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Abstract

Much of the historical development of ecological thought has revolved around disturbance

and the responses of organisms, species and assemblages. Coral reefs have figured promi-

nently in this intellectual development. Historically, observed coral populations and

communities have been understood as displaying the net balance (though rarely reaching

an equilibrium) between disruptive forces and those leading to recovery of coral abundance

and composition. The fact of drastic coral decline over the past few decades implies a shift

in this balance toward greater influence of disturbance and/or lesser effectiveness of

recovery. This chapter examines the likelihood that both expanding disturbances

(in identity, scale, intensity, and/or frequency) and impaired recovery processes (resulting

at least partially from expanding chronic disturbances) are likely contributors to this shift.

The contemplation of progressively more radical management interventions to combat

expanding disturbance and faltering recovery invokes a need for targeted research to clarify

and minimize risks while maximizing benefits of such intervention strategies.
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11.1 Introduction

The concepts and theory of disturbance and recovery are

seminal in the field of community ecology and much of this

theory is based on coral reefs as a model system. These

concepts came to the forefront in the effort to explain the

origin and maintenance of species diversity in communities.

That is, how do so many species, especially species that

appear to make their living in a similar manner (i.e., have

similar niches) persist in equilibrium? Several pivotal works

in the 1970s revealed that periodic repeated disturbances at

different scales generally preclude equilibrium, climax

conditions in marine benthic communities (including coral

reefs) where space and light are the primary limiting

resources (Dayton 1971; Sutherland and Karlson 1977;

Connell 1978). By preventing an equilibrium climax com-

munity, disturbance is understood to allow the maintenance

of high species diversity by precluding competitive exclu-

sion (Connell 1978).

Disturbance, by definition (Box 11.1), is bad for the status

quo but not uniformly bad. The effects of a given distur-

bance event will depend not only on the nature of the

disturbance but also on the previous experience of the pres-

ent assemblage (Hughes and Connell 1999; Mumby

et al. 2011). In addition, the variable nature of biotic

populations and species implies that the experience and

therefore the effects of disturbance will vary between spe-

cies and among individuals within a species according to

their tolerances. These tolerances clearly change over time

as genetic or physiological adaptation may adjust the toler-

ance of individuals within a species and changing species
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composition may adjust the tolerance of the extant commu-

nity. Such shifts in species and community tolerance can

happen rapidly, especially within the context of rapid envi-

ronmental changes, and are crucial interactors with distur-

bance and recovery (discussed more completely in Chap. 7).

The consequence, however, of disturbance being bad for

the status quo is that it creates opportunities for newcomers,

both species and individuals. The effective utilization of

such opportunities requires successful recruitment and

growth of the newcomers. For corals, successful recruitment

is determined by a complex interplay of fecundity, fertiliza-

tion, connectivity, settlement and post-settlement survival

(Ritson-Williams et al. 2009). Clearly, the community

observed at a given point of space and time represents the

balance of loss to recent disturbances and the relative prog-

ress of newcomers in recruitment and growth, which will be

referred to as recovery. In the classical conception of a coral

reef as a stable system with high coral cover and high com-

munity diversity, a favorable balance of disturbance and

recovery gave the ‘illusion’ of equilibrium.

In the past two to three decades, as coral reef ecosystems

and corals in particular have begun and proceeded quite far

down a course of decline, this balance of disturbance and

recovery processes appears to be shifting toward dominance

by the former. The progression of ecological theory during

this period has been dominated by the growing recognition

and discussion of tipping points, alternate stable states, and

resilience. Recovery processes may fail to return the com-

munity to a pre-disturbance state (i.e. failure of resilience)

either because recruitment and growth of newcomers are

failing or because the disturbances are too frequent, intense,

and/or diverse for recovery to run its course. The result may

be an alternate stable state if punctuated acute disturbances

are most important, or a slow, steady decline if chronic

disturbances dominate (Hughes et al. 2012). The trajectory

of reefs at Discovery Bay, Jamaica (Fig. 11.1) provide the

archetypal example of lost resilience in the face of both

acute (hurricane) and chronic (impaired grazing due to

overfishing and collapse of grazing urchin populations)

disturbances (Hughes 1994).

This chapter will evaluate trends in both disturbance and

recovery processes in the radically changing coral reef

environments of the ‘Anthropocene’.

11.2 Disturbances: Types and Impacts

Many different typologies of coral reef disturbance have

been discussed in previous works. Several of these differen-

tiations are losing meaning in an era wherein human influ-

ence on otherwise ‘natural’ or ‘abiotic’ systems (e.g.,

climate or ocean carbonate equilibrium) is becoming pre-

dominant (Box 11.2). The dichotomy of acute vs. chronic

disturbance will be maintained in the current discussion as it

retains strong influence on both the recovery processes and

on the potential evolutionary responses that result. It should

be noted that various disturbance types may occur as both

chronic and as acute events, and hence interact and com-

pound each other in complex ways.

Various modeling studies have projected effects of vari-

ous disturbance types or frequencies on coral assemblages.

