Survey on Maintenance Area of Companies of the Manaus Industrial Pole

Marcelo Albuquerque de Oliveira, Isabel da Silva Lopes and Danielle Lima de Figueiredo

Abstract The study presented in this paper aims to identify the practices of maintenance organization and management adopted by companies in the industrial pole of Manaus in Brazil in relation to their production equipment. A questionnaire was developed and sent to the company of the industrial pole and the received data was analyzed using descriptive statistics. This survey shows that companies have several opportunities to make improvements related to maintenance management, such as adopting preventive culture, using adequate CMMS to support maintenance activities with associated failure analysis tools, and adopting meaningful KPIs.

Keywords Maintenance strategy \cdot Maintenance management \cdot Maintenance performance \cdot Maturity level \cdot Questionnaire \cdot Survey

1 Introduction

The importance of maintenance function and, therefore, of maintenance management has grown in recent years. Maintenance has achieved a significant role in organizations performance since it is directly responsible for the proper operation of the production process. Maintenance area needs to keep equipment in good working conditions and available to achieve high productivity level of quality products.

M.A. de Oliveira (☒) · I. da Silva Lopes · D.L. de Figueiredo Centro Algoritimi, University of Minho, Campus de Gualtar, 4170-057 Braga, Portugal e-mail: marcelo@maoconsultoria.com

I. da Silva Lopes

e-mail: ilopes@dps.uminho.pt

D.L. de Figueiredo

e-mail: danielle_lima@ig.com.br

© Springer Science+Business Media Dordrecht 2015 H.K. Kim et al. (eds.), *Transactions on Engineering Technologies*, DOI 10.1007/978-94-017-7236-5_35

According to Kumar and Parida [1] maintenance is defined as the combination of all the technical and administrative actions, including supervision, intended to retain an item, or restore it to a state in which it can perform a required function. Maintenance management makes use of some tools and techniques to improve efficiency and minimize the impacts of unplanned stoppages looking for reducing costs.

The Industrial Pole of Manaus is one of the most modern in Latin America, bringing together major industries in the areas of electronics, motorcycles, optical products, computer products, chemical industry. Through a survey, data was collected about the maintenance practices adopted by the maintenance function of these companies in order to identify its current situation and ascertain potential improvements that this management function can bring. This will allow proceeding with a maturity model indicating the path to follow to achieve higher levels of performance in this area.

The survey aimed to comprise the management process of the overall equipment of companies that act at Manaus industrial pole concerning maintenance methodologies, maintenance department structure, KPI utilization, maintenance planning and staff development. The identification of real state of maintenance area leads us to a better planning of actions to implement the more appropriate management strategy and to propose suitable computerized tools, performance indicators, technical analysis and management tools and techniques, providing a set of potential improvements necessary for the successful evolution of the maintenance process and the resulting progress in achieving high level of performance.

This paper is organized as follow. Section 2 presents a literature review, describing maintenance management concepts. Sections 3 and 4 addresses data collection and analysis, evaluating the data obtained from organizations that act in different sectors. Overall findings of the survey are shared in Sect. 5. Section 6 presents the conclusion and future work.

2 Literature Review

2.1 Maintenance Management

Maintenance management establishes goals and objectives through standards and work procedures in order to obtain a better utilization of available resources, which are staff, equipment and materials. Effective maintenance extends equipment life, improves equipment availability and retains equipment in proper condition [2].

Cholasuke et al. [3] identified nine factors associated with high effective maintenance management: policy deployment and organization; maintenance approach (type of maintenance adopted); task planning and scheduling; financial aspect; continuous improvement; human resource management; contracting out maintenance; information management & CMMS; spare parts management.

Marquez and Gupta [4] propose a framework that comprises three pillars to support maintenance management, namely: the information technology pillar, the maintenance engineering and the organizational pillar.

According to Carnero and Noves [5], the complexity of modern industrial unit is increasing and maintenance management is now considered an important factor for improving the performance of the operation, the security, availability, service life and cost reduction and, to this end, the use of computerized systems is essential. These systems are known as computerized maintenance management systems (CMMS). Fernandez et al. [6] states that information is a significant factor for a successful management of maintenance and is the basis for computerized systems. Sherwin [7] explains that, currently, with the advance of computational systems, it is possible to determine a better way to manage the maintenance by optimizing their activities, integrating the maintenance function with the other activities through advanced IT systems (Information Technology), which became more necessary in the current days and, therefore, have become more economically feasible.

