
3Spin,Statistics andCorrelations

We shall discuss in this chapter the basic idea of a relativistic particle with spin,
based on Wigner’s seminal work (Wigner 1939). The theory is adapted here to be
applicable to relativistic quantum theory; in this form,Wigner’s theory, together with
the requirements imposed by the observed correlation between spin and statistics in
nature for identical particle systems, makes it possible to define the total spin of a
state of a relativistic many body system.

We shall show, furthermore, that a generalization of the construction of Wigner
yields, in the framework we shall present here, a representation for tensor operators
corresponding to an invariant decomposition in terms of irreducible representations
of SU(2); this procedure may be applied as well to spinorial valued operators, such
as Rarita-Schwinger fields (Rarita 1941).

3.1 Relativistic Spin and the Dirac Representation

The spin of a particle in a nonrelativistic framework corresponds to the lowest dimen-
sional nontrivial representation of the rotation group; the generators are the Pauli
matrices σi divided by two, the generators of the fundamental representation of the
double covering of SO(3). The self-adjoint operators that are the generators of this
group measure angular momentum and are associated with magnetic moments. Such
a description is not relativistically covariant, but Wigner (1939) has shown how to
describe this dynamical property of a particle in a covariant way. The method devel-
oped by Wigner provided the foundation for what is now known as the theory of
induced representations (Mackey 1968), with very wide applications, including a
very powerful approach to finding the representations of noncompact groups.

We shall show here how Wigner’s approach can be used to describe the spin of a
particle in the framework of themanifestly covariant theory of Stueckelberg, Horwitz
and Piron (SHP; Stueckelberg 1941; Horwitz 1973), and how this method can be
extended to describe the combined spin states of a many body system.
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34 3 Spin, Statistics and Correlations

In the nonrelativistic quantum theory, the spin states of a two or more particle sys-
tem are defined by combining the spins of these particles at equal time using appro-
priate Clebsch-Gordan coefficients (Clebsch 1872) at each value of the time. The
restriction to equal time follows from the tensor product form of the representation of
the quantum states for a many body problem (Baym 1969; Fetter1971). For two spin
1/2 (Fermi-Dirac) particles, an antisymmetric space distribution would correspond
to a symmetric combination of the spin factors, i.e. a spin one state, and a symmetric
space distribution would correspond to an antisymmetric spin combination, a spin
zero state.1 This correlation is the source of the famous Einstein-Podolsky-Rosen
discussion (Einstein 1935) and provides an important model for quantum informa-
tion transfer. The experiment proposed by Palacios et al. (2009) suggests that spin
entanglement can occur for two particles at non-equal times; the spin carried bywave
fnctions of SHP typewould naturally carry such correlations over thewidth in t of the
wave packets, and therefore the formulation we shall present here would be appro-
priate for application to relativistic quantum information transfer (e.g., Aharonov
1982; Hu 2012; Lin 2009; Lizier 2013).

Wigner (1939) worked out a method for defining spin for relativistic particles.
This formulation is not appropriate for application to quantum theory, since it does
not preserve, as we shall explain below, the covariance of the expectation value
of coordinate operators. Before constructing a generalization of Wigner’s method
which is useful in relativistic quantum theory we first reviewWigner’s method in its
original form, and show how the difficulties arise.

To establish some notation and the basic method, we start with the basic principle
of relativistic covariance for a scalar quantum wave function ψ(p). In a new Lorentz
frame described by the parameters � of the Lorentz group, for which p′μ = �

μ
ν pν

(we work in momentum space here for convenience), the same physical point in
momentum space described in different coordinates, by arguing that the probability
density must be the same, is associated with the wave function

ψ′(p′) = ψ(p) (3.1)

up to a phase, which we take to be unity. It then follows that as a function of p,

ψ′(p) = ψ(�−1p). (3.2)

Since, in Dirac’s notation,

ψ′(p) ≡< p|ψ′ >, (3.3)

Equation (2.67) follows equivalently by writing

|ψ′ >= U(�)|ψ > (3.4)

1See also the very informative study of Jabs 2010, and the discussion of Bennett (2015).
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3.1 Relativistic Spin and the Dirac Representation 35

so that

< p|ψ′ > =< p|U(�)|ψ >

=< �−1p|ψ > (3.5)

= ψ(�−1p),

where we have used

U(�)†|p >= U(�−1)|p >= |�−1p > .

To discuss the transformation properties of the representation of a relativistic
particle with spin, Wigner proposed that we consider a special frame in which
pμ
0 = (m, 0, 0, 0); the subgroup of the Lorentz group that leaves this vector invari-
ant is clearly O(3), the rotations in the three space in which p = 0, or its covering
SU(2). Under a Lorentz boost, transforming the system to its representation in a
moving inertial frame, the rest momentum appears as pμ

0 → pμ, but under this uni-
tary transformation, the subgroup that leaves pμ

0 invariant is carried to a form which
leaves pμ invariant, and the group remains SU(2). The 2 × 2 matrices represent-
ing this group are altered by the Lorentz transformation, and are functions of the
momentum pμ. The resulting state then transforms by a further change in pμ and
an SU(2) transformation compensating for this change. This additional transforma-
tion is called the “little group” of Wigner. The family of values of pμ generated by
Lorentz transformations on pμ

0 is called the “orbit” of the induced representation.
This SU(2), in its lowest dimensional representation, parametrized by pμ and the
additonal Lorentz transformation �, corresponds to Wigner’s covariant relativistic
definition of the spin of a relativistic particle (Wigner 1937).

