2.2.1 Island-Style Reconfiguration
	11.2.2.2 Slot-Style Reconfiguration
	11.2.2.3 Grid-Style Reconfiguration

	11.3 CGRA Architecture
	11.3.1 Building Blocks
	11.3.1.1 Processing Elements
	11.3.1.2 Interconnects

	11.3.2 Reconfiguration in CGRAs

	11.4 Mapping onto FPGAs
	11.4.1 Allocation
	11.4.2 Scheduling
	11.4.3 Binding
	11.4.4 Technology Mapping

	11.5 Mapping onto CGRAs
	11.5.1 ILP-Based Mapping Approaches
	11.5.2 Heuristic-Based Approaches
	11.5.3 FloRA Compilation Flow: Case Study
	11.5.3.1 List Scheduling
	11.5.3.2 QEA

	11.6 Conclusions
	References

	12 Application-Specific Processors
	12.1 Introduction
	12.2 Architectural Overview and Design Flow
	12.2.1 Application-Specific Processor Architecture
	12.2.2 Design Flow

	12.3 Custom Instructions Identification and Selection
	12.3.1 Formal Definitions
	12.3.2 Enumeration of MISO Patterns
	12.3.3 Exhaustive Enumeration of All Valid Patterns
	12.3.3.1 Search-Tree-Based Enumeration Algorithm
	12.3.3.2 Hierarchical Algorithm

	12.3.4 Exhaustive Enumeration of All Maximal Convex Patterns
	12.3.5 Enumeration of Maximum Weighted Convex Patterns
	12.3.6 Custom Instructions Selection
	12.3.6.1 Optimal Solution Using ILP
	12.3.6.2 Other Approaches

	12.4 Run-Time Customization
	12.4.1 Explicit Run-Time Customization
	12.4.1.1 Partial Reconfiguration
	12.4.1.2 Compiler Support

	12.4.2 Implicit Run-Time Customization

	12.5 Custom Instructions for General-Purpose Computing
	12.6 Conclusions
	References

	13 Memory Architectures
	13.1 Motivating the Significance of Memory
	13.1.1 Discrete Registers
	13.1.2 Organizing Registers into Register Files
	13.1.3 Packing Data into On-Chip SRAM
	13.1.4 Denser Memories: Main Memory and Disk
	13.1.5 Memory Hierarchy

	13.2 Memory Architectures in SoCs
	13.2.1 Cache Memory
	13.2.2 Scratchpad Memory
	13.2.3 Software Cache
	13.2.4 Memory in CGRA Architectures
	13.2.5 Hierarchical SPM

	13.3 Commercial SPM-Based Architectures
	13.3.1 ARM-11 Memory System
	13.3.2 Local SPMs in CELL
	13.3.3 Programmable First-Level Memory in Fermi

	13.4 Data Mapping and Run-Time Memory Management
	13.4.1 Tiling/Blocking
	13.4.2 Reducing Conflicts

	13.5 Comparing Cache and Scratchpad Memory
	13.5.1 Area Comparison
	13.5.2 Energy Comparison
	13.5.2.1 Energy Model for Tiled Execution
	13.5.2.2 Sensitivity to Memory Capacity
	13.5.2.3 Sensitivity to Conflict Misses

	13.6 Memory Customization and Exploration
	13.6.1 Register File Partitioning
	13.6.2 Inferring Custom Memory Structures
	13.6.3 Cache Customization and Reconfiguration

	13.7 Conclusions
	References

	14 Emerging and Nonvolatile Memory
	14.1 Introduction
	14.2 Classification of Emerging Nonvolatile Memories
	14.2.1 Spin-Transfer Torque Random-Access Memory
	14.2.2 Resistive Random-Access Memory
	14.2.3 Domain Wall Memory
	14.2.4 Ferro-electric Random-Access Memory
	14.2.5 Phase Change Memory

	14.3 On-Chip Memory and Optimizations
	14.3.1 STT-RAM as On-Chip Cache
	14.3.1.1 Optimizations for Access Efficiency
	14.3.1.2 Optimizations for Endurance
	14.3.1.3 Optimizations for Density

	14.3.2 Other NVMs as On-Chip Memory

	14.4 Hybrid Main Memory and Optimizations
	14.4.1 PCM as Main Memory Architecture
	14.4.2 PCM/DRAM Hybrid Memory Overview
	14.4.3 DRAM-as-Cache Architecture
	14.4.3.1 Caching/Paging Schemes to the Hybrid Architecture
	14.4.3.2 What Data Should Be Cached in DRAM