2.2 Maintenance Methodologies

Many tools available today have associated the word maintenance. It is important to note that these are not new types of maintenance but tools that allow the application of the main types of maintenance. Highlighted among them are: Maintenance Engineering; Lean Maintenance; Total Productive Maintenance; Reliability Centered Maintenance; Reliability Based Maintenance and Condition Based Maintenance.

Maintenance policies applied correctly aim at preventing and/or eliminating the occurrence of failures. Lack of fulfillment of what was previously defined as "proper performance" is defined as failure.

Alsyouf [8] sustains that proper maintenance practices can contribute to overall business performance through their impact on the quality, efficiency and effectiveness of companies operations.

2.3 Performance Measures

According to Muchiri et al. [9], indicators should support monitoring and control of performance, help the identification of performance and gaps, support learning and continuous improvement, support maintenance actions towards attainment of objectives and provide focus on maintenance resources to areas that impact manufacturing performance. They should be grouped them in maintenance results indicators and maintenance process indicators. The literature, in the context of maintenance, provides various expressions and terminology for performance

indicators, once they eventually adapt to the reality of companies. Campbell [10] proposes a classification for performance indicators as follow:

- Overall maintenance results;
- Maintenance productivity;
- Maintenance organization;
- Efficiency of maintenance work;
- Maintenance costs:
- Maintenance Quality;

Gulati [11] suggests that the first step in developing metrics is to involve people who are responsible for the measurements and ensure that the metric is specific, measurable, attainable, realistic and timely.

EN15341 Standard [12] highlights that maintenance performance is the result of complex activities, which can be evaluated by appropriate indicators to measure actual and expected results. Performance indicators are necessary to ensure stability and predictability of the maintenance process. This standard proposes three classes of indicators, namely: Economic indicators, technical indicators and organizational indicators.

In general, indicators are measures or numerical data set about processes that we want to control and improve. The most commonly used in maintenance are: Availability, Costs, Production losses due maintenance activities, Rework, Mean time between failures (MTBF), Mean time to repair (MTTR) and Overall equipment effectiveness (OEE) [13].

3 Data Collection

3.1 Questionnaire

To gather data about the organization and maintenance management practices adopted by Manaus industrial pole companies, a questionnaire was developed [14]. The questionnaire has five parts that cover the following topics:

- Section I—General Information: this section aims to identify the company profile, activity, number of employees, number of equipment under the responsibility of the maintenance area and origin of the company.
- Section II—Maintenance Management: identify the techniques, strategies and management tools used for maintenance.
- Section III—Maintenance Indicators: identify the degree of use of performance indicators in the management of maintenance.
- Section IV—Procedures and Maintenance Plans: identify the degree of organization and planning of maintenance in the company.
- Section V—Maintenance Staff: assess the degree of organization, development and training of the maintenance staff.

3.2 The Sample

The questionnaire was sent to the industrial plants of the industrial pole of Manaus, in Amazonas state (Brazil), to be filled in by the maintenance area. The industrial pole is organized in 19 sectors, including companies of the plastic industry, manufacturers of mobile phones, modems, set top boxes, televisions, laptops, audio, CD and DVD manufacturing, motorcycles, air conditioners, cameras, alarm and protection systems, naval industry, metallurgical industry and so on [14].

There are approximately 430 companies registered and operating in the industrial pole of Manaus, according to the official document provided by Suframa [15], which is the agency that manages the industrial pole of the region. The questionnaire was sent to all companies registered in the industrial pole and 71 companies from various sectors answered the questionnaire, resulting in a response rate of 16.5 %.

With respect to the origin of the surveyed companies, 44 % have national capital, i.e., they are local, while 56 % have international capital, i.e., are multinational. In relation to staff, 75 % of the companies have more than 100 employees. When referring the total number of equipment under maintenance area responsibility it was observed that about 70 % of them have more than 50 units to manage.

4 Data Analysis

4.1 Maintenance Management Function

Maintaining production equipment is regarded as a strategic factor by the organizations. Most respondents to the questionnaire (90.14 %) stated that the maintenance of production equipment is seen as a strategic factor within the organization.