We now apply this method to review Wigner’s construction based on a represen-
tation induced on the momentum pμ. Let us define the momentum-spin ket

|p, σ >≡ U(L(p))|p0, σ >, (3.6)

where U(L(p)) is the unitary operator inducing a Lorentz transformation of the
timelike p0 = (m, 0, 0, 0) (rest frame momentum) to the general timelike vector
pμ. The effect of a further Lorentz transformation parameterized by �, induced by
U(�−1), can be written as

U(�−1)|p, σ >= U(L(�−1p))U−1(L(�−1p))U(�−1)U(L(p))|p0,σ > (3.7)

The product of the last three unitary factors

U−1(L(�−1p))U(�−1)U(L(p)) (3.8)

has the property that under this combined unitary transformation, the ket is trans-
formed so that p0 → p0, and thus corresponds to just a rotation (called the Wigner
rotation), the stability subgroup of the vector p0. This rotation can be represented by
a 2 × 2 matrix acting on the index σ, i.e., so that

U(�−1)|p, σ >= U(L(�−1p))|p0, σ′ > Dσ,σ′ (�, p) = |�−1p, σ′ > Dσ,σ′(�, p). (3.9)

where, as a representation of rotations, D is unitary. Therefore, taking the complex
conjugate of

< ψ|U(�−1)|p, σ >=< ψ|�−1p, σ′ > Dσ,σ′(�, p),
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one obtains
< p, σ|U(�)ψ >=< �−1p, σ′|ψ > Dσ′,σ(�p), (3.10)

where, in this construction, we have

Dσ′,σ(�, p) = (
(L(p)−1�L(�−1p))

)
σ′,σ, (3.11)

expressed in terms of the SL(2, C)matrices corresponding to the unitary transforma-
tion (3.8). This representation of the unitary transformation is a homomorphism due
to the fact that this subgroup is compact, and has finite dimensional unitary represen-
tations, in particular, the onewe use here (we could have chosen other representations
corresponding to particles carrying intrinsic angular momentum not equal to 1/2).
The result (3.10) can be written as

ψ′(p,σ) = ψ(�−1p,σ′)Dσ′,σ(�, p), (3.12)

in accordancewith (3.2), generalized to take into account the spin degrees of freedom
of the wavefunction. The algebra of the 2 × 2 matrices of the fundamental repre-
sentation of the group SL(2, C) are isomorphic to that of the Lorentz group, and the
product of the corresponding matrices provide the 2 × 2 matrix representation of
Dσ′,σ(�, p); we may therefore write (2.77) as

Dσ′,σ(�, p) = (
L−1(p)�L(�−1p)

)
σ′,σ, (3.13)

where L and � are the 2× 2 matrices of SL(2, C). We discuss these matrices (2× 2
matrices of complex numbers with determinant unity) and the representation they
provide for the Lorentz group in Appendix B.

As we have mentioned above, the presence of the p-dependent matrices represen-
tating the spin of a relativistic particle in the transformation law of the wave function
destroys the covariance, in a relativistic quantum theory, of the expectation value of
the coordinate operators. To see this, consider the expectation value of the dynamical
variable xμ, i.e.

< xμ >= �σ

∫
d4pψ(p, σ)†i

∂

∂pμ
ψ(p, σ).

A Lorentz transformation would introduce the p-dependent 2 × 2 unitary trans-
formation on the function ψ(p), and the derivative with respect to momentum would
destroy the covariance property that we would wish to see of the expectation value
< xμ >.

It is also not possible, in this framework, to form wave packets of definite spin
by integrating over the momentum variable, since this would add functions over
different parts of the orbit, with a different SU(2) at each point.

As will be described in the following, these problems were solved by inducing a
representation of the spin on a timelike unit vector nμ in place of the four-momentum,
using a representation induced on a timelike vector, say, nμ, which is independent
of xμ or pμ (Horwitz 1975; Arshansky 1982). This solution also permits the linear
superposition of momentum states to form wave packets of definite spin, and admits
the construction of definite spin states for many body relativistic systems and its
consequences for entanglement. In the following, we show how such a representation
can be constructed, and discuss some of its dynamical implications.

http://dx.doi.org/10.1007/978-94-017-7261-7_2
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To carry out this program, let us define, as in (3.6),

|n,σ >= U((L(n))|n0,σ > (3.14)

The generators of the transformations U(�) act on the full vector space of both
the nμ and the xμ (as well as pμ). In terms of the canonical variables,

Mμν = Mμν
n + (xμpν − xνpμ). (3.15)

where

Mμν
n = −i

(
nμ ∂

∂nν
− nν ∂

∂nμ

)
(3.16)

The two terms of the full generator commute. Following the method outlined
above, we now investigate the properties of a total Lorentz transformation, i.e.

U(�−1)|n,σ >= U(L(�−1n))(U−1(L(�−1n))U(�−1)U(L(n)))|n0,σ >.

(3.17)

Now, consider the conjugate of (3.17),

< n,σ|U(�) =< n0,σ|(U(L−1(n))U(�)U(L(�−1n)))U−1(L(�−1n)). (3.18)

The operator in the first factor (in parentheses) preserves n0, and therefore, as
before, contains an element of the little group associated with nμ which may be
represented by the matrices of SL(2, C). We now define a state vector in terms of a
vector-valued function �(x) ∈ L2(R4) for which < n,σ|�(x) >= ψnσ(x), so that

< n0σ|U−1(L(�−1n))�(x) >= ψ�−1nσ(x). (3.19)

For � ′(x) ≡ U(�)�(x), contracting both sides of (3.18) with �(x), we obtain

ψ′
n,σ(x) = ψ�−1n,σ′(�−1x)Dσ′,σ(�, n). (3.20)

where

D(�, n) = L−1(n)�L(�−1n), (3.21)

with � and L(n) the corresponding 2× 2 matrices of SL(2, C). � and L(n) to be the
corresponding 2 × 2 matrices of SL(2, C).

