
4GaugeFields andFlavorOscillations

In this chapter we discuss the general formulation of gauge fields in the quantum
theory, both abelian and nonabelian. A generalization of the elementary Stueck-
elberg diagram (Fig. 2.1), demonstrating a “classical” picture of pair annihilation
and creation, provides a similar picture of a process involving two or more vertices
(diagrams of this type appear in Feynman’s paper in 1949 (Feynman 1949) with
sharp instantaneous vertices). A single vertex, as in Stueckelberg’s original diagram,
in the presence of a nonabelian gauge field, can induce a flavor change on the par-
ticle line, resulting in a transition to an antiparticle with different identity. An even
number of such transitions can result in flavor oscillations, such as in the simple case
of neutrino oscillations. On the quark constituent level, such transitions can be asso-
ciated with K , B or D meson oscillations as well. The construction of the Lorentz
force acting on particles with abelian or nonabelian gauge will also be discussed,
with results consistent with the assumptions for the semiclassical model. In view of
our discussion of the previous chapter, it will also be shown that this picture could
provide a fundamental mechanism for CP violation.

4.1 Abelian Gauge Fields

In his original paper Stueckelberg (1941) introduced the electromagnetic vector
gauge fields, as we shall explain below, as compensation fields for the derivatives on
the wave functions representing the four-momenta. For a Hamiltonian of the form
(2.4), i.e.,

K = pμ pμ

2M
, (4.1)

for which the Stueckelberg-Schrödinger equation is

i
∂

∂τ
ψτ (x) = Kψτ (x), (4.2)
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52 4 Gauge Fields and Flavor Oscillations

one must introduce so-called compensation fields to retain the form of the equation
when the wave function is modified by a (differentiable) phase function at every
point. Thus, for

ψ(x)′ = eie�(x)ψ(x), (4.3)

the relation
(pμ − eAμ(x)′)ψ(x)′ = eie�(pμ − eAμ(x))ψ(x), (4.4)

is satisfied if
Aμ(x)′ = Aμ(x) + ∂μ�. (4.5)

One sees that the gauge transformation induced on the compensation field is of the
same form as the gauge transformations of the Maxwell potentials, and therefore
this procedure may be thought of as an underlying theory for electromagnetism
(Wu 1975). Stueckelberg (1941) noted that he was unable to explain the diagram
of Fig. 2.1 with this form of the electromagnetic interaction. The reason is that the
canonical velocity is

ẋμ = pμ − eAμ

M
, (4.6)

so that

ẋμ ẋμ = −(
ds

dτ
)2 = (pμ − eAμ)(pμ − eAμ)

M2 . (4.7)

This expression is proportional to the conserved Hamiltonian (for a closed system),
so that the proper time cannot go through zero. To avoid this difficulty, he added an
extra force term in the equations of motion. However, this construction did not take
into account the compensation field required for the τ derivative in the Stueckelberg-
Schrödinger equation.

Applying the same procedure to the nonrelativistic Schrödinger equation, the t
derivative in the equation requires a compensation field A0 (in addition to the A
fields compensating for the action of the derivative −i ∂

∂τ ), thus providing the full
set of Maxwell fields. Taking this requirement into account in the Stueckelberg-
Schrödinger equation, we arrive at a five dimensional generalization of the Maxwell
theory (Saad 1989; see also Wesson 2006). We furthermore recognize that since
the gauge phase depends, in general, on τ , the compensation fields, which we shall
denote by aμ, a5, must also depend on τ . We shall see that under integration over
τ , i.e., the zero mode, the fields aμ reduce to the usual Maxwell fields satisfying
the usual Maxwell equations, and the a5 field decouples. The more general theory
therefore properly contains the Maxwell theory.

We first remark that a5 and aμ must transform under a gauge change according to

a5(x, τ )′ = a5(x, τ ) + ∂�

∂τ

aμ(x, τ )′ = aμ(x, τ ) + ∂�

∂xμ
,

(4.8)
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or, with α = (0, 1, 2, 3, 5), and x5 ≡ τ ,

aα(x, τ )′ = aα(x, τ ) + ∂�

∂xα
. (4.9)

The Stueckelberg-Schrödinger evolution operator in the presence of this 5D gauge
field must therefore have, minimally, the form

i
∂ψτ (x)

∂τ
= { (pμ − e′aμ)(pμ − e′aμ)

2M
− e′a5(x)

}
ψτ (x), (4.10)

where e′ is related to the Maxwell elementary charge e, as we shall see, by a dimen-
sional scale factor.

Onemay extract from (4.10) the form for the corresponding classicalHamiltonian,

K = (pμ − e′aμ)(pμ − e′aμ)

2M
− e′a5(x). (4.11)

In this form, the Stueckelberg line drawn in Fig. 2.1 is, in principle, realizable. If
−e′a5 reaches a value equal to K , these terms can cancel; at these points the proper
time interval can pass through zero, and the semiclassical picture of pair annihilation
becomes consistent in a simple way. We shall discuss an example of this mechanism
in a semiclassical mechanism for neutrino oscillations to be given below.