Regarding outsourcing practices, 76.06 % of companies outsource services related to preventive and corrective activities covering 25 % or less of equipment, as shown by Fig. 1. Besides, concerning companies that outsource maintenance activities, 73.24 % of them affirm that machinery suppliers perform 40 % or less of services.

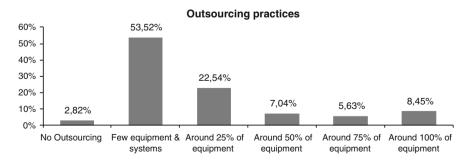


Fig. 1 Outsourcing practices

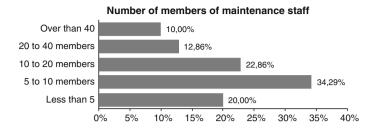
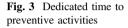
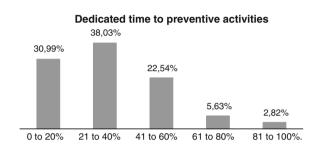




Fig. 2 Number of members of maintenance staff

The maintenance staff is an important factor that demands strategies to improve competence level. Thus, it is necessary to manage activities and resources allowing the maintenance area to accomplish its function. Figure 2 presents results regarding the size of the maintenance team. It can be noticed that 57.15 % of the companies have between 5 and 20 employees working in the maintenance area and, it was observed that it is linked to the company size and the number of equipment, as it was expected. According to the data obtained in the survey 84.51 % of the companies adopt a preventive policy, 35.21 % assumes that they adopt predictive and 12.68 % detective approach. In terms of maintenance policies, it was noticed that around 15.49 % adopt only corrective policies. According to the answers, preventive activities stand out over the others, although most of the time the maintenance staff is dedicated to corrective. Figure 3 presents the percentage of time that companies dedicate to preventive maintenance activities. Although a large number of companies have indicated the practicing of preventive maintenance, about 69.02 % of companies spend only 40 % or less of their time on preventive activities.

60.56 % of the companies indicate that TPM is the model of maintenance management adopted by the company. However, the majority adopts a strategy focused on production rather than productivity and efficiency, which usually increases the probability of equipment breakdowns.

To analyze the techniques used to assist maintenance, a Likert scale with five levels regarding the frequency of use of such techniques was adopted: (1) Never, (2) Rarely, (3) Occasionally, (4) Often, (5) Very often.

Table 1 presents the average obtained for each technique. The average is not very high, since it is below 4 for all the techniques. Three techniques stand out

Table 1 Techniques utilization

Techniques	Average
5S	3.65
5 Whys	3.32
Cause and effect analysis	3.17
PDCA	2.92
Root cause analysis (RCA)	2.04
Failure mode and effect analysis (FMEA)	2.00
Reliability analysis	1.90
Hazard analysis	1.79
8D	1.76
Fault tree analysis (FTA)	1.59
Tree analysis	1.45
Reliability block diagram (RBD)	1.45
Other	0.34

namely Cause-and-effect analysis, 5S and 5 Whys, while the others are used rarely or never, fact that can be linked to a lack of training in such techniques.

Besides, Table 2 presents a list of main potential difficulties that were evaluated and, limited budget, insufficient parts in stock, insufficient number of technicians and non-compliance of the delivery date by parts suppliers were the main constraints appointed. The percentage of companies that have indicated having these constraints is above $40\,\%$.

Table 2 Maintenance constraints

Constraints	Percentage (%)
Limited budget	66.67
Insufficient spare parts in stock	47.22
Insufficient number of technicians	43.06
Non-compliance of the delivery date by parts suppliers	43.06
Lack of training of technical team	34.72
Inappropriate information management system	30.56
Delay in subcontracted services	29.17
Non-compliance of the delivery date by material suppliers	29.17
Lack of time	27.78
Equipment/maintenance tools insufficient or inappropriate	26.39
Lack of administrative support	23.61
Low competence of technical team	23.61
Low motivation of the technical team	13.89
Other	12.50
Low educational level of the technical team	11.11

4.2 Maintenance Performance Measurements

Regarding performance measurement, it was observed that 78.87 % of companies states using some kind of KPI to evaluate its performance.

A Likert scale with five levels regarding the frequency of use of such KPIS was adopted. The average was calculated and presented in Table 3. As observed, the averages are not very high, since the values are below 4. Companies typically use more frequently economic indicators, availability and downtime to support maintenance staff in seeking improvements such as reducing the waiting time between calls, the time to perform an activity and the downtime due to equipment failures.

