
9HamiltonianMap toConformal
Modificationof SpacetimeMetric:
Kaluza-Klein
andTeVeS

In this chapter, we discuss the cosmological problem of accounting for the radiation
curves of galaxies. It has commonly been assumed that the disagreement of simula-
tions using the Newtonian form for gravitational attraction (with forces proportional
to 1/r2 between stellar bodies) with the Tulley-Fisher radiation curves (Tulley 1977)
is due to amatter distribution that is not visible through emitted light (so-called “dark
matter”), but it has been difficult to find a viable candidate for what that matter should
be. Milgrom (1983) has proposed (MOND) that the Newton law be modified by a
law which coincides with Newton’s for large accelerations, but differs from it when
the accelerations are small. This suggestion has resulted in models which have been
very successful in describing the galaxy radiation curves (e.g. Famaey 2012). How-
ever, as emphasized by Bekenstein (2004), it is difficult to change the basic Newton
law without changing Einstein’s formulation of gravity in the framework of gen-
eral relativity (e.g. Weinberg 1972). He proposed that the Einstein metric gμν be
replaced by a conformal modification e−2φgμν , where φ is a scalar field; in this way
the modification proposed by Milgrom can be achieved in the post-Newtonian limit.

Although a suitable choice of φ has been shown to account well for the radiation
curves, the gravitational distortion of light rays from other stars passing the galaxy
is not described properly in this model; it would appear that the unaccounted for
“matter” in the galaxy could be responsible. Bekenstein and Sanders (1994, 2004),
however, have shown that the introduction of a field which, we shall call Uμ(x),
satisfying the normalization requirement

UμUμ = −1 (9.1)

permits the construction of a metric of the form

e−2φ(gμν + UμUν) − e−2φUμUν (9.2)

which does make it possible to describe the bending of light passing by the galaxy as
well as the galactic rotation curves without the addition of very much “dark matter”
(Bekenstein 2004). It was pointed out by Contaldis et al. (2008) that if the fields
Uμ were taken to be gauge fields, they would suffer caustic singularities near large
bodies. We show here that in the framework of the SHP theory these fields can be
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158 9 Hamiltonian Map to Conformal Modification…

taken to be gauge fields which are nonabelian, and in the Abelian limit there are
residual terms which may cancel the caustic singularities.

We start by discussing the application, originally developed to study the stabil-
ity of nonrelativistic Hamiltonian dynamical systems (Horwitz 2007), by means of
the introduction of a conformal metric, to the relativistic case. Introduction of the
conformal modification of the metric in the relativistic framework provides a basis
for Bekenstein’s model. We remark that this can provide a relationship between the
“dark matter” and “dark energy” (presumed responsible for the anomalous expan-
sion of the universe) (Overduin 2008) problems. We discuss, furthermore, how the
introduction of gauge fields can be taken into account in this framework and how,
in the conformally modified structure, they emerge as (nonabelian in this context)
Kaluza-Klein fields (Kaluza 1921). The Lorentz force due to such non-Abelian fields
is computed by Hamiltonian methods (see also Land 1995), and it is suggested that
small deviations of the orbits of satellites from the Newtonian orbits, such as the Pio-
neer (Turyshev 2006) (although some thermal effects have been implicated Turyshev
2012) may be accounted for by such nonabelian gauge fields.

9.1 Dynamics of a Relativistic Geometric Hamiltonian System

The Hamiltonian (Misner 1970)

K = 1

2m
gμν pμ pν, (9.3)

with Hamilton equations (written in terms of derivatives with respect to the invariant
world time τ )

ẋμ = ∂K

∂ pμ
= 1

m
gμν pν (9.4)

and

ṗμ = − ∂K

∂xμ
= − 1

2m

∂gλγ

∂xμ
pλ pγ (9.5)

lead to the geodesic equation

ẍρ = −�ρ
μν ẋν ẋμ, (9.6)

where what has appeared as a compatible connection form �ρ
μν is given by

�ρ
μν = 1

2
gρλ

(∂gλμ

∂xν
+ ∂gλν

∂xμ
− ∂gμν

∂xλ

)
. (9.7)