It follows from the transformation laws (4.9) that the quantities (we use ∂α ≡ ∂
∂xα )

fαβ(x, τ ) = ∂αaβ − ∂βaα (4.12)

are gauge invariant, and may be considered, in analogy to the Maxwell case, as
field strengths. To consider these quantities as tensors requires an additional, very
strong assumption, i.e., that the five variables {xμ, x5} ≡ {xα}, where x5 ≡ τ trans-
form together under some group such as O(3, 2) or O(4, 1). An examination of
the field equations suggest that there may be such a symmetry, as one sees in the
parallel derivation of the Maxwell equations from the gauge invariant nonrelativistic
Schrödinger equation. For the latter, the explicit invariance which is evident in the
homogeneous equations, that of the Lorentz group, had significant experimental ev-
idence to justify such an assumption; at the present time there is some evidence for
such a larger symmetry as O(3, 2) or O(4, 1), as we shall see in the discussion of the
applications of the five dimensional generalization of Maxwell’s theory below, but
it is not yet definitive. We therefore do not assume, a priori, the full symmetry under
O(3, 2) or O(4, 1). It is sufficient for our purposes to achieve manifest Lorentz co-
variance (and Poincaré symmetry for the equations of motion). We first demonstrate
this argument with an analysis of the gauge theory for the nonrelativistic Schrödinger
equation. Nevertheless, we shall refer to quantities such as fαβ(x, τ ) as tensors as a
matter of notation.

The nonrelativistic fully gauge invariant Schrödinger equation is

i
∂

∂t
ψt (x) = (p − eA(x, t))2

2M
ψt (x) − eA0; (4.13)
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54 4 Gauge Fields and Flavor Oscillations

the current J and the charge density J 0 ≡ ρ satisfy the conservation law

∇ · J + ∂ρ

∂t
= 0, (4.14)

where

J = ie

2M
[ψ∗(∇ − ieA)ψ − ψ(∇ + ieA)ψ∗], (4.15)

and
J 0 = ρ = eψ∗ψ. (4.16)

The inhomogeneous Maxwell field equations, written formally in terms of the four-
vector indices, are (e.g. Jackson 1974; Landau 1951)

∂ν Fμν = eJμ; (4.17)

they may be obtained from a Lagrangian providing the Schrödinger equation as
a field equation, with a gauge invariant term proportional to Fμν Fμν , as we shall
describe below in our discussion of the 5D fields.

There is clearly no linear coordinate transformation that can generate a linear
combination of J and J 0, and therefore the relation (4.17) is not covariant. The
relativistic covariance of the Maxwell equations, as discussed by Einstein (1905)
is based on the assumption that the current is a covariant four vector. As we have
seen, this does not hold for the gauge field construction based on the nonrelativistic
Schrödinger equation.

For the relativistic case, Jackson (1974) has shown how one can construct a covari-
ant four vector current from a sequence of elementary charged events in spacetime,
which we shall refer to again below. It is, however, important to note that the homo-
geneous equations corresponding to (4.17), i.e., for Jμ = 0, do reflect the Lorentz
symmetry, suggesting that such a symmetry may indeed be a symmetry of the world.
To realize this symmetry consistently, one must use a form of the quantum theory
that gives rise to a covariant four current based, as we see above, on (4.10).

A simple set of field equations, providing second order derivatives of the poten-
tials, is obtained by considering the Lagrangian density due to the field variables
to be of the form fαβ f αβ , where we leave open for now the question of choosing
a signature for raising and lowering the index of the fifth component. Writing a
Lagrangian density for which setting the coefficient of the variation of ψ∗ equal to
zero gives the Stueckelberg-Schrödinger equation,1 with this additional term for the
gauge fields of the form

1Gottfried (1966) has pointed out that this procedure is not completely consistent since the
Schrödinger wave ψ is not a mechanical quantity; it is, however, consistent for quantum field
theory, and provides a convenient procedure to generate field equations for the first quantized the-
ory under discussion here. The method is widely used as a heuristic tool (for example, Bjorken
1964).
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L = 1

2

(
i
∂ψ

∂τ
ψ∗ − iψ

∂ψ∗

∂τ

)

− 1

2M

[
(pμ − e′aμ)ψ((pμ − e′aμ)ψ)∗

]
(4.18)

+ e′(a5ψψ∗) − λ

4
f αβ fαβ,

where λ is, as we discuss below, an arbitrary real dimensional scale factor.
As for the 4D Maxwell fields, for which the Lagrangian does not contain ∂ A0/∂t ,

the Lagrangian does not contain ∂a5/∂τ , and therefore a full canonical quantization
(as contrasted with path integral approaches such as Fadeev-Popov (Fadeev 1967)),
which requires identification of a canonical momentum for the fields as the deriva-
tive of the Lagrangian density with respect to the time derivative of the field, is not
easily accessible. Henneaux and Teitelboim (1992) and Haller (1972) have discussed
methods for dealing with this problem; these methods have been applied by Hor-
witz and Shnerb (1993) to carry out the canonical quantization of the 5D fields (see
Sect. 10.7). We just remark here that the three photon polarization states (in dimen-
sionality the number of field components minus the two constraints due to Gauss’s
law and a gauge condition) may fall under the O(2, 1) or O(3) symmetry groups;
as we discuss in Chap.10, the two degrees of freedom of black body radiation is the
result of the application of a second gauge condition on the asymptotic fields.