For example the model of Wakeford et al. (2008), based on

observed coral mortality, recruitment, growth, and competi-

tive outcomes in a reef patch at Lizard Island between 1981

Box 11.2: Typologies of Disturbance

Natural vs. Anthropogenic: As denoted by the con-

cept of an ‘Anthropocene’ age, nothing is truly free of

anthropogenic influence. We have increasing under-

standing that ‘natural’ processes determining carbon-

ate chemistry, storms, disease, etc. are all affected by

the rapidly changing atmospheric/CO2/ climate sys-

tem. Most everything is BOTH

Biotic vs. Abiotic: Similarly, changes in funda-

mental ocean chemistry and climate interact with the

biology of organisms in ways that substantially blur

this distinction. For example, increased river runoff

from extreme rainfall events has been convincingly

linked with destructive outbreaks of corallivores

(Fabricius et al. 2010).

Global vs. Local: Climate and chemistry-based

disturbances are clearly global in origin, but the expe-

rience of them is also local. This distinction may be

important from a patch dynamics or metapopulation

perspective, but several important threats (especially

disease and often bleaching) appear to operate at mul-

tiple scales

Chronic vs. Acute: This is a highly relevant

dichotomy as these likely have distinct consequences

for recovery and evolutionary outcomes. Both types

are probably increasing (e.g., extreme thermal

bleaching events AND nutrient loading are likely

increasing in many reefs). However, as the frequency

of acute disturbances increases, as expected for ther-

mal bleaching over the next two decades, it also blurs

to a chronic disturbance.

Box 11.1

For the purposes of this review, disturbance will be

referenced as “killing, displacement, or damaging of
one or more individuals (or colonies) that directly or

indirectly creates an opportunity for new individuals

(or colonies) to become established.” (Sousa 1984,

p. 356).
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and 2003, indicates that the actual assemblage was

maintained when mortality was concentrated in acute distur-

bance events (cyclones and/or predation outbreaks) up until

1997. After this date, the observed coral assemblage was

only emulated in the model by incorporating additional

chronic mortality factors into the model. These authors sug-

gest a fundamental shift in the disturbance regime and/or

resilience capacity of this reef during the 1990s decade.

11.2.1 Acute Physical Disturbance

Tropical storms and cyclones are the quintessential physical

disturbance, though various degrees of water motion (from

swell to tsunamis) and/or substrate disturbance (e.g.,

earthquakes or ship groundings) may have similar distur-

bance effects (i.e. killing coral and/or smashing substrate).

Their effects can be dramatic but patchy, with the more

severe events also causing additional physiographic or geo-

logical changes (Stoddart 1963; Connell et al. 1997). Events

causing damage to underlying substrate or flow regimes

further challenge the recovery potential and time frame.

However, over historical times, recovery from storm damage

to coral communities was presumed, and many aspects of

coral life history, dynamics and genetic structure were

attributed to the influence of storm events and their variable

effects in time and space (e.g., Hunter 1993; Hughes and

Connell 1999; Highsmith et al. 1980; Foster et al. 2013).

Tabular or branching coral species show greater susceptibil-

ity to storm damage than encrusting or mounding corals.

Depth and other habitat characteristics as well as recent

history strongly influence the amount of coral damage. For

example, Hughes and Connell (1999) delineate the sequence

of storm events and their relative impacts in different habitat

types in two long term data sets. The effects of repeated

storm impacts in both Heron Island, Australia, and the north

coast of Jamaica, varied strongly according to the habitat

type, the relative dominance of vulnerable (branching or

tabular) coral species, and, relatedly, the duration and nature

of recovery from the previous disturbance. In both study

regions, vast changes in coral composition as well as

reduced abundance resulted from storm disturbance when

tabular (generally Acropora spp.) corals dominated and little

change in composition (and much less change in abundance)

was wrought by storms when massive corals comprised the

bulk of the community (Hughes and Connell 1999).

Gardner et al. (2005) conducted a large meta-analysis of

hurricane effects on Caribbean coral reefs from 1980 to 2001.

They estimated that Caribbean reefs affected by a hurricane

during this period lost an average of 6 % coral cover per

annum in comparison to 2 % per annum for sites not affected

by storm damage, a significant difference largely attributable

to an average 17 % loss in coral cover in the year following a

hurricane impact. Variation in these rates of loss showed

positive correlation to storm strength and duration since the

previous storm impact. Gardner et al. (2005) also noted a

greater difference between the fate of hurricane impacted

vs. not-impacted sites in the 1980s decade in comparison to

the 1990s, when all sites showed similar rates of decline

suggesting non-hurricane factors came to dominate coral

Fig. 11.1 Coral cover response to sequential disturbances in the

archetypal example of Discovery Bay, Jamaica. The severe acute

disturbance of Hurricane Allen (1) precipitated significant coral mor-

tality, after which some recovery was evident, and at a pace that could

have returned coral cover (not necessarily community or population

structures) to the pre-Allen baseline in less than 15 years (dotted lines).
However, the acute mass mortality of Diadema antillarum (2) resulted

in massive macroalgal proliferation (a chronic disturbance) which

curtailed coral recovery. A following hurricane, Gilbert (3) continued
coral mortality. Subsequent recovery of D. antillarum (at least in small

patchy sites) has been reported to have decreased macroalgal cover and

greatly increased coral juvenile density in this region (Edmunds and

Carpenter 2001) (Redrawn from Hughes 1994)
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trends. On Australia’s Great Barrier Reef, comprehensive

monitoring of 214 sites between 1985 and 2012 yielded

estimates of average mortality of 1.63 % coral cover per

year to cyclones, which was marginally higher than the mor-

tality estimates for predation (1.42 % per year) and substan-

tially higher than that for bleaching (0.34 % per year) (De’ath
et al. 2012).