	14.4.4 Parallel Hybrid Architecture

	14.5 Conclusion
	References

	15 Network-on-Chip Design
	15.1 On-Chip Interconnect Architecture
	15.1.1 Bus-Based SoC Architectures
	15.1.2 Crossbar-on-Chip Interconnect
	15.1.3 Network-on-Chip Interconnect

	15.2 Defining Features of Network on Chip
	15.2.1 Topology
	15.2.2 Routing
	15.2.3 Flow Control
	15.2.4 Router Microarchitecture
	15.2.4.1 Progress of a Packet in a Wormhole Router
	15.2.4.2 Optimization and Logic Synthesis of Routers

	15.2.5 Network Interface
	15.2.6 Performance Metrics

	15.3 Overview of Recent Academic and Commercial NoCs
	15.4 NoC Power Optimization
	15.5 Communication-Aware Mapping
	15.6 Application-Specific Communication Architecture for MPSoCs
	15.7 Conclusion
	References

	16 NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Applications
	16.1 Introduction and Requirements
	16.2 Concepts for a Mixed-Time-Criticality Platform
	16.3 Hardware Architecture
	16.3.1 Generic Master IP Block
	16.3.2 Generic Slave IP Block and Memory Tile
	16.3.2.1 Arbitration
	16.3.2.2 SRAM
	16.3.2.3 DRAM

	16.3.3 Processor Tile
	16.3.4 Network-On-Chip
	16.3.5 Peripherals
	16.3.6 Memory Map
	16.3.7 Atomicity
	16.3.8 No Synchronization Hardware
	16.3.9 Conclusions

	16.4 Software Architecture
	16.4.1 Microkernel and RTOS
	16.4.2 Drivers
	16.4.2.1 Example Resource Drivers

	16.4.3 Virtual Resources and Their Management
	16.4.4 Synchronization Libraries and Programming Models
	16.4.4.1 Barrier Synchronization
	16.4.4.2 FIFO Queues
	16.4.4.3 Timed Communication
	16.4.4.4 Programming Models

	16.4.5 System Application and Application Loading
	16.4.6 Conclusions

	16.5 Example CompSOC Platform Instance
	16.6 Related Work
	16.7 Conclusions
	References

	Part V Hardware/Software Cosimulation and Prototyping
	17 Parallel Simulation
	17.1 Introduction
	17.1.1 Exploiting Parallelism for Higher Simulation Speed
	17.1.2 Related Work on Accelerated Simulation

	17.2 Discrete Event Simulation (DES)
	17.2.1 Discrete Time and Discrete Event Model
	17.2.2 Scheduling Queues
	17.2.3 Sequential Discrete Event Scheduler

	17.3 Parallel Discrete Event Simulation (PDES)
	17.3.1 Parallel Discrete Event Scheduler
	17.3.2 Protection of the Parallel Simulation Kernel
	17.3.3 Preserving SystemC Execution Semantics in PDES

	17.4 Out-of-Order Parallel Discrete Event Simulation (OOO PDES)
	17.4.1 Thread-Local Simulation Time
	17.4.2 Dynamically Evolving Scheduling Queues
	17.4.3 Out-of-Order Parallel Discrete Event Scheduler
	17.4.4 OOO PDES Scheduling Algorithm

	17.5 Recoding Infrastructure for SystemC (RISC)
	17.5.1 Segment Graph
	17.5.2 Segment Graph Construction
	17.5.3 Static Conflict Analysis
	17.5.3.1 Data Hazards
	17.5.3.2 Event Hazards
	17.5.3.3 Timing Hazards

	17.5.4 Source Code Instrumentation

	17.6 Experimental Evaluation
	17.6.1 Conceptual DVD Player Example
	17.6.2 Mandelbrot Renderer Example

	17.7 Conclusion
	References

	18 Multiprocessor System-on-Chip Prototyping Using Dynamic Binary Translation
	18.1 Introduction
	18.2 Dynamic Binary Translation Basics
	18.3 Support for Non-scalar Architectures
	18.3.1 Support for SIMD Instructions
	18.3.2 Support for VLIW Architectures
	18.3.2.1 VLIW Specificities
	18.3.2.2 VLIW DBT Extension Principles
	18.3.2.3 TB Entry and Exit States
	18.3.2.4 Complexity of the Modifications

	18.4 Annotations in Dynamic Binary Translation
	18.4.1 Cache Modeling Strategies
	18.4.2 Modeling Branch Predictors

	18.5 Integration with TLM Simulations
	18.5.1 Precision Levels
	18.5.2 TLM Synchronization Points
	18.5.2.1 TLM Synchronization After Long Intervals Lacking in Synchronization
	18.5.2.2 TLM Synchronizations Caused by Target Synchronization Instructions