The variation of the potentials aα in (4.18) then provides the field equations

λ∂α fβα = jβ (4.19)

where

jμ = ie′

2M
{(∂μ − ie′aμ)ψψ∗ − ψ((∂μ − ie′aμ)ψ)∗}, (4.20)

and
j5 = e′ψψ∗ ≡ ρ5. (4.21)

As for the nonrelativistic gauge theory based on the Schrödinger equation, there is no
coordinate transformation which can induce a linear combination of jμ and j5, and
therefore these equations cannot be covariant under O(4, 1) or O(3, 2), although the
homogeneous form of (4.19) for jα = 0 does admit such a higher symmetry.2

2If such a higher symmetry, such as O(3, 2) or O(4, 1) were to be found as a general property
of particle kinematics, such as Lorentz covariance, in the framework of our present experimental
knowledge, then a generalization of the Stueckelberg theory could be written with five momenta
transforming under this group. The corresponding gauge fields would then be one dimension higher,
to take into account the evolution of the system, and the resulting homogeneousfield equationswould
appear to be O(4, 2), O(3, 3) or O(5, 1) invariant. The corresponding theory of spin, as worked out
in the previous chapter, would then rest on the method of Wigner applied to the stability group of
a five-vector. In this book, we shall restrict our analysis to systems which are manifestly covariant
on the level of the Lorentz group.

http://dx.doi.org/10.1007/978-94-017-7261-7_10
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Furthermore, the current jα satisfied, as follows from the Stueckelberg-
Schrödinger equation, the conservation law

∂α jα = 0 (4.22)

In general, then, the current jμ, cannot be the conserved Maxwell current (Saad
1989; see also Stueckelberg 1941). Writing Eq. (4.22) in the form

∂μ jμ + ∂ρ

∂τ
= 0 (4.23)

suggests taking the integral over all τ (Stueckelerg 1941). If ρτ (x) → 0 for τ →
±∞, that is, that the expectation of the occurrence of events in a finite region of
xμ vanishes for large values of the evolution parameter (the physical system evolves
out of the laboratory), then the second term vanishes under this integration, and one
finds that

∂μ Jμ = 0, (4.24)

where

Jμ(x) =
∫ +∞

−∞
dτ jμτ (x) (4.25)

can be identified as the Maxwell current (this procedure has been called “concate-
nation” (Horwitz 1982).

In his book on electrodynamics, Jackson (1974) provides a construction of a
covariant current by starting with an elementary current element eẋμδ4(x − x(s)),
where s is considered to be some parameter along the worldline xμ(s) of the moving
charged event, say, the proper time. He then asserts that

Jμ(x) = e
∫

dsẋμδ4(x − x(s)) (4.26)

is conserved by noting that

∂μ Jμ(x) = e
∫

dsẋμ∂μδ4(x − x(s))

= −e
∫

d

ds
δ4(x − x(s)),

(4.27)

which vanishes if the worldlinemoves out of the range of the laboratory as s → ±∞.
The transition from (4.25) to (4.26) is achieved by noting the identity

− d

ds
δ4(x − x(s)) = ẋμ∂μδ4(x − x(s)); (4.28)

this is, however, precisely the conservation law (2.21) for the case ρ(x) = δ4(x − x ′)
for a charged event at the point x ′. It follows from Jackson’s construction, as well as
the argument leading to (4.25), that what is considered a “particle”, in electromag-
netism, but also in the probability theory associated with quantum mechanics, i.e. an
object which satisfies a law of conserved current and charge (or probability density),
corresponds to at least a large segment of a worldline (Land 1998), an essentially

http://dx.doi.org/10.1007/978-94-017-7261-7_2
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nonlocal object in theMinkowski space. The nonrelativistic Schrödinger equation has
a locally defined conserved current; the bilinear density ψN R(x)∗ψN R(x) contains
the product of wave functions of precisely equal mass. As we have seen in Chap.2,
e.g. (2.27), the Stueckelberg wave function for a free particle evolves according to

ψτ (x) = U (τ )ψ(x) = 1

(2π)2

∫
d4 pe−i

pμ pμ
2M τ e−i pμxμψ(p); (4.29)

since pμ pμ = −m2, the variable corresponding to the measured mass, the τ integra-
tion of the bilinear has the effect of reducing this form to an integral over a bilinear
diagonal in the mass. Thus, the τ integration is associated with the retrieval of “par-
ticle” properties, as in our discussion of the Newton-Wigner problem in Chap.2, and
Nambu’s (1950) reduction, by integrating the wave function over τ with a factor

e−i Mτ
2 with predetermined M of Feynman’s formulation (Feynman 1950) of pertur-

bation theory to the particle mass shell.
Turning to the field equations (4.19), we see that an integral over τ , assuming the

asymptotic vanishing of the fμ5 field in τ , results (for the μ component) in

∂ν
∫

dτ fμν(x, τ ) =
∫

dτ jμ(x, τ ); (4.30)

the right hand side corresponds, as we have argued, to the conserved current of
Maxwell, so that we may identify, from (4.12),

∫
dτaμ(x, τ ) = Aμ(x), (4.31)

i.e., the Maxwell τ -independent field. Thus the Maxwell field emerges as the zero
mode of the fields aμ(x .τ ), which we have called the “pre-Maxwell” fields (Saad
1989). Due to the linearity of the field equations, the integral over the field equations
(4.19) reduce precisely, as we have seen, to the standard Maxwell form (this remark
does not hold, aswe shall see, to the nonlinear equations of the nonabelianYang-Mills
fields).

The physical situation that we have described here corresponds to the emergence
of the Maxwell fields from detection apparatus that intrinsically integrates over τ . It
would appear that there is, according to this theory, a high frequency modulation of
the Maxwell field that is not easily observable in apparatus available in laboratories
at the present time. There has been some indirect evidence, in connection with the
self-interaction problem, for the existence of the classical 5D fields in connection
with an extensive investigation of the self-interaction problem (Aharonovich 2011).
Furthermore, the fifth field, as we have pointed out above, can be responsible for the
transition represented in Stueckelberg’s diagram Fig. 2.1; it also plays an essential
role in the neutrino oscillation model that we shall describe below.