These results can be taken to be tensor relations with respect to diffeomorphisms
admitted by the manifold {xμ}; writing the Hamiltonian in terms of (9.3), we see that
the square of the invariant interval on an orbit is proportional, through the constant
Hamiltonian, to the square of the corresponding interval world time, i.e.,

ds2 = 2

m
K dτ2. (9.8)
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We shall study, in the following, a generalization of (9.3) consisting of the addi-
tion of a scalar field �(x). The presence of such a scalar field may be considered as
a gauge compensation field for the τ derivative in the evolution term of the covari-
ant generalization of (9.3) in the Stückelberg-Schrödinger equation (Saad 1989),
an energy distribution not directly associated with electromagnetic radiation in the
usual sense. We then follow the method of Horwitz (2007) to show that there is a
corresponding Hamiltonian K̂ with a conformally modified metric, and no explicit
additive scalar field, which has the form of the construction of Bekenstein and Mil-
grom (1983), Bekenstein (2004) for the realization of Milgrom’s MOND program
(modified Newtonian dynamics) (Milgrom 1983) for achieving the observed galactic
rotation curves. This simple form of Bekenstein’s theory (called RAQUAL), which
we discuss in some detail below for the sake of simplicity and clarity in the devel-
opment of the mathematical method, does not properly account for causality and
gravitational lensing; the theory has been further developed to include vector fields
(which we shall call Bekenstein-Sanders fields) as well (TeVeS) (Bekenstein 2004),
which has been relatively successful in accounting for these problems. It has been
shown Gershon (2009), moreover, that a gauge type Hamiltonian, with Minkowski
metric and both vector and scalar fields results, under a conformal map, in an effec-
tive Kaluza-Klein theory. We shall indicate here (using a general Einstein metric)
how the TeVeS structure can emerge in terms of a Kaluza-Klein theory in this way, for
which the Bekenstein-Sanders fields are considered as gauge fields. As a realization
of this possibility, we exhibit a gauge transformation on the underlying quantum the-
ory for which the vector fields, (Bekenstein 1994) which we shall callUμ(x), emerge
as gauge compensation fields, such that, as required by the TeVeS theory, the prop-
erty UμUμ = −1 is preserved under such gauge transformations. The corresponding
quantum theory then has the form of a Hilbert bundle and, in this framework, the
gauge fields are of (generalized) Yang-Mills type (Yang 1954). Working in the infin-
itesimal neighborhood of a gauge in which the fields are Abelian, we show that in
the limit the contributions from the nonabelian sector provide nonlinear terms in
the field equations which may avoid the caustic singularity found by Contaldi et al.
(Contaldi 2008).

For both the RAQUAL and the TeVeS theories, the correspondence between K
and K̂ implies a relation between the conformal factor in K̂ and the world scalar field
�, and thus a possible connection between the so-called dark matter problem and a
dark energy distribution represented by � (which could be put into correspondence
with the fifth gauge field (see Chap.4) of the general Stueckelberg theory).

9.2 Addition of a Scalar Potential and Conformal Equivalence

The addition of a scalar potential to the Hamiltonian (9.3), in the form

K = 1

2m
gμν pμ pν + �(x), (9.9)
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leads, according to the Hamilton equations, to the geodesic equation1

ẍρ = −�ρ
μν ẋν ẋμ − 1

m
gρν

∂�

∂xν
. (9.10)

Now, consider the Hamiltonian (we carry out the calculations explicitly here since
we shall have need of some of the intermediate results)

K̂ = 1

2m
ĝμν(y)pμ pν . (9.11)

It follows from the Hamilton equations that

ẏμ = ∂ K̂

∂ pμ
= 1

m
ĝμν pν,

so that
pν = mĝμν ẏμ (9.12)

and

ṗμ = − ∂ K̂

∂yμ
= − 1

2m

∂ ĝλγ

∂yμ
pλ pγ .

As in (9.6), it then follows that

ÿμ = −�̂
μ
λσ ẏλ ẏσ, (9.13)

where, as for (9.6),

�̂
μ
λσ = 1

2
ĝμν

{∂ ĝνσ

∂yλ
+ ∂ ĝνλ

∂yσ
− ∂ ĝλσ

∂yν

}
. (9.14)

We now establish an equivalence between the Hamiltonians (9.9) and (9.11) by
assuming the momenta pμ equal at every moment τ in the two descriptions. With
the constraint

K̂ = K = k, (9.15)

if we assume the conformal form

ĝνσ(y) = φ(y)gνσ(x), (9.16)

it follows that
φ(y)(k − �(x)) = k. (9.17)

The relation (9.17) is not sufficient to construct y as a function of x , but if we impose
the relation (this relation follows from requiring the momenta in each picture to be
equal for all τ (Horwitz 2015a))

δxμ = φ−1(y)δyμ (9.18)

1Note that (9.10) does not admit an equivalence principle, but (9.14), arising from (9.11) does.
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between variations generated on position in the two coordinate systems, it is sufficient
to evaluate derivatives of φ(y) in terms of derivatives with respect to x of the scalar
field �(x) (Horwitz 2015a; see also Calderon 2013). We review this construction
briefly below.

