
2Relativistic Classical andQuantum
Mechanics

To develop the foundations of a manifestly covariant mechanics, we must first exam-
ine the Einstein notion of time and its physical meaning.Wewill then be in a position
to introduce the relativistic quantum theory developed by Stueckelberg (1941) and
Horwitz and Piron (1973).We describe in this chapter a simple and conceptual under-
standing of the Newton-Wigner problem (Newton 1949) presented above, a rigorous
basis for the energy time uncertainty relation, as well as a simple explanation of the
Landau-Peierls (Landau 1931) uncertainty relation between momentum and time.
These applications provide a good basis for understanding the basic ideas of the rel-
ativistic quantum theory. Schieve and Trump (1999) have discussed at some length
the associated manifestly covariant classical theory, but some basic aspects will be
discussed here as well.

2.1 The Einstein Notion of Time

In this section, we shall carefully study the Einstein notion of time, the variable t
which occurs in the Minkowski space and the Lorentz transformation.

We begin our study by returning to the basic thought experiment of Einstein (1922)
Born (1962). Imagine a frame F with a set of synchronized clocks embedded, and
a second frame F ′ with clocks embedded in it. Let us suppose that signals are sent,
according to the clocks in F , at times τ1 and τ2 from F to F ′. These signals are
received by detectors in F ′ at times τ ′

1 and τ ′
2 according to the clocks embedded

in F ′. Then, we know, according to the phenomenology of the Michelson-Morley
experiment and the formulation of the Lorentz transformation by Einstein, that

τ ′
2 − τ ′

1 = τ2 − τ1√
1 − v

c
2

(2.1)
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10 2 Relativistic Classical and QuantumMechanics

The interval τ1−τ2 is called the proper time interval for the transmitter of the signals
according to the clock interval in the frame F . The interval recorded in the relatively
moving frame F ′ is theEinstein time �t = τ ′

2−τ ′
1, corresponding to the time interval

observed in the frame F ′ for the two events in F ; the values assigned to the time
of arrival of these events are read on clocks in the frame F ′. It is therefore essential
in this construction that the clocks embedded in F ′ be identical to the clocks in F ,
running at the same rate, or there would be no basis for comparison; the numbers τ ′

1
and τ ′

2, read off the clocks embedded in F ′ could otherwise be arbitrary.
We remark that if the clocks in F and F ′ that we consider have a varying self-

energy caused by springs under tension or batteries with stored chemical energy, the
rate of recording time of these clocks may be affected by the corresponding local
concentration of energy density (as one may see from (2.12)). The standard universal
clocks that we visualize as imbedded in each inertial frame must therefore be ideal
clocks, in the sense that they contain no self-energy induced frequency shifts.

It is instructive, in this respect, to consider the gravitational redshift observed on
a clock located at some point in the neighborhood of a very heavy planet, such as
Jupiter. An interval of the time read on the face of such a clock �tJ , its proper time,
is determined, in general relativity, by the Einstein metric relation (we shall use units
for which � = c = 1 in the following)

�s2 = −gμν�xμ�xν

where, at rest, the spatial interval �x is understood to be zero, and �s is the corre-
sponding free fall proper time. Then,

�tJ

�s
=

√
− 1

g J
00

;

the ratio of such a reading on Jupiter to that taken of a similar system (say, an ammonia
molecule) on Earth is then, assuming that the corresponding interval �s is the same
at both locations (Weinberg 1972),

�tJ

�tE
=

√
gE
00

g J
00

,

in good agreement with experiment.
This calculation is remarkable in two respects; first, in that the interval of proper

time between pulses of these clocks on Jupiter and the Earth must be the same for the
cancellation of �s when the two equations are divided one by the other, and second,
in that somehow these clock mechanisms are responsive to a proper time that could
be physically effective only if they were freely falling. Neither of the two systems
are freely falling in this example, but are fixed in their respective gravitational fields.
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The conceptual difficulties raised by this description of the phenomenon of the
redshift may be resolved by considering the clocks in the two environments, on
Jupiter and on the Earth, as machines evolving according to a universal time τ . The
different gravitational field in the two cases causes the clocks to emit signals at
different frequencies, according to the Einstein metric, as a result of the effect of
the gravitational force on the equations of motion. Freely falling clocks may also be
considered to be machines running according to this universal time. The absence of
any gravitational (or other) force admits solutions which are a direct reflection of
the universal time; we may therefore identify �s, in this case, in the metric relation,
with �τ , the universal time interval referred to in the thought experiment discussed
above

We learn two essential points from these simple experiments. The first is that the
Einstein time is defined as the result of measurement, and the second is that there
must be an underlying time which is common to both frames in the first example in
order to assign numerical values to the observed times that can be compared to the
times associated with the emitted signals, and in the second example, to govern the
dynamics of the clocks.

There appear, therefore, to be two types of time, an absolute time of clocks embed-
ded in any system, independent of the state of themotion, and the second, the time that
is the outcome of a measurement, as recorded in the detector (i.e., by the “observer”)
(Horwitz 1988). The notion of the Einstein time as an observable is completely anal-
ogous to the property x of location, corresponding to the position of a particle. When
the particle is detected, the value x assigned to its position is given by the correspond-
ing location on a standard ruler. For the Lorentz transformation relating intervals in
space, the measure of length must be universally embedded in each frame, and the
difference �x′, detected in a relatively moving frame, corresponding to an interval
�x in the original frame, is the outcome of measurement, induced by the dynamics
of the relative motion. The spacetime coordinates of general relativity correspond to
quantities that are observed by detectors; the general tensor properties under local
diffeomorphisms, reflecting the covariance assumptions underlying general relativ-
ity, correspond to different physical situations, as for example, the Schwarzschild
and Friedman-Robertson-Walker solutions of the Einstein equations (Schwarzschild
1916; Friedman 1924), where the coordinates are considered to be actual outcomes
of measurement.1

These are the essential ingredients from which a manifestly covariant classical
and quantum mechanics can be constructed (we shall confine ourselves here, for the
most part, to the covariance characteristic of special relativity, although in a later
chapter our considerations will be extended to applications in general relativity).