Equation (4.31) implies that the dimensionality of the pre-Maxwell fields must,
since the Maxwell fields A have dimensionality L−1, be L−2. Thus the charge that
we have called e′ must have dimensional L (pμ has dimension L−1). The gauge
invariant field strengths then have dimension L−3. The quadratic contribution of the
field strengths to the Lagrangian, f αβ fαβ then has dimension L−6. Since the action

http://dx.doi.org/10.1007/978-94-017-7261-7_2
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is an integral of the Lagrangian density over dτd4x , of dimension L5, the quadratic
field strength terms must have a dimensional factor λ. The current in the resulting
field equations contains the factor e′, and the derivatives of the field strength on the
right emerge with a factor λ; thus we can identify

e = e′/λ (4.32)

with the dimensionless Maxwell charge.
Assuming the analog of the Lorentz gauge for the five dimensional fields (4.12),

∂αaα = 0, (4.33)

the field equations (4.19) become

(−∂2
τ + ∂2

t − ∇2)aβ = jβ/λ, (4.34)

where we have taken the O(4, 1) signature for the fifth variable τ . Representing
aβ(x, τ ) in terms of its Fourier transform aβ(x, s), with

aβ(x, τ ) =
∫

dse−isτ aβ(x, s), (4.35)

one obtains
(s2 + ∂2

t − ∇2)aβ(x, s) = jβ(x, s)/λ, (4.36)

providing a relation between the off-shell mass spectrum of the aβ field and the
quantum mechanical current source. As we have pointed out earlier, the solutions of
wave equationswith a definitemassm have, according toNewton andWigner, contain
nonlocality of the order of 1/m; thus (for application of their arguments, thinking of
the field as the wave function of a quantum of the field) the massless particle would
have a very large support. There is some difficulty in imagining the emission of a
photon from an atom of the size 10−8 cm which instantaneously has infinite support.
However, if the photon being emitted is far off shell, and has an effective mass s, as
in the equations above, which is fairly large, the particle being emitted can have very
small spatial support, undergoing a relaxation process asymptotically to a particle
with very small, essentially zero, mass.

A similar argument can be applied to the photoelectric effect; the energy �ω
associated with a photon of frequency ω is absorbed by a metal plate, and an electron
emitted with exactly this energy (minus the work function to free the electron).
The contraction of the energy of a highly nonlocalized radiation field into the very
small region occupied by the electron is often attributed to “collapse of the wave
function”, but this statement does not account for the physical mechanism (even
“collapse” mechanisms require the construction of a model (Hughston 1996; see
also Silman 2008). In this process, again one may think of the photon going far off
mass shell to be able to be absorbed locally.

It has often been argued, moreover, that an experimental bound on the photon
mass is provided by gauge invariance. This argument would, of course, provide a
bound if the mass term in the field equations had some given constant value; then the
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shift of the vector potential by a gradient term, even if the gauge function satisfied a
homogeneous d’Alembert type equation, would leave an extra term in the equation
that would not vanish. However, as we have seen, the field equation contains a
second derivative with respect to τ , and if the gauge function has a vanishing 5D
d’Alembertian of O(4, 1) or O(3, 2) type, gauge invariance would be maintained.

Finally, we remark that the foliation due to spin-statistics in the framework of
Wigner’s theory of induced representations, although worked out for the four-vector
gauge fields in the previous chapter, remains valid for the O(3, 1) part of the 5D
gauge fields; only a fifth scalar field must be added to the Hamilton constructed, as
we shall see in the next section.

4.2 Nonabelian Gauge Fields and Neutrino Oscillations

In this section we extend the picture of Stueckelberg for pair annihilation in classical
dynamics to a diagram with two (or more) maxima, such as shown in Fig. 4.1, in
which the incoming line eventually continues to move in the positive direction of t .
Recall that the diagram of Fig. 2.1 constitutes, in the simplest interpretation, in its
application to electromagnetism, to particle-antiparticle annihilation. In the case of
a system representing a higher symmetry group than the U (1) of electromagnetism,
the two branches of the curve can correspond to two different “flavors”, i.e. two
different types of particles, each corresponding to a component of a vector-valued
wave function, such as the nucleon, containing both the neutron and the proton. Yang
andMills (1954) thought of the nucleon as represented by such a wave function with
two components corresponding to the neutron and the proton, which have different
charge but almost the same mass, as a doublet state. Such a wave function would
support the action of a higher symmetry group, in this case SU (2). In our discussion
of the gauge transformation ψ → ei�ψ, one may use a two by two matrix for the
exponent�; the resulting gauge compensation fields, which one might call bα, again
for α = 0, 1, 2, 3, 5 would then be two by two matrices as well and noncommuting.
The corresponding SU (2) group is called “isotopic spin,” or “isospin,” since the
transition between neutrons and protons is involved in the generation of isotopes in
nuclear physics.

Such fields are called nonabelian gauge fields, and play an important role in
modern gauge theories. The importance of such theories lies largely in the fact
that fields corresponding to gauge groups obey Ward identities (Kaku 1993; Peskin
1995) that control the singularities generated by the quantized fields and admit the
application of the renormalization program (Bogliubov 1959; ’t Hooft 1971). In
such a construction, the vertex of the Stueckelberg diagram can contain not just a
transition to antiparticle, but to an antiparticle with a different identity; the transition
is induced through an interaction with a field that can connect different components
of the incoming and outgoing (in τ ) wave function. The diagram of Fig. 4.1 can then

http://dx.doi.org/10.1007/978-94-017-7261-7_2
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corresponds to two such transitions, one at each vertex (such a diagram appears in
Feynman’s paper in 1949 (Feynman 1949) with the sharp vertices characteristic of
a perturbation expansion), resulting in a change of components of the particle as it
evolves in spacetime.