We remark that the construction based on Eqs. (9.11) and (9.16) admits the same
family of diffeomorphisms as that of (9.9), since φ is scalar. Under these diffeo-
morphisms, both gμν and ĝμν are second rank tensors, and by construction of the
connection forms, (9.64) and (9.13) are covariant relations.

To see how these derivatives are constructed on the constraint hypersurface deter-
mined by (9.17), let us, for brevity, define

F(x) ≡ k

k − �(x)
, (9.19)

so that the constraint relation (9.15) reads

φ(y) = F(x). (9.20)

Then, since variations in x and y are related by (9.18),

φ(y + δy) = F(x + δx) ∼= F(x) + δxμ ∂F(x)

∂xμ
. (9.21)

To first order in Taylor’s series on the left, we obtain the relation

∂φ(y)

∂yμ
= φ−1(y)

∂F(x)

∂xμ
, (9.22)

In agreement with the requirement that the momenta are equal for all τ (Horwitz
2015a).Wemay therefore define a derivative, restricted to the constraint hypersurface

∂̃F(x)

∂̃yμ
= φ−1(y)

∂F(x)

∂xμ
(9.23)

The Leibniz relation follows easily for the product of functions, it e.g., for φ(y)

gμν(x).
In a similar way, one finds

∂̃2F(x)

∂̃yμ∂̃yν
= ∂̃2F(x)

∂̃yν ∂̃yμ
(9.24)

This implies that the restricted derivative defined by (9.23) behaves as a bona fide
derivative on the constraint hypersurface, admitting the consistent coexistence of the
coordinates x and y related by (9.17). It has been shown (Horwitz 2015a) that all
derivatives of F(y) can be expressed in terms of φ(x) and its derivatives, and con-
versely, all derivatives of φ(x) can be expressed in terms of F(y) and its derivatives.

In the following, we complete our argument of equivalence by reconstructing the
equations of motion following from the Hamilton equations applied to (9.9), i.e.,
Eq. (9.10).

We begin our construction, in analogy with the procedure used in the nonrela-
tivistic problem (Gershon 2009), by defining the new variable zμ such that

żμ = ĝμν(y)ẏν . (9.25)
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Substituting ẏν = ĝμν(y)żμ into (9.11), the τ derivatives of ĝμν(y) generate terms
that cancel two of the terms in �̂

μ
λσ , leaving

z̈ν = 1

2

∂ ĝλσ

∂yν
ẏλ ẏσ. (9.26)

Now, substituting for ẏλ from (9.25), and using the identity

ĝγλ ∂ ĝλσ

∂yν
ĝσρ = −∂ ĝγρ

∂yν
, (9.27)

we find

z̈ν = −1

2

∂ ĝγρ

∂yν
żγ żρ. (9.28)

Finally, from the variational type argument we used above,

ĝργ(y + δy) − ĝργ(y) = ∂ ĝγρ

∂yν
δyν

= ∂ ĝργ

∂yν
ĝνλδzλ,

(9.29)

so that
∂ ĝργ

∂yν
ĝνλ = ∂ ĝργ

∂zλ

or
∂ ĝργ

∂yν
= ĝνλ

∂ ĝργ

∂zλ
(9.30)

We therefore have the alternative form

z̈ν = −1

2
ĝνλ

∂ ĝργ

∂zλ
żρ żγ . (9.31)

This result constitutes a “geometric” embedding of the Hamiltonian motion induced
by (9.9) in the same way as for the nonrelativistic case. Substituting the explicit form
of ĝργ in terms of the original Einstein metric from (9.16), one obtains

z̈ν = −1

2
gνλ

∂gργ

∂zλ
żρ żγ − 1

2
φ−1gνλ

∂φ

∂zλ
gργ żγ żρ (9.32)

The second term contains the potential field, as in the Hamilton equations, but the
first term does not contain the full connection form. We may finally, however, define
a “decontraction” of the connection in (9.30) using the Einstein metric. In fact, since
according to (9.16), ẏν = φẋν , and by (9.23),

żμ = ĝμν ẏν = φ−1gμν ẏν, (9.33)

it follows that
żμ = gμν ẋν . (9.34)

Making this substitution in (9.32) leads explicitly, taking into account the k shell
constraint (9.15) and the form of (9.9), to the Eq. (9.10). We have thus completed our
demonstration of the equivalence between the purely metric form of the Hamiltonian
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(9.11) and theHamilton (9.9), forwhich the relation (9.31) corresponds to a dynamics
generated by a compatible connection form, and constitute a “geometric” embedding
of the original Hamiltonian motion.