In classical nonrelativistic mechanics, the fact that the value assigned to the posi-
tion of a particle x and the value of themomentump are the outcomes ofmeasurement

1Note that both time intervals, as well as space intervals, must be thought of asmeasured by geodesic
projection (e.g. Weinberg 1972) since clocks and rulers brought to the location of the events would
suffer distortion due to the gravitational field as well.
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gives rise to the notion of a point in phase space describing the state of the particle.
The state evolves, according to the theory of Hamilton and Lagrange by means of an
evolution determined by the Hamilton equations, an elegant formulation of Newton’s
laws of motion (we denote the gradient formally by a partial derivative with respect
to a vector),

dx
dt

= ∂H(x, p)

∂p
dp
dt

= −∂H(x, p)

∂x
,

(2.2)

where H(x, p) is the Hamiltonian of the system. Here the variables x and p are func-
tions of the time t . These equations can be directly generalized to N particles, writing
xi in place of x and pi in place of p for i = 1, 2, 3, . . . , N , and the Hamiltonian is
generally a function of all 6N variables. This structure, sometimes called symplec-
tic because the formulas (2.2) have the symmetry of the symplectic group, is made
possible due to the correlation between the variables established by the existence of
the universal Newtonian time t .

Similarly, in the quantum theory, where a pure state of the system (in the simplist
case) is determined by a wave function ψt (x) (or ψt (p)), the Schr̈odinger equation
governs the evolution of the system according to

i
∂ψt

∂t
= H(x, p)ψt , (2.3)

where the Hamiltonian is a function of the observables, i.e., the Hermitian operators,
x and p. This equation can be written in a representation (called the x-representation)
in which x is diagonal, i.e. numerical valued, and p is represented by −i times the
partial derivative with respect to x, or conversely, in a representation called the
p-representation) in which in which p is diagonal, i.e. numerical valued, and x is
represented by i times the partial derivative with respect to p. This structure may be
generalized to an N body system in the same way, for which the wave function in
the x representation is a function of all the positions xi, i = 1, 2, 3, . . . , N at a given
value of the universal Newtonian time t .

This description of the dynamics of systems of particles rests on the identification
of the observables. In nonrelativistic dynamics, t is a parameter providing a frame-
work for the correlation of different parts of a system as well as for its dynamical
development.

If, as we have argued above, the time t is understood as an observable in relativistic
dynamics, the set of observables assigned to each particle (often called an event) is
comprised of all four Minkowski coordinates xμ ≡ (t, x1, x2, x3) as well as pμ ≡
(E, p1, p2, p3), along with others, such as the relativistic generalization of angular
momentum (the Casimir operators of the Lorentz group, as we shall discuss further in
Chap.5). The construction of a dynamics to describe themotion of these fundamental
objects, and some selected important applications of this dynamics,will be the subject
of this book. I review in the following the arguments of Stueckelberg (1941) for the

http://dx.doi.org/10.1007/978-94-017-7261-7_5
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Fig. 2.1 Stueckelberg
classical pair annihilation

τ

x

t

construction of this theory and comment on an alternative, complementary, view
(Horwitz 1973) leading to the same conclusions.

Stueckelberg (1941) first considered the classical spacetime diagram of the orbit,
called a “worldline”, of a free particle, expected to be simply a straight line. He then
supposed that there is some force acting on the particle that makes the worldline
bend during the interaction. He further supposed that the interaction may be strong
enough to make the world line turn back and run in a direction opposite to that of
the t axis, as shown in Fig. 2.1.

It is clear that Stueckelberg was thinking of this process as reflecting the effect
of some dynamical laws on the evolution of the sequence of events constituting the
worldline rather than a global manifestation of the worldline (the later work of Currie
et al. (1963) showed that such a global dynamics of worldlines would, with some
assumptions, suffer from a no-go theorem). In contrast to the view of Weyl (1952),
who suggested that the particles we see are the intersection of the observer’s plane of
timewith pre-existingworld lines, comprising a static universe (see also discussion in
Horwitz (1988)), with apparent motion generated by the effect of this plane cutting
the worldlines at a succession of points in t , the worldline is envisaged here as
generated by the motion of a single event moving according to dynamical laws, in a
similar way to the formation of the orbit of a particle in nonrelativistic mechanics,
generated as a function of the Newtonian time. Stueckelberg observed that in the
extreme case of a reversal in the sense of time of this motion, the physical process
of pair annihilation could be represented in the framework of classical mechanics if
the path running backward in time were considered as an antiparticle. He, moreover,
noted that the use of t as a parameter would be inadequate to describe this curve, but
that an invariant parameter, which he called τ , along the curve, had to be introduced
to construct a consistent description. Feynman (1950) followed a structure of this
type in the construction of his spacetime diagrammatic approach to perturbation
expansions in quantum electrodynamics, elegantly explained in a paper by Nambu
(1950).

Horwitz and Piron (1973) further assumed, in order to treat many body systems,
that this parameter is universal, as for the Newtonian time; it, in fact, plays the role
of the universal time postulated by Newton in his Principia (Newton 1687).
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The concept of a world time controlling the dynamical evolution in contrast to
evolution in t is illustrated in Fig. 2.1. Along the curve, the parameter τ increases
monotonically. The t axis of the diagram, however, consistently with the definition
of t as the measured time in the laboratory, records the time on the clock in the
laboratory at the moment when the signal is detected, which runs (in the absence of
any other forces and on its mass shell) with τ ; thus, the t measured in the laboratory
records its evolution in τ . The sequence of τ values parametrizing the motion of the
event along its world line in Fig. 2.1 is the same sequence along the t axis, reflected
by values of t in the laboratory that coincide with τ . Close to the initial condition,
the corresponding points (i.e. equal τ points) run along essentially the same t values,
but as the system develops, the t values recorded in the laboratory as observed on
the laboratory clock, and the t values detected as signals from the system under
observation (with values read on the laboratory clock as well) diverge significantly.
Thus, the character of the observable t becomes manifest as a consequence of the
dynamics that affect its measured value.2

There is, however, another phenomenon illustrated in this diagram. During the
period that the world line is deflected and curving, it passes through the light cone,
becomes spacelike, and then becomes straight again in the final force-free region,
but nevertheless, moving backwards in time. This inversion in the sequence in the
final state cannot be attributed directly to forces acting on the system, but rather must
be thought of as the positive monotonic evolution of the antiparticle in τ , forward
in t . The figure therefore illustrates a profound physical transition. In the asymptotic
region after the interaction, it represents the motion of an antiparticle in the positive
direction of time, as maintained by Stueckelberg (1941) in agreement with the view
adopted by Feynman (1950) and associated with CPT conjugation. Since CPT con-
jugation, as we shall discuss later in more detail, reverses the sign of momentum and
energy (as well as the charge), the positive monotonic evolution of the antiparticle in
τ is forward in t along the “outgoing” line. In this CPT conjugate picture the entire
world line (taking into account the properties of CPT conjugation, such as a change
in sign of the charge) is reversed in τ ordering, and the previously “incoming” line
now runs backward in t ; its CPT conjugate then runs forward in t , corresponding
to the original incoming particle. The particle-antiparticle interpretation is not eas-
ily accessible in the interaction region, where the world line may be spacelike; the
dynamics of the motion, however, is smoothly and unambiguously represented as a
motion on spacetime according to τ (such a process can occur repeatedly as in neu-
trino oscillations and the evolution of the K and B meson systems; we shall study
these processes in Chap.4).