It is clear that, with this transformation law, one may take the Fourier transform
to obtain the wave function in momentum space, and conversely. The matrix D is an
element of SU(2), and therefore linear superpositions over momenta or coordinates
maintain the definition of the particle spin, and interference phenomena for rela-
tivistic particles with spin may be studied consistently. Furthermore, if two or more
particles with spin are represented in representations induced on nμ, at a given value
of nμ on their respective orbits, their spins can be added by the standard methods
with the use of Clebsch-Gordan coefficients (Clebsch 1872). This method therefore
admits the treatment of a many body relativistic system with spin.

Our assertion of the unitarity of the n-dependent part of the transformation has
assumed that the integral measure on the Hilbert space, to admit integration by parts,
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is of the form d4nd4xδ(nμnμ + 1), i.e., although the timelike vector nμ, in many
applications, is degenerate, it carries a probability interpretation under the norm, and
may play a dynamical role.

There are two fundamental representations of SL(2, C) which are inequivalent
(Boerner 1963). Multiplication by the operator σ · p of a two dimensional spinor
representating one of these results in an object transforming like the second repre-
sentation. Such an operator could be expected to occur in a dynamical theory, and
therefore the state of lowest dimension in spinor indices of a physical system should
contain both representations. As we shall emphasize, however, in our treatment of
the more than one particle system, for the rotation subgroup, both of the fundamental
representations yield the same SU(2) matrices up to a unitary transformation, and
therefore the Clebsch-Gordan decomposition of the product state into irreducible
representations may be carried out independently of which fundamental SL(2, C)

representation is associated with each of the particles.
We now discuss the construction of Dirac spinors. An approximate treatment of

the Dirac equation in interaction with electromagnetism yields a connection with
spin, identified through its interaction with the magnetic field (Bjorken 1964). As
we shall see, however, the particle spin is already contained in the construction of
the Dirac function through the fundamental construction of Wigner, combining the
two fundamental representations of SL(2, C) (Arshansky 1982; Weinberg 1995).

We first remark that the defining relation for the fundamental SL(2, C)matrices is

�†σμnμ� = σμ(�−1n)μ, (3.22)

where σμ = (σ0,σ); σ0 is the unit 2× 2 matrix, and σ are the Pauli matrices. Since
the determinant of σμnμ is the Lorentz invariant n0

2 − n2, and the determinant of
� is taken to be unity in SL(2, C), the transformation represented on the left hand
side of (3.22) must induce a Lorentz transformation on nμ. The inequivalent second
fundamental representation may be constructed by using this defining relation with
σμ replaced byσμ ≡ (σ0, −σ). For everyLorentz transformation� acting on nμ, this
defines an SL(2, C)matrix� (we use the same symbol for the Lorentz transformation
on a four-vector as for the corresponding SL(2, C) matrix acting on the 2-spinors).

Since both fundamental representations of SL(2, C) should occur in the general
quantumwave function representing the state of the system, the norm in each n-sector
of the Hilbert space must be defined as

N =
∫

d4x(|ψ̂n(x)|2 + |φ̂n(x)|2), (3.23)

where ψ̂n transforms with the first SL(2, C) and φ̂n with the second. From the
construction of the little group (3.21), it follows that L(n)ψn transforms with �,
and L(n)φn transforms with �; making this replacement in (3.23), and using the

fact, obtained from the defining relation (3.22), that L(n)†
−1

L(n)−1 = ∓σμnμ and

L(n)†
−1

L(n)−1 = ∓σμnμ, one finds that

N = ∓
∫

d4xψ̄n(x)γ · nψn(x), (3.24)
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where γ · n ≡ γμnμ (for which (γ · n)2 = −1), and the matrices γμ are the Dirac
matrices as defined in the books of Bjorken and Drell (1964). Here, the four-spinor
ψn(x) is defined by

ψn(x) = 1√
2

(
1 1

−1 1

) (
L(n)ψ̂n(x)
L(n)φ̂n(x)

)

, (3.25)

and the sign ∓ corresponds to nμ in the positive or negative light cone. The wave
function defined by (3.25) transforms as

ψ′
n(x) = S(�)ψ�−1n(�

−1x) (3.26)

and S(�) is a (nonunitary) transformation generated infinitesimally, as in the standard
Dirac theory (see, for example, Bjorken 1964;Weinberg 1995), by�μν ≡ i

4 [γμ, γν].
The Dirac operator γ · p is not Hermitian in the (invariant) scalar product asso-

ciated with the norm (3.24). It is of interest to consider the Hermitian and anti-
Hermitian parts

KL = 1
2 (γ · p + γ · nγ · pγ · n) = −(p · n)(γ · n)

KT = 1
2γ

5(γ · p − γ · nγ · pγ · n) = −2iγ5(p · K)(γ · n),
(3.27)

where Kμ = �μνnν , and we have introduced the factor γ5 = iγ0γ1γ2γ3, which
anticommutes with each γμ and has square−1 so thatKT is Hermitian and commutes
with the Hermitian KL. Since

K2
L = (p · n)2 (3.28)

and

K2
T = p2 + (p · n)2, (3.29)

we may consider

K2
T − K2

L = p2 (3.30)

to pose an eigenvalue problem analogous to the second order mass eigenvalue con-
dition for the free Dirac equation (the Klein Gordon condition). For the Stueckelberg
equation of evolution corresponding to the free particle, we may therefore take