	18.6 Concluding Remarks
	References

	19 Host-Compiled Simulation
	19.1 Introduction
	19.1.1 Traditional Virtual Prototype Simulation
	19.1.2 Next-Generation Virtual Prototypes
	19.1.3 Temporal Decoupling

	19.2 Source-Level Software Simulation
	19.2.1 Binary to Source Mapping
	19.2.2 Memory Trace Reconstruction
	19.2.3 Block-Level Timing Characterization
	19.2.4 Back-Annotation

	19.3 Host-Compiled OS and Processor Modeling
	19.3.1 OS Modeling
	19.3.2 Processor Modeling
	19.3.3 Cache Modeling

	19.4 TLM Communication for Host-Compiled Simulation
	19.4.1 TD with No Conflict Handling
	19.4.2 TD with Conflict Handling at Transaction Boundaries
	19.4.3 TD with Conflict Handling at Quantum Boundaries
	19.4.4 Abstract TLM+ with Conflict Handling at SW Boundaries

	19.5 Summary and Conclusions
	References

	20 Precise Software Timing Simulation Considering Execution Contexts
	20.1 Introduction
	20.2 Context-Sensitive Simulation Fundamentals
	20.2.1 Basic Idea of Context-Sensitive Simulation
	20.2.2 Control-Flow Graphs
	20.2.3 Context Mappings
	20.2.3.1 n-Block Mapping
	20.2.3.2 VIVU Mapping

	20.2.4 Related Work
	20.2.5 Challenges in Context-Sensitive Simulation
	20.2.5.1 Incomplete Data
	20.2.5.2 Context Granularity
	20.2.5.3 Execution Variations

	20.3 Context-Sensitive Simulation Framework
	20.3.1 Timing Database Contents
	20.3.1.1 Control Flow
	20.3.1.2 Context-Sensitive Timings
	20.3.1.3 Context Precedence

	20.3.2 Timing Database Generation
	20.3.2.1 Dynamic PSTC
	20.3.2.2 Static PSTC
	20.3.2.3 Optimization

	20.3.3 Simulation
	20.3.3.1 Intermediate String
	20.3.3.2 VIVU Context Tree
	20.3.3.3 Dynamic Context Selection
	20.3.3.4 Fallback Strategies

	20.4 Experimental Results
	20.4.1 Benchmarks
	20.4.1.1 Simulation Accuracy
	20.4.1.2 Simulation Performance

	20.4.2 Case Studies
	20.4.2.1 eCos
	20.4.2.2 Image Compression
	20.4.2.3 Advanced Driver Assistance

	20.5 Discussion
	20.5.1 Advantages
	20.5.2 Limitations

	20.6 Conclusions
	References

	Part VI Performance Estimation, Analysis, and Verification
	21 Timing Models for Fast Embedded Software Performance Analysis
	21.1 Introduction
	21.2 Background
	21.2.1 Challenges in Performance Evaluation of Modern Embedded Systems
	21.2.1.1 Software Complexity and Code Reuse
	21.2.1.2 Hardware Complexity and Heterogeneity
	21.2.1.3 Development Cycles and Modeling Effort
	21.2.1.4 Speed of Performance Analysis

	21.2.2 Static Software Timing Analysis
	21.2.3 Simulation-Based Software Timing Analysis
	21.2.3.1 RTL Simulation
	21.2.3.2 Fixed Throughput Simulation
	21.2.3.3 Microarchitectural Simulation
	21.2.3.4 Analytical Performance Estimation
	21.2.3.5 Phase-Based Performance Estimation
	21.2.3.6 Interval-Based Simulation
	21.2.3.7 Control Flow-Driven Simulation

	21.2.4 Summary

	21.3 Modeling Using Hardware-Independent Execution Cost Estimates
	21.4 Modeling Using Partial Architectural Knowledge
	21.4.1 Static Timing Estimation Using Pipeline Execution Graphs
	21.4.2 Timing Annotation and Simulation

	21.5 Modeling Using Detailed Microarchitectural Knowledge
	21.5.1 Framework Overview
	21.5.2 Static and Dynamic Analysis
	21.5.3 Enhancing Accuracy by Considering Execution Contexts

	21.6 Case Study: Modeling the Performance of a GPU-Based Microarchitecture
	21.6.1 Applying the Simulation Approach to GPU Cores
	21.6.1.1 Analytical Timing Approximation for GPUs