MTBF and MTTR are indicators that show how good is the maintenance plan to prevent stoppages just as MTTR to inform how prepared is the team to solve a problem, however they are weakly used.

A Likert scale with five levels regarding the degree of concordance [(1) Totally disagree, (2) Disagree, (3) Indifferent, (4) Agree, (5) Totally agree] about topics associated to downtime, repair time, waiting time and outsourcing was adopted. The average was calculated and presented in Table 4. The averages obtained are low, which means that the degree of concordance is low, except for the first statement. Company, in general, does not recognize that the downtime, the time to

Table 3 KPI adop	ntea by	companies
-------------------------	---------	-----------

KPI	Average
Downtime	3.35
Availability	3.14
Economic	3.14
MTTF by machine	2.89
OEE	2.63
MTBF by machine	2.59
MTTF by line/area	2.56
Backlog	2.41
MTBF by line/area	2.08
MWT	1.94
Other	0.23

Table 4 Overall maintenance performance

Performance	
The downtime of equipment has been decreasing as a result of the effort in this area	
Subcontracting occurs as a result of internal capacity lacking	3.16
The time resolution of faults (repair time) is considered high	2.97
The downtime due to equipment malfunction is considered high	2.97
The waiting time for starting a repair is considered high	2.72

repair, the waiting time to repair is high. However, the result does not seem to reflect the reality, it may be due to the fact that the questionnaire respondents are themselves responsible for the maintenance area and, naturally, there was a tendency to not expose the department itself. They also generally agree with the fact that the downtime has been decreasing as an effort in this area.

In addition, the average associated with the statement "Subcontracting occurs as a result of lacking of interval capacity" is medium, showing that other reasons origin the outsourcing of services, such as lack of competence, for instance.

4.3 Maintenance Planning and Scheduling

In general, all companies have any maintenance plan in which time intervals to execute the maintenance actions are established. The most common time planning frequency is monthly (46.48 %) and yearly (49.30 %) as shown by Fig. 4. Oddly the use of daily planning is low (5.63 %). Considering that many companies in the survey reported that they adopt TPM and, it was expected that daily activities planning would be held more frequently.

It was found that realization of some daily activities such as cleaning, inspection and minor repair by operator is not very frequent. The number shows that the frequency of analysis of failure data is more frequent, however, it is still low. Once again, it was expected that the frequency of cleaning and inspections and failure analysis would be more frequent due to TPM adoption.

A maintenance management system is an essential tool for all organizations, helping to improve maintenance department's efficiency and effectiveness. Figure 5 shows the support tools used by maintenance in its daily activities. 16.90 % of companies adopt a CMMS, 40.85 % make use of spreadsheets, 23.94 % combines CMMS and spreadsheet and 18.31 % use manual registration to organize maintenance activities. Considering those that use any CMMS, 48.28 % adopt standard CMMS available in the market and others make option to develop their own

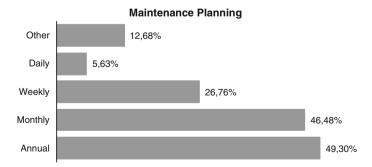


Fig. 4 Maintenance planning

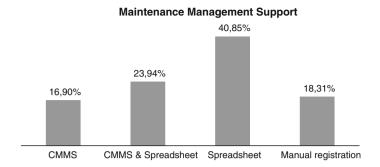


Fig. 5 Maintenance management support

software (17.24 %) or to subcontract a specialized company to develop the software (34.48 %).

Table 5 list some CMMS features. A Likert scale with five levels regarding the frequency of utilization of such features by maintenance staff was adopted. The averages presented on this table are referred only to companies that have these features in the maintenance software. Therefore, it allows to evaluate how useful is the software.

