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Preface

Brain and cognitive engineering is converging toward a better understanding of
cognitive information processing in the human brain. There are first attempts to
develop “humanlike” and neuromorphic artificial intelligent systems. Ultimately
this could lead to better modeling, prediction and analysis of brain-related diseases.

This book provides overviews and in-depth discussions of recent studies in
brain and cognitive engineering. It starts from efforts toward the understanding of
perceptual, structural, and functional principles behind the high-order information
processing, then considers aspects on how the brain may implement these in
artificial systems that can interact intelligently with the real world. Its contributions
report recent progress in brain science and cognitive engineering made by scholars
from around the world.

The book covers four major topics: Noninvasive Brain-Computer Interface,
Cognitive- and Neural-Rehabilitation Engineering, Big Data Neurocomputing, and
Early Diagnosis and Prediction of Neural Diseases. We hope that the articles in the
book will be a valuable resource for researchers in the field and also that the guiding
introductory materials will be of use for the potential researchers who step into the
field anew.

Thank you.

Seoul, Republic of Korea Seong-Whan Lee
Tübingen, Germany Heinrich H. Bülthoff
Berlin, Germany Klaus-Robert Müller
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Part I
Non-invasive Brain-Computer Interface



Chapter 1
Future Directions for Brain-Machine Interfacing
Technology

Kyuwan Choi and Byoung-Kyong Min

Abstract Brain-machine interfaces (BMIs) are a communication technology that
link humans and artificial devices through brain signals. However, development
of BMI technology is currently at an impasse. First, the most commonly used
BMI brain signals are principally derived from the primary sensorimotor cortices.
However, these signals do not precisely reflect the diverse range of human inten-
tions. In addition, BMI operational protocols often require users to perform mental
functions that are not directly related to the goal of their task. Time is ripe to
explore novel BMI control signals. Brain correlates of higher cognitive functions
involved in deliberate processing of information appear as novel BMI signals with
a number of appealing properties. This study suggests techniques for controlling
BMIs using human higher cognitive activity in a non-invasive manner, and proposes
a novel viable method based on our recent observations. Since the prefrontal cortex
constitutes the highest level of the cortical hierarchy dedicated to the representation
and execution of actions, these findings open the door to goal-directed intention-
recognition BMI technology. This technology may help to rehabilitate or improve
the cognitive performance of neurological or psychiatric patients with prefrontal
dysfunctions. Cognitive BMIs should be further explored to develop practical
applications and therapeutic treatments that improve the quality of life for people
with sensorimotor or cognitive impairments.

Keywords Brain-machine interface • Cognition • Electroencephalography •
Prefrontal cortex

K. Choi
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Seoul, Republic of Korea
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1.1 Overview of the Current Brain-Machine Interface (BMI)
Technology

At present, the society benefits from modern technology, including various types of
external devices, which are usually controlled by our hands or feet. For example, the
keyboard of a computer is operated by the hand, and pedals in cars are controlled
by the foot. Recently, these technologies have reached an advanced level, so that
humans can control tools by other means, for example, by voice based on speech
recognition technology. Because the movements of the hand, foot, and vocal chords
are regulated by the brain, it would be further convenient if the external devices
can be controlled directly by the brain signals (i.e., without the use of relevant
muscles). This approach is known as the brain-machine interface (BMI) technology
[1–5]. This technology is particularly valuable for people with disabilities who have
muscle or mobility problems. Since the introduction of the first BMI paradigms
[6], the approach has received growing attention. BMI technology has become
one of the important topics in neuroscience and bioengineering [7–15]. This is
partly because of the substantial progress in the development of algorithms and
experimental settings that may assist patients with paralysis to use their brain signals
to intentionally control directional motions of external devices.

BMI technology can be broadly divided into invasive or non-invasive, based on
two approaches. There are several successful examples of invasive BMI [4, 16,
17]. The arm movement of a robot, with one degree of freedom, was controlled
using the neural activity of the rat motor cortex [18]. Carmena et al. [19] have
consistently succeeded in reconstructing the arm movement of a robot having three
degrees of freedom, including grip force, by using the neural activity of the premotor
cortex, primary motor cortex, and posterior parietal cortex of a monkey. In a study
on humans, a computer cursor on a two-dimensional display was controlled by
signals from the primary motor cortex [20]. There have also been many human
studies employing non-invasive BMI methods (e.g. electroencephalography [EEG],
or near-infrared spectroscopy [NIRS]) to allow people to exert volitional control
over external devices [11–13, 21–28]. For example, non-invasive brain signals were
used for navigating a cursor through a maze [29], controlling a wheelchair [30–34],
selecting letters on a display to produce text [35–39], and performing motor imagery
to guide an external direction [8, 40–47].

Several BMI studies have focused on harnessing the neural signals from specific
brain areas to adapt a real-time map to the motion-control states of some external
device [9, 19, 48–50]. The success of using the spike- and/or local field potential
(LFP)-signals from different cortical regions for intentional control of external
events has been widely recognized in both human and non-human primates [20,
48, 51–56]. In all cases, however, the brain areas for BMI signals must be selected
a priori, often based on the known properties of the area and its computational
strengths for motor or cognitive control (or both). As with the spike- and LFP-
signals, methods using event related potentials (ERPs) [57] can also provide
an accurate and reliable control of external events when the brain regions are
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determined a priori and when the signals from the appropriate regions are used
and co-adapted in real-time with the control states of the external device.

Accordingly, EEG is an ideal modality for the implementation of BMI tech-
nology in a larger population. It is portable, low cost, and lacks the inevitable
risks associated with invasive approaches [3, 58]. In general, the EEG-based BMI
paradigms can be subdivided into two types: (1) externally stimulated paradigms
such as steady-state visual evoked potential (SSVEP) [59] and P300 [37, 60],
and (2) internally induced paradigms such as motor imagery [3, 12, 45, 61–63].
For these paradigms, the brain activity of interest is detected in the occipital,
parietal, and central cortex, respectively. It is noteworthy that the prefrontal cortex
has been largely ignored in the BMI research. This is an important oversight
because certain goal-directed cognitive processes are regulated by the prefrontal
cortex, which involves cognitive action [64] and goal-directed behaviors [64, 65].
Moreover, prefrontal cortical activity can be an alternative in the case of patients
with damage to other cortical areas, or when BMI signals derived therein are not
reliable. Therefore, these prefrontal brain correlates may open a new avenue for the
development of goal-directed intention-recognition BMI technology. This is in part
because the prefrontal cortex constitutes the highest stage of the cortical hierarchy
dedicated to represent actions [66].

1.2 Cognitive BMI

The brain correlates of higher cognitive functions that are involved in the deliberate
processing of information appear as novel BMI signals. Moreover, higher cognitive
functions entail direct planning to achieve goals, independent of the sensory
modalities that convey the status of the task under consideration. For instance, the
prefrontal cortex activity estimated from the EEG signals reflects the goal-directed
intentional processes for a simple binary control task presented on a computer
monitor [67]. In this case, subjects were asked to choose either a left or right
direction, based on the direction of a previously presented cue (an arrow), and
then to directly control a bar on the monitor to initiate movement in the intended
direction. Although the subjects simply imagined the cued direction, which is
more intuitive than task-irrelevant motor imagery, their goal direction was reliably
decoded from the prefrontal cortex activity.

As an example of future directions in BMI technology, we describe a sample
of cognitive BMI studies using the prefrontal signal paradigm. In this paradigm, a
simple binary control task combines the visual feedback from the subject’s real-
time performance with motor imagery in a closed loop to engage the subject
in a co-adaptation process (between the internal cortical signal and the external
performance). Motor imagery enables us to provide immediate on-line feedback
of the performance based on a 125-ms sliding window that permits spontaneous
co-adaptation between the neural signal and the instantaneous visual feedback of
the desired external cursor direction. This is possible because the subjects are not
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consciously aware of the processing and transmission delays. Although we cannot
fully parameterize the internal motor imagery, we can estimate the neural activation
across all 64 channels of EEG, and the features that maximize accuracy can be
automatically extracted. In this way, instead of a priori harnessing of the neural
signal from predefined brain areas, we can set a Bayesian sparse probit classifying
algorithm to automatically select the regions with highest activation for solving the
specific intentional task.

Fourteen subjects with college education (mean ageD 29.0˙ 7.0 years; 7 males,
7 females) participated in this experiment. The experiment consisted of two phases:
(1) training, open-loop (no feedback from the performance) and, (2) training, closed-
loop (with feedback from the performance). The training phase was guided by a
visual input with the stimulus being an arrow on the screen monitor. The arrow
pointed to one of two locations, right or left, to indicate to the subject the direction
they had to imagine and intend to move the cursor. In the open-loop version of
the training phase, the subject imagined the instructed direction but received no
feedback concerning the outcome of this imagination exercise. Figure 1.1a shows
the schematics of the epochs of the open-loop training phase. Two seconds of
fixation were followed by 4 s of display of the direction that the subject had to
imagine (left or right); direction alternatives were randomly presented. The last
epoch was the “resting phase” lasting 3–4 s; total trial length was 9–10 s. The
EEG activity during this open-loop training phase was used as a baseline for late
adaptation of the signal and to correctly modulate the performance outcome. There
were 7 blocks of 30 trials each during this open-loop training phase.

In the present study, source currents over 2,240 vertices were estimated for the
EEG signals [68–71] from 64 channels through a hierarchical Bayesian method
[72–74] that can effectively incorporate both structural and functional MRI data.
Accordingly, in our study, the variance of the source current at each source
location is considered as an unknown parameter and is estimated from the observed
EEG data. Prior information is also incorporated using the hierarchical Bayesian
method [75]. The fMRI information was imposed as prior information onto the
variance distribution (rather than the variance itself) to give a soft constraint on
the variance. After estimating the source currents from the EEG signals, a sparse
probit classifier [76, 77] classifies the left- and right-hand motor imagery. By using
the source currents estimated from the EEG signals as features, the number of
features can be increased, and among the increased features, the sparse probit
classifier automatically selects only the useful features for classification. Therefore,
the method is very robust against the over-fitting, and the accuracy of classification
can be improved. Furthermore, by using the source currents as features instead of the
response variance, the subjects receive immediate feedback of their intentions rather
than an estimate of a by-product signal. For these reasons, the source currents were
used as features in this study although the common spatial pattern (CSP) without
source localization has commonly been used as features for motor-imagery BMI
paradigms [27]. This is attributed to the concept that the sources cannot contain
more information than in the scalp electrodes, because the inverse problem is solved
with a linear method [78].
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Fig. 1.1 Experimental design for BMI cursor control: (a) Open-loop version of the training phase
where no performance feedback is provided. Epochs of one trial include fixation on a cross (2 s),
imagination task (4 s), and resting phase (3–4 s). (b) The closed-loop version of the training phase
(brain control) provides the subject with a performance feedback for trying to correctly move the
cursor according to the instructed direction, by thinking about that direction. The EEG signal is
changed from trial to trial according to the classifier algorithm to accurately control the motion of
the cursor in real-time and in compliance with the instructed direction of the green arrow displayed
on the monitor. The subject receives instantaneous visual feedback from the real-time performance
in each trial, by shifting the blue progressing bar in the direction of the arrow. At trial completion,
the subject views a success or failure message on the monitor. At the end of each of the 7 blocks
(30 trials per block), the subject receives feedback on their success rate according to the percentage
of correct trials

In the training phase using the closed-loop task (Fig. 1.1), subjects receive
instantaneous performance feedback in the form of a blue progressing bar that
moves (or fails to move) in the direction instructed by the arrow. A learning
progression occurs because of the co-adaptation between the EEG real-time signal
and the subject’s performance (via the visual feedback of the real-time moving
bar). The subject receives feedback from this learning progression after each trial.
The visual feedback, from the animation of the bar moving left or right, informs the
subject of success or failure and is accompanied by the text string “SUCCESS” or
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“FAILURE” (Fig. 1.1b, last panel). Seven blocks of 30 trials are used to train the
subject’s EEG signal in the closed-loop task with bar feedback. At the end of each
block of trials, the subject is also informed of their percentage of correct trials, which
assists in tracking the rate of learning. As with the open-loop phase, the closed-loop
training phase lasts for 35 min.

Figure 1.2 shows the overall configuration of the real-time BMI system used in
this first study. There are five main steps: (1) Registering the EEG signal with the
cortical surface model using the 3-layer head model (brain, skull, and scalp) [79] to
estimate the lead field matrix G [80, 81] (to obtain the forward map from the current
sources to the 64 sites of the electrodes); (2) Estimating the forward map in the open-
loop training phase to establish a baseline estimate of the variance of the current,
which will be changed next in the closed-loop phase of training; (3) Estimating
the inverse filter to generate the cortical activity provided to the EEG signal; (4)
Selecting the cortical features (regions) that lead to successful classification of
the desired direction and correct shift of the cursor; (5) Updating the filters and
classifiers continuously (in real-time) using a sliding window of 125 ms to maximize

Structural MRI

Head model Cortex model

Offline EEG data

(3 layers) (Cortical surface)

lead field (G)
Positions of EEG 

electrodes

Current variance (α−1)

Inverse filter

Variational Bayesian method

1( )L α
−∑ J (t)

Cortical activity

..

.

Real-time EEG 
signals from 64 
channels

Sliding window

E (t) × =

Sparse probit classifier

Feedback

Control of a bar

Selected important 
features

(Pre experiment)

Main experiment

Classification

..

.

Fig. 1.2 General concept of BMIs using the EEG data. Baseline EEG data analyzed off-line (from
the open-loop segment of the training phase) was used in combination with the head model data
from the subject. To build the head model data, the structural MRI template obtained previously is
used in combination with the head model (3 layers) and the cortex model. These data are fit to the
actual physical positions and orientations of the electrodes. The real-time data is processed using
variational Bayesian methods with a sliding window of 125 ms and passed through an inverse
filter to obtain the cortical activation. A sparse probit classifier is used to select the important
features of the data and highlight the cortical regions where maximal activation is evoked by the
closed-loop training task. The bar on the screen moves in real-time, as the subject thinks left or
right, according to the minimization of the error between the desired direction of the arrow on the
monitor and direction provided by the control algorithm. Instantaneous visual feedback is provided
to the subject from the real-time performance and the percentage of correct trials is displayed at
the end of each block
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Fig. 1.3 Important task-relevant features selected by the classifier after completion of the feedback
training

the probability of correctly controlling the motion of the bar in the desired direction.
Steps 1 and 2 are performed offline in the open-loop training phase to establish the
baseline information for each subject. Step 3 is performed once in the offline open-
loop phase, and then Steps 3–5 are performed in the closed-loop training to change
the filters and classifiers appropriately. The resulting signal can be tracked on the
cortical surface as the subject learns the task in real-time. In addition, the evolution
of brain activity can be tracked after a certain number of trials, or plotted as an
averaged activation across all 210 trials (7 blocks, 30 trials per block).

Figure 1.3 shows the features selected by the sparse probit classifier after the
subjects completed the fourth session. The features selected by the classifier are
not most meaningful but patterns [57, 82, 83]. After feedback training, features
are located mainly in the prefrontal cortex. The processing of the motor-related
information in the brain is thought to follow a progression: first, the urge to move
the arm is reflected in the premotor cortex; then the signal shifts to the primary
motor cortex via the supplementary motor area. The primary motor cortex, assumed
to be the final output portion of the motor-related signals in the brain, sends the
signal to the muscles through alpha motor neurons of the spinal cord, thus resulting
in the physical movement of the arm [84]. In our study, however, once the subjects
perform well above the chance level, the prefrontal cortex is automatically recruited.
The prefrontal cortex is involved in many aspects of planning and cognitive control.
The present results imply that a more abstract representation of the motor imagery
signal exists, possibly indicating a neural correlate for intentionality in this region.
Figure 1.4 shows the Brodmann area (BA) 6 engaged in the directional control
task and logically poses the question of whether this signal precedes the motor
command. Figure 1.4 shows the important features selected by the sparse probit
classifier over the selected time interval and while one subject (Subject 3) performed
the motor imagery task. Between 0 and 0.2 s, features in the prefrontal cortex were
selected, whereas from 0.2 to 4 s, features in the BA6 were chosen. This result
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Prefrontal cortex

Premotor cortex

Supplementary motor area

Primary motor cortex

4 s

time

Urge to move

Actual arm movement

Decision making

0.2 s

0 s

Selected important features (subject 3)

Weights

Weights

Fig. 1.4 Important features selected by the sparse probit classifier over the selected time interval
while Subject 3 performs the motor imagery task

Fig. 1.5 Results for long-term training (after the 10th session) in Subject 1

suggests that the subjects may use the prefrontal cortex as part of a planning stage
for impending motor decisions prior to engaging BA4 (primary motor cortex) in the
output execution stage. This raises the question: what will the result be after training
the subject for a long period?

Feedback training was provided continuously to one subject (Subject 1) over the
4th session, in which he showed almost perfect performance (see Fig. 1.5). Subject
1 was then trained over an extended period, completing 10 sessions. The accuracy
in the 10th session was almost the same as that in the 4th session, that is, there
was no apparent improvement in accuracy. However, in the 4th session, the subject
mainly used the BA6 (supplementary motor area) to control the bar’s direction. In
contrast, long-term training decreased the BA6 activation. In addition, all subjects
reported that as they mastered the mental control of the cursor they thought less
of the direction and felt a spontaneous, rather than a deliberate performance. The
subjects unanimously reported that they moved the bar left or right intentionally
but without explicit thoughts of direction. It is possible that this experience is
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accompanied by the recruitment of the prefrontal cortex that we quantified here.
The lack of recruitment of the BA4 (primary motor cortex) suggests that a more
abstract representation of motion may exist in the prefrontal cortex, associated with
BA6, and then towards more frontal regions upon further training.

Ojakangas et al. [85] reported that the human prefrontal/premotor cortical
neurons could provide information about the planning of movement and decision-
making, sufficient to decode the planned direction of movement. Our results are
consistent with their observations. In addition, we have also tested blindfolded sub-
jects by providing auditory commands and found comparable levels of performance
accuracy. This suggests that a true abstract amodal signal exists in the prefrontal
cortex, and that this signal is useful, ultimately, to spontaneously direct our thoughts.

Figure 1.6 shows the estimated cortical activities when the subjects performed
a directional imagination task for 35 min, that is, when controlling a bar on the
monitor by imagining its direction and getting feedback from the movement of the
bar. As shown in the figure, the prefrontal cortices of all the subjects are activated.
Figure 1.7a shows the results when the subjects simply move their eyes to the left

-9
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Subject 3 Subject 4

Subject 5 Subject 6
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Subject 9 Subject 10

Front
Top
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Left Right
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Fig. 1.6 Patterns of cortical activation in 10 subjects. Frontal, top, right, and left views of the
brain (registered with activation according to the output of the sparse probit classifier), showing
the most useful features for maximizing the probability of successfully moving the cursor in the
intended direction. The activation of the corresponding areas are highlighted (Am/mm2), obtained
by averaging across the 4 s testing phase
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Fig. 1.7 Averaged activation patterns across subjects. (a) Control test for pure eye movements
reveals no significant differences in recruitment of the prefrontal cortical areas in relation to the rest
of the brain. (b) On average, across subjects, the visually driven control task recruits the prefrontal
cortex and particularly, the Brodmann areas 9, 10, and 11 with patterns of activation significantly
than the rest of the brain (*, p < 0.001)

and right. The prefrontal cortex (BA9, 10, and 11) and other areas have almost the
same level of task-relevant activity. Figure 1.7b shows the average of the estimated
cortical activities for 14 subjects performing the directional imagination task. The
average value for the prefrontal cortex is 2.7 times higher than that for other areas.
In particular, there is strong activation in the BA9, 10, and 11 located in the center
of the prefrontal cortex. Taken together, these observations may provide prospective
evidence that the prefrontal cortex activity can be used as a potent cognitive signal
for future BMI technology.

1.3 The Future of BMI

There is great value in utilizing the knowledge accumulated in the field of
neuroscience for the general welfare of humankind. Presumably, the world in which
we can control a machine or a computer simply by thought might be very near.
Indeed, current BMI technology can already play a role as supportive devices for
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Fig. 1.8 Example of an
EEG-based BMI: A
wheelchair system controlled
by EEG signals [31]

people in wheelchair (see Fig. 1.8). Future BMI technologies may even play an
essential role in many other areas (e.g., home, office, or entertainment) with the
potential to enrich our lives [5, 86–88].

However, current BMI technology has several limitations and still involves
relatively primitive commands to control external devices. Of course, the extraction
of binary information from the EEG signals across the left and right hemispheres
is less complex. Although computer technology has made amazing progress
using binary information, BMI technology still has a long way to utilize such
binary information to clearly reflect our complicated mental world in real-time.
Currently, it is difficult to clearly detect our various thoughts for the purpose of
intentional control of BMIs. Even the EEG modality, which is the most popular for
implementing BMI, has inherent limitations in that its spatial resolution is poor. To
overcome this limitation, “hybrid BMI” has been proposed; it combines multiple
brain imaging modalities [89].

In the future, if one’s brain signals can be delivered to another person’s brain
through wireless communication, it could broaden the BMI field. For example,
if low-intensity focused-ultrasound sonication (a non-invasive, machine-to-brain
interfacing technique) is verified for its feasibility and safety, it could be used to
study the transfer of signals from one brain to another in combination with the BMI
technology [Fig. 1.9; 90]. The recent development of this low-intensity focused-
ultrasound technology has increased the possibility of changing the brain function
in a non-invasive manner [91, 92]. Clearly, there are social and ethical issues that we
have to considerably concern, as BMI technology progresses to a level in the future
in which we use it in daily life.
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Fig. 1.9 Schematic representation of the brain-to-brain interfacing technology [90]
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Chapter 2
Brain-Computer Interface for Smart Vehicle:
Detection of Braking Intention During
Simulated Driving

Jeong-Woo Kim*, Il-Hwa Kim*, Stefan Haufe, and Seong-Whan Lee

Abstract It is most essential to stop a vehicle in time for assuring a driver’s safety.
In this study, a simulated driving environment was implemented to study the neural
correlation of braking intention in diverse driving situations. We further investigated
to what extent these neural correlates can be used to detect a participant’s braking
intention prior to the behavioral response. A feature combination method was
proposed for the enhancement of detection performance and additional classification
of emergency braking triggered by stimuli and voluntary braking. It consists of
event-related potential (ERP), readiness potential (RP), and event-related desyn-
chronization (ERD) features. Fifteen participants drove a virtual vehicle and were
exposed to the diversified traffic situations in the constructed simulator framework,
while technical signals (i.e., gas pedal and brake pedal), electroencephalogram
(EEG) and electromyogram (EMG) signals were measured. After that, the neural
correlation of the measured signals was analyzed. The proposed framework shows
excellent detection performance for various kinds of driver’s braking intention. Our
study suggests that a driver’s braking intention is characterized by specific neural
patterns of sensory perception and processing, as well as motor preparation and
execution, which can be utilized by smart vehicle technology.
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Keywords Brain-computer interface (BCI) • Braking intention • Feature combi-
nation • Electroencephalogram (EEG) • Driving

2.1 Introduction

Many kinds of driving assistant system have been developed for a driver’s con-
venience and safety. Especially, the braking assistant technology is one of most
important parts to assure a driver’s safety. There were neurophysiological studies
concerned with the use of brain signals for enhancing driving assistance systems.
However, most of the studies focused on measuring and detecting drivers’ physical
conditions and mental states such as decreased concentration [1] or sleepiness [2–4]
during a monotonous drive. Other studies focused on controlling the vehicle based
on analysis of brain signals [5–11].

1In a recent study, upcoming emergency situations during simulated driving
were detected using event-related potentials (ERPs) [12]. This study demon-
strated that neurophysiological correlates of emergency braking occur about
130 ms earlier than the corresponding behavioral responses related to the
actual braking. However, it is impossible to prove the feasibility of a driving
assistant system based on a brain-computer interface in the real world, since the
participants were exposed to a very reduced set of driving situations.

In this article, the feasibility of the driving assistant system is investigated
based on the experiment with more diversified simulated driving situations than
the previous study [12]. In our experiment, the participants were exposed to traffic
situations including three kinds of emergency situations while they drove a virtual
vehicle: the sudden stop of a leading vehicle, the sudden cutting-in of a vehicle from
a neighboring lane, and the unexpected appearance of a pedestrian. In addition, there
were driver’s voluntary braking situations without any kinds of emergency stimulus.
Electroencephalogram (EEG) signals were measured during the experiment and the
neural responses of braking intention in various kinds of traffic situations were
analyzed to investigate the differences of neural signals in emergency and non-
emergency situations.

Three kinds of signal components were combined and used for the detection
of driver’s braking intention in this study. One signal component is the readiness
potential (RP), a preparatory (i.e., pre-movement) component that indexes move-
ment intention [13], ERPs (i.e., visual evoked potentials and P300 components),
and event-related desynchronization (ERD) to distinguish diverse driving situations
such as sharp braking.

The class-discriminability of univariate ERP features is investigated after the
description of experimental paradigm and approach for signal analysis. After that,

1The parts have been taken verbatim from the author’s prior publication [39] marked with bold in
Introduction and Discussion Section.
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we assess and compare the classification performances of the proposed feature
combination method and the ERP feature based on the area under the specificity-
sensitivity curve (AUC). The findings and experimental results are summarized with
discussions at the end of this chapter.

2.2 Material and Methods2

2.2.1 Participants and Experimental Setup

Fifteen healthy individuals (all male and right-handed, age 27.1˙ 1.7 years)
participated in this study. All participants had a valid driver’s license and had driven
for more than 3 years with no car-accident history. All had normal or corrected-
to-normal vision. None of the participants had a previous history of psychiatric,
neurological, or other diseases that might otherwise affect the experimental results.
The experimental procedures were explained to each participant. Written informed
consent was obtained from all participants before the experiment. The participants
received a monetary reimbursement for their participation after the completion of
the experiments. The participants were seated in a driving simulator cockpit (made
by R.CRAFT in Korea) with fastened seat belts (the experimental apparatus is
shown in Fig. 2.1).

Fig. 2.1 The experimental apparatus and environment

2The following section follows closely a prior published paper by the authors [39].
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The virtual driving environment displayed on the screen was developed using
the Unity 3D (Unity Technologies, USA) cross-platform game engine. This envi-
ronment resembled an urban neighborhood without traffic lights and included
autonomous (computer-controlled) vehicles as well as a vehicle to be steered by
the participant. There was a six-lane road with many vehicles driving controlled by
a simulator.

2.2.2 Experimental Paradigm

The participants were asked to drive a virtual vehicle using the accelerator and
brake pedals and the steering wheel during one experimental session that lasted
about 2 h. They were instructed to drive freely without getting into an accident,
and to perform immediate braking to avoid crashes if necessary. The maximum
speed of a vehicle was 120 km/h. We defined three kinds of braking situations.
First, if an emergency situation occurred, the participants were instructed to press
the brake pedal sharply. We defined this situation as sharp braking. Second, when the
participant performed spontaneous braking to decrease a vehicle’s speed, the vehicle
decelerated softly (i.e., gradually). This situation was defined as soft braking.
Finally, in many situations, the participants did not need to decrease the speed of
their vehicle (i.e., normal driving). For all of the stimuli, the inter-stimulus interval
(ISI) was between 4 and 18 s, and drawn randomly from a uniform distribution (see
Fig. 2.2).

2.2.2.1 Sharp Braking Condition

There were three kinds of stimuli inducing sharp braking (emergency) situations.
1) The sharp braking by brake light condition: when the vehicle in front of the

ISI : 4 – 18s ISI : 4 – 18sISI : 4 – 18s

0-1 1 2 . . . 8 . . .

. . .

35 . . .36 37 38 52 . . .

. . .
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Stimulus onset
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t (s)
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Fig. 2.2 Timing of the experimental paradigm



2 Brain-Computer Interface for Smart Vehicle: Detection of Braking Intention. . . 23

participant (lead vehicle) abruptly decelerated. A leading vehicle’s brake light
flashing was defined as the stimulus onset in this condition (see Fig. 2.3a). 2) The
sharp braking by cutting-in condition: when a vehicle on the neighboring lane (side
vehicle) abruptly cut in front of the participant’s vehicle. The moment when the side
vehicle came across the lane was defined as the stimulus onset (see Fig. 2.3b). 3)
The sharp braking in the pedestrian condition: a pedestrian moved quickly toward
the participants’ vehicle from the side. The moment when the pedestrian left the
sidewalk was defined as the stimulus onset (see Fig. 2.3c).

2.2.2.2 Soft Braking Condition

The soft braking condition was defined based on spontaneous braking in the absence
of any stimulus. To slow down the vehicle, the participants spontaneously pressed
the brake pedal. In this soft braking condition, the moment when the participant
pressed the brake pedal was defined as the response onset (see Fig. 2.4a).

2.2.2.3 No-Braking Condition

The no-braking condition comprised three kinds of traffic situations. 1) One was
normal driving: the participants just focused on driving, and no stimulus was
given (see Fig. 2.4a). 2) The no braking by brake light condition: when a leading

Fig. 2.3 Stimuli related to emergencies (a) Sharp braking by the leading vehicle’s brake light, (b)
Sharp braking by cutting-in, (c) Sharp braking by a pedestrian

Fig. 2.4 Stimuli not related to emergencies (a) Soft braking or normal driving (no stimulus), (b)
No braking by brake light, (c) No braking with brake light of neighboring vehicle
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vehicle abruptly decelerated far away from a participant’s car. In this condition, the
participants did not have to press the brake pedal. The stimulus onset was defined as
the moment in which the lead vehicle’s brake light flashed (see Fig. 2.4b). 3) The no
braking with brake light of neighboring vehicle condition: when the leading vehicle
on a neighboring lane abruptly decelerated. In this condition, participants did not
have to press the brake pedal. The side vehicle’s brake light flashing was defined as
the stimulus onset in this condition (see Fig. 2.4c).

2.2.3 Data Acquisition and Feature Extraction

The EEG signals were recorded using a multi-channel EEG acquisition system
from 64 scalp sites based on the modified International 10–20 system [14]. We
used Ag/AgCl sensors mounted on a cap (actiCAP, Brain Products, Germany).
The ground and reference electrodes were located on scalp position AFz
and the nose, respectively. The sampling rate was 1000 Hz throughout the
experiments. The low and high cut-off frequencies were 0.1 and 250 Hz,
respectively.

Electromyogram (EMG) signals were also acquired using a unipolar montage at
the tibialis anterior muscle. The impedance of the EEG and EMG electrodes were
kept below 10 k�. The EEG and EMG data were amplified and digitized using
BrainAmp hardware (Brain Products, Germany).

Brake and gas pedal deflection markers were acquired at a 50 Hz sampling rate
provided by the Unity 3D software. The time points of the braking response were
defined based on the first noticeable brake pedal deflection that exceeded the jitter
noise level.

The EEG signals were low-pass filtered at 45 Hz, and the EMG signals were
band-pass filtered between 15 and 90 Hz. To remove line noise, we further applied
a second-order digital notch filter at 60 Hz to the EMG signals.

The sampling rates of the physiological (EEG and EMG data) and mechanical
(brake and gas pedal data) channels were down-sampled or up-sampled to 200 Hz
for synchronization.

Segmentation was performed with 1500 ms length of epoch. Therefore, each
epoch consists of 301 lengths of data points. After that, three different kinds of
pre-processing and feature extraction methods were considered, corresponding to
three different types of features (ERP, RP, and ERD) to be extracted from each
epoch (see Fig. 2.5). The selection of time intervals (not necessarily of equal length)
determined heuristically for each channel [15] (Ten-time intervals for ERP features
and three-time intervals for RP features). These time intervals were selected only
using training data. The same intervals were used for the test data. Each feature was
computed for all electrodes (640 dimension of ERP features and 192 dimensions
of RP features). Moreover, there are 6 ERD features for all channels. Thus, the
combined feature vector has 838 dimensions (640 for ERP, 192 for RP, and 6 for
ERD). The combination features were normalized by subtracting their empirical
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means and dividing with their empirical standard deviations as estimated on the
training sets to rescale the three kinds of features after concatenation of features.
The test data sets were also normalized in the same way by subtracting the empirical
means and dividing with the empirical standard deviations as estimated on the
training data sets.

2.2.4 Event-Related Potentials and Area Under the Curve
Analysis

The arithmetic mean of the extracted epochs of all 15 participants was com-
puted to obtain grand-average ERP signals. Additionally, the discriminability of
univariate (single-timepoint single-sensor) features with respect to the three pre-
defined classes was investigated using the area under the curve (AUC) [16].
This analysis was conducted separately for each pair of classes. The AUC is
symmetric around 0.5, where scores greater than 0.5 indicate that a feature has
higher values in class 1 than in class 2 and scores smaller than 0.5 indicate
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the opposite (smaller values in class 1) [16, 17]. The arithmetic mean of the
AUC scores across the participants was calculated to obtain grand-average AUC
scores.

2.2.5 Classification

As in [12], we evaluated the extent to which different feature modalities contribute
to the overall decoding performance. Classifiers were trained on four kinds of
modalities. These modalities were EEG (feature combination), EEG (only ERP
features), EMG, and BrakePedal, which denotes the driver’s actual brake pedal
inputs. The first half of the epochs were used as the training set, and the second
half were used as the test set. The entire analysis process including pre-processing
is shown in Fig. 2.5.

The class discriminability of optimized combinations of spatio-temporal features
was investigated using the regularized linear discriminant analysis (RLDA) clas-
sifier [18–21]. For regularization, the automatic shrinkage technique [22–25] was
adopted. We had three classes of driving situations. For each pair of classes, we
calculated the AUC scores of the RLDA outputs on the test set.

2.2.6 Statistical Testing

Whether a given AUC score was significantly different from 0.5 (that is, chance
level) on the population level was assessed by means of two-sided Wilcoxon signed
rank test [26]. To assess whether two scores AUC1 and AUC2 were significantly
different from each other, the difference AUC1-AUC2 was also tested for being
nonzero using the same two-sided Wilcoxon signed rank test. Bonferroni-correction
was implemented to obtain reliable p-values [27]. The correction factor was 301
(time instants) � 64 (electrodes)D 19,264 in the ERP analysis. For other channels,
we used a correction factor of 301 (time instants). Features whose p-value was
smaller than 0.05 are considered statistically significant.

2.3 Results3

2.3.1 ERP Analysis Related to Braking Conditions

Each of the three classes of driving situations induced a specific cascade of brain
activities representing low- and high-level processing of the (visual) stimulus as

3The following section follows closely a prior published paper by the authors [39].
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Fig. 2.6 Topographical maps of grand-average AUC scores calculated from average ERPs in five
temporal intervals. (a) Sharp braking vs. no braking, (b) Soft braking vs. no braking, (c) Sharp
braking vs. soft braking

well as motor preparation and execution. The same number of braking situations
was induced for all braking types and subjects. However, after filtering and artifact
rejection, the number of trials used in the analysis of neural correlates varied. On
average, 57.1˙ 12.3 trials related to sudden stops of leading vehicles, 60.5˙ 8.1
trials related to cutting-in of leading vehicles, and 44.7˙ 5.6 trials related to sudden
appearance of pedestrians were used in the data analysis. Half of the trials were
used for training the classifier, and the remaining trials were used to evaluate the
decoding performance.

We investigate the spatio-temporal ERP sequences reflecting the class-
discriminative brain processes. Figure 2.6 shows topographical maps of grand
average AUC scores in five subsequent 160 ms long time intervals. Figure 2.6a
shows the AUC scores related to the difference between sharp braking and no
braking. The feature value of sharp braking is higher than that of no braking
(AUC > 0.5) in the time interval between 320 and 800 ms post-stimulus in parietal
areas. The AUC score is maximal in the time interval between 480 and 640 ms
(z > 6.8, p� 0). The electrode having the highest AUC score (0.58) between 480
and 640 ms post-stimulus is Pz. On the other hand, the higher feature value of
no braking than that of sharp braking (AUC < 0.5) is observed in the time interval
between 160 and 320 ms in lateralized occipital areas (z <�6.8, p� 0), and in
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the time interval between 320 and 800 ms in central areas (z <�6.8, p� 0). The
electrode Cz shows the lowest AUC score (0.40) between 320 and 480 ms post-
stimulus.

Figure 2.6b shows the AUC scores related to the difference between soft braking
and no braking. The higher feature value of no braking than that of soft braking
is observed over the entire time interval in central areas. The lowest AUC score
(0.43) is observed in the electrode Cz between 320 and 480 ms post-stimulus. The
electrode TP10 has the highest AUC score (0.53) between 640 and 800 ms post-
stimulus. Figure 2.6c depicts the AUC scores related to the difference between
sharp braking and soft braking. Here, the highest feature value of sharp braking
is observed in parietal/occipital areas in the time interval between 480 and 640 ms
(z > 6.8, p� 0), while a highest feature value of soft braking around electrode Cz
is observed in the time interval between 320 and 640 ms (z <�6.4, p� 0). The
electrode P7 has the lowest AUC score (0.44) between 160 and 320 ms post-
stimulus while the highest AUC score (0.59) is observed in electrode Pz between
480 and 640 ms post-stimulus. Thus, sharp braking elicits stronger feature values
than soft braking and is moreover characterized by the additional presence of visual-
evoked potentials and a P300 component. Note that it is impossible to distinguish
emergency braking situations from normal driving (e.g., no-braking events) before
the stimulus. Therefore, the classification before stimulus onset must be at chance
level as indicated by AUC scores of 0.5 (see Fig. 2.6).

2.3.2 Comparison of Classification Results Based on ERP
Features and a Novel Feature Combination

The results of the classification analyzes using multivariate features are shown
in Fig. 2.7. These features were extracted from stimulus-locked segments. The
classification performance was measured in terms of AUC scores achieved by the
outputs of RLDA classifiers on test data. The classifiers were trained to distinguish
two of the three classes. Thus, there were three different class combinations to
consider.

Figure 2.7 provides a time-resolved assessment of the classification performance,
where the AUC score at each time point represents the accuracy achievable using
the preceding 1500 ms long segment of data. The boxplots in Fig. 2.7 shows
the distribution of reaction times (defined as the first above-threshold brake pedal
deflection) for the sharp braking condition. Note that for the soft braking condition
artificial stimulus onsets were sampled from the same distribution.

The classification results with respect to distinguishing sharp braking and no
braking based on ERP features are similar to the results previously achieved by [12]
(see Fig. 2.7a). The AUC scores of both single features and the proposed feature
combination based on EEG exceed 0.6 after 260 ms post-stimulus. In addition, the
score of both EMG and brake signal exceed 0.6 after 320 and 580 ms post-stimulus,
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Fig. 2.7 Classification performances based on ERP feature and novel feature combination. The
distribution of reaction times for the sharp braking condition is depicted by boxplots. The areas of
shaded color represent standard errors of the mean (SEM) of the AUC scores

respectively. The AUC of the EEG using the novel feature combination exceeds a
value of 0.9 by 80 ms ahead of using ERP features alone.

The novel feature combination shows significantly better performance compared
to the ERP features from 640 to 1200 ms post-stimulus (p < 0.05, the largest
difference at 960 ms, zminD 5.4, p� 10�2).

The performance with respect to distinguishing the soft braking and no braking
conditions is presented in Fig. 2.7b. For EEG, the scores using the novel feature
combination are considerably higher than the scores obtained from using ERP
features only. For ERP only features, the AUC exceed 0.6 at 440 ms post-stimulus,
while for the novel feature combination it is 340 ms post-stimulus. In addition,
the novel feature combination achieves significantly better performance than ERP-
only features from 760 to 1200 ms post-stimulus (p < 0.05, the largest difference at
840 ms, zminD 5.8, p� 10�3).