K0 = 1

2M
(K2

T − K2
L) = 1

2M
p2. (3.31)

In the presence of electromagnetic interaction, gauge invariance under a spacetime
dependent gauge transformation (we discuss the more general case of a gauge trans-
formation depending on τ as well in the next chapter), the expressions for KT and
KL given in (3.27), in gauge covariant form, then imply, in place of (3.31),

K = 1

2M
(p − eA)2 + e

2M
�μν

n Fμν(x), (3.32)

where

�μν
n = �μν + Kμnν − Kνnμ ≡ i

4
[γμ

n , γν
n ], (3.33)
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where the γ
μ
n are defined in (3.37). The expression (3.32) is quite similar to that of

the second order Dirac operator; it is, however, Hermitian and has no direct electric
coupling to the electromagnetic field in the special frame for which nμ = (1, 0, 0, 0)
in the minimal coupling model we have given here (note that in his calculation of the
anomalous magnetic moment (Schwinger 1951), Schwinger puts the electric field to
zero; a non-zero electric field would lead to a non-Hermitian term in the standard
Dirac propagator, the inverse of the Klein-Gordon square of the interacting Dirac
equation). The matrices�

μν
n are, in fact, a relativistically covariant form of the Pauli

matrices.
To see this, we note that the quantities Kμ and �

μν
n satisfy the commutation

relations

[Kμ, Kν] = −i�μν
n

[�μν
n , Kλ] = −i[(gμλ + nνnλ)Kμ − (gμλ + nμnλ)Kν,

[�μν
n , �λσ

n ] = −i[(gνλ + nνnλ)�μσ
n + (gσμ + nσnμ)�λν

n (3.34)

− (gμλ + nμnλ)�νσ
n + (gσν + nσnν)�λν

n ].
Since Kμnμ = nμ�

μν
n = 0, there are only three independent Kμ and three �

μν
n . The

matrices �
μν
n are a covariant form of the Pauli matrices, and the last of (3.34) is the

Lie algebra of SU(2) in the spacelike surface orthogonal to nμ. The three independent
Kμ correspond to the non-compact part of the algebra which, along with the �

μν
n

provide a representation of the Lie algebra of the full Lorentz group. The covariance
of this representation follows from

S−1(�)�
μν
�nS(�)�λ

μ�σ
ν = �λσ

n . (3.35)

In the special frame for which nμ = (1, 0, 0, 0)), �i,j
n become the Pauli matrices

1
2σ

k with (i, j, k) cyclic, and �
0j
n = 0. In this frame there is no direct electric

interaction with the spin in the minimal coupling model (3.33). We remark that there
is, however, a natural spin coupling which becomes pure electric in the special frame,
given by

i[KT , KL] = −ieγ5(Kμnν − Kνnμ)Fμν . (3.36)

It is a simple exercise to show that the value of this commutator reduces to∓eγ5σ · E
in the special frame for which n0 = −1; this operator is Hermitian and would
correspond to an electric dipole interaction with the spin.

Note that the matrices

γμ
n = γλπλμ, (3.37)

where the projection
πλμ = gλμ + nλnμ, (3.38)

appearing in (3.34), play an important role in the description of the dynamics in the
induced representation. In (3.32), the existence of projections on each index in the
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spin coupling term implies that Fμν can be replaced by Fn
μν in this term, a tensor

projected into the foliation subspace.
We further remark that in relativistic scattering theory, the S-matrix is Lorentz

invariant (Bjorken 1964). The asymptotic states can be decomposed according to the
conserved projection operators

P± = 1

2
(1 ∓ γ · n)

PE± = 1

2
(1 ∓ p · n

|p · n| ) (3.39)

and

Pn± = 1

2
(1 ± 2iγ5K · p

[p2 + (p · n)2]1/2 ).

The operator

2iγ5K · p

[p2 + (p · n)2]1/2 → γ5σ · p/|p| (3.40)

when nμ → (1, 0, 0, 0). i.e., Pn± corresponds to a helicity projection. Therefore the
matrix elements of the S-matrix at any point on the orbit of the induced representation
is equivalent (by replacing S by U(L(n))SU−1(L(n))) to the corresponding helicity
representation associated with the frame in which n is n0.2

We shall show in a later chapter how the Lorentz force can be computed. We
shall, furthermore, see that the anomalous magnetic moment of the electron can be
computed in this framework (Bennett 2012) without appealing to the full quantum
field theory of electrodynamics.

Note that the discrete symmetries act on the wavefunctions as

ψC
τn = Cγ0ψ∗−τn(x)

ψP
τn(x) = γ0ψτ ,−n,n0(−x, t),

ψT
τn = iγ1γ3ψ∗

−τ ,n,−n0(x, −t), (3.41)

ψCPT
τn (x) = iγ5ψτ ,−n(−x, −t),

where C = iγ2γ0. The CPT conjugate wavefunction, according to its evolution in τ ,
moves backwards in spacetime relative to the motion of ψτn. For a wave packet with
E < 0 components, which moves backwards in t as τ goes forward, it is the CPT
conjugate wavefunction which moves forward with charge −e, i.e., the observed
antiparticle. No Dirac sea (Dirac 1932) is required for the consistency of the theory,
since unbounded transitions to E < 0 are prevented by conservation of K .