Our interest in this section has been in relating theHamiltonian (9.9) to the simplest
Bekenstein-Milgrom form of MOND, without concern in the development of this
simplified case for lensing or causal effects, for which a TeVeS type theory would be
required. In the next Section, we indicate how a TeVeS theory can be generated in
this framework, i.e., as a result of a conformal map.

9.3 TeVeS and Kaluza-Klein Theory

In this section, we show that the TeVeS theory can be cast into the form of a Kaluza-
Klein construction. There has recently been a discussion (Gershon 2009), from the
point of viewof conformal correspondence, of the equivalence of a relativisticHamil-
tonian with an electromagnetic type gauge invariant form (Saad 1989; Oron 2001
and Chap.4) (here ημν is the Minkowski metric (−1, +1,+1, +1))

K = 1

2m
ημν(pμ − eaμ)(pν − eaν) − ea5, (9.35)

where the {aμ}, as fields, may depend on the affine parameter τ as well as xμ, and
the a5 field is necessary for the gauge invariance of the τ derivative in the quan-
tummechanical Stueckelberg-Schrödinger equation, with a Kaluza-Klein theory. As
remarked in this work, Wesson (Overduin 2008; Liko 2005), as well as previous
work on this structure (Oron 2001), have associated the source of the a5 field with
mass density. A Hamiltonian of the form

K̂ = 1

2m
ĝμν(pμ − eaμ)(pν − eaν) (9.36)

can be put into correspondence, as in Sect. 9.2, with K by taking ĝμν to be

ĝμν = ημν k

k + ea5
, (9.37)

where k is the common (constant) value of K and K̂ . In this correspondence, the
equations of notion generated by K̂ through the Hamilton equations, have extra
terms, beyond those provided by the connection form associated with ĝμν , due to the
presence of the gauge fields. These additional terms can be identified as belonging
to a connection form associated with a five dimensional metric, that of a Kaluza-
Klein theory.

We may apply the same procedure to the Hamiltonian

K = 1

2m
gμν(pμ − εUμ)(pν − εUν) + �, (9.38)

where gμν is an Einstein metric, � is a world scalar field, and Uμ are to be identified
with the Bekenstein-Sanders fields for which (Bekenstein 1994) UνUν = −1, with
Uμ = gμνUν .
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Weshall discuss in Sect. 9.4 a class of gauge transformations on thewave functions
of the underlying quantum theory for which the Uμ arise as gauge compensation
fields.

Let us define, as in Eq. (9.37), the conformally modified metric

ĝμν = gμν k

k − �

≡ e−2φgμν . (9.39)

The “equivalent” Hamiltonian

K̂ = 1

2m
ĝμν(pμ − εUμ)(pν − εUν) (9.40)

then generates, through the Hamilton equations, an equation of motion which corre-
sponds to the geodesic equation for an effective Kaluza-Klein metric, as in Gershon
(2009).

Now, consider the Hamiltonian

KK = 1

2m
g̃μν pμ pν, (9.41)

with the Bekenstein-Sanders metric (Bekenstein 1994)

g̃μν = e−2φ(gμν + UμUν) − e2φUμUν (9.42)

The Hamiltonian KK then has the form

KK = e−2φgμν pμ pν − 2 sinh 2φ(Uμ pμ)2, (9.43)

Let us now define a Kaluza-Klein type metric of the form obtained in Gershon
(2009), arising from the equations of motion generated by (9.40),

gAB =
(

ĝμν Uν

Uμ g55

)
. (9.44)

Contraction to a bilinear form with the (5D) vectors pA = {pλ, p5}, with indices
λ = ν on the right and λ = μ on the left, one finds

gAB pA pB = ĝμν pμ pν + 2p5(pμUμ) + (p5)
2g55. (9.45)

If we take

p5 = − (pμUμ)

g55

(
1 ±

√
1 − 2g55 sinh 2φ

)
, (9.46)

then the Kaluza-Klein theory coincides with (9.41), i.e.,

KK = 1

2m
gAB pA pB . (9.47)

As remarked byWesson (Overduin 2008;Kaluza 1921), one can choose g55 = const.
for consistencywith electromagnetism,whileWessonmakes themore general choice
of a world scalar field. Moreover, the value g55 = 0 is well defined (as in Gershon
2009).