To pose an apparent paradox, onemay think of cutting the world line at some point
on the incoming line, absorbing the particle entirely, as suggested by Havas (1956);
he remarked that this would destroy its continuation. However, that continuation is in

2This discussion is fundamental in understanding the essential distinction between the measured
time of Einstein, which plays the role of a coordinate of a physical event, and the underlying absolute
time τ governing the dynamical processes of evolution.

http://dx.doi.org/10.1007/978-94-017-7261-7_4
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the past of t , leading to an apparent contradiction. He resolved this paradox by noting
that the instrument that absorbed the particle is located at this point in spacetime for
all τ , and therefore constitutes a change in initial conditions for the generation of this
history. The antiparticle would therefore never have been produced. If the experiment
records a particle and antiparticle, that antiparticle would have had to be generated
elsewhere (e.g. at t → +∞) and would not be associated with this annihilation
diagram.

One can approach the theory as we have presented it above from a somewhat
different point of view (Horwitz 1973). We observe that in nature the mass of a
particle generally depends on its state. One understands the decay of a neutron into
proton, electron and neutrino (β decay) as associated with the fact that the neutron is
heavier that the proton in free space. In a nucleus, however, the neutron generally does
not decay. Moreover, the proton in a nucleus may decay into a neutron, positron and
neutrino (inverseβ decay), indicating that the proton ismoremassive that the neutron
in that environment. As another example, calculations in quantum electrodynamics
show that the difference between the mass of an electron in free space and in a
Coulomb potential is not zero, making a contribution to the the Lamb shift (Lamb
1947) (see also the work of Davidson 2014, examining mass shifts in nuclei).

We therefore conclude that the observable mass of a particle, from the point of
view of a particle theory (rather than investing the mass change in the surrounding
fields) should be treated as a dynamical variable. Thus, in the momentum four vector,
p and E should be considered as independent dynamical variables. The Fourier
complement of this picture corresponds to the time t and position x necessarily being
dynamical variables also (in accordance with our discussion of the physical meaning
of these variables in special relativity above). Equations describing the distribution of
these dynamical variables would then be static, with no parameter for the evolution
of a state, and one must therefore introduce the notion of an invariant (universal in
order to be able to treat the many body problem) variable τ with which to generate
dynamical change. The resulting theory is then identical to that of Stueckelberg, with
the additional postulate that τ is universal.

As a model for the structure of the dynamical laws that might be considered,
Stueckelberg proposed a Lorentz invariant Hamiltonian for free motion of the form

K = pμ pμ

2M
, (2.4)

where M is considered a parameter, with dimensionmass, associatedwith the particle
being described, but is not necessarily its measuredmass. In fact, the numerator (with
metric − + ++),

pμ pμ = −m2, (2.5)

corresponds to the actual observed mass (according to the Einstein relation E2 =
p2 + m2), where, in this context, m2 is a dynamical variable.
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The Hamilton equations, generalized covariantly to four dimensions, are then

ẋμ ≡ dxμ

dτ
= ∂K

∂ pμ

ṗμ ≡ dpμ

dτ
= − ∂K

∂xμ
.

(2.6)

These equations are postulated to hold for anyHamiltonianmodel, includingmany
types of interaction such as additive potentials or gauge fields (to be discussed in
later chapters), and therefore a Poisson bracket may be defined in the sameway as for
the nonrelativistic theory. The construction is as follows. Consider the τ derivative
of a function F(x, p), i.e.,

d F

dτ
= ∂F

∂xμ

dxμ

dτ
+ ∂F

∂ pμ

dpμ

dτ

= ∂F

∂xμ

∂K

∂ pμ
− ∂F

∂ pμ

∂K

∂xμ

= {F, K },

(2.7)

thus defining a Poisson bracket {F, G} quite generally. The arguments of the non-
relativistic theory then apply, i.e., that functions which obey the Poisson algebra
isomorphic to their group algebras will have vanishing Poisson bracket with the
Hamiltonian which has the symmetry of that group,and are thus conserved quanti-
ties, and the Hamiltonian itself is then (identically) a conserved quantity.

It follows from the Hamilton equations that for the free particle case

ẋμ = pμ

M
(2.8)

and therefore, dividing the space components by the time components, cancelling
the dτ ’s (p0 = E and x0 = t),

dx
dt

= p
E

, (2.9)

the Einstein relation for the observed velocity. Furthermore, we see that

ẋμ ẋμ = pμ pμ

M2 ; (2.10)

with the definition of the invariant

ds2 = −dxμdxμ, (2.11)

corresponding to proper time squared (for a timelike interval), this becomes

ds2

dτ2
= m2

M2 . (2.12)
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Therefore, the proper time interval �s of a particle along a trajectory parametrized
by τ is equal to the corresponding interval �τ only if m2 = M2, a condition we
shall call “onmass shell”.3 The theory is, however, generally intrinsically “off-shell”.
We shall see that this property is essential for the resolution of the Newton-Wigner
problem, and therefore for the possibility that thewave functionhas a local probability
interpretation, and can be a candidate for a consistent relativistic quantum theory.
There is, however, no obvious constraint, even for simple interacting models, such
as in the potential model

K = pμ pμ

2M
+ V (x), (2.13)

that would insure that the particle maintains a physical mass in the small neighbor-
hood of some given value.4 One might suppose that an electron, after interaction that
could perturb the value of m2, would result in a particle with a different mass; it has
therefore been an explicit assumption in many successful applications (for example,
in the two body bound state that we shall treat in Chap.5) that there is a mechanism
for returning the particle to the neighborhood of some equilibrium value of mass,
such as a relaxation of free energy of the system in interaction with other particles
or fields (e.g., a suggestion of Jordan 1980). It was found by Burakovsky and Hor-
witz (1996) that there may be a high temperature Bose-Einstein condensation, in
the framework of statistical mechanics (to be discussed in Chap.8), that causes a
particle to stabilize its mass at some value determined by a chemical potential. More
recently, Aharonovich and Horwitz (2011) have found that the electromagnetic self
interaction of a charged particle can dynamically drive the particle to its mass shell.
We shall assume in the following that there exists such a mechanism for every object
that is recognized as a “particle” (even for reasonably sharp resonances) which sta-
bilizes its mass, and discuss this question in more detail in later chapters. However,
for the theory to be effective, this mass shell property can only be approximate, i.e.,
an absolutely sharp mass value would not be compatible with the structure of the
theory, as will become clear below.