2This result is consistent with the suggestion of Aharonov (1983) that n0 may be interpreted as
corresponding to the frame of the Stern-Gerlach apparatus in which the spin state is prepared.
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3.2 TheMany Body Problemwith Spin, and Spin-Statistics

As in the nonrelativistic quantum theory, one represents the state of an N-body
system in terms of a basis given by the tensor product of N one-particle states,
each an element of a one-particle Hilbert space. The general state of such an N-
body system is given by a linear superposition over this basis (Fetter and Walecka
1971). Second quantization then corresponds to the construction of a Fock space,
for which the set of all N body states, for all N are imbedded in a large Hilbert
space, for which operators that change the number N are defined (Baym 1969).
We shall discuss this structure in this section, and show, with our discussion of the
relativistic spin given in the previous section, that the spin of a relativistic many-
body system can be well-defined (see also, Bennett 2015).3 In order to construct
the tensor product space corresponding to the many-body system, we consider, as
for the nonrelativistic theory, the product of wave functions which are elements of
the same Hilbert space. In the nonrelativistic theory, this corresponds to functions at
equal time; in the relativistic theory, the functions are taken to be at equal τ . Thus,
in the relativistic theory, there are correlations at unequal t, within the support of the
Stueckelberg wave functions. Moreover, for particles with spin we argue that in the
induced representation, these function must be taken at identical values of nμ, i.e.,
taken at the same point on the orbits of the induced representation of each particle
(Horwitz 2013):

Identical particles must be represented in tensor product states by wave functions at equal
τ and equal nμ.

The proof of this statement lies in the observation that the spin-statistics relation
appears to be a universal fact of nature. The elementary proof of this statement, for
example, for a system of two spin 1/2 particles, is that a π rotation of the system
introduces a phase factor of ei π

2 for each particle, thus introducing a minus sign for
the two body state. However, the π rotation is equivalent to an interchange of the two
identical particles. This argument rests on the fact that each particle is in the same
representation of SU(2), which can only be achieved in the induced representation
with the particles at the same point on their respective orbits. The same argument
applies for bosons, which must be symmetric under interchange (in this case the
phase of each factor in a pair is eiπ). We therefore see that identical particles must
carry the same value of nμ, and the construction of the N-body system must follow
this rule. It therefore follows that the two body relativistic system can carry a spin
computed by use of the usual Clebsch-Gordan coefficients, and entanglement would
follow even at unequal time (within the support of the equal τ wave functions), as

3Jabs (2010) has noted that, with Jacob and Wick (1959) one can rotate the eigenfunctions of
momentum separately so that the momenta are collinear and thus identify the Wigner little groups;
this operation leaves the helicities invariant. The spinwave functionwould, however, develop phases
that are not controlled by the helicities alone, so this procedure is not sufficient to provide a common
SU(2), as we shall see below.
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in the proposed experiment of Palacios et al. (2009). This argument can be followed
for arbitrary N , and therefore the Fock space of quantum field theory, as we show
below, carries the properties usually associated with fermion (or boson) fields, with
the entire Fock space foliated over the orbit of the inducing vector nμ.

We remark that since the relativistic S-matrix is Lorentz invariant, the matrix
elements of the S-matrix in states labelled by the asymptotic projectionsPn± (defined
in (3.39) can be replaced (by the substitution U(L(n)SU−1(L(n) for S) by helicities
in the common frame in which nμ → (1, 0, 0, 0). The Lorentz transformation that
achieves this acts in the same way on all of the momenta of the asymptotic states and
the resulting measured cross sections for this helicity representation then correspond
to a choice of frame in which the common orbit is specified to be at the point
nμ = (1, 0, 0, 0).4

Although, due to the Newton-Wigner problem discussed above, the solutions of
the Dirac equation are not suitable for the covariant local description of a quantum
theory, the functions constructed in (3.25), under the norm (3.24), can form the basis
of a consistent covariant quantum theory; they describe the (off-shell) states of a
local quantum theory.

We then start by constructing a two body Hilbert space in the framework of the
relativistic quantum theory. The states of this two body space are given by linear
combinations over the product wave functions, where the wave functions (for the
spin (1/2) case) are given by the Dirac function of the type described in (3.25) (or,
for integer spin functions), i.e.,

ψij(x1, x2) = ψi(x1) × ψj(x2), (3.42)

where ψi(x1) and ψj(x2) are elements of the one-particle Hilbert space H. Let us
introduce the notation, often used in differential geometry, that

ψij(x1, x2) = ψi ⊗ ψj(x1, x2), (3.43)

identifying the arguments according to a standard ordering. Then, without specifying
the spacetime coordinates, we can write

ψij = ψi ⊗ ψj, (3.44)

formally, an element of the tensor product space H1 ⊗ H2. The scalar product is
carried out by pairing the elements in the two factors according to their order, since
it corresponds to integrals over x1, x2, i.e.,

(ψij, ψk,�) = (ψi,ψk)(ψj,ψ�). (3.45)

For two identical particle states satisfying Bose-Einstein of Fermi-Dirac statistics,
we must write, according to our argument given above,

ψijn = 1√
2
[ψin ⊗ ψjn ± ψjn ⊗ ψin], (3.46)

4This result, as mentioned above, is in accordance with Aharonov’s suggestion (Aharonov 1983)
that the Stern-Gerlach apparatus for preparation of the spin state is labelled by this (“rest”) value
n0 of n.
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where n ≡ nu is the timelike four vector labelling the orbit of the induced repre-
sentation. This expression has the required symmetry or antisymmetry only if both
functions are on the same points of their respective orbits in the induced repre-
sentation. Furthermore, they transform under the same SU(2) representation of the
rotation subgroup of the Lorentz group, and thus for spin 1/2 particles, under a
π spatial rotation (defined by the space orthogonal to the timelike vector nμ) they
both develop a phase factor ei π