Since the fields Uμ are timelike unit vectors (Bekenstein 1994), (pμUμ) corre-
sponds, in an appropriate local frame, to the energy of the particle, close to its mass
shell in the case of a nonrelativistic particle, or to the frequency in the case of on-shell
photons. It clearly remains to understand more deeply the apparently ad hoc choice
of p5 in (9.46) in terms of a 5D canonical dynamics, along with the structure of the
5D Einstein equations for gAB that follow from the geometry associated with (9.47).
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9.4 The Bekenstein-Sanders Vector Field as a Gauge Field

Essential features of the Bekenstein-Sanders field (Bekenstein 1994) of the TeVeS
theory are that it be a local field, i.e., Uμ(x), and there is a normalization constraint

UμUμ = −1, (9.48)

so that the vector is timelike. To preserve the normalization condition (9.48) under
gauge transformation, we shall study the construction of a class of gauge transforma-
tions which essentially moves the U(x) field on a hyperbolic surface with a Lorentz
type transformation (at the point x).

If we think of our underlying quantum structure, which generates the gauge field,
as a fiber bundle with base xμ, then we must think of the transformation acting in
such a way that the absolute square (norm) of the wave function attached to the base
point xμ preserves its value (Yang 1954).

An analogy can be drawn to the usual Yang-Mills gauge (Yang 1954) on SU (2),
where there is a two-valued index for the wave function ψα(x). The gauge transfor-
mation in this case is a two by two matrix function of x , and acts only on the indices
α. The condition of invariant absolute square (probability) is

∑

α

|
∑

β

Uαβψβ |2 =
∑

|ψα|2 (9.49)

Generalizing this structure, one can take the indices α to be continuous, so that
(9.49) becomes

∫
(dU)|

∫
(dU ′)U (U ,U ′)ψ(U ′, x)|2 =

∫
(dU)|ψ(U , x)|2, (9.50)

implying that U (U ,U ′) is a unitary operator on a Hilbert space L2(dU). Since we
are assuming that Uμ lies on an orbit determined by (9.50), the measure is

(dU) = d3U
U0 , (9.51)

i.e., a three dimensional Lorentz invariant integration measure (since UμUμ = −1).
Moreover, the Lorentz transformation on Uμ is generated by a non-commutative

operator, and therefore the gauge transformation is non-Abelian.We demonstrate the
resulting noncommutativity of the operator valued fields, U ′, after an infinitesimal
gauge transformation of this type, explicitly below.

This construction is somewhat similar to the treatment of the electromagnetic
potential vector and its time derivative as oscillator variables in the process of second
quantization of the radiation field (the energy density of the field is given by these
variables in the form of an oscillator). One can think of such a structure as a Hilbert
bundle (Dixmeier 1959).

We now examine the gauge condition:

(pμ − εU ′
μ)Uψ = U (pμ − εUμ)ψ (9.52)
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Identifying pμ with −i∂/∂xμ, and cancelling the terms U pμψ on both sides, we
obtain

U ′
μ = UUμU−1 − i

ε

∂U

∂xμ
U−1, (9.53)

in the same form as theYang-Mills theory (Yang 1954). It is evident in theYang-Mills
theory, that due to the matrix nature of the second term, the field will be algebra-
valued, resulting in the usual structure of the Yang-Mills nonabelian gauge theory.
Here, if the transformation U is a Lorentz transformation, the numerical valued
field Uμ would be carried, in the first term, to a new value on a hyperbolic surface.
However, the second term may well be operator valued on L2(dU), and thus, as in
the Yang-Mills theory, U ′μ would become nonabelian, implying, in general, that U
is a nonabelian field.

It follows from (9.51) that the field strengths

fμν = ∂Uμ

∂xν
− ∂Uν

∂xμ
+ iε[Uμ,Uν] (9.54)

are related to the the field strengths in the transformed form

f ′
μν = ∂U ′

μ

∂xν
− ∂U ′

ν

∂xμ
+ iε[U ′

μ,U ′
ν] (9.55)

according to
f ′
μν(x) = U fμν(x)U−1, (9.56)

just as in the finite dimensional Yang-Mills theories.
This result follows from writing out, from (9.51),

∂U ′
μ

∂xν
= ∂U

∂xν
UμU−1 + U

∂Uμ

∂xν
U−1 + UUμ

∂U−1

∂xν

− i

ε

∂2U

∂xμ∂xν
U−1 − i

ε

∂U

∂xμ

∂U−1

∂xν
,

(9.57)

and subtracting the same expression with μ, ν reversed. Then add the result to

iε[U ′
μ,U ′

ν] = iεU [Uμ,Uν]U−1 + [UUμU−1,
∂U

∂xν
U−1]