Finally, the performance in classifying sharp braking and soft braking based on
ERP features is dramatically lower compared to using EMG features in the entire
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time interval considered. On the other hand, the performance is improved by means
of the proposed combination of EEG features, although the achieved scores are still
lower than those obtained from EMG. The novel feature combination achieves an
AUC score of 0.6 by 120 ms earlier than the corresponding ERP-only features. It is
significantly better than the ERP features alone in the interval from 380 to 440 ms
post-stimulus (significant with p < 0.05, the largest difference at 420 ms, zminD 5.6,
p� 10�3). These results are presented in Fig. 2.7c. These results confirm that our
novel feature combination is more informative for the detection of drivers’ braking
intentions than ERP features alone.

2.4 Discussion and Conclusion

A positive signal similar to the typical P300 component is observed in a broad
parieto-occipital region for all kinds of visual stimulus types in the analysis results
of spatio-temporal ERP pattern. This neurophysiological properties of the ERPs are
caused by our experimental paradigm similar to the classical oddball paradigm [28]
in a respect that the emergency stimuli (oddball) are presented randomly during
normal driving (normal ball).

The neurophysiological responses to the two kinds of braking (soft and sharp)
show the different amplitude of positivity in the parieto-occipital region and this
difference was helpful to distinguish these two kinds of situations.

There are three kinds of stimuli in case of sharp braking condition and the
ERP patterns across the scalp evoked by these stimuli were different. However,
we considered these patterns as the same class because these patterns evoked
by pseudo-oddball paradigm and we could observe a positive potential in the
parieto-occipital region [29] for all kinds of stimuli. In the end, we were able to
detect the driver’s braking intention regardless of what kind of traffic situations
occurred.

A negative signal in a central region (especially at the Cz electrode) evoked
by the planning processes in the motor system related to the act for pushing the
gas or brake pedal (i.e., the readiness potential) [30, 31] in all braking situations.
Different negative deflection was evoked by reactive and spontaneous movements
at the foot area of the motor cortex during and prior to muscle movement [6, 32, 33].
In addition, the reactive movement and spontaneous movement had a different start
time of the negative deflection in the central region. The reactive movement was
similar to cue-based motor execution and corresponding to sharp braking. On the
other hand, the spontaneous movement was similar to self-paced motor execution
and corresponding to soft braking. The start point of the pre-motion negative
deflection in the central motor area related to a reactive movement was later
than the start point of the spontaneous movement, in line with [13, 34, 35].
Thus, as aforementioned, we used the readiness potential as a feature because
it provided important movement-related information.
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There is about 150 ms of the time difference between ERD starts and EMG
onset (i.e., ERD is faster than EMG) [36, 37]. The ERD was observed prior to
the depression of the brake pedal (i.e., right foot movement from the gas to
the brake pedal). Interestingly, the self-initiated movement (i.e., soft braking)
and the movement triggered by an external stimulus (i.e., sharp braking)
differed in aspects (i.e., magnitude and slope) of the band power. Thus, the ERD
information related to foot movement for braking was also used as a feature.

The prediction performance of the sharp braking and soft braking conditions are
assessed in time series based on AUC score. The AUC score of EEG increased faster
than that of EMG. Although the peak AUC score of EMG is lower than that observed
in a previous study [12], the trends of results are similar to a previous study.

The feasibility of smart vehicle technology for detection of driver’s braking
intention was verified in this study by detecting the participants’ braking inten-
tion robustly in all of the simulated traffic situations. Especially, the prediction
performance based on the novel feature combination is better than the prediction
performance based on ERP features alone reported in a previous study [12] although
the classification performance for sharp braking and soft braking based on EEG
features was lower than the performance based on the EMG. Some important
environmental stimuli (e.g., vehicle vibration, auditory stimuli) were omitted in
our setting. However, it is complemented by the work of [3, 38], which shows that
results identical or better to those of [12] can be obtained in a real-world setting.

Together, our study and [38] provide a converging evidence suggesting that smart
vehicles that have an automatic braking assistance system integrating neurophysio-
logical responses could be developed in practice. The methods and results sections
have been taken from an own prior publication after summarization. For further
details on the experiment and analysis, see [39].
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Chapter 3
Benefits and Limits of Multimodal
Neuroimaging for Brain Computer Interfaces

Siamac Fazli, Min-Ho Lee, Seul-Ki Yeom, John Williamson, Isabella
Schlattner, Yiyu Chen, and Seong-Whan Lee

Abstract Recently there has been a surge of interest for combining data from
various sources in neuroscience, and also in other scientific domains. In this
article we examine some of the benefits as well as limitations that arrise, when
various neuroimaging techniques are employed for Brain-Computer Interfacing. In
particular we review how setup costs can be reduced for multimodal systems, the
NIRS response delay minimized and furthermore show that NIRS can help in the
robust detection of the idle state.

Keywords BCI • EEG • NIRS • Multi-modal neuroimaging • Sensor reduction •
Idle-state detection

3.1 Introduction

Brain-computer interfaces (BCIs) are systems that enable humans to communicate
with machines by means of their thoughts. The goal of BCI is to offer people with
motor disabilities such as tetraplegia or even locked-in syndrome a communication
tool to the external world by bypassing the brain’s normal output pathways, such as
peripheral nerves and muscles [61].

One possible input that can be employed by BCI is neural activity recorded from
the scalp. In 1924 Hans Berger recorded the first human Electroencephalogram [6].
Electroencephalography (EEG) is a non-invasive method that records electrical
signals generated by the brain through electrodes, which are placed at different
positions of the scalp. Some of the advantages of EEG are that it is non-invasive,
has good temporal resolution, the equipment is comparatively cheap, and it is
transportable. The disadvantages of EEG are its limited spatial resolution as well
as low signal-noise-ratio.
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Near-infrared spectroscopy (NIRS) is a non-invasive optical technique that
measures the absorbance of light in tissue at different wavelengths in the spectral
region from 700 to 1,000 nm [32]. Accordingly, it allows the determination of
changes in the concentration of oxygenated hemoglobin ([HbO]), deoxygenated
hemoglobin ([HbR]) and blood volume due to neural activity [59]. NIRS has a
good spatial resolution when compared to EEG. However, due to the latency of
brain hemodynamics its temporal resolution is very limited and similar to that of
functional Magnetic Resonance Imaging (fMRI) [7, 30].

Lately, NIRS is receiving a lot of attention. While earlier NIRS systems were
only able measure very few channels, today whole-head systems become more
available. The NIRS technology has been remarkably developed, newer NIRS tech-
nologies have become a promising tool for neuroscientific studies. Consequently,
the use of NIRS in neuroscience has been constantly increasing and well developed
in several subfields. In functional imaging studies, some researchers have even
developed a wearable multi-channel fNIRS system [45] which can be used in
unrestrained settings.

In 2004, Coyle and colleagues first demonstrated the feasibility of a NIRS-based
optical BCI [9]. Since then a number of groups have followed the idea of using
optical data for BCI systems [10, 33, 54, 62].

3.1.1 Multimodal Neuroimaging

Interest in non-invasive multimodal imaging in neuroscience has been increasing in
the past 20 years since Ives and his group of researchers were the first to record
EEG signals simultaneously with an fMRI scan [31]. The combination of fMRI’s
hemodynamic spatial resolution with the temporal resolution of EEG is an attractive
option for many researchers and clinicians. Besides just imaging with EEG-fMRI
data, other multimodal imaging setups have been developed and applied in clinical
and research settings using combinations of other modalities which include MEG,
NIRS, PET, CT and MRI [3, 4, 14, 44, 51].

The basic assumption behind multimodal acquisition of data is that one modality
can compensate or complement the data for the other modality’s deficiencies. In
the case of EEG and fMRI, the complementary relationship of their respective
temporal and spatial resolution clearly justifies their multimodal combination.
Besides combinations that complement the canonical shortcomings for each modal-
ity, compensatory combinations can also provide imaging solutions for researchers.
For example, simultaneous recordings of EEG and MEG data have proven useful
in improving source estimation for these spatially poor modalities by compensating
for each other’s specific deficiencies in source localization [4]. Similarly, fNIRS
and fMRI have been used simultaneously to better understand the hemodynamic
response by combining fNIRS’s greater biochemical specificity and sensitivity to
the microvasculature with fMRI’s more robust spatial resolution [51]. Additionally,
most modern PET scanners are combined with CT scans to acquire better anatomical
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imaging, but since the image acquisition in these modalities are performed sequen-
tially, not simultaneously, and because both require radiation exposure, development
of an fMRI and PET multimodal technique is in development to increase safety by
reducing the subject’s exposure to radiation [44].

As Friston points out in his review of multimodal imaging [24], despite the
excitement surrounding multimodal imaging in neuroscience, its application is still
not commonplace. Certainly, cost is an issue as well as the fact that many clinical
and research questions can still be adequately investigated with a unimodal method.
Another reason for the limited application of multimodal imaging is because of the
many challenges in the analysis of simultaneously obtained data sets which measure
different aspects of an imprecisely known source. A review of analysis techniques
and data integration is beyond the scope of this chapter but for a good starting point
of review, see [7, 12, 13, 18, 43].

Despite the challenges, complications, and increased cost, multimodal imaging
is blossoming within specific disciplines as a powerful research tool by allowing
researchers and clinicians to reevaluate their limitations of investigation and provid-
ing opportunity for deeper understanding. For example, simultaneous EEG-fNIRS
imaging is proving to be a more versatile, lower-cost option in many fields like
psycholinguistics [60], optical topography [16], and certainly in BCI which will be
the focus for the rest of this chapter.

3.1.2 Combining EEG and NIRS for BCI

In a recent study, simultaneous measurements of NIRS and EEG were recorded dur-
ing a real-time sensorimotor rhythm (SMR)-based BCI feedback experiment [23].
The feedback was EEG-based, but in further offline simulations the classification
accuracies for each signal domain were both evaluated separately as well as
in combination. This combination was performed by means of meta-classifiers.
The meta-classifiers weigh the linear classifiers of the individual measurements
according to training data samples [23]. The unimodal analysis showed that
single-trial EEG classification accuracy was superior, when compared to the NIRS
chromophores. However, the multimodal analysis revealed that the usage of meta-
classifiers, combining features from EEG and NIRS, improved the classification
accuracy significantly. This increase was observed in over 90 % of the considered
subjects and led to a significant average performance increase of 5 % across
subjects.

To further examine the degree of independence between the NIRS and EEG-
based classifier outputs, their outputs can be restricted to values between 0 and 1 and
their mutual information I can be estimated. Mutual information is an information
theoretic measure, which estimates the information that two random variables share.
It can be expressed in terms of conditional entropies of random variables X and Y:

I.XIY/ D H.X/� H.XjY/ D H.Y/� H.YjX/ (3.1)
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The conditional entropy H.XjY/ quantifies the remaining entropy of X, after the
value of Y is known. If H.XjY/ D H.X/, then I.XIY/ D 0: the variables are
independent. On the other hand, if X and Y are identical, then H.XjY/ D 0 and
hence I.XIY/ D H.X/. I.XIY/ is symmetric and its values are in the range of 0
and 1: I.XIY/ D I.YIX/ 2 Œ0I 1� [41].

With increasing accuracy of NIRS chromophores, the mutual information also
rises. Similarly, with increasing EEG accuracy, the mutual information rises as well.
The intuition is clear: with increasing accuracy, both classifier outputs will correctly
predict and thus share the majority of class labels. However, the normalized mutual
information did not reach values above 0:4 bit for any subject. To investigate,
whether EEG and NIRS classifiers misclassify the same trials, the EEG classifi-
cation accuracy of all trials was examined in relation to the NIRS classification
accuracy of trials, where [HbO] was correct/incorrect. The results indicated, that
EEG classification is largely invariant to the classification performance of [HbO]
and [HbR]. In other words, EEG and NIRS mostly misclassify different trials. It can
therefore be deduced that the individual methods in fact complement each other in
terms of information content [23].

3.1.3 Current Issues of Multimodal BCIs

NIRS measures changes in local concentration of oxygenated and deoxygenated
hemoglobin ([HbO] and [HbR]) in the cerebral blood. Previous studies reported that
the hemodynamic response typically peaks about 6s after stimulus onset [48, 58]
and then dips back down over the course of several more seconds as homeostasis
is re-established. Therefore, NIRS-based BCI systems require a paradigm with
relatively long Stimulus Time Intervals (STIs) and Inter Stimulus Intervals (ISIs),
when compared to EEG experiments [29, 42]. This inherent latency, caused by
the slow hemodynamic response presents an important challenge for multimodal
EEG+NIRS-based BCI systems today: it would be prohibitively inconvenient
to wait 6s following a mental command for a BCI to respond. Most of the
previous NIRS-based BCI studies used time-averaged hemodynamic concentration
features [9, 54], which inevitably leads to low Information Transfer Rates (ITRs).
X. Cui et al. proposed a multivariate pattern classification technique with different
feature spaces (signal history gradient and spatial pattern) to reduce this delay [11].
While it reduces the latency of decoding a behavioral state from 6s to 4s, it
still requires extensive offline processing. An EEG-NIRS multimodal system is
expected to enhance BCI accuracy. At the same time a loss of ITR should be
avoided, if possible. Therefore, future studies investigating the trade-off relationship
between accuracy and ITR will be of benefit for the usability of multimodal BCI
systems.

EEG-NIRS experiments require a long setup time. Setup time includes the setup
of hardware, such as applying conducting gel to EEG electrodes and setting up
NIRS optodes on the scalp, but also the estimation of subject-dependent filters
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for decoding. Dry electrodes [28, 46] as well as EEG-based subject independent
decoding [19–21, 36] already adress this issue for the domain of EEG. However,
for multimodal experiments, the preparation time is significantly extended, when
compared to a unimodal experiment. This long setup time often leads to subject
fatigue, which can result in subjects failing to concentrate on their task.

While the EEG signal can be influenced by noise artifacts such as electro-
oculogram (EOG) and electromyogram (EMG), NIRS signal quality is strongly
influenced by the density of hair which can cause poor optical contact [34].
Generally EEG-based BCI systems employ scalp areas, that are covered in hair,
such as the motor-cortical areas for SMR-based BCI, occipital areas for steady-state
visual evoked potential (SSVEP)-based BCIs, among others. In contrast, a number
of proposed NIRS-BCI systems were based on prefrontal areas which are free of
hair [5, 35, 52]. In a recent multimodal EEG-NIRS study, the NIRS electrodes were
positioned over the prefrontal region with the EEG electrodes over the motor cortex
regions [35]. In contrast Fazli et al. have set the EEG electrodes and NIRS optodes
together within the same region [23].

In summary, for simultaneous data recording the optimal channel configuration
should be predetermined, depending on the task at hand. Whether or not EEG and
NIRS should monitor the same region [23] or are independently located [35] needs
to be decided on a case by case basis.

The majority of sensory motor rhythm (SMR)-based BCIs require the subject to
react to a cue, a so-called cue-paced or synchronous BCI. These synchronous BCI
systems are disadvantageous for a broad range of applications outside the laboratory
and it is therefore important to design systems that are able to detect asynchronous
(or self-paced) actions. In asynchronous BCI paradigms the users’ intentions are
divided into active and idle states. During the active state the user concentrates
on the specific mental tasks to operate the system, while during the idle state no
interaction is required. Clearly, the robust detection of idle states is highly important
for the successful operation of such asynchronous BCIs. In Sect. 3.2.3 we show that
the use of multimodal neuroimaging can successfully assist in this task.

The above mentioned challenges, namely the reduction of sensors in multimodal
setups, the minimization of the NIRS response as well as the robust idle state
detection will be examined in the following by revisiting a previously recorded
dataset [23].

3.2 Techniques for Solving Previous Issues

3.2.1 Sensor Reduction for Multimodal Setups

To produce high accuracy decoding most BCI research is based on whole-head
multi-channel as well as multivariate analysis techniques. However, large numbers
of electrodes require a longer time spent in channel preparation. Portable systems
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with fewer channels have become essential when applying BCIs to everyday life and
home applications. As mentioned above, combined EEG and NIRS measurements
increase setup times significantly. For EEG-based BCIs common spatial patterns
(CSP) is a widely used method for effective feature extraction [25, 47]. Furthermore,
various EEG-based channel selection (CS) algorithms such as Recursive Channel
Elimination (RCE) [50], single-channel [53], pre-defined CS [49] have been
developed. Although those channel selection algorithms have been widely used in
EEG-based BCIs, they have so far not sufficiently been investigated for NIRS-based
BCls.

Here, we provide a review on a recently proposed statistical channel selection
heuristic, which efficiently reduces the computation time without loss of perfor-
mance for high dimensional NIRS data [38].

The NIRS-System (NIRScout 32–32, NIRx) was equipped with 32 sources and
32 detectors convolving to 108 measurement channels which covered a whole-head
area. The optical (sources and detectors) probes were located by the international
10–20 system and data was collected with a sampling frequency of 6.25 Hz. Five
subjects were instructed to perform cued left/right hand finger movements. The
stimulus interval was set to 20 ˙ 1:5 s, and the order of cues was randomized.
Each subjects’ dataset consists of a single sessions with 120 trials of hand
gripping.

Low-frequency artifacts such as respiration, heart rate and Mayer waves were
filtered using a low-pass, 3rd order Butterworth filter at 0.2 Hz. The changes of
oxygenated and deoxygenated hemoglobin were calculated, based on the modified
Beer-Lambert law [37]. The baseline correction was performed (�2s to 0), and mean
amplitude features were calculated. The point biserial correlation coefficient was
applied to individual channels to find the differences between classes [40, 56]:

r.x/ D
p

N1 � N2

N1 C N2

� mean fxijyi D 1g �mean fxijyi D 2g
std fxig (3.2)

where yi represents the class label and N the total number of datapoints in target and
non-target classes. The signed-r2-values are defined as sign.x/ � r.x/2. Sgn r2 values
were calculated for each channels and time point. Not only the maximum value of
sgn r2, but also the area under the absolute r2 curve were computed for the entire
time series of X to devise a contribution score for each channel. The contribution
scores as well as the optimal thresholds of keeping channels were estimated by 6-
fold nested cross-validation.

Following this methodology, only a few number of informative channels were
selected (�5–6 channels per subject) from the 108 dimensional NIRS data, while
the classification accuracy was maintained. This result suggests that applying
CS algorithms to high dimensional NIRS data can lead to significantly reduced
preparation time of NIRS-EEG experiments.
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3.2.2 Reduction of the NIRS Response Time

The temporal delay inherent to cerebral hemodynamics has so far hindered the
simultaneous use of NIRS and EEG in real-time applications. While the multimodal
combination of EEG and NIRS has previously been realized in the domain of
BCI and yielded beneficial results, only trials with relatively long inter-stimulus
intervals (ISI) were considered. Here we examine whether NIRS data can also help
to increase classification performance for the case of fast-paced paradigms with
shorter ISIs.

Data of a previously published study was employed [23], where fourteen healthy,
right-handed volunteers (aged 20–30) participated. Each subject was instructed to
perform left or right hand motor imagery, depending on the direction of the arrow
on the monitor. The experiment was performed with an ISI of 14:5 ˙ 1:5 s during
the calibration phase and an ISI of 7˙ 0:5 s during the fast feedback phase. During
both the calibration phase as well as the fast feedback phase real-time EEG-based
feedback was provided.

To examine how well the EEG and NIRS data classifies the given tasks,
time courses were analyzed with the help of a moving window (width 1 s, step
size = 500 ms) that was applied to the calibration data with long ISIs as well as the
data from the fast feedback phase. Time courses of [HbO] and [HbR] were averaged
within the 1 s time window and used as features to train a linear discriminant
analysis classifier with shrinkage (RLDAshrink). Validation was performed by
cross-validation with an 8-fold chronological split for each window separately.
Furthermore, for combining EEG and NIRS chromophores various LDA meta
classifiers were estimated using the outputs from the cross-validated, respective
signals. A meta classifier combining EEG with [HbO], another combining EEG
with [HbR] and a third combining EEG with both chromophores were computed.

The classification results of the best time window for the long and short ISI data
can be obtained from Table 3.1. As expected, EEG data is more discriminable than
NIRS chromophores. Furthermore, we show that classification accuracies of [HbO]
for short ISIs are on par with long ISI data, thus confirming previous findings [63].
To investigate this interesting finding further, the classifier outputs for the fast
feedback phase were averaged across trials and subjects. The results can be seen
in Fig. 3.1, which presents the grand average time-course of task performance for
EEG and the two NIRS chromophores ([HbO] and [HbR]). The light green line
indicates the time point at which the means of the classification outputs deviate
significantly (p < 0:001). Two-sample t-tests with the null hypothesis of equal
means were performed for each timepoint and Bonferroni corrected. While the
EEG shows an earlier timepoint than the two NIRS chromophores (EEGD 860 ms,
HbO D 1,240 ms, HbR D 1,560 ms), the NIRS chromophores show astonishingly
early deviations. The results indicate that the latency of the NIRS chromophores
is short enough to assist EEG-based classification, even within a real-time BCI
feedback environment: NIRS may assist and enhance BCI feedback performance
significantly, even shortly after stimulus onset.
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Table 3.1 Uni-/multimodal classification results with long-ISIs as well as short ISIs (i.e. fast-
paced feedback) of all individual subjects for EEG, [HbO] and [HbR]. Stars indicate the
significance of improvement, based on a paired t-test with the hypothesis of equal means (�� stands
for p < 0:05). EEG+O, EEG+R and EEG+O+R stand for the combinations of EEG and [HbO],
EEG and [HbR] as well as EEG, [HbO] and [HbR]

Unimodal-long ISI Unimodal-short ISI Multimodal – short ISI

Subj EEG [HbO] [HbR] EEG [HbO] [HbR] EEG+O EEG+R EEG+O+R

a 55:0 77:5 61:0 60:5 75:8 53:0 76:7 59:5 78:7

b 99:0 63:0 58:0 99:5 49:2 48:6 99:5 99:5 99:5

c 68:0 58:0 59:5 65:5 77:7 47:0 72:1 64:5 72:2

d 75:0 62:0 61:0 75:3 63:0 43:2 78:2 74:7 77:6

e 83:5 78:5 61:5 88:7 92:4 90:3 96:1 91:5 96:6

f 59:5 57:5 56:0 57:7 51:6 51:0 58:1 58:1 57:8

g 88:5 92:5 89:5 72:8 90:7 93:0 93:1 92:2 93:6

h 94:5 74:5 68:5 92:1 84:5 72:9 92:2 92:3 92:3

i 80:0 56:0 61:0 97:1 47:7 50:8 97:1 97:2 97:2

j 92:0 77:0 59:0 87:8 80:2 48:5 89:2 87:8 89:2

k 82:5 57:0 56:5 63:7 64:9 48:3 65:1 63:7 65:2

l 94:0 68:5 76:5 86:9 75:9 65:1 89:0 88:2 89:5

m 59:0 69:5 60:5 58:3 67:1 49:9 68:5 57:1 65:8

n 100:0 60:5 62:5 98:6 46:9 42:9 98:6 98:6 98:6

Mean 80:8 68:0 63:6 78:9 69:1 57:5 83:8�� 80:3 83:8��

0 2 4 6

Endpoint of moving window [s]

EEG

0 2 4 6

Endpoint of moving window [s]

HbO

0 2 4 6

Endpoint of moving window [s]

HbR

Left
Right
p-value

L
og

10
p

-200

-100

0

C
la

ss
if
ie

r 
ou

tp
ut

-5

0

5

Fig. 3.1 Shows the grand average time-course of classification over all subjects for the individual
measurements (EEG – left, [HbO] – center, [HbR] – right). The red and blue lines depict right and
left hand movement imagery, respectively. The vertical black line indicates the stimulus onset and
the vertical light green line indicates the time point at which the means of the classification outputs
deviate significantly (p < 0:001)
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3.2.3 Multimodal Imaging for Idle-State Detection and
Asynchronous BCIs

To date, a large number of EEG- or NIRS-based asynchronous systems have been
proposed. EEG-based asynchronous systems have successfully been applied to real-
world applications such as a wheelchair operation [26] as well as rehabilitation
devices [15, 57]. Schudlo and Chau developed a real-time NIRS-based online
system [52]. They developed and evaluated an online NIRS-BCI which was driven
by a mental arithmetic activation task and accommodated an unconstrained rest
state. An overall online classification accuracy of 77.4 % demonstrated that mental
arithmetic is a potent mental task for driving an online system-paced NIRS-BCI.
Other studies have also demonstrated successful applications in online settings of
NIRS with a synchronous training paradigm [27, 55].

When comparing the EEG and NIRS modalities in an online asynchronous BCI
system, NIRS signals have a critical defect of lower ITR as mentioned in Sect. 3.1.
The hemodynamic response delay is the primary limitation preventing NIRS from
becoming a fast response BCI system. Because asynchronous BCI systems need
to provide a fast response to the users, the ITR problem caused by the nature of the
NIRS signal should be solved before developing an EEG+NIRS based asynchronous
system. In this study, NIRS signals were used to classify idle and active states
(formerly termed ‘brain-switch’). We propose to use the inflection points of the
NIRS classifiers’ output as a transition point of mental states from active to idle
and vice versa. This method could reduce the hemodynamic delay significantly,
therefore circumvent the time delay of the EEG+NIRS hybrid system.

Data from a previously published study was used [23] (fourteen subjects, right
and left hand motor-imagery task) and separated into two parts of training and test
data. The first part was used to calculate all types of LDA classifiers, and the second
part was employed for performance evaluation. This was done in an offline fashion,
however using a pseudo-online technique.

To classify the three mental states (left, right, and idle), a brain switch for
detecting the mental state change between active (left or right) and an idle state
was created by the NIRS signal which was calculated from the inflection points on
the NIRS classifier output.

Three OVR (one-versus rest) classifiers were also calculated from the EEG signal
to classify the three mental states individually (right vs. rest, left vs. rest, idle vs.
rest). The idea is that the three EEG classifiers are mainly used to classify the three
mental states, and the NIRS-based brain switch was used to weigh the output of EEG
classifiers. To illustrate further, when the NIRS-based brain switch is on, the outputs
of the EEG classifiers containing active classes (right vs. rest and left vs. rest) are
raised. Conversely, when the brain switch is off, the output of the EEG classifier
containing the idle class (idle vs. rest) is raised. The performance was evaluated in
terms of accuracy, sensitivity, specificity, and AUC scores (see Table 3.2).

Our results indicate that the proposed hybrid BCI outperforms the EEG stand-
alone system (see also [39]). Paired t-tests between EEG and combined EEG+NIRS
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Table 3.2 Shows classification accuracy (Acc), sensitivity (Sen), specificity (Spec) and AUC (all
in [%]) for individual subjects as well a their mean, comparing uni-modal EEG well as multimodal
EEG+NIRS. � indicates p < 0:05, �� indicates p < 0:01

EEG EEG C NIRS

Subj Acc Sen Spec AUC Acc Sen Spec AUC

a 63:9 26:0 76:8 0:64 60:0 78:6 56:0 0:79

b 76:6 80:0 75:2 0:81 76:7 82:0 74:5 0:81

c 41:9 72:5 33:8 0:61 44:7 73:2 37:1 0:63

d 75:5 62:0 80:1 0:80 75:1 66:4 78:0 0:81

e 55:0 64:3 52:4 0:69 54:7 65:1 51:9 0:69

f 43:7 65:6 37:9 0:62 43:9 66:5 37:9 0:62

g 71:7 78:6 69:3 0:80 73:4 85:6 69:2 0:83

h 63:4 69:7 61:0 0:70 61:8 70:7 58:5 0:69

i 41:9 38:5 43:0 0:50 53:3 54:3 53:1 0:65

j 59:4 54:9 61:6 0:60 64:9 73:9 60:9 0:69

k 32:9 81:5 19:4 0:55 63:9 82:6 58:4 0:78

l 70:0 53:6 77:2 0:68 62:9 71:1 59:7 0:69

m 49:4 54:4 47:7 0:59 61:9 73:5 58:7 0:76

n 79:3 73:6 81:9 0:79 78:3 82:3 76:5 0:82

Mean 58:9 62:5 58:4 0:67 62:5 73:3� 59:3 0:73��

reveal that the accuracy and area under curve (AUC) scores show significantly
enhanced classification performance (p D 0:042 and p D 0:013, respectively).
Additionally, sensitivity shows a highly significant result (p D 0:006). However,
specificity improved but did not show a significant increase. By employing a hybrid-
BCI approach [43], the overall performance was significantly enhanced, and some
subjects showed remarkably improved accuracy (see subjects VPeaa, VPeak, and
VPeam in Table 3.2). While the routines presented here, have been validated in an
offline fashion using a pseudo-online technique, our future work will extend our
research to a real-time asynchronous hybrid BCI with multimodal visual feedback.

3.3 Discussion and Conclusions

In this chapter, we discussed some of the benefits and limitations of multimodal
neuroimaging in the context of BCI. In principle, multimodal data is desirable,
since it allows focus on the strengths of the individual methods and furthermore
leads to better decoding, which can be attributed to the complementary information
content. However, a number of limitations are currently still present. These are
reviewed and partial solutions are offered.

When performing multimodal measurements, the setup time is significantly
increased. Setup time includes the setup of hardware, but also includes time that
is needed recording calibration datasets. Since NIRS does not suffer from volume
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conduction, as EEG does, it is a viable target for channel selection, as our results
confirm. While in EEG settings, information may get lost, for NIRS only a few
channels show similar or even enhanced decoding accuracy compared to whole-
head setups.

Subject-independent decoding is a novel technique that allows real-time feed-
back without the need of recording calibration data. It has been realized for
EEG-based BCIs [2, 19–21, 36] and more recently also for NIRS [1]. However,
extensions for the combination of multimodal data have not been realized so far.
The future will show, whether such systems are feasible.

We have presented some evidence that the real-time integration of NIRS and EEG
may be possible to some extent. Detecting the idle-state with EEG is a common
and currently insufficiently solved problem in EEG-based BCI systems. To this
end we showed that multimodal systems are superior in detecting the idle state,
when compared to unimodal EEG. Although not mentioned in this manuscript,
EEG-based BCIs also suffer from large perfomance fluctuations. Preliminary results
suggest that NIRS-based mental state monitoring is able to detect the slow variations
of mental states such as attention or fatigue [8]. Given this state information, state-
dependent EEG classfiers can be found to counter this effect [17, 22].

For the future, we envision a real-time asynchronous hybrid BCI system with
enhanced decoding rates. This system should retain the responsiveness of EEG-
based paradigms and finally require minimal setup time.
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Chapter 4
Multifrequency Analysis of Brain-Computer
Interfaces

Siamac Fazli�, Heung-Il Suk�, Seong-Whan Lee, and Klaus-Robert Müller

Abstract Modern brain computer interfaces (BCI) rely on an extensive use of
machine learning and signal processing techniques. This review will focus on an
important prerequisite, namely spectral preprocessing. In particular, the optimal
usage of multiple frequency features for BCI is discussed in general along with the
commonly employed tricks for frequency choice. This is linked to the underlying
physiology. Finally, applications of the multifrequency framework are given: (a) to
BCI in general and (b) for analysing the BCI illiterates phenomenon.

Keywords BCI • EEG • Spatio-temporal filtering • Filter bank • Bayesian
framework • BCI illiteracy

4.1 Introduction

Machine Learning and Signal Processing techniques have been instrumental for
the recent advances in Brain Computer Interfaces (BCIs) [11, 14, 31, 56]. Spatio-
temporal filtering [9, 22, 25, 33], classification methods [31, 35, 36], projection
methods [13, 24, 54] and robust estimation [43, 50] have been actively advanced
over the years to develop improved computational methods for better BCI systems.
A crucial starting point and input for all of the above methods is a spectral
representation of the neural signal as a function of time. Meaningful frequency
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bands for noninvasive BCI are the alpha and mu rhythms as well as the beta
rhythm [38, 41]. Classical BCIs typically use a single frequency band such as
8–12 hz for covering the mu activity, say for building a motor imagery BCI.
However, it has recently been found that a use of multiple frequency bands is highly
advantageous yielding better and more robustly performing BCIs [3].

This review aims to explain the importance and advantages of using multiple
frequency bands for preprocessing and discusses a number of applications in a
BCI context. In a very broad sense using several frequencies captures multimodal
aspects of the underlying cognitive processes [12, 20]. Seen from physiology, the
use of multiple frequencies allows to fuse different rhythmic components that reflect
distinct neural computation that may vary strongly between individuals. As the use
of multiple individualized frequencies has become a standard procedure, we will
review three common approaches (a) choice of individual frequency bands, (b) the
use of intersubject filterbanks and (c) the optimal Bayesian choice of filterbanks
for BCI. In addition to an application of multiple frequency techniques to BCI
feature construction, we will also discuss the use of multiple frequency techniques
for detecting BCI illiteracy.

Both applications are intended to serve as representative examples for these very
useful preprocessing procedures.

4.2 Feature Extraction in BCI

The voluntary modulation of sensorimotor rhythms (SMR) presents the basis for
SMR-based Brain Computer Interfaces [14, 56]. The �-rhythm (8–12 Hz) and
synchronized components in the ˇ-band (16–22 Hz) are macroscopic idle rhythms
that prevail over the postcentral somatosensory cortex and precentral motor cortex,
when a given subject is at rest. Imaginations of movements as well as actual
movements are known to suppress these idle rhythms contralaterally. This change in
neural oscillation is also known as the ERD/ERS1 effect [41]. With the help of state-
of-the-art machine learning and signal processing techniques [7, 14] the ERD/ERS
effect can be detected on a single-trial basis and thus be employed for real-time
EEG-based BCI feedback.

EEG has high temporal resolution, but poor spatial resolution due to volume
conduction. By combining EEG features from multiple spatial locations it is
possible to reverse the volume conduction effects to some degree. Such spatial filters
for band-power features, computed in frequency bands, can be successfully applied
for classification tasks in SMR-based BCI systems. The choice of these frequency
bands or temporal filters will be discussed in the following.

A popular technique for computing spatial filters is termed Common Spatial
Pattern (CSP) [9, 22, 25, 42, 50]. This technique allows to focus on spatial locations

1Event-related desynchronization/Event-related synchronization.
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with the highest ERD/ERS effect. Mathematically a CSP filter is a projection that
maximizes the variance of one class, while minimizing the variance of the other
class simultaneously. In order to compute the CSP filters W, the algorithm jointly
diagonalizes the covariance matrix †i of the trial-concatenated matrix of class
i 2 1; 2

W>†1W D D and W>†2W D I �D (4.1)

where I is an identity matrix and D is a diagonal matrix with entries di (0 � di �
1). As eigenvalue di is equal to the power ratio of signals of class 1 by class 2
in the corresponding CSP filter (i-th column of matrix W), best discrimination is
provided by filters with very high (i.e. near 1) or very low (i.e. near 0) eigenvalues.
Typically one would retain projections corresponding to two or three of the highest
eigenvalues di, i.e., CSP filters for class 1, and projections corresponding to the
two or three lowest eigenvalues, i.e., CSP filters for class 2. For a more detailed
description of CSP and its application to BCI we would like to refer the reader
to [9, 51].

The temporally and spatially filtered data may then be classified by means of
simple linear classifiers [11], such as linear discriminant analysis (LDA). LDA
assumes the classes to be normally distributed with different means �1 and �2 but
with an identical covariance matrix † of full rank. Assuming these quantities to be
known, the hyperplane, given by the normal vector wLDA, can be calculated by:

wLDA D †�1.�1 � �2/ (4.2)

Given that these assumptions hold, the separating hyperplane is Bayes optimal.

4.2.1 Estimating a Single Temporal Filter

Traditionally the features for BCIs were set to one specific frequency band
(generally the �-rhythm or broad-band filter) at a single spatial location (in motor
related channels, such as ‘C3’ or ‘C4’). However, this approach is often suboptimal.
Motor imagery causes the macroscopic idle rhythms to desynchronize, but the
exact frequency range and spatial location of this ERD effect is highly subject-
dependent and needs to be estimated from calibration data or otherwise. One
possibility to do so would be to use a heuristic, based on the point biserial correlation
coefficient [9, 30, 32, 48]. The pseudo code of a highly successful heuristic [9] can
be obtained in Algorithm 1 (adopted from [9]). The EEG trials X should be spatially
filtered by simple spatial filters (such as a Laplacian or a bipolar filter) prior to its
use. Best results are achieved when using only a few channels from motor-related
areas: e.g., to choose C D fc1; c2; c3g with ci being one from each area of the left

hand, right hand and feet with max
qP

f .scorec.f //2.
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Algorithm 1 Selection of a discriminative frequency band (Adopted from [9])
Require: Let X.c;i/ denote trial i at channel c with label yi and let C denote the set

of channels.
1: dBc.f ; i/ log band-power of X.c;i/ at frequency f (f from 5 to 35 Hz)
2: scorec.f / corrcoef .dBc.f ; i/; yi/i
3: fmax  argmaxf

P
c2C scorec.f /

4: score�
c .f / 

(
scorec.f / if scorec.fmax/ > 0

� scorec.f / otherwise
5: fscore.f / P

c2C score�
c .f /

6: f �
max  argmaxf fscore.f /

7: f0  f �
maxI f1  f �

max
8: while fscore.f0 � 1/ � fscore.f �

max/ � 0:05 do
9: f0  f0 � 1

10: while fscore.f1 C 1/ � fscore.f �
max/ � 0:05 do

11: f1  f1 C 1

12: return frequency band [f0; f1]

Fig. 4.1 Flowchart of parallel multiple frequency band processing

4.2.2 Combination of Multiple Temporal Filters

While estimating a single subject-dependent frequency band requires minimal
computation time and leads to very stable results for most subjects, for some
subjects the combination of multiple frequencies is favourable [2, 4, 17]. Figure 4.1
show a flowchart of the necessary parallel processing for multiple frequency bands.

The filter bank CSP (FBCSP) algorithm [2] computes CSP features in various
frequency bands and applies a feature selection method in order to identify the most
informative bands. Several strategies have been proposed for this task. Among the
most common is the mutual information-based best individual feature algorithm
(MIBIF) [4]. An extensive evaluation of this algorithm on two BCI data competition
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IV data sets has recently demonstrated [4] that a hybrid BCI approach based on
the integration of multiple frequency bands significantly outperforms single-feature
systems in terms of classification accuracy. For this approach a whole range of
predefined filters are employed and only their optimal combination needs to be
found.

The combination of predefined multiple frequency bands ultimately leads to
subject-independent BCI decoding, so-called zero-training BCI [1, 18, 19, 21, 26],
since now predefined temporal filters can be derived from prior neurophysiological
knowledge and the need of a calibration session to estimate such filters is alleviated
by finding their optimal combination (see final gating function in Fig. 4.1) in an
out-of-sample way, i.e. by obtaining this information from other subjects’ data.

4.2.3 Bayesian Combination of Multiple Temporal Filters

The previous work presented that the use of features from multiple frequency bands
helps improve the classification accuracy [2, 49, 57], where the features are highly
dependent on the frequency bands under consideration. To our best knowledge,
the existing methods mostly predefined the equally-spaced frequency bands in the
range between 5 and 30 Hz, including both �- and ˇ-bands. It is noteworthy that
from a machine learning perspective, it is important to find the optimal frequency
bands, from which we can extract features discriminative between target classes,
thus boosting BCI performance. To tackle this problem, we formulated a Bayesian
framework in which the optimal frequency bands are determined in a probabilistic
manner. Specifically, we regarded a frequency band as a random variable and tried
to estimate the unknown probability density function (pdf ) based on which we
can find class-discriminative frequency bands and features, thus helping to perform
multifrequency analysis.

Here, we briefly describe our method proposed in [45]. Let B 	 .b1; b2/ denote a
continuous random variable for a frequency band, where b1 and b2 are, respectively,
the start and the end point of a frequency band (b1 < b2). We define the probability
of a specific frequency band b, p.b/, as the chance that the b bandpass-filtered
signals can be used to correctly classify between classes.