2 . The product results in an over all negative sign.
As in the usual quantum theory, this rotation corresponds to an interchange of the
two particles, but here with respect to a “spatial” rotation around the vector nμ.
The spacetime coordinates in the functions are rotated in this (foliated) subspace of
spacetime, and correspond to an actual exchange of the positions of the particles on
a spcelike hyperplane, as in the formulation of the standard spin-statistics theorem.
It therefore follows that the interchange of the particles occurs in the foliated space
defined by nμ, and, furthermore:

The antisymmetry of identical spin 1/2 (fermionic) particles remains at unequal times (within
the support of the wave functions). This is true for the symmetry of identical spin zero (bosonic)
particles as well.

The construction we have given enables us to define the spin of a many body
system, even if the particles are relativistic and moving arbitrarily with respect to
each other.

The spin of an N-body system is well-defined, independent of the state of motion of the
particles of the system, by the usual laws of combining representations of SU(2), i.e., with
the usual Clebsch-Gordan coefficients, if the states of all the particles in the system are in
induced representations at the same point of the orbit nμ.

Thus, in the quark model for hadrons (Gell-Mann 1962; Ne’eman 1961), the total
spin of the hadron can be computed from the spins (and orbital angular momenta
projected into the foliated space) of the individual quarks using the usual Clebsch-
Gordan coefficients even if they are in significant relative motion, as part of the same
SU(2).

This result has important implications for the construction of the exchange inter-
action in many-body systems. Since there is no extra phase (corresponding to integer
representations of the SU(2) for theBose-Einstein case, the boson symmetry can then
be extended to a covariant symmetry with important implications for Bose-Einstein
condensation.

3.3 Construction of the Fock Space and Quantum Field Theory

In the course of our construction, we have seen in detail that the foliation of the
spacetime follows from the arguments based in the representations of a relativistic
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particle with half-integer spin. However, our considerations of the nature of iden-
tical particles, and their association with the spin statistics properties observed in
nature, require that the foliation persists in the bosonic sector as well, where a def-
inite phase (∓) under π rotations, exchanging two particles, must be in a definite
representation of the rotation group specified by the foliation vector nμ. We remark
in this connection that the Cooper pairing (Cooper 1956) of superconductivity must
be between electrons on the same point of their induced representation orbits, so
that the superconducting state is defined on the corresponding foliation of spacetime
as well. The resulting (quasi-) bosons have the identical particle properties inferred
from our discussion of the boson sector.

The N body state of Fermi-Dirac particles can then be written as (the N body
boson system should be treated separately since the normalization conditions are
different, but we give the general result below)

�nN = 1

N !�(−)PPψnN ⊗ ψnN−1 ⊗ · · · ψn1, (3.47)

where the permutations P are taken over all possibilities, and no two functions are
equal. By the arguments given above, any pair of particle states in this set of particles
have the Fermi-Dirac properties. We may now think of such a function as an element
of a larger Hilbert space, called the Fock space which contains all values of the
number N . On this space, one can define an operator that adds another particle
(by multiplication), performs the necessary antisymmetrization, and changes the
normalization appropriately. This operator is called a creation operator, which we
shall denote by a†(ψnN+1) and has the property that

a†(ψnN+1)�nN = �nN+1, (3.48)

now to be evaluated on the manifold (xN+1, xN , xN−1 . . . x1). Taking the scalar prod-
uct with some N + 1 particle state �nN+1 in the Fock space, we see that

(�nN+1, a†(ψnN+1)�nN ) ≡ (a(ψnN+1)�nN+1, �nN ), (3.49)

thus defining the annihilation operator a†(ψnN+1).
The existence of such an annihilation operator, as in the usual construction of

the Fock space, (e.g., Baym 1969) implies the existence of an additional element in
the Fock space, the vacuum, or the state of no particles. The vacuum defined in this
way lies in the foliation labelled by nμ. The covariance of the construction, however,
implies that, since all sectors labelled by nμ are connected by the action of the Lorentz
group, that this vacuum is an absolute vacuum for any nμ, i.e., the vacuum {�n0}
over all nμ is Lorentz invariant.

The commutation relations of the annihilation- creation operators can be easily
deduced from a low dimensional example, following the method used in the nonrel-
ativistic quantum theory. Consider the two body state (3.44), and apply the creation
operator a†(ψn3) to create the three body state

�(ψn3, ψn2, ψn1) = 1√
3! {ψn3 ⊗ ψn2 ⊗ ψn1 + ψn1 ⊗ ψn3 ⊗ ψn2

+ ψn2 ⊗ ψn1 ⊗ ψn3 − ψn2 ⊗ ψn3 ⊗ ψn1 (3.50)

− ψn1 ⊗ ψn2 ⊗ ψn3 − ψn3 ⊗ ψn1 ⊗ ψn2}
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One then takes the scalar product with the three body state

�(φn3, φn2,φn1) = 1√
3! {φn3 ⊗ φn2 ⊗ φn1 + φn1 ⊗ φn3 ⊗ φn2

+ φn2 ⊗ φn1 ⊗ φn3 − φn2 ⊗ φn3 ⊗ φn1 (3.51)

− φn1 ⊗ φn2 ⊗ φn3 − φn3 ⊗ φn1 ⊗ φn2}
Carrying out the scalar product term by term, and and picking out the terms corre-
sponding to scalar products of some functions with the two body state

1√
2
{ψn2 ⊗ ψn1 − ψn1 ⊗ ψn2} (3.52)

one finds that the action of the adjoint operator a(ψn3) on the state �(φn3, φn2,φn1)

is given by

a(ψn3)�(φn3,φn2, φn1) = (ψn3,φn3)φn2 ⊗ φn1
−(ψn3, φn2)φn3 ⊗ φn1 + (ψn3, φn1)φn3 ⊗ φn2,

(3.53)

i.e., the annihilation operator acts like a derivation with alternating signs due to its
fermionic nature; the relation of the two and three body states we have analyzed
has a direct extension to the N-body case. The action of boson annihilation-creation
operators can be derived in the same way.