+[ ∂U

∂xμ
U−1, UUνU−1] − i

ε
[ ∂U

∂xμ
U−1,

∂U

∂xν
U−1]

(9.58)

Whenever the combination

U−1 ∂U

∂xμ
U−1

appears, it should be replaced by

−∂U−1

∂xμ
.
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The result (9.56) then follows after a little manipulation.
Now, consider the possibility that this finite gauge transformation leaves UμUμ =

−1.
We write out

(UUμU−1 − i

ε

∂U

∂xμ
U−1)(UUμU−1 − i

ε

∂U

∂xμ
U−1) = −1 − i

ε

∂U

∂xμ
UμU−1

− i

ε
UUμU−1 ∂U

∂xμ
U−1

− 1

ε2
∂U

∂xμ
U−1 ∂U

∂xμ
U−1

= −1 − i

ε

∂U

∂xμ
UμU−1

+ i

ε
UUμ

∂U−1

∂xμ

+ 1

ε2
∂U

∂xμ

∂U−1

∂xμ
. (9.59)

It may be possible that U can be chosen to make all but the first term in (9.59)
vanish, but in the case of finite gauge transformations, it is not so easy to see how
to construct examples. For the infinitesimal case, it is, however, straightforward to
construct a gauge function with the required properties. For

U ∼= 1 + iG, (9.60)

where G is infinitesimal, (9.53) becomes

U ′
μ = Uμ + i[G,Uμ] + 1

ε

∂G

∂xμ
+ O(G2). (9.61)

Then,
U ′

μU ′μ ∼= Uμnμ + i(Uμ[G,Uμ] + [G,Uμ]Uμ)

+ 1

ε

( ∂G

∂xμ
Uμ + Uμ

∂G

∂xμ

)
.

(9.62)

Let us take

G = − iε

2

∑{
ωλγ(U , x), (Uλ ∂

∂Uγ
− Uγ ∂

∂Uλ
)
}

≡ ε

2

∑{
ωλγ(U , x), Nλγ

} (9.63)

where symmetrization is required since ωλγ is a function of U as well as x , and

Nλγ = −i(Uλ ∂

∂Uγ
− Uγ ∂

∂Uλ
). (9.64)

This construction is valid in the initially special gauge, which we shall call the
“special abelian gauge”, in which the components of Uμ commute. The appearance
of Uμ in the gauge functions is then admissible since this quantity acts on the wave
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functions <U , x |ψ) = ψ(U , x) at the point x , in the representation in which the
operator Uμ on L2(dU) is diagonal.

Our investigation in the following will be concerned with a study of the infinitesi-
mal gauge neighborhood of this limit, where the components of Uμ do not commute,
and therefore constitute a Yang Mills type field. We shall show in the limit that the
corresponding field equations acquire nonlinear terms, and may therefore suppress
the caustic singularities found by Contaldi et al. (Contaldi 2008). They found that
nonlinear terms associated with a non-Maxwellian type action, such as (∂μUμ)2,
could avoid this caustic singularity, so that the nonlinear terms we find as a residue
of the Yang-Mills structure induced by our gauge transformation might achieve this
effect in a natural way.

The second term of (9.62), which is the commutator of G with UμUμ vanishes,
since this product is Lorentz invariant (the symmetrization in G does not affect this
result).

We now consider the third term in (9.62).

1

ε

( ∂G

∂xμ
Uμ + Uμ

∂G

∂xμ

) = 1

2

{∂ωλγ

∂xμ
, Nλγ

}Uμ + Umu
{∂ωλγ

∂xμ
, Nλγ

}

= 1

2

{
Nλγ ∂ωλγ

∂xμ
Uμ + ∂ωλγ

∂xμ
NλγUμ (9.65)

+ UμNλγ ∂ωλγ

∂xμ
+ Uμ ∂ωλγ

∂xμ
Nλγ

}

There are two terms proportional to

∂ωλγ

∂xμ
Uμ.

If we take (locally)
ωλγ(U , x) = ωλγ(kν xν), (9.66)

where kνUν = 0, then
∂ωλγ

∂xμ
Uμ = kμUμω′

λγ = 0. (9.67)

For the remaining two terms,

UμNλγ ∂ωλγ

∂xμ
+ ∂ωλγ

∂xμ
NλγUμ

= NλγUμ ∂ωλγ

∂xμ

+ [Uμ, Nλγ]∂ωλγ

∂xμ
+ ∂ωλγ

∂xμ
UμNλγ (9.68)

+ ∂ωλγ

∂xμ
[Nλγ,Uμ].