3In Galilean mechanics, due to the existence of a cohomology in the Lie algebra of the Galilean
group, a definite value must be assigned to the value of the mass to achieve an irreducible represen-
tation (Sudarshan 1974). The Poincaré group does not have such a cohomology, and thus admits the
full generality of the Stueckelberg theory. We discuss the Galilean limit in more detail in Chap.10.
4An alternative covariant structure for a relativistic quantum theory, the so-called constraint mechan-
ics, discussed in Appendix A of this chapter, based on the constraint theory developed by Dirac
(1966) to deal with the quantization of gravity and gauge fields, extensively studied by Sudarshan
et al. (1981a), Rohrlich (1981) and others (Llosa 1982), does have a mechanism for enforcing the
asymptotic return of a particle to a given mass shell. This theory, however, necessarily makes use
of a system of constraints of the first class (Itzykson 1980), a condition that makes the construction
of a useful quantum theory very difficult (Horwitz 1982).

http://dx.doi.org/10.1007/978-94-017-7261-7_5
http://dx.doi.org/10.1007/978-94-017-7261-7_8
http://dx.doi.org/10.1007/978-94-017-7261-7_10


18 2 Relativistic Classical and QuantumMechanics

2.2 Classical Mechanics

To illustrate some of the properties of the covariant classical mechanics, consider the
two body problem with invariant relative potential V (x1 − x2), a Poincaré invariant
potential (invariant under both the Lorentz group and translations); such a potential
must be a function of xμxμ = x2 − t2, where we have called

xμ = xμ
1 − xμ

2 , (2.14)

the relative spacetime coordinate, which we shall call x . The Stueckelberg Hamil-
tonian corresponding to this problem is (Horwitz 1973) (the assumption of the uni-
versality of τ made in this work, not explicitly made by Stueckelberg, is essential to
the formulation of this problem)

K = p1μ p1μ

2M1
+ p2μ p2μ

2M2
+ V (x). (2.15)

Since K does not depend on the total (spacetime) “center of mass”

Xμ = M1xμ
1 + M2xμ

2

M1 + M2
, (2.16)

the two body Hamiltonian can be separated into the sum of two Hamiltonians, one
for the “center of mass” motion and the second for the relative motion, by defining
the total momentum, which is absolutely conserved,

Pμ = pμ
1 + pμ

2 (2.17)

and the relative motion momentum

pμ = M2 pμ
1 − M1 pμ

2

M1 + M2
(2.18)

Then, it is an identity that (as in the nonrelativistic two body problem)

K = Pμ Pμ

2M
+ pμ pμ

2M
+ V (x),

≡ KC M + Krel ,

(2.19)

where M = M1 + M2 and x = x1 − x2; both KC M and Krel are constants of the
motion.

We see in this construction the significance of defining τ as a universal parameter
(Horwitz 1973). The potential function V (x1 − x2) implicitly carries in it the infor-
mation that the points x1 and x2 are at equal τ ; this correlation makes it possible
to consider pairs of points along the two world lines of the two particles as having
well-defined interaction. A similar assumption is made in ordinary nonrelativistic
dynamics; the implicit assumption in writing a potential function as V (x1 − x2) is
that the points x1 and x2 are taken at equal t along the orbits. This assumption is usu-
ally not made explicit, since the nonrelativistic Galilean world is always assumed
to be at equal universal Newtonian time. Thus we see that the parameter τ , with
the assumption of universality (Horwitz 1973), corresponds to the Newtonian time.
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Although the t and x of Einstein undergo Lorentz transformations as they are per-
ceived and measured in relatively moving inertial frames, the dynamical correlation
provided by the invariant universal parameter τ is maintained independently of the
state of motion.

Models parallel to those of the nonrelativistic theory can be constructed, for exam-
ple, by replacing the V (r) of nonrelativistic spherically symmetric models by V (ρ).
where ρ = √

xμxμ for the relative coordinate xμ spacelike, in accordance with
our experience of the nonrelativistic two body problem. Moreover, for two time-
like momenta, corresponding to particles with positive m2, the relative momentum
defined in (2.18) is generally spacelike since for not too large space components of
the momenta, and for particles not too far frommass shell, the fourth components are
then large and approximately equal to M1 and M2 respectively; the fourth component
of the relative momentum carries a near cancellation, and the resulting vector is gen-
erally spacelike. The relativistic two-body problem therefore differs fundamentally
from the nonrelativistic two body problem; in the latter case, separation of variables
results in a center of mass motion accompanying what appears to be one particle
in an external potential. In the relativistic case, the relative motion system is essen-
tially tachyonic, i.e., it apppears to describe a “particle” with spacelike momentum
(for which p/E > 1, and thus light speed would be exceeded). The situation is not
unphysical; we must realize that this is a relative motion of a two body system, and
that the two particles being described can be properly timelike. If the theory were
designed to rule out such tachyonic systems, we would not be able to study the two
body case in the way we have described above.

For such a class of models, one may choose, for example,

V (ρ) = k

ρ
, (2.20)

corresponding to aCoulomb potential for k = ±e2, or a gravitational Kepler problem
for k = −GM1M2. Since, according to (2.6), the Hamilton equations (written for
each particle),

dti
dτ

= Ei

Mi
, (2.21)

if the {Mi } are identified as the Galilean target masses of the particles (the Galilean
group, as will be discussed further in Chap.5, admits only a sharp mass, whereas the
Poincaré group admits a continuum of possibilities (Sudarshan 1974), as occurs in
the Stueckelberg theory), then the t values of all the particles may become identical
in this limit, and the relative coordinate ρ goes over into the coordinate r = |x|. Thus
the Coulomb and Kepler models go over, as c → ∞, precisely to the corresponding
problems in the nonrelativistic theory.

We shall show in Chap.5 that the corresponding relativistic quantum two body
Coulomb problem can be solved exactly, and yields the nonrelativistic Schrödinger
spectrum up to relativistic corrections (O(1/c2)).

For the classical case, a Lorentz invariant potential implies that the function

Mμν = xμ pν − xν pν, (2.22)

http://dx.doi.org/10.1007/978-94-017-7261-7_5
http://dx.doi.org/10.1007/978-94-017-7261-7_5
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for which the Poisson bracket algebra is that of the Lorentz group, is conserved (its
Poisson bracket with K vanishes). Therefore, the four linear cyclic combinations of
{xλMμν} which vanish identically provide constraints on the orbits. Two of these
relations are degenerate, and the remaining two restrict the Kepler motion to a plane.
One finds, in contrast to Sommerfeld’s (1921) conclusion, the resulting ellipse does
not precess. The precession which Sommerfeld found in his search for the origin of
the precession of the orbit of Mercury was due to his use of the noncovariant form
1/r for the potential. This problem is discussed in detail in Horwitz (1973) and in
Trump (1999).