In more recent times, storm-induced coral disturbance has

often resulted in follow-on mortality rather than rapid recov-

ery. Evidence is mounting of the linkage of physical distur-

bance with subsequent coral mortality from disease and/or

predation, at least in the Caribbean (Brandt et al. 2013;

Knowlton et al. 1981; Bruckner and Bruckner 1997) though

the mechanisms behind this interaction, particularly for dis-

ease, are not well documented. It is clear, however, that

continuing coral mortality following a storm, including mor-

tality of potential fragment propagules, greatly hinders

recovery (Williams et al. 2008a). Additional ensuing threats

impairing post-storm recovery include the dispersal and

propagation of the excavating sponge, Cliona tennis

(Lopez-Victoria and Zea 2004) and increased impact from

generalist coral predators that may concentrate on reduced or

injured populations of preferred prey (Knowlton et al. 1990;

Bright 2009)

While the effects of storm disturbances may be increasing

over time, there is also the question of whether these distur-

bance events, themselves, are increasing in frequency or

intensity. Additional heat in the ocean/atmosphere system

may be expected to drive more tropical cyclones and,

indeed, Grinsted et al. (2012) report a significant correlation

of large Atlantic cyclone occurrence with warm years and a

significant increasing frequency of such events since 1923.

A significant increase in the number and proportion of strong

tropical cyclones, but not frequency of all cyclones, was

detected across all ocean basins over a 35 year period of

warming seas (Webster et al. 2005; Emanuel 2005). Mean-

while, Mumby et al. (2011) conducted a spatio-temporal

analysis of hurricane occurrence in the Caribbean and

showed that Atlantic storms from 1901 to 2010 have been

temporally clustered in certain areas, yielding lesser overall

reef damage/decline than if storms were randomly

distributed. However, the specter of more damaging storms

in the future, combined with apparently growing interactions

of physical disturbance with other sources of mortality

suggests worsening ultimate effects.

11.2.2 Acute Thermal Stress and Mass
Bleaching Events

Thermally induced mass bleaching events have become the

hallmark of global warming effects on coral reefs, but

regional-scale bleaching/mortality events can also result

from other environmental stressors such as cold temperatures

(Lirman et al. 2011) or low salinity runoff events (Haapkylä

et al. 2013). Coral bleaching, the breakdown of symbiosis

between the coral host and its zooxanthellae endosymbionts

resulting in lost energetic subsidy to the host, can occur

following a range of physiological stresses. Comprehensive

reviews of bleaching causes and consequences have been

provided by Brown (1997) and Baker et al. (2008). Mass

bleaching events can be predicted on the basis of cumulative

thermal stress measured as Degree Heating Weeks (DHW)

over the long term monthly maximum. Generally, coral

bleaching risk is considered to be elevated at doses above

4 DHW, i.e. 1 �C for 4 weeks or 4 �C for 1 week (Liu

et al. 2006). Recent trends in thermal stress dosage have

been increasing at large regional scales with considerable

variation at individual sites. Figure 11.2 shows annual maxi-

mum DHW averaged over the Caribbean region with larger

peaks evident over time corresponding to severe mass

bleaching events (Eakin et al. 2010). Similar increasing

regional trends in mean temperature or thermal stress dosage

have been documented in the Coral Triangle (Penaflor

et al. 2009), the Arabian Gulf (Riegl et al. 2011), and globally

(Lough 2000). Increasing temperature trends are expected to

continue with the frequency of mass bleaching disturbances

predicted to increase over the coming decades, possibly to

annual or nearly so (e.g., Donner et al. 2005) with dire

consequences for coral populations and coral reefs

(McClanahan et al. 2007; Hoegh-Guldberg 1999).

The first recognized global-scale mass bleaching events

were associated with El Niño warming events in 1982–1983

and 1997–1998. Additional basin-scale events were

documented in 2005 in the Atlantic/Caribbean (Eakin

et al. 2010) and 2010 throughout Southeast Asia and Arabian

Gulf regions (Riegl et al. 2011; Guest et al. 2012). Cumula-

tive thermal stress events as well as corresponding bleaching

Fig. 11.2 Cumulative warm thermal stress in Degree Heating Weeks

(DHW) over two decades averaged over the Caribbean basin (0.5� map

pixels containing coral reefs, bounded by 35�N, 55�W, and the coast of

the Americas). Severe regional mass bleaching events occurred in

1995, 1998, and 2005 (Source: Eakin et al. 2010)
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events in the Caribbean region appear to be intensifying over

time (Fig. 11.2; McWilliams et al. 2005).