	21.6.2 Results

	21.7 Approaches to Include a Cache and Memory Simulation
	21.8 Discussion
	21.8.1 Comparison of Modeling Techniques

	21.9 Conclusions
	References

	22 Semiformal Assertion-Based Verification of Hardware/Software Systems in a Model-Driven Design Framework
	22.1 Introduction to Model-Driven Design
	22.2 Introduction to Assertion-Based Verification
	22.3 Integrating MDD and ABV
	22.4 Models and Flows for Verification
	22.4.1 Automata-Based Formalisms
	22.4.1.1 Extended Finite-State Machines
	22.4.1.2 Hybrid Automata
	22.4.1.3 UML Diagrams
	22.4.1.4 The UNIVERCM Model of Computation (MoC)

	22.4.2 Top-Down and Bottom-Up Flows for System Verification
	22.4.2.1 Bottom-Up: Mapping Digital HW to UNIVERCM
	22.4.2.2 Bottom-Up: Mapping Embedded SW to UNIVERCM
	22.4.2.3 Bottom-Up: Mapping Hybrid Automata to UNIVERCM
	22.4.2.4 Top-Down: Mapping UML Diagrams to UNIVERCM
	22.4.2.5 Top-Down: Mapping UNIVERCM Automata to C++/SystemC

	22.5 Assertion Definition and Checker Generation
	22.5.1 Template-Based Assertion Design

	22.6 Mutant-Based Quality Evaluation
	22.6.1 Testbench Qualification
	22.6.1.1 Mutant-Based Qualification of TLM Testbenches

	22.6.2 Property Qualification
	22.6.2.1 Mutant-Based Property Qualification

	22.7 Automatic Stimuli Generation
	22.7.1 EFSM-Based Stimuli Generation
	22.7.1.1 Dependency Analysis
	22.7.1.2 Snapshots of the Concrete Execution
	22.7.1.3 Multilevel Back Jumping

	22.8 Conclusion
	References

	23 CPA: Compositional Performance Analysis
	23.1 Motivation
	23.2 Fundamentals
	23.2.1 Timing Model
	23.2.1.1 Task Timing Model
	23.2.1.2 Local View: Component Timing Model
	23.2.1.3 Global View: System Timing Model

	23.2.2 Analysis
	23.2.2.1 Local Analysis
	23.2.2.2 Global Analysis

	23.3 Extensions
	23.3.1 Analysis of Systems with Shared Resources
	23.3.2 Analysis of Systems Undergoing Mode Changes
	23.3.3 Analysis of the Timing Impact of Errors and Error Handling
	23.3.3.1 Computation Errors and Error Handling
	23.3.3.2 Communication Errors and Error Handling

	23.3.4 Refined Analysis of Task Chains
	23.3.5 Timing Verification of Weakly-Hard Real-Time Systems
	23.3.6 Further Contributions

	23.4 Conclusion
	References

	24 Networked Real-Time Embedded Systems
	24.1 Introduction
	24.2 Event-Triggered Communication: Controller Area Network
	24.2.1 CAN Message Format and Bus Arbitration
	24.2.2 Timing Analysis with Ideal Models
	24.2.3 Analysis with Non-idealized Models

	24.3 A Heterogeneous Communication Protocol: FlexRay
	24.3.1 Introduction
	24.3.2 Static Segment
	24.3.2.1 ILP-Based Approach for Asynchronous Scheduling

	24.3.3 Dynamic Segment
	24.3.3.1 Timing Analysis Without Slot Multiplexing
	24.3.3.2 Extension to Slot Multiplexing

	24.4 Packet-Switched Networks: Ethernet
	24.4.1 Introduction
	24.4.2 Modeling Ethernet Networks for Performance Analysis
	24.4.3 Analysis of Standard Ethernet (IEEE802.1Q)
	24.4.3.1 End-to-End Latency Bounds
	24.4.3.2 Buffer Size Bounds

	24.4.4 Analysis Extensions
	24.4.4.1 Other Ethernet Schedulers
	24.4.4.2 Analysis Improvements
	24.4.4.3 Higher-Layer Protocols

	24.5 Conclusion
	References

	Part VII Hardware/Software Compilation and Synthesis
	25 Hardware-Aware Compilation
	25.1 Introduction
	25.1.1 Hardware-Aware Compilers as Production Compilers
	25.1.1.1 The Case for Software Branch Hinting
	25.1.1.2 Mechanism of Software Branch Hinting
	25.1.1.3 Cost Model of Branch Penalties Under Software Branch Hinting
	25.1.1.4 Branch Hinting-Based Compilation

