Chapter 8

Bottom-Up Processing in Complex Scenes: A
Unifying Perspective on Segmentation, Fixation
Saliency, Candidate Regions, Base-Detail
Decomposition, and Image Enhancement

Boyan Bonev and Alan L. Yuille

Abstract Early visual processing should offer efficient bottom-up mechanisms
aiming to simplify visual information, enhance it, and direct attention to make
high-level processing more efficient. Based on these considerations, we propose
a unified approach which addresses a set of fundamental early visual processes:
segmentation, candidate regions, base-detail decomposition, image enhancement,
and saliency for fixations prediction. We argue that for complex scenes all these
processes require hierarchical segmentwise processing. Furthermore, we argue that
some of these visual tasks require the ability to decompose the appearance of
the segments into “base” appearance and “detail” appearance. An important, and
surprising, result of this decomposition is a novel method for successfully predicting
human eye fixations. Our hypothesis is that we fixate on segments that are not easy
to model, e.g., are small but have a lot of detail, in order to obtain a higher resolution
representation for further analysis. We show performances on psychophysics data on
the Pascal VOC dataset, whose images are non-iconic and particularly difficult for
the state-of-the-art saliency algorithms.

Keywords Bottom-up visual processing ¢ Image segmentation ¢ Base-detail
decomposition ¢ Saliency

8.1 Introduction

Low-level vision is visual processing that treats images as patterns and makes no
specific assumptions about the objects that might be present or the structure of
the scene. In short, the processing is generic and intended to be suitable for all
images, regardless of their semantic content or high level layout. Examples of
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Fig. 8.1 We propose a unified approach for several low-level visual processes: (a) image
segmentation — a hierarchy of image partitions at multiple levels; (b) candidate regions — a pool
of possibly overlapping proposals for further study by object recognition methods (best candidates
illustrated); (c,d) “base-detail” decomposition — expressing the image as the sum of a non-local
smooth appearance term and s residual, or detail, which captures the texture patterns; (e) image
enhancement — controlling the amount of detail in the image; (f) saliency for fixations prediction —
a model predicting bottom-up human visual attention

low-level vision tasks include segmentation, candidate regions or object proposals,
and image enhancement. Low-level processing is typically performed in preparation
for high-level tasks, and is used to allocate computational resources for more
detailed processing. In mammalian visual systems low-level vision is believed to
be performed in the retina and area V1 of the visual cortex.

In this paper we propose a unified framework for several low-level vision tasks
(Fig. 8.1) that are typically modeled separately. These tasks include the generation of
hierarchical image segmentations, proposing candidate regions for object detection
and recognition, base-detail decomposition — where an image is decomposed into a
visual summary plus fine details — image enhancement and the prediction of human
eye fixations.

We start by producing a hierarchical decomposition of the image into segments
which have roughly uniform homogeneity as measured by texture and color
cues. Segments at higher levels of the hierarchy are generally larger and less
homogeneous. But in our approach, it is important that the size of segments within
each level of the hierarchy have different sizes because some image regions (e.g.,
sky) are much more homogeneous than others (e.g., a road containing several cars).

Different segments of the hierarchy are combined into groups of up to three to
make proposals for the positions and shapes of objects and background “stuff” [10],
which we refer to as candidate regions. They consist of a pool of 500—-1500 regions
which are later evaluated by a high-level method, which is out of the scope of this
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paper. The high-level method computes category-specific scores to identify regions
which correspond to object or background categories.

We define “base-detail” decomposition as the separation of the image into a
coarse description of the image appearance, and a description containing the texture
and details. The image is the sum of both. More precisely, the base is obtained
by fitting smooth appearance models (polynomials) to the image segments and
the detail is the residual. For examples, see Figs. 8.1c, d and 8.8. This base-detail
decomposition enables us to process the image in several ways, such as enhancing
the details and/or the base. For example, we can remove the shadows (details)
from a grass lawn (base). Surprisingly, as we now discuss, we can use base-detail
decomposition to predict human eye fixations for free viewing.

It is well known that when humans examine an image they do not gaze on it
uniformly but instead they fixate on certain parts of the image. The fixation saliency
model we propose favors small segments which have strong details. This has the
following intuition: large segments are typically homogeneous regions (e.g., sky,
water, or grass) which may be easily processed (i.e., classifying these regions may
be easy using methods which use summary image statistics and do not model the
detailed spatial relations). The detail is less important in the large segments but in
small segments the detail may correspond to structures which require more detailed
models to process. We describe experiments showing that our fixation saliency
model predicts human fixations with a state-of-the-art performance on complex
datasets, like Pascal [17] and Judd [31].