For most of the features the average is considered high (value above 4), which shows a great use of these features by the maintenance staff. The lowest values are registered for: planning to purchase spare parts and materials; registration of work instructions; data analysis for monitoring equipment condition and method to support failure analysis. It was also identify that, major companies applications has

Table 5 CMMS features

Features	Average
Generation and control of work orders	4.64
Historical about preventive maintenance works	4.64
Historical equipment repair	4.61
Equipment, parts and groups registration	4.54
Determination of performance indicators	4.30
Annual planning of preventive tasks	4.28
Monthly planning of preventive tasks	4.27
Maintenance budget	4.09
Allocation human resources to the maintenance	4.04
Inventory control of parts and materials	4.00
Weekly planning of preventive tasks	3.92
Historical about improvement works	3.85
Planning to purchase spare parts and materials	3.70
Registration of work instructions	3.68
Data analysis for monitoring equipment condition	3.44
Method to support failure analysis	3.21

only standards functions, such as equipment record, work orders control and generation, maintenance historical and maintenance activities planning.

4.4 Maintenance Staff

With respect to the organizational structure of the maintenance area, not all companies have a consolidated department, and the teams are usually subordinated to other areas, commonly engineering or production. In 47.89 % of cases, it was noticed that maintenance department has a formal structure, including management positions and other technical functions. Related to education level of maintenance staff, 64.29 % of the companies assumes that 20 % or less of their staff have high graduation which can be considered a low qualification level, i.e., the majority of people in this area has no upper level having only technical skills. Only 5.71 % of the companies state that around 81–100 % of their staff has high graduation, as shown by Fig. 6.

The survey pointed that 59.15 % of the companies recognized having a formal training plan for maintenance staff. However, it is not guaranteed that it will be accomplished due to many constraints.

Table 6 refers to trainings and aims to assess the type of training practiced. A Likert scale with five levels regarding the frequency of trainings was adopted. This table presents the averages obtained for each type of training. The average is higher regards training about equipment. Training in the production process and method of operation as well as in maintenance methodology, techniques and tools has an overall low frequency.

Fig. 6 Qualification level

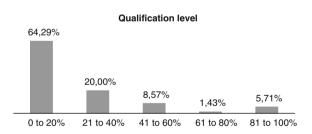


Table 6 Frequency of trainings

Trainings	Average
Maintenance technicians receive training on equipment	3.54
Maintenance technicians receive training in the production process and method of operation	3.46
Maintenance technicians receive training in methodologies, technique and tools to help maintenance management	2.89

Lastly, the survey identifies that 56.34% of the companies provide training sessions for 40% or less of maintenance staff, while only 15.49% of the companies provides training to around 81-100% of their team. Therefore, the survey allows us to conclude that the investment in competencies improvements was low in the last year.

5 Survey Findings

In general, maintenance management of the companies of the Manaus industrial pole has many opportunities for improving, especially respecting to prevention and training, regardless of the segment of the company, its origin, its size, number of employees or maintenance team size.

Although most agree that the maintenance of production equipment is seen as a strategic factor within the organization, the survey data show that corrective policies is still predominant, attributed in many cases to the company's own strategy. It was observed a low level of training of the teams, reduced budget affecting the organization and planning of activities, lack of time to perform activities and even outsourced due to lack of own staff or lack of training of the technical team. Another important fact about this issue is that prevention programs are not adequate or sufficient to prevent or reduce the frequency of failures. This is strongly evidenced by the limited use of indicators for maintenance management and of tools, methodologies or techniques to support failure analysis. While companies affirm that activities aimed at reducing the downtime are performed, the percentage of time devoted to preventive activities is very low, according to the collected data. Aspects as limited budget, low number of technicians, parts shortages and reduced training were considered by companies as factors that strongly contribute to a maintenance performance under expectation. Even with respect to the planning of preventive activities, the majority performs annual and monthly planning. Evaluation/revision is relatively insufficient since for a high number of companies, it is made only using the directions offered by manufacturer's manual. Activities plan based on the machine's manual makes the maintenance plan outdated and barely able to act on faults over time.

For most companies, maintenance activities are managed and controlled without the use of CMMS, which shows a potential for growth in this area, since the majority adopts manual records or spreadsheets, not allowing better efficiency in the data analysis to improve planning and control activities. With respect to those who adopt some kind of CMMS, some had to adapt it according to their needs especially in solutions for reporting, allowing a better analysis of the results achieved and the consequent proposal to improve them. Moreover, most of those that adopt some sort of CMMS have acquired it on the market and these, in turn, are limited in features.