As a simple example of such a phenomenon,we discuss here the so-called neutrino
oscillation. In the theory of weak and electromagnetic interactions of Glashow et al.
(1967), the electron neutrino, observed, for example in neutron decay to proton,
electron and (anti-)neutrino, and the μ-neutrino, observed in muon decay to electron
neutrino and antineutrino, form a doublet under a group called “weak isospin”. There
is an additional type of neutrino, the τ neutrino, which occurs in the decay of the τ
meson, produced, for example, in high energy e+e− collisions (Henley 2007). Even
though the masses of the three types of neutrinos are quite different they may be
thought of as a triplet, with a gauge group SU (3) with good analogy to the SU (3)
of quantum chromodynamics. Since the τ neutrino appears to be much heavier,
it is less likely to be involved in the neutrino oscillations, but certainly not ruled
out. However, for simplicity, we shall restrict our attention here to the νe and νμ

oscillations, although he same qualitative picture would be applicable if all three
neutrinos were taken into account. The corresponding gauge fields are called W and
Z , after the particle resonances thought to play an important role in the mediation
of the weak and electromagnetic (along with the elctromagnetic potential field A)
interactions.

In the flavor oscillations of the neutrino system, interactionswith the vector bosons
of the Glashow-Salam-Weinberg (GSW) theory (Weinberg 1967) which induce the
transition can produce, as we have pointed out, pair annihilation-creation events.
In the framework of Stueckelberg theory, pair annihilation and creation events can
be correlated, as shown in Fig. 4.1, by following the world line.3 The methods of
Feynman’s original paper, based on a spacetime picture (Feynman 1949), closely
related toStueckelberg’s earlier formulation,would admit such a construction aswell.
An “on-shell” version of our Fig. 4.1 appears,with sharp vertices, in Feynman (1949).

It may be noted from this figure that there is a net decrease in the time interval,
possibly very small, observed for the particle to travel a certain distance. One might
expect that over a long distance of transmission (long baseline experiments), neu-
trinos, due to this oscillation phenomenon, might arrive earlier at their destination
than predicted by light speed estimates. The most recent experiments have shown
that the arrival times are consistent with light speed; in the most recent OPERA ex-
periment (Acquafredda(2009), Adam (2013)) over the 732km distance form CERN
to Gran Sasso, an arrival time of 6.5 ± 7.4

{+8.3
−8.0

}
ns less than light speed arrival is

reported, certainly consistent with light speed. There is, however, some room in the
distribution found for early arrival; it would require higher precision to rule out early
arrival.

3The curve shown in Fig. 4.1 should be thought of as corresponding to the expectation values
computed with the local density matrix associated with the gauge structured wave function of the
neutrino beam.
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Fig. 4.1 Semiclassical
neutrino oscillation

x

t

Vµ Va

Vb

We remark that it has, however, been observed in the Supernova 1987a that the
neutrinos arrive about 3h before the light signal (Bahcall 1989). To show that a small
advance in neutrino arrival times (“pull back” in time) could be consistent with this
data as well, we make the following estimate.

An advanced arrival of the order of 6.5ns in each 730km (consistent with this
data) would result in approximately 3 × 103 h early arrival. However, as we shall
see below, the mechanism for the oscillations associated with such a “pull-back”
involves the participation of the fifth field in an essential way, expected to fall off
far from sources. One may estimate on the basis of a 3h early arrival the range of
effectiveness of the fifth field, assuming an advance of 6.5ns in each 730km where
effective. A simple estimate yields about 30parsec (pc), as an effective size of the
supernova. The Sun is about 104 pc from the center of the galaxy, so an effective
range of about 30 pc is not unreasonable. This argument is certainly not a proof of
a “pull back”; it is meant to show that a small effect of this type could be consistent
with the supernova 1987a data (see, moreover, further discussion in Bahcall (1989)).

Suppose, for example, that such oscillations can occur twice during the transit
(Kayser 2004) from CERN to the Gran Sasso detectors, as in Fig. 4.2. The particles
(and antiparticles) have almost everywhere propagation speed less than light velocity
(except for the vertices, which we estimate, based on the Z , W lifetimes, to occur in
about 10−22 s); it is clear from Fig. 4.2 that an early arrival would not imply, in this
model, that the neutrinos travel faster than light speed. The effect noted by Glashow
and Cohen (2011), indicating that Ĉerenkov radiation would be seen from faster
than light neutrinos, would likely not be observed from the very short lived vertices,
involving interaction with the W and Z fields, without sensitive detectors placed
appropriately on the track. The neutrino arrivals detected at Gran Sasso appear to be
almost certainly normal particles. The ICARUS detector (Acquafredda et al. 2009)
records no γ’s or e+e− pairs which would be expected from Ĉerenkov radiation from
faster than light speed neutrinos (Cohen 2011).