Our work is motivated both by attempts to understand how primate visual
systems work and by efforts to design computer vision systems with similar abilities.
We provide a computational model for performing these visual tasks but in this
paper we do not develop any detailed biological evidence for this theory. Instead we
concentrate on performance on complex visual scenes, instead of artificial stimuli,
because we think it is important to model visual abilities in real-world conditions.

8.2 Background and Related Literature

There is an enormous literature on segmentation much of it using Markov Random
Field (MRF) models [22]. Our work follows the alternative strategy of decomposing
images into subregions which have roughly similar statistical image properties
[1, 33, 45, 52]. There are a variety of hierarchical approaches which exploit the
intuition that image structures occur at different scales and that multi-scale is
required to capture long-range interactions within the images [19, 53]. Our approach
to hierarchies follows the strategy of starting with an over-segmentation of the
image, produced by an efficient algorithm like [1], followed by recursive grouping
to get larger segments at different levels of the hierarchy [4]. This relates closely to
Segmentation by Weighted Aggregation [20], a recent variant [3], and extensions to
video segmentation [48].
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Detecting candidate regions, which make proposals for the positions and sizes
of objects, is a new but increasingly important topic in computer vision. This
is because it offers an efficient way to apply powerful methods, such as Deep
Convolutional Neural Networks (DCNN) [34], to detect and recognize objects in
images. Instead of needing to apply DCNNSs exhaustively, at every image position
and scale, it is only necessary to apply them to a limited number of candidate
regions. Our method for detecting candidate regions differs from existing methods
because we propose regions for both objects and background regions or “stuff”
(e.g., sky). Recent work on detecting candidate regions includes methods which
group segments into combinations [5, 6]. Most methods in the literature have been
evaluated for finding segments which cover foreground objects [46], while ours
detects background classes as well. Finally, there are other methods which differ in
that they mainly exploit the edges instead of the appearance statistics [15, 29, 55].
We should also mention hierarchical segmentation which has been used to learn
models of objects [43].

There is no existing work that directly addresses “base-detail” segmentation, but
there is a large literature on closely related topics. In the digital image processing
community there is a related concept, “base-detail separation”, but it is performed
locally [7] by applying bilateral filters. A related topic is gain control which has
been studied in primate visual systems, particularly in the retina, and seeks to
compress the dynamic range of the input intensity while preserving the local contrast
and detail [14, 42]. We note that detection of detail is also at the heart of many
super-resolution methods [54] and it is related to image enhancement. Enhancement
approaches do not typically use segment-based methods [25, 41] and instead use
local methods like the bilateral filter in [7] or the weighted least squares [18]. There
are some exceptions, like [49] where segment-wise exposure correction is proposed.

Another related topic is work in the shape from shading community, where
intensity patterns are decomposed into smoothly varying shading patterns and more
variable texture/albedo components [9, 26, 27] (here the base roughly corresponds
to the shading and the texture/albedo to the detail). Researchers in shape from
shading make prior assumptions for performing the decomposition into shading and
texture/albedo [8] (which are not needed if the same object is viewed under different
lighting conditions [47]). Similar decompositions assumptions are also applied to
the classic Mondrian problem [32].

Predicting human eye fixations is a long studied research topic [30]. In this paper
we address only bottom-up saliency prediction, as performed in a free-viewing
task, and do not consider top-down processes involving which involve cognitive
factors, e.g., eye fixations when performing a task such as counting the animals in
an image. One of the first successful methods for predicting human eye fixations
was Itti’s original model [30]. Image signature is a simple method which give good
results [28] and other recent methods are reviewed in [11]. The most successful
current method is Adaptive Whitening Saliency [21] and we make comparisons to it
in our experiments. Finally, there are other works [37, 38] which studies the saliency
of visual objects and use candidate regions to make predictions [13]. Objects are
judged to be salient based on the number of eye fixations which occur within them.
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By contrast, fixation saliency only predicts positions and outputs a fixations map
(in Sect.8.4.3, see Fig.8.16, second column). The eye fixation saliency models
we propose is based on base-detail decomposition, which makes it substantially
different from any method in the literature. Our experiments show it performs at the
state of the art.

Finally, although biology is out of the scope of this paper, we find it interesting
that recent biological vision studies suggest that early visual processing is more
sophisticated than traditional models of the retina and V1, which mainly emphasize
linear spatiotemporal filters. For example, studies of the retina suggest that it
is “smarter than scientists believed” [23] and contains a range of non-linear
mechanisms which might perhaps be able to implement parts of the theory of
theory we propose here. Moreover, there is growing appreciation of the richness
of computations that can be performed in area V1 of the visual cortex, including
possibly fixation saliency [51].

8.3 Method

In this section, we describe the details of the proposed approach. We address a set of
fundamental low-level vision processes: segmentation, candidate regions and salient
objects proposals, base-detail decomposition, image enhancement, and bottom-up
saliency. Instead of being treated as separate tasks, we address them in terms of a
unified approach of bottom-up vision processing.