Another model of interest is that of the covariant harmonic oscillator, for which
(for k some positive constant) (Feynman 1971; Kim 1977; Leutwyler 1977)

V = kρ2 = kxμxμ. (2.23)

The equations of motion separate into four independent second order equations, each
of which correspond to a one dimensional oscillator, each following some elliptical
path on spacetime, constituting an orbit which is bounded in the t direction; one may
think of this as a continuing sequence of pair annihilation and creation processes (in
relative motion) from the point of view of Stueckelberg’s classical pair annihilation
picture. In the corresponding quantum theory, this separation of variables leads to
“ghost” states which must be suppressed by constraints. We shall see in Chap.5
that this problem can be solved with no “ghost” states, obtaining the nonrelativistic
oscillator spectrum (up to relativistic corrections).

From the point of view developed here, one sees the classical wave equations, such
as theKlein-Gordon equation and theDirac equation, aswell asMaxwell’s equations,
as being essentially geometrical constraints rather than dynamical in this context.
We shall be concerned here with developing the dynamics of systems evolving in a
covariant way in spacetime.

2.3 The QuantumTheory

In this section we shall study the form of the quantum theory associated with Stueck-
elberg’s dynamics in spacetime (Stueckelberg 1941; Horwitz 1973, to be called SHP
in the following). We have argued that in a relativistically covariant theory, the space
and time variables are observable, and therefore correspond to Hermitian operators
in the quantum theory. The operator commutation relations are taken to be

[xμ, pν] = iημν, (2.24)

consistently with the Poisson bracket for the classical case, and the Lorentz covariant
generalization of the nonrelativistic commutation relations [xi , p j ] = iδi j . With
these commutation relations, the operator form of the definition (2.22) satisfies the
commutation relations of the Lorentz group, just as the Poisson bracket relation for
the classical case. To achieve this simple form for the generators of the Lorentz group
in the quantum case, it is necessary that the Hilbert space be defined as L2(R4, d4x),

http://dx.doi.org/10.1007/978-94-017-7261-7_5
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as we define formally below; only in this way can the operator

E → i
∂

∂t
be considered as essentially self-adjoint. We shall discuss this operator form of the
Lorentz group further in detail in Chap.5.

The spectral decompositions of the self-adjoint operators xμ or pμ then provide
representations of the quantum state, as explained, for example, in Dirac’s book
(Dirac 1930). The wave function is then a square integrable function on spacetime x
(or p); its square modulus corresponds to the probability of finding an event per unit
spacetime volume d4x (or energy momentum space d4 p)at the point x (or p). In the
x representation, for which xμ is numerical valued, pμ is represented by −i∂/∂xμ,
and in the p representation, for which pμ is numerical valued, xμ is represented by
i∂/∂ pμ.

Stueckelberg assumed that the dynamical development of the wave function is
governed by a Schrödinger-like equation, which we shall call the Stueckelberg-
Schrödinger equation

i
∂

∂τ
ψτ (x) = Kψτ (x) (2.25)

where in the notation of Dirac (1930),

ψτ (x) =< x |ψτ > (2.26)

and K is an operator function of x, p, which may correspond to the classical models
discussed above. The wave function is assumed to be scalar; the representation of
a particle with spin will be discussed in Chap.3. Gauge field interactions, such as
electromagnetism, can be accounted for by imposing gauge invariance, as we shall
discuss in later chapters.

The Eq. (2.25) corresponds to unitary evolution, as for the nonrelativistic Schrö-
dinger equation, where the evolution is generated by the operator (for K not explicitly
dependent on τ )

U (τ ) = e−i K τ , (2.27)

for which ψτ (x) = U (τ )ψ(x).
The derivative of an expectation value of the observable F is then, as in the

nonrelativistic quantum theory, consistent with the Poisson bracket formulation, i.e.

d

dτ
(ψτ , Fψτ ) = −i(ψτ , [F, K ]ψτ ), (2.28)

where [F, K ] is the commutator, with the correspondence defined by Dirac (1930)5

{F, K }P B → −i[F, K ]. (2.29)

5As Van Hove (1951) has pointed out, this correspondence is not applicable for higher order poly-
nomials; both the Poisson bracket and the commutators are distributive in the Leibniz sense, but in
the quantum case the algebra is not commutative, and it is not always possible to regroup factors as
in the classical, commutative, case. The problem of consistent quantization has been studied under
the name “geometric quantization” (Kostant 1970).

http://dx.doi.org/10.1007/978-94-017-7261-7_5
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Since the “standard” bras and kets correspond to representations of the self-adjoint
operators x and t , they are complete, and the scalar product (as for the expectation
value in (2.28)) is given by

< χ|ψ > =
∫

d4x < χ|x >< x |ψ >

=
∫

d4xχ(x)∗ψ(x). (2.30)

This is clearly a positive scalar product, defining the norm

‖ψ‖2 =
∫

d4xψ(x)∗ψ(x) =
∫

d4x |ψ(x)|2, (2.31)

as previously discussed in Chap.1. This property, together with linear superposition
over the complex numbers (which follows from the linearity of the scalar product)
and boundedness of the norm, consistent with the Born probability interpretation,
results in the proper structure of a Hilbert space and a consistent quantum theory.

Themomentum representation, as in the nonrelativistic theory, is constructed from
the Fourier transform

ψ(p) = 1

(2π)2

∫
d4xeipμxμψ(x), (2.32)

with inverse

ψ(x) = 1

(2π)2

∫
d4 pe−i pμxμψ(p). (2.33)

As we have noted in Sect. 1.2, the interpretation of the solutions of the Klein-Gordon
equation as wave functions in a quantum theory encounters serious problems with
localizability. In the theory of Stueckelberg, we have interpreted the wave function
as the amplitude for the local probability density. It is therefore important to discuss
the Newton-Wigner problem in the context of the Stueckelberg theory, and we turn
to this question in the next section.

2.4 The Newton-Wigner Problem

Having defined the manifestly covariant quantum theory, we are now in a position to
re-examine the Newton-Wigner problem (Newton 1949). From the viewpoint of this
theory, we shall be able to understand the way the problem arises in the framework
of theories which use equations of the type of those of Klein-Gordon and Dirac that
impose a strict mass shell requirement.