Applying these operators to N and N + 1 particle states, one finds directly their
commutation and anticommutation relations

[a(ψn), a†(φn)]∓ = (ψn,φn), (3.54)

where the ∓ sign, corresponds to commutator or anticommutator for the boson or
fermion operators. If the functions ψn,φn belong to a normalized orthogonal set
{φnj}, then

[a(φni, a†(φnj]∓ = δij, (3.55)

Let us now suppose that the functions φnj are plane waves in spacetime, i.e., in terms
of functions

φnp(x) = 1

(2π)2
e−ipμxμ . (3.56)

Then
(φnp,φnp′) = δ4(p − p′). (3.57)

The quantum fields are then constructed as follows. Define

φn(x) ≡
∫

d4pa(φnp)e
ipμxμ . (3.58)

It then follows that, by the commutation (anticommutation) relations (3.52), these
operators obey the relations

[φn(x), φn(x
′)]∓ = δ4(x − x′), (3.59)
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corresponding to the usual commutation relations of bose and fermion fields. Under
Fourier transform, one finds the commutation relations in momentum space

[φn(p), φn(p
′)]∓ = δ4(p − p′) (3.60)

The relation of these quantized fields with those of the usual on-shell quantum field
theories can be understood as follows. Let us suppose that the fourth component of
the energy-momentum is E = √

p2 + m2, where m2 is close to a given number, the

on-shell mass of a particle. Then, noting that dE = dm2

2E , if we multiply both sides
of (3.58) by dE and integrate over the small neighborhood of m2 occurring in both
E and E′, the delta function δ(E − E′) integrates to unity. On the right hand side,
there is a factor of 1/2E, and we may absorb

√
dm2 in each of the field variables,

obtaining

[φn(p), φn(p′)]∓ = 2Eδ(p − p′), (3.61)

the usual formula for on-shell quantum fields. These algebraic results have been
constructed in the foliation involved in the formulation of a consistent theory of
relativistic spin, therefore admitting the action of the SU(2) group for a many body
system, applicable for unequal times.

It is clear from the construction of the Fock space that fields associated with differ-
ent values of nμ commute. The basis for the commutation relations is the creation and
annihilation of (wave function) factors in the tensor product space; distinct values of
nμ therefore correspond to different species.

In the scalar product between states in the Fock space, one must complete the
scalar products between functions by integrating over d3n

n0
. A single value of nμ in

the product would have zero measure, so to compute probability amplitudes, one
must construct wave packets over nμ; these carry suitable weights for normalization.
If the set {n} is not a superselection rule, there would be transition matrix elements
of observable connecting different values, and the form of the wave packets could
play a physical role.

3.4 Induced Representation for Tensor Operators

In the previous sections, we have discussed the induced representation for wave
functions of a particle with spin, and for the associated quantum fields. The five
dimensional electromagnetic field potentials, obtained as gauge compensation fields,
contain a Lorentz scalar field and a Lorentz four vector. In our discussion of statistical
mechanics in Chap.10, we are obliged to consider the problem of black body radi-
ation. As we shall see, the relativistic Bose-Einstein distribution has a very similar
form to the distribution function obtained from nonrelativistic methods, and there-
fore the specific heat calculations are very similar. However, the usual argument for
the number of polarizations of the field, based on dimensionality minus two, corre-
sponding to the constraint of the Gauss law and a gauge condition, resulting in two

http://dx.doi.org/10.1007/978-94-017-7261-7_10
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polarizations for the usual Maxwell field, but suggest three polarization states for the
5D fields. Indeed, in a discussion of the canonical second quantization of the 5D elec-
tromagnetic fields, it was found (Shnerb 1993) that there are three polarizations with
either O(3) or O(2, 1) symmetry. We discuss in Chap.10 a second asymptotic gauge
condition for the induced representation for Lorentz tensor fields (leaving aside for
the moment the Lorentz scalar component), which exhibits explicitly the SO(3) rep-
resentations of the tensor operators in an invariant way, thus making the polarization
states accessible for classification. In this way we shall be able to describe the black
body radiation in a way consistent with experiment (with the two degrees of freedom
corresponding to the physical intrinsic angular of the photons), as well as to be able
to explicitly characterize higher rank tensors, and their associated second quantized
forms, according to their angular momentum content (Horwitz 2015).

We concentrate in the following on the vector fields; higher rank tensors transform
under the direct product of the representations contained in each of the indices.

The transformation law for a vector field is constructed by the Wigner type pro-
cedure for a general tensor operator A(x, n,σ) through the definition (we leave out
the x dependence since it undergoes several transformations which must be followed
eventually)

A(n,σ) ≡ U(L(n))A(n0, σ)U−1(L(n)), (3.62)

where U(L(n)), as above, is the unitary representation of the Lorentz transformation
L(n) taking n0 = (1, 0, 0, 0) into the timelike vector n.