Since we are presumably uncertain about the discriminative frequency band,
we encode this uncertainty as a prior distribution p.B/ over a random variable B.
Given a set of single-trial EEGs X D fxigDiD1 and the corresponding class labels
� D f!igDiD1, where D is the number of trials, we can compute the posterior pdf,
p.BjX; �/, by the Bayes rule as follows

p.BjX; �/ D p.X; �jB/p.B/

p.X; �/
: (4.3)

The prior, p.B/, describes the relative probabilities of different states, i.e., frequency
bands, in which single-trial EEGs pertinent to motor imageries are correctly



54 S. Fazli et al.

discriminated. The term p.X; �jB/ is a likelihood function. If the hypothesis B, i.e.,
the frequency band, were true, this term indicates the probability that the single-
trial EEGs X in conjunction with the class labels � would have been available to
support it. The posterior distribution p.BjX; �/ defines the probability of frequency
band B being true, given the observations of X and �. Thus, it indicates the relative
likelihood of the single-trial EEGs X being correctly classified into � by B bandpass
filtering along with the ensuing processes of spatial filtering and feature extraction
as described in Sect. 4.2.

Given a frequency band B and raw EEG signals X, the bandpass-filtered signals Z
can be obtained deterministically. Hence, the likelihood p.X; �jB/ and the evidence
p.X; �/ are equal to p.Z; �jB/ and p.Z; �/, respectively. We can then rewrite
Eq. (4.3) by substituting the bandpass-filtered signals Z in places of the raw EEGs
X as follows

p.BjZ; �/ D p.Z; �jB/p.B/

p.Z; �/
: (4.4)

The posterior p.BjZ; �/ represents all the knowledge about B that is deducible from
the bandpass-filtered single-trials Z and the corresponding class labels �.

Note that a spatial filter W can be found from Z via an CSP algorithm,2

in which W is analytically obtained by computing a generalized eigenvector
problem. As described above, a feature vector is extracted by computing simple
matrix multiplication between Z and W and the second-order statistics followed
by a monotonically increasing logarithmic function. It means that the posterior
p.BjZ; �/ can be indirectly estimated from p.BjF; �/, where F D log

�
var

�
W�Z

��
and � denotes a matrix transpose, without losing information in the data. Therefore,
we can rewrite Eq. (4.4) as follows with the feature vector set F extracted from the
spatially filtered signals of Z

p.BjZ; �/ � p.BjF; �/

D p.F; �jB/p.B/

p.F; �/
(4.5)

where p.F; �/ D R
B p.F; �jB/p.B/dB. Thus, our goal of finding the optimal

spatio-spectral filter for discriminative feature extraction, ultimately improving
classification accuracy, can be defined as estimation of the posterior pdf p.BjF; �/

in Eq. (4.5), for which a sequential Monte Carlo method [15] was used in [45].

2Basically, any variants of the standard CSP [8, 16, 43, 44] can be used for this.
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4.3 Applications

The physiological patterns induced by ERD/ERS effects exhibit high variability
across subjects and even trials for the same subjects [42]. Furthermore, the EEG
electrodes measure the superimposed signals that originate from various sources
in the brain and the EEG signals are generally contaminated with artifacts and
noises that can cause performance degradation in classification. Therefore, there has
been considerable interest in finding the ERD/ERS-related frequency band(s) and
the class-discriminative spatial patterns within the BCI community. The estimation
of appropriate subject-dependent spatial and temporal filters are of paramount
importance for high-speed real-time SMR-based feedback sessions. In this regard,
the user-specific calibration of a BCI has been one of the main steps for practical
application. Among the many realized applications are some, which are intended
for users with disabilities, such as spelling devices [55], wheelchair operation [23]
or grabbing object by means of an external robot arm [40], but also some gaming
applications, such as pinball [47], brain pong [28, 37] and other games [27, 39] have
been realized.

4.3.1 Illiteracy Prediction

The successful control of a SMR-based BCI system varies greatly among sub-
jects [10] and for approximately 20 % of subjects the decoding accuracy does
not reach a sufficient threshold and it is therefore not possible for users to
control an application in a meaningful way. A technique which partly solves the
BCI-illiteracy phenomenon has already been proposed [52, 53], but this topic
requires further attention from the scientific community. Recently a method for
predicting BCI illiteracy has been suggested [10]. In this method the spectral
components of Laplace-filtered, motor-related resting-state EEG are examined and
features extracted for the successful prediction of SMR-based real-time feedback
performance. The results show a correlation of r D 0:53 between the predictor
and BCI performance on a large-scale database of 80 BCI-naive participants. These
results contribute to counteract the BCI illiteracy effect in the sense that potentially
non-successful subjects can be identified at the very beginning of a session and to
these subjects operant conditioning procedures [6, 29, 34] could be applied in a pre-
training session to specifically enhance the power of the SMR idling rhythm.

4.3.1.1 Bayesian Multifrequency Analysis for BCI Illiterate Detection

Thanks to the data-driven multifrequency analysis of our framework described in
Sect. 4.2.3, we can extract a subject-specific filter distribution that can be analyzed to
gain a better understanding of individual differences of BCI users. To identify BCI
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illiterates, we studied the prediction of a subject’s future BCI performance based
on resting-state EEG data acquired prior to a BCI session. Using our framework,
we estimated spatial patterns and clustered subjects according to the patterns
corresponding to the extracted filter characteristics. We then analyzed the resulting
grouping in order to gain a better physiological understanding why some subjects
perform better than others and what the characteristics of subjects with BCI-inability
could be [46].

Using only 3-Laplacian channels, our predictions yielded a correlation coeffi-
cient of 0.6 with the performance later seen in the actual BCI feedback session,
which is favourably comparative with previous results [10]. A clustering of the
resulting spatial patterns showed interesting task-independent physiological char-
acteristics discriminative for good and bad BCI performers. In line with [10], a
strong idle �-rhythm is indicative for a high BCI accuracy. Nevertheless, more
complex indicators can be observed in 5 groups each with different characteristic
peak frequency in the �-band and possible further modulation of the ˇ-band. The
spectral characteristics in a subject’s resting period thus appears already indicative
whether the subjects will belong to a good, mediocre, or under-performing group in
BCI usage.

4.4 When Are Combinations Useful?

The combination of multiple frequency bands has previously been shown to be
particularly useful, for subjects where the statistical differences of frequencies are
not prominent. These statistical differences can be estimated by the point-biserial
correlation coefficient. In these cases heuristics, which estimate statistical scores,
can be error prone. In addition when no calibration data is available, predefined filter
banks work better as compared to single broad band filters or filters focussing on the
�-rhythm [2, 17]. However, some care should be taken, when considering multiple
temporal filters. Adding features, which do not contain task-related information or
redundant features can harm decoding accuracy. Therefore information theoretic
measures need to be calculated, to find out whether the extra information is
useful [2, 20].

4.5 Conclusion

Extracting meaningful features that reflect the spectral properties of EEG well is a
prerequisite for all following analysis steps in BCI or general cognitive neuroscience
experiments. It is well known in physiology that one frequency band alone is
oftentimes insufficient to capture a complex cognitive process.

We have therefore reviewed techniques that allow the usage of multiple frequen-
cies, starting from single frequency analysis, to usage of two frequencies (e.g. alpha
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and beta bands), we finally discuss the recent optimal Bayesian modelling of the
full spectrum. After having established the machinery, we discuss its application
for generic BCIs and also its use for the prediction of illiterates. While the use
of multifrequency analysis has increased the accuracy and usability of SMR-based
BCIs, there are still a number of open challenges, which need to be addressed.

More generally speaking multi-frequency techniques are one instance of data
fusion methods [5, 12, 20], where multiple sources or modes that carry information
are harvested. Note that research aiming to optimally fuse multimodal information
has recently received wide attention not only in neuroimaging but also in the
sciences and also in the engineering disciplines.
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Chapter 5
Current Trends in Memory Implantation
and Rehabilitation

Hyun Jae Jang, Sahn Woo Park, and Jeehyun Kwag

Abstract Hippocampus is believed to be the brain region critical for memory
storage and recall. Damage to the hippocampus by lesions or neurodegenerative
diseases such as Alzheimer’s disease could lead to memory deficits. However, there
is yet no treatment method available. Direct deep-brain stimulation (DBS) of the
hippocampus has been attempted in an effort to find a treatment method for memory
dysfunction and Alzheimer’s disease in the last few decades but with limited
success. Recently, a novel approach has been developed where an implantation of
a very large scale integration (VLSI) microchip containing a biomimetic computa-
tional model could act as an artificial bridge to replace the damaged hippocampal
circuit in vivo. Here, we discuss the memory implantation techniques; from the
conventional DBS method to the current memory implantation technology using
an artificial neural microchip. Furthermore, we propose future directions towards
the development of a physiologically realistic memory implantation chip design that
could enhance the performance of the memory implant and be used for the treatment
of memory-related neurodegenerative diseases.

Keywords Memory implantation • Memory rehabilitation • Hippocampus •
Synaptic plasticity • Neuromorphic chip

5.1 Introduction

Alzheimer’s disease is a neurodegenerative disorder where A“ plaque-associated
degeneration of hippocampal neurons leads to cognitive deficits and irreversible
memory impairments [1, 2]. Although about 11 % of population over the age of
65 in the United States suffer from Alzheimer’s disease [3], current treatments such
as the use of medication or cognitive rehabilitation are mainly focused on slowing
down the progression of the symptoms and they cannot cure memory deficits caused
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by hippocampal damages [4]. Over the last few decades, many studies have tried to
find a way to enhance the damaged hippocampal function by artificially stimulating
the damaged hippocampal region [5–7] or implanting a microchip that can substitute
the missing circuits of the damaged hippocampus [8]. Recently, implantation of
a microchip containing a biomimetic computational model was suggested as a
novel treatment for the hippocampal damage [9, 10]. In this chapter, we discuss
the current trends in memory enhancement and implantation using artificial neural
signal stimulation and biomimetic modeling of hippocampal circuit. After outlining
the limitations of the aforementioned technologies, we propose future directions
in designing an implantable memory chip that incorporates the physiologically
realistic computational model of hippocampal circuit, which could have a potential
for the treatment of memory-related neurodegenerative diseases.

5.1.1 Memory and Hippocampus

Hippocampus is believed to be the region that is critical for the formation of memory
[11]. Hippocampus is located in the medial temporal lobe underneath the cortical
surface and the hippocampal circuit consists of hippocampal sub-fields such as
Cornus Ammonis (CA) 1, CA3, dentate gyrus (DG), and subiculum (Fig. 5.1a).
Hippocampus receives multi-modal sensory inputs from the entorhinal cortex
through the perforant path to granule cells in DG and dentate granule cells synapse
onto CA3 pyramidal neurons, which in turn synapse onto CA1 pyramidal neurons,
forming a tri-synaptic circuit [12]. The final output of the hippocampus arises from
CA1 pyramidal neurons that send their output to the entorhinal cortex, completing a
recurrent connection between the entorhinal cortex and the hippocampus (Fig. 5.1a).
A landmark clinical study on patient H.M. provided proofs for the statement that this
simple hippocampal circuitry is crucial in memory formation [11, 13]. Patient H.M.,
who underwent bilateral hippocampal lobotomy to treat severe epilepsy, had serious
anterograde amnesia, not being able to form new memory while having intact past
memories and other cognitive abilities [14, 15]. However, how does the hippocampal
circuit support the formation of memory? Synaptic plasticity, the change of synaptic
efficacy between neurons, is believed to be the most probable substrate for memory
[16]. It has been shown that the increase in synaptic efficacy, called long-term
potentiation (LTP), or the decrease in synaptic efficacy, called long-term depression
(LTD), can be induced by high-frequency stimulation or low-frequency stimulation
of presynaptic neurons, respectively [16–22]. In addition, precisely timed and
ordered presynaptic spikes paired with postsynaptic spikes occurring within a
time window of ˙10 ms have been shown to induce synaptic plasticity, called
spike timing-dependent plasticity (STDP) [18, 19]. That is, different neural activity
patterns among sparsely activated hippocampal neural population seem to hold a
key in inducing different polarity of the synaptic plasticity that is important for
hippocampal memory storage [23].
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Fig. 5.1 Schematic diagram of the hippocampus and neuromorphic memory implantation
technique. (a) The location of the hippocampus in the brain (top) and a cross-sectional view of the
hippocampus (bottom). Red arrows show the path of the neural signal flow in the hippocampus.
Inset: entorhinal cortex (EC), dentate gyrus (DG), Cornus Ammonis 3 (CA3), Cornus Ammonis
1 (CA1), subiculum (SUB). (b) Conceptual schematic design of the neuromorphic hippocampal
network model for memory implantation. The artificial hippocampal chip containing the neuro-
morphic hippocampal neuron model and synaptic learning rule (top) [59]. Pre-synaptic signals
recorded from CA3 neurons of the hippocampus is transmitted to the post-synaptic CA1 neurons
through the artificial hippocampal chip (bottom), bypassing the damaged hippocampal region

5.2 Memory Implantation and Rehabilitation

Then, how can we enhance or implant memory in the damaged hippocampus?
Based on the mechanisms of hippocampal synaptic plasticity, broadly, two different
approaches can be made: the one is to artificially generate the neural activity
conducive to induce hippocampal synaptic plasticity and the other is to replace the
damaged neural circuit directly.

5.2.1 Memory Implantation and Rehabilitation Using
Deep-Brain Stimulation (DBS)

Following the finding that the hippocampus in the temporal lobe is critical in
memory function [11] and with the development of electrical brain stimulation
method [24, 25], many studies have focused on enhancing memory functions
by artificially generating neural activities in the hippocampus using electrical
stimulation [17, 26, 27]. The very first attempt was made by Wilder Penfield.
When he electrically stimulated the temporal lobe in epileptic patients, some of
the patients reported to have experienced reactivation of past memories [28]. From
then on, many studies have attempted direct activation of the temporal lobe using
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direct deep-brain stimulation (DBS) technique to enhance or implant memory
[29, 30]. In DBS, an electrode plate is implanted into a specific brain region to
generate electrical stimulation. Long-period, chronic electrical stimulation by DBS
directly alters the neural activity artificially. Especially, high-frequency DBS has
been proven to be effective in treating depression [31, 32] and movement-related
neurodegenerative disorders such as Parkinson’s disease [24, 25]. Recently, DBS
applied to the entorhinal cortex has been reported to enhance spatial memory in
human patients with epilepsy [33]. However, DBS directly applied to the hip-
pocampus had little effect on memory enhancement. In many cases, it even caused
memory disruption in human brains [5–7], possibly due to the inappropriately
large stimulation strength causing continuous over-activation of large population of
hippocampal neurons, consequently disrupting their normal computational capacity.
That is, hippocampal DBS as a memory prosthetics has a major limitation in that
there is a poor understanding of the underlying mechanism of DBS-induced neural
activity change due to the complex and intricate brain activity [34]. Thus, careful
design of stimulation strength and temporal pattern that reflects the physiologically
realistic neural activity patterns of hippocampal neurons is critical in modulating
memory using electrical stimulation [35]. Recently, a novel memory implantation
technology has been proposed whereby an implantation of an electrical chip that
can artificially predict and stimulate the neural activities of the hippocampus based
on the in vivo-recorded neural activities, acting as an artificial bridge to replace
the damaged hippocampal region [9]. Such stimulation of predicted spike trains
onto the hippocampal circuit could enhance memory function in rodents [9, 10] and
non-human primates with hippocampal damage [36], demonstrating that memory
prosthesis is indeed possible.

5.2.2 Memory Implantation and Rehabilitation Using
Multi-Input and Multi-Output Model

The pioneering study on memory implantation using the implantation of biomimetic
chip was first performed by Berger and his colleagues [9, 10]. They aimed to
develop a memory prosthetic device that is able to replace the impaired hippocampal
memory circuitry. Firstly, they created an impaired hippocampal neural circuit,
by making a chemical lesion in the synaptic pathway between hippocampal CA3
and CA1 regions of rodents using a glutamatergic synapse blocker injected in
vivo [9]. Rodents with the impaired CA3-CA1 synaptic connections showed poor
performance on the working memory task called a delayed non-matched sample
(DNMS) task [37, 38]. During the DNMS task, a rodent is trained to remember the
chosen option with a delay between selection and retrieval. The rodent is presented
with a single lever randomly in either the left or the right position, and the rodent
selects to press one of the levers, called the “sample” lever. After random time delays
(1–30 s) following the “sample” lever selection, now two levers were presented in
both the left and the right position again and the rodent would get a reward for
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pressing the opposite lever to the “sample” lever. In the rodent with chemical lesion
in the CA3-CA1 synapse, the correction rate of the DNMS task was decreased by
50 % compared to that of the control rodent [9, 10].

To replace the damaged hippocampal circuitry and rehabilitate the impaired
memory, Berger and his colleagues developed an implantable biomimetic compu-
tational model that can act as an artificial bridge between CA3 and CA1 regions
[9, 10] (Fig. 5.1b, bottom). The biomimetic device consists of three components:
a multi-electrode array (MEA) recording the neural activities from the spared CA3
region, a prediction model of spiking activity of CA1 neurons based on the spiking
activity of CA3 neurons, called multi-input/multi-output (MIMO) nonlinear model
[39] implemented in a very large scale integration (VLSI) microchip [40], and a
stimulating MEA that can stimulate CA1 region with the MIMO-predicted neural
activities. In this paradigm, the neural activities recorded from the MEA in the
CA3 region are fed into the MIMO model so that it can predict the spatio-temporal
patterns of CA1 neuronal spikes, which are directly delivered to the damaged CA1
region through the stimulating MEA.

The key to the biomimetic chip is the development of the MIMO model. The
MIMO model was developed to predict the spatio-temporal spike patterns of post-
synaptic neurons from the pre-synaptic activity patterns using a Volterra series
approach [41]. In the MIMO model, the spiking activity of neural population was
predicted from the presynaptic input spike train based on a five electrophysiological
basis: (i) the feedforward process transforming the input spike train to synaptic
potential, (ii) the feedback process generating an after-potential caused by the output
spike, (iii) the intrinsic neuronal noise causing neural variability, (iv) subthreshold
potential dynamics, and (v) the threshold function to generate the output spike. The
model dynamics were computed by the equations:

! D u .k; x/C a .h; y/C " .�/

y D
�

0 when ! < �

1 when ! � �

where x is the input spike trains, y is the output spike, � is the threshold for output
spike, k is the feedforward kernel for transforming input, h is the feedback kernel
for modulating after-potential, � is the noise variable, and u; a; "; and ! are
the resultant continuous hidden variables representing dynamics for feedforward
transformation, feedback transformation, noise, and summed subthreshold potential,
respectively [41]. To adjust the parameters of the MIMO model, spike trains of CA3
and CA1 region during the DNMS task in the control rodents were recorded [39, 41].

When the developed artificial bridge containing the MEA and MIMO system
was directly tested in the damaged CA3-CA1 connection in the lesioned rodent, the
rodent was able to successfully perform the DNMS task [9]. The success rate of
the DNMS task was increased up to 90 % compared to that of the control rodent,
demonstrating that the artificial bridge has a potential as the memory prosthetic
device.
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Recently, the application and configuration of the MIMO model have been
widely expanded to non-human primates [36, 42], confirming the possibility of the
MIMO model as a human memory prosthetic device. Using the same DNMS task,
the implanted biomimetic electrical chip containing the MIMO model successfully
recovered the impaired memory function of the non-human primate [36, 42].
Moreover, the trained memory could even be transplanted to untrained animal using
the MIMO model [43]. These results suggested that the MIMO model could act
as a storage system for hippocampal memory, further underscoring the roles of the
MIMO model as the computational basis of memory prosthetics [44]. Therefore,
implementation of the MIMO model on a VLSI hardware microchip [40] could be
used for a real-time portable memory prosthesis for the memory implantation.

5.2.3 Implementation of Neuromorphic Network Model
to MIMO

The limitation of the conventional DBS is that it is an open-loop system which
generates only the pre-programmed electrical stimulations without being able
to receive any feedback from the current brain state. Therefore, a closed-loop
biomimetic electric chip that can simultaneously record neural activity and stimulate
the brain based on the current state of the brain activity is advantageous to
the open-loop paradigm for neural prosthetic devices [45–47]. To generate the
appropriate stimulation parameter, the closed-loop system needs to acquire real-
time signals from the brain and decode the acquired neural signals properly ad-hoc,
quickly switching between the two modes of operation. Thus, the development of a
closed-loop feedback chip implementing the MIMO model is needed but with the
current technology, designing such closed-loop systems itself is a major engineering
challenge.

Another limitation of the current MIMO model is that it is a hard-wired model.
However, real synapses are not hard-wired but it displays changes in synaptic
efficacy during experience [17], such as LTP and LTD. If synaptic plasticity is
implemented to the MIMO model, the input-output dynamics of the MIMO model
could be fundamentally altered. Therefore, the memory implantation using the
stationary MIMO model could be applicable in only simple memory task on a
well-trained animal. To tackle this problem, recent studies have developed synaptic
plasticity-modulated prediction of output activity approximated by Volterra series
[48, 49] in the MIMO model [44]. However, the synaptic plasticity implemented in
the recent MIMO model [44] is too simple to capture the entirety of the complex
circuit and molecular dynamics occurring during synaptic plasticity in vivo [50–
52]. For example, learning rule is dependent on the types [53–55] and the locations
of synapses [53]. In addition, there are more than 40 types of neuron in the
hippocampus [56, 57], and their intricate interactions during learning process [58]
hinder the development of a simple prediction model of learning process. For the
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last decades, biophysically detailed computational models have been able to capture
the complex dynamics of learning process [59–62]. Ionic and molecular detailed
synaptic plasticity model could capture the complex molecular dynamics of synaptic
plasticity [59, 60] and detailed hippocampal circuitry model containing various
types of neurons showed complex dynamics of learning process [61, 62]. Therefore,
implementation of the neuromorphic neural network model with biophysically
detailed synaptic learning rule onto the VLSI hardware [63] could provide the
possibility to integrate the biophysically detailed hippocampal learning model onto
the closed-loop memory prosthetic device which would accelerate the progress in
memory implantation (Fig. 5.1b).

5.3 Conclusion

Implantation of closed-loop feedback neuromorphic chips that can simultaneously
record and stimulate the hippocampal neurons could be used not only to replace
the damaged hippocampal circuit but also to enhance or implant memory in the
future. Although a promising future technique, the possibility of hippocampal
damage due to the implantation of memory prosthesis itself is another major
challenge remained for the medical application. A better way to manipulate the brain
would be to develop a non-invasive technique that can activate neural populations.
Recently, it has been shown that optogenetic activation of only a small population
of hippocampal neurons could modulate memory [64–66]. In addition, transcranial
direct current stimulation technique that delivers focal electrical stimulation to the
cortical surface has proven to enhance long-term visual memory in Alzheimer’s
patients [67]. Therefore, with a better understanding of the neuronal mechanisms
underlying memory function, non-invasive brain stimulation techniques combined
with the closed-loop neuromorphic chip technology could be the way forward
to develop true memory implantation technology in the future. If successful,
developing memory prosthesis that can implant or remove specific memories from
a human brain may provide fundamental treatment methodologies for patients with
memory dysfunction such as Alzheimer’s disease and dementia.
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Chapter 6
Moving Brain-Controlled Devices Outside
the Lab: Principles and Applications

Robert Leeb�, Ricardo Chavarriaga�, Serafeim Perdikis, Iñaki Iturrate,
and José d.R. Millán

Abstract This chapter provides an overview of the functionality and the underlying
principles of the brain-computer interfaces (BCI) developed by the Chair in Non-
Invasive Brain-Machine Interface (CNBI) of the Swiss Federal Institute of Technol-
ogy (EPFL), as well as exemplary applications where those have been successfully
evaluated. Our laboratory mainly develops non-invasive BCI systems based on
electroencephalographic (EEG) signals and, thus, devoid of medical hazards, real-
time, portable, relatively low-cost and minimally obtrusive. Our research is pushing
forward asynchronous paradigms offering a spontaneous, user-driven and largely
ecological interaction. Furthermore, we stand on the machine-learning way to BCI
with emphasis on personalization, configurability and adaptability, coupled with
mutual learning training protocols, so that elaborate signal processing and pattern
recognition methods are optimally combined with the user’s learnable modulation
of brain signals towards high and robust performances and universal usability.
Additionally, cognitive mental state monitoring is employed to shape or refine
the interaction. Shared-control approaches allow smart, context-aware robotics to
complement the BCI channel for more fine-grained control and reduction of the
user’s mental workload. Last but not least, hybrid BCI designs exploit additional
physiological signals to augment the BCI modality and enrich the control paradigm,
thus also exploiting potential residual capabilities of disabled end-users.

The applicability and effectiveness of the aforementioned principles is hereby
demonstrated in four exemplary applications evaluated with both able-bodied and
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motor-disabled end-users. These applications include a hybrid, motor imagery (MI)-
based speller, a telepresence robot equipped with shared-control, cognitive mental
state monitoring paradigms able to recognize and correct errors, and, finally, a car
driving application where a passive BCI enabled on a smart car assists towards
increased safety and improved driving experience. Remarkably, our results show
that the performance of end-users with disabilities was similar to that of a group of
healthy users, who were more familiar with the experiment and the environment.
This demonstrates that end-users are able to successfully use BCI technology.

Keywords Brain-computer interface • Shared control • Hybrid control • Motor
imagery • Error potentials • Cognitive states • Spelling • Telepresence robot •
Car driving

6.1 Introduction

In the course of the last thirty years, Brain-Computer Interface (BCI) technology
has been gradually establishing itself as the solution towards the dream of direct
mind control by human individuals [88]. Since the first demonstration of its
profound applicability [6], BCI research has showcased rapid development and
reached several milestones. Consequently, BCI prototypes are nowadays increas-
ingly deployed in real-world conditions, outside the comfort and manageability of
the laboratory [8, 44, 61].

Within the general scope of augmenting human abilities with novel, brain-
actuated control channels, clinical applications have always been the spearhead of
BCI [50]. People suffering from severe motor disabilities and, especially, locked-in
individuals have the most to gain out of a non-muscular control channel [6] and
naturally comprise the primary user group of BCI. Such end-users have been shown
to benefit from a variety of BCI prototypes, targeting, among others, communi-
cation [32, 41, 66], assistive mobility [10, 25, 45] motor substitution [17, 31] and
restoration [73], environmental control [2, 26] and, more recently, neurorehabilita-
tion [3, 72, 79].

In spite of the field’s current relative maturity, several obstacles still hinder
the critical transition of BCI technology from the lab to an everyday use in
people’s homes or in clinics. To begin with, the available neural interfaces and
brain imaging methods currently employed for BCI are associated with at least
a number of limitations [63] including invasiveness (and, hence, medical risks
and lack of long-term stability), low time or spatial resolution and brain tissue
coverage, compromised signal-to-noise ratios (SNR), signal quality degradation,
reduced portability, obtrusiveness and, certainly, high monetary cost. Furthermore,
BCI training protocols can be lengthy, cumbersome, unintuitive and unable to
exploit the full scale of the brain’s immense learning and plasticity capacities,
essentially failing to bring a large percentage of prospective users into control of a
BCI [49, 85]. Most importantly, BCI control is known to still be fairly crude, suffer
low information transfer rates (ITR) and exhibit intense performance fluctuations
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which call for frequent system calibrations [87]. The latter require constant expert
supervision, raising the issue of the systems’ degree of robustness, independence
and automaticity [44]. Additionally, many BCI paradigms lack the ability to provide
spontaneous, ecological interaction. In the clinical setting, problems arise regarding
the coordination of the multi-faceted effort needed (involving professionals of
various expertise) and the process of incorporating professional and end-user
feedback into BCI system design [44, 92].

Pre-clinical and real-world validation of state-of-the-art prototypes in the widest
possible application spectrum are essential for identifying principles that can, on one
hand, alleviate the aforementioned deficiencies to the largest extent possible and, on
the other hand, allow to maximize the added value of BCI applications even with
an imperfect BCI channel at hand. This chapter is devoted to providing an overview
of such successfully applied principles by the Chair in Non-Invasive Brain-Machine
Interface (CNBI) of the Swiss Federal Institute of Technology (EPFL), as well as
exemplary applications where those have been evaluated.

In summary, our laboratory mainly develops non-invasive BCI systems based on
electroencephalographic (EEG) signals and, thus, devoid of medical hazards, real-
time, portable, relatively low-cost and minimally obtrusive. Our research is pushing
forward asynchronous paradigms offering a spontaneous, user-driven and largely
ecological interaction. Furthermore, we stand on the machine-learning way to BCI
with emphasis on personalization, configurability and adaptability, coupled with
mutual learning training protocols, so that elaborate signal processing and pattern
recognition methods are optimally combined with the user’s learnable modulation
of brain signals towards high and robust performances and universal usability.
Additionally, cognitive mental state monitoring is employed to shape or refine
the interaction. Shared-control approaches allow smart, context-aware robotics to
complement the BCI channel for more fine-grained control and reduction of the
user’s mental workload. Last but not least, hybrid BCI designs exploit additional
physiological signals to augment the BCI modality and enrich the control paradigm,
thus also exploiting potential residual capabilities of disabled end-users.

The applicability and effectiveness of the aforementioned principles is hereby
demonstrated in four exemplary applications evaluated with both able-bodied and
motor-disabled end-users. These include a hybrid, motor imagery (MI)-based speller
[66], a telepresence robot [45, 81] equipped with shared-control, cognitive mental
state monitoring paradigms able to recognize and correct errors [34], and, finally, a
car driving application where a passive BCI enabled on a smart car assists towards
increased safety and improved driving experience [15].

6.2 Principles for Brain Control

Before presenting applications of brain-controlled devices, we will first explain the
underlying principles and give a short introduction to the neurophysiological basis
of the brain correlates we exploit for interaction.
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6.2.1 Brain-Computer Interaction: It Takes Two to Tango

For a human user to convey mental commands to a device, we have first to record
their brain activity, from which the BCI infers the user’s intention. In our case, we
rely on brain electrical signals (EEG in particular) because of their high temporal
resolution, which allows real-time operation of devices. EEG is also a non-invasive,
cheap, secure and practical method [52].

Several types of BCIs exist and various control methods can be applied. In
our direct control examples presented later on (see Sect. 6.3), we utilize a BCI
based on motor imagery, and so record the EEG over the central and sensorimotor
cortex. MI is described as the mental rehearsal of a motor act without any overt
motor output [18], which activates similar brain regions to those engaged during
planning and preparation of such real movements [20, 35]. The imagination of
different types of movements (e.g., right hand, left hand or feet), results in an
amplitude suppression (known as event-related desynchronization, ERD [68]) or
in an amplitude enhancement (event-related synchronization, ERS) of Rolandic
mu rhythm (7–13 Hz) and the central beta rhythm (13–30 Hz) recorded over the
sensorimotor cortex of the participant [69].

Figure 6.1a illustrates and describes the basic elements of a BCI. In essence,
a BCI distinguishes different patterns of brain activity, each being associated to
a particular intention or mental task. Hence, adaptation is a key component of a

Fig. 6.1 (a, red) Basic principle of a BCI: The electrical signals from the brain are acquired
and discriminant, stable features are extracted. These are then classified to generate actions to
control devices. The participant receives immediate feedback from the output of the BCI and/or
the generated action of the device. (b, black) Examples of brain-controlled devices. (c, blue) Hybrid
principle: In parallel to the BCI also other control signals (like muscular activity or input devices
like joysticks, switches) can be used for interaction in a hybrid BCI. (d, green) The shared control
principle: Besides the user issuing high-level commands via the BCI (usually at a lower pace than
the operation of the device), the system is acquiring fast and precise the environmental information
(via sonars, webcams . . . ). The shared control system combines the two sources of information to
better estimate the user’s intent and improve task execution
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BCI, because, on the one side, users must learn to modulate their neural activity
so as to generate distinct brain patterns, while, on the other side, machine learning
techniques ought to discover the individual brain patterns characterizing the mental
tasks executed by the user. In essence, a BCI is a two-learner system that must
engage in a mutual adaptation process [12, 58, 86]. In our case, this translates into
selecting discriminant, stable features—namely, user-specific brain components that
maximize the separability between mental commands [24, 55] and that, because of
the non-stationary nature of brain signals, are stable over time—to build optimal
models to decode the user’s intention. These initial features represent those brain
components that the user can naturally modulate and, via feedback received during
online BCI training, learn to control quickly and voluntarily.

Based on the inherent properties of the EEG, the number of commands that can
be detected is small. Consequently, the possible information transfer rate of a BCI
is quite limited, compared to our normal healthy way of interaction. More details
about the experimental paradigm, signal processing, machine learning techniques
(feature extraction, feature selection, classification and evidence accumulation),
training principle, and feedback are given in [44].

In addition, the interaction with the brain-controlled devices can also exploit
brain activity elicited by the feedback perceived by the user. Specifically, a BCI
system can decode the brain responses evoked by the system’s actions and use this
information to infer cognitive processes taking place during the interaction. One
example of this case is the decoding of error-related brain activity. These are neural
responses that appear when the user is aware of erroneous decisions made by the
device [13, 22]. The possibility of knowing when the user perceives BCI errors can
be then used to correct or improve the system’s performance [16]. An example of
such applications is presented in Sect. 6.3.3.

6.2.2 Shared Control: Making Possible the Impossible

Interaction with real devices or complex computer programs via a BCI can be quite
challenging. For example, driving a wheelchair or a robot in a natural environment
(scattered with obstacles like chairs, tables, people . . . ) demands a fine and quickly
responding control signal like a joystick. Unfortunately, given the current state-of-
the-art BCIs, users rarely attain this fine grade of control—at least not continuously.
Nevertheless, despite the mismatch between task requirements and users’ skills,
researchers have successfully demonstrated the feasibility of mentally controlling
complex robotic devices from EEG.

A key factor to do so is the use of smart interaction designs, which in the
field of robotics corresponds to shared control [9, 56, 84]. In our example, a smart
wheelchair will help the user to navigate through the crowded environment. The
user issues via the BCI the high level commands such as left, right and forward,
which are then interpreted by the wheelchair controller based on the contextual
information from its sensors (obstacles perceived) and the status of the device itself
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(position and velocities) to better estimate the user’s intent (see Fig. 6.1b). Based
on these interpretations, the wheelchair can perform intelligent maneuvers (e.g.,
obstacle avoidance, guided turnings).

Context awareness or shared control is a key component of any future BCI
system, as it will shape the closed-loop dynamics between the user and the
brain-actuated device so that tasks can be performed as easily as possible and
effectively, but not autonomously. A critical aspect for BCI is coherent feedback—
the behavior of the robotic device should be intuitive to the user and the robot should
unambiguously understand the user’s mental commands. Otherwise, people find
it difficult to form mental models of neuroprostheses, such as a brain-controlled
exoskeleton, that extend their natural bodies.

6.2.3 Hybrid Control: Explore All Possibilities

Practical brain-computer interfaces for disabled people should allow them to use all
their remaining functionalities, so as to truly enhance their capabilities. Sometimes
these people have residual muscular activity, most likely in the morning when they
are not exhausted. In the framework of a user-center approach, all existing and
reliable control signals should be exploited. In such a hybrid approach, we could
combine and enhance conventional assistive products (operated using some residual
muscular functionality) by BCI technology, leading to what is called a hybrid BCI
(see Fig. 6.1c).

As a general definition, a hybrid BCI is a combination of different input signals
including at least one BCI channel [59, 70]. Thus, it could be a combination
of multiple brain signals: such as MI for control and detection of error-related
potentials for correction of false commands [23], MI with SSVEP [71] or P300 [1],
SSVEP with P300 [89], and even two brain modalities such as NIRS and EEG [21].

More importantly, hybrid BCIs truly augment end-users’ capabilities by combin-
ing a BCI with their residual biosignals (such as muscular signals, etc.) or special
assistive technology input devices (e.g., joysticks, switches, etc.). There exist a few
examples of combining brain and other biosignals: switching a standard SSVEP
BCI on/off via a heart rate variation [77], or fusing electromyographic (EMG) with
EEG activity [42] so that the subjects could achieve a good control of their hybrid
BCI independently of their level of muscular fatigue. Millán et al. [59] review the
state of the art and challenges in combining hybrid BCI and assistive technologies.

6.3 Applications

In this section we describe examples of BCI controlled applications for motor-
disabled users and healthy participants, in the area of ‘Communication & Control’,
‘Motor Substitution’, ‘Error detection’, and ‘Mental & Cognitive State Monitoring’.
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6.3.1 Hybrid BCI Spelling for End-Users

Among BCI applications, text-entry has been the best-studied field, as restoring
communication skills is the highest priority of end-users.1 The main limitation
remains the lack of clinical evaluation of spelling prototypes, currently largely
limited to P300-based BCI spellers (e.g., [41]). The latter require subjects to focus
their attention on flashing stimuli and a positive waveform occurring approximately
300 ms after the infrequent task-relevant stimulus is detected. Furthermore, great
progress has been achieved in utilizing asynchronous spontaneous approaches for
spelling prototypes. Recently, our group focused on the clinical evaluation of a
novel motor imagery-based, hybrid BCI spelling prototype, called BrainTree, by
6 disabled end-users and 10 able-bodied individuals. Following a user-centered
approach, the BrainTree speller is the first MI-based BCI system to be validated
by a fairly large pool of end-users [66]. We are thus providing a competitive BCI
alternative to P300 spelling, which, like most BCI paradigms, cannot be successfully
employed by all prospective end-users [28], while also being unable to support self-
paced control.

Figure 6.2a illustrates the speller’s graphical user interface (GUI), where char-
acters are arranged alphabetically. A vertical red cursor, the “caret”, denotes the
current position, while an orange “bubble” surrounds the characters currently
available. Underneath the character bar, the user observes a conventional MI BCI
feedback. The user employs one of two MI tasks to move the caret towards the
desired character. The procedure is repeated until the latter is the only one left
within the “bubble”, in which case it will be typed after the next transition and a
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1This Section follows closely a prior published paper by the authors [66].
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new typing round is initiated. This simple GUI hides the underlying complexity,
where characters are the leaf nodes of a binary tree. A simple example on a
reduced dictionary is illustrated in Fig. 6.2b. Therein, the “caret” represents the
tree’s current internal node, the “bubble” surrounds the leaf node characters within
the current node’s two subtrees and a BCI command moves to the left/right child
node. Effectively, in each typing round, each character is associated with a binary
“codeword” of left/right transitions.

The BrainTree prototype largely owes its effectiveness and efficiency to
the incorporation of the shared-control and hybrid BCI principles described
in Sect. 6.2.2. Shared-control increases the spelling efficiency in BrainTree by
exploiting the Hu-Tucker entropy coding algorithm [33], which reduces the average
length of character codewords to the theoretical minimum, while also preserving
alphabetic ordering. Entropy coding is made possible through a trained prefix-
based language model. From the user perspective, shared-control refines the user’s
control by deciding the optimal ending position of the “caret”. Besides the main
BCI control modality, a secondary control modality (hybrid approach) for “undo”
commands is implemented through monitoring electromyographic activity for the
detection of a user’s brisk movement, in case residual muscular activity allows it.
Equivalently, any other residual ability (e.g., eye-blinks, sip-and-puff) can be used.
The “undo” functionality enables immediate correction of an erroneous transition,
thus being more efficient than the, also available, “backspace” functionality (“pure”-
BCI approach).