Aquantummechanical counterpart of thismodel, in terms ofEhrenfestwave pack-
ets, is consistent with this conclusion. The derivation of the Landau-Peierls relation
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Fig. 4.2 Gauge condition for oscillations

�p�t ≥ �

2c in the framework of the Stueckelberg theory discussed in Chap.2, in-
volves the assumption that the energy-momentum content of the propagating wave
function contains predominantly components for which p

E < 1. Interactions, e.g., at
the vertices of the curve in Fig. 4.2, can affect this distribution in such a way that, for
some (small) interval of evolution, the wave packet can contain significant contribu-
tions to the expectation value of p/E much larger than unity, and thus the dispersion
�t in the Landau-Peierls relation can become very small without violating the un-
certainty bound established by < E/p >. The interaction vertex may then be very
sharp in t , admitting a precise manifestation of the deficit time intervals (as in the
correspponding Feynman diagram (Feynman (1948)).

The upper part of Fig. 4.2 shows schematically the orbit of a neutrino in spacetime
during its transit, according to this theory, inwhich thefirst (annihilation) event results
in the transition from a νμ to either a νμ or νe through interaction with a GSW boson
(for this simple illustration we consider only the μ and e neutrinos, although there
is no reason to exclude the τ neutrino) and the second (creation) event involves a
transition from either of these states back to a νμ, νe state.

We now proceed to formulate the nonabelian gauge model; here, we call generi-
cally, the nonabelian gauge field zα.

http://dx.doi.org/10.1007/978-94-017-7261-7_2
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The gauge covariant form of the Stueckelberg Hamiltonian, valid for the non-
Abelian case as well as for the Abelian, with coupling g to the 5D fields, is

K = (pμ − gzμ)(pμ − gzμ)

2M
− gz5(x), (4.37)

where the zμ fields are non-Abelian in the SU (2) sector of the electroweak theory.
Since, as we shall below, ẋμ is proportional to pμ − gzμ, the local expectation of the
square of the “proper time” is proportional to that of the first term in the Hamiltonian.
Therefore, see we see that the local expectation of z5 must pass through that of the
conserved value of−K/g to admit passage of the orbit through the light cone. In the
lower part of Fig. 4.2, we have sketched a form for a smooth z5 wave (in expectation
value) that would satisfy this condition. Such a wave can be easily constructed as
the superposition of a few harmonic waves with different wavelengths (originating
in the spectral density of the neutrino wave functions [see Eq. (4.49) below).

The occurrence of such a superposition can be understood from the point of view
of the structure of the 5D GSW fields. Working in the context of the first quantized
theory, where the functions ψ belong to a Hilbert space L2(x, d4x) ⊗ d, with d the
dimensionality of the gauge fields (d = 2 corresponds to the Yang-Mills case (Yang
1954) and the SU (2) sector of the electroweak theory which we shall deal with here;
our procedure for extracting the field equations and Lorentz force applies for any d),
the field equations can be derived from the Lagrangian density (we consider the case
of particles with spin in the next section)

L = 1

2
Tr

(
i
∂ψ

∂τ
ψ† − iψ

∂ψ†

∂τ

)

− 1

2M
Tr

[
(pμ − gzμ)ψ((pμ − gzμ)ψ)†

]
(4.38)

+ gTr(z5ψψ†) − λ

4
Tr f αβ fαβ,

where ψ is a vector valued function representing the algebraic action of the gauge
field, and ψ† is a 2-component (row) conjugate vector valued function; L is a local
scalar function. The operation Tr corresponds to a trace over the algebraic indices of
the fields; the dimensional parameter λ arises from the relation of these fields to the
zeromode fields of the usual 4D theory (Yang 1954), as for the electromagnetic fields
discussed above. For the variation of the field strengths we take δzα to be general
infinitesimal Hermitian algebra-valued functions. Extracting the coefficients of these
variations, with the definition of the non-Abelian gauge invariant field strength tensor
(Yang 1954)

f αβ = ∂αzβ − ∂βzα − ig[zα, zβ], (4.39)

one obtains the field equations

λ
[
∂α fβα − ig[zα, fβα]] = jβ (4.40)

where

jμ = ig

2M
{(∂μ − igzμ)ψψ† − ψ((∂μ − igzμ)ψ)†}, (4.41)
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and
j5 = gψψ† ≡ ρ5. (4.42)

Let us now impose, as done by Yang and Mills (1954), the subsidiary condition

∂αzα = 0. (4.43)

We then obtain from (4.40)

(−∂2
τ + ∂2

t − ∇2)zβ = jβ/λ + ig[zα, fβα], (4.44)

where we have taken the O(4, 1) signature for the fifth variable τ . Representing
zβ(x, τ ) in terms of its Fourier transform zβ(x, s), with

zβ(x, τ ) =
∫

dse−isτ zβ(x, s), (4.45)

one obtains

(s2 + ∂2
t − ∇2)zβ(x, s) = jβ(x, s)/λ + ig

∫
dτeisτ [zα(x, τ ), fβα(x, τ )], (4.46)

providing a relation between the off-shell mass spectrum of the zβ field and the
sources including the quantum mechanical current as well as the non-linear self-
coupling of the fields.