Then, as for the wave functions,

U(�)A(x, n,σ)U−1(�)

= U(�)U(L(n))U−1(L(�n))U(L(�n))A(n0, σ) (3.63)

U(L(�n))−1U(L(�n))U−1(L(n))U−1(�)

The first three unitary factors induce a rotation in SU(2) (we must remember that
they act on the x variable as well; this can be taken into account separately). The σ
index is transformed by the compact Wigner rotation (as an SL(2, C) matrix)

D(�n) = L(�n)L(n)−1� (3.64)

Writing the σ index as the pair m′, m′′, if we use direct product of two SL(2, C)’s to
represent this sequence, we may supply the appropriate Clebsch-Gordan coefficients
(Edmonds, see Mackey (1968)) C(1, m| 12m′, 1

2m′′) to form the angular momentum
L = 1 representation, andC(0, m| 12m′, 1

2m′′) to form theL = 0 representation. These
just correspond to predetermined linear combinations over the indices. In this way,
we have constructed transformations of the tensor operator in terms of irreducible
representations L = 1 and L = 0 of the rotation group in an invariant decomposition.

We may reconstitute the four vector by returning to the SL(2, C) representations
through application of the inverse of theClebschGordan coefficients,taking explicitly
into account the fact that the σ index is really a pair of indices for the SL(2, C)

representation of the tensor operator An on the orbit of the induced representation:

A(n) =
(

A0(n) + A3(n) A1(n) − iA2(n)

A1(n) + iA2(n) A0(n) − A3(n)

)
(3.65)

http://dx.doi.org/10.1007/978-94-017-7261-7_10
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The determinant corresponds to the invariant AμAμ. Left and right multiplying by
the two by two nonunitary matrices of determinant unity, S†(�) and S(�) which are
representations in SL(2, C) of the unitary Lorentz transformations, and include as
well the generators of the transformation of nμ along the orbit one may reconstruct
the representation of U†(�) = U−1(�) and U(�) on the Hilbert space.Let us now
define (here wewrite SL(2, C) symbols to stand for the full unitary action for brevity.
i.e., including the transformation on n)

Ân = L(n)AnL−1(n), (3.66)

so that under a Lorentz transformation

Ân = L(n)AnL−1(n) → D−1(�n)L(�n)A�nL−1(�n)D−1(�n)

= �−1L(n)L(λn)−1(L(�n)A�nl(�n)−1)L(�n)L(n)−1� (3.67)

= �−1(L(n)A�nL−1(n)
)
�

= �−1Â�n�,

transforming under the SL(2, C) matrix � along the orbit. The matrix

Â(n) =
(

Â0(n) + Â3(n) Â1(n) − iÂ2(n)

Â1(n) + iÂ2(n) Â0(n) − Â3(n)

)
(3.68)

then corresponds to the four-vector Â(n)μ.
This construction may be directly applied to tensor operators of any rank (with

mixed tensor-spinor indices as well), explicitly displaying the angular momentum
content of such operators through the direct product of the invariant decomposition
of each index into angular momentum one and zero (or half integer) components.
The theory of recoupling of angular momentum states (Biedenharn (1981); Racah
(1942)) applies to this construction as well.

Appendix B

Wedescribe here some of the essential properties of the 2×2matrices thaty constitute
the fundamental representation of the group SL(2, C). Consider theHermitianmatrix

X =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(3.69)

The determinant of this matrix is

det X = (x0)2 − (x1)2 − (x2)2 − (x3)2, (3.70)

This determinant is the invariant quadratic form of special relativity. The matrix X
may be written as

X = xμσμ, (3.71)

where (1 is the unit matrix)
σμ = (1, σ), (3.72)
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where σ corresponds to the vector constructed of the three Pauli matrices. Thematrix

X̃ = xμσ̃μ, (3.73)

where
σ̃μ = (1,−σ) (3.74)

clearly has the same determinant as X. However, there is no unitary transformation
that can map σμ to σ̃μ. Unitary 2× 2 transformations leave the unit matrix invariant,
andσ can be rotated, but not reflected in the sign of all three components (this discrete
operation is a parity reflection). The two fundamental representations that we can
construct in this way for the Lorentrz group are therefore inequivalent. If wemultiply
X by some matrix in a congruency

X ′ = SXS† (3.75)
we obtain a matrix of the same form as in Eq. (3.69), but with xμ replaced by xμ′.
This follows from the fact that an arbitrary 2 × 2 Hermitian matrix, say, where(

a b
b∗ c

)
, (3.76)

where a and c are real, can always be expressed in the form of (3.69), where

x0 = 1

2
(a + c)

x1 = 1

2
(b∗ + b)

x2 = 1

2i
(b∗ − b). (3.77)

x3 = 1

2
(a − c)

For the second representation, defined by (3.73), (3.74), we have

x0 = 1

2
(a + c)

x1 = −1

2
(b∗ + b)

x2 = 1

2i
(b − b∗). (3.78)

x3 = 1

2
(c − a)

The conjugacy (3.75) can therefore only change xμ to xμ′.
These matrices therefore form a representation of SL(2, C) if they have determi-

nant unity, since this implies that
det X = det X ′, (3.79)

i.e., the two quadratic forms satisfy (equally valid for both representations)

(x0)2 − (x1)2 − (x2)2 − (x3)2 = (x0
′
)2 − (x1

′
)2 − (x2

′
)2 − (x3

′
)2, (3.80)

corresponding to the defining invariance of the Lorentz group.
These two inequivalent representations, as explained in the chapter, enter into the

construction of the four dimensional spinor representation of Dirac.
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