8.3.1 Segmentation: Hierarchical Image Partitioning

Image segmentation is a classic task of low-level vision. But in this paper we do
not consider segmentation as a goal in itself. Instead, we seek to obtain a hierarchy
of segmentations, or partitions of the image into segments, which can be used as
components for other processing, as will be described in the next subsections.

An image partition is a decomposition of the image into non-overlapping
subregions, or segments. More formally, we decompose the image lattice D into
a set of segments {D; : i = 1,...,n} such that:

D= OD,-, st.D;( Dy =0. Vi#j.

i=1

A hierarchical partition of an image is a set of decompositions indexed by hierarchy
level h = 1,..., H. Each level gives an image partition D = (J!, D!, where n, is
the number of segments in the partition at level 4. The decompositions are nested

so that a segment Dl’? at the hierarchy level /4 is the union of a subset of segments
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Fig. 8.2 Left: Multiple levels in a hierarchy. Segments with a good coverage of objects or parts
may happen at different levels. 80 % to 90 % of the segments can be discarded because they go
across boundaries of objects or because they don’t cover a large area of an object. Right: Segments
at level 4 + 1 are composed of one or two segments in level &

at the previous level & — 1, so that D} = {J;ecypr) D', where Ch(Dy) denotes
the child segments of segment i at level £ (in this paper each segment is constrained
to have at most two immediate children, see Fig. 8.2-right). This enables us, by
recursion, to express a segment in terms of compositions of its descendants in many
different ways. In particular, we can decompose a segment into its descendants at
the first level, D! = UjeDes(D{.’) Dj'. This hierarchical structure is common in the
segmentation literature, for example in [4]. Figure 8.2 illustrates the hierarchical
partitioning of an image.

In this paper, our hierarchical partitioning is designed based on the following
related considerations. Firstly, we prefer segments to have roughly homogeneous
image properties, or statistics S (e.g., color/texture/detail) at each level, which
means that segments at the same level can vary greatly in size (e.g., segments
on the grass in Fig. 8.2 will tend to be larger than in less homogeneous regions
of the image, like the dog). Secondly, segments at higher levels should be less
homogeneous because they are capturing larger image structures (e.g., by merging
more homogeneous image structures together). Thirdly, segments are likely to have
edges (i.e., image intensity discontinuities) near their boundaries. Fourthly, we want
an efficient algorithm which can dynamically compute this hierarchy using local
operations by merging/grouping segments at level 4 — 1 to compose larger segments
at level h.

Our work is guided by standard criteria for image segmentation [33, 45, 52]
which propose minimizing a cost function of form:

EGD}ASH =Y D 1S =SWP =1 Y e(. 8.1)

i x€D; i x€adD;

Here g'(x) denotes image statistics at position x (e.g., color, texture features), 3‘,-
is summary statistics of the region i, A is a non-negative constant, and e(x) is a
measure of edge strength (taking large values at image discontinuities), and dD; is
the boundary of segment D;.
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We initialize our algorithm by using the SLIC [1] algorithm to compute the
lowest level, i = 1, of our hierarchy. Essentially, SLIC performs an expectation-
minimization of (8.1) for a fixed number n; of segments. It uses the color and
position as statistics, without including an edge term, that is, A = 0 in (8.1). More
precisely, 3’(x) = (I(x), a(x), b(x), x), where [, a, b specify color channels of the Lab
color opponent space and x denotes 2D spatial position.

Next, we proceed to construct the hierarchy by grouping/merging segments
which have similar image statistics. The statistics are extended to include texture,
shape of segments, and the variance of color (we do not use these statistics at
the bottom-level because the segments are too small to compute them reliably).
More precisely, S is given by the mean and the standard deviation of the Lab
color space components and the first and second derivatives of the [ channel,
(l,a,b, VI, V,l, Vfl, Vyzl), the centroids of the segment and dimensions of its
bounding box (cy, ¢y, dyy, dy). When performing merging, we use an asymmetric
criterion which requires comparing the difference between the statistics of the union
of the two segments i and j, giU j» and the statistics of its segments .§,~,3‘j, that

is, ||3‘in — 3’,|| and ||§iqu - 3‘}|| This is because our segments are allowed to
have different sizes and we want to discourage bigger segments from merging with
smaller segments if this will change much the statistics of one of them. Intuitively,
a big segment is likely to have little change on its statistics by merging to a small
one, but we want to ensure that the small one does not undergo a big change in its
statistics. At each level of the hierarchy we allow the top-ranked 30 % segments
to merge to another segment (rank is based on asymmetric criterion described
above and prioritizes similar segments) but prevent merges where the asymmetric
condition is violated. Merging is allowed between 1st and 2nd neighbors only. The
precise details are described in [10].