The BrainTree user evaluation study comprises two phases, the BCI training
sessions described in [44], and the spelling sessions, performed in real-world condi-
tions involving noisy and crowded environments (clinics, lab, end-user’s home). The
latter consist of four copy-spelling tasks, repeated across three conditions. The first
condition, termed hBCI+CA, where both the hybrid BCI (hBCI) mode and context-
awareness (CA) through shared-control are enabled, is meant to evaluate the overall
usability and efficiency of BrainTree. The hBCI (shared-control disabled) and CA
(hybrid mode disabled) conditions are introduced to experimentally quantify the
added value of shared-control and hybrid error-handling. A total of 6 end-users (all
male, 39 ˙ 15.5), and 10 able-bodied users (9 male and 1 female, 29.0 ˙ 4.6)
participated in the final BrainTree evaluation. For logistic reasons only 2 end-users
performed the CA condition.

The most impressive outcome is the speller’s impeccable usability for both user
categories, as measured through flawless (without time restrictions) spelling task
completion rates and shown in Fig. 6.2c. Usability is only seriously compromised in
CA, revealing the significant added value a hybrid modality might bring. Still, the
speller is largely usable in a “pure”-BCI fashion (CA, 82 % task completion for all
users), while also both end-users trying this version completed all tasks successfully.
The positive impact of the implemented shared-control approach is showcased in
Fig. 6.2d, which reports the average typing speed per condition as the number
of characters written per minute (cpm). Subjects achieved a 17 % typing speed
reduction (from 1.92 cpm in hBCI+CA, to 1.59 cpm in hBCI across all users) on
average when disabling the optimal entropy coding. End-users underperformed for
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hBCI+CA compared to able-bodied ones in terms of spelling speed by 0.3 cpm on
average. This is not the case for usability, however, showing the clinical applicability
of the BrainTree prototype. These figures are only slightly inferior to the ones
reported for P300 spelling.

In summary, we have presented a first MI BCI spelling, end-user evaluation
study, proving the extensive usability and competitive efficiency of our speller [66].
Furthermore, we have demonstrated the added value of hybrid BCI designs and
shared-control approaches. Finally, we argue that our user-centered approach can
be accredited with the successful incorporation of such principles into the speller’s
design, underlining the importance of pushing BCI technology out of the lab.

6.3.2 End-Users Out There: Controlling a Telepresence Robot

Another BCI application area in which disabled people will benefit in the future is
motor substitution and assisted mobility.2 Thereby, disabled end-users will be able
to remotely control a telepresence robot, their own wheelchair or an exoskeleton
directly via the BCI. Since the timing and speed of interaction is crucial for the
interaction with these neuroprosthetic devices, shared control will help the user to
achieve such a complex and time demanding task by using smart devices, which
incorporate information of the environment (see Sect. 6.2.2). Although the whole
field of neuroprosthetics targets disabled people with motor impairments as end-
users, all successful demonstrations of brain-controlled robots or neuroprosthetics,
except [17, 44, 62], have been actually carried out with either healthy human
subjects or non-human primates.

Here, we describe our recent work [45], during which nine end-users with severe
motor disabilities, were mentally driving a telepresence robot in a natural office
environment from their clinic up to 550 km away and compare their performances
to a set of ten healthy users carrying out the same tasks in our lab. Remarkably,
the system functioned effectively although the patients had never visited the
location where the telepresence robot was operating. For controlling, the user
asynchronously sent high-level commands for turning to the left or right (with
the help of a motor-imagery based BCI) to achieve the desired goals, while short-
term, low-level interaction for obstacle avoidance was done by the shared control
(see Fig. 6.1d and Sect. 6.2.2). In the applied shared control paradigm, the default
behavior of the robot is to move forward at a constant speed, and to pro-actively
slow down and turn to avoid obstacles as it approaches them. The robot is based
on Robotino™ by FESTO (Esslingen, Germany), a small circular mobile platform,
which is equipped with nine infrared sensors that can detect obstacles up to
30 cm
distance (see Fig. 6.3a). Furthermore, a notebook with a camera is added on top

2This Section follows closely a prior published paper by the authors [45].
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Fig. 6.3 (a) The telepresence robot equipped with nine circular distributed infrared sensors for
obstacle detection and a laptop with the Skype™connection on top. (b) Performance ratio between
the time and the number of commands required to complete the task when using BCI versus when
using the manual input device. The grand average over nine end-users with motor disabilities and
ten healthy participants is plotted together with the standard deviation

of the robot for telepresence purposes, so that the participant can interact with the
remote environment via Skype™.

The experiment was performed twice, once with BCI control with the help
of shared control, and once, as a reference condition, with direct manual control
via keyboard buttons. In case of the end-users with motor disabilities, some of
them were able to press buttons on a modified keyboard and others were using
head switches. Generally, we used whatever residual motion they were capable
of producing. The subject’s task was to bring the robot to four predefined target
positions within the natural working space. As performance measures, we measured
the time and number of commands needed to reach the targets.

The most striking result of the experiment is that all end-users succeeded to
mentally control the telepresence robot as efficiently as the healthy participants, who
were familiar with the environment. The mean ratio of time to complete the task for
the BCI condition compared with the manual condition is only 109:2 ˙ 11:1 %
for the end-users, as compared to 115:1 ˙ 10:3 % for the healthy participants.
Shared control also helped all subjects (including naive BCI subjects or users with
disabilities) to complete a rather complex task in similar time and with similar
number of commands to those required by manual commands without shared
control (see Fig. 6.3b). More details are given in [45].

Based on these results, we argue that end-users with motor disabilities can
mentally control a telepresence robot via a BCI as good as healthy participants.
Furthermore, the proposed shared control approach reduces the subjects’ cognitive
workload, as it assists them in coping with low-level navigation issues (e.g., obstacle
avoidance) and allows the subject to focus the attention on his final destination.
Thereby shared control helps BCI users to maintain attention for longer periods of
time (since the amount of BCI commands can be reduced and their precise timing
is not so critical).
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6.3.3 Error-Related Potentials

A successful BCI application should not only have the ability to decode and
execute high-level commands, but also to recover itself from errors committed
by the user or even the machine.3 Interestingly, there have been numerous works
demonstrating the existence of distinct neural imprints associated to user’s own
detection of errors [60]. These correlates, the error-related potentials or ErrP, are
also evoked when the user observes another human or a machine committing an
error [16]. Any efficient and robust BCI application should also target the decoding
of these signals, so as to recover from wrongly executed commands or use them
to adapt the system [7, 22, 76]. In this section, we show the existence of these
signals under different experimental protocols, their similarity across experiments
and demonstrate the feasibility of their single-trials decoding.

Twelve participants performed three experimental protocols of increasing com-
plexity as shown in Fig. 6.4a. They were seated on a comfortable chair facing the
visual displays of the protocols approximately one meter away, and instructed to
restrict eye movements and blinks to specific resting periods. In all experiments
they were asked to evaluate whether a device moves towards a given target location
or not. The device moved in discrete steps and the time between movements was
randomly chosen within the range 1.7–4.0 s. There was a probability of moving
in the wrong direction of about 30 %. Experiments were always performed in the
same order from the simplest to the most complex one. The first experiment, E1,
consists of a cursor that moves in discrete steps (either left or right) towards a target.
In the second protocol, E2, the user monitors a simulated robotic arm that moves
on a 2D plane (allowed movement directions were left, right, up and down). The
third experiment, E3, consists of the same task using a real robotic arm. A detailed

Fig. 6.4 Error-related potentials. (a) Experimental protocols: (Left) One-dimensional cursor
movement (E1). (Center) Two- dimensional movements of a simulated robotic arm (E2). (Right)
Real robotic arm (E3). (b) ErrPs at the FCz electrode obtained in each experimental protocol.
(c) Number of calibration trials needed on each experiment for the control group (blue) and the
experimental group (red) (*p < 0:05). (d) Mean online accuracy for each experiment and group

3This Section follows closely a prior published paper by the authors [34].
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explanation of the protocols and methods is provided in [34]. Each experiment
started by a calibration phase. This phase had a variable length depending on the
obtained performance. Calibration stopped whenever the mean accuracy (ten-fold
cross validation) on the training data exceeds 75 %. Then the classifier parameters
were fixed, and performance was tested on an online phase lasting 400 trials. For
the classification, features from eight fronto-central channels were selected in the
window of 200 to 800 ms using a spatiotemporal filter. Single-trials were classified
as erroneous or correct using linear discriminant analysis (LDA).

Figure 6.4b shows the averaged ErrP of each experiment with respect to the
action onset (0 ms). The error potential can be easily characterized by the difference
grand average (error minus correct, in dashed), with two early positive and negative
peaks in fronto-central sites, followed by two larger positive and negative peaks.
Despite no differences were found on the peak amplitudes of the ErrPs (ANOVA
tests, p D 0:510 and p D 0:391 respectively), the experimental protocol affected
the latency of the ErrP elicitation (p < 0:01). Interestingly, these variations can
be easily estimated by computing the cross-correlation between the grand-average
ErrPs for each experiment. In brief, given a previous experiment Ei, from which
data is available, and a new experiment Ej, the ErrP latency variation dEiEj will
correspond to the shift that yields the maximum cross-correlation. Then, data from
Ei can be shifted in time by dEiEj and used along the available (few) trials from
the new experiment Ej to train a classifier. We thus compared whether this latency
correction mechanism effectively reduces the calibration time. To that end, we
defined two groups of participants depending on the training procedure. The control
group (N = 6) followed a standard calibration approach, i.e., based only on data from
the current experiment. The experimental group (N = 6) used latency-corrected trials
from the previous experiment to build the classifier for the current task. That is,
standard calibration was followed for E1, while data from that experiment was used
during the calibration period of E2. Similarly, during calibration for E3, the data from
E2, was used. The latency between experiments was estimated based on the cross-
correlation of the difference ErrP (error minus correct condition, see Fig. 6.4b).

Figure 6.4c shows the number of calibration trials needed in each experiment to
reach the stopping criteria. The calibration period for the control group was similar
for all experiments. In contrast, the experimental group exhibits a large reduction
on the required calibration trials in E2 and E3 when previous information was re-
used. The ANOVA test revealed a significant interaction between the experiment
and group (p D 0:002). On the other hand, no significant difference was found in
the decoding performance (Fig. 6.4d) for all experiments and subjects (p > 0:85).
These results indicate that, provided data from previous experiments, knowledge
from these protocols can be transferred to the new task using the latency correction
algorithm.

These results confirmed the existence of error potentials under several exper-
imental protocols, and how they generalize across different tasks of increasing
complexity. Compensating for latency variations between protocols has proven to
shorten the calibration phase in new applications without affecting the decoding
performance, higher than 75 % on average. Their existence and generalization across
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different tasks will boost their applicability for BCI applications. Indeed, future
brain-computer interfaces will exploit these signals to create more sophisticated
systems able to avoid wrong behaviors or even learn and adapt to the user’s
preferences.

6.3.4 BCI Decoding of Driver’s Cognitive States

Previous sections describe BCI applications focused on substitution or restoration
of communication and motor capabilities of individuals with severe disabilities.4

These have been traditionally the main target population of BCI systems. However,
applications for able-bodied persons have also been proposed, in particular in
very specific contexts like space exploration (e.g. tackling situational disabili-
ties) [19], military applications (e.g. target recognition from satellite images) [75],
or games [40, 51, 53, 80]. Along these lines, we study the potential application of
BCI technology to improve the interaction with intelligent cars.

Current cars are able to provide assistance for different driving maneuvers—
from parking and lane changing assistance to fully autonomous navigation. We
propose that BCIs can be used to monitor the driver’s cognitive state and provide
this information to modulate the assistance provided by the intelligent car. In this
case, the driver is kept in the loop, allowing the driving support system to take into
account the external context (as perceived by in-car sensors) and the user’s intention
(as decoded from electroencephalographic signals) to provide suitable and timely
assistance; seamlessly interacting with the driver.

Previous works have focused on decoding driver’s level of attention and emer-
gency braking from brain activity [29, 30, 38, 39, 48]. Extending these, we studied
EEG correlates of cognitive states in order to predict future actions or to evaluate
whether the decisions of the intelligent system are coherent with the user intentions.
Preliminary works have already shown the feasibility of decoding anticipation and
error-related EEG potentials in realistic virtual environments and during human-
robot interaction [14, 67]. We thus focused on assessing the decoding of these types
of signals while driving. Following the principles of shared control (c.f. Sect. 6.2.2)
information about the driver’s cognitive state (i.e. internal context), combined with
external environmental cues captured by in-car sensors allows the evaluation of the
instantaneous needs of the user [11]. Imagine a case where the car approaches an
intersection, sensors in the car can perceive a red traffic light while brain signals
can tell whether the driver is aware of it and is getting ready to stop [37]. This
information, appearing as early as 500 ms before any noticeable action or muscular
activity, allows for the assistance to be provided only if the driver was unprepared
to act.

4This Section follows closely prior published papers by the authors [27, 37].
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Fig. 6.5 (a) Experimental setup: Driving simulator used in the experiments, including a real car-
seat and steering wheel, and three 3D monitors. (b) Top. Car trajectories during lane changes in
a simulated highway. Blue traces correspond to the different car paths aligned to the time when
the lane change is performed (t = 0). Dots represent different behaviors as indicated by the steering
angle (bottom). Green: lane change towards the left; Red: lane change towards the right; Magenta:
Driving in a straight trajectory. Bottom. Steering pattern obtained from the driving simulator
logger. (c) Grand average ERP during lane changes (top) and straight driving periods (bottom).
Topographical activity represented by a top view of the scalp (nose up). t = 0 corresponds to the
moment of steering [27]

We have performed experiments in a realistic car-driving simulator where we
can record simultaneously the car steering angles; brake and acceleration pedals,
with EEG, EOG (electrooculogram) and EMG signals (see Fig. 6.5a). Using an
experimental protocol based on the scenario described above (i.e. approaching a
traffic light) we have identified EEG correlates of anticipation and movement prepa-
ration highly consistent with those observed in classical experimental paradigms.
Single-trial decoding of these correlates can thus be used as a marker of the user’s
preparedness to execute the expected action [37]. Classification of slow-cortical
potentials (0.1–1 Hz) using a quadratic discriminant analysis (QDA) classifier
shows high performance in the decoding of anticipation-related potentials preceding
braking or accelerating actions (18 subjects; 4-fold cross-validation; average AUC
equal to 0.79 and 0.83, respectively). In another experiment where subjects had
to drive in a simulated highway, we observed slow negative EEG deflections over
central areas—akin to the motion related potential—appearing more than 1 s prior to
self-paced lane changes [27], as shown in Fig. 6.5c. Classification of these potentials
yields a true positive rate of 68:8 ˙ 6:6 (5-fold cross-validation), with average
detection times of 641˙ 94 ms before the actual steering action (N = 6).

As mentioned above, intelligent cars can use information from these potentials,
as well as environmental information and previous experience to provide assistance
to the driver. Nonetheless, these devices are prone to errors that may hinder their
performance. As discussed in Sect. 6.3.3, BCI systems can exploit as well error-
related brain signals [13, 16]. We therefore studied whether these signals could
also be observed and decoded when a driver assistant provides information to
the user. In the experimental protocol, the system was presenting the driver its
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prediction about upcoming turning directions. Coincident with previous studies in
other experimental protocols, a stereotypic response is elicited in fronto-central
areas when the feedback provided by the car does not match the user’s intention.
Experiments with 22 subjects show clear statistical differences between error and
correct conditions between 200 and 600 ms after the feedback. More importantly,
error-related activity was recognized above chance level (average AUC across
subjects = 0.70; 10-fold cross-validation) [90].

To summarize, we consistently found neural signatures of anticipation, move-
ment preparation and error processing elicited during simulated driving. Despite the
fact that EEG signals in this realistic scenario are more susceptible to be affected by
environmental artifacts, these signals can be successfully decoded in single trials.
Therefore providing information about cognitive processes, taking place while
driving intelligent cars, is feasible. We are currently assessing this framework in
closed loop settings as well as in a real car setting to fully evaluate its potential. In
our approach, information about internal user states, in combination with contextual
information gathered by in-car sensors is exploited to better tune the human-
machine interaction. In consequence, the intelligent car—instead of superseding the
driver—will provide timely and tailored assistance only when required; thus keeping
the user in the loop and allowing him to fully enjoy the pleasures of driving.

6.4 Summary, Discussion and Outlook

In this chapter we gave an overview of the functionality and the underlying
principles of our brain-computer interface and showed different scenarios and appli-
cations. We emphasized communication and control applications for motor-disabled
end-users, like spelling on a computer and controlling of a telepresence robot.
Furthermore, we presented applications in which healthy participants will benefit
from a BCI, such as error processing, anticipation, and movement preparation.

The introduced principles are of key importance for the use of BCI system
outside the laboratory environments, in real applications. The selection of proto-
types described in this chapter illustrates how the principles of (i) shared control
and context awareness, as well as (ii) hybridness can help in overcoming some of
the BCI limitations and enable users to achieve complex tasks. Remarkably, our
results show that the performance of end-users with disabilities was similar to that
of a group of healthy users, who were more familiar with the experiment and the
environment. This demonstrates that end-users are able to successfully use BCI
technology. However, BCIs are not yet ready for an independent use at home [44]
and some gaps for usability and reliability have to be addressed.

The benefits of shared control are outstanding in the telepresence experiment,
where all subjects completed the navigation task in similar time and with similar
number of commands to those required by manual commands without context
awareness. Thus, we argue that context awareness reduces the subjects’ cognitive
workload as it: (i) assists them in coping with low-level navigation issues (such
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as obstacle avoidance and allows the subject to focus the attention on his final
destination) and (ii) helps BCI users to keep attention for longer periods of time
(since the amount of BCI commands can be reduced and their precise timing is not
so critical).

The hybrid BCI approach allows the use of all remaining functionalities of an
end-user and enables more degree of freedom in control applications. A hybrid
BCI can exploit different input signals either independently (each controlling a
different output dimension), alternatively (switching from one to another depending
on their reliability, which may change due to fatigue), or in parallel (via fusion). In
Sect. 6.3.1 we showed that muscular activity can be used to correct errors of a motor-
imagery based BCI [66], which could be also done via error potential [22, 23].
Results show how this approach boosted performance, even for users with a
relatively low BCI performance. In another work we demonstrated that multimodal
fusion techniques allow the combination of brain control with other residual
motor control signals and thereby achieve better and more reliable performances,
independently of the level of muscular fatigue [42].

The exploitation of cognitive signals, which carry valuable information about
the users’ state in parallel to the detection of the mental commands they want to
deliver, is pushing BCIs to a new level of robustness, flexibility and performance.
Information like how users perceive and value the interaction, their level of
attention, or their awareness to erroneous decisions, will allow us to modulate the
level of support needed at any time for effective BCI control [74]. We can envision a
future where systems (e.g., an intelligent car) would be able to modify their behavior
depending on the user’s cognitive state so as to provide variable levels of assistance,
and even become more proactive in case the user’s attention to the task decreases.
Similarly, detection of cognitive states would enable to extend the principle of
adaptive shared control to rehabilitation scenarios as the system will continuously
adjust the level of assistance as the patient recovers his/her motor capabilities.

Although not discussed in this chapter, BCI technology is used in motor
rehabilitation, especially in case of stroke patients. The underlying idea is that BCIs
provide a mean to access the damaged motor network of the brain after stroke,
and could be used to drive and promote beneficial plasticity, especially in the early
rehabilitation stages, when no motor output can be generated. The BCI decodes the
attempt to execute a hand movement and, if successful, provides visual feedback on
a screen or activates either a robot or functional electrical stimulation (FES) in order
to actually execute the desired movement of the affected limb. Several studies have
shown the positive rehabilitation effect of such a therapeutic approach [3, 4, 72] and
even showed signs of promoting cortical reorganization even during chronic phase.

As mentioned above, progress is still needed in order to translate BCI systems
into practical systems that can be widely deployed and used independently by their
intended users. Although we expect great advancement in the next years because of
the attention that the BCI field is receiving from funding agencies and companies,
there are still some challenges ahead. The first one is to exploit other kinds of
information contained in brain signals recorded from multiple areas beyond the
usual time-frequency analysis, as well as additional correlates of voluntary behavior
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so as to improve the performance of the BCI and achieve natural, effortless operation
of complex devices. In the former case, we can analyze the dynamics of brain
activity through the use of features based on EEG connectivity patterns [5, 91].
In the latter case, we can decode not only the type of imagined movement, but also
the onset of those movements [46], directions of the intended movements [47], and
where in the surrounding space the user is covertly attending [82, 83].

The second challenge is to design physical interfaces that can operate perma-
nently and, ideally, last a lifetime. New hardware spans from dry EEG electrodes
to biocompatible and fully implantable neural interfaces including ECoG, LFP, and
SUA from multiple brain areas. An essential component of all of them is wireless
transmission and ultra low-power consumption. This new hardware for life-long
recordings generates other challenges. One of them is the need for continuous
adaptation of the decoders to the evolving brain signals of the subject that work in a
transparent way while the user operates the brain-controlled device [54, 57, 65, 85].
A second one is to find efficient ways of combining practical hybrid BCI tools with
smart interaction designs and devices to facilitate use over long periods of time and
to reduce the cognitive load.

Another future area for BCI is to extract cognitive-relevant information in order
to improve standard interactions, which is becoming increasingly interesting for
healthy users. A further component that will facilitate intuitive and natural control of
BCIs is the incorporation of rich multimodal feedback to convey information to the
user about the decisions made by the device and its internal states. This feedback can
involve several sensory modalities [36, 43, 78] or direct stimulation of the brain [64].

Attempts to address each, or subsets, of these challenges and future research
avenues are already being tackled. Yet, large and long-term user studies are
missing and are essential for BCI to become a mature technology. In this respect,
translational studies involving end-users operating brain-controlled devices in their
natural environments (home, public transport, office, or clinical settings) will
identify additional challenges. Only adopting a user-centered iterative approach (for
the end-users as well as for the healthy population) will allow addressing the specific
needs and requirements of the different future user groups.
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Chapter 7
Across Cultures: A Cognitive
and Computational Analysis of Emotional
and Conversational Facial Expressions
in Germany and Korea

Christian Wallraven, Dong-Cheol Hur, and Ahyoung Shin

Abstract Humans use a wide variety of communicative signals – among those,
facial expressions play a key role in communicating not only emotional, but also
more general, non-verbal signals. Here, we present results from a combined cogni-
tive and computational analysis of emotional and conversational facial expressions
in the context of cross-cultural research. Using two large databases of dynamic
facial expressions, we show that both Western and Asian observers structure the
interpretation space of a large range of facial expressions using the same two
evaluative dimensions (valence and arousal). In addition, several computational
experiments show the advantage of using graph-models for automatic recognition
of facial expressions, since these models are able to capture the complex dynamics
and inter-dependence of the movements of facial features in the face.

Keywords Facial expressions • Cross-cultural psychology • Emotions • Conver-
sational expressions • Graph models

7.1 Introduction

Human communication can be divided into verbal and non-verbal signals. In the
case of non-verbal signals, the human face plays a key role: the face itself conveys
the person’s identity and additional kinds of attributes such as attractiveness,
intelligence, and trustworthiness, for example. Importantly, when the face starts to
move, facial expressions are produced that convey information about one’s feelings,
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emotions, or intentions – the face starts to communicate. This “language of facial
expressions” allows for rich and efficient interaction between people and forms
one of the most important parts of non-verbal communication. It is therefore not
surprising that there is a considerable amount of research about facial expressions in
various fields, focusing on both cognitive aspects (that is, the investigation of how
humans perceive, process, and use facial expressions) and computational aspects
(that is, the investigation of how one may teach computers to understand and react
to human facial expressions).

First, concerning cognitive aspects, an interesting debate in the field has been
whether certain kinds of facial expressions may be “universal” signals of communi-
cation. For example, some cross-cultural studies have found evidence for highly
robust interpretation and recognition of a certain group of six emotional facial
expressions (the so-called “universal”, or basic facial expressions: anger, disgust,
fear, happiness, sadness, and surprise). However, other studies have shown impor-
tant differences even for these six expressions across different cultural backgrounds.
In addition to this debate, another important aspect that has so far been largely
neglected is that human communication consists of a much broader variety of
signals that do not only transport emotional, but also cognitive and other socially-
regulated intentions. In order to better understand how humans perceive and process
facial expressions, detailed investigations of the perceptual and cognitive aspects of
facial expression processing, taking into account the broad repertoire of expression
signals as well as cross-cultural contexts, are necessary.

Secondly, concerning computational aspects of facial expression research, many
frameworks for automatic and efficient human-computer-interaction have been pro-
posed by computer vision researchers. So far, however, the available frameworks are
not capable of recognizing more than the basic (six) emotional facial expressions.
If we want to interpret the much larger range of general conversational expressions,
we need to address some crucial obstacles: first, there is a large variability across
individuals in expressing certain intentions, which represents a challenge for
efficient modeling of expression categories. Second, conversational signals are often
conveyed using highly subtle facial movements, which is another challenge for
automatic facial feature tracking algorithms. Therefore, we need to develop novel
computational frameworks that are capable of dealing with these issues such that
we may interpret and process the full range of human communication.

7.2 Context in Brain and Cognitive Engineering

One of the core research foci of Brain and Cognitive Engineering is to use
results from cognitive neuroscience to improve human-computer-interfaces and
computer algorithms in general – depending on the domain used, one may call this
biologically-, perceptually-, or cognitively-motivated computer science. Conversely,
novel developments in machine learning and computer science can be used to
increase our understanding of fundamental perceptual and cognitive processes in
the brain. The present chapter offers a perspective on this research focus: we are
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first going to investigate the perceptual and cognitive aspects of facial expression
processing in a cross-cultural context using state-of-the-art analysis methods. In a
second step, we are then trying to design a computer vision system that takes into
account some core aspects of the previously analyzed perceptual and cognitive data.

7.3 Previous Work

A series of studies conducted by Paul Ekman and colleagues in the 1960s and
onwards have found evidence for the claim that certain facial expressions are
“universal” across different cultures, that is, that recognizability and interpretability
of these expressions is invariant across cultural contexts [1, 2]. However, recent
research has cast doubts on the strong version of these statements and has shown
that the concept of “universality” may be flawed, as results seem to be dependent on
experimental and analysis methods [3–5]. Importantly, the aforementioned almost
exclusively focused on emotional expressions only, although the full repertoire of
facial expressions spans a much broader range of signals [6–9]. Indeed, relatively
little is known about how we interpret and process conversational signals (such as
a thoughtful or bored expression) or social signals (such as a wink, or a raised
eyebrow). In addition to the cultural dependencies of emotional facial expressions,
therefore the perceptual, cognitive, and cross-cultural aspects of more general facial
expressions remain to be investigated [10–12].

The field of computational analysis of facial expressions has a rich history– albeit
one focused again almost exclusively on the six basic facial expressions (for recent
reviews, see [13, 14]). A recent recognition system achieving good recognition
scores for the six emotional expressions by Kanaujia et al. [15] is based on an
extended AAM (Active Appearance Model) that tracks the whole face. Many other
frameworks are based on first detecting facial action units [16] (elementary muscle
movements of the face) and then recognizing the six emotional expressions by
detecting combinations of such facial action units [17]. These systems typically
achieved the highest performance and are current state-of-the-art. Going beyond
emotional expressions, Bousmalis et al. [18] tried to deal with two conversational
expressions such as agreement and disagreement. In addition, McDuff et al. [19]
developed an algorithm that is able to infer valence labels of continuous facial action
sequences in unsegmented videos. However, most studies to date are based on rather
constrained lab-settings and usually work only for a few kinds of facial expressions
(mostly the six basic emotional expressions).

7.4 Database for Cross-Cultural Research

In order to conduct either cognitive neuroscience-related or computational research
on conversational facial expressions, a suitable database is needed as a resource.
Even when focusing on the six universal expressions, a large percentage of existing
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databases consists mainly of peak frames of expressions (i.e., static images) that do
not contain dynamic movements. Indeed, several studies have shown that dynamic
processing of facial expressions is different both in terms of behavioral (i.e.,
recognition accuracy [20]) and neuroimaging components [21]. Hence, the database
needs to support dynamic stimuli in order to provide ecologically valid data.

Furthermore, when thinking about the broad range of human communication,
there is a lack of databases containing conversational expressions. For this reasons,
a few years ago we recorded the MPI facial expression database [22] that contains
video sequences of both emotional and conversational facial expressions. Recently,
we complemented this resource with a Korean equivalent: the KU facial expression
database [23] that was developed with the exact same protocols than the German
version. The MPI facial expression database has a total of 55 different facial
expressions performed by 20 native Germans, whereas the KU facial expression
database contains 55 plus 7 additional (D62) facial expressions performed by 20
native Koreans. The actors were recorded with three high-resolution video cameras
yielding different points of view.

In order to ensure a good compromise between fully scripted (but potentially
posed and unnatural) and unscripted (natural, but non-controlled) expressions, we
employed a method-acting protocol during the recordings. For this, the experimenter
read a developed scenario containing a short description of an event to the actor and
asked them to imagine themselves in the scenario and to react accordingly. This
process was repeated three times to yield three repetitions of each expression. The
scenarios were designed to accommodate a large range of different emotional and
conversational contexts. Importantly, the scenarios were designed with a conceptual
hierarchy in mind: for example, there are many types of smile (pure smile, sad
smile, reluctant smile, flirtatious smile, : : : ) or many types of agreement (pure
agreement, considered agreement, reluctant agreement, : : : ). Indeed, for many types
of expressions we were able to find a hierarchical structure. The full list of
expressions and scenarios can be found in [22].

The resulting databases comprise two large (>20,000 video sequences), fully
compatible datasets recorded in different cultural contexts. Examples for three
different expressions are shown in Fig. 7.1.

After developing the databases, there was a validation step with both databases
using German and Korean participants: for this, video sequences from each database
were given to each group of participants, and each participant was asked to name the
expressions corresponding to each video sequence using less than 4 words. Three
independent raters then rated the answers as valid or invalid given the scenario
descriptions. Using the most conservative criterion that a sequence is only rated
as valid if it is approved by all three raters, on average, the MPI database and the
KU database yielded 60 % and 57 % valid sequences, respectively. Using a less
strict criterion of 2 out of 3 raters, we found validity scores of 71.5 % and 66.1 %,
respectively.
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Fig. 7.1 Examples of the MPI (left) and KU (database) for three expressions. Note the consider-
able variation among individuals that is visible even in the static peak frames depicted here

7.4.1 Cognitive Study

We now turn to the first (cognitive) aspect of the present chapter in which we
use the two databases to investigate the underlying dimensions of the complex
space of emotional and conversational expressions in a cross-cultural context. For
the experiments, 540 video sequences from the MPI facial expression database
and 620 video sequences from the KU facial expression database were used as
stimuli. Each group of stimuli contains expressions from 10 actors (MPI: 54
expressions of 10 actors, KU: 62 expressions of 10 actors). We conducted two
fully crossed experiments across two countries, recruiting two participant groups
in both Germany and Korea. For all experiments, we recruited only native German
and Korean participants, where care was taken to control for exposure to the
non-native cultural background (i.e., Asian/Korean for German participants, and
Western/German for Korean participants). A total of 42 German participants and
44 Korean participants were recruited for this experiment.

The experiments consisted of a free-grouping task. Each group of participants
received either 540 videos of the MPI facial expression database, or 620 videos of
the KU facial expression database as video files in random order. Participants were
then asked to group the expression sequences (i.e., to watch the video sequences and
to move them into folders that they created one-by-one). There were no restrictions
as to the number of clusters or the number of sequences in each cluster. In order to
analyze the data, we generated confusion matrices for each of the four participant
groups. Each confusion matrix tallies how often each expression was grouped
with other expressions. With these matrices we then performed multidimensional
scaling to identify the underlying topology and dimensionality of the resulting facial
expression space.

The confusion matrices (see Fig. 7.2) showed similar structure for both databases
as shown by the overall similar pattern: for example, the patterns for expressions
belonging to the expression groups of “agreement” (expression labels starting with
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Fig. 7.2 Confusion matrices for the four participant groups. Blue indicates similarly grouped
expressions, whereas red indicates dissimilarly grouped expressions

“ag” in Fig. 7.2), “disagreement” (labels starting with “disag” in Fig. 7.2), and
“thinking” (labels starting with “re” in Fig. 7.2) were seen as quite similar in all
confusion matrices from German and Korean participants. In contrast, the data
tended to yield more confusions for non-familiar cultural judgments: expressions
belonging to the basic-level groups of “smiling” and “happiness” showed more
confusion for cross-cultural (i.e., Korean-German Grouping or German-Korean
Grouping in Fig. 7.2) than for within-cultural judgments.

Multidimensional scaling was then used to examine the first two dimensions of
the low-dimensional embedding of the grouping data (see Fig. 7.3). Comparing
the positions of the expressions located at the outsides of the space (e.g.,
for the KU facial expression database “eva”D evasive, “impr”D impressed,
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Fig. 7.3 Two-dimensional MDS solutions obtained from the four confusion matrices shown in
Fig. 7.2

“smfli”Dflirting smile, “bot”D bothered, and for the MPI facial expression
database “emb”D embarrassed, “paf”D pain felt, “smsa”D sardonic smile,
“bot”D bothered), we can see how similar the two reconstructed spaces are for
each database. In addition, when comparing the KU and MPI databases, we can
clearly see that expressions of the “smiling”-group (expressions starting with “sm”)
are located on the left side, whereas expressions such as anger (“ang”) or bothered
(“bot”) are located on the right side of the plot. Hence this dimension recovered by
the multidimensional scaling analysis corresponds to valence (positive-negative).
A similar analysis reveals that the top-bottom dimension is that of arousal (weak-
strong). Importantly, these dimensions are robustly recovered for both databases and
both groups of participants. This shows that whereas there are differences between
cultures (and to some degree, between databases), the overall structure of the space
of facial expressions can be robustly explained by the two dimensions of valence
and arousal.
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Fig. 7.4 Dendrograms from hierarchical clustering of the four participant groups. The expressions
clustered in the two big groups mostly consist of positive expressions for the red cluster and
negative expressions for the green cluster. The biggest difference appears for the German-German
grouping, in which the “agree”-expressions (labels starting with “ag”) get grouped into the green
cluster, which does not happen for the other grouping datasets

In addition, we employed bottom-up hierarchical clustering (using the Ward-
criterion) to produce a clustering view of the data. Interestingly, when looking at
the resulting four dendrograms, all expressions are divided into two big clusters
at the first level for the four participant groups: these clusters include for the most
part valence-positive (red) and valence-negative (green) expressions (see Fig. 7.4).
Furthermore, the clusters on lower levels of the hierarchy re-produce our own
conceptual hierarchy well: in most cases, agree, disagree, and thinking expressions
receive their own cluster, for example. Hence, this clustering indirectly validates
the hierarchical structure of conversational expressions that we used also during
recording and design of the database.

7.4.2 Computational Study

Closer inspection of the two databases mentioned above shows that for many
types of expressions there was considerable inter-person-variability – despite clear
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interpretability by human observers. Such variability will present a challenge for
computational approaches. In addition, the number of categories (>50) is another
issue that learning algorithms would need to deal with.

In the following, we present a computational recognition framework that tries to
address these issues by using a powerful graphical sequence modeling approach:
Latent Dynamic Conditional Random Fields (LDCRF). We train and test this mod-
eling approach on the MPI database in the present chapter. For the computational
experiments, we used expressions from 10 actors and took the first repetition as
training data, and the second and third repetition of each expressions as testing data.

Importantly, we know that the structure of conversational facial expressions
is hierarchical; for example, the expression of ‘considered agreement’ has two
sub-expressions (considering and agreeing). In fact, these two sub-expressions
can be shared across a wider range of expressions, since the “considering” part
can also equally lead to a considered disagreement (another expression in the
database) or simply stop without continuing (to yield thinking/considering, yet
another expression in the database).

This observation also was the motivation for choosing LDCRFs for our task.
Traditionally, Hidden Markov Models (HMMs) have often been used to model
dynamic expressions. However, in order to predict the multiple categories of conver-
sational expressions, Conditional Random Fields (CRFs) are more suitable because
observations and latent states may follow conditional distributions. Furthermore,
LDCRFs as an extension of CRFs are necessary since the hidden states (or latent
factors) in LDCRFs are able to represent the required sub-expression dynamics
discussed previously. Here, we compare the recognition performance of CRFs and
LDCRFs in particular.

Both algorithms work on feature vectors extracted from the video sequences of
the MPI facial expression database using the Computer Expression Recognition
Toolbox [24]. The feature vectors include the intensity of 19 core facial action units
as well as 3D-head rotations (yaw, pitch, roll). The result of tracking is used to
automatically generate frame-wise labeling information. Since a manual annotation
of each frame (as required by the CRF/LDCRF algorithms’ training stage) would be
a lot of work, we first set the intensity of the neutral expression (that by definition
consisted of the first frame of each video sequence) based on the extracted feature
vectors as the baseline. Each subsequent frame was then set as a non-neutral frame
of the corresponding expression label, depending on a simple threshold difference
to the neutral frame.

To compare the two algorithms (CRF and LDCRF), we chose to focus on six
different expressions (considered agree, disagree, disgust, sad, I don’t care, and
happy laughing). Note that the sharing of sub-expressions here also would work
in favor of the LDCRF, since sharing can of course also happen across the different
actors. Accordingly, although the training time for LDCRF is longer the recognition
rate is significantly higher than that of CRFs (88.6 % versus 77.1 %).

As an extension, we compared the previously mentioned human data with trained
CRF models on all expressions. We compared confusion matrices that show how
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Fig. 7.5 Confusion matrices for computational (CRFs) and behavioral data (German-German
grouping)

Fig. 7.6 Dendrograms for computational (CRFs) and behavioral test (German-German grouping).
Note the similarity in the two larger (red and green) clusters between the two dendrograms – again,
smiling expressions (expressions starting with “sm” or “ha”) are split off first for both methods.
Note, however, that clusters at lower levels of the hierarchy have differences. Cf. also Fig. 7.4 for
human data

frequently expressions were confused with each other from both behavioral data and
a simple computational test with the CRF models. The result is shown in Fig. 7.5.
Although there are differences in the details, both matrices show a similar structure:
for example, the clear block patterns in which “smiling” and “happy” categories
are often confused is visible for both human and computational data (highlighted in
Fig. 7.5).

This similarity is also visible in the hierarchical clustering, when comparing
behavioral with computational data (see Fig. 7.6): again, the larger two clusters split
off the smiling (valence-positive) expressions first. At the lower levels, however,
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differences start to appear: agree, and disagree expressions, for example, do not get
grouped together in the computational clustering, whereas they clearly do in the
behavioral data (see Fig. 7.4).

Overall, these results imply that relatively simple graphical models of computa-
tionally extracted features are able to replicate some broad-scale patterns of human
performance.

7.5 Discussion

Using two large databases from two different cultural contexts, we first investigated
cross-cultural perception of facial expressions – using expressions containing not
only emotional, but also conversational aspects of facial expressions shown as
dynamic data. We conclude that although expressions from a familiar background
are more effectively grouped (i.e., less confused), the evaluative dimensions for
both German and Korean cultural contexts are exactly the same, showing that
cultural universals exist even in this complex space. The next step will consist of
running rating experiments on a variety of conceptual scales to correlate the implicit
dimensions obtained here (valence and arousal) to that of explicit judgments. Addi-
tional research will be conducted to extend this experiment to a larger participant
base using crowd-sourcing to investigate different cultural backgrounds as well as
dimensions of age.