	25.1.2 Hardware-Aware Compilers for Design Space Exploration
	25.1.2.1 The Case for Partial Bypassing
	25.1.2.2 Operation Latency-Based Schedulers Cannot Accurately Model Partial Bypassing
	25.1.2.3 OT to Accurately Model the Execution of Operations in a Pipeline
	25.1.2.4 List Scheduling Algorithm Using OT
	25.1.2.5 CIL Partial Bypass Exploration

	25.1.3 Conclusions

	References

	26 Memory-Aware Optimization of Embedded Software for Multiple Objectives
	26.1 Introduction
	26.2 Constraints and Objectives
	26.2.1 Timing
	26.2.2 Energy Consumption and Thermal Behavior
	26.2.3 Quality of Service and Precision
	26.2.4 Safety, Security, and Dependability
	26.2.5 Further Constraints and Objectives

	26.3 Optimization Potential in the Memory System
	26.3.1 Caches
	26.3.2 Scratchpad Memories
	26.3.3 A Bound for Improvements
	26.3.4 Importance of Memory-Aware Load Balancing

	26.4 Scratchpad Allocation Algorithms
	26.4.1 Classification
	26.4.2 Non-overlaying Allocation Algorithms
	26.4.3 Overlaying Allocation Algorithms
	26.4.4 Supporting Different Architectures and Objectives

	26.5 WCET-Oriented Compiler Strategies
	26.5.1 WCET-Oriented Scratchpad Allocation
	26.5.2 Static Instruction Cache Locking
	26.5.3 Instruction Cache Partitioning for Multitask Systems

	26.6 Trade-Off Between Energy Consumption, Precision, and Run Time
	26.6.1 Memory-Aware Mapping with Optimized Energy Consumption and Run Time
	26.6.2 Optimization for Three Objectives for the PAMONO Virus Sensor

	26.7 Conclusions and Future Work
	References

	27 Microarchitecture-Level SoC Design
	27.1 Introduction
	27.1.1 A Typical System-on-Chip Design Flow

	27.2 Power Modeling
	27.2.1 Sources of Power Consumption and Defining Energy
	27.2.2 Overview of Power Saving Techniques
	27.2.3 Overview of System-Level Power Estimation Methodologies
	27.2.4 Cache Power Modeling

	27.3 Thermal and Reliability Issues and Modeling in the Nano-CMOS Era
	27.3.1 Reliability
	27.3.2 Dynamic Thermal Management
	27.3.3 Thermal Sensors
	27.3.4 Sensor Allocation: Hotspot Monitoring
	27.3.5 Sensor Allocation: Full-Chip Profile Reconstruction

	27.4 Reliability Modeling
	27.4.1 Memory
	27.4.2 Combinational Logic
	27.4.3 Microarchitecture and System Level

	27.5 Interplay between Power, Temperature, Performance, and Reliability
	27.6 Power, Performance, and Resiliency Considerations in SoC Design
	27.6.1 Architecture-Level Error Tolerance
	27.6.2 Application-Level Error Resiliency: Multimedia Applications (H.264)
	27.6.3 Application-Level Error Resiliency: Wireless Modem Application (WCDMA)
	27.6.4 Mobile Phone SoC Example

	27.7 Summary and Conclusion
	References

	Part VIII Codesign Tools and Environment
	28 MAPS: A Software Development Environment for Embedded Multicore Applications
	28.1 Introduction
	28.2 Application Software Programming
	28.2.1 Streaming Models of Computation
	28.2.2 C for Process Networks (CPN)
	28.2.2.1 Channels
	28.2.2.2 Processes

	28.3 MPSoC Target Architecture Modeling
	28.4 Sequential Programming Flow
	28.4.1 Tool Flow Overview
	28.4.2 Program Model
	28.4.2.1 Performance Information
	28.4.2.2 Dynamic Call Graph
	28.4.2.3 Dependence-Flow Graph
	28.4.2.4 Loop Analysis
	28.4.2.5 Program Model Definition and Construction

	28.4.3 Parallelism Identification
	28.4.3.1 Task-Level Parallelism (TLP)
	28.4.3.2 Data-Level Parallelism (DLP)
	28.4.3.3 Pipeline-Level Parallelism (PLP)

	28.5 Parallel Programming Flow
	28.5.1 Tool Flow Overview
	28.5.1.1 Constraints and Configuration
	28.5.1.2 Mapping Configuration

	28.5.2 Token Logging and KPN Tracing
	28.5.2.1 Token Logging
	28.5.2.2 KPN Traces

	28.5.3 Trace Generation and Performance Estimation
	28.5.3.1 Sequential Performance Estimation
	28.5.3.2 Parallel Performance Estimation