Differential thermal bleaching susceptibilities among

taxa (Marshall and Baird 2000; McClanahan et al. 2007;

McField 1999) and among members within a species either

based on factors such as symbiont type, latitude or habitat

(Ulstrup et al. 2006), and prior thermal history (Guest

et al. 2012; Middlebrook et al. 2008; Thompson and Van

Woesik 2009) clearly influence the patterns of bleaching and

resultant mortality. Generally, colonies or taxa previously

exposed to moderately fluctuating or moderately extreme

temperatures appear to show greater thermal thresholds and

lesser severity of bleaching.

The direct mortality caused by bleaching is generally

poorly quantified, but represents the most severe aspect of

this disturbance. Meanwhile, bleaching itself represents dis-

turbance as ‘damage’ (Box 11.1) which can manifest as

increased disease susceptibility (discussed below) or impaired

reproduction. Thermal stress and bleaching of parent colonies

have been shown to limit subsequent reproductive success,

primarily via reduced fecundity (Szmant and Gassman 1990;

Baird and Marshall 2002) and possibly reduced fertilization

(Omori et al. 2001). Baird and Marshall (2002) is one of the

few studies to quantify both mortality and reproductive

impacts by following the fate of bleached colonies of four

species after the 1998 bleaching event. Two Acropora species

(hyacinthus and millepora) showed greater whole colony

mortality than Porites lobata and Platygyra daedalea. These

two Acropora spp. also varied in their subsequent reproduc-

tive impairment with only 45 % of bleached A. hyacinthus
colonies gravid the following year, compared with 88 % for

A. millepora. Hence, bleaching susceptibility, associated mor-

tality, and subsequent reproductive impairment are all known

to vary greatly among species.

Like physical disturbance, thermal stress and bleaching

are often associated with follow-on mortality from coral

disease. For example, bleached corals in the US Virgin

Islands suffered over 60 % mortality several months after

the 2005 bleaching event (Miller et al. 2009). Individual

bleached colonies also show greater likelihood of

manifesting disease mortality (Brandt and McManus 2009;

Muller et al. 2008). Ritchie (2006) describes a possible

mechanism for increased disease susceptibility of bleached

corals in that the usual antibiotic activity of mucus-

associated microbes was found to be absent in mucus from

bleached colonies.

11.2.3 Acute Disease Outbreaks

The profound effect of acute diseases (those causing rapid

tissue mortality) on coral assemblages and coral reef

communities, especially in the Caribbean basin, in the past

three decades is difficult to overstate, yielding massive

changes in the overall makeup of coral communities. Begin-

ning in the early-mid 1980s and with progressive extent and

effect through the next two decades (Sutherland et al. 2004)

disease has ravaged coral populations including the major

reef-builders, Acropora spp (Aronson and Precht 2001;

Gardner et al. 2003) and later Montastraea (now Orbicella)

spp. (Miller et al. 2009; Bruckner 2012). Impacts of disease

outbreaks in the Indo-Pacific region have been less severe,

but added scrutiny of coral disease phenomena throughout

the Indo-Pacific basin in recent years has revealed that coral

disease affects most regions at increasing prevalence and in

greater varieties with time (Raymundo et al. 2008). Coral

disease impacts have been reported even in the most remote

Pacific reefs (Williams et al. 2008b; Aeby 2005). Outbreaks

occur both in concert with other acute (discussed above) and

chronic disturbances such as nutrient or sewage pollution

(Kaczmarsky and Richardson 2011), but can also occur in

apparent isolation (Richardson et al. 1998; Nugues 2002;

Roff et al. 2011; Miller and Williams 2006; Williams

et al. 2008b).

The apparent disease-induced range-wide mass mortality

of grazing urchins, Diadema antillarum, also in the early

1980s, is the other disease event of profound importance in

the recent history of Caribbean reefs. The loss of grazing

capacity on most reefs was a major contributor to described

lack of recovery on these reefs (Fig. 11.1; Lessios 1988).

11.2.4 Acute Predator Outbreaks

The most influential predator on Indo-Pacific corals, the

crown-of-thorns seastar (COTS; Acanthaster planci)
undergoes dramatic population outbreaks which kill large

amounts of coral. COTS display strong and consistent

preferences among different coral prey, yielding highly

selective mortality of Acroporids and other tabular growth

forms in affected reefs with potentially strong effects on

coral community structure. COTS outbreaks are common,

regional scale acute disturbances across the Indo Pacific

region (Birkeland and Lucas 1990; De’ath and Moran

1998), though their relative influence may be under-

appreciated in regions with less rigorous monitoring (Baird

et al. 2013). Across Australia’s entire Great Barrier Reef, it
is estimated that COTS are responsible for an annual decline

of 1.43 % of total coral cover, second only to cyclone

mortality and over four times higher than mortality

attributed to bleaching (De’ath et al. 2012). Recent studies

provide strong evidence for the early hypothesis (Birkeland

1982) that local environmental factors, specifically nutrient

loads driving planktonic productivity fostering high larval

recruitment, are most responsible for outbreaks (Fabricius

et al. 2010; Brodie et al. 2005), as opposed to autogenous
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genetic factors in ‘rogue’ populations which might lead them

to outbreak (Timmers et al. 2012). There is also some evi-

dence that tropic cascades related to fishing may also

enhance COTS outbreaks (Sweatman 2008). These factors

point out the strong anthropogenic influence even in this

‘natural, biotic’ mechanism of acute disturbance.