The output is a hierarchical partition of the image. It is expressed as a set of
segments {Dlh} 1 <h<H,1 < i< n, where h is the hierarchy level. At the
highest level, ny = 1. Each image region Df’ and has statistics S‘,h Each level h
gives a partition of the image D = | J, Df‘. Each segment is composed of a set

of child segments, Dl’? = UjeCh(Df“) Dj’.’_l. Each segment can also be associated to

its descendant segments at the 4 = 1 level: D! = | ieDes(Dh D}. This hierarchical
partition can be used directly for image segmentation but, in the spirit of this paper,
we think of it as a representation that can be used to address several different visual

tasks as we will describe in the next few sections.

8.3.2 Candidate Regions

This section shows how to use the hierarchical partition to obtain candidate regions,
or proposals, for both foreground objects and background regions, or “stuff” (e.g.,
sky, water, grass). Proposing candidate regions enables algorithms to concentrate
computational resources, e.g., deep networks, at a limited number of locations (and
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sizes) in images (instead of having to search for objects at all positions and at all
scales). It also relates to the study of salient objects [2, 37], where psychophysical
studies show that humans have tendencies to look at salient objects [16]. Note that
salient objects, however, do not predict human eye fixations well [12] and these can
be better described by bottom-up saliency cues [30] in a free-viewing task. However,
methods that combine bottom-up saliency cues with proposals for candidate regions
do perform well for both predicting human eye fixations and for the detection of
salient objects [38].

We create candidate region proposals by the following strategy. Firstly, we select
a subset of selected segments from the hierarchical partition of the image. These
segments are chosen to be roughly homogeneous but as large as possible. Secondly,
we make compositions of up to three selected segments to form a candidate region.
These compositions obey simple geometric constraints (proximity and similarity
of size). The intuition for our approach is that many foreground objects and
background “stuff”, can be roughly modeled by three segments or less, see Fig. 8.4.
This intuition was validated [10] using the extended labeling of Pascal VOC [40]
which contained per-pixel labels of 57 objects and “stuft™.

The selected segments are chosen by computing the entropy gain of the
combination of two child segments into their parent segment. If the entropy gain
is small, then we do not select the child segments because this is evidence that they
are part of a larger entity. But if the entropy gain is large, then we add the child
segments to our set of selected segments. More precisely, we establish a constant
threshold G for the entropy gain g after merging two segments Df‘, Df’ into their

parent D)t! = D} () D}. The entropy gain is defined to be:
g =HDOL) — {(H(D}) + H(D})} . (8.2)

Here ’H(Df’) is the entropy of a segment i at level #, computed from the statistics
{3 1}, k € Des(D") of its descendant segments at level & = 1 (Fig. 8.3). The entropy
is computed in a non-parametric manner [10] using the approximation proposed
in [35]. See an example of triplets of selected-segments in Fig. 8.4.

Fig. 8.3 Entropy gain (Sect.8.3.2): When segments a and b are merged, the increase of entropy
is not as big as if they were merged with ¢. Homogeneity criterion (Sect. 8.3.3.1): Segment ¢ is
homogeneous. It presents smooth variation due to shading and lighting. Segments a and b are
not homogeneous. Both entropy and homogeneity are calculated from the small (first level D})
segments, illustrated with white contours
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Fig. 8.4 Examples of candidate regions for foreground and background regions. Left-to-right and
top-to-bottom: image, top three selected-segments for left car, right car, person, building, grass,
ground, trees, and ground truth. Most objects are covered well by two to three selected-segments

8.3.3 Base-Detail Decomposition

This section analyzes the image intensities within the segments by decomposing the
image into base and detail. The base B(x) component is the approximate color of
the region, and is required to be spatially smooth. The detail R(x) is the residual
R(x) = I(x) — B(x) and can contain general texture, such as the patterns of grass on
a lawn, or structured detail such as the writing on the label of a wine bottle.

Base-detail relates to several well studied phenomena. Firstly, it is similar to
the task of preserving image contrast (i.e. the detail) performed by the early visual
system when doing gain control. Secondly, it relates to the decomposition /(x) =
a(x) - n(x) - 5(x) of images into albedo, normals and illumination when computing
intrinsic images or the 2.5D sketch. But this decomposition is higher-level, relying
on concepts like geometry and lighting sources, while we are modeling at a lower
level. We note that in some special situations the base and the detail of a segment
may correspond to the shading and the albedo of an object. Thirdly, base-detail also
relates to transparency — e.g., the viewing of images through a dirty window (the
dirt is the detail) — or when there is partial occlusion like tree leaves in front of
a building (leaves are details). More generally, within image regions there is base
appearance which changes smoothly within segments and detail which changes in a
more jagged manner. This differs from the base-detail separation [7] studies in the
image processing literature, which is obtained by local smoothing methods and not
in a segment-wise manner.