We will show that the x operator in the Stueckelberg theory, corrected to extrapo-
late the occurrence of an event at some point in spacetime back to t = 0, as sought by
Wigner and Newton, is exactly the Newton-Wigner position operator on each mass
value (in the sense of a direct sum) under the integral defining the expectation value
(Horwitz 1973).

http://dx.doi.org/10.1007/978-94-017-7261-7_1
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Consider the expectation value of x:

< x >=
∫

d4 pψ∗(p, E)i
∂

∂p
ψ(p, E) (2.34)

We now change variables, considering only E ≥ 0, using the relation

E =
√

p2 + m2 (2.35)

for m a new variable. Then,

d E = dm2

2E
, (2.36)

where now E stands for the relation (2.35). Furthermore, if we want to think of the
derivative in (2.34) as a straightforward derivative (it only acted on the first three
arguments in ψ before the change of variables), we have to correct for its action on
the fourth argument E , i.e., we must now write

i
∂

∂p
→ i

∂

∂p
− i

∂E

∂p
∂

∂E

= i
∂

∂p
− i

p
E

∂

∂E

(2.37)

when acting on ψ(p, E = √
p2 + m2).

We recognize that this extra term looks like velocity times time, the operator
i∂/∂E . This corresponds to the displacement to get back to where a (virtual) world
line would be at t = 0, if one imagines the semiclassical picture of a world line
running through the point (x, t). This semiclassical interpretation of these operators,
where the real information is encoded in the wave function, appears to be consistent.
This extra term, however, in the quantum theory, should be symmetrized, so let us
define the relativistic operator form of the Newton-Wigner operator in the context of
the Stueckelberg theory as

xN W = i
∂

∂p
− 1

2
{v, t}, (2.38)

where v = p/E and t = i∂/∂E . One must use the fact that when ∂/∂E acts on
p/E , it differentiates both this factor and the wave function that implicitly follows
it. The last term in (2.38) is then

1

2
{v, t} = i

p
E

∂

∂E
− i

p
2E2 .

This is just the extra piece that came from the change of variables, plus a new term,
which we saw is part of the Newton-Wigner operator displayed in Eq. (1.9). Thus,
our operator (2.38), put into expectation value, can be seen as the expectation value of

x → x − i
p

2E2 ,

as required by Newton and Wigner, but under the integral over all mass shells.
Therefore, the operator (2.38) may be represented as the Newton-Wigner oper-

ator under the integration over masses of an expectation value at each value of m.

http://dx.doi.org/10.1007/978-94-017-7261-7_1
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The semiclassically expected value of the position of a particle as it passes t = 0
corresponds in this way to the Newton-Wigner operator.

We can understand from the point of view of the relativistic theory that position
and mass, as the operator x and m = √

E2 − p2, are not compatible. The Klein
Gordon theory does not consider the mass to be an operator; it is just a given number,
corresponding to a point on the continuous spectrum of m. The Stueckelberg theory
is completely local, consistent with our construction (2.38), and the interference
phenomena we describe with the associated wave functions should predict the actual
outcome of experiments. Such interference effects, predicted by Horwitz and Rabin
(1976), have indeed been observed, as we shall discuss in Chap.3 (the experiment
of Lindner et al. 2005).

2.5 The Landau-Peierls Problem

In 1931, Landau and Peierls (1931) deduced a relation between dispersion inmomen-
tum and time of the form (we restore � and c in several formulas of this section to
make the units clear)

�p�t ≥ �/c (2.39)

concerning the time interval�t duringwhich themomentumof a particle ismeasured
and the momentum dispersion of the state. According to Landau and Peierls, for
any given dispersion of momentum in the state, there is a minimum interval of time
necessary for measuring the outcomes predicted by knowledge of the state consistent
with the relativistic bound on the velocities.

Landau and Peierls begin with the estimates of first order perturbation theory for
the “almost conservation of energy”, i.e.

|E − E ′| ∼ �/�t; (2.40)

where, in perturbation theory, one argues that in sufficient time�t , the initial energy
E and the final energy E ′ after the transition are close. This relation corresponds to
the well known estimate for the nonrelativistic energy time uncertainty relation.

Landau and Peierls, however, use this result, not a rigorous property of the wave
functions of a particular state, to argue that if there is a dispersion in energy in the
incoming state, and a dispersion in the outgoing state, the two sets of values must be
restricted by this relation, for which the central values essentially cancel. Thus, one
obtains

|�E − �E ′| ∼ �/�t. (2.41)

They then use the relation (valid for both nonrelativistic and relativistic kinematics)

�E = d E

d P
�P = v�P; (2.42)

using absolute conservation of momentum to assert that

�P = �P ′,

http://dx.doi.org/10.1007/978-94-017-7261-7_3
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they then obtain
|(v − v′)|�P ∼ �/�t. (2.43)

This result implies a change in velocity from incoming to outgoing states. For a given
�P , the smaller the time interval of measurement, the larger this velocity change
must be. It is however, bounded by the velocity of light c, and one therefore obtains
the relation (2.39).

Aharonov andAlbert (1981) have understood this result in terms of causality. They
argue that if a measurement is made in a short time �t which restricts the particle
to a range of momenta �P , the wave function must extend to �x ∼ (�/2�P). The
Landau-Peierls result then assures that �x ≤ (c/2)�t . From the point of view of
Aharonov and Albert, involving causality, as well as the use of a relativistic bound
by Landau and Peierls, it is clear that the relation (2.39) should be associated with
relativity.

Following themethod used byLandau andPeierls for the relativistic Stueckelberg-
Schrödinger equation (2.25), it would follow in the same way from first order per-
turbation theory that

|K − K ′| ∼ �/�τ (2.44)

Since pμ pμ = −( E
c )2 − p2 = m2c2, where m is the mass of the particle measured

in the laboratory. The initial and final free Hamiltonians have the form

K = pμ pμ

2Mc2
= − m2c2

2Mc2
= − m2

2M
and therefore the relation (2.44) becomes, for small �m,

|m2 − m′2

2M
| ∼ �

�τ

= |(m − m′)|(m + m′)
2M

∼= |�m|,
for m close to its “mass shell” value M. We therefore find the relation (Burakovsky
1996)

�m�τ ∼= �, (2.45)

a mass-τ uncertainty relation. This result provides a justification for the for the
generally assumed relation that the width of the mass dispersions of elementary
particles as seen in decay modes is associated with the lifetime of the particle in
its proper frame. If the particle is off shell due to additional interactions during the
decay process, there would clearly be corrections.

As we have noted, such estimates are not rigorous, but carry the same semi-
quantitative arguments used by Landau and Peierls, based on first order perturbation
theory.