For the computational study, we showed that since conversational expressions
contain a hierarchical structure, modeling that takes into account this structure
(LDCRF) shows a considerable advantage in recognition rates even on the smaller
number of expressions tested here. In addition, we showed that the graphical models
such as conditional random fields yield confusion patterns similar to those of human
grouping on a broad scale. Future research will need to use more data from the
full database (20 actors) to develop better models of facial expressions. Since such
training is very costly at present with the extended CRF models, more efficient
training algorithms will need to be developed as well to cope with the large amounts
of data.
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Chapter 8
Bottom-Up Processing in Complex Scenes: A
Unifying Perspective on Segmentation, Fixation
Saliency, Candidate Regions, Base-Detail
Decomposition, and Image Enhancement

Boyan Bonev and Alan L. Yuille

Abstract Early visual processing should offer efficient bottom-up mechanisms
aiming to simplify visual information, enhance it, and direct attention to make
high-level processing more efficient. Based on these considerations, we propose
a unified approach which addresses a set of fundamental early visual processes:
segmentation, candidate regions, base-detail decomposition, image enhancement,
and saliency for fixations prediction. We argue that for complex scenes all these
processes require hierarchical segmentwise processing. Furthermore, we argue that
some of these visual tasks require the ability to decompose the appearance of
the segments into “base” appearance and “detail” appearance. An important, and
surprising, result of this decomposition is a novel method for successfully predicting
human eye fixations. Our hypothesis is that we fixate on segments that are not easy
to model, e.g., are small but have a lot of detail, in order to obtain a higher resolution
representation for further analysis. We show performances on psychophysics data on
the Pascal VOC dataset, whose images are non-iconic and particularly difficult for
the state-of-the-art saliency algorithms.

Keywords Bottom-up visual processing • Image segmentation • Base-detail
decomposition • Saliency

8.1 Introduction

Low-level vision is visual processing that treats images as patterns and makes no
specific assumptions about the objects that might be present or the structure of
the scene. In short, the processing is generic and intended to be suitable for all
images, regardless of their semantic content or high level layout. Examples of
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Fig. 8.1 We propose a unified approach for several low-level visual processes: (a) image
segmentation – a hierarchy of image partitions at multiple levels; (b) candidate regions – a pool
of possibly overlapping proposals for further study by object recognition methods (best candidates
illustrated); (c,d) “base-detail” decomposition – expressing the image as the sum of a non-local
smooth appearance term and s residual, or detail, which captures the texture patterns; (e) image
enhancement – controlling the amount of detail in the image; (f) saliency for fixations prediction –
a model predicting bottom-up human visual attention

low-level vision tasks include segmentation, candidate regions or object proposals,
and image enhancement. Low-level processing is typically performed in preparation
for high-level tasks, and is used to allocate computational resources for more
detailed processing. In mammalian visual systems low-level vision is believed to
be performed in the retina and area V1 of the visual cortex.

In this paper we propose a unified framework for several low-level vision tasks
(Fig. 8.1) that are typically modeled separately. These tasks include the generation of
hierarchical image segmentations, proposing candidate regions for object detection
and recognition, base-detail decomposition – where an image is decomposed into a
visual summary plus fine details – image enhancement and the prediction of human
eye fixations.

We start by producing a hierarchical decomposition of the image into segments
which have roughly uniform homogeneity as measured by texture and color
cues. Segments at higher levels of the hierarchy are generally larger and less
homogeneous. But in our approach, it is important that the size of segments within
each level of the hierarchy have different sizes because some image regions (e.g.,
sky) are much more homogeneous than others (e.g., a road containing several cars).

Different segments of the hierarchy are combined into groups of up to three to
make proposals for the positions and shapes of objects and background “stuff” [10],
which we refer to as candidate regions. They consist of a pool of 500–1500 regions
which are later evaluated by a high-level method, which is out of the scope of this



8 Bottom-Up Processing in Complex Scenes: A Unifying Perspective. . . 111

paper. The high-level method computes category-specific scores to identify regions
which correspond to object or background categories.

We define “base-detail” decomposition as the separation of the image into a
coarse description of the image appearance, and a description containing the texture
and details. The image is the sum of both. More precisely, the base is obtained
by fitting smooth appearance models (polynomials) to the image segments and
the detail is the residual. For examples, see Figs. 8.1c, d and 8.8. This base-detail
decomposition enables us to process the image in several ways, such as enhancing
the details and/or the base. For example, we can remove the shadows (details)
from a grass lawn (base). Surprisingly, as we now discuss, we can use base-detail
decomposition to predict human eye fixations for free viewing.

It is well known that when humans examine an image they do not gaze on it
uniformly but instead they fixate on certain parts of the image. The fixation saliency
model we propose favors small segments which have strong details. This has the
following intuition: large segments are typically homogeneous regions (e.g., sky,
water, or grass) which may be easily processed (i.e., classifying these regions may
be easy using methods which use summary image statistics and do not model the
detailed spatial relations). The detail is less important in the large segments but in
small segments the detail may correspond to structures which require more detailed
models to process. We describe experiments showing that our fixation saliency
model predicts human fixations with a state-of-the-art performance on complex
datasets, like Pascal [17] and Judd [31].

Our work is motivated both by attempts to understand how primate visual
systems work and by efforts to design computer vision systems with similar abilities.
We provide a computational model for performing these visual tasks but in this
paper we do not develop any detailed biological evidence for this theory. Instead we
concentrate on performance on complex visual scenes, instead of artificial stimuli,
because we think it is important to model visual abilities in real-world conditions.

8.2 Background and Related Literature

There is an enormous literature on segmentation much of it using Markov Random
Field (MRF) models [22]. Our work follows the alternative strategy of decomposing
images into subregions which have roughly similar statistical image properties
[1, 33, 45, 52]. There are a variety of hierarchical approaches which exploit the
intuition that image structures occur at different scales and that multi-scale is
required to capture long-range interactions within the images [19, 53]. Our approach
to hierarchies follows the strategy of starting with an over-segmentation of the
image, produced by an efficient algorithm like [1], followed by recursive grouping
to get larger segments at different levels of the hierarchy [4]. This relates closely to
Segmentation by Weighted Aggregation [20], a recent variant [3], and extensions to
video segmentation [48].
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Detecting candidate regions, which make proposals for the positions and sizes
of objects, is a new but increasingly important topic in computer vision. This
is because it offers an efficient way to apply powerful methods, such as Deep
Convolutional Neural Networks (DCNN) [34], to detect and recognize objects in
images. Instead of needing to apply DCNNs exhaustively, at every image position
and scale, it is only necessary to apply them to a limited number of candidate
regions. Our method for detecting candidate regions differs from existing methods
because we propose regions for both objects and background regions or “stuff”
(e.g., sky). Recent work on detecting candidate regions includes methods which
group segments into combinations [5, 6]. Most methods in the literature have been
evaluated for finding segments which cover foreground objects [46], while ours
detects background classes as well. Finally, there are other methods which differ in
that they mainly exploit the edges instead of the appearance statistics [15, 29, 55].
We should also mention hierarchical segmentation which has been used to learn
models of objects [43].

There is no existing work that directly addresses “base-detail” segmentation, but
there is a large literature on closely related topics. In the digital image processing
community there is a related concept, “base-detail separation”, but it is performed
locally [7] by applying bilateral filters. A related topic is gain control which has
been studied in primate visual systems, particularly in the retina, and seeks to
compress the dynamic range of the input intensity while preserving the local contrast
and detail [14, 42]. We note that detection of detail is also at the heart of many
super-resolution methods [54] and it is related to image enhancement. Enhancement
approaches do not typically use segment-based methods [25, 41] and instead use
local methods like the bilateral filter in [7] or the weighted least squares [18]. There
are some exceptions, like [49] where segment-wise exposure correction is proposed.

Another related topic is work in the shape from shading community, where
intensity patterns are decomposed into smoothly varying shading patterns and more
variable texture/albedo components [9, 26, 27] (here the base roughly corresponds
to the shading and the texture/albedo to the detail). Researchers in shape from
shading make prior assumptions for performing the decomposition into shading and
texture/albedo [8] (which are not needed if the same object is viewed under different
lighting conditions [47]). Similar decompositions assumptions are also applied to
the classic Mondrian problem [32].

Predicting human eye fixations is a long studied research topic [30]. In this paper
we address only bottom-up saliency prediction, as performed in a free-viewing
task, and do not consider top-down processes involving which involve cognitive
factors, e.g., eye fixations when performing a task such as counting the animals in
an image. One of the first successful methods for predicting human eye fixations
was Itti’s original model [30]. Image signature is a simple method which give good
results [28] and other recent methods are reviewed in [11]. The most successful
current method is Adaptive Whitening Saliency [21] and we make comparisons to it
in our experiments. Finally, there are other works [37, 38] which studies the saliency
of visual objects and use candidate regions to make predictions [13]. Objects are
judged to be salient based on the number of eye fixations which occur within them.
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By contrast, fixation saliency only predicts positions and outputs a fixations map
(in Sect. 8.4.3, see Fig. 8.16, second column). The eye fixation saliency models
we propose is based on base-detail decomposition, which makes it substantially
different from any method in the literature. Our experiments show it performs at the
state of the art.

Finally, although biology is out of the scope of this paper, we find it interesting
that recent biological vision studies suggest that early visual processing is more
sophisticated than traditional models of the retina and V1, which mainly emphasize
linear spatiotemporal filters. For example, studies of the retina suggest that it
is “smarter than scientists believed” [23] and contains a range of non-linear
mechanisms which might perhaps be able to implement parts of the theory of
theory we propose here. Moreover, there is growing appreciation of the richness
of computations that can be performed in area V1 of the visual cortex, including
possibly fixation saliency [51].

8.3 Method

In this section, we describe the details of the proposed approach. We address a set of
fundamental low-level vision processes: segmentation, candidate regions and salient
objects proposals, base-detail decomposition, image enhancement, and bottom-up
saliency. Instead of being treated as separate tasks, we address them in terms of a
unified approach of bottom-up vision processing.

8.3.1 Segmentation: Hierarchical Image Partitioning

Image segmentation is a classic task of low-level vision. But in this paper we do
not consider segmentation as a goal in itself. Instead, we seek to obtain a hierarchy
of segmentations, or partitions of the image into segments, which can be used as
components for other processing, as will be described in the next subsections.

An image partition is a decomposition of the image into non-overlapping
subregions, or segments. More formally, we decompose the image lattice D into
a set of segments fDi W i D 1; : : : ; ng such that:

D D
n[

iD1

Di; s:t: Di

\
Dj D ;; 8i ¤ j:

A hierarchical partition of an image is a set of decompositions indexed by hierarchy
level h D 1; : : : ; H. Each level gives an image partition D D Snh

iD1 Dh
i , where nh is

the number of segments in the partition at level h. The decompositions are nested
so that a segment Dh

i at the hierarchy level h is the union of a subset of segments
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Fig. 8.2 Left: Multiple levels in a hierarchy. Segments with a good coverage of objects or parts
may happen at different levels. 80 % to 90 % of the segments can be discarded because they go
across boundaries of objects or because they don’t cover a large area of an object. Right: Segments
at level h C 1 are composed of one or two segments in level h

at the previous level h � 1, so that Dh
i D

S
j2Ch.Dh

i / Dh�1
j , where Ch.Dh

i / denotes
the child segments of segment i at level h (in this paper each segment is constrained
to have at most two immediate children, see Fig. 8.2-right). This enables us, by
recursion, to express a segment in terms of compositions of its descendants in many
different ways. In particular, we can decompose a segment into its descendants at
the first level, Dh

i D
S

j2Des.Dh
i / D1

j . This hierarchical structure is common in the
segmentation literature, for example in [4]. Figure 8.2 illustrates the hierarchical
partitioning of an image.

In this paper, our hierarchical partitioning is designed based on the following
related considerations. Firstly, we prefer segments to have roughly homogeneous
image properties, or statistics ES (e.g., color/texture/detail) at each level, which
means that segments at the same level can vary greatly in size (e.g., segments
on the grass in Fig. 8.2 will tend to be larger than in less homogeneous regions
of the image, like the dog). Secondly, segments at higher levels should be less
homogeneous because they are capturing larger image structures (e.g., by merging
more homogeneous image structures together). Thirdly, segments are likely to have
edges (i.e., image intensity discontinuities) near their boundaries. Fourthly, we want
an efficient algorithm which can dynamically compute this hierarchy using local
operations by merging/grouping segments at level h�1 to compose larger segments
at level h.

Our work is guided by standard criteria for image segmentation [33, 45, 52]
which propose minimizing a cost function of form:

E.fDig; fESig/ D
X

i

X
x2Di

jESi � ES.x/j2 � �
X

i

X
x2@Di

e.x/: (8.1)

Here ES.x/ denotes image statistics at position x (e.g., color, texture features), ESi

is summary statistics of the region i, � is a non-negative constant, and e.x/ is a
measure of edge strength (taking large values at image discontinuities), and @Di is
the boundary of segment Di.
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We initialize our algorithm by using the SLIC [1] algorithm to compute the
lowest level, h D 1, of our hierarchy. Essentially, SLIC performs an expectation-
minimization of (8.1) for a fixed number n1 of segments. It uses the color and
position as statistics, without including an edge term, that is, � D 0 in (8.1). More
precisely, ES.x/ D .l.x/; a.x/; b.x/; x/, where l; a; b specify color channels of the Lab
color opponent space and x denotes 2D spatial position.

Next, we proceed to construct the hierarchy by grouping/merging segments
which have similar image statistics. The statistics are extended to include texture,
shape of segments, and the variance of color (we do not use these statistics at
the bottom-level because the segments are too small to compute them reliably).
More precisely, ES is given by the mean and the standard deviation of the Lab
color space components and the first and second derivatives of the l channel,
.l; a; b;rxl;ryl;r2

x l;r2
y l/, the centroids of the segment and dimensions of its

bounding box .cx; cy; dw; dh/. When performing merging, we use an asymmetric
criterion which requires comparing the difference between the statistics of the union
of the two segments i and j, ESi

S
j, and the statistics of its segments ESi; ESj, that

is, jjESi
S

j � ESijj and jjESi;
S

j � ESjjj. This is because our segments are allowed to
have different sizes and we want to discourage bigger segments from merging with
smaller segments if this will change much the statistics of one of them. Intuitively,
a big segment is likely to have little change on its statistics by merging to a small
one, but we want to ensure that the small one does not undergo a big change in its
statistics. At each level of the hierarchy we allow the top-ranked 30 % segments
to merge to another segment (rank is based on asymmetric criterion described
above and prioritizes similar segments) but prevent merges where the asymmetric
condition is violated. Merging is allowed between 1st and 2nd neighbors only. The
precise details are described in [10].

The output is a hierarchical partition of the image. It is expressed as a set of
segments fDh

i g; 1 � h � H; 1 � i � nh, where h is the hierarchy level. At the

highest level, nH D 1. Each image region Dh
i and has statistics ESh

i . Each level h
gives a partition of the image D D Snh

iD1 Dh
i . Each segment is composed of a set

of child segments, Dh
i D

S
j2Ch.Dh

i / Dh�1
j . Each segment can also be associated to

its descendant segments at the h D 1 level: Dh
i D

S
j2Des.Dh

i / D1
j . This hierarchical

partition can be used directly for image segmentation but, in the spirit of this paper,
we think of it as a representation that can be used to address several different visual
tasks as we will describe in the next few sections.

8.3.2 Candidate Regions

This section shows how to use the hierarchical partition to obtain candidate regions,
or proposals, for both foreground objects and background regions, or “stuff” (e.g.,
sky, water, grass). Proposing candidate regions enables algorithms to concentrate
computational resources, e.g., deep networks, at a limited number of locations (and



116 B. Bonev and A.L. Yuille

sizes) in images (instead of having to search for objects at all positions and at all
scales). It also relates to the study of salient objects [2, 37], where psychophysical
studies show that humans have tendencies to look at salient objects [16]. Note that
salient objects, however, do not predict human eye fixations well [12] and these can
be better described by bottom-up saliency cues [30] in a free-viewing task. However,
methods that combine bottom-up saliency cues with proposals for candidate regions
do perform well for both predicting human eye fixations and for the detection of
salient objects [38].

We create candidate region proposals by the following strategy. Firstly, we select
a subset of selected segments from the hierarchical partition of the image. These
segments are chosen to be roughly homogeneous but as large as possible. Secondly,
we make compositions of up to three selected segments to form a candidate region.
These compositions obey simple geometric constraints (proximity and similarity
of size). The intuition for our approach is that many foreground objects and
background “stuff”, can be roughly modeled by three segments or less, see Fig. 8.4.
This intuition was validated [10] using the extended labeling of Pascal VOC [40]
which contained per-pixel labels of 57 objects and “stuff”.

The selected segments are chosen by computing the entropy gain of the
combination of two child segments into their parent segment. If the entropy gain
is small, then we do not select the child segments because this is evidence that they
are part of a larger entity. But if the entropy gain is large, then we add the child
segments to our set of selected segments. More precisely, we establish a constant
threshold G for the entropy gain g after merging two segments Dh

i ;Dh
j into their

parent DhC1
m D Dh

i

SDh
j . The entropy gain is defined to be:

g D H.DhC1
m /� ˚H.Dh

i /CH.Dh
j /
�

: (8.2)

Here H.Dh
i / is the entropy of a segment i at level h, computed from the statistics

fES1
kg; k 2 Des.Dh

m/ of its descendant segments at level h D 1 (Fig. 8.3). The entropy
is computed in a non-parametric manner [10] using the approximation proposed
in [35]. See an example of triplets of selected-segments in Fig. 8.4.

Fig. 8.3 Entropy gain (Sect. 8.3.2): When segments a and b are merged, the increase of entropy
is not as big as if they were merged with c. Homogeneity criterion (Sect. 8.3.3.1): Segment c is
homogeneous. It presents smooth variation due to shading and lighting. Segments a and b are
not homogeneous. Both entropy and homogeneity are calculated from the small (first level D1

i )
segments, illustrated with white contours
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Fig. 8.4 Examples of candidate regions for foreground and background regions. Left-to-right and
top-to-bottom: image, top three selected-segments for left car, right car, person, building, grass,
ground, trees, and ground truth. Most objects are covered well by two to three selected-segments

8.3.3 Base-Detail Decomposition

This section analyzes the image intensities within the segments by decomposing the
image into base and detail. The base B.x/ component is the approximate color of
the region, and is required to be spatially smooth. The detail R.x/ is the residual
R.x/ D I.x/� B.x/ and can contain general texture, such as the patterns of grass on
a lawn, or structured detail such as the writing on the label of a wine bottle.

Base-detail relates to several well studied phenomena. Firstly, it is similar to
the task of preserving image contrast (i.e. the detail) performed by the early visual
system when doing gain control. Secondly, it relates to the decomposition I.x/ D
a.x/ � En.x/ � Es.x/ of images into albedo, normals and illumination when computing
intrinsic images or the 2.5D sketch. But this decomposition is higher-level, relying
on concepts like geometry and lighting sources, while we are modeling at a lower
level. We note that in some special situations the base and the detail of a segment
may correspond to the shading and the albedo of an object. Thirdly, base-detail also
relates to transparency – e.g., the viewing of images through a dirty window (the
dirt is the detail) – or when there is partial occlusion like tree leaves in front of
a building (leaves are details). More generally, within image regions there is base
appearance which changes smoothly within segments and detail which changes in a
more jagged manner. This differs from the base-detail separation [7] studies in the
image processing literature, which is obtained by local smoothing methods and not
in a segment-wise manner.

We address base-detail decomposition in two steps. Firstly, we seek a segmenta-
tion of the image into regions which are as homogeneous and as large as possible.
This is done by selecting a subset of those hierarchy segments fDh

i g which are
maximally large and homogeneous and form a partition of the image. Note that
this includes segments at different levels h of the hierarchy. Secondly, within each
segment we fit a low-order polynomial to the color intensities and define the best fit
polynomial to be the base (see Sect. 8.3.3.2). We obtain the detail by computing the
residual between the image and the base.
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8.3.3.1 Finding Maximally Large Homogeneous Segments

Here we present a criterion for selecting non-overlapping segments from the
hierarchy (while in Sect. 8.3.2 we presented a way to select overlapping segments
from the hierarchy). We start from the segmentation hierarchy fDh

i g defined in
Sect. 8.3.1. We define the heterogeneity of a segmentDh

i by the maximum difference
of the statistics of its neighboring descendant nodes at level h D 1. More precisely,
we define the heterogeneity of segment Dh

i to be:

max
j;k2Des.Dh

i /

jjES1
j � ES1

k jj; 8 dG.j; k/ � 2; (8.3)

where dG.j; k/ is the graph distance between j; k at level h D 1 (i.e., we evaluate only
the 1st and 2nd neighbors). This criterion considers homogeneous those segments
whose statistics at level h D 1 change smoothly across the segment. This typically
happens in large segments like sky, roads, animals. Heterogeneous segments will be
those which have an abrupt change in their statistics.

We then fix a threshold tmax and generate an image partition

ptmax.I.x// � fDh
i g; (8.4)

containing the biggest segments whose heterogeneity is less than tmax. This can be
done by starting at the top-level h D H, keeping any node whose heterogeneity
is less than tmax, proceeding to the child nodes otherwise, and continuing down
the hierarchy until we reach levels where the heterogeneity threshold is achieved.
Thus, the result is a set of non-overlapping segments covering the whole image
space. Note that this is different from the entropy gain criterion used in Sect. 8.3.2,
which allows to select overlapping segments, as interesting structures can happen at
different levels (e.g., windows as a subpart of house).

8.3.3.2 Base Modeling and Detail

We assume that the image can be expressed as I.x/ D B.x/ C R.x/ where x is
2D position, B.x/ is base and R.x/ is detail (residual of the base). Both of them
include all image channels. We assume that the base is spatially smooth within each
maximally large homogeneous segment and, in particular, that its color intensity can
be modeled by a low-order polynomial. We make no assumption about the spatial
form of the detail. (Note that for intrinsic images it is typically assumed that the
shadows are spatially smooth while the texture/albedo is more jagged.)

More precisely, we define the base color of a segment by a polynomial approx-
imation bk.Exi; E!/ of order k, where k � 3. See examples in Fig. 8.5. We apply the
polynomial approximation on each channel separately. The number of parameters
E! depends on the order of the polynomial and we use model selection to decide the
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Fig. 8.5 Examples of polynomial base approximations. Left: original. Center: 0-order approxima-
tion (i.e., mean). Right: 0-order to 3rd-order approximation

order for each segment (we must avoid fitting a high-order polynomial to a small
segment). These polynomial approximations are of form:

bk.Ex; E!/ D ExT E!; (8.5)

k D 0 W Ex D 1; E! D !0

k D 1 W Ex D Œ1; x1; x2�; E! D Œ!0; !1; !2�

k D 2 W Ex D Œ1; x1; x2; x2
1; x2

2; x1x2�; E! D Œ!0; � � � ; !5�

k D 3 W Ex D Œ1; x1; x2; x2
1; x2

2; x1x2; x3
1x3

2; x1x2
2; x2x2

1�; E! D Œ!0; � � � ; !9�

The estimation of the parameters E! of the polynomial is performed by linear
least squares QR factorization [24]. The order k is selected based on the error,
with a regularization term biasing towards lower order. See Fig. 8.6-right. The
regularization is weighted by 	, whose value is not critical (it is set to produce
models of all orders k, and not only k D 3). In a given segment we have a set of
pixels with 2D positions x and color intensity values Ic.x/. For a given channel c of
the segment Dh

i , we minimize:

min
E!;k

X

x2Dh
i

�
Ic.x/� bk.Ex; E!/

�2 C 	k: (8.6)
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Fig. 8.6 Different segments can have different polynomial order k. Left: original. Center: poly-
nomial base approximation. Right: order of the polynomial, where: dark-blue: k D 0, light-blue:
k D 1, yellow: k D 2; red: k D 3

Fig. 8.7 Example of detail (right image) in front of different appearance segments: sky, road, and
building

We estimate the base Bc.x/ of each color channel c for the whole image by fitting
the polynomial for each maximally large homogeneous segment. Then, we estimate
the detail to be the residual Rc.x/ D Ic.x/ � Bc.x/.

Our current method works well in most cases, see Fig. 8.7, but it is not
appropriate for segments where the amount of detail is similar to the amount of
base appearance. This happens, for example, for an image of a leafy tree with blue
sky behind it. Such situations require a more complex model which has a prior on
the details and allows the base to be fit by a more flexible function (but still smooth).

“Base-detail” provides a unified model for several visual tasks that are often
modeled separately. These include: (I) Elementary tasks such as gain control,
which converts the large dynamic range of luminances into a smaller range of
intensities which can be encoded by neurons and transmitted to the visual cortex.
A standard hypothesis is that it is performed by ganglion cells in the retina, by
Difference of Gaussian, or Laplacian of Gaussian [39], filters to preserve the contrast
while removing the base. From our perspective, the contrast is the detail. (II)
Decomposition of intensity into albedo and shading patterns as required by shape
from shading algorithms [26, 27] when used to construct the 2 1/2 sketch [39] or
intrinsic image [9]. The difference is that we do not estimate 3D geometry, noting
that intrinsic image models make strong assumptions about images which are often
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invalid (e.g., smooth intensity patterns can be due to light sources at finite distance
and not to the geometry of the viewed surface). (III) Separation of texture from
background. Here the detail represents the texture patterns, e.g., the blades of grass
while the base is a smooth green intensity pattern. (IV) Decomposing images into
frequency components. In this case, the detail is analogous to the high-frequencies.
But frequency analysis is based on linear analysis of images while our approach is
inherently nonlinear because it involves segmentation. (V) Image compression. Base
details suggests a strategy where the base efficiently encodes the rough appearance
and the detail encodes the rest. It captures the natural intuition that regions which
have a lot of detail are harder to compress.

8.3.4 Image Enhancement

We illustrate how base – detail decomposition can be used for image enhancement.
In Fig. 8.8-bottom, we plot B.x/ C #R.x/, for different # values, where # is a
parameter indicating the amount of enhancement. Another example is shown in
Fig. 8.9. Our approach opens the doors to segment-wise manipulation, which is
useful in common situations like when segments have different illumination.

Note that the widely used bilateral filter [44] is very local compared to our
segmentation-based approach. In Fig. 8.10 we show an example of base-detail
decomposition produced by bilateral filtering. For example, the top-right cloud in
the image cannot be separated as a detail by the bilateral filter, but it is successfully
separated as detail using our approach.

Fig. 8.8 Top: Original I.x/, base B.x/, detail R.x/, detail magnitude jjR.x/jj2 for better visualiza-
tion. Bottom: Base + detail B.x/ C #R.x/, with different amounts of detail, # D f0:5; 1; 2; 4g
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Fig. 8.9 Example of enhanced image. Weak details can be multiplied to become more visible with
respect to the base

Fig. 8.10 Limitations of bilateral filter. From left to right: Bilaterally filtered (BLF) image;
Residual (detail) of the bilateral filtering; Zoom-in of the residual; Zoom-in of the detail that our
segmentwise base-detail decomposition produces

8.3.5 Saliency

Images of three-dimensional scenes contains structure at different scales and
resolutions. Humans often need to foveate specific image locations to acquire higher
level of details. For example, a small image blob might correspond to a person
walking towards you and require further investigation. In this work we consider
only bottom-up attention where fixation saliency is used to predict the first few
seconds (3 s) of free-viewing of an image. The prediction consists of a probability
map which does not take order of fixation into account. (By contrast, in top-down
attention humans actively search for specific objects or scene structures.)

Our saliency model takes as input the base-detail decomposition Bc.x/; Rc.x/,
generated for a partition ptmax.I.x//, defined in (8.4), whose minimum homogeneity
threshold is tmax (Sect. 8.3.3). Note that candidate regions are not used here. Each
image pixel x is assigned to the segment i.x/ which contains it and we define
jDi.x/j D size.Di/; if x 2 Di, where fDi 2 ptmax.I.x//g are the segments of the
partition. Similarly, we evaluate each segment’s average detail and assign this value

to all pixel positions of the segment support, obtaining A.x/ D 1

size.Di/

X
z2Di

RA.z/

if x 2 Di. Here, RA.z/ is the mean of the detail’s nc D 3 color channels at position
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Fig. 8.11 From left to right: Maximum-channel detail RM.x/; segmentwise average detail A.x/;
segment size jDi.x/j; weight factor W.x/ D p

A.x/=jDi.x/ j; saliency.x/ D RM.x/Œ.1�
/W.x/C
�

Fig. 8.12 An illustration of how our saliency model penalizes the detail in large roughly-
homogeneous segments. The representation on the right is obtained by I0

c.x/ D Bc.x/CW.x/Rc.x/,
for each color channel c

z, that is, RA.z/ D 1
nc

Pnc
cD1 Rc.z/. We use the segment sizes and the segmentwise

average detail to weight the maximum-channel detail RM.x/ D maxnc
cD1 Rc.x/ (see

Fig. 8.11). The weight we propose is given by W.x/ DpA.x/=jDi.x/j.

saliency.x/ D RM.x/ Œ.1 � 
/ W.x/C 
� : (8.7)

Here, 
 is a small number, 
 D 0:15 in our experiments. It allows to keep a fraction
of RM.x/ unweighted. This is useful for pixels whose weight is close to zero, W.x/ �
0. The 
 parameter means that the detail R.x/ is never completely ignored.

Intuitively, we relate the detail (Fig. 8.11-left) to bottom-up saliency. However,
we penalize detail which belongs to large segments, without eliminating it com-
pletely (Fig. 8.11-right). An illustration of how an image would look like with
this kind of detail penalization is shown in Fig. 8.12. The use of the segment
size as an important saliency factor could be related to figure-ground pre-attentive
mechanisms in V1. In terms of V1 neuron responses, very small regions tend to
be highlighted against larger regions [50], but in this paper we do not address
neurophysiology.

Our hypothesis is that regions which cannot be described by a simple model
require foveation. This is the case of small regions with a lot of detail. The segments
that are less likely to require foveation are those which are fit well by a simple
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polynomial model (have little detail), as well as those which have detail but are
large. In the latter case, the detail is likely to be due to a texture pattern, e.g., grass.

Classical models (e.g., [30]) use multiscale processing. Instead of this, our
segment-based approach adapts to local scales of images. Also, unlike classical
models, we do not explicitly use neural mechanisms such as center-surround
receptive fields and lateral inhibition mechanisms. But it can be argued that base-
detail decomposition is implicitly accomplishing similar functions.

The proposed fixation saliency method predicts human fixations. Note that this
is different from salient object proposals. It is possible to link human fixations
predictions and candidate regions by machine learning, as shown in [38]. But in
this work we do not address this issue.

8.4 Experiments

In this section, we present results of the candidate region proposals (Sect. 8.3.2) and
the bottom-up saliency (Sect. 8.3.5) as a prediction of free-viewing human fixations.
Both of them are based on the bottom-up segmentation we propose (Sect. 8.3.1). The
fundamental theory behind the saliency method is the base-detail decomposition
(Sect. 8.3.3). We do not evaluate base-detail decomposition and image enhancement
because there is no natural way of doing it. We do not focus on image segmentation,
so we do not include experiments on it.

8.4.1 Datasets

Many of the classic datasets are biased because they were collected with a
specific purpose, i.e., for saliency experiments. They are mostly composed of
iconic photographs, presenting a clearly salient and centered object over a simple
background. But this is highly atypical of natural images, which typically include
many objects with complex relations and partial occlusions (humans rarely see
iconic images). Hence it arguably more realistic to study saliency on natural image
datasets such as Pascal, which has been one of the leading reference benchmark
in Computer Vision for the last years. Recently, Hou et al. [38] released the free-
viewing fixations of 8 participants on a subset of 850 images of Pascal (first 3 s). In
this subset we have an average of 5.18 foreground objects per image and an average
of 2.93 background objects. An extreme case is the rightmost image in Fig. 8.13,
which has 52 foreground objects, most of which are far from the center of the image.
A representative case is the third from the right image in Fig. 8.13, with 6 foreground
objects.

For our candidate regions experiments, we use a subset of 1,288 images of Pascal
VOC, for comparison with [6], as detailed in [10]. For the bottom-up saliency
experiments, we use the 850 images of Pascal-S which include human fixations. We
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Fig. 8.13 (a) Examples of iconic images from ImgSal [36]; (b) Examples from a non-iconic
dataset: Pascal VOC [17]

also experiment on the 1,003 images of the standard dataset Judd [31], which can
be considered non-iconic, although we have no statistics of the number of objects
or their distribution in the images.

8.4.2 Candidate Regions

In this section, we evaluate the coverage of our candidate regions. Initially, we
obtained an average of 116 selected-segments per image after selection and from
these we make an average of 721 combinations which constitute the pool of
candidate regions per each image. The evaluation metric is Intersection over Union
(IoU), which accounts the number of pixels of the intersection between a candidate
region and a groundtruth region, divided by the number of pixels of their union.

We evaluate the generated candidate regions with the 57-classes ground truth,
containing both foreground and “stuff” classes. We compare our Candidate Regions
(CR) to three state-of-the-art methods. (I) The classical Constrained Parametric
Min-Cuts (CPMC) [15] method is designed for foreground objects, which explains
its better performance on foreground objects. Their overall performance on the
57 classes is lower than our performance. (II) In [6], the segment combinations
are generated by taking combinations of the 150 segments (on average) that their
hierarchical segmentation approach outputs for each image. Their method is more
sophisticated than ours and we observe that they tend to get larger and less
homogeneous segments than we do. Our performance is lower but comparable:
74 % IoU versus 77 % for [6]. But we achieve it with nearly half the number of
combinations – 721 compared to 1,322 – and with a simpler and faster algorithm (4 s
per image in its Matlab prototype). In Table 8.1 we refer to their segments as UCM-
combs and to our candidate regions as CR-combs. (III) The Selective Search [46]
method is competitive in terms of speed. Our method outperforms theirs on the
region candidates task (74.0 % compared to 67.8 % IoU), with less than half the
number of proposals. (Note, however, that [46] present results for bounding boxes
and not for regions). See an example of the proposals generated by our CR-combs
method in Fig. 8.14. See Table 8.1 with the region-based IoU and recall results.
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Table 8.1 Region-based IoU (in %) comparison. CPMC [15], UCM [6], Sel. Search [46], and our
CR – candidate regions. Boldface denotes the first and second best results

All IoU Recall (%) # cands. Time (s)

CPMC 59:6 57:6 150 250

UCM-combs 77:0 80:0 1;322 850

Sel. search 67:8 66:1 2;100 4
Our CR combs 74:0 70:3 721 4

Fig. 8.14 Left-to-right and top-to-bottom: Original image, top three segments for bike, wall, snow,
rock, and ground truth. Note that the segments are good even for object classes that perform poorly
overall (e.g., bike)

8.4.3 Saliency

The fixation saliency method that arises from our unified approach predicts free-
viewing human fixations surprisingly well. Despite only accounting for saliency
within segments and not taking into account inter-segment saliency, our method
is among the highest ones in complex datasets like Pascal-S [38] and Judd [31].
Pascal is a particularly interesting case because state-of-the-art fixations methods
have low performance on it (perhaps because they were developed and tested for
iconic images). In Pascal our method outperforms the state of the art. On the Judd
dataset only AWS [21] outperforms our method.

In Fig. 8.15 we show a comparison of our Base-Detail Saliency (BDS) method,
Adaptive Whitening Saliency, AWS [21], Image Signature, SIG [28], and L. Itti’s
original model [30]. In Fig. 8.16 we show some examples for qualitative comparison
between the results of the different algorithms.

It is hard to determine the failure modes of our saliency algorithm. Our reliance
on segmentation may seem problematic. It is known that segmentation is an ill-
posed problem and no low-level segmentation algorithm exists that can reliably
detect the boundaries of objects without top-down assistance. But our approach
is more robust because we rely only on a proto-segmentation. Still errors in the
segmentation can cause errors in the base-detail decomposition which may cause
our approach to fail.
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Fig. 8.15 Bottom-up saliency performance. Left: Pascal-S dataset [38]. Right: Judd dataset [31].
Approaches compared: Our Base-Detail Saliency (BDS), Adaptive Whitening Saliency
(AWS, [21]), Image Signature (SIG, [28]), L. Itti’s original model (Itti, [30])

Fig. 8.16 From left ro tight: Original; Human – fixations collected on 8 subjects with free-viewing
task, first 3 s [38]; Itti’s original model [30]; Spectral signature [28]; AWS [21]; Our Base-Detail
Saliency (BDS) Bonev and Yuille

8.5 Conclusions

We propose a unified approach addressing a set of early-vision bottom-up processes:
segmentation, candidate regions, base-detail decomposition, image enhancement,
and saliency for fixations prediction.

Our unified approach allows the segmentwise decomposition of the image into
“base” and “detail”. This proves to be more versatile than a local smoothing of the
image. It provides directly for image enhancement, for a novel model of fixation
saliency. It is related to other vision topics which are usually formalized as different
problems.
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We show state-of-the-art results on our candidate regions and on our saliency
for free-viewing fixation prediction. For the latter we use the psychophysics data
available for the Pascal VOC dataset, which is non-iconic and particularly difficult
for the state-of-the-art saliency algorithms.
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Chapter 9
Perception-Based Motion Cueing: A Cybernetics
Approach to Motion Simulation

Paolo Pretto, Joost Venrooij, Alessandro Nesti, and Heinrich H. Bülthoff

Abstract The goal of vehicle motion simulation is the realistic reproduction of the
perception a human observer would have inside the moving vehicle by providing
realistic motion cues inside a motion simulator. Motion cueing algorithms play a
central role in this process by converting the desired vehicle motion into simulator
input commands with maximal perceptual fidelity, while remaining within the
limited workspace of the motion simulator. By understanding how the one’s own
body motion through the environment is transduced into neural information by the
visual, vestibular and somatosensory systems and how this information is processed
in order to create a whole percept of self-motion we can qualify the perceptual
fidelity of the simulation. In this chapter, we address how a deep understanding
of the functional principles underlying self-motion perception can be exploited
to develop new motion cueing algorithms and, in turn, how motion simulation
can increase our understanding of the brain’s perceptual processes. We propose a
perception-based motion cueing algorithm that relies on knowledge about human
self-motion perception and uses it to calculate the vehicle motion percept, i.e. how
the motion of a vehicle is perceived by a human observer. The calculation is possible
through the use of a self-motion perception model, which simulate the brain’s
motion perception processes. The goal of the perception-based algorithm is then to
reproduce the simulator motion that minimizes the difference between the vehicle’s
desired percept and the actual simulator percept, i.e. the “perceptual error”. Finally,
we describe the first experimental validation of the new motion cueing algorithm and
shown that an improvement in the current standards of motion cueing is possible.

Keywords Motion cueing • Motion perception • Self-motion • Simulation •
Model predictive control • Washout

When we move through the environment, our central nervous system (CNS) is called
upon to create a continuous estimate of the state of our own body with respect to the
world (i.e. its position, orientation and their derivatives). This perceptual process,
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generally referred to as self-motion perception, plays a crucial role in vital tasks such
as balance and locomotion. Not surprisingly, considerable research efforts have been
devoted to further our understanding of how the CNS integrates available sensory
information to create an internal representation of the physical bodily motion [7, 21].
These studies have provided great insight into how physical stimuli are transduced
into neural information by the visual, vestibular and somatosensory systems and
how this information is processed in order to create a percept of self-motion.
From experiments on human perception, theories and models are developed and
continuously improved, which have as ultimate goal to provide accurate descriptions
of the perception of the complex motion patterns experienced in everyday life.

A widely employed approach to the study of self-motion perception is the so
called Cybernetics approach. The term “Cybernetics” generally refers to the study
of those systems able to generate changes in their environment which, in turn, are
fed back to the system, altering its status and influencing future actions [39]. When
applied to perception, the Cybernetics approach considers the brain of biological
organisms as a complex control system where subcomponents can be isolated
and individually investigated. Experimental methods such as psychophysics are
employed to quantify the properties of human self-motion perception. Modelling
methods rooted in system theory are used to model how the brain infers a
representation of the physical world from sensory signals and generates actions
to successfully interact with it. In this perspective, the Cybernetics approach, the
psychophysical methods and behavioral measurements described in this chapter
are powerful tools for Cognitive Engineering to investigate the fundamentals of
perceptual and cognitive processes. The use of simulation technologies enables the
implementation of these fundamental processes in control algorithms and improves
the current understanding of human perception and action.