We address base-detail decomposition in two steps. Firstly, we seek a segmenta-
tion of the image into regions which are as homogeneous and as large as possible.
This is done by selecting a subset of those hierarchy segments {Dlh} which are
maximally large and homogeneous and form a partition of the image. Note that
this includes segments at different levels 4 of the hierarchy. Secondly, within each
segment we fit a low-order polynomial to the color intensities and define the best fit
polynomial to be the base (see Sect. 8.3.3.2). We obtain the detail by computing the
residual between the image and the base.
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8.3.3.1 Finding Maximally Large Homogeneous Segments

Here we present a criterion for selecting non-overlapping segments from the
hierarchy (while in Sect. 8.3.2 we presented a way to select overlapping segments
from the hierarchy). We start from the segmentation hierarchy {D!'} defined in
Sect. 8.3.1. We define the heterogeneity of a segment Dfl by the maximum difference
of the statistics of its neighboring descendant nodes at level 4 = 1. More precisely,
we define the heterogeneity of segment Df’ to be:

max_[|S} = Stl]. V dg(i.k) <2, (8.3)
jk€Des(Dl)

where dg(J, k) is the graph distance between j, k at level 2 = 1 (i.e., we evaluate only
the Ist and 2nd neighbors). This criterion considers homogeneous those segments
whose statistics at level 7 = 1 change smoothly across the segment. This typically
happens in large segments like sky, roads, animals. Heterogeneous segments will be
those which have an abrupt change in their statistics.

We then fix a threshold #,,,, and generate an image partition

Pin [(x)) C {D1}, (8.4)

containing the biggest segments whose heterogeneity is less than #,,,,. This can be
done by starting at the top-level 1 = H, keeping any node whose heterogeneity
is less than f,,,,, proceeding to the child nodes otherwise, and continuing down
the hierarchy until we reach levels where the heterogeneity threshold is achieved.
Thus, the result is a set of non-overlapping segments covering the whole image
space. Note that this is different from the entropy gain criterion used in Sect. 8.3.2,
which allows to select overlapping segments, as interesting structures can happen at
different levels (e.g., windows as a subpart of house).

8.3.3.2 Base Modeling and Detail

We assume that the image can be expressed as I(x) = B(x) + R(x) where x is
2D position, B(x) is base and R(x) is detail (residual of the base). Both of them
include all image channels. We assume that the base is spatially smooth within each
maximally large homogeneous segment and, in particular, that its color intensity can
be modeled by a low-order polynomial. We make no assumption about the spatial
form of the detail. (Note that for intrinsic images it is typically assumed that the
shadows are spatially smooth while the texture/albedo is more jagged.)

More precisely, we define the base color of a segment by a polynomial approx-
imation b, (X;, @) of order k, where k < 3. See examples in Fig. 8.5. We apply the
polynomial approximation on each channel separately. The number of parameters
@ depends on the order of the polynomial and we use model selection to decide the
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Fig. 8.5 Examples of polynomial base approximations. Left: original. Center: 0-order approxima-
tion (i.e., mean). Right: 0-order to 3rd-order approximation

order for each segment (we must avoid fitting a high-order polynomial to a small
segment). These polynomial approximations are of form:

bi(x, @) =x'd, (8.5)
k=0:X=1, & =wp

k=1: X=[1,x1,x], &= [wy,w,w]

k=2: X=[1,x,x,x,%,xx)], &= |0y, ,ws]

k=3: x= [l,xl,xz,xf,x%,xlxz,x?x%,xlx%,xzxf], @ = [wg, -+ ,wo)

The estimation of the parameters @ of the polynomial is performed by linear
least squares QR factorization [24]. The order k is selected based on the error,
with a regularization term biasing towards lower order. See Fig. 8.6-right. The
regularization is weighted by ¢, whose value is not critical (it is set to produce
models of all orders &, and not only k = 3). In a given segment we have a set of
pixels with 2D positions x and color intensity values /.(x). For a given channel ¢ of
the segment D!, we minimize:

min 37 () = b @)’ + tk. (8.6)

X€ 'D:’
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A

Fig. 8.6 Different segments can have different polynomial order k. Left: original. Center: poly-
nomial base approximation. Right: order of the polynomial, where: dark-blue: k = 0, light-blue:
k=1, yellow: k = 2;red: k =3

Fig. 8.7 Example of detail (right image) in front of different appearance segments: sky, road, and
building

We estimate the base B..(x) of each color channel ¢ for the whole image by fitting
the polynomial for each maximally large homogeneous segment. Then, we estimate
the detail to be the residual R.(x) = I.(x) — B.(x).