	28.5.4 KPN Mapping
	28.5.4.1 Initialization and Trace Graph Creation
	28.5.4.2 Increasing the Amount of Processors
	28.5.4.3 Enlarging Buffers
	28.5.4.4 Mapping Computation

	28.6 Code Generation Flow
	28.7 Case Studies
	28.7.1 Parallelization of Android Software
	28.7.2 Mapping of Multi-domain Embedded Benchmarks

	28.8 Silexica: The Industrial Perspective
	28.9 Conclusion
	References

	29 HOPES: Programming Platform Approach for Embedded Systems Design
	29.1 Introduction
	29.2 Common Intermediate Code (CIC) Model
	29.2.1 Extended SDF Model for Application Specification
	29.2.1.1 Dynamic Behavior Specification
	29.2.1.2 Library Task

	29.2.2 Dynamic Behavior Specification at the Top-Level Specification of the CIC Model

	29.3 Design Space Exploration in HOPES
	29.3.1 Static Scheduling Technique of an MTM-SDF Graph
	29.3.2 Dynamic Mapping

	29.4 CIC Translator: Automatic Code Synthesis from the CIC Model
	29.5 Experimental Results
	29.6 Current Status and Conclusion
	References

	30 DAEDALUS: System-Level Design Methodology for Streaming Multiprocessor Embedded Systems on Chips
	30.1 Introduction
	30.2 The Daedalus Methodology
	30.3 The Polyhedral Process Network Model of Computation for MPSoC Codesign and Programming
	30.4 Automated Application Parallelization: PNgen
	30.4.1 SANLPs and Modified Data-Flow Analysis
	30.4.2 Computing FIFO Channel Sizes

	30.5 Automated System-Level Design Space Exploration: Sesame
	30.5.1 Basic DSE Concept
	30.5.2 System-Level Performance Modeling and Simulation
	30.5.2.1 Application Modeling
	30.5.2.2 Architecture Modeling
	30.5.2.3 Mapping

	30.6 Automated System-Level HW/SW Synthesis and Code Generation: Espam
	30.6.1 ESL Input Specification for Espam
	30.6.1.1 Platform Specification
	30.6.1.2 Application Specification
	30.6.1.3 Mapping Specification

	30.6.2 System-Level Platform Model
	30.6.3 Automated System-Level HW Synthesis and Code Generation
	30.6.3.1 Model Initialization
	30.6.3.2 System Synthesis
	30.6.3.3 System Generation

	30.6.4 Automated System-Level SW Synthesis and Code Generation
	30.6.4.1 SW Code Generation for Processors
	30.6.4.2 SW Communication and Synchronization Primitives
	30.6.4.3 Memory Map Generation

	30.6.5 Dedicated IP Core Integration with Espam
	30.6.5.1 IP Module: Basic Idea and Structure
	30.6.5.2 IP Core Types and Interfaces

	30.7 Summary of Experiments and Results
	30.8 Conclusions
	References

	31 SCE: System-on-Chip Environment
	31.1 Introduction
	31.2 Related Work
	31.3 Design Flow Overview
	31.3.1 SpecC Language and PSM Model of Computation
	31.3.2 Target Platform Description
	31.3.3 Stepwise Refinement

	31.4 Model Validation
	31.4.1 Simulation
	31.4.2 Profiling
	31.4.3 Estimation

	31.5 Modeling and Refinement
	31.5.1 Computation Modeling and Refinement
	31.5.2 Communication Modeling and Refinement

	31.6 Software Synthesis
	31.6.1 Software Code Generation
	31.6.2 Hardware-Dependent Software Generation
	31.6.3 Software Optimization

	31.7 Hardware Synthesis
	31.7.1 Block-Level Synthesis
	31.7.2 Protocol IP Generation
	31.7.3 RTL Netlisting and Synthesis

	31.8 Experimental Results
	31.8.1 Software Synthesis
	31.8.2 Hardware Synthesis

	31.9 Conclusions
	References

	32 Metamodeling and Code Generation in the Hardware/Software Interface Domain
	32.1 Introduction
	32.2 What Is Metamodeling About
	32.2.1 A First Example
	32.2.1.1 A Simplified View on the HW/SW Interface
	32.2.1.2 A First Metamodel
	32.2.1.3 A First Model
	32.2.1.4 First Views

	32.2.2 Terminology
	32.2.2.1 Metamodel
	32.2.2.2 Metametamodel
	32.2.2.3 Metamodeling Layers

	32.2.3 History and Known Technologies
	32.2.4 The Case for Metamodeling

	32.3 A Formal Model of Metamodeling
	32.3.1 Basic Definitions
	32.3.1.1 Legal Names N of Correlations and Attributes
	32.3.1.2 Legal Values for Attributes