While corallivores can be influential in some Caribbean

reefs, they do not seem to undergo the outbreak dynamics

associated with COTS or, to a lesser extent, Pacific

corallivorous gastropods, Drupella spp. (Turner 1994).

Outbreaks of Drupella snails have been reported to impose

up to 75 % coral mortality but such reports are rare relative

to COTS. Largely ecologically analogous corallivorous

snails in the Caribbean, Coralliophila abbreviata, can

impose substantial coral mortality, but acute predation

seems to be more related to coral population declines

(Knowlton et al. 1990), rather than corallivore population

increases. Fish can certainly also disturb corals, either by

predation or territorial activities (Chap. 10) but these are

generally of a chronic nature causing relatively small

amounts of mortality but potentially enhancing other

disturbances and causing some reproductive impairment

(e.g., Rotjan et al. 2006; Rotjan and Lewis 2009)

11.2.5 Chronic Disturbances

While certain sorts of chronic stressors may cause direct

mortality (e.g., severe sedimentation), most often, their dis-

turbance effects are manifest as sub-lethal damage. From our

definition of disturbance (Box 11.1), this means that the

opportunity provided for other organisms may be indirect

(e.g., via lower production of offspring) or slower to mani-

fest via delayed mortality. Such indirect effects of chronic

disturbance, particularly on reproduction and recruitment,

greatly influence the recovery side of our balance as

discussed in the next section.

It is also axiomatic that any acute disturbance can also be

experienced in background levels as a chronic effect. Wave

damage, predation, disease, and to some extent, bleaching

can all cause small scale disturbance/mortality which, due to

its ubiquitous patchiness over time and space, should recover

seamlessly. On the other hand, increasing frequencies of

acute disturbances, such as predicted annual occurrence for

thermal mass bleaching, may yield a dire situation of ‘con-
stant acute’ disturbance, which perhaps should still be dis-

tinguished in effect from chronic disturbance.

11.2.5.1 Water Quality Decline
Anthropogenic, land-based inputs to the coastal ocean

broadly include sewage and runoff as the major routes of

introduction, but introduce a host of constituent stressors

including sediment, nutrients, pharmaceuticals, pesticides

and other toxicants, microbes, etc. Direct causal evidence

of coral mortality or damage is difficult to determine in open

ocean environments, but it is clear that this range of factors,

especially in combination, have a negative effect on corals

(Fabricius 2005). Evidence for combined interaction of poor

water quality (or a surrogate of nearby human population

density) with coral impairment and disease is increasing

(Haapkylä et al. 2011; Kline et al. 2006; Downs

et al. 2005; Aeby et al. 2011).

As Fabricius (2005) states ‘In most cases where terrestrial

runoff causes reef degradation, disturbances other than

eutrophication were the proximate causes of coral mortality,

and runoff effects only became obvious when hard corals

failed to reestablish after such disturbances’ (p. 134). Repro-
ductive impairment, both via direct stress on the parent

colonies and on larvae themselves, may be the most influen-

tial effects of poor water quality (Richmond 1997).

Increased intensity of land use and coastal development in

many regions has clearly resulted in decreasing water quality

over time (McKergow et al. 2005), including the introduc-

tion of completely novel substances such as pharmaceuticals

(Richardson et al. 2005). Most sources of water quality

decline such as sewage, agriculture, and other land-use

changes are directly related to human population densities,

especially in coastal areas, but also inland. As such, these

chronic disturbances are expected to increase over time with

human population abundance and consumption levels. How-

ever, land-based pollution is also a factor that can be man-

aged effectively and so has the potential to decline in well-

managed localities.

11.2.5.2 Fishing and Trophic Disruption
A nigh-ubiquitous disturbance that affects coral reef

ecosystems is the trophic disruption that results from artifi-

cial removal of biomass by fishing. While corals are directly

removed in some locations, local protection and manage-

ment are most often able to curb this direct disturbance and

so the effects of fishing on corals are largely indirect, and

hence, more difficult to quantify. For example areas where

grazers are intensively removed are more prone to ‘phase
shifts’ to persistent seaweed dominated reefs when acute

disturbances cause coral mortality (Jackson et al. 2001;

Hughes et al. 2007; Hughes 1994). Conversely, various

modeling studies have described how maintaining high

levels of grazing can mitigate other disturbances’ (e.g.,

hurricanes or bleaching mortality) effects on coral decline

(Edwards et al. 2010; Mumby et al. 2007). Similarly, some

evidence suggests that more diverse fish trophic webs in

no-take reserves can reduce the spread of coral diseases,

likely via reduced transmission by coral-feeding

butterflyfishes (Raymundo et al. 2009). The intensive, long
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standing, and ubiquitous changes in coral reef food webs

from overfishing have been posited to have wrought such

profound alterations of trophic structure that microbial and

organic carbon dynamics have been disrupted (Jackson

et al. 2001) which can also induce coral mortality and dis-

ease (Smith et al. 2006; Kline et al. 2006). Although man-

ageable, fishing pressure is also likely to increase with

human population and is thus likely to grow in the foresee-

able future.