The study of self-motion perception is of great benefit for a wide variety of
fundamental but also applied fields. For example, it is of use for the development of
perceptual tests for clinical diagnosis and rehabilitation of patients with balance
disorders [1, 20]. In this chapter, we focus on a different, but equally practical
application: we will address how a deep understanding of the functional principles
underlying self-motion perception can be exploited to develop new algorithms for
motion simulators.

Motion simulators are widely employed in many different applications, such as
training, research and development and entertainment. Despite large differences
in architecture, complexity and purpose, all motion simulators have one aspect in
common: the use of a Motion Cueing Algorithm (MCA), also known as motion
drive algorithm. The MCA is responsible for converting a desired physical motion
into commands that are sent to the motion simulator. In this chapter, we will explore
how the design of MCAs can benefit from fundamental knowledge on self-motion
perception and, in turn, how motion simulation can increase our understanding of
brain perceptual processes.
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9.1 Self-Motion Perception and Vehicle Simulation

With the progress in science and technology, the use of simulations of human
controlled tasks became more and more common. This not only thanks to the
increased fidelity of such simulations, but also to the effectiveness of training,
studying, entertaining, or otherwise involving humans in simulations. A common
application of simulation is vehicle simulation, where the manual control of a
vehicle such as an aircraft, car or ship is simulated. Such simulations typically
include control devices similar to the control devices in the actual vehicle and a
visual projection from the point of view of the driver or pilot of the simulated
vehicle. In some cases, the simulation includes motion cues, provided to the human
operator through a motion platform (such as a hexapod motion simulator). The
goal of including motion cues is to increase realism of the simulation by providing
additional cues to the human operator. This type of vehicle simulation is referred to
as motion-based simulation or, in short, motion simulation.

In motion simulation, any reproduction of a simulated maneuver on a motion
simulator is always constrained by the physical limits of the motion system. For
example, maneuvers that involve high sustained accelerations, such as the take-off
of an airplane, make the simulator reach its physical limits eventually. At this point,
the pilot inevitably experiences a conflict between the expected and experienced
motion. This has several potential drawbacks such as the occurrence of motion
sickness, an overall degrade in simulation realism and the occurrence of “false
training”, i.e., when pilots learn to react in a way that is not appropriate for the
simulated maneuver.

As the quality of a motion simulation is eventually determined by the simulator
user, based on how well the desired perception of motion is reproduced, it should be
evident that knowledge on self-motion perception is beneficial, if not a prerequisite,
in the development and evaluation of MCAs. However, there is a surprisingly large
gap between what we know of human self-motion perception and how much of that
knowledge is actually used in practice. In Sect. 9.3, we will explore how we can
bridge this gap by using perception-based motion cueing. However, before doing
so we need to describe more in detail the traditional approach to the motion cueing
challenge.

9.2 The Motion Cueing Challenge

Technological advances in the field of vehicle simulation have mainly concerned the
development of vehicle models, the visual rendering, control loading and quality
of the auditory stimuli. Motion cueing, on the other hand, remains one aspect of
motion simulation that has not benefited equally from technological advances, and
still remains one of the main challenges when operating a motion simulator. In
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Fig. 9.1 The process of motion simulation. Vehicle motion provided by a model is converted into
simulator commands by the MCA. The human (driver) experiences the simulator motion and reacts
on the vehicle commands, changing the state of the vehicle model

fact, many state-of-the-art simulators are still employing MCAs that are not so
different from those developed several decades ago, for simulators whose hardware
and software are, today, obsolete.

Motion cueing can be defined as the conversion from desired motions to motion
simulator input commands. For example, if one wants to simulate a car driving on
a race track in a motion simulator, the output from a vehicle model can be used to
compute the desired motion, expressed in, e.g., the accelerations and rotational rates
of the car. An MCA processes this desired motion and calculates the appropriate
motion simulator input commands – expressed in, e.g., position and velocity of the
motion simulator’s actuators (see Fig. 9.1). For instance, in case the simulation is
executed on a hexapod simulator, where the actuators are six telescopic jacks, the
MCA determines the input commands for each actuator at every simulation time
step. From the above description it becomes apparent that an MCA needs to be
tailored to the configuration and capabilities of the motion simulator hardware (e.g.,
number and configuration of its actuators). Next to that, the MCA is tailored to the
vehicle that is simulated, the maneuver that the vehicle is performing and possibly
even the person driving the simulated vehicle.

As the range of motions of a simulated vehicle, such as the car driving on
the race track, is typically much larger than the motion range (or workspace) a
motion simulator can cover, the MCA needs to ensure that its output commands
are realizable by the platform. In order to provide a realistic simulation, even for
maneuvers that are outside the motion simulator’s workspace, several different
approaches can be applied. In literature, different MCAs have been proposed,
tested and compared. It is not the purpose of this chapter to provide an exhaustive
overview of all of these algorithms, or even of the most important ones (see e.g.
[8] for a concise overview). Instead, in the following we will sketch – in broad
strokes – how motion cueing algorithms were initially conceived and what their
limitations are. This helps to understand the context of the alternative approach to
motion cueing that we will address in the next section.
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Fig. 9.2 Schematic representation of a CMCA

9.2.1 Classic Approach

The first MCA described in literature is what has become known as the “classical”
algorithm. This approach was first described by Conrad and Schmidt [5] and later
extended by Reid and Nahon [29–31]. In this chapter, this approach will be referred
to as the Classical MCA (CMCA). The workings of the CMCA are illustrated in
Fig. 9.2.

The desired motion is expressed in terms of linear accelerations and angular
velocities. Both are (possibly) scaled and limited through saturation to account
for the physical limits of the simulator. The results of this process are then high-
pass filtered, which allows for the onsets of motions (high frequency signal) to
be reproduced whilst removing the sustained accelerations and angular velocities,
likely irreproducible within the simulator workspace. The output of the high-pass
filter can be integrated to obtained, e.g., desired simulator position and simulator
orientation. The application of filters (both high-pass and low-pass filters, as
described below) is the hallmark of the “classical” approach.

In order to reproduce also the sustained low-frequency components of the
acceleration, most CMCA use a procedure called tilt-coordination. Tilt-coordination
exploits the fact that human acceleration sensors such as the otolith organs respond
to the vector sum of gravity and inertial accelerations (i.e. the gravito-inertial vec-
tor). This can lead to an ambiguity between a static head tilt and a linear acceleration
with the head upright [2]. Through tilt-coordination, the simulator cabin is tilted to
align gravity with the gravito-inertial vector resulting from sustained accelerations.
For example, when the body is tilted backwards the vestibular system receives
inputs that are indistinguishable from when the body is accelerated forwards. This
ambiguity is used in tilt-coordination to reproduce sustained longitudinal and lateral
linear accelerations by pitch and roll rotations, respectively. To ensure that the
perceptual ambiguity is resolved in favor of the perception of a translation rather
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than a physical tilt, visual cues congruent with linear self-motion are concurrently
provided [11] and the tilt rate of the simulator cabin is maintained below the human
perceptual threshold [13, 27, 36, 40]. The latter is done by limiting the rate at which
the platform tilts, using an angular rate limiter. The tilt-coordination path of the
classic MCA is indicated in Fig. 9.2 (“Angular rate limiter”).

Next to the high-pass filters and the tilt-coordination, many CMCAs have an
additional feature that continuously repositions the simulator towards the center of
its operational workspace, i.e., towards the position where the simulator dexterity is
highest. This is achieved by designing the high-pass filters such that the simulator
always returns to its initial position. With these filter settings all simulator motions
are ‘washed out’ over time. For this reason, CMCA are also referred to as washout
filters or washout MCAs.

9.2.2 Limitations of Classic Approach and Evolution
of MPC-Based Motion Cueing

Alternative approaches to the CMCA described above have been proposed in
literature. Many of these, however, are variations and extensions of the CMCA
approach, sharing therefore most of its problems and limitations. Among these, the
most important are:

• Limited consideration for perceptual factors: Although several studies have
shown that the human sensitivity to motion is influenced by factors such as
stimulus characteristics and cognitive factors [23, 27, 33], these and many
other insights into human self-motion perception are not included in currently
used MCAs. A common issue in motion simulation that would immediately
benefit from an increased consideration for perceptual factors is, for example,
the relatively high rate of simulator sickness, cause by sensory conflicts [14].

• Need for extensive tuning: an MCA has a number of parameters that can be set
to a desired value. Typically, the number of parameters is in the order of several
tens but can sometimes be as high as a few hundreds. With these parameters,
the behavior of the MCA can be adapted to better fit the needs of the simulator
user, simulator architecture, simulated maneuver, etc. However, determining the
best value for all parameters is a difficult job, making it an expensive and time
consuming process, which can only be done by experts. Many simulator users do
not have the expertise to improve the tuning of their MCA or adapt it for different
maneuvers.

• Limited use of simulator motion envelope: the tuning of an MCA is typically
done using a “worst-case” scenario, such that the worst (largest) expected motion
still fits within the motion space of the motion simulator. This implies that the
simulator capabilities are not fully exploited during normal operation.
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The abovementioned problems are aggravated by the fact that no systematic
method exists to evaluate the quality of an MCA. Many simulator users (e.g., airline
pilot training centers, car manufacturers, research institutes, universities) would like
to improve their MCAs but have no tools at their disposal to measure their quality.
Even experts tuners have to rely on subjective judgments, for example from test
drivers, in order to adjust the tuning. An objective, reliable and repeatable method
of evaluating the quality of an MCA would be welcomed by the motion simulation
community at large. In Sect. 9.4 a methodology that was developed by the authors
to fill this gap is presented.

Over the years, several filter-based variations of the classical (washout) approach
were implemented to improve MCAs by addressing one or more of the above
problems. For example, in adaptive washout filters the parameters are tuned
automatically through an optimization algorithm. Although this reduces the need
for parameter tuning, it introduces a new problem, namely the definition of a cost
function. The optimal solution is found by minimizing the value of this cost function
[28]. A cost function also contains parameters, such as weights of cost elements,
which require tuning. In the adaptive washout approach the problem of tuning is not
removed, but merely relocated.

More recently, it was proposed to solve the motion cueing challenge using
Model Predictive Control (MPC) [4, 6]. MPC is a process control strategy that
relies on dynamical models of the process. The application of MPC to a driving
simulation scenario requires models of the motion simulator and of the driver’s
perception. Simulator commands are then obtained by minimizing the perceptual
error (mismatch) without exceeding the physical limitations of the simulator. The
MPC approach optimizes at each time step the simulator commands for a finite time-
horizon based on a prediction of the future. The commands obtained for the current
time step (i.e., the first value of the control sequence) are used for controlling the
simulator and the process is repeated at each subsequent time step. Note that, for
offline optimization, the entire trajectory is known and there is therefore no need
to develop and implement a predictor, nor to use a prediction horizon shorter than
the duration of the entire trajectory. The benefits of MPC motion cueing are that
the platform motion matches the vehicle motion for as long as possible and that
simulator limits are explicitly taken into account, thus eliminating the need to tune
the MCA for the worst-case motion. In the published implementations of MCA
algorithms for motion simulation, the focus has been centered on obtaining a real-
time implementation. For this reason, linear simulator models were implemented in
MPC algorithms to reduce computational load. Similarly, linear models of human
sensory dynamics were usually favored over nonlinear self-motion perception
models. However, the MPC approach also allows for implementation of nonlinear
models which better describe human self-motion perception and motion simulators
with nonlinear dynamics.
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9.3 Perception-Based Motion Cueing

The perception-based motion cueing (PBMC) approach is based on advanced
MPC control strategies for nonlinear models, and differs from the traditional
approach CMCA in several ways. The most important difference is that PBMC
aims to reproduce the perception of motion, instead of reproducing physical motion.
Another important difference is that PBMC operates through optimizing simulator
input commands, instead of filtering the motion that is to be reproduced. This
approach is being developed with the purpose of improving the control strategies
of the simulator on one side, and the perceptual fidelity, realism and user experience
on the other side.

9.3.1 PBMC Structure

Knowledge about human self-motion perception is included in the MCA and used
to calculate how the motion of a vehicle is perceived by a human observer inside
a simulator. The calculation is possible through the use of a self-motion percep-
tion model, which simulate the brain’s motion perception processes. The model
transforms the linear and rotational components of vehicle inertial motion into a
corresponding “vehicle percept”, i.e. the mental representation of vehicle motion in
a “perceptual space” (Fig. 9.3). It is then possible to map any vehicle motion within
the physical space into its corresponding vehicle percept in the perceptual space.
Thanks to a simulator model, the same calculation can be done for any simulator
motion, which has a corresponding simulator percept. It is therefore possible to
predict how a certain motion (trajectory) in the actual simulator workspace would
“feel” in its corresponding perceptual space. The goal of the PBMC approach is
then to minimize the difference (mismatch) between the vehicle desired percept
and the actual simulator percept, i.e. the “perceptual error” (Fig. 9.3). The PBMC
approach makes use of an iterative optimization process to find the simulator motion
that best approximates the perception one would have in the actual vehicle. This
optimization process searches for the minimum cost of a so called “perception-based
cost function”.

In the PBMC approach, the self-motion perception model, simulator model,
perceptual cost function and optimization algorithm are integrated in a software
framework. In the followings a brief description of these components and their
integration is provided.

9.3.1.1 Self-Motion Perception Model

A human self-motion perception model (in the following also referred to as
perception model) is a computational model that aims to describe the continuous
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Fig. 9.3 Concept of the perception-based motion cueing

dynamical process taking place in the brain to produce a perception of motion
through the environment. It does this by reproducing the way our sensory organs
retrieve relevant information from the environment, and how these sensory signals
are combined in the brain.

Physical motion is sensed by humans for a large part through the vestibular
system, which is comprised of two components: the semicircular canals and
the otoliths. These sensors respectively sense rotational motions (i.e., rotational
velocities) and linear accelerations (i.e., specific forces). In addition, the eyes receive
visual information (i.e., optical flow). The perception model has, therefore, two
classes of inputs: vestibular inputs, i.e., rotational velocities and specific forces and
visual inputs, i.e., motion information obtained through the visual sensors.

The first processing step of the perception model consists of reproducing the
sensory dynamics of the perceptual organs. The next step constitutes the sensory
integration, in which the different sensory information is combined into a single
percept of motion. The third (optional) step accounts for the relative perceptual
sensitivity to different stimuli, by transforming the physical units into perceptual
units. This is done by applying psychophysical perceptual laws, which are nonlinear
analytical functions that relate the intensity of the sensory input to the corresponding
perceived intensity of motion [35]. This final step allows for the comparison of
motion intensities within different degrees of freedom (e.g. rotations vs. trans-
lations) and accounts for nonlinearities in perception that are not related to the
properties of the physical stimulation. For example, it is known that, for increasing
motion intensities, the human sensitivity decreases in a nonlinear fashion [19, 22,
23]. The output of the perception model consists of a multi-dimensional percept:
perceived motion described in perceptual units.
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A perception model – and knowledge on human motion perception in general –
can be beneficial for motion-based (vehicle) simulation applications in several
different ways. For example, with a perception model one can determine how a
given motion trajectory in a given simulator with a given MCA is perceived by
the person inside the simulator. This gives indications with regards to whether the
trajectory is reproduced realistically, which simulator provides a superior simulation
and/or how the MCA – and/or the motion simulator – can be improved to increase
the realism of the simulation.

9.3.1.2 Simulator Model

In PBMC, the simulator model serves two purposes: first of all, it is used to compute
the simulator motion, i.e., the motion in response to simulator input commands. The
accuracy of the simulator kinematics is essential, as the simulator motion is used
to calculate the simulator percept, i.e., the perception that results from the given
simulator motion.

The second purpose of the simulator model is to provide information regarding
workspace constraints, in other words: which dynamical states the simulator can
reach. Information on the state and workspace constraints of the simulator is absent
in many traditional motion cueing approaches. This can, and often does, result in
a situation where motion commands, sent to the simulator by the MCA, would
cause one of the simulator’s actuators to reach a position or velocity limit. Using
a simulator model in the motion cueing approach avoids such issues. In fact, it
allows for a more optimal use of the workspace that is available, as the simulator’s
capabilities are known at any given time.

9.3.1.3 Perception-Based Cost Function

The perception model provides two percepts: the simulator percept and the vehicle
percept, which are both multidimensional quantities. The PBMC approach aims at
minimizing the difference between these two percepts. The cost function is essential
in achieving that goal. The cost function provides a measure for differences across
the dimensions and weighs their relative contribution. Minimizing the cost function
corresponds to minimizing discrepancies between vehicle and simulator motion (the
“perceptual error” from Fig. 9.3). This provides answers to questions such as how
much linear acceleration can be represented by tilting (tilt-coordination) or how
much the simulator can be moved without the driver noticing the motion (sub-
threshold motions). Some traditional MCAs intend to incorporate some knowledge
on human self-motion perception, for example, by limiting the maximum allowable
tilt-rate. However, research has shown that sensitivities to motions vary with factors
such as the presence of visual information, motion complexity, and/or active vehicle
control [24, 27]. A perception-based cost function allows for implementing these
scientific findings on human self-motion perception in a more systematic and
extensive way.
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9.3.1.4 Optimization Algorithm

The purpose of the optimization algorithm is to find the simulator input commands
for which the cost function is minimized within the given constrains. In other words:
it finds the allowable simulator input whose percept best approximates the percept
in the actual vehicle. For PBMC, several different optimization algorithms can be
employed, as long as they are capable of working with constrained nonlinear multi-
variable functions.

9.3.1.5 Perception-Based Motion Cueing Framework

By bringing all the elements discussed above together, the PBMC framework is
obtained. The flow diagram in Fig. 9.4 provides a simplified illustration of this
framework. A vehicle motion is fed to the perception model to compute the vehicle
percept, which describes the perception one would have inside the vehicle. The
challenge is now to reproduce this same percept in the motion simulator, using
appropriate simulator commands. These are calculated using a model of the motion
simulator. The simulator motion is passed through the perception model, providing
the simulator percept. Note that the perception models computing the simulator and
vehicle percept are identical. The cost function provides a quantitative measure of
similarity between the two percepts (i.e., the cost), which is used by the optimization
algorithm to compute a new set of simulator commands with the aim to decrease
the cost. This optimization process is repeated until the cost is reduced below a
suitable tolerance level. The optimized simulator commands that result from this
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Fig. 9.4 Schematic representation of the PBMC framework. The goal of the PBMC approach is to
minimize the cost, i.e., the difference between the simulator percept and the vehicle percept. The
optimization of the simulator commands is done iteratively by an optimization algorithm until the
optimized simulator commands are obtained
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optimization are fed to the actual simulator. Given that models are accurate, the cost
function is well-defined and the optimization algorithm successfully minimizes the
cost, it is guaranteed that the optimized simulator commands provide a simulator
percept that best approximates the vehicle percept.

9.3.2 Applications, Benefits and Limitations

Perception-based motion cueing can increase the realism of motion simulation
mainly because the algorithm has more information available than most alternative
algorithms. This additional information largely resides in the perception model –
providing information on how vestibular and visual stimuli are perceived and inte-
grated into a percept of motion – and the simulator model – providing information
on the state and constraints of the simulator.

The perception model allows for exploiting the limitations and ambiguities
of human perception. For example, as described in Sect. 9.2.1, under certain
circumstances linear acceleration and static tilt are indistinguishable from each
other. A perception model, combined with a perception-based cost function, is
able to identify and make use of these circumstances. Although this “perceptual
trick” appears in many traditional MCA implementations, PBMC does not require
the typical tuning and is capable of dynamically adapting the tilt-translation ratio
over the course of the simulation. Another example is the exploitation of absolute
and differential perceptual thresholds: the human sensory system can only perceive
motion stimuli of certain intensity. Stimuli smaller than this absolute threshold are
not perceived. Similarly, the human sensory system can only distinguish stimuli
when the difference between them is larger than a certain differential threshold. Both
types of threshold values depend on many different factors (e.g., motion direction,
frequency, intensity, etc.). These factors vary over time, and thus so do the threshold
values. By implementing knowledge on these varying thresholds, PBMC is able to
determine which motions can and cannot be perceived and which motions can and
cannot be distinguished.

The simulator model allows for making more optimal use of the simulator’s
available workspace. Using the simulator model, PBMC explicitly accounts for
actuator limits, exploiting therefore the full spectrum of simulator capabilities.
Unlike traditional approaches, PBMC does not scale down the physical motion so
that even the most aggressive part of a maneuver still fits within the simulator’s
workspace. Instead, PBMC processes unscaled physical motion and finds, by means
of a perception-based cost function, the simulator inputs that result in the best
available cueing, based on the simulator’s capabilities. PBMC provides cueing that
approaches, but never actually reaches, the actuator limits, making optimal use of
the available hardware.

The inclusion of a simulator model makes PBMC also useful in studying
simulator concepts themselves. For example, PBMC can be employed in cost-
benefit analyses for simulator upgrades, such as the addition of a new axis or the
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improvement of an existing one. Similarly, it can provide important insight into the
development of a simulator concept that does not (yet) exist. PBMC automatically
provides the optimal cueing without a dependency on parameters such as the
washout filter gains and filter frequencies and is therefore better suited than many
traditional methods for the above mentioned scenarios.

The main disadvantage of the PBMC over CMCA is the relative complexity
of the algorithm, which inevitably impacts on the speed at which the algorithm
operates. At the time of writing, real-time simulations have not yet been achieved.
Hence, all tests with PBMC have been performed on pre-recorded maneuvers
and offline execution of the PBMC algorithm. For many applications, online
calculation operating in real-time are required. In order to achieve this, the current
implementation of the PBMC algorithm needs to be further optimized for speed
performance. Another drawback that derives from the relative complexity of PBMC
is the increased effort to implement a PBMC algorithm. However, this is of less
concern, as it can be largely addressed through the development of user-friendly
interface solutions. Another disadvantage of the PBMC algorithm here presented
is that, in the attempt to bring target and simulator percept as close as possible
to each other, it will inevitably favor an inhomogeneous scaling of the trajectory
over its time evolution. For instance, in the cueing of a maneuver consisting of
two consecutive decelerations, where the first deceleration is twice as strong as
the second, the 2:1 proportionality is easily lost if the first deceleration cannot be
faithfully reproduced by the simulator. In contrast, in a traditional MCA, a scaling
factor is tuned for the entire maneuver to ensure that it fits into the simulator
capabilities, and proportionality is therefore more likely maintained.

9.4 Validation of the Perception-Based Motion Cueing
Approach

The PBMC approach here introduced would be little more than a conceptually
interesting idea, with little lasting impact or practical application, if it would
remain without a rigorous and objective evaluation. The goal of such an evaluation
is to show the potential benefits and improvements with respect to the current
motion cueing approaches. In order to make this comparison possible, a novel
methodology was developed, based on psychophysical methods that are typical of
human perception research.

9.4.1 The Choice of a Suitable Method

Evaluating the quality of perceived motion is a very complex task, requiring a
subjective judgment that can be affected by several factors, like the sensitivity
of different sensory modalities, memory, personal preferences, experience and
familiarity with the judgment task. Therefore, it is common practice to evaluate
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the quality of motion cueing by using questionnaires and experts’ interviews (which
can be executed in more or less rigorous fashion), accompanied by various types of
rating scales. Oft-used rating scales are the Visual Analog Scale (VAS) [38], where
the response is specified by indicating a position on a continuous line between two
end-points, and the Likert-type rating scales [16], where the response is specified
by choosing a judgment from a symmetric agree-disagree scale for a series of
statements (typically 5, 7, or 9 statements, ranging from completely negative to
completely positive judgment). However, both questionnaires and rating scales have
several disadvantages that could affect the experimental validation of motion cueing
approaches.

Questionnaires and interviews with experts allow for a large degree of freedom
in the response, providing typically only qualitative indications. As a result, verbal
reports are not a systematic, repeatable and reliable measure of subjective judg-
ments, and should be used only in exploratory studies. Rating scales, on the other
hand, provide quantitative numerical estimates and can refer to subtle dimensions or
aspects that contribute to the overall judgment. These methods are therefore better
suitable for more rigorous statistical analysis. However, also rating scales have
features that are disadvantageous for our current purposes, notably the resolution
of the Likert-type scale, the presence of scale boundaries and the challenge of
qualifying the numerical results with meaningful verbal descriptors. Likert scales
have the disadvantage of low resolution (only a few possible responses), which
also lead respondents to quickly reach the scale boundaries (once the maximum
or minimum rating is given, there is no possibility to assign even higher or lower
ratings). It is a general weakness of discrete rating systems that two trials perceived
as different could, due to the lack of rating options, be assigned to the same verbal
descriptor. This may result in insufficient sensitivity for measuring the multifaceted
quality of motion cueing. The VASs, thanks to their analogue nature overcome
this limitation of the Likert scales. Nevertheless, it remains difficult to determine
appropriate verbal descriptors for the subjective responses along the scale and to
quantify their relative distances, as they might not be linearly paced. This limitation
becomes even more evident considering that the subjective interpretation of verbal
labels may differ among individuals and cultures. In general, rating scales suffer
from the limitation of collecting subjective responses that are at best on an ordinal
scale, and providing data that are treated as on an interval/ratio scale [10].

These considerations motivated a search for an alternative method providing the
following features: (i) sufficient sensitivity to distinguish among subtle differences
in the perceive quality; (ii) accounting for subjective differences in the meaning of
verbal and numerical labels; (iii) providing numerical quantification on a ratio scale,
which allows for traditional statistical analysis and (iv) providing unambiguous
interpretation of distances between the judgment scores. We found that the method
of magnitude estimation with cross-modality matching paradigm was suitable for
our purposes. This method was originally introduced by Stevens to measure the
perceived magnitude of physical intensities [34]. Later the same method was
successfully adopted to investigate perceptual aspects of non-physical dimensions,
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like political opinions [17, 18], aesthetic preferences [12] and linguistic judgments
[3]. To the best of our knowledge, the study described here utilizes the magnitude
estimation method in the field of motion perception and simulation research for
the first time. With this method it is possible to express a judgment about certain
features of a stimulus, providing an estimate in any response modality. At the
foundations of this method lie the following two assumptions: firstly, the human
observer constructs an abstract internal representation of the stimulus’ features,
which is independent of the sensory modality used to retrieve this representation.
Secondly, the observer implicitly attributes a magnitude to the stimulus features that
can be expressed on a ratio scale [34]. In an actual experiment, these assumptions
allow an observer to produce the quality judgments in any response modality, based
on the relative difference in the magnitude of the examined feature over multiple
trials. In the study presented here, two response modalities were used to express
the magnitude of perceived quality of motion cueing: numerical estimate and line
production. Producing a numerical estimate consists of providing a number; while
hand-drawing a horizontal line constitutes a line production task. Using magnitude
estimates from two response modalities enables us to test the internal validity of
the measurement scale: if the participants in the experiment are indeed rating the
motion quality on a ratio scale, this should result in consistent answers across the
two different modalities. For a detailed description of the cross-modality matching
as a subjective assessment technique, the reader is referred to [26]. The method
was used for different purposes throughout the different experimental phases, as
described in the experimental procedure below.

9.4.2 Validation Experiment

The following MCAs were tested and compared over three car maneuvers:

• Classic (CLA): classic washout algorithm (cf. Fig. 9.2) using the same filter
parameters for all maneuvers

• Classic Tuned (CLT): classic washout algorithm, using filter parameters specif-
ically tuned for each maneuver to better exploit the motion envelope of the
simulator

• Non-weighted Perception-Based (NPB): perception-based algorithm using a non-
weighted sum of linear accelerations and angular rotations in the cost-function
of the optimization algorithm

• Weighted Perception-Based (WPB): perception-based algorithm, similar to the
previous one, but with a weighted sum of linear accelerations and angular
rotations in the cost function

Eight participants (average age: 29.3 years, 1 female) were recruited through the
participants’ database of the Max Planck Institute for Biological Cybernetics. They
declared to hold a full and valid driving license for cars and to perform active driving
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on a regular basis. They had normal or corrected-to-normal vision. All participants
provided informed written consent prior to their inclusion. The study was conducted
in accordance to the Declaration of Helsinki (1964).

9.4.2.1 Experimental Procedure

The experimental procedure consisted of three phases, the calibration phase, the
experiment phase and the verbal qualification phase.

In the calibration phase, participants were familiarized with the magnitude
estimation method and the cross-modality matching task. They were asked to assign
numerical estimates to different lines of varying lengths and to draw lines whose
length was proportional to numbers of varying magnitude. This procedure ensured
that participants were able to produce consistent magnitude estimates (R > .95)
across different response modalities before the actual experiment.

In the experiment phase, participants were accommodated inside the CyberMo-
tion Simulator (CMS) and exposed to motion trajectories (Fig. 9.5). The CMS
is a dynamic simulator that was developed to expand the limited workspace and
dexterity of traditional hexapod-based simulators [25]. It is an 8-degrees-of-freedom
serial robot, where a 6-axes industrial robot manipulator is mounted on a linear rail
and equipped with a motorized cabin at the end effector (Fig. 9.5, left). The cabin
is equipped with two 1920� 1200 projectors (Eyevis, Germany) and interference
filter stereo projection system (Infitec GmbH, Germany), which provide up to
160� 90 deg Field-of-View on the cabin inner side (Fig. 9.5, right). The cabin is
also equipped with mounting possibilities for haptic control devices used for flight
and driving simulation, as well as for head motion and gaze tracking.

The motion trajectories consisted of synchronized video, inertial and audio
recordings of a car performing three maneuvers: strong braking, going around a
roundabout and slalom. Inertial data were obtained from an inertial navigation
system, while the video was captured with two full-HD cameras positioned near
the driver’s head in the actual car [37]. The use of recorded trajectories ensured that
participants were exposed to the same motion stimuli and immersed in a realistic
multi-sensory (visual, auditory and inertial) simulation. This also allowed the use of
3D video projection to further enhance the simulation realism. During the trajectory
playback, two superimposed auditory signals (beeps) indicated the beginning and
the end of each maneuver.

Participants were instructed to pay attention to the motion information (“what
you feel”) in between these two beeps and how it relates to the visual information
(“what you see”). After every trajectory playback, they were required to draw a
horizontal line and provide a numerical estimate. These had to be proportional to
either their impression of the motion aspect that was asked for. They were asked
about the following aspects1:

1For brevity, the first aspect is later referred to as “motion direction”, and the second as “motion
strength”.
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Fig. 9.5 The MPI CyberMotion Simulator. Exteriors (left) and cabin interiors (right)

• “Agreement of motion direction: how well does the direction of the motion you
feel agree with the direction of the motion you see?” High level of agreement
between the visual and inertial motion directions would result in long lines and
large numbers, low level of agreement would result in shorter lines and smaller
numbers.

• “Appropriateness of motion strength: How appropriate is the strength of the
motion you feel compared to the motion you see?”Appropriate motion strength
(neither too strong nor too weak) would result in long lines and large numbers,
inappropriate motion strength would result in shorter lines and smaller numbers.

The questions appeared on the screen, while the simulator was steady in an
upright position. The participants were instructed to provide any line length/positive
number for the first answer, keeping in mind that they might want to provide
longer/shorter lines and larger/smaller numbers later on. The two questions were
assessed on separate blocks of trials, with the order of the questions balanced across
participants. Each of the three maneuvers was reproduced with four different MCAs,
for a total of 12 trajectories per block. The order of the maneuvers and the order of
MCAs per maneuver were randomized across participants. A different maneuver
(double lane change) was used as training before each block to familiarize the
participants with the questions, the response procedure, the different MCAs and
the simulation environment.

As additional data, the following information was recorded: motion sickness
questionnaires were collected for all participants before and after the experiment
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phase [15]. During the experiment, the level of sickness was monitored every
10 min using a numerical score [9]. After the experiment, participants filled out
a questionnaire to report their subjective ratings about mental demand, level of
concentration, ability to maintain a constant level of attention, level of frustration
and physical comfort on a 9-point rating scale.

In the verbal qualification phase, participants were asked to evaluate the per-
ceived magnitude of a set of verbal qualifiers [32] indicating “quality” (e.g., “good”,
“bad”, “so-so”) using the same method of the previous phases, i.e. magnitude
estimation task with cross modality matching (numerical estimate and line produc-
tion). This allows for a verbal interpretation of the numerical results of the MCAs
quality ratings, and provides an indication of the subjective distance between verbal
qualifiers.

Overall, the evaluation experiment lasted about 2.5 h and was structured as
follows:

• Calibration task: magnitude estimation of lines and numbers
• Baseline questionnaire about motion sickness
• Training on the first question (i.e., strength or direction, 4 trials)
• First experiment block: 12 trials
• Verbal qualifiers: magnitude estimation of verbal qualifiers
• 15 min break
• Training on the second question (i.e., strength or direction, 4 trials)
• Second experiment block: 12 trials
• Verbal qualifiers: magnitude estimation of verbal qualifiers
• Post experiment questionnaire about motion sickness

9.4.2.2 Data Analysis and Results

One participant did not complete the experiment due to mild symptoms of motion
sickness and was therefore excluded from the analysis. The remaining seven
participants showed a high correlation (R > .95) between numerical estimates and
lines length in the calibration phase, and were therefore included in the experiment
and in the data analysis. The raw numerical estimates and lines lengths collected in
the experiment were normalized and a combined standard score was computed from
the mean of the normalized values. A similar procedure was adopted for the analysis
of the verbal qualifiers. The results of the motion cueing quality rating are shown in
Fig. 9.6, plotted against the verbal descriptors and the overall standard score.

Due to the different characteristics of the tested maneuvers, and the supposed
independence of the judgments between the rated motion aspects, considerably
different patterns of results were to be expected. Therefore, a repeated-measure
analysis of variance (rmANOVA) was run independently for each maneuver (brake,
roundabout or slalom) and rated aspect (motion direction or strength) to test the
effect of MCAs on the perceived quality of motion cueing. Post-hoc tests with
Bonferroni correction for multiple comparisons were used. The significant results
are reported in Table 9.1.
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Fig. 9.6 Averaged standard score across subjects of the quality ratings of PBMC (3rd and 4th bar
of each plot), as compared to CMCA (1st and 2nd bar of each plot). The lines indicate standard
error. Each plot refers to one of the maneuvers (brake, roundabout or slalom) and rated aspect
(motion direction or strength). Verbal qualifiers are indicated on the left vertical axis: VG very
good, G good, QG quite good, SS so-so, QB quite bad, B bad, VB very bad, T terrible

The PBMC algorithm was rated as good as the CMCA or better in all conditions,
except for the roundabout. With regards to the appropriateness of motion strength,
the results show a clear preference for either version of the PBMC in all the tested
maneuvers. In terms of motion direction, i.e. the level of agreement between the
direction of inertial motion as compared to the direction of the visual motion, the
performance of the perception-based approach is comparable to the filter-based
approach in the brake and the slalom maneuvers; while it is lower in the roundabout.
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Table 9.1 Significant results of rmANOVA and post-hoc tests

rmANOVA (maneuver, motion aspect) Post-hoc tests

F(3,28) D 4.38, p < 0.05(brake, motion strength) WPB > CLA
F(3,28) D 6.97, p < 0.01(roundabout, motion direction) CLT > WPBNPB > WPB
F(3,28) D 4.54, p < 0.05(roundabout, motion strength) NPB > CLA
F(3,28) D 3.38, p < 0.05(slalom, motion strength) WPB > CLA

Nevertheless, in the roundabout maneuver the NPB algorithm receives similar
quality ratings as the classic algorithms.

Overall, the results of this first validation experiment are encouraging, as they
indicate that, already in its first implementation, the perception-based solution is
positively rated. Moreover, the results show that the methodology chosen for the
experiment is appropriate for the collection of quantitative data and the use of
inferential statistics, which can be used to find differences on the quality score of
MCAs.

9.5 Conclusions and Future Development

The first experimental validation of the PBMC approach described here has shown
that an improvement in the current standards of motion cueing algorithms is
possible. Remarkably, this approach shows great potential for future applications,
as it can provide advantages to both simulator users and engineers. The quality of
a classical MCA depends strongly on the tuning. Tuning is expensive and can only
be done by experts. By reducing the amount of tuning required, simulator users can
increase the quality of their simulation while reducing costs. Finally, the classical
approach does not make optimal use of the simulator capabilities. By improving
the way the MCA exploits the hardware, simulator users increase their return on
investment.

As suggested by the data collected in the roundabout maneuver, more work is
needed to further investigate the relation between measured overall quality and the
weights given to each motion cue in the perceptual cost function. Therefore, more
knowledge is needed on the relation between the measured quality of motion cueing
algorithms and the quality as assumed by the optimization algorithms. With this
regard, the difficulty of measuring subjective experience and preferences remains
a main challenge. To gain a better understanding of this relation it is essential
to know how this measured MCA quality evolves over time. Further research is
ongoing to include in the evaluation methodology also continuous measurement
of perceived coherence between visual and actual motion in the simulation. Due
to its modular structure, PBMC will also directly benefit from advances in self-
motion perception modelling, an active and dynamic research field. Among the
open questions, individual differences between humans and the role of sensory and
cognitive factors typical of everyday scenarios are certainly of great relevance for
further development of PBMC. By continuing in its quest of filling the gap between
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what is known about human self-motion perception and what is used in motion
simulation, PBMC will allow for increasingly relevant improvement of the quality,
realism and usefulness of motion simulations.
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Chapter 10
The Other-Race Effect Revisited: No Effect for
Faces Varying in Race Only

Isabelle Bülthoff, Regine G.M. Armann, Ryo Kyung Lee,
and Heinrich H. Bülthoff

Abstract The other-race effect refers to the observation that we perform better in
tasks involving faces of our own race compared to faces of a race we are not familiar
with. This is especially interesting as from a biological perspective, the category
“race” does in fact not exist (Cosmides L, Tooby J, Krurzban R, Trends Cogn Sci
7(4):173–179, 2003); visually, however, we do group the people around us into
such categories. Usually, the other-race effect is investigated in memory tasks where
observers have to learn and subsequently recognize faces of individuals of different
races (Meissner CA, Brigham JC, Psychol Public Policy Law 7(1):3–35, 2001) but
it has also been demonstrated in perceptual tasks where observers compare one
face to another on a screen (Walker PM, Tanaka J, Perception 32(9):1117–1125,
2003). In all tasks (and primarily for technical reasons) the test faces differ in race
and identity. To broaden our general understanding of the effect that the race of a
face has on the observer, in the present study, we investigated whether an other-
race effect is also observed when participants are confronted with faces that differ
only in ethnicity but not in identity. To that end, using Asian and Caucasian faces
and a morph algorithm (Blanz V, Vetter T, A morphable model for the synthesis
of 3D faces. In: Proceedings of the 26th annual conference on Computer graphics
and interactive techniques – SIGGRAPH’99, pp 187–194, 1999), we manipulated
each original Asian or Caucasian face to generate face “race morphs” that shared
the same identity but whose race appearance was manipulated stepwise toward the
other ethnicity. We presented each Asian or Caucasian face pair (original face and
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a race morph) to Asian (South Korea) and Caucasian (Germany) participants who
had to judge which face in each pair looked “more Asian” or “more Caucasian”.
In both groups, participants did not perform better for same-race pairs than for
other-race pairs. These results point to the importance of identity information for
the occurrence of an other-race effect.

Keywords Human face recognition • Other-race effect • Race vs identity infor-
mation

10.1 Introduction

10.1.1 Identity Versus Other Face Properties

Faces shown as static images differ from each other in terms of their intrinsic
properties like identity, sex, eye color, and age among many others. They can be
further categorized in terms of non-rigid deformations (e.g. their facial expressions,
open or closed mouth, etc.), while external variations of viewing conditions allow
yet another way to differentiate between them. For example, faces can differ in
terms of their orientation with regard to the camera (profile or side view) or the
illumination (from above, from the side).