Since the commutators contain only terms linear in Uμ and they have opposite sign,
and cancel. The remaining terms are zero by the argument (9.67). The condition
UμUμ = −1 is therefore invariant under this gauge transformation, involving the
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coefficient ωλγ which is a function of the projection of xμ onto a hyperplane orthog-
onal to Uμ, i.e., a function of kμxμ, where kμUμ = 0. The vector kμ, of course,
depends on Uμ (for example, kμ = Uμ(U · b) + bμ, for some bμ �= 0).

We now demonstrate explicitly the nonabelian nature of the gauge fields after
infinitesimal gauge transformation. With (9.61), the commutator term in (9.55) is

[U ′
μ,U ′

ν] = (Uμ + i[G,Uμ] + 1

ε

∂G

∂xμ
)(Uν + i[G,Uν] + 1

ε

∂G

∂xν
)

− (Uν + i[G,Uν] + 1

ε

∂G

∂xν
)(Uμ + i[G,Uμ] + 1

ε

∂G

∂xμ
) (9.69)

= 1

ε

{[Uμ,
∂G

∂xν
] − [Uν,

∂G

∂xμ
]}

+ i[Uμ, [G,Uν]] − i[Uν, [G,Uμ]],
where the remaining terms have identically cancelled. Note that this expression does
not contain any noncommutative quantities. Now,

[G,Uν] = 2iεων
γUγ (9.70)

and

[Uμ,
∂G

∂xν
] = 2iεUλ

∂ωλ
μ

∂xν
. (9.71)

The terms involving [G,Uν] and [G,Uμ] therefore cancel, so that

[U ′
μ,U ′

ν] = 2iUλ

(∂ωλ
μ

∂xν
− ∂ωλ

ν

∂xμ

)
(9.72)

We have taken ωλ
μ = ωλ

μ(kσxσ), so that

∂ωλμ

∂xν
= kνω

′λ
μ, (9.73)

and therefore
[U ′

μ,U ′
ν] = 2i(kνω

′λ
μ − kμω′λ

ν)Uλ, (9.74)

generally not zero. This demonstrates the nonabelian character of the fields. In the
Abelian limit,wemay takeω′ → 0, but aswe shall see, there is a residual nonlinearity,
which depends on ω′′ may remain in the field equations.

We now consider the derivation of field equations from a Lagrangian constructed
with the ψ’s and f μν fμν . We take the Lagrangian to be of the form (the indices are
raised and lowered with gμν)

L = L f + Lm, (9.75)

where

L f = −1

4
f μν fμν (9.76)

and

Lm = ψ∗(i ∂

∂τ
− 1

2M
(pμ − εUμ)gμν(pν − εUν) − �

)
ψ + c.c. (9.77)
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We shall be working in the infinitesimal neighborhood of the special gauge for
AbelianUμ, forwhich it has the formgiven in (9.59) for infinitesimalG. It is therefore
not Abelian to first order, but we take its variation δU to be a c-number function,
carrying the variation, to lowest order, by variation of the first term in (9.61), and not
varying the part ofU introduced by the infinitesimal gauge transformation (evaluated
on the original value of U).

In carrying out the variation of Lm , the contributions of varying the ψ’s with
respect to U vanish due to the field equations (Stueckelberg-Schrödinger equation)
obtained by varying ψ∗ (or ψ), and therefore in the variation with respect to U , only
the explicit presence of U in (9.77) need be taken into account.

Note that for the general case of U operator valued, we can write

ψ∗(pμ − εUμ)gμν(pν − εUν)ψ = gμν
(
(pμ − εUμ)ψ

)∗
(pν − εUν)ψ, (9.78)

since the Lagrangian density (9.75) contains an integration over (dU ′)(dU ′′) (con-
sidered in lowest order) as well as an integration over (dx) in the action and the
operators U are Hermitian. In the limit in which U is evaluated in the special Abelian
gauge (real valued), and noting that pμ is represented by an imaginary differential
operator, we can write this as

gμνψ∗(pμ − εUμ)(pν − εUν)ψ = −gμν(pμ + εUμ)ψ∗(pν − εUν)ψ, (9.79)

i.e., replacing explicitly pμ by −i(∂/∂xμ) ≡ −i∂μ, we have

δULm = −i
ε

2M

{
ψ∗(∂μ − iεUμ)ψ − ((∂μ + iεUμ)ψ∗)ψ

}
δUμ, (9.80)

where we have called gμνδUν = δUμ, or

δULm = jμ(U , x)δUμ, (9.81)

where jμ has the usual form of a gauge invariant current.
For the calculation of the variation of L f we note that the commutator term in