	32.3.2 A Formal Representation of a Model
	32.3.2.1 The Set of All Models
	32.3.2.2 Definition of a Model
	32.3.2.3 The Set of All Objects O of a Model

	32.3.3 Metamodel Constraints on Models

	32.4 Metamodeling for HW/SW Codesign
	32.4.1 Metamodeling Frameworks
	32.4.1.1 MDA
	32.4.1.2 XML
	32.4.1.3 UML
	32.4.1.4 Eclipse Modeling Framework

	32.4.2 Related Standards
	32.4.2.1 IP-XACT
	32.4.2.2 UML/SysML
	32.4.2.3 Application Specific Metamodels
	32.4.2.4 A Peek into the Future of Metamodeling

	32.5 Generation
	32.6 Conclusion
	References

	33 Hardware/Software Codesign Across Many CadenceTechnologies
	33.1 Overview
	33.2 System Development Suite
	33.3 Virtual Prototyping and Hybrid Execution with RTL
	33.4 Hardware Accelerated Execution in Emulation and FPGA-Based Prototyping
	33.5 High-Level Synthesis
	33.6 Application-Specific Instruction-Set Processors
	33.6.1 ASIP Concept and Tensilica Xtensa Technology
	33.6.2 DSP Design Using Xtensa
	33.6.3 Processor-Centric Design and Hardware/Software Design Space Exploration

	33.7 Software-Driven Verification and Portable Stimulus
	33.8 Conclusion
	References

	34 Synopsys Virtual Prototyping for Software Development and Early Architecture Analysis
	34.1 Introduction
	34.1.1 Architecture Design
	34.1.2 Software Development and Testing
	34.1.3 Hardware/Software Integration and System Validation
	34.1.4 System-Level Power Analysis
	34.1.5 Summary

	34.2 Modeling for Virtual Prototyping
	34.2.1 The SystemC Transaction-Level Modeling Standard
	34.2.1.1 Loosely Timed Modeling Style
	34.2.1.2 Extended Loosely Timed Modeling Style
	34.2.1.3 Approximately Timed Modeling Style
	34.2.1.4 Extended Approximately Timed
	34.2.1.5 Summary

	34.2.2 Modeling Objects and Patterns
	34.2.2.1 The SystemC Modeling Library (SCML)

	34.2.3 System-Level Power Analysis
	34.2.3.1 UPF-3.0 System-Level IP Power Models
	34.2.3.2 UPF-3.0 System-Level Power Example
	34.2.3.3 Accuracy Considerations

	34.2.4 Summary

	34.3 Virtual Prototyping for Architecture Design
	34.3.1 Introduction
	34.3.1.1 Traditional Methods
	34.3.1.2 Virtual Prototyping Flow for Early Architecture Analysis
	34.3.1.3 Modeling Methodologies for Early Architecture Analysis

	34.3.2 Software-Based Performance Validation
	34.3.3 Trace-Based Interconnect and Memory Optimization
	34.3.3.1 Traffic Generation
	34.3.3.2 Transaction-Level Models for Interconnect and Memory Subsystem

	34.3.4 Task-Based Architecture Analysis and Exploration
	34.3.4.1 Modeling Methodology
	34.3.4.2 Task-Based Workload Models
	34.3.4.3 Performance Model of the System-on-Chip
	34.3.4.4 Application to Architecture Mapping
	34.3.4.5 Joint Power and Performance Analysis

	34.4 Conclusions
	References

	Part IX Applications and Case Studies
	35 Joint Computing and Electric Systems Optimization for Green Datacenters
	35.1 Introduction
	35.2 Related Work
	35.3 The System Modeling Framework
	35.3.1 Energy Management Models
	35.3.2 Electrical Energy Storage System
	35.3.3 Photovoltaic Module

	35.4 Simulation Framework Description
	35.4.1 Datacenter Energy Controller
	35.4.2 Green Energy Controller

	35.5 Experimental Results
	35.5.1 Setup
	35.5.2 Results

	35.6 Conclusion
	References

	36 The DSPCAD Framework for Modeling and Synthesis of Signal Processing Systems
	36.1 Introduction
	36.1.1 Data Flow
	36.1.2 Data-Flow Modeling Variants
	36.1.3 DSPCAD Framework

	36.2 Related Work
	36.2.1 Representative Tools
	36.2.2 Distinguishing Aspects of the DSPCAD Framework

	36.3 Data-Flow Interchange Format Overview
	36.3.1 Core Functional Data Flow
	36.3.2 Reconfigurable Modulator Example
	36.3.3 Data-Flow Graph Specification in the DIF Language
	36.3.4 Model-Based Design and Integration Using DIF