Since the behavior of the z5 field plays an essential role in the immediately ap-
plicable predictions of our model, consider the Eq. (4.46) for β = 5,

(s2 + ∂2
t − ∇2)z5(x, s) = j5(x, s)/λ + ig

∫
dτeisτ [zν(x, τ ), f5ν(x, τ )]. (4.47)

In a zeroth approximation, neglecting the nonlinear coupling term, we can study
the equation

(s2 + ∂t
2 − ∇2)z5(x, s) ∼= j5(x, s)/λ. (4.48)

The source term is a convolution of the lepton wave functions in the Fourier space,
so that

(s2 + ∂t
2 − ∇2)z5(x, s) ∼= g

2πλ

∫
ds′ψ(x, s′)ψ†(x, s′ − s). (4.49)

The Fourier representation over s of the wave function corresponds to the set of
probability amplitudes for finding the particle in the corresponding mass states;
we expect these functions to peak in absolute value, in free motion, at the measured
neutrinomasses. There is therefore the possibility of severalmass values contributing
to the frequency of the spectrum of the z5 field (the diagonal contributions contribute
only to its zero mode, a massless radiative field of essentially zero measure). In
order for the forces to give rise to a form for the z5 field of the type illustrated
in Fig. 4.2, there must be at least three peaks in the mass distribution of the wave
functions, corresponding to three families of neutrinos. This condition has been noted
in a somewhat different context (Nunokawa 2006) and in other studies (for example
Refs. Fogli 1995; Bandyopadahyay 2002) discussing the three family structure).

We now turn to study the trajectories of the particles with non-Abelian gauge
interactions to further check the consistency of our model. The Heisenberg equations
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of motion are associated with expectation values for which the classical motion is a
good approximation if the wave packets are fairly well localized.

From the Hamiltonian (4.37) one obtains

ẋλ = i[K , xλ]
= 1

M
(pλ − gzλ),

(4.50)

of the same form as the classical result.
The second derivative is defined by

ẍλ = i[K , ẋλ] + ∂ ẋλ

∂τ
, (4.51)

where the last term is necessary because ẋλ contains, according to (4.50), an explicit
τ dependence which occurs in the fields zλ. One then obtains (the Lorentz force for
the non-Abelian case was also obtained, using an algebraic approach, in Land 1995)

ẍλ = − g

2M
{ẋμ, f λ

μ} − g

M
f 5λ. (4.52)

Let us make here the crude approximation that was used in obtaining (4.48), i.e.,
neglecting the nonlinear coupling to the spacetime components of the field. Then,
(4.52) becomes, for the time component,

ẗ ∼= − g

M

∂z5

∂t
. (4.53)

The rising z5 field (Fig. 4.2), before the first passage through the light cone, would
imply a negative curvature, as required. This consistency persists through the whole
process.

We further note that

− ds2

dτ2
= 2

M
(K + gz5), (4.54)

so that
d

dτ

ds2

dτ2
= −2g

M

dz5

dτ
, (4.55)

consistent as well with the form of Fig. 4.2.

4.3 The Hamiltonian for the Spin 1
2 Neutrinos

The Lorentz force for the Abelian case with spin can be computed in exactly the same
way from (3.32) with the additional term −e′a5 as in (4.11). Note that the Lorentz
force is not linear, so it cannot be mapped back to theMaxwell Lorentz force directly
by concatenation.

http://dx.doi.org/10.1007/978-94-017-7261-7_3
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Following the method of Chap.3 for the non-Abelian case, we find a Hamiltonian
of the form

K = 1

2M
(p − gz)μ(p − gz)μ − g

2M
fμν�n

μν − gz5, (4.56)

where �n
μν is defined by (3.33).

Since γ5 commutes with this Hamiltonian, there is a chiral decomposition (true
for (3.32) as well), independently of the mass of the neutrinos, which admits the usual
construction of the SU (2) × U (1) electroweak gauge theory. The SU (2) sector that
we discuss below would then apply to the left handed leptons. The asymptotic (free)
solutions also admit a (foliated) helicity decomposition (Arshansky 1982).

We shall discuss the possibilities of CP violation provided by this structure below.
To compute the Lorentz force, as in (4.50), one obtains the particle velocity

ẋλ = i[K , xλ] = 1

M
(pλ − gzλ). (4.57)

For the second derivative, from (4.51) and (3.34), we obtain

ẍλ = − g

2M
{ f λμ, ẋμ} − g

M
f 5λ

+ g

2M2 ∂λ f n
μν�n

μν + ig2

2M2 [ f n
μν, zλ]�n

μν .

(4.58)

The third term of (4.58) corresponds to a Stern-Gerlach type force. Note that we
have included the subscript or superscript n to the quantities that are transverse in
the foliation.

Under the assumption that the fields are not too rapidly varying, and again neglect-
ing coupling to the spacetime components of the field zα, we see that the acceleration
of the time variable along the orbit may again be approximated by (4.53).

We are now in a position to write the Lagrangian for the full theory with spin.
We take for the Lagrangian the form (4.38) with an additional term for the spin
interaction and factors of γ0(γ · n) to assure covariance, yielding under variation of
ψ† the Stueckelberg equation for ψ with Hamiltonian (4.56):

Ln = 1

2
Tr

(
i
∂ψ

∂τ
ψ̄ − iψ

∂ψ̄

∂τ

)
(γ · n)

− 1

2M
Tr

[
(pμ − gzμ)ψ(pμ − gzμ)ψ)(γ · n)

]
(4.59)

+ gTr(z5ψψ̄(γ · n)) − λ

4
Tr f αβ fαβ

+ g

2M
Tr( fμν�n

μνψψ̄(γ · n)).