Although computationally images of different faces viewed under the same
viewing conditions are more similar to each other than images of the same faces
viewed under different viewing conditions or with different expressions [1], for
the human visual system this only occurs when dealing with images of unfamiliar
people. For familiar faces, the visual system seems to discard spontaneously those
external variations; it becomes ‘blind’ for most of the identity-independent variance
and correctly recognizes the same person across a huge range of image and instance
variability.

These findings demonstrate that identity-related information (idiosyncratic infor-
mation) is the most important property of a familiar face and many studies have
shown that we process familiar faces at this level before processing their category
affiliation, e.g. whether the face is male or female (sex category), or Asian or
Caucasian (race category but see [2]). In contrast, for unfamiliar faces, idiosyncratic
information is a less robust factor for grouping same-identity faces together in the
presence of non-rigid deformation and/or external variations [3] and there might
be differences in grouping various renditions of the same person’s face with better
performance for same-race faces (e.g. [4]).

10.1.2 The Other-Race Effect and Other Category Effects

It has been shown that for unknown faces the familiarity with the category they
belong to (e.g. own-race or other-race) influences how we process them and how
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well we can recognize them later. Many studies have demonstrated that we are better
at recognizing faces belonging to categories which are more familiar to us. This is
the case for the very well-known other-race effect (also called cross-race effect or
own-race advantage), which describes the fact that we recognize faces of our own
ethnicity better than other-race faces (for a recent review see [5]). The influence
of familiarity has been reported for other categories, principally for age and sex.
Same-age faces (for the observer) are better recognized than much younger or older
ones [6, 7], and other studies even report a same-sex advantage [8–10]. Among these
category effects, the other-race effect seems the most robust and the most abundantly
studied, yet, the mechanisms at its base are still discussed [11].

10.1.3 Identity and Face Categories

Many studies involving faces of different categories, for example investigations
of facial emotions, are based on stimuli which show the same identity exhibiting
different facial expressions [12], thus there is no confound of changing identity
information. So far, controlling identity while investigating the effect of only sex or
race changes on face recognition has not been done (but see studies investigating sex
alone [13, 14]). Most studies investigating the other-race effect or more generally
the effect of race on face recognition have used stimuli displaying faces that differ
not only in terms of their category affiliation but also in terms of their idiosyncratic
features (among many other studies, see [15, 16]), leaving open the possibility that
those effects might be somewhat dependent on the use of face stimuli of different
identities.

10.1.4 Our Study

Greater expertise with own- than other-race faces is believed to be one of the
explanations for the other-race effect as expertise gained from perceptual learning
allows to better discriminate between members of a category after training [17].
Since ground-breaking advances in computer graphics and computer vision (for
example [18]), it is possible to manipulate faces along high-level dimensions
like sex, race and even perceived attractiveness or memorability while avoiding
large changes at the level of idiosyncratic facial information. In the present study,
we parametrically modified the race of individual faces without changing their
identity to create “race morphs”. In other words, we targeted specifically race-
related facial appearance and modified faces along that dimension only, leaving
identity-related information mostly untouched. Our goal was to investigate whether
stronger expertise with own-race faces would allow better discrimination between
own-race faces and their race morphs than between other-race faces and their race
morphs.
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In two race comparison tasks, we asked the same participants to compare the
race of two faces and to indicate which face was more Asian or more Caucasian
looking. In our design, one face was always the original face (either Caucasian
or Asian) and the other one of its race morphs. This comparison task is derived
from the “better likeness task” designed by Beale and Keil ([19], see also [20]).
In a ‘parallel’ task, both faces were presented simultaneously on the computer
screen, thus memory load was reduced to a minimum in this task, while in a
‘sequential’ task, both images were shown sequentially, thus a small memory load
was present.

10.2 Method

10.2.1 Participants

We tested 26 German participants (13 females, age: 21–63) at the Max Planck
Institute for Biological Cybernetics in Tübingen, and 26 Korean participants
(13 females, age: 18–30) at Korea University in Seoul. In accordance with the
Declaration of Helsinki, the procedures were approved by local IRBs and signed
consent forms were obtained from individual participants before the experiment.

Tübingen and Seoul participants answered orally a few questions prior testing
to ensure that no participants had intensive contacts to individuals of the other
race. All participants were paid volunteers and were naïve as to the purpose of the
experiment.

10.2.2 Stimuli

We selected the faces of 20 Asian individuals (10 females) and 20 Caucasian (12
females) from our face database (http://faces.kyb.tuebingen.mpg.de, [18]). All faces
were devoid of hair, facial hair, makeup, glasses or jewelry. Same-identity race
morphs were created by morphing all original faces of one race category stepwise
toward the other race while keeping their idiosyncratic features. We give here only a
short description of the morphing method used to that end as it has been described in
more detail elsewhere [18, 21, 22]. In our face database, all faces are in dense point-
to-point correspondence. Using the morphable model of Blanz and Vetter [18] we
created an Asian average face derived from all Asian faces and a Caucasian average
face derived from all Caucasian faces. A race vector was then computed as the
difference between both average faces for all points of the faces. We manipulated
ethnicity by applying this race vector in full or in part to each original face to create
a series of race morphs.

http://faces.kyb.tuebingen.mpg.de
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Fig. 10.1 Left panel: Example of an Asian original face and its morphs. Right panel: Example of
a Caucasian original face and its morphs

Test images of all original faces and their race morphs were generated with all
faces shown in frontal view. Each original face was morphed at three different levels
toward the other ethnicity: 20, 50 and 80 %; with 0 % corresponding to the original
face and 100 % meaning that the full ethnicity vector had been applied. Figure 10.1
shows examples of original faces of both ethnicities with their race morphs. All
face images were 900-by-900 pixels in size and the approximate size of the face in
the image was 600-by-730 pixels. 120 pairs were created by pairing each original
face with each of its morphs. Four mask images were created by randomly mixing
arbitrary face parts presented upside-down.

In each trial of the parallel task, the test faces were shown side by side on
a computer screen, with the right edge of the left image and left edge of right
image cut off by 50 pixels each, yielding a combined test image of 1700-by-
900 pixels. For each pair, two test images were created to counterbalance left/right
presentation location. In trials of the sequential task, the faces of each pair were
shown alone, one after the other in the middle of the screen, with their presentation
order counterbalanced across participants. The face size was the same as in the
parallel task.
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10.2.3 Design and Procedure

In each task participants viewed two faces in a trial. For half of the participants
the question asked was “which face is more Asian?” and for the other half: “which
face is more Caucasian?”. Race of participants (Seoul/Tübingen) was a between-
subject independent variable and race of face stimuli (Asian/Caucasian origin) and
race dissimilarity (the difference in morph levels between the faces of the test pair in
a trial: 20, 50, and 80 %) were within-subject independent variables. The dependent
variables were accuracy and response times (RT) from correct trials. Task order was
randomized across participants.

All pictures were presented in eight-bit color format on a 24-inch flat monitor
screen of a Tobii T 60 XL eye tracker with 1920� 1200 pixels screen resolution
(refresh rate 60 Hz). Each face covered approximately an angular size of around
17 deg� 14 deg. Participants were seated in front of the computer monitor at a
distance of approximately 60 cm to 70 cm.

The experiment was designed with Tobii Studio 3.1.2 software and run with a
special monitor that allowed to record participants’ eye gaze position in addition to
their response. The eye tracking data are described elsewhere [23, 24].

In the parallel task, a trial started with a 500 ms fixation cross replaced by
a response-terminated display of one face pair. Participants pressed one of two
keys to indicate their choice of the left or right image. A blank screen appeared
for 1 s before the start of the next trial. Presentation order of all face pairs was
randomized across participants. In each trial, both face images originated from the
same identity and one of them was always the original face. Every possible pair
(three for each identity) was shown once. Left or right placement of the original
image was randomized across trials and for each pair it was counterbalanced across
participants. Though there was no time limit, participants were asked to answer as
correctly and as quickly as possible. The RT in this experiment was measured from
the onset of the face images to the subject’s key press.

In the sequential task, each trial started with a fixation cross for 500 ms, followed
by the first face for 2500 ms and a mask for 500 ms. The mask image was then
replaced by a response-terminated display of the second face. Participants pressed
one of two keys to indicate their choice of the first or second image. All other details
are the same as in the parallel task. RT in the sequential experiment was measured
from the onset of the second image to the subject’s key press.

Recognition performance was measured as percent correct response (accuracy)
and correct response times (RT) measured as explained above for each test condi-
tion. The RT and accuracy data were submitted to a 2 (group: Seoul vs Tübingen)� 2
(face race: Asian vs Caucasian)� 3 (pair dissimilarity: 20 % vs 50 % vs 80 %)
mixed repeated-measures ANOVA, with face race and pair dissimilarity as within-
participant factors and group as a between-participant factor. Statistical significance
was set at ’D .05. We report partial eta-squared (�p

2) as an index of effect size,
with values of 0.01, 0.06, and 0.14 representing small, medium, and large effect
sizes, respectively (Cohen, 1988).
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10.3 Results

Because of time constraints, two of the 26 German participants and one of the
Korean participants performed only one of both tasks. In addition, the data of one
German participant in the sequential task was removed because he had inverted the
response buttons in that task (indicated by an excessive error rate). We compared
accuracy for both questions (i.e. depending on the question asked: “which one is
more Asian?” versus “which one is more Caucasian?”) at each race dissimilarity
level. For Seoul participants, no differences in accuracy were found across both
questions for the parallel task and the sequential tasks (independent t-tests: all
ps > .20, all ps > .19 respectively). Similarly, no differences were found for the
Tübingen participants (independent t tests: all ps > .19, all ps > .20, respectively).
Therefore we collapsed all results across questions for all analyses. In agreement
with the difference in memory load, participant overall performance was better in
the parallel task (80 %) than in the sequential task (73 %). Owing to the nature of
the tasks, response times cannot be compared.

In both tasks, for the smallest race dissimilarity level (20 %), that is when
the original face and the morphed face were quite similar to each other, both
Tübingen and Seoul participants performed better than chance (50 %) for both types
of face stimuli (one sample t-tests, all ps < .001), while for the easiest condition
(80 % difference) they performed significantly worse than perfect performance (all
ps < .001). Thus the tasks did not appear to be either too hard or too easy.

10.3.1 Parallel Task

For the parallel task, the analyses show that Seoul and Tübingen participants did
not differ from each other in terms of their accuracy performance (F < 1, ns). There
was a main effect of pair dissimilarity, as participants’ performance increased with
larger race difference between the faces to compare (F(2,96)D 138.56, p < .001,
�p

2D .833). There was also a main effect of face race, with better performance
with Caucasian faces than with Asian faces (F(1,48)D 6.81, pD 0.012, �p

2D .124).
These results were qualified by an interaction between face race and participant
group (F(1,48)D 8.23, pD 0.006, �p

2D .146). There was no other significant
interaction (all ps > .115). Separate ANOVAs for each group of participants showed
a significant main effect of face race for the Seoul group (F(1,26)D 17.52, p < .001,
�p

2D 0.10) as participants performed better with Caucasian faces (MD 83.9 %)
than Asian faces (MD 77.7 %,), while Tübingen participants performed equally
well with Asian faces (MD 81 %) and Caucasian faces (MD 81 %, F < 1, ns).
Figure 10.2 shows the detailed accuracy results for both groups of participants.

Depending on conditions, participants needed on average between 2.5 and
7 s to enter their answer. The RT data were subjected to a mixed repeated-
measures ANOVA involving participant group as between-subjects variable and
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Fig. 10.2 Mean accuracy for the parallel task for Seoul and Tübingen participants as a function
of race dissimilarity between test face pairs (20, 50 and 80 %) and face race (Asian or Caucasian).
Each dissimilarity level is shown four times. White bars represent data for participants of Tübingen,
grey bars for Seoul participants. Bars with a black outline depict the results for the Caucasian pairs,
bars with a thick grey outline depict the results for the Asian pairs. Error bars represent SE

Fig. 10.3 Mean correct response times for the parallel task. For full legend, see Fig. 10.2

pair dissimilarity and face race as within-subjects variables. The analysis shows that
only the factor pair dissimilarity had a significant impact on RT (F(2,96)D 40.55,
p < 0.001, �p

2D .458). Figure 10.3 shows that participants responded more rapidly
when the task was easier (i.e. for larger dissimilarity between the faces to compare).
Although Tübingen participants (MD 4.6 s, SED 0.54) were slower than Seoul
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Fig. 10.4 Mean accuracy for the sequential task. For full legend, see Fig. 10.2

participants (MD 3.4 s, SED 0.53) the difference was not significant because of
the large variability of RT responses. There was also no significant main effect
for participant group or face race (all Fs < 1, ns) and no significant interaction (all
ps > .129). These results indicate that the factor pair dissimilarity affected response
times to same-race and other-race face pairs for both groups similarly.

10.3.2 Sequential Task

When the faces were shown sequentially, Seoul participants were better overall than
Tübingen participants, but this difference did not reach significance (F(1,48)D 3.53,
pD 0.066, �p

2D 0.068). The factor face race did not affect response accuracy
(F < 1, ns), so that the only significant main effect was for the pair dissimilarity,
(F(2,96)D 112.25, p < 0.001, �p

2 .700). As the faces got more dissimilar, accuracy
improved. There was no significant interaction (all ps > .089). Figure 10.4 shows the
details of the accuracy data.

Depending on condition, participants needed on average between 1.6 and 2.2 s
to answer. Figure 10.5 shows that participants responded more rapidly as the
dissimilarity increased (F(2,96)D 9.58, p < 0.001, �p

2D .166), no other significant
main effects or interactions were found (all ps > 0.072). These results indicate that
the factor dissimilarity affected response times to same- and other-race face pairs
for both groups similarly.
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Fig. 10.5 Mean correct response times for the sequential experiment. For full legend, see Fig. 10.2

10.4 Discussion

In this study, we investigated whether participants showed better performance for
same-race than other-race faces in a race comparison task. Although the ethnicity
of the faces used as stimuli have been shown to influence participants’ response in
many previous studies (for example, among many others: [11, 25]; for a review see
[26]), most of the faces used in these earlier studies displayed concomitant changes
of ethnicity and identity. In the present work we specifically avoided any changes
in identity when manipulating face race. We tested participants in a parallel and a
sequential task. In both tasks, only race-specific information needed to be processed
in the face stimuli for participants to complete the task successfully and the changes
in ethnicity were never associated with changes in identity. Using this paradigm, we
found neither an other-race effect for response times nor for response accuracy. In
both tasks, the difference in race information between both faces in a pair (the race
dissimilarity level) had a significant effect on performance; participants answered
more correctly and also faster with increasing dissimilarity level.

In a study by Walker and colleagues [27], participants performed a same/different
sequential task using Asian and Caucasian face stimuli and morphs between them.
In that experiment, the faces to compare in each trial differed in race and identity. In
contrast to our findings, the authors found a clear other-race effect in the accuracy
data, participants performed better for same-race faces, while they found no effect
in RT data, as we did. The differences between their experiments and ours are that
they compared faces differing in race and identity and that they used a different task.
In one of our previous studies on the perception of identity and sex in Caucasian
faces [21] participants compared faces differing in sex but not in identity in both
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a same/different task (as in the Walker & Tanaka study) and a discrimination task
(as in our present study) and gave in both tasks qualitatively identical results. This
suggests that the use of different tasks cannot explain the qualitative discrepancy
between our present findings and those of Walker & Tanaka. We thus argue that the
absence or occurrence of an other-race effect – as observed in our study and that
of Walker and Tanaka – is mostly due to the absence or presence of an identity
change between faces to compare and not because of differences in paradigms.
Thus it highlights the importance of processing changing facial identity information
alongside race information for the occurrence of the other-race effect.

In another related study, Megreya and his colleagues [28] tested participants in
a simultaneous matching task on photographs of people of different ethnicities.
They found an other-race effect with their participants showing better matching
performance for same-race than other-race faces, suggesting that the other-race
effect occurs in the absence of a memory load. In our present study, we found
no evidence of an other-race effect in the presence as well as in the absence of
a memory load. Together with our study, the findings of Megreya and colleagues
[28] and of Walker and Tanaka [27] suggest that an other-race effect can occur,
independent of the memory load, as long as an identity change is involved in the
faces to compare or to match.

Many models have been proposed for face recognition, one of the most influential
ones [29] proposes parallel routes for category processing (e.g. race or sex, called
directed visual processing), and identity processing. This separation of routes has
been questioned in a few studies (for example: [30, 31, 32]). Furthermore, Bruyer
and his colleagues [33] have shown that race classification is affected by familiarity
with the face stimuli that are judged. Similarly, [14] showed that the emergence of a
categorical effect for face sex was linked to participants being familiar with the test
identities. In view of these findings and the current study we propose that identity
information is not processed separately from other facial information like sex and
race.
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Chapter 11
Functional Neuromonitoring in Acquired
Head Injury

Hakseung Kim, Young-Tak Kim, and Dong-Joo Kim

Abstract Patients with acquired head injury require accurate and rapid diagnosis
regarding their neurophysiological status. As a timely detection of the neuropatho-
logical changes in injured brain is important for patient management, a real-time
neurological monitoring is common procedure performed in a neurointensive care
unit. The neuromonitoring is conducted via acquisition and analysis of various
physiological parameters, such as intracranial pressure, cerebral perfusion pressure,
intracranial compliance, cerebral autoregulatory capacity, cerebral oxygenation, etc.
This article introduces major concepts and parameters in describing the neurological
condition of head injured patients. Engineers and scientists who are interested in
inter-disciplinary research with neuro-intensivists or neurosurgeons are the intended
audience of this article.

Keywords Acquired head injury • Intracranial pressure • Neurointensive care •
Neuromonitoring • Traumatic brain injury
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AMP pulse amplitude of ICP
CA cerebral auto-regulation
CBF cerebral blood flow
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HVx correlation between rTHb and mean arterial blood pressure
ICP intracranial pressure
LLA lower limits of auto-regulation
MRA magnetic resonance angiography
MRI magnetic resonance imaging
Mx index of auto-regulation changes in CPP and the velocity of CBF
NIRS near infrared spectroscopy
Optimal CPP optimal cerebral perfusion pressure
PET positron emission tomography
PRx pressure reactivity index
PVC pressure-volume curve
RAP pressure-volume compensatory index
rTHb relative total hemoglobin
TBI traumatic brain injury
TCD transcranial Doppler
ULA upper limits of auto-regulation

11.1 Introduction

Acquired head injury (AHI) refers to any non-congenital head injury, with traumatic
brain injury (TBI) and stroke as the major causes of AHI (hereafter, ‘AHI’ refers to
TBI and stroke). TBI and stroke are both leading causes of death worldwide [1, 2].
With a few exceptions, AHI patients need prompt care and treatment in an intensive
care unit (preferably in a specialized neurointensive care unit) [3].

In a severe AHI, the injury to the patient is biphasic and includes the primary
injury that is directly responsible for the initial neurological damage, and the sec-
ondary injury that result from a cascade of symptoms caused by the initial damage.
Although the primary injury itself cannot be prevented, the extent of the damage due
to the secondary injury can be minimized with rapid assessment and proper treat-
ment. In fact, recent studies suggest that neuronal cell death in AHIs, which has long
been considered to be the result of the primary injury and, therefore, difficult to treat,
actually happens within a few hours after the incident [4]. Thus, in an AHI, a rapid
assessment of the neurological condition is the key to obtaining a favorable outcome.

Despite recent advancements, pharmacological interventions for AHIs, espe-
cially in TBIs, are effective during the sub-acute or chronic phases [5], but not
in the acute phase. Currently, management of the acute phase of AHIs (i.e.,
during intensive care) focuses on minimizing the secondary injuries [6, 7]. This
can be best achieved by real-time neurological monitoring. In addition to the
common monitoring of physiological parameters in intensive care, i.e., heart rate
and respiratory monitoring, further information is required for the proper treatment
of AHI patients in neurointensive care. Important parameters include intracranial
pressure (ICP), cerebral perfusion pressure (CPP), intracranial compliance, degree
of cerebral auto-regulation, and cerebral oxygenation. This article aims to provide
lay descriptions of important concepts and parameters in neurointensive care, as
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well as how to measure them, for computer scientists, engineers, or neuroscientists
who are interested in developing software or hardware tools to support clinical
decision-making in neurointensive care.

11.2 Intracranial Pressure and the Monro-Kellie Doctrine

In the acute phase of AHI, ICP is often elevated. ICP literally refers to the pressure
inside the skull (cranium), and is considered to be one of the most important
parameters in neurointensive care, as the abnormal increase of ICP indicates a
deterioration of neurological status. In clinical practice, ICP is measured at various
places, such as the lateral ventricles or subarachnoid spaces (Fig. 11.1). The
‘normal’ value of ICP is considered to be below 15 mmHg in adults, although slight
changes may occur due to changes in body position (Table 11.1).

Elevated ICP is dangerous because the brain is enclosed by a rigid cranium. The
Monro-Kellie doctrine (named after Dr. Kellie who proposed the doctrine, and his

Sa Iv Ip

Ed

Sd

Fig. 11.1 Invasive monitoring of intracranial pressure. Iv intraventricular, Ip intraparenchymal, Sa
subarachnoid space, Ed epidural and Sd subdural [8]

Table 11.1 Normal
intracranial pressure (ICP)
value, measured at the
foramina of Monro, supine
position [9–14]

Age group Normal ICP values

Infant <7.5 mmHg
Child < 10 mmHg
Adult < 15 mmHg
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teacher) states the intracranial system is enclosed in a non-expandable cranium and
the brain parenchyma is nearly incompressible. Indeed, except for a short period
early in life, the cranium is non-expandable, and the brain parenchyma is nearly
incompressible because it consists mostly of water. This means that the three major
entities of the intracranial space, e.g., the cerebrovascular bed, cerebrospinal fluid
(CSF), and the brain, must share a single room. Considering the fact that the volume
inside the cranium does not change, the sum of the volume of these three entities
must be constant, if the pressure inside the cranium (ICP) is to remain constant. In
other words, elevated ICP reflects the abnormal increase in volume of at least one
intracranial entity.

11.3 Intracranial Pressure in Acquired Head Injury

Immediately after a primary insult to the brain, a disturbance in brain homeostasis
will occur [15]. These changes will bring several pathologic events, but the most
important one is cell swelling (cerebral swelling/neuronal swelling). As per the
Monro-Kellie doctrine, the volume expansion of one component will result in
decreases in the volumes of the other two components. This doctrine precisely
describes what happens in the intracranial space after parenchymal cells begin to
swell; swelling of the parenchymal component will increase ICP, and increase in
ICP will decrease the cerebral perfusion pressure (CPP; defined as the mean arterial
blood pressure minus ICP). A decrease in CPP decreases cerebral blood flow (CBF);
thus, a decrease in CPP effectively results in decreases in the supply of oxygen and
glucose that are needed for basic cellular metabolism. In the absence of a proper
intervention, these series of events will cause cerebral ischemia. While ischemic
insult poses a serious threat to any living tissue, an ischemic insult to cerebral
tissue is particularly dangerous for obvious reasons. Because of its devastating
effect, the prevention of an ischemic insult is considered to be the primary goal
in neurointensive care [16]. However, an abnormally elevated CPP can induce
intracranial hypertension or hyperemia (Fig. 11.2). Control of CPP can be achieved
by directly intervening blood pressure or ICP.

11.4 Intracranial Pressure and Intracranial Compliance

The extent of the damage from elevated ICP depends on several factors; however,
perhaps the most important factor is the intracranial compliance (defined as the
change in volume divided by the change in pressure, or4V/4P). If the intracranial
compliance is high, a small change in volume will not result in a significant change
in pressure, and vice versa. This concept is important because a less compliant
brain can be susceptible to slight changes in volume, and, by definition, intracranial
compliance can be lowered by increasing ICP [17].

The lowering of intracranial compliance does not necessarily involve an increase
in ICP, as other causes, such as decreased tissue or vascular compliance, can
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CBF

CPP [mmHg]50 60 120 130

Ischemia Optimal zone Hypermia

Fig. 11.2 Three different cerebral perfusion pressure (CPP) zones related to clinical status

also cause decreased intracranial compliance. Assessing the change in intracranial
compliance can be beneficial, especially in neuro-critical care.

11.5 Cerebral Autoregulation

As stated thus far, an increase in ICP results in significant neurological deterioration,
mainly due to decreases in CPP and CBF. To prevent this from happening, our body
has the capacity to maintain a constant CBF in the face of moderate changes in CPP.
This function is called cerebral auto-regulation (CA). The CBF can be regulated
by actively adjusting arteriole diameter, which causes cerebrovascular resistance
(CVR) [18, 19]. Nonetheless, the capacity of CA is not limitless; there are lower and
upper limits of auto-regulation (LLA and ULA, respectively) [20]. Under normal
physiological conditions, CA can cope with a significant degree of fluctuation in
the CPP due to the change in ICP. However, patients with AHI often suffer from
a failure of CA. The failure of CA can further aggravate a patient’s neurological
deterioration.

11.6 Beyond Intracranial Pressure Monitoring

Despite the fact that ICP monitoring is associated with favorable outcomes in AHI
patients [21–24], the prognostic value of ICP monitoring is still controversial [25,
26]. Indeed, an elevated ICP does not always lead to worsening of the patient;
although an abnormally high ICP can be helpful to anticipate mortality, it seems
that the ICP value itself cannot provide any additional insights [27, 28]. With
advancements in multimodal neuromonitoring, several important parameters have
been devised to enhance the diagnostic and prognostic value of ICP.
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11.6.1 Pulse Amplitude of ICP (AMP)

As with other waveforms, ICP can be converted to the frequency domain using
a Fourier transform. In the frequency spectrum of ICP, the harmonic frequency, in
accordance with the frequency of the heartbeat, is called the ‘fundamental frequency
in ICP’. The amplitude of this component is defined as the pulse amplitude of ICP
(AMP). AMP is positively correlated with mean ICP. For instance, an elevation
of ICP induces an increase in intracranial capacity as a result of the stroke
volume of the heart. Consequently, this increases the AMP (Fig. 11.3). AMP is
an important parameter itself. It is used as a supplementary concept, together with
other compensatory parameters derived from the ICP waveform [25].

11.6.2 Pressure-Volume Compensatory Index (RAP)

The pressure-volume compensatory index (RAP) is obtained by simultaneously
calculating the correlation coefficient between the mean ICP and AMP [29]
(Fig. 11.3). RAP is relevant to the pressure-volume curve (PVC) [30, 31], which was
derived by the Monro-Kellie doctrine. RAP can be applied to check the condition
of compensatory reserve. The RAP value ranges from �1 to 1. A RAP close to 0
indicates a good compensatory mechanism. If the RAP is close to 1, the ICP changes
greatly despite a small increase in volume [25–29]. TBI patients often suffer from
cerebral edema as a result of head injury. In the case of TBI, the RAP is usually
close to 1. RAP can be utilized for various purposes. For example, the effect of a
decompressive craniectomy can be confirmed by RAP [32].
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11.6.3 Pressure Reactivity Index (PRx)

CA is estimated by assessing ICP response in accordance with continuous changes
in the ICP [33]. In normal physiologic condition, CBF is maintained in the normal
range. However, a deteriorated CA responds slowly to the change in ABP in TBI
patients. Consequently, this difference is quantified by the pressure reactivity index
(PRx), which is calculated from the correlation between the continuous change in
ABP and ICP (Fig. 11.4). A PRx below 0 indicates normal CA, while a PRx above
0 indicates deteriorated CA. According to recent research based on adults, a PRx
above 0.3 is strongly correlated with mortality [34], and an equivalent result was
shown in a similar study (nD 193, p < 0.0001) [35]. A study based on pediatric
subjects showed that the difference in mean PRx between surviving and deceased
subjects is about 0.61 [36].

11.6.4 Optimal Cerebral Perfusion Pressure (Optimal CPP)

Recent studies examined the relationship between PRx and optimal CPP [36–38].
Optimal CPP is a CPP that is in the normal range, and which does not result in
ischemia or congestion of the brain (Fig. 11.4). It can be obtained after several
hours of monitoring. A previous study of optimal CPP in 144 subjects used the
relationship between PRx and CPP to establish that the optimal CPP is about 60 %
[39].
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11.7 Monitoring Cerebral Auto-Regulation

11.7.1 Transcranial Doppler

CBF was first measured in 1945, and has remained the main target for monitoring.
There are various procedures that measure CBF, primarily perfusion computed
tomography (CT), magnetic resonance angiography (MRA), positron emission
tomography (PET), oxygenation, transcranial Doppler (TCD), laser Doppler, and
jugular vein oximetry. Especially, TCD and jugular vein oximetry are widely used
in intensive care units. TCD estimates CBF using the Doppler effect caused by the
movement of red blood cells [7]. It is widely known that the measurement of CBF
using TCD is an estimate value [40]. TCD is a length procedure, and various factors
influence the estimated CBF value [41]. Researchers should keep in mind that it is
necessary to eliminate signal artifacts when analyzing TCD. However, there is no
method that automatically eliminates artifacts and, thus, these procedures are labor-
intensive. TCD is noninvasive, simple, low cost, and painless for patients. Above all,
TCD can serve multiple purposes [42–44]. Consequently, methods for measuring
ICP or CBF using TCD have been investigated.

Mx is an index of auto-regulation. It is derived from the correlation coefficient
between the voluntary change in CPP and the velocity of CBF [45]. Mx has the
same purpose as PRx. In the same manner, Mx below 0 indicates normal CA, and
Mx above 0 indicates a loss of CA.

A previous study, which compared PRx and Mx in the same population, reported
a strong relationship between them (R2D 0.36, p < 0.001). However, it is also
reported that Mx is harder to measure than PRx. Despite this shortcoming, Mx has
remained an index that complements the weakness of PRx via its noninvasiveness
[45].

11.7.2 Near-Infrared Spectroscopy

Near-infrared spectroscopy (NIRS) is noninvasive method that measures oxygen
saturation in a local area of the brain. The area to be measure is illuminated by
near-infrared rays from a light sensor on the scalp. Hemoglobin and myoglobin have
different absorption spectra that are dependent on the degree of oxidation-reduction.
The scalp and skull have low absorption rates of near-infrared rays (700–1000 nm);
thus, the rays from NIRS reach a depth of several centimeters through the scalp
[46]. Although NIRS measures a localized area and is subject to noise caused
by hemoglobin in the scalp and hematoma, it has an excellent spatio-temporal
resolution and is noninvasiveness.

Measurement of relative total hemoglobin (rTHb) using NIRS is a universal
method to assess oxygen saturation. However, it is insufficient to monitor changes
in various lesions in TBI patients. To overcome this limitation, Cox and HVx were
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proposed. Cox is defined as the correlation coefficient between oxygen saturation
and CPP. Similarly, HVx is derived as the correlation between rTHb and mean
arterial blood pressure.

Cox and HVx are also used to assess CA, as are PRx and Mx. Conditions in
which the Cox and HVx are close to 0 or negative indicates a normal CA. If CA
is deteriorated by a disorder (e.g., hypotension), these parameters show positive
values. Many researchers have attempted to utilize these parameters, but its accuracy
is still controversial [47–49].

11.8 Monitoring Intracranial Compliance

The importance of monitoring intracranial compliance has been well accepted, and
there are various methods by which it can be measured. Previously, the monitoring
of intracranial compliance was done manually, by injecting and then withdrawing
a bolus of mock CSF [50–53]. Although such methods are still used, current ICP
monitoring devices are often equipped with an automated compliance monitoring
capacity (Fig. 11.5).

Other than the use of specialized devices, the raw recordings of ICP can also
enable the assessment of intracranial compliance, and this can be achieved via the
morphological analysis of the ICP waveforms of. The ICP waveform has three
distinctive peaks, named P1, P2, and P3 in the order of appearance (Fig. 11.6) [55].

P

Fig. 11.5 Diagrammatic representation of the Spiegelberg Compliance monitoring device. The
system incorporates a piston-based pump for accurately adding and removing small volumes of air
(0.2 ml) into a double lumen catheter placed within a ventricle. A strain-gauge pressure transducer
(P) connects to the fluid-controlled lumen of the catheter to measure the small perturbations in
intracranial pressure (ICP) resulting from the addition and removal of small volumes to the balloon.
The figure was adapted and modified from the original work of Piper et al. [54]
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Fig. 11.6 Typical intracranial pressure (ICP) waveforms in an intracranial system with (a) high
compliance and (b) decreased compliance

The waveform of elevated ICP typically shows a decreased P1 amplitude in P1 and
an increased P2 amplitude [56], and this phenomenon has long been considered as
indicative of decreased intracranial compliance [55, 57–59].

The use of invasive devices can provide accurate and continuous monitoring of
intracranial compliance; however, it also poses a non-negligible risk of infection or
hemorrhage. Recently, non-invasive methods involving magnetic resonance imaging
(MRI) have been proposed [60, 61]. However, these methods share some significant
limitations, namely that MRI only allows a temporary assessment for a very short
duration. Because of the inherent nature of MRI, it cannot provide a continuous,
real-time assessment of intracranial compliance.

11.9 Conclusion

Neurointensive care can help prevent the further aggravation of injury due to the
worsening of secondary injuries in AHI patients, and ICP monitoring plays an
essential role in this process. Nonetheless, the absolute value of ICP itself may
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not be useful, other than to anticipate mortality. This limitation can be overcome
by multimodal neuromonitoring. Multimodal neuromonitoring not only enables a
multilateral assessment of a patient’s neurological condition, but also enhances the
diagnostic and prognostic value of ICP. The remaining drawback of monitoring ICP
lies in its invasiveness; further research should focus on developing reliable, highly
accurate, noninvasive ICP measurement techniques.
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Chapter 12
Diagnostic Optical Imaging Technology
and Its Principles

Jae-Ho Han

Abstract Analysis of tissue structures is important for investigating pathological
changes and diagnosing neural diseases. Recent advances in ophthalmology regard-
ing the diagnosis of neurosensory retinal diseases have introduced optical coherence
tomography (OCT) as a near-infrared imaging modality to provide noninvasive and
real-time imaging and sensing with ultrahigh resolution for imaging subsurface
cross sections of the human retina. This chapter gives a brief overview and the basic
principles of this emerging optical imaging modality.

Keywords Optical imaging • Optical coherence tomography • Diagnosis •
Retina • Ophthalmology

12.1 Introduction to Optical Coherence Tomography

Effective therapeutic treatment can significantly benefit from early diagnosis and
continued monitoring of pathological tissue alterations using high-resolution imag-
ing methods that are neither harmful nor invasive to healthy tissue. Optical
coherence tomography (OCT) is a minimally invasive real-time, high-resolution
imaging modality that has seen much recent progress and is a promising diagnostic
imaging technique [1, 2]. OCT is based on low-coherence optical interferometry,
and utilizes ballistic and near-ballistic photons in a turbid medium. The volumetric
tissue is illuminated using a scanning optical beam and the backscattered photons
can be measured as a function of the path length in the tissue. Thus, OCT systems
can be used to obtain depth-resolved in situ and in vivo cross-sectional and three-
dimensional morphological images of biological tissue microstructures, as well as
their subsurface depth profiles [3–6]. Figure 12.1 shows sample OCT images of a
normal human retina and some common retinal diseases for comparison.
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Table 12.1 lists a comparison between OCT and other imaging modalities,
including X-ray computed tomography (CT), magnetic resonance imaging (MRI),
and ultrasound sonograms. OCT is analogous to sonograms, with the exception
that OCT measures echo reflections of backscattered light rather than backscattered
acoustic signals. Although the imaging depth in highly scattering tissue is typically
smaller than 1–2 mm, OCT can achieve micrometer-scale axial resolution using

Fig. 12.1 Images obtained using OCT of: (a) a normal retina, (b) a macular hole, (c) age-related
macular degeneration, (d) an idiopathic epiretinal membrane, and (e) a glaucoma patient’s retina
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Fig. 12.1 (continued)

Table 12.1 Properties of biomedical imaging modalities

Method Resolution
Penetration
depth Source of contrast

X-ray Computed Tomography (CT) 2–3 mm Entire body Attenuation
Magnetic Resonance Imaging (MRI) 2–3 mm Entire body HC concentration
Ultrasound Sonogram 500 �m 10–20 cm Acoustic scattering
Visual Examination 100 �m Surface Natural coloring
Optical Coherence Tomography (OCT) 10 �m 2–3 mm Optical scattering

an ultra-broadband light source. OCT has been widely used in ophthalmology to
accurately measure the thickness of the cornea and assess intraocular pathology,
and it is rapidly becoming a standard of care used for diagnosing retinal diseases
[7, 8]. The rapid adoption of the method in ophthalmology has been partly due
to the relative transparency of the relevant ocular tissues for efficiently facilitating
the implementation of OCT withnear infrared light. There have also been efforts
towards its implementation in areas including cardiology [9], gastroenterology [10],
urology [11], dermatology [12], and various delicate microsurgical applications
[13].
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In the following sections, the basic principles and selected background physics
required to understand the implementation and operation of OCT are provided
in detail. OCT system configuration for a fiber-optic-based system is succinctly
described in Sect. 12.2. The coherence and interference of light are explained
in Sect. 12.3 to clarify the concepts associated with light detection mechanisms.
Section 12.4 presents the basic steps for analyzing the acquired data for image
reconstruction in different domains and Sect. 12.5 presents the interaction of light
in at turbid medium to describe the inherent depth-limiting factors of light in the
imaging system. A brief summary of this Chapter is provided in Sect. 12.6.

12.2 System Configuration

The schematic configuration of a simple fiber-optic version of an OCT system
is shown in Fig. 12.2. A 2� 2 fiber-optic coupler is employed to divide and
recombine the beams instead of a beam splitter, as in free-space interferometers.
This configuration represents the basic structure of dual-arm OCT systems, which
involve two optical paths: one for the reference path and one for the sample (object).
Here, either the mirror in the reference path is movable along the axial direction or
fiber can be stretched to gradually change and precisely match the path difference
between the reference and the sample arms.

OCT employs a low-coherence interferometry method by using a light source
with a large bandwidth, corresponding to a small coherence length, which requires
highly accurate path-length matching between the two arms. Thus, the depth scan is
achieved by detecting the positions of the reflected beams in the tissue by scanning
the reference arm length. The transverse scan to obtain 2-D and 3-D images can be
achieved by moving either the sample or the probe in a lateral direction.

The typical Michelson interferometers used for time-domain (or spatial-domain)
analysis have been replaced by the so-called spectral or Fourier-domain OCT. This

Fig. 12.2 Conventional fiber-optic interferometer-based OCT system. The arrows indicate the
direction of light
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system uses the spectrally dispersed interference signal between the sample and
the reference light source to deduce the depth-resolved reflectance by performing a
Fourier transform.

12.3 Coherence and Interference

12.3.1 Coherence Length of Light

The light sources used with OCT are based on coherence, which determines the
axial (i.e., depth) resolution of the cross-sectional image. Phase changes of non-
monochromatic light waves are a stochastic process in which the excited atoms in
the light source experience transitions between energy levels and which results in
finite harmonic wave trains. The waves statistically maintain their coherence within
the average train life (with coherence time 
0) or, equivalently, are related to the
average distance (with coherence length lc) [14] as

lc D ˛c
0 D ˛
c

�f
; (12.1)

where c is the speed of light in free space, �f is the frequency bandwidth, and ˛

is a constant coefficient representing the statistical distribution of the source (e.g.,
˛ D 0:44 for a Gaussian source). The conversion between the spectral width at
wavelength �� and the bandwidth at frequency �f is given by

�f

f
D ��

�
; c D f � �; (12.2)

so that the coherence length is related to the wavelength by

lc D ˛
�2

��
: (12.3)

For instance, a perfect monochromatic source .��! 0/ corresponds to an infinite
coherence length .lc !1/.

