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Abstract Ray tracing is a widely used technique in rendering realistic scenes in
Computer Graphics. Its main drawback has been that it is time consuming,
requiring the rendering to finish from hours to sometimes days. For decades, the
goal has been to speed up the processing of these scenes. Two popular grid traversal
techniques have emerged: (a) Three Dimensional Digital Differential Analyzer
(3DDDA) and (b) the Proximity Cloud (PC), which is a variation of 3DDDA. Both
of these techniques try to limit the number of collision tests, which can be the most
time consuming part of the algorithm. While both techniques allow impressive
speedups, large dynamical varying scenes topology still challenge the real time
rendering process. These techniques are optimal on static scenes, but object
movement forces recalculation of the scene. This is a problem when using CPUs
because parallelization is not easily available. Running these on GPUs, however,
allows for parallelization. Apart from briefly summarizing some of our previous
results from Ryan and Semwal (Proceedings of the world congress on engineering
and computer science 2014, San Francisco, pp. 376–381 [1]), we also look to
answer some of the more relevant questions about ray tracing, and what future
holds for this area.
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1 Grid Acceleration Techniques

The 3DDDA algorithm is a method that works with grod of voxels. These voxels
are populated with the objects in the scene and allow the ray to test only objects in
the voxel the ray is currently in. The 3DDDA method removes many unnecessary
collision detection tests because we test only those objects which are along the path
of the ray. The PC method builds from 3DDDA. PCs allow for a ray to skip a larger
portion of the grid by computing how far the ray can safely jump before it might
have a collision. Both methods are summarized below and are also explained in this
paper [1].

2 3DDDA

Fujimoto, Tanaka, and Iwata proposed the 3DDDA algorithm in 1986 [2]. The
algorithm defines a grid of voxels and determines which objects inside the voxel
need to be tested against. This method would divide the scene into a reasonable
sized grid. This grid is used to speed up the ray tracing process. When a ray is fired,
it detects whether it hit the grid. If the grid is missed, the ray reflects the background
color back showing that no object can be seen from the eye at that position. If the
ray hits the grid, the cell (voxel) the ray hits is determined. The traditional ray
tracing algorithm is then run on objects that are contained in the current voxel. If no
objects are hit in the voxel, the ray then traverses the next voxel on the grid and
continues to test each voxel in the path of the ray. This allows for a ray to only
perform collision detection on objects that are in its path rather than every object in
the scene, as also explained in [1].

The size of the grid does matter, but it is usually not clear what the optimal size
of the grid should be in the sense of reducing the image generation time. There is a
tradeoff between memory and speedup. The smaller the voxels the fewer the objects
a ray will have to test against. If a scene is represented by four voxels then it is still
possible that lot of unnecessary collision calculations would have to be computed,
but the memory footprint of voxels would be small. If the grid represents a single
1 × 1 × 1 unit in space, then the scene can truly optimize the number of collision
detections but would have a larger memory footprint. The size of the grid needs to
be determined by the user because the hardware may not be able to support the
required memory needed to hold it. This 3DDDA algorithm also has the possibility
of being optimized by testing fewer voxels if they are empty, which allows for
skipping in the algorithm. There is the potential a large number of grid cells in a
row can be empty. This observation is the basis for the Proximity Cloud method,
see also [1].
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2.1 Proximity Clouds

In 1994 Cohen and Sheffer [3] proposed another grid traversal technique to speed
up the ray tracing algorithm. Similar to the 3DDDA method, the scene is divided
into many voxels. Once divided the grid cells determine a safe distance a ray may
skip between voxels. This results in faster traversal of the voxel grid. When a ray
hits a voxel, it first determines if any objects need to be tested. If the voxel is empty
or the ray did not intersect with any object, the ray skips ahead by the value the
voxel says is safe to skip. This allows for fewer calculations when traversing the
grid. There are a few ways this can be accomplished. Using distance transforms,
these safe values are calculated during preprocessing.

A method that determines a safe distance to skip is the minimum Euclidian
distance between a voxel and all of the non-empty voxels. This would give the most
accurate reading for a safe distance. A more optimized method is the city block
distance method. The city block distance is calculated by finding the distance in x,
y, and z direction of the current voxel to a non-empty voxel and calculating it. This
is performed for all of the voxels in the grid. This is not as accurate as the Euclidian
distance, but it lets the program avoid calling the square root function on each of the
cells. In order to compensate for the possibility of overshooting the target, the ray is
normally brought back a grid cell to ensure that no objects are missed. It then
continues after checking for possible intersection with that voxel. In the worst case
Proximity Clouds perform the same as the 3DDDA method. This technique works
great when a scene is divided across large areas; but for very close groups, the cost
of building the cloud may not justify the traditional 3DDDA method. This is also
explained in [1].

2.2 Directed Safe Zones

The Directed Safe Zones method was developed in 1997 and was an addition to
Proximity Clouds [4]. A Proximity Cloud, as described above, finds the minimum
safe distance that can be skipped by the ray as it leaves the voxel. This does not take
into account the direction that the ray is traveling in. The