(9.54) is, in lowest order, a c-number function, as given in (9.74).
Calling

ω′λ
μUλ ≡ vμ, (9.82)

we compute the variation of

[U ′
μ,U ′

ν] = 2i(kνvμ − kμvν) (9.83)

Then, for

δU [U ′
μ,U ′

ν] = δUγ

∂

∂Uγ
[U ′

μ,U ′
ν], (9.84)

we compute

∂

∂Uγ
[U ′

μ,U ′
ν] = 2i(

∂kν

∂Uγ
vμ + kν

∂vμ

∂Uγ
) − (μ ↔ ν)). (9.85)
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With our choice of kν = Uν(U · b) + bν ,

∂kν

∂Uγ
= δν

γ(U · b) + Uνbγ, (9.86)

so that
∂

∂Uγ
[U ′

μ,U ′
ν] = 2i(δν

γ(U · b) + Uνbγ)vμ

+ kν
∂vμ

∂Uγ
− (μ ↔ ν)) (9.87)

≡ Oγ
μν,

i.e.
δU [U ′

μ,U ′
ν] = Oγ

μνδUγ (9.88)

The quantity vμ is proportional to the derivative ofωλ
μ. In the limit thatω,ω′ → 0 (cf.

(9.83)), the second derivative, ω′′ which appears inOγ
μν may not vanish (somewhat

analogous to the case in gravitational theory when the connection form vanishes but
the curvature does not), so that this term can contribute in limit to the special Abelian
gauge.

Returning to the variation of L f in (9.76), we see that

δL f = −∂ν fμνδUμ + 2i fμνδ[Uμ,Uν], (9.89)

where we have taken into account the fact that [Uμ,Uν] is a commuting function,
and integrated by parts the derivatives of δU . With (9.88) we obtain

δL f = −∂ν fμνδUμ + 2iε fλσOλσ
μδUμ (9.90)

Since the coefficient of δUμ must vanish, we obtain, with (9.79), the Yang-Mills
equations for the fields given the source currents

∂ν fμν = jμ − 2iε fλσOλσ
μ, (9.91)

which is nonlinear in the fields Uμ, as we have seen, even in the Abelian limit, where,
from (9.80) and (9.81),

jμ = −i
ε

2M

{
ψ∗(∂μ − iεUμ)ψ − ((∂μ + iεUμ)ψ∗)ψ

}
. (9.92)

We point out that this current corresponds to a flow of the matter field; the absolute
square of the wave functions corresponds to an event density. The coupling ε is not
necessarily the electron charge, and the fields U are not necessarily electromagnetic
even in theAbelian limit. However, theHamiltonian (9.38) leads directly to a Lorentz
type force, similar in form to that generated by the Hilbert-Einstein action (see
Chap.4).

http://dx.doi.org/10.1007/978-94-017-7261-7_4
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9.5 Summary

We have seen in this chapter that a map of the type discussed in Gershon (2009)
of a Hamiltonian containing an Einstein metric, generating the connection form of
general relativity, and aworld scalar field, representing a distribution of energy on the
spacetime manifold, into a corresponding Hamiltonian with a conformal metric (and
compatible connection form), can account for the structure of the RAQUAL theory
of Bekenstein and Milgrom (1983). Furthermore, applying this correspondence to
a Hamiltonian with gauge-type structure, we have shown that one obtains a non-
compact Kaluza-Klein effective metric which can account for the TeVeS structure of
Bekenstein, Sanders and Milgrom (1989, 1994).

In order to maintain the constraint condition UμUμ = −1 for the Bekenstein-
Sanders fields, under local gauge transformations, we have introduced a class of
gauge transformations on the underlying quantum theory which acts on the Hilbert
bundle, quite analogous to that arising in the second quantization of the electro-
magnetic field (where the vector potentials and their time derivatives are considered
as quantum oscillator variables) associated with the values of the gauge fields. The
action of this class of gauges induces a nonabelian structure on the fields, which
therefore satisfy Yang-Mills type field equations with source currents associated
with matter flow. In the Abelian limit, these equations contain residual non-linear
terms which may avoid the caustic singularities found by Contaldi et al. (2008) for
an electromagnetic type gauge field.

The phenomenological constraints placed on the TeVeS variables in its astrophys-
ical applications and on its MOND limit (Milgrom 1983) would, in principle, place
constraints on the vector and scalar fields appearing in the correspondingHamiltonian
model, forwhich the additiveworld scalar field corresponds to an energy distribution,
not associated with electromagnetic radiation, which could contribute to the anom-
alous expansion of the universe (Rañada (2003), (2004), Anderson (1998), Rosales
(1999)).
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