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The fundamental basis for the formulation of a relativistically manifestly covariant
quantum theorywas given in the introductory chapter of this book. The thought exper-
iment of Einstein, constituting two frames of reference, in relative inertial motion,
for the generation and reception of light signals forms the basis for the construction
of the special theory of relativity. Calling these frames F and F ′, according to this
experiment, two signals emitted successively from F at, say, τ1 and τ2 are received
in the frame F ′ at, respectively, τ ′

1 and τ ′
2, with the relation between them

τ ′
2 − τ ′

1 = τ2 − τ1√
1 − v2

c2

(11.1)

where v is the relative velocity of the two frames, and c is the velocity of light. The
relation (11.1) follows, according to Lorentz, from the null result of the Michelson-
Morley experiment. Einstein defines the observed difference as the time interval

�t = τ ′
2 − τ ′

1. (11.2)

Thereforewe see that theEinstein time, which transforms, alongwith the observed
interval �x between the places in the frame F . As observed in F ′, to provide the
observed spacetime point (t ′, x ′) (understanding these variables as intervals), trans-
forming according to the Lorentz transformation. These coordinates must be con-
sidered as observables, the outcome of a measurement. As our discussion of the
gravitational redshift shows, this is true as well for the spacetime manifold of gen-
eral relativity, for which it is remarkable that an assumed local diffeomorphism
invariance of the physical laws provides a set of equations (the Einstein equations)
which relate the geometry of such observable quantities to the energy momentum of
the system.

In the Galilean (Newtonian) description of dynamics, the universal time t postu-
lated by Newton provides a parameter for the description of the evolution of the state
of a particle in phase space, x(t), p(t). Since, in the relativistic world, as we have
argued, t is an observable on the same level as x, the description of the evolution of
the system requires the introduction of a parameter τ , admitting the description of
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a phase space t (τ ), x(τ ) with E(τ ), p(τ ). For this motion, Stueckelberg postulated
the existence of a Hamiltonian for which this evolution follows a generalized set of
Hamilton equations. In order to be able to treat the N body problem, Horwitz and
Piron asserted that the parameter τ is universal, and therefore plays the role of the
universal parameter of time postulated by Newton.

As for the nonrelativistic theory, one can then write a Schrödinger equation for a
quantum wavefunction ψτ (x), a covariant function on spacetime in a Hilbert space
L2(R4), satisfying all the requirements of a full quantum theory.

Many of the properties of such a theory are described in these chapters, includ-
ing bound state spectra, scattering theory and diffraction experiments constituting
interference in time, such as the remarkable experiment performed by Lindner et al.
The very high frequencies involved in such phenomena form an entrance into the
developing field of attosecond physics.

As for the nonrelativistic quantum theory, the construction of the tensor product
spaces leading to Fock space and second quantization is straightforward, and some
of the properties of the resulting quantum fields are discussed. Although it has been
shown byAndrewBennett (and described here) that the lowest order correction to the
electronmagneticmoment can be computedwithout recourse to second quantization,
since the first quantized theory can describe what appears to be particle creation and
annihilation in the laboratory (as in Stueckelberg’s original paper), there are clearly
phenomena that can be associated with the creation and annihilation of events. The
development of quantum statistical mechanics given here illustrates the utility of this
concept in the description of relativistic many body systems.

Although we have discussed some applications of this framework to the geomet-
rical approach to the dark matter problem of the galaxies of Milgrom, Bekenstein
and Sanders, a general discussion of the application of the theory presented here to
general relativity remains to be formulated.

The several phenomenological consequences of this theory, making contact with
experiment in some important areas, as described here, with potential applications
to general relativity and the emerging field of attosecond physics, provide a strong
motivation for a continued effort to develop the theory.
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