Our current method works well in most cases, see Fig.8.7, but it is not
appropriate for segments where the amount of detail is similar to the amount of
base appearance. This happens, for example, for an image of a leafy tree with blue
sky behind it. Such situations require a more complex model which has a prior on
the details and allows the base to be fit by a more flexible function (but still smooth).

“Base-detail” provides a unified model for several visual tasks that are often
modeled separately. These include: (I) Elementary tasks such as gain control,
which converts the large dynamic range of luminances into a smaller range of
intensities which can be encoded by neurons and transmitted to the visual cortex.
A standard hypothesis is that it is performed by ganglion cells in the retina, by
Difference of Gaussian, or Laplacian of Gaussian [39], filters to preserve the contrast
while removing the base. From our perspective, the contrast is the detail. (II)
Decomposition of intensity into albedo and shading patterns as required by shape
from shading algorithms [26, 27] when used to construct the 2 1/2 sketch [39] or
intrinsic image [9]. The difference is that we do not estimate 3D geometry, noting
that intrinsic image models make strong assumptions about images which are often
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invalid (e.g., smooth intensity patterns can be due to light sources at finite distance
and not to the geometry of the viewed surface). (II) Separation of texture from
background. Here the detail represents the texture patterns, e.g., the blades of grass
while the base is a smooth green intensity pattern. (IV) Decomposing images into
frequency components. In this case, the detail is analogous to the high-frequencies.
But frequency analysis is based on linear analysis of images while our approach is
inherently nonlinear because it involves segmentation. (V) Image compression. Base
details suggests a strategy where the base efficiently encodes the rough appearance
and the detail encodes the rest. It captures the natural intuition that regions which
have a lot of detail are harder to compress.

8.3.4 Image Enhancement

We illustrate how base — detail decomposition can be used for image enhancement.
In Fig. 8.8-bottom, we plot B(x) + ¥ R(x), for different ¢ values, where ¢ is a
parameter indicating the amount of enhancement. Another example is shown in
Fig.8.9. Our approach opens the doors to segment-wise manipulation, which is
useful in common situations like when segments have different illumination.

Note that the widely used bilateral filter [44] is very local compared to our
segmentation-based approach. In Fig.8.10 we show an example of base-detail
decomposition produced by bilateral filtering. For example, the top-right cloud in
the image cannot be separated as a detail by the bilateral filter, but it is successfully
separated as detail using our approach.

Base-detail decomposition:

Fig. 8.8 Top: Original I(x), base B(x), detail R(x), detail magnitude ||R(x)||, for better visualiza-
tion. Bottom: Base + detail B(x) + ©R(x), with different amounts of detail, % = {0.5, 1,2, 4}
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Fig. 8.9 Example of enhanced image. Weak details can be multiplied to become more visible with
respect to the base

BLF’s detail BLF’s detail zoom-in Our detail zoom-in

Fig. 8.10 Limitations of bilateral filter. From left to right: Bilaterally filtered (BLF) image;
Residual (detail) of the bilateral filtering; Zoom-in of the residual; Zoom-in of the detail that our
segmentwise base-detail decomposition produces

8.3.5 Saliency

Images of three-dimensional scenes contains structure at different scales and
resolutions. Humans often need to foveate specific image locations to acquire higher
level of details. For example, a small image blob might correspond to a person
walking towards you and require further investigation. In this work we consider
only bottom-up attention where fixation saliency is used to predict the first few
seconds (3 s) of free-viewing of an image. The prediction consists of a probability
map which does not take order of fixation into account. (By contrast, in top-down
attention humans actively search for specific objects or scene structures.)

Our saliency model takes as input the base-detail decomposition B.(x), R.(x),
generated for a partition p,, (I(x)), defined in (8.4), whose minimum homogeneity
threshold is 7,,,, (Sect.8.3.3). Note that candidate regions are not used here. Each
image pixel x is assigned to the segment i(x) which contains it and we define
|Diry| = size(D;), if x € D;, where {D; € p,,. (I(x))} are the segments of the
partition. Similarly, we evaluate each segment’s average detail and assign this value

1
to all pixel positions of the segment support, obtaining A(x) = ——— Z RA(2)
size(D;) e

if x € D;. Here, R*(z) is the mean of the detail’s n. = 3 color channels at position
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A(z) D) | W(z) saliency(x)

Fig. 8.11 From left to right: Maximum-channel detail RY (x); segmentwise average detail A(x);
segment size | Dy |; weight factor W(x) = /A(x)/[Diw|; saliency(x) = R™(x)[(1—y)W(x) + ]

Fig. 8.12 An illustration of how our saliency model penalizes the detail in large roughly-
homogeneous segments. The representation on the right is obtained by I/(x) = B.(x) + W (x)R.(x),
for each color channel ¢

z, that is, RA(z) = i Y | Re(z). We use the segment sizes and the segmentwise
average detail to weight the maximum-channel detail R (x) = max’"_, R.(x) (see

Fig. 8.11). The weight we propose is given by W(x) = /A(x)/|Die|-
saliency(x) = RM (x) [(1 — y) W(x) + ]. (8.7)

Here, y is a small number, y = 0.15 in our experiments. It allows to keep a fraction
of RM (x) unweighted. This is useful for pixels whose weight is close to zero, W(x) ~
0. The y parameter means that the detail R(x) is never completely ignored.