11.2.5.3 Carbonate Chemistry Changes
Ocean acidification is the term used to describe the process

of absorption of excess CO2 from the atmosphere into the

ocean yielding alterations in the carbonate chemistry equi-

librium of ocean waters. The resulting reduced pH and

saturation levels of aragonite (the carbonate mineral form

of which scleractinians build their skeletons) are expected to

impair coral calcification (Cohen and Holcomb 2009), pos-

sibly their resistance to physical disturbance (Chap. 4), and

their reproduction (though likely via indirect mechanisms

such as increased fertilization limitation (Albright

et al. 2010), altered settlement cues (Doropoulos

et al. 2012), and slowed post-settlement growth rates

(De Putron et al. 2010; Suwa et al. 2010; Nakamura

et al. 2011). Modelling projections (illustrated in Fig. 11.3)

clearly show the anticipated increase in severity and geo-

graphic extent of this stressor over the remainder of the

twenty-first century.

11.2.6 Ecosystem Effects of Disturbance

The dramatic disturbance-induced coral declines of recent

decades beg the question of how coral reef ecosystems are

affected. Certain obligate corallivores or coral-dwellers

(Stella et al. 2011) clearly suffer when coral is disturbed.

Live coral cover, itself, does significantly enhance reef fish

communities (Coker et al. 2012), though the loss of physical

structure probably has more profound effects and the main-

tenance of the skeletal structures of even dead coral contrib-

ute greatly to habitat value and ecosystem function of reef

habitats (Graham et al. 2006; Wilson et al. 2006). Indeed, the

more novel sources of disturbance mortality (bleaching and

disease) largely leave skeletal structures in place. However,

without living coral to maintain/replace this structure, ero-

sive forces will inevitably whittle it away (Chap. 4). Graham

et al. (2008) in a meta-analysis of reef change across nine

regions of the Indian Ocean showed a strong correlation of

coral cover loss (the primary driver being the 1998 mass

bleaching) and loss of structural complexity within 7 years

Fig. 11.3 Projected global

patterns of aragonite saturation

state (Ω) showing expected

progressive expansion and

intensity of chronic ocean

acidification disturbance

throughout tropical seas.

Simplistically, calcification

requires greater energetic

investment by corals under lower

levels of Ω (From Hoegh-

Guldberg et al. (2007). Reprinted

with permission from AAAS)
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of the acute disturbance. Large scale meta-analyses for

Caribbean reefs indicate a long term decline in the architec-

tural complexity of Caribbean reefs (Alvarez-Filip

et al. 2009) and simultaneous declines in fish communities

that appear to be better explained by habitat degradation than

direct fishing pressure per se (Paddack et al. 2009). Com-

bined with poorer cementation/accretion and reduced coral

growth rates under declining carbonate saturation

environments and potentially increased dissolution and

bioerosion rates due to acidification (Andersson and Gledhill

2013), the structural degradation of coral reefs and hence

degradation of carrying capacity for associated species is

likely to accelerate under increasing CO2 futures.

11.3 Recovery Processes

Recovery of reef ecosystems in the modern ecological liter-

ature has substantial overlap with the term ‘reef resilience’,
the speed or effectiveness with which a given reef returns to

a pre-disturbance state. There is broad consensus that funda-

mental ecological processes such as grazing, or other com-

plex interactions affecting coral recruitment and growth are

the primary determinants of reef resilience. In the past few

decades, the literature is replete with examples of lack of

recovery, particularly on Caribbean but also Indo-Pacific

reefs. As early as 1997, a synthesis of reef recovery studies

indicated a more or less complete lack of recovery on dis-

turbed West Atlantic reefs (Connell 1997). In addition to the

intensifying cycles of disturbance described above, the pro-

liferation of macroalgae and lack of coral recruitment, par-

ticularly for reef-building species, are associated with poor

recovery. The fact of coral reef degradation throughout most

all regions of the world implies that the processes of coral

recovery lag the combined effects of disturbances. The pre-

vious section described many types of disturbance effects,

many of which are understood to be increasing individually,

and are most certainly increasing in combination. Whereas

acute disturbances often occur very rapidly (e.g., days to

weeks), are obvious, and relatively easy to quantify, the

processes whereby corals recover are slow (e.g., decades)

and important stages (e.g., coral larvae and post-settlers) are

difficult or impossible to observe directly. This means that

our general understanding of recovery processes and poten-

tial trends are much more poorly understood.