The �E�t uncertainty relation in the SHP relativistic theory, on the other hand,
follows rigorously from the commutation relation

[E, t] = i�. (2.46)
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It is a general theorem in quantum mechanics that the dispersions of two self adjoint
operators A and B in a given quantum state, defined by

�A =
√

< (A− < A >)2 >

and

�B =
√

< (B− < B >)2 >

are related by

�A�B ≥ �

2
| < [A, B] > |.

It therefore follows from (2.46) that, as a rigorous property of the wave function
representing the state of the system,

�E�t ≥ �/2. (2.47)

In a similar way, it is possible to show that there is a simple and rigorous derivation of
(2.39) in the framework of the manifestly covariant quantum theory we are working
with here.

We have seen that the results of Newton andWigner can be obtained in a straight-
forward way by defining an effective Newton-Wigner operator as in (2.38), with the
semiclassical meaning of an extrapolation of the event position back to the value it
would have at t = 0, interpreting the virtual velocity field contained in the wave
function as associated (in expectation value) with an actual distribution that could be
thought of as a collection of possible world lines. In the same way, we can construct
an effective time operator by extrapolating the time of observation of an event back
to the x = 0 axis, which one might think of as the location of a Geiger counter
triggered by the passage of a world line through its position at x = 0. We therefore
define a Landau-Peierls time operator as (Arshansky 1985)

tLP = t − 1

2
{x; pE

p2
} (2.48)

where pE
p2

is an inverse velocity operator, providing a shift in time for a virtual
worldline (the semicolon implies both dot product as well as anticommutator). It
then follows that

[tLP, p] = −[x, p] · pE

p2
.

But (p ≡ √
p2)

[xi , p] = i�
pi

p
,

so that

[tLP, p] = −i�
E

p
. (2.49)
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It therefore follows from (2.49) that

�tLP�p ≥ 1

2
� < E/p > . (2.50)

The quantity E/p is the magnitude of the inverse velocity operator; if the virtual
velocity p/E is bounded within the wave packet by the velocity of light c, we
obtain the Landau-Peierls bound (2.39) as a rigorous property of the wave function
describing the state of the system. There is, in principle, however, no bound on the
occurrence of components of the wave function with values of p/E greater than one.
On the other hand, application of the Ehrenfest theorem (Ehrenfest 1927), when it
is valid, would rule out this possibility for the same causal reasons given by Landau
and Peierls. The Ehrenfest theorem for the relativistic theory has the same structure
as in the nonrelativistic theory, resulting in the classical Hamilton equations for the
motion of the peak of the wave packet in spacetime. We review the argument in the
following.

Consider a wave packet of the form (for free evolution)

ψτ (x) = 1

(2π)2

∫
eipμxμ−i

pμ pμ
2M τχ(p), (2.51)

where χ(p), the momentum representation of the state, is a fairly sharp distribution
in pμ. The function χ(p) is modulus square normalized to one over integration on
all four momenta if ψ(x) is modulus square normalized to one over spacetime. For
large τ , if one may assume that the values of xμ also become large, the stationary
phase values

xμ ∼ pμ

M
τ (2.52)

make the primary contribution, as in the nonrelativistic argument. The value of
pμ under the integral that contributes corresponds to the sharp peak value of the
momentum space wave function, and the corresponding peak in the xμ wave func-
tion describes the motion of a classical event, as described above in Eq. (2.8). In
this case, a strong presence of spacelike momenta in the wavepacket could result in
the evolution of the wordline in a spacelike direction, i.e., with p

E exceeding light
velocity. We could therefore, on the same causal grounds as Landau and Peierls,
arguing that < E/p > must be greater than 1/c, rule out such a configuration, and
arrive at the Landau-Peierls relation from (2.50).

However, as Zaslavsky (1985) has pointed out in the context of the nonrelativistic
theory, the conditions for the validity of the Ehrenfest theorem degrade (in this case
as a function of τ ) due to the spreading of the wave packet as well as the effect of
interactions on the structure of χ(p). Zaslavsky (1985) called the time for validity of
the Ehrenfest theorem the “Ehrenfest time”, and argued that for quantum systems for
which the classical Hamiltonian induces chaotic behavior the Ehrenfest time is less.
Therefore, dynamical effects may occur in the relativistic theory which could result
in deviations from the Landau-Peierls bound. We shall discuss this subject further in
Chap.4.

http://dx.doi.org/10.1007/978-94-017-7261-7_4
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In the classical construction of Stueckelberg (1941) in Fig. 2.1, theworldline of the
particle passes through a region which is spacelike. In this region, the corresponding
Landau-Peierls bound would be violated, with the contrary inequality

�p�t < �/c, (2.53)

implying that the wave function could be arbitrarily narrow in the t-direction for
a given p distribution. Thus, this diagram could be described by a quantum wave
packetwhich has normal Ehrenfest form for the incoming and outgoing lines, butmay
have a vertex which is very sharp in t over a small but finite distance. The spacetime
diagrams discussed by Feynman (1949) may be thought of as an idealization of this
limit. The example of neutrino oscillations and similar phenomena in the K and B
meson systems, also providing an illustration of this effect, are discussed in Chap.4.

The relation (2.48) was constructed from a semiclassical interpretation of the
quantum observables, a procedure that was justified in our study of the Newton-
Wigner problem. In that case, we began with the straightforward computation of
the expectation value of the x operator, which has the same representation as in the
nonrelativistic quantum mechanics. However, there is no corresponding analog in
nonrelativistic quantum mechanics for a time operator; in the nonrelativistic quan-
tum theory, t is a parameter of evolution, and its expectation value is a trivial identity
(Ludwig 1982; Dirac 1930). We can, however, construct an argument analogous to
that used for the Newton-Wigner problem within the framework of the relativis-
tic theory, and show in the same way that the Landau-Peierls time operator (2.48)
emerges from the mass-shell restriction of the expectation value of the relativistic
time operator. To see this, consider the expectation value

< t >=
∫

d4 pψ∗(p, E)(−i
∂

∂E
)ψ(p, E), (2.54)

where we shall consider, for each value of m the magnitude of the momentum to
be a function of E . Let us change the variables pμ to the form (�, p, E), where �

corresponds to the angular coordinate variables of p, and define

p =
√

E2 − m2 (2.55)

Then,

d4 p = p2d�dpd E = −1

2
pd�d Edm2. (2.56)

We may then write

< t > = −1

2

∫
pd�d Edm2ψ∗(

√
E2 − m2, �, E)

[
−i

∂

∂E
ψ(

√
E2 − m2,�, E) + i

E

p

∂

∂ p
ψ(p,�, E)|p=√

E2−m2

]
,

(2.57)

where the last term (containing the factor (∂ p/∂E = E/p) compensates for the fact
that after the change of variables, i∂/∂E acts on p as well as the last argument.
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We now note that the Landau-Peierls operator (2.48) can be written as

tLP = t − 1

2

[
i

∂

∂p
· pE

p2
+ i

pE

p2
∂

∂p

]

= −i
∂

∂E
− i

2

E

p2
− i

pE

p2
· ∂

∂p
,

(2.58)

where we have used the fact that (most simply, carrying this out component by
component)

∂

∂p
· pE

p2
= E

p2
.