Intuitively, we relate the detail (Fig. 8.11-left) to bottom-up saliency. However,
we penalize detail which belongs to large segments, without eliminating it com-
pletely (Fig.8.11-right). An illustration of how an image would look like with
this kind of detail penalization is shown in Fig.8.12. The use of the segment
size as an important saliency factor could be related to figure-ground pre-attentive
mechanisms in V1. In terms of V1 neuron responses, very small regions tend to
be highlighted against larger regions [50], but in this paper we do not address
neurophysiology.

Our hypothesis is that regions which cannot be described by a simple model
require foveation. This is the case of small regions with a lot of detail. The segments
that are less likely to require foveation are those which are fit well by a simple
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polynomial model (have little detail), as well as those which have detail but are
large. In the latter case, the detail is likely to be due to a texture pattern, e.g., grass.

Classical models (e.g., [30]) use multiscale processing. Instead of this, our
segment-based approach adapts to local scales of images. Also, unlike classical
models, we do not explicitly use neural mechanisms such as center-surround
receptive fields and lateral inhibition mechanisms. But it can be argued that base-
detail decomposition is implicitly accomplishing similar functions.

The proposed fixation saliency method predicts human fixations. Note that this
is different from salient object proposals. It is possible to link human fixations
predictions and candidate regions by machine learning, as shown in [38]. But in
this work we do not address this issue.

8.4 Experiments

In this section, we present results of the candidate region proposals (Sect. 8.3.2) and
the bottom-up saliency (Sect. 8.3.5) as a prediction of free-viewing human fixations.
Both of them are based on the bottom-up segmentation we propose (Sect. 8.3.1). The
fundamental theory behind the saliency method is the base-detail decomposition
(Sect. 8.3.3). We do not evaluate base-detail decomposition and image enhancement
because there is no natural way of doing it. We do not focus on image segmentation,
so we do not include experiments on it.

8.4.1 Datasets

Many of the classic datasets are biased because they were collected with a
specific purpose, i.e., for saliency experiments. They are mostly composed of
iconic photographs, presenting a clearly salient and centered object over a simple
background. But this is highly atypical of natural images, which typically include
many objects with complex relations and partial occlusions (humans rarely see
iconic images). Hence it arguably more realistic to study saliency on natural image
datasets such as Pascal, which has been one of the leading reference benchmark
in Computer Vision for the last years. Recently, Hou et al. [38] released the free-
viewing fixations of 8 participants on a subset of 850 images of Pascal (first 3 s). In
this subset we have an average of 5.18 foreground objects per image and an average
of 2.93 background objects. An extreme case is the rightmost image in Fig. 8.13,
which has 52 foreground objects, most of which are far from the center of the image.
A representative case is the third from the right image in Fig. 8.13, with 6 foreground
objects.

For our candidate regions experiments, we use a subset of 1,288 images of Pascal
VOC, for comparison with [6], as detailed in [10]. For the bottom-up saliency
experiments, we use the 850 images of Pascal-S which include human fixations. We
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EX » E2E

Fig. 8.13 (a) Examples of iconic images from ImgSal [36]; (b) Examples from a non-iconic
dataset: Pascal VOC [17]

b

also experiment on the 1,003 images of the standard dataset Judd [31], which can
be considered non-iconic, although we have no statistics of the number of objects
or their distribution in the images.

8.4.2 Candidate Regions

In this section, we evaluate the coverage of our candidate regions. Initially, we
obtained an average of 116 selected-segments per image after selection and from
these we make an average of 721 combinations which constitute the pool of
candidate regions per each image. The evaluation metric is Intersection over Union
(IoU), which accounts the number of pixels of the intersection between a candidate
region and a groundtruth region, divided by the number of pixels of their union.
We evaluate the generated candidate regions with the 57-classes ground truth,
containing both foreground and “stuff” classes. We compare our Candidate Regions
(CR) to three state-of-the-art methods. (I) The classical Constrained Parametric
Min-Cuts (CPMC) [15] method is designed for foreground objects, which explains
its better performance on foreground objects. Their overall performance on the
57 classes is lower than our performance. (II) In [6], the segment combinations
are generated by taking combinations of the 150 segments (on average) that their
hierarchical segmentation approach outputs for each image. Their method is more
sophisticated than ours and we observe that they tend to get larger and less
homogeneous segments than we do. Our performance is lower but comparable:
74 % IoU versus 77 % for [6]. But we achieve it with nearly half the number of
combinations — 721 compared to 1,322 — and with a simpler and faster algorithm (4 s
per image in its Matlab prototype). In Table 8.1 we refer to their segments as UCM-
combs and to our candidate regions as CR-combs. (IIT) The Selective Search [46]
method is competitive in terms of speed. Our method outperforms theirs on the
region candidates task (74.0 % compared to 67.8 % IoU), with less than half the
number of proposals. (Note, however, that [46] present results for bounding boxes
and not for regions). See an example of the proposals generated by our CR-combs
method in Fig. 8.14. See Table 8.1 with the region-based IoU and recall results.
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Table 8.1 Region-based IoU (in %) comparison. CPMC [15], UCM [6], Sel. Search [46], and our
CR - candidate regions. Boldface denotes the first and second best results