In addition, abrupt phase changes reflect the spectral width and the shape of the
source. In this case, the interaction of low-coherence waves generates interference
fringe patterns only if the path difference �L D jL1 � L2j is smaller than the
coherence length. The total intensity can be written as

I D I1 C I2 C 2
p

I1I2 cos .ı/ jG .�L/j ; (12.4)

where ı is the phase difference due to the difference in path lengths, which can be
written as ı D k�L. G(�L) describes the envelope function of the low-coherence
source, and I1 and I2 are the intensities of the two interfering waves. The Fourier
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transform of this temporal (or spatial) auto-correlation corresponds to the power
spectral density. Therefore, the fringe shows a peak if the paths are matched, tapers
in either direction if the path difference increases to �L D ˙lc, and vanishes for
larger path differences.

12.3.2 Optical Interferometer

An interferometer provides a means to explore the interference of light by studying
the fringe patterns that result from the interference between two beams. The
interferometer splits an initial beam (amplitude division) into two smaller ones that
travel on different optical paths and recombine to produce an interference pattern.
The division of the light beam can be performed using a beam splitter so that one
beam is transmitted and the other is reflected with equal amplitudes. Both beams
are directed to mirrors, are reversed, recombined, and subsequently detected using a
single photo detector. When using a beam splitter, at least one of the mirrors should
be movable along the optical axis to precisely determine the distance between the
two paths within the coherence length of the light source. In the OCT method, the
moving mirror acts as a reference arm, and the fixed mirror is the sample arm, where
the specimen is placed. Following the distance scan, during which the average power
is detected for every position, depth-resolved information can be reconstructed (i.e.,
an A-mode scan).

12.4 Extraction of Depth Information

12.4.1 Principle of Time-Domain Analysis

In interferometry analysis, the extraction of the path differences is performed based
on space or time, so that the mechanical adjustment of the reference path length is
indispensable; this process makes the entire system slower. If a spectrometer is used
as a receiver instead of a photo detector, the system can be configured in a simpler
manner without the mechanical speed limitations. The distance information can be
extracted from a Fourier transform of the interference signal using the data obtained
with the spectrometer. Therefore, only a lateral scan is required to obtain a two-
dimensional cross-sectional image. This method is based on the Wiener-Khintchine
theorem, which shows that the power spectrum and its auto-correlation are a Fourier-
transform pair that can be expressed as

SEE.f / D
Z 1

�1
GEE .
/ � e�i2� f 
 d
 $ GEE .
/ D

Z 1

�1
E.t/E� .t � 
/ dt; (12.5)
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where G(
) is the normalized complex coherence function related to the power
spectral density of the source according to the Weiner-Khintchine theorem [15],
i.e.,

G .
/ D e

�
�
	

���


2
p

ln 2


2
�

e.�i2�0�/; (12.6)

where ¤0 is the central frequency of the broadband source and �¤ is the half-
power bandwidth, which represents the spectral width of the source. For instance,
using Fourier-domain analysis, the distance information can be extracted from the
interference term in the spectral domain by

Itotal D
Z 1

�1
I.k/dk D

Z 1

�1

p
Ir.k/Is.k/ cos .2kdi/ dk$ I.x/ D F�1 ŒItotal�

D G.x/ � ı .x � 2di/ D G .x � 2di/ :

(12.7)

where F�1 is the inverse Fourier transform and di represents the position or distance
to the ith layer.

12.4.2 Concept of Fourier Domain Conversion

As mentioned above, Fourier analysis can simplify the extraction of depth infor-
mation with directly using the spectral information instead of using the time
domain scanned data. To convert spectral information to an image, the spectral
data acquired with the spectrometer are converted from the wavelength space to the
wave-vector space (i.e., k-space) using a fast Fourier transform (FFT) to reconstruct
the longitudinal profile of the samples. Here, the pixel size of each bin, as obtained
from the sampling theorem, is given by

�l D zs

N
D �

�k
D �max�min

2 .�max � �min/
; (12.8)

where N is the total number of elements in the spectrometer detector array, �k is
the spectral width in k-space, and zs is the imaging depth. For example, for a high-
resolution fiber-optic spectrometer that covers the spectral range 700–900 nm and
uses a charge-coupled device (CCD) array with 3648 pixels, the equidistant bin
corresponds to approximately 1.6 �m. This translates to a maximum imaging depth
of approximately 3.5 mm and a spectral resolution of 0.09 nm.
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12.5 Light-Matter Interaction and Refractive Index

12.5.1 Characteristics of Light Propagation in Matter

Light-matter interactions occur when an electromagnetic wave propagates through
biological tissue. All the relevant optical properties of dielectric materials can be
described by their relative permittivity "r, The polarization P of the material, caused
by bound charges and/or polar molecules, represents the collective dipole moment
per unit volume of the medium. The polarization therefore describes the interaction
between the applied electric field and the medium, and is expressed as

P D np D �"0E; (12.9)

where n is the volume density of dipoles, p is their dipole moment, � is the electric
susceptibility, "0 is the dielectric constant of free space, and E is the applied electric
field. According to its microscopic definition (i.e., P D np), the polarization depends
on the density of dipoles; thus, a localized density fluctuation results in localized
changes in the polarization or the dielectric constant (or refractive index), which
in turn relate to macroscopic phenomena through P D �"0E. Therefore, optical
scattering can be considered to result from in homogeneities in the refractive index
of the medium.

The propagation of light in a dielectric medium can be described using
Maxwell’s equations as follows:

r � H D Jb C @ ."0E/

@t
; (12.10)

r � E D �@B

@t
; (12.11)

r � ."0E/ D �b; (12.12)

and

r � B D 0; (12.13)

where the incident or applied field induces a dipole moment by the displacement of
the centers of positive and negative charges in the atom, and the collective effect of
these dipole moments is the polarization. This polarization effect generates a bound
charge density or bound current density; hence, Eqs. (12.10) and (12.12) can be
modified by including the bound current density due to the polarization, Jb D @P

@t ,
and the bound (polarization) charge density, �b D �r � P, as

r �H D @P

@t
C @ ."0E/

@t
D @ ."0EC P/

@t
(12.14)
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and

r � ."0E/� .�r � P/ D r � ."0EC P/ : (12.15)

Thus, using Eqs. (12.14) and (12.15), Maxwell’s equations can be modified to
include this effect and the relative permittivity "r can be derived depending on the
materials, i.e.,

D D "0EC P D .1C �/ "0E D "r"0E: (12.16)

The wave equation in a dielectric medium with very small non-zero conductivity
(� ¤ 0) is given by

r2E D ��
@E

@t
C "�

@2E

@t2
(12.17)

and the propagation k can be expressed as

k D �!2�"C i��!
�0:5 D !

p
�"

�
1C i��!

!2�"
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�"
	
1C i

�
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1C i
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D k1 C ik2:

(12.18)

Using complex notation for the susceptibility (i.e., � D �1 C i�2), relative
permittivity ("r D "1 C i"2), and refractive index (n D p"r D n1 C in2), the
corresponding field can be written as

E D E0ei.kz�!t/ D E0ei..k1Cik2/z�!t/ D E0e�k2zei.k1z�!t/; (12.19)

where the propagation constant is defined as k D n !
c D .n1 C in2/

!
c D k1 C ik2.

Here, it is clear that the imaginary term of the propagation constant, k2 D �
2

q
�

"
,

originates from the very small non-zero conductivity � , which contributes to the
attenuation.

12.5.2 Optical Properties of Matter

Furthermore, the comparison of the forces due to electromagnetic fields shows that
the electric field is the dominant mechanism responsible for the interaction between
the light and the medium, as expressed by the following relationship:

FH

FE
D qvB

qE
D v

B

E
D v

c
< 1: (12.20)
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Sources in the near-infrared (NIR) range are desirable for use with biological
tissue, which is mostly (
75 %) composed of water, because of the relatively
low absorption and scattering characteristics compared with those in the visible
or the mid- and far-infrared (FIR) spectral ranges [16]. The shorter-wavelength
visible light is either highly scattered or absorbed in the tissue, and the mid-
and far-IR radiation experiences large absorption by the water in the tissues. The
wavelength dependence of the scattering can be explained considering the fact
that the displacement of an oscillating dipole (given by r D r0ei!t) has a linear
relationship with electric field-induced acceleration a, which is proportional to the
square of the frequency ! (i.e., a D d2r=dt2 D �!2r0ei!t). Because the radiated
power is related to the square of the electric field, it becomes proportional to the
fourth power of the frequency (i.e.,
 !4 or
 1

�4 ), so that at visible wavelengths, the
losses in the medium are dominated by scattering. Therefore, shorter wavelengths
have larger scattering-related attenuation, which further limits the penetration depth
in OCT imaging.

Photon transport in turbid tissue can be modeled numerically using Monte Carlo
simulations and analytically using the radiative transfer equation (RTE), which can
be simplified using the photon diffusion approximation [17]. Here, the behavior of
photons is dominated by scattering, and the individual path of a given photon is
modeled as a random walk so that a large number of photons exhibit diffusion in
the medium [18]. OCT imaging is based on the detection of coherent photons that
travel through a scattering turbid medium. In this medium, most of the incident
photons experience random scattering and absorption whereas a few photons can
diffuse in a straight line for short distances. These coherent photons are termed
as ballistic photons, and photons which retain some degree of coherence (i.e., are
slightly scattered) are referred to as snake photons [19].

12.6 Conclusions

In summary, optical coherence tomography is a powerful emerging medical diag-
nostic modality for minimally invasive tomographic imaging. OCT can provide
images of micrometer-scale resolution in 2-D planes and 3-D volumes for various
biomedical applications and fields of studies, such as ophthalmology. Image acqui-
sition is achieved by detecting light with an instrument called optical interferometer
and the tomographic image resolution is determined by the coherence length of
the utilized light source. A simple line image can be reconstructed using either
conventional time-domain analysis or Fourier-transformed data for resolving the
depth information directly from the interferogram results. In addition, considering
the characteristics and behavior of light, the NIR regime is the optimal spectral
window for better performance considering the wavelength dependency of light
scattering and attenuation in turbid tissues. Based on the above principles, an OCT
system can be efficiently realized and operated with better performance and quality.
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Chapter 13
Detection of Brain Metastases Using Magnetic
Resonance Imaging

Jaeseok Park

Abstract In detecting brain metastases, three-dimensional (3D) magnetic
resonance imaging (MRI), which exploits a T1-weighted contrast mechanism, has
been widely used after administering T1-enhancing contrast agents. However, since
contrast materials remain in both blood and the tumor parenchyma and increases the
signal intensity of both regions, it is often challenging to differentiate brain tumors
from blood. The purpose of this work is to develop a novel, highly selective whole-
brain metastases MRI, wherein the signal intensity of the brain tumor is enhanced
while that of blood is suppressed. A 3D non-CPMG fast/turbo spin echo pulse
sequence, which incorporates variable refocusing-flip-angles and flow-sensitizing
gradients, was employed to suppress blood signals. To avoid loss of signals in
stationary tissues resulting from the non-CPMG condition, the first refocusing-flip-
angle was forced to 180ı. Simulations and in vivo volunteer and patient experiments
were performed to demonstrate the effectiveness of this approach in detecting small
brain metastases.

Keywords Magnetic resonance imaging • Brain metastases • Black-blood • Fast
spin echo • Contrast-enhanced

13.1 Introduction

In brain metastasis, blood vessels do not maintain the blood-brain-barrier. Contrast
agents with small molecular weights, if administered exogenously, accumulate
within the extravascular extracellular space. Thus, contrast-enhanced (CE) imag-
ing methods [1–6], which are sensitive to the T1-shortening effect of contrast
materials, have been widely used for the detection of brain metastases. Among
them, magnetization-prepared-rapid-gradient-echo (MP-RAGE) imaging [7, 8], a
three-dimensional (3D) T1-weighted imaging sequence, has been used to acquire
high-resolution, isotropic whole-brain data in a clinically acceptable imaging time.
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Despite the advantages, a potential confound is the distribution of contrast agents
within blood vessels and the tumor parenchyma, resulting in the simultaneous
enhancement of both regions and thereby impairing the accuracy of metastatic
lesion detection. Since blood vessels close to brain tumors may result in diagnostic
confusion, it is necessary to selectively enhance the signal intensity of the brain
tumors while suppressing the blood vessels elsewhere in the brain.

Black-blood imaging methods [9–14], if successfully combined with CE 3D MP-
RAGE, may have a potential to differentiate brain tumours from blood vessels.
Nevertheless, it is challenging to achieve CE black-blood imaging using MP-
RAGE due to rapid recovery of blood signals along the echo train. Furthermore,
blood suppression becomes more problematic with increasing spatial coverages.
Additionally, motion-sensitizing magnetization preparation, which employs a 90ı
(excitation pulse) – 180ı (refocusing pulse) – 90ı (flip-back restore pulse) pulse
scheme with matching crushers inserted on either side of the refocusing pulse, may
yield substantial T2-weighting, reducing the signal intensity of CE tumors.

In this work, we develop a novel, T1-weighted, black-blood version of the
single-slab 3D turbo/fast SE pulse-sequence, investigating its feasibility as a novel
CE whole-brain black-blood imaging for efficiently detecting small metastases.
Numerical simulations and experimental studies were performed in volunteers and
patients at 3T using conventional 3D MP-RAGE and the proposed method for
comparison.

13.2 Method

13.2.1 T1-Weighted, Black-Blood Single-Slab 3D
Turbo/Fast SE

A schematic and timing diagram of the proposed T1-weighted single-slab 3D non-
CPMG turbo/fast SE pulse sequence is shown in Fig. 13.1. A spatially non-selective
excitation radio-frequency (RF) pulse is applied for the selection of the whole-brain.
Short, non-selective RF pulses (duration, 400 �s) are employed in the refocusing
pulse train, which shortens echo spacing (ESP) (time between neighboring echoes)
and thus enhances the efficiency of data acquisition. To reduce power deposition to
human tissues, permit a long echo train (a series of RF pulses), and maintain T1-
weighted signal evolution along the entire echo train, variable flip angles [15, 16]
calculated using gray matter (GM) specific signal prescription are used in the
refocusing pulse train. The refocusing flip angles typically vary rapidly from high
to low values in the beginning of the echo train to store magnetization along the
longitudinal axis and contribute to signals later in the echo train, and then increase
slowly to counter an inherent signal loss due to relaxation. At the end of the
refocusing pulse train, composite restore RF pulses composed of three short, non-
selective pulses are applied to prepare partial inversion recovery for next excitation
time of repetition.
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Fig. 13.1 A schematic and timing diagram of the proposed pulse sequence for the detection of
brain metastases

In the frequency encoding (FE) direction in conventional turbo/fast SE pulse-
sequence, the magnetization of flowing spins in the SE pathway experiences
90ı–180o–180o–like RF pulses and thus remains in the transverse plane during
all the segments of the pulse sequence, undergoing flow dephasing at every odd
echo and flow compensation at every even echo. On the other hand, magnetizations
in the stimulated echo (STE) pathway see 90ı–90o–90o–like RF pulses and thus
experiences flow dephasing throughout the echo train. For flowing blood, SE and
STE signal may re-phase at different time points during data acquisition, yielding
loss of signals resulting from phase cancellations. Flow-induced phase-dispersion
would be further activated with increasing incoherence of SE and STE. Given the
consideration above, variable-flip-angle approach in the refocusing pulse train is
advantageous in that the initial low flip angles store substantial magnetizations along
the longitudinal axis and thereby increase contribution of STE signals later in the
echo train. To enlarge phase dispersions for magnetizations in the STE pathway and
those in the SE pathway, the gradient moment of matching crushers (spoilers) on
either side of each refocusing pulse in the FE direction is increased. Additionally,
to decrease blood signals in the beginning of the echo train, additional matching
crushers are inserted on either side of the first refocusing pulse in the x, y, and z-
axes. Given the desired gradient moment, all matching crushers are designed to have
the shortest possible duration within the maximum gradient amplitude and slew rate.
To retain high echo-train efficiency, a longer ESP (ESP1), which accommodates the
additional matching crushers on either side of the first refocusing pulse, is used for
the first echo, while the shortest possible ESP (ESP2) is employed for the remainder
of the echo train. The non-CPMG configuration (ESP1¤ESP2) does not re-phase
STE signals in a coherent position with SE signals, resulting in loss of signals in
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stationary tissues. This problem is addressed in this work by forcing the flip angle
of the first refocusing RF pulse to 180ı. Data acquisition is skipped for the first two
echoes to achieve substantial blood suppression.

13.2.2 Numerical Simulation

Numerical simulation of the Bloch-equation is performed under the assumption
that: (1) all RF pulses are short, non-spatially-selective, (2) gradient pulses use
rectangular waveforms and are applied in the FE direction, wherein the duration
of the pre-phasing gradient immediately after the excitation pulse is ESP/2, that
of the additional matching crushers on either side of the first refocusing pulse is
ESP/2, and that of the re-phasing gradient between a pair of non-spatially-selective
refocusing pulses is ESP, and (3) blood flows in parallel with the FE direction at a
constant velocity. The re-phasing gradient was simulated by successively applying
the pre-phasing gradient twice.

Since all RF pulses are very short and thus relaxation during pulse application is
negligible, the effect of each RF pulse on magnetization is simply a rotation about
an axis in the transverse plane. The signal intensity averaged over spin isochromats
at each time of echo is calculated by*:
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In the presence of the additional matching crushers on either side of the first
refocusing pulse,
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In the absence of the additional matching crushers on either side of the first
refocusing pulse,
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where n is the echo number, N is the number of isochromats, l is the isochromat
index, m is the refocusing pulse number, ’o is the refocusing flip angle, M(l,m) is the
magnetization vector as a function of l and m, Rx( : : : ), Ry( : : : ), and Rz( : : : ) are the
rotation matrices about x, y, and z-axes, respectively, Mi is the initial magnetization
vector, [0 0 M0]T, T( : : : ) is the matrix operator that applies T1 and T2 relaxation
for the specified time, �S is the gradient-induced phase for stationary tissues, �M

and �
0

M are the flow-induced phase for the 1st order gradient moment, GR is
the amplitude of the pre-phasing gradient, GD is the amplitude of the additional
matching crushers on either side of the first refocusing pulse, ” is the gyromagnetic
ratio, v is the constant flow velocity, and M1 is the first-order moment of the pre-
phasing gradient. The following parameters are retained throughout the simulations:
ESPD 4.0 ms; T1 and T2 relaxation values for CE bloodD 50 ms and 40 ms,
respectively; and ETLD 22.

To investigate the effect of increasing magnetizations in the STE pathway on
CE blood suppression, numerical simulations are performed for four different
refocusing-flip-angle schemes (constant flip angle (CFA)D 180ı; CFAD 120ı;
variable FA (VFA), ’1¤ 180ı; VFA, ’1D 180ı) with the following parameters:
GRD 10 mT/m and GDD 0 mT/m. The effect of flow velocity on the signal intensity
of flowing blood is evaluated at vD 5 cm/s.

13.2.3 Experimental Studies

Imaging studies were performed in volunteers and patients suspected of brain
metastasis before and after the administration of a double dose of the contrast agent
at a 3T whole-body MR scanner (MAGNETOM Trio, Siemens Medical Solutions,
Erlangen, Germany). Informed written consent was obtained prior to imaging.
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To compare the proposed method with conventional MP-RAGE in detecting
small metastatic brain tumors, two sets of high-resolution isotropic whole brain
images in the sagittal plane were acquired after the administration of contrast agent.
The imaging parameters common to both methods were: FOVD 250� 250 mm2;
partitionsD 176; slice thicknessD 1.0 mm; and imaging timeD 8.5 min. The
imaging parameters specific to MP-RAGE were: TR/TE/TID 2200/4.4/900 ms;
in-plane acquisition matrixD 256� 256; and flip angleD 10ı; while those spe-
cific for the proposed method were: TR/TEeffD 650/11.7 ms; in-plane acquisition
matrixD 240� 256; ESP1/ESP2D 18.9/4.3 ms; ETLD 22; VFA (’1D 180ı); and
RgD 2.5; RdD 2.0–3.0.

13.3 Results

13.3.1 Numerical Simulation

Figure 13.2 represents the effect of the refocusing-flip-angle schemes in the
proposed method on CE blood (flowing at 5 cm/s). In the CFA scheme, the signal
intensity in CE blood decreases with decreasing flip angles from 180ı to 120ı.
Unlike CFA, VFA exhibits much lower blood signal intensity, particularly in the
first, several echoes. Additionally, VFA scheme with ’1D 180ı appears to yield
signal evolution similar but shifted by one echo as compared to that with ’1¤ 180ı.
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Fig. 13.2 Variable refocusing flip angles in the proposed pulse sequence with increasing RF pulse
number (left) and its corresponding signal evolution of flowing spins at 5 cm/s (right) (heavy
solid: CFA with 180ı, light solid: CFA with 120ı , unevenly dotted line: VFA with the first 180ı

refocusing flip angle, evenly dotted line: VFA without the first 180ı refocusing flip angle)
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Fig. 13.3 Comparison of images acquired using conventional MP-RAGE (left) and the proposed
method (right). Arrows represent metastatic brain tumors

13.3.2 Experimental Studies

Figure 13.3 compares the images acquired in patients using conventional MP-RAGE
and the proposed method (VFA with ’1D 180ı, Rg/RdD 2.5/2.0–3.0) following
the administration of contrast materials. Both metastatic brain tumors and blood
in conventional MP-RAGE are simultaneously enhanced, while in the proposed
method metastatic tumor signals remain high but blood signal is suppressed.

13.4 Conclusion

In conclusion, we have demonstrated the effectiveness of the proposed method over
conventional MP-RAGE in detecting small brain metastases by enhancing tumor
signals while selectively suppressing blood signals. Since this work is confined in
investigating the technical feasibility for efficiently detecting small brain metastases,
the clinical utility of the proposed method needs to be evaluated in future studies.

Acknowledgement Numerical simulation in this manuscript follows closely a prior published
paper by the authors [17]
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Chapter 14
Deep Learning in Diagnosis of Brain Disorders

Heung-Il Suk, Dinggang Shen, and the Alzheimer’s Disease Neuroimaging
Initiative�

Abstract In this chapter, we introduce our recent work on neuroimaging-based AD
diagnosis with machine learning techniques, especially deep learning. Specifically,
we focus on the problems of feature representation and complementary information
fusion from different modalities, e.g., MRI and PET. In our experimental results
on the publicly available ADNI dataset, we could validate the effectiveness of
the deep learning-based feature representation and its superiority to the competing
methods. We also present the importance of collaborating communities of machine
learning and clinical neuroscience for clinical interpretation of the learned feature
representations.

Keywords Alzheimer’s disease (AD) • Mild cognitive impairment (MCI) • Deep
learning • Stacked auto-encoder • Deep Boltzmann machine

14.1 Introduction

As the population becomes older, the world is now facing an epidemic of dementia.
Among various causes of dementia, Alzheimer’s Disease (AD) is the most prevalent
in elderly people, which rises significantly every year in terms of the proportion of

*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI). As such, the investigators within the
ADNI contributed to the design and implementation of ADNI and/or provided data but did not
participate in analysis or writing of this report. A complete list of ADNI investigators is available
at http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/ADNI_Authorship_List.pdf.
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cause of death. A recent study by Alzheimer’s Association reported that 10
20 % of
people aged 65 or older have Mild Cognitive Impairment (MCI), a prodromal stage
of AD [1]. But there is no treatment to halt its progression to AD yet. In this regard,
it has been one of the major issues to understand the underlying mechanisms that
develop such devastative neurodegenerative disease in the fields of neuroscience,
neuropsychiatry, etc.

The current scientific technologies of medical imaging, such as Magnetic
Resonance Imaging (MRI) and Positron Emission Topography (PET), provide paths
to investigate the structure and function of the brain in vivo. With the help of such
tools, researchers have made a great leap in understanding the disease. However,
the group-level analysis prevalently used for investigation and understanding of
the disease is not clinically applicable for individual diagnosis. In the meantime,
machine learning techniques, which can efficiently analyze the complex patterns
in observations, help pave the way for a computer-aided AD diagnosis system by
building computational models that can discriminate patients with the disease from
healthy normal subjects.

The conventional computer-aided diagnostic systems mostly considered neu-
roimaging features such as voxel intensities of predefined regions, gray matter
volumes, cortical thickness, to name a few, all of which can be considered as simple
low-level features. From a machine learning point of view, it is beneficiary to exploit
the latent high-level features inherent in data to enhance the diagnostic performance.
Deep learning [3], which has already proved its effectiveness by showing promising
results in various fields including speech/object recognition [9, 23] and medical
imaging analysis [14, 26], can discover latent or abstract high-level information in
neuroimaging data, and thus be useful for the disease diagnosis. In this chapter, we
introduce our recent work on neuroimaging-based AD diagnosis with deep learning.

14.2 Background

Figure 14.1 illustrates the general framework of machine learning-based AD
diagnosis, composed of four main steps, namely, (1) neuroimaging data acquisition,
(2) image preprocessing (including registration, tissue segmentation, Regions-

PETMRI

Neuroimaging
Data

Feature 
Representation

Image
Preprocessing

Classifier 
Learning

Fig. 14.1 A general framework for machine learning-based AD diagnosis using neuroimaging
data
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Of-Interest (ROIs) parcellation, etc.), (3) feature extraction/representation, and
(4) classifier learning. Although machine learning techniques can be involved
in all of these steps [11, 24], in this chapter, we focus on the step of feature
representation.

As for feature extraction or representation, the existing methods can be catego-
rized into voxel-based approach, ROI-based approach, and patch-based approach.
A voxel-based approach directly uses the voxel intensities of MRI or PET as
features in classification [2, 10]. Although the voxel-based approach can reflect
small changes in structure or function and it is easy to interpret the results, its
main limitation comes from the high-dimensionality of feature vectors and also
no consideration of the inter-region relation information. On the other hand, the
ROI-based approach can handle the issue of high-dimensionality by extracting rep-
resentative features from the structurally or functionally parcellated brain regions.
Thanks to the relatively low feature-dimension and the whole brain coverage,
this approach has been most widely used in the literature [6, 12, 20, 29, 32, 34].
However, the features extracted from ROIs are very coarse in the sense that
they cannot reflect small or subtle changes involved in the brain diseases. In the
meantime, a patch-based approach dissects a brain into small 3D patches from
which it extracts features and trains a classifier for each patch location, and then
combines classifiers’ outputs in a hierarchical manner [15, 31]. The patch-based
approach has the advantages of (1) reflecting subtle changes by using voxel-wise
features as the voxel-based approach does and (2) also considering a whole brain
information as the ROI-based approach does by hierarchically integrating regional
information.

14.3 Deep Learning for AD Diagnosis

Although the existing methods described in Sect. 14.2 have shown their effective-
ness for AD diagnosis in the literature, they mostly used the simple low-level
features without considering the high-level information latent in those features.
Inspired from the biological model of the human visual cortex [7, 25], recent studies
in machine learning have shown that a deep architecture composed of multiple non-
linear transformations is useful to find highly non-linear and complex patterns in the
data [3, 18]. This motivated us to apply deep learning techniques to neuroimaging-
based AD diagnosis in [30, 31], where we used Stacked Auto-Encoder (SAE) and
Deep Boltzmann Machine (DBM), respectively. In the following, we introduce these
studies and further discuss the future research issues that should be tackled for
clinical interpretation.
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Fig. 14.2 Stacked auto-encoder that discovers the latent high-level information inherent in ROI-
based features

14.3.1 Stacked Auto-Encoder (SAE)

As a pioneering study of the application of deep learning for AD diagnosis, we used
an SAE [4] to discover a latent feature representation in neuroimaging or biological
data. Specifically, as the name says, we stacked auto-encoders, one after another by
taking the outputs from the hidden units of the lower layer as the input to the upper
layer’s input units, and so on. Figure 14.2 shows the network structure of our SAE
model with three auto-encoders stacked. As illustrated in Fig. 14.2, in this study, we
took an ROI-based approach by extracting representative features from ROIs, which
set the values of the input units in the bottom layer of our SAE.

Thanks to the hierarchical nature in structure, one of the most important
characteristics of the SAE is to learn or discover highly non-linear and complicated
patterns such as the relations among input features. Another important characteristic
of the SAE is that the latent representation can be learned directly from the data.
Utilizing its representational and self-taught learning properties, we could find
a latent representation of the original low-level features, directly extracted from
neuroimaging data. When an input sample is presented to an SAE model, the
different layers of the network represent different levels of information. That is,
the lower the layer in the network, the simpler patterns (e.g., linear relations of
features); the higher the layer, the more complicated or abstract patterns inherent in
the input feature vector (e.g., non-linear relations among features) [17].

To find the optimal parameters, we performed unsupervised layer-wise pre-
training [8] and supervised fine-tuning during the auto-encoding task via back-
propagation [5, 13] sequentially. It is noteworthy that, in order to obtain the
complicated non-linear relations among neuroimaging features, we considered a
number of hidden units larger than the number of input features, from which we can
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still find an interesting structure by imposing a sparsity constraint via a Kullback-
Leibler (KL) divergence. Specifically, in our pre-training step, we optimized the
following objective function:

E.Yh�1; OYh�1/C 


DhX
jD1

KL.�jjb�j/ (14.1)

where E.Yh�1; OYh�1/ denotes an error between the input Yh�1 (i.e., the output from
.h � 1/-th layer) and its reconstruction OYh�1, Dh is the number of units in the h-th
hidden layer, and 
 is a control parameter. In Eq. (14.1), KL divergence controls the
sparseness of the hidden units based on the average activation O�j of the j-th hidden
unit over the training samples and the target average activation �.

14.3.1.1 Experiments and Performance Comparison

To validate the effectiveness of the SAE-based feature representation, we conducted
experiments with ADNI dataset (available at ‘http://www.loni.ucla.edu/ADNI’).
Specifically, we considered the baseline MRI, 18-fluoro-deoxyglucose PET, and
CerebroSpinalFluid (CSF) data acquired from 51 subjects with AD, 99 subjects
with MCI (including 43 progressive MCI (pMCI) and 56 stable MCI (sMCI))1,
and 52 Healthy normal Controls (HC). Along with the neuroimaging and biological
data, two types of clinical scores, Mini-Mental State Examination (MMSE) and
Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-Cog), were also
provided for each subject.

We built one SAE model2 per modality and concatenated the original Low-Level
Features (LLF) and the SAE-learned Features (SAEF) to construct an augmented
feature vector (LLF+SAEF), which thus includes both low-level and high-level
information. To fuse the complementary information from multiple modalities, we
used a multi-kernel Support Vector Machine (SVM) [27], preceded by feature selec-
tion with a sparse regression method [33]. We considered three binary classification
problems: AD vs. HC, MCI vs. HC, and pMCI vs. sMCI. In the classification of
MCI vs. HC, both pMCI and sMCI data were used as the MCI class. Due to a limited
small number of training samples, we applied a 10-fold cross validation technique.

We summarized the classification accuracies in Table 14.1. In AD vs. HC,
compared to the accuracy of 0.970 with an LLF-based method, the proposed
method improved the accuracy by 0.009. In the classification of MCI and HC, the

1In our work, ‘progressive’ and ‘stable’ denote whether the subjects with MCI progressed to AD
in 18 months.
2The number of hidden units were manually determined proportional to the input dimension. As
for the sparsity target and the weighting parameter of the sparsity penalty in Eq. (14.1), we set to
� D 0:05 and 
 D 0:01.

http://www.loni.ucla.edu/ADNI


208 H.-I. Suk et al.

Table 14.1 Performance comparison in an ROI-based feature representation. As for statistical
significance, a paired t-test was performed (LLF: Low-Level Features; SAEF: SAE-learned Feature
representations; pMCI: progressive MCI; sMCI: stable MCI)

Method AD/HC MCI/HC pMCI/sMCI

LLF 0.970˙0.010 0.848˙0.014 0.760˙0.020

LLF+SAEF 0.979˙0.007 0.888˙0.012 0.779˙0.027
p-value 0.0432 2.2693e-06 0.0904

proposed method showed the best classification accuracy of 0.888. The performance
improvement compared to the classification accuracy of 0.848 with the LLF-
based method was 0.04. In discriminating pMCI from sMCI, our method also
outperformed the LLF-based method. While the LLF-based method showed the
classification accuracy of 0.760, our method achieved the classification accuracy of
0.779. Based on these results, we argue that the SAE-based feature representation
helped enhance the diagnostic accuracies, justifying the importance of using high-
level information latent in the observation.

14.3.2 Deep Boltzmann Machine (DBM)

While an ROI-based approach helps alleviate the high-dimensionality problem in
neuroimaging pattern analysis, it fails to handle subtle changes within an ROI or
across ROIs. In this regard, Liu et al. proposed a patch-based approach that can
efficiently handle both the high-dimensionality problem and subtle changes in an
image and gradually integrated a number of local patches of a Gray Matter (GM)
density map hierarchically [15]. Although they showed the efficacy of their method
for AD/MCI diagnosis, it is well known that the structural or functional images are
susceptible to acquisition noise, intensity inhomogeneity, artifacts, etc. Furthermore,
the raw voxel density or intensity values in a patch can be considered as low-level
features that do not efficiently capture more informative high-level features. To
this end, we proposed a deep learning-based high-level structural and functional
feature representation from MRI and PET, respectively, for AD/MCI classification.
Furthermore, for multiple modalities fusion, unlike the existing methods that first
extracted features from each modality independently and then mostly combined
heterogeneous features via either simple feature concatenation or kernel machines,
we designed a multi-modal deep learning architecture using DBM.

A DBM is structured by stacking multiple Restricted Boltzmann Machines
(RBMs) in a hierarchical manner. The rationale of using DBM for feature represen-
tation is as follows: It can learn the internal latent representations that capture non-
linear complicated patterns and/or statistical relations in a hierarchical manner [3,
16]. However, unlike many other deep network models such as deep belief network
[8] and SAE [26], the approximate inference procedure after the initial bottom-up
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Fig. 14.3 Multimodal deep Boltzmann machine that integrates the structural and functional
information and finds the shared feature representations

pass incorporates top-down feedback, which allows DBM to use higher-level knowl-
edge to resolve uncertainty about intermediate-level features, thus creating better
data-dependent representations and statistics [22]. Thanks to this two-way depen-
dencies, i.e., bottom-up and top-down, it was shown that DBMs achieved the state-
of-the-art performance in computer vision [21, 28]. To this end, we used a DBM to
discover hierarchical feature representations from neuroimaging in our work.

Regarding multiple modalities fusion, different modalities will have different
statistical properties. Thus, simple concatenation of the features of multiple modal-
ities in a shallow architecture can cause strong connections among the variables of
an individual modality, but failed to find inter-modality relations [19]. In order to
tackle this problem, we devised a discriminative Multi-Modal DBM (MM-DBM),
in which the top hidden layer had multiple entries of the lower hidden layers and
the label layer, to extract a shared feature representation by fusing neuroimaging
information of MRI and PET. Figure 14.3 presents a network of our MM-DBM,
where one pathway represents the statistical properties of MRI and the other
pathway represents those of PET, and the top shared hidden layer finally discovers
the shared properties of the modalities in a supervised manner. The joint distribution
over the multimodal inputs of MRI (vM) and PET (vP) and the output label (o) can
be estimated as follows:

P .vM; vP; oI‚/ D
X

h2
M ;h2

P ;hS

P.h2
M; h2

P; h3
S; o/

0
@X

h1
M

P.vM; h1
M; h2

M/

1
A
0
@X

h1
P

P.vP; h1
P; h2

P/

1
A (14.2)

where ‚ D ˚
W1

M; W2
M; W1

P; W2
P; W3

S; U
�
; h denotes a hidden layer, the subscripts

M, P, and S denote, respectively, units of the MRI path, the PET path, and the shared
hidden layer. For the parameters learning, we performed two consecutive steps: (1)
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Table 14.2 Performance comparison in a patch-based feature representation (pMCI: progressive
MCI, sMCI: stable MCI)

Method AD/HC MCI/HC pMCI/sMCI

Intensity [15] 0.903˙0.070 0.839˙0.006 0.733˙0.125

MM-DBM 0.954˙0.052 0.857˙0.052 0.759˙0.154

a greedy layer-wise pre-training for a good initial setup of the model parameters
and (2) iterative alternation of variational mean-field approximation to estimate the
posterior probabilities of hidden units and stochastic approximation to update model
parameters [22].

14.3.2.1 Experiments and Performance Comparison

We used the baseline MRI and PET data of the ADNI dataset: 93 subjects with
AD, 204 subjects with MCI including 76 pMCI and 128 sMCI, and 101 HC.
After conducting the preprocessing of anterior commissure-posterior commissure
correction, skull stripping, cerebellum removal, registration to a common space, and
tissue segmentation, we obtained spatially normalized GM volumes (i.e., GM tissue
densities) and the PET images rigidly aligned to the corresponding MR images. For
computational efficiency, we further down-sampled images to 64 � 64 � 64 voxels.
As for a patch size, we set it to 11�11�11 by following Liu et al.’s work [15] for fair
comparison, and thus the input dimension of each modality patch in our MM-DBM
was 1;331.

We applied a 10-fold cross validation technique. The outputs of the top shared
layer were used as features, which represent the fused information of structural
and functional images. In order to combine the distributed patch information over
an image and to build an image-level classifier, we used a hierarchical classifier
learning scheme, described in [15]. In our work, we used a linear SVM for
classification.

As presented in Table 14.2, in the classification of AD and HC, our method
showed the mean accuracy of 0.954. Compared to the intensity-based method [15]
that showed the accuracy of 0.903, we improved by 0.051. In the discrimination of
MCI from HC, the proposed method achieved the accuracy of 0.857. Meanwhile,
the intensity-based method [15] achieved the accuracies of 0.839. Again, the
proposed method outperformed the competing method by making performance
improvements of 0.018. In the classification between pMCI and sMCI, which is
the most important for early diagnosis and treatment, the intensity-based method
achieved the accuracy of 0.733. Compared to this result, our method improved
the accuracy by 0.026. Concisely, in our three binary classifications, based on the
classification accuracy, our deep learning-based method clearly outperformed the
competing method.
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14.4 Discussions and Conclusions

We applied deep learning methods for high-level feature representations and
validated their efficacy by showing their superiority to the competing methods in
terms of the diagnostic performance. Specifically, in Sect. 14.3.1, we applied an
SAE to discover latent relations among the ROI-based features and then combined
multiple modalities via kernel machine. Although the SAE model can be considered
as the conventional multi-layer neural network, by initializing our model parameters
with a greedy layer-wise pre-training and then fine-tuning the whole model, we
could learn parameters to represent the inherent information better. Meanwhile, in
Sect. 14.3.2, we devised a systematic method for a joint feature representation with
an MM-DBM. Unlike the SAE model that learns parameters in a top-down manner,
the DBM finds the optimal parameters in a bi-directional (i.e., bottom-up and top-
down) manner. We utilized this favorable characteristic and successfully applied to
find the shared representation from MRI and PET.

However, from a neurophysiological perspective, it is still very hard or impos-
sible to interpret the learned representations and to understand the trained model
parameters. In other words, there is no general or intuitive way to interpret the
latent feature representations or the trained models. The problem of effective
interpretation of the latent feature representations is a big challenge that should
be tackled by the communities of machine learning and clinical neuroscience
collaboratively. Furthermore, to our best knowledge, the existing disease diagnosis
systems including ours output simply the clinical status of a testing subject, e.g.,
AD, MCI, or HC, with no presentation of the basis that supports their decision. In
other words, when a subject is identified by a diagnosis system as a patient with
either AD or MCI, it is clinically important to present its basis for the decision, e.g.,
structurally abnormal brain regions or abnormal functional connectivities observed
in the neuroimaging data. Thus, all these would be our forthcoming research issues.
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