	36.4 Lightweight Data-Flow Environment
	36.4.1 Actor Design in LIDE
	36.4.2 Parameterized Sets of Modes
	36.4.3 Implementation in LIDE
	36.4.3.1 Data-Flow Graph Components
	36.4.3.2 Actor Implementation Example

	36.5 DSPCAD Integrative Command Line Environment
	36.5.1 Convenience Utilities
	36.5.2 Testing Support
	36.5.2.1 Required Components of an ITS
	36.5.2.2 Relationship to Other Testing Frameworks and Methodologies

	36.6 DSPCAD Framework Example: DIF-GPU
	36.6.1 DIF-GPU Overview
	36.6.2 Graph Transformations and Scheduling using DIF
	36.6.3 Vectorization
	36.6.4 Graph Scheduling and Mapping
	36.6.5 Code Generation
	36.6.6 Testing in DIF-GPU Using DICE

	36.7 Summary
	References

	37 Control/Architecture Codesign for Cyber-Physical Systems
	37.1 Introduction
	37.2 Embedded Control Systems
	37.2.1 Embedded Systems Architecture
	37.2.2 Feedback Control Systems
	37.2.2.1 Control Performance Metrics
	37.2.2.2 Optimal Pole Placement

	37.3 Communication-Aware Control/Architecture Codesign
	37.3.1 Problem Setting
	37.3.2 The Codesign Approach
	37.3.2.1 Design Flow
	37.3.2.2 Controller Design
	37.3.2.3 Optimization Problem Formulation
	37.3.2.4 Multi-objective Optimization

	37.3.3 Case Study

	37.4 Memory-Aware Control/Architecture Codesign
	37.4.1 Cache Analysis for Consecutive Executions of a Control Application
	37.4.2 Control Parameter Derivation
	37.4.3 Case Study

	37.5 Computation-Aware Control/Architecture Codesign
	37.5.1 Time-Triggered Operating System
	37.5.2 Multirate Closed-Loop Dynamics
	37.5.3 Case Study

	37.6 Conclusion
	References

	38 Wireless Sensor Networks
	38.1 Introduction
	38.2 Past Work
	38.2.1 Programming Languages and Tools
	38.2.2 Middleware and Operating System
	38.2.3 Model-Driven Design

	38.3 Model-Based WSN Application Design
	38.3.1 Development Flow Overview
	38.3.2 Component Structure
	38.3.3 Design Flow
	38.3.3.1 Requirement Analysis
	38.3.3.2 Module Description
	38.3.3.3 Generation of an Application Skeleton
	38.3.3.4 Customization of the Application Skeleton
	38.3.3.5 Code Generation and Deployment

	38.4 Automated WSN Application Composition
	38.4.1 Development Flow Using Automated Application Composition
	38.4.1.1 Development Flow Overview
	38.4.1.2 Automated Composition Tool Overview
	38.4.1.3 Automated Composition Tool Input Interface
	38.4.1.4 Structure of Top-Level and Library Components
	38.4.1.5 System Composition Process

	38.5 Case Studies
	38.5.1 Full-Custom WSN Gateway
	38.5.2 WSN Sensor Node for Air Quality Monitoring

	38.6 Conclusion
	References

	39 Codesign Case Study on Transport-Triggered Architectures
	39.1 Introduction
	39.2 Transport-Triggered Architecture Template
	39.3 Design Flow for Customizing Transport-Triggered Architectures
	39.4 Discrete Fourier Transform and Its Fast Algorithms
	39.4.1 Radix-p Algorithms
	39.4.2 Radix-2r Algorithms
	39.4.3 Mixed-Radix FFT

	39.5 Building Blocks and Optimizations
	39.5.1 In-Place Computations
	39.5.2 Permutations and Operand Access
	39.5.3 Twiddle Factors

	39.6 Customized FFT Architecture Based on Transport Triggering
	39.7 Energy Efficiency Comparison
	39.8 Conclusions
	References

	40 Embedded Computer Vision
	40.1 Introduction
	40.2 Computer Vision Concepts
	40.3 Methodologies
	40.4 Platform Architectures
	40.4.1 Multiprocessor Systems on Chips
	40.4.2 Networks on Chips
	40.4.3 FPGAs and Coarse-Grained Arrays

	40.5 Application-Specific Architectural Solutions
	40.5.1 Foreground Detection
	40.5.2 Face Detection and Recognition
	40.5.3 Convolutional Neural Networks

	40.6 Comparison
	40.7 Design Methodologies
	40.8 Conclusion
	References

	Index