If we take the expectation value of tLP in place of t as in (2.53), one sees that the last
term in (2.56) cancels with the last term in (2.58), resulting in

< tLP >= −1

2

∫
pd�d Edm2ψ∗ (√

E2 − m2, �, E
) [

−i
∂

∂E
− i

2

E

p2

]
ψ

(√
E2 − m2, �, E

)

(2.59)

We now follow an argument similar to that used above for the Newton-Wigner
problem to find the wave function of an event which occurs at a definite sharp time.

If ψt=0(p) corresponds to a state for which an event is strictly localized to a point
in time t = 0, the wave function ψt=t0 must be orthogonal to it for t0 �= 0. Therefore,

∫
d4 pψ∗

t=t0(p)ψt=0(p) = 0 (2.60)

for t0 �= 0. However, using the Poincaré group property ψt=t0(p) = ei Et0ψt=0, we
have ∫

d4 pe−i Et0 |ψt=0(p)|2 = 0, (2.61)

implying that
∫

d3 p|ψt=0(p)|2 = const × (E),

or, ∫
d�p2dp|ψt=0(p)|2 = const × E (2.62)

But, as pointed out above, p2dp = −(1/2)pdm2, so that (2.62) becomes

−1

2

∫
pdm2d�|ψt=0(p)|2 = const × E . (2.63)

If the mass of the particle is concentrated at some value of m we conclude that
∫

d�|ψt=0(p)|2 = 1

p
× const, (2.64)
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or, for a spherically symmetric wave function,

ψt=0(p) ∝ 1√
p
.

Shifting by translation in t , we see that

ψt (p) ∝ (E2 − m2)−
1
4 ei Et . (2.65)

This result corresponds to the necessary form of a wave function at some given value
of m and concentrated at some value of t , the analog of the Newton-Wigner wave
function for a particle concentrated at a given point x. A simple computation shows
that

−i

(
∂

∂E
− i E

2p2

)
ψt (p) = tψt (p). (2.66)

Thus, the operator that appears in the expectation value in (2.59) at each value of m
in the foliation induced by the change of variables (2.56) corresponds to the analog
of the Newton-Wigner position operator (1.9) for time, restricted to a given mass
value.

Clearly, the Fourier transform of the function ψt0(p) of (2.65) (picking the local-
ization point to be t = t0) into the time domain by the kernel exp−i Et would not be
localized in t , as for the Newton-Wigner problem in x, and would therefore not form
a viable quantum theory if, as we have assumed, the mass is concentrated at a fixed
point. One could not use such wave functions to compute interference phenomena
in time, as we shall discuss in Chap.6.

We remark that, as for xN W , the Landau-Peierls operator tLP is a constant of the
free motion (as can be easily verified by computing their commutator with the free
Hamiltonian). The (mean) intercepts of the virtual motions contained in the wave
function, respectively to t = 0 and to x = 0 do not change under the free motion.

In the next chapter, we describe the basis for the construction of quantum states
of particles with spin.

Appendix A

We describe here the basic ideas of the so-called constraint theory formulation of
a many particle (many event) relativistic mechanics. In this theory, describing the
positions {xμ

i }, andmomenta {pμ
i } for i = 1, 2, 3, . . . , N of the particles, a constraint

is defined for each of the particles of the form (we use the metric (−, +, +, +))

Ki = pμ
i pμi + m2

i + φi (x, p), (2.67)

where, on the constraint hypersurface Ki ≈ 0, theφi (x, p) are functions of all the x’s
and p’s, and the {mi } are the given masses of the particles. This set of N constraints
restricts the motion to an N dimensional hypersurface in the 8N dimensional phase
space.

The “first class” constraints Ki may act as generators of motion under Poisson
bracket action (e.g. Itzyson 1980), thus defining the infinitesimal variations with

http://dx.doi.org/10.1007/978-94-017-7261-7_1
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respect to the corresponding parameters τi of the infinitesimal transformations of the
coordinates and momenta by

dxi

dτi
= i{Ki , xi }P B

dpi

dτi
= i{Ki , pi }P B,

(2.68)

providing a set of first order equations describing the motion on this hypersurface.
Thismanifestly covariant formalismhas the advantage that onemay assume the inter-
action terms φi vanish asymptotically when the particles are far apart; the constraint
conditions then enforce the particles to lie on mass shell (pμ

i pμi + m2
i = 0).

In order to construct a world line for the system on the range of these motions, one
generally introduces another set of N −1 constraints, called second class constraints,
forming surfaces with intersection along a line on the N dimensional hypersurface,
and an N th constraint which cuts this line and is a function of a single parameter
τ , thus describing motion along this world line (Sudarshan 1981a). It is possible,
however, to define these constraints in another way, by constructing a Hamiltonian
of the form (Rohrlich 1981)

K = �iωi (x, p)Ki . (2.69)

The Poisson bracket of this Hamiltonian with any observable O(x, p) then forms a
linear combination

dO
dτ

= �iωi
dO
dτi

, (2.70)

where we have taken into account that the Ki vanish on the constraint hypersurface;
the ωi are then identified with dτi/dτ , with the τi considered as functions of the
overall evolution parameter τ .

Although this approach is very elegant on a classical level, there are some difficul-
ties in passing to the quantum theory. The condition Ki = 0 poses a difficult problem
since, in general, the Ki have continuous spectrum, and the eigenstates would lie
outside the Hilbert space. This problem can be treated by defining N Schrödinger
type equations of the form (as for the treatment of cases with states in the continuous
spectrum in the nonrelativistic theory)

i
∂ψτ1,τ2,...

∂τi
= Kiψτ1,τ2,... (2.71)

but the combination �iωi (x, p)Ki would, in general, not be Hermitian. The sym-
metric product with the ωi ’s would not be useful, since the functions ωi have no
well-defined action on ψτ1,τ2,.... Nevertheless, Rohrlich and the author succeeded in
formulating a viable scattering theory in this framework (see references under Llosa
1982).
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