All IoU Recall (%) # cands. Time (s)
CPMC 59.6 57.6 150 250
UCM-combs 77.0 80.0 1,322 850
Sel. search 67.8 66.1 2,100 4
Our CR combs 74.0 70.3 721 4

MY

Fig. 8.14 Left-to-right and top-to-bottom: Original image, top three segments for bike, wall, snow,
rock, and ground truth. Note that the segments are good even for object classes that perform poorly
overall (e.g., bike)

8.4.3 Saliency

The fixation saliency method that arises from our unified approach predicts free-
viewing human fixations surprisingly well. Despite only accounting for saliency
within segments and not taking into account inter-segment saliency, our method
is among the highest ones in complex datasets like Pascal-S [38] and Judd [31].
Pascal is a particularly interesting case because state-of-the-art fixations methods
have low performance on it (perhaps because they were developed and tested for
iconic images). In Pascal our method outperforms the state of the art. On the Judd
dataset only AWS [21] outperforms our method.

In Fig. 8.15 we show a comparison of our Base-Detail Saliency (BDS) method,
Adaptive Whitening Saliency, AWS [21], Image Signature, SIG [28], and L. Itti’s
original model [30]. In Fig. 8.16 we show some examples for qualitative comparison
between the results of the different algorithms.

It is hard to determine the failure modes of our saliency algorithm. Our reliance
on segmentation may seem problematic. It is known that segmentation is an ill-
posed problem and no low-level segmentation algorithm exists that can reliably
detect the boundaries of objects without top-down assistance. But our approach
is more robust because we rely only on a proto-segmentation. Still errors in the
segmentation can cause errors in the base-detail decomposition which may cause
our approach to fail.



8 Bottom-Up Processing in Complex Scenes: A Unifying Perspective. . . 127

AUC Score on PASCAL dataset AUC Score on JUDD dataset
0.66 N 0.69
~<|---BDS - - -BDS
g — AWS§ — AWS§
[ - 0.68
_ 088 I siG _ , SIG
3 —tti < @ 4 — it
g 4 L 067 ’
& 0641 ’ 2 ,
E 4 E /
o= 1 o= 0.66 T
5 o063t 1 5% !
s34 N o3 B
Do 9o 065 N
O o U [6 R3] /
D © 0.62F 1 =]
<3 / < 064s
j=J [=))
% 061 5
g = 2 063
S s
0.6F 0.62
0.59 0.61
0 0.02 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08
Blur Width Blur Width
(STD of Gaussian kernel in image widths) (STD of Gaussian kernel in image widths)

Fig. 8.15 Bottom-up saliency performance. Left: Pascal-S dataset [38]. Right: Judd dataset [31].
Approaches compared: Our Base-Detail Saliency (BDS), Adaptive Whitening Saliency
(AWS, [21]), Image Signature (SIG, [28]), L. Itti’s original model (Itti, [30])

Original Human 1tti’98 Signature Our BDS

Fig. 8.16 From left ro tight: Original; Human — fixations collected on 8 subjects with free-viewing
task, first 3 s [38]; Itti’s original model [30]; Spectral signature [28]; AWS [21]; Our Base-Detail
Saliency (BDS) Bonev and Yuille

8.5 Conclusions

We propose a unified approach addressing a set of early-vision bottom-up processes:
segmentation, candidate regions, base-detail decomposition, image enhancement,
and saliency for fixations prediction.

Our unified approach allows the segmentwise decomposition of the image into
“base” and “detail”. This proves to be more versatile than a local smoothing of the
image. It provides directly for image enhancement, for a novel model of fixation
saliency. It is related to other vision topics which are usually formalized as different
problems.
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We show state-of-the-art results on our candidate regions and on our saliency
for free-viewing fixation prediction. For the latter we use the psychophysics data
available for the Pascal VOC dataset, which is non-iconic and particularly difficult
for the state-of-the-art saliency algorithms.
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