Regarding the use of techniques, the most elementary are used, particularly PDCA Cycle, 5S or 5 Whys, and there is a strong adherence to TPM though

without much practical result. The use of indicators for maintenance management was also considered as elementary, where a significant number ignores the specific terms, their composition and how to interpret them. In particular, the most used are Downtime, Economic, Availability, MTTR, MTBF, and OEE.

Indeed, the use of a suitable CMMS according to reality or maturity level of the organization would allow a better planning of activities, use of more appropriate management indicators as well as having added a support tool to failure analysis.

Regarding the structure of the maintenance department, few of them are autonomous, since, usually, maintenance is in charge of the engineering and/or production. In general, companies have a highly technical maintenance group without higher hierarchies. In addition, factors such as training and education level were considered points of attention and real opportunity for improvement.

Finally, the survey data show that companies of the industrial polo have a significant margin of costs reduction. It allowed the identification of improvement opportunities with various gains, such as: reducing losses in the production process, increasing operational efficiency and asset availability and achieving better control of activities.

6 Conclusion

The effectiveness of the maintenance function in an industrial unit depends on the equipment involved, the training of personnel, and mainly on the adopted strategy for maintenance management. In addition to modern equipment ownership, it is necessary to understand the concern about flaws, in its details, in order to attack not the consequences but the causes using the most appropriate tools and techniques. Maintenance area should advocate the existence of an effective planning and monitoring of activities using the most appropriate resources and applying the more advantageous tools and techniques.

Most companies have a basic level of maintenance management, which means that they have the opportunity to make improvements and to obtain important gains. They have also the capacity to become more competitive, increasing throughput and reducing losses.

This survey shows many opportunities to make improvements in the maintenance area in general, such as using CMMS, implementation of deep preventive culture, adopting meaningful KPIs and reinforce training plan to the maintenance team.

As future work, the authors aim to perform hypothesis tests with the answers of the questionnaire in order to validate some statements related to maintenance management.

Acknowledgment This work has been supported by FCT—Fundação para a Ciência e Tecnologia within the Project Scope: PEst-OE/EEI/UI0319/2014.

References

 Parida A, Kumar U (2006) Maintenance performance measurement (MPM): issues and challenges. J Qual Maintenance Eng 12(3):239–251

- Swanson L (2001) Linking maintenance strategies to performance. Int J Prod Econ 70(3):237– 244
- Cholasuke C, Bhardwa R, Antony J (2004) The status of maintenance management in UK manufacturing organizations: results from a pilot survey. J Qual Maintenance Eng 10(1):5–15
- 4. Marquez AC, Gupta JND (2004) Contemporary maintenance management: process, framework and supporting pillars. Int J Manage Sci 34:313–326
- Carnero MC, Novés JL (2006) Selection of computerized maintenance management system by means of multicriteria methods. Prod Plann Control 17(4):335–354
- Fernandez O, Labib AW, Walmisley R, Petty DJ (2003) A decision support maintenance management system: development and implementation. Int J Qual Reliab Manage 20(8):965– 979
- Sherwin DJ (2000) A review of overall models for maintenance management. J Qual Maintenance Eng 6:138–164
- 8. Alsyouf I (2009) Maintenance practices in Swedish industries: survey results. Int J Prod Econ 121:212–223
- 9. Muchiri P, Pintelon L, Gelders L, Martin H (2011) Development of maintenance function performance measurement framework and indicators. Int J Prod Econ 131:295–302
- Campbell JD, Jardine AKS (2001) Maintenance excellence: optimizing equipment life-cycle decisions. Marcel Dekker, Ink, USA
- 11. Gulati R, Smith R (2009) Maintenance and reliability best practices. Industrial Press Inc., New York
- EN15341:2007 Maintenance—maintenance key performance indicator. European Committee for Standardization (CEN), Brussels
- 13. Oliveira M, Lopes I, Figueiredo D (2012) Maintenance management based on organization maturity level. In: International conference on industrial engineering and operations management 2012, ICIEOM 2012, 9–11 February, Guimarães
- 14. Oliveira M, Lopes I, Figueiredo D (2014) Maintenance management practices of companies of the industrial pole of Manaus. In: Proceedings of the World congress on engineering and computer science 2014, WCECS 2014. Lecture Notes in Engineering and Computer Science, vol II, 22–24 October, San Francisco, pp 1016–1022
- 15. Suframa Profile [Online]. Available: http://www.suframa.gov.br/zfm_industria.cfm