Defining jα as in (4.41), (4.42), but with the factor γ0γ · n, required for covariance,
i.e.,

jnμ = ig

2M
{(∂μ − igzμ)ψψ̄ − ψ(∂μ − igzμ)ψ)}(γ · n), (4.60)

http://dx.doi.org/10.1007/978-94-017-7261-7_3
http://dx.doi.org/10.1007/978-94-017-7261-7_3
http://dx.doi.org/10.1007/978-94-017-7261-7_3
http://dx.doi.org/10.1007/978-94-017-7261-7_3


4.3 The Hamiltonian for the Spin 1
2 Neutrinos 67

and
jn5 = gψψ̄(γ · n) ≡ ρn, (4.61)

the variation of the Lagrangian with respect to the z-fields, where we have used
the cyclic properties of matrices under the trace, yields, setting the coefficients of
δzν, δz5 equal to zero, the field equations

λ(∂β f 5β − ig[zβ, f 5β]) = ρn (4.62)

and

λ(∂β f νβ − ig[zβ, f νβ])
= jn

ν + g

M
�n

μν
{
∂μρn − ig[zμ, ρn]}. (4.63)

Equation (4.63) corresponds to a Gordon type decomposition of the current, here
projected into the foliation space (spacelike) orthogonal to nμ. Note that the covariant
derivative of ρn in the last term is also projected into the foliation space.

With the subsidiary condition ∂βzβ = 0, as before, we may write the field equa-
tions as

λ(−∂β∂βz5 − ig[zμ, f 5μ]) = ρn (4.64)

and

λ(−∂β∂βzν − ig[zβ, f νβ]) = jn
ν + g

M
�n

μν
{
∂μρn − ig[zμ, ρn]}. (4.65)

Note that the spin coupling is not explicit in (4.65). Neglecting, as before, coupling
to the spacetime components, one reaches the same conclusions for the approximate
behavior of the z5 field, i.e., as determined by Eq. (4.49) with ψ† replaced by ψ̄γ · n.
The latter reduces to the same expression for nμ → (−1, 0, 0, 0).

4.4 CP and T Conjugation

The association of this timelike vector with the spacelike surfaces used by Schwinger
and Tomonaga (1948) for the quantization of field theories has been recently dis-
cussed (Horwitz 2013). These spacelike surfaces form the support of a complete set
of commuting local observables on which the Hilbert space of states in constructed.
It follows from the properties of the wave functions for a particle with spin, discussed
in Chap.3, that the CPT conjugate theory would be associated with the same space-
like surface, corresponding to±nμ. However, the CP conjugate, taking n → −n and
n0 → n0 refers to an entirely different spacelike surface (the time reversed states, for
which n → n and n0 → −n0 are associated with this spacelike surface as well, with
reflected unit timelike vector). The equivalence of the physical processes described
in these two frameworks would depend on the existence of an isometry (including
both unitary and antiunitary transformations) changing the basis of the space from

http://dx.doi.org/10.1007/978-94-017-7261-7_3
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the set of local observables on the first spacelike surface to those defined on the
conjugated surface as well as the equivalence of the physics evolving from it after
the CP (or T ) conjugation.

The spin coupling term in (4.56) contains the possibility of CP violation in gener-
ating a physics that is inequivalent on the new spacelike surface. The nonrelativistic
quantum theory with Zeeman typeσ · H coupling is, of course, not invariant under T
conjugation. Precisely the same situation is true in the corresponding relativistic equa-
tion (4.56); as we have pointed out, in the special frame in which nμ = (−1, 0, 0, 0),
the matrices �

μν
n reduce to Pauli matrices. Under Lorentz transformation they still

generate the algebra of SU (2) in a fundamental representation, and therefore still
contain the imaginary unit. Therefore, the physical evolution on the CP conjugate
spacelike surface is not, in general, equivalent to the original evolution. For this phe-
nomenon to occur, it is necessary that there be present an fμν field. In addition to
self-interaction effects, for which the intrinsic CP violation can be expected to can-
cel, the Stueckelberg oscillation diagram of Fig. 4.1 suggests the existence of fields
present in the equations of motion of the second branch due to the proximity of the
accelerated motion in the first branch, thus providing a fundamental mechanism for
CP violation. A consequence of this structure is that the physics in the correspond-
ing CP conjugated system of the quantum fields, evolving from the CP conjugate
spacelike surface, could be inequivalent.

In this chapter, we have argued that, according to the derivation of the Landau-
Peierls relation given in Arshansky (1985), the vertices of the neutrino-antineutrino
transitions may be very sharp, and provide for a rather precise “pull back” of the
time interval. Significantly higher precision than available in the present experiments
would be necessary to see such an effect.

We have worked out the equations describing the Lorentz forces and the field
equations of the corresponding (5D) non-Abelian gauge theory, with the help of
Stueckelberg type Hamiltonians both for the spinless case and for the case of rel-
ativistic particles with spin in interaction with such a nonabelian gauge field, and
have shown that the conclusions reached are, in lowest approximation, consistent
with our simple model. We emphasize that, in the framework of the Stueckelberg
model, the dynamics of the fifth gauge field, modulated by the particle mass spec-
trum contained in the wave function (as in Eq. (4.49), plays an essential role for the
oscillation process.

The presence of spin, described in the relativistic framework ofWigner (1939), as
inArshansky (1982),Horwitz (2013), introduces a foliation in theHilbert space and in
the structure of the fields, both classical and quantum. Since, inTomonaga-Schwinger
quantization (Tomonaga 1948) of the fields, the spacelike surface constructed to
define a complete set of local observables is characterized by being orthogonal to
a timelike vector n of the foliation (Horwitz 2013), the actions of the discrete CP
or T transformations change the basis for the construction of the Hilbert space to
essentially different spacelike surfaces. Along with the form of the spin coupling
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term in (4.56), this suggests a model for CP or T violation on the first quantized
level.

We furthermore remark that our model would be applicable to the K , B and D
systems (Kayser 2004) as well, manifested by the quark gluon interactions in their
substructure.
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