Graham et al. (2011) review ecological studies of reef

recovery from the 1960s to 2009, analyzing five categories

of predictors for reef recovery (in this case, measured as

coral cover); disturbance characteristics, reef characteristics,

reef connectivity, ecological characteristics and anthropo-

genic influences. Interestingly, they document an exponen-

tial increase in the number of published recovery studies in

the latest decade as well as in the diversity of instigating

acute disturbance types. Their analyses of reef studies with

positive recovery trajectories indicate that geographic region

(lowest in the Eastern Pacific, followed by the Caribbean),

management status of the reef (lowest in fully protected

MPAs, possibly an artifact of prior reef condition rather

than an effect of management itself), and the post-

disturbance coral cover (faster recovery from 6 % to 10 %

cover than <5 % or >10 %) were the important factors in

influencing rate of coral recovery, which had an overall

mean of 3.56 % per year (95 % CI ¼ 2.89–4.43). The type

of disturbance and the physiographic reef type or zone had

limited influence on recovery rate, as did the adjacent human

population density. These characteristics are derived from a

subset of resilient reefs, however, and it would likely be

instructive to perform a similar analysis comparing similar

characteristics with instances where reefs failed to recover

over similar time scales. Indeed, Ateweberhan et al. (2013)

contrast recovery of coral cover after the 1998 bleaching

event between the remote, nearly pristine Chagos archipel-

ago (less than a decade) and the Seychelles with higher

human disturbance (minimal recovery observed over

~15 years) despite similar latitude, pre-disturbance coral

cover, and disturbance related declines.

The importance of biogeographic variation in reef recov-

ery processes is highlighted by Roff and Mumby (2012) who

discuss evidence and a range of explanatory hypotheses for

the apparent lesser recovery potential of Caribbean versus

Indo-Pacific reefs. The semi-enclosed Caribbean basin has

experienced more intensive human occupation and influ-

ence, including intensive fisheries extraction disrupting tro-

phic structure over centuries (Wing and Wing 2001; Jackson

1997). However, the lower Caribbean species diversity in

guilds of both fast growing corals and reef herbivores yields

a lower functional redundancy. Hence, the sequence of acute

disturbances in the Caribbean which have rendered both

fast-growing acroporid corals and the important grazing

urchins functionally extinct in this region, has yielded a

basic loss in the recovery capacity of these reefs. Roff and

Mumby (2012) also compile evidence from a range of stud-

ies showing a dramatically higher rate of seaweed recruit-

ment and productivity under experimental conditions of

reduced grazing in the Caribbean versus Indo-Pacific.

Despite this inherent robustness of Indo-Pacific reef resil-

ience, the repeated patterns of coral decline across

subregions (Bruno and Selig 2007; De’ath et al. 2012;

Riegl et al. 2012) point to at least a similar trend of increas-

ing imbalance with the pace of recovery lagging the pace of

cumulative disturbance.

Of course conclusions about the progress or trends in

coral recovery will depend also on the currency one uses.

While the most data are available on percent cover,

recovering population structure of long-lived organisms

will necessarily take a very long time (see Fig. 11.1). More

importantly, there are numerous examples that occasions of

apparent rapid recovery of coral cover to a pre-disturbance
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level may mask fundamental changes in species composi-

tion, with sensitive species (often Acropora spp.) being

largely replaced by more tolerant ones (Berumen and

Pratchett 2006; Burt et al. 2008; Hughes and Connell 1999).

11.4 Coral Replenishment

The most basic processes of coral recovery involve the

recruitment of new propagules and the re-growth of remnant

tissue left from partial mortality on colonies. If the pattern

and scale of disturbance allows for this latter mechanism to

be effective, recovery can indeed be very rapid (one to a few

years) (Diaz-Pulido et al. 2009) or greatly accelerated

(Gilmour et al. 2013). The intensity and scale of many reef

disturbances dictates that recovery will depend on the influx

of new population members, likely larval recruits,

highlighting the importance and influence of larval supply

from upstream populations. Many, if not most, disturbances

also have direct effects on coral reproduction and recruit-

ment success, further impairing coral recovery and widening

the potential imbalance in disturbance and recovery pro-

cesses in coral reef systems. Climate change-related

disturbances likely affect coral replenishment by impairing

coral larval production (fecundity and fertilization), dis-

persal, settlement success and juvenile growth (summarized

in Birkeland et al. 2013). Early life phases of corals com-

monly show direct susceptibility to warm temperature stress

including reduced fertilization for some species, develop-

mental abnormalities and reduced larval survivorship, and

reduced settlement success (Randall and Szmant 2009;

Polato et al. 2010; Negri and Hoogenboom 2011; Negri

et al. 2007). Trophic disturbance of reef systems (via fish

extraction or mass mortality events) generally impedes coral

replenishment by degradation of settlement habitat, espe-

cially via proliferation of benthic macroalgae (Kuffner

et al. 2006; Birrell et al. 2008). Disturbance from water

quality degradation and sedimentation can impede coral

replenishment both via larval supply (fecundity, larval sur-

vivorship), and via degradation of settlement habitat

(Fabricius 2005; Birrell et al. 2005).

At some scales, both chronic and acute disturbances

inherently impair coral replenishment by reducing the pro-

duction of propagules via both mortality and physiological

stress (described in the disturbance sections above and

illustrated in Fig. 11.4). Evidence for stock-recruitment

relationships in coral populations is often obscured by multi-

ple stressors and the potentially wide scale of dispersal. How-

ever, a positive stock-recruitment relationship of acroporid

corals driven largely by fecundity, rather than abundance, was

shown across broad scales of the Great Barrier Reef in the late

1990s (Hughes et al. 2000). Because corals are sessile, mass

mortalities from acute disturbances likely increase

fertilization limitation by decreasing adult colony density

(Birkeland et al. 2013). Chronic disturbances such as trophic

disruption, declining water quality, ocean acidification, and

rising mean temperatures also exert physiological stress and

impair reproductive success across a range of early life stages.

Such feedbacks are influential in instances of lack of coral

recovery and suggest a reinforcing downward spiral in coral

status (Fig. 11.4).

There is ample empirical evidence of reduced coral recruit-

ment or juvenile success in chronically disturbed sites (e.g.,

Salinas-de-Le�on et al. 2013; Wittenberg and Hunte 1992).

There is also evidence of a temporal trend (generally decadal)

of recruitment failure and/or declining success of juvenile

corals (Guzner et al. 2012; Edmunds 2007; Vermeij

et al. 2011; Hughes and Tanner 2000). While the cause of

such declines is no doubt multifaceted, it bodes poorly for

coral recovery in a regime of increasing disturbances. How-

ever, there are also many cases, including some exceptional

cases in the Caribbean region, where effective coral recovery

from disturbance has been documented (Manfrino et al. 2013;

Graham et al. 2011). Low levels of local human influence are

often cited to account for recent examples of rapid coral

recovery (Manfrino et al. 2013; Ateweberhan et al. 2013;

Gilmour et al. 2013).

11.5 Implications

From the realization that coral disturbance regimes are wors-

ening while recovery capacities are waning, it follows that

management strategies might beneficially focus on both of

Fig. 11.4 Hypothesized feedback of disturbance cycles leading to

coral decline. Acute disturbance primarily kills living coral with lesser

impacts by reducing coral replenishment whereas chronic disturbances’
primary influence is by reducing coral recovery
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these processes. The management strategy coined ‘reef resil-
ience’ stresses this point. The recognition of complex

interactions of disturbances and other factors that impair

recovery invokes a need for management focus on both

reducing local disturbances and managing for conditions

that may enhance recruitment and recovery of corals. For

example, land use and watershed management to reduce

nutrient and/or toxicant loading can bolster organismal tol-

erance and increase thermal thresholds which apply to both

bleaching disturbances (Wooldridge and Done 2009; Carilli

et al. 2010) and coral larval success (Negri and Hoogenboom

2011). Other examples of management strategies to enhance

replenishment most commonly include management actions

to maintain herbivory as a necessary factor for coral recruit-

ment as well as designing reserve networks to enhance

connectivity and larval supply (Hughes et al. 2005; Nystrom

et al. 2008; Mumby et al. 2012; McClanahan et al. 2012).

However, these ‘managing-for-resilience’ strategies are still
based on the premise that if local, anthropogenic disturbance

regimes (but see Box 11.2) are appropriately managed, the

recovery processes of coral communities are still capable of

maintaining coral reefs within a range of states that sustain

ecosystem services (i.e. corals are still resilient).

There is also a growing suspicion that resilience of coral

species and assemblages is truly being lost in the onslaught

of co-occurring disturbances of increasing frequency and

intensity (Figs. 11.4 and 11.5). Loss of resilience suggests

a need for more proactive measures to regain balance of

disturbance and recovery and maintain biodiversity and eco-

system services provided by coral reefs. Parallel with the

resilience strategies, proactive strategies can also be

categorized as those mitigating disturbance impacts and

those manipulating recovery. For example, interventions

to increase the tolerance of organisms via selection for

genes involved in increased environmental tolerance

(Lundgren et al. 2013) or active manipulation of microbial

(Teplitski and Ritchie 2009; Atad et al. 2012) or dinofla-

gellate symbionts (but see Coffroth et al. 2010) could

enhance resistance to disturbances such as warm

temperatures, pathogens, or toxicant exposure. Meanwhile

most other proactive strategies relate to more fundamental

manipulations of recovery and recruitment processes,

including culture/restocking and ‘gardening’ for depleted

populations of both corals and key grazers such as

Diadema antillarum (Rinkevich 2008; Office of National

Marine Sanctuaries 2011), or ‘assisted migration’
interventions to aid corals in the colonization of new

habitats such as thermal refugia at higher latitudes (Riegl

et al. 2011; Hoegh-Guldberg et al. 2008). While such

strategies may seem far-fetched or radical at the current

time, the rate of environmental change dictates a prompt

research agenda to validate strategies that might be suc-

cessful and ensure they can be implemented in ways that

minimize risk of unintended consequences when and if

coral reef status reaches a point that they seem prudent or

necessary, if no less radical.
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Fig. 11.5 Example of multiple

acute and chronic disturbances at

the colony scale. This bleached

colony of Orbicella faveolata
also displays (a) recent partial
mortality from active disease, (b)
old, unrecovered partial mortality

from a prior unknown source, and

(c) active macroalgal

encroachment along colony

margin. A normally pigmented

coral of a hardier species, Porites
astreoides (d) is visible in the

background for reference (Photo

by M. Miller)

226 M.W. Miller



References

Aeby GS (2005) Outbreak of coral disease in the Northwestern Hawai-

ian Islands. Coral Reefs 24(3):481

Aeby GS, Williams GJ, Franklin EC, Haapkyla J, Harvell CD, Neale S,

Page CA, Raymundo L, Vargas-Ángel B, Willis BL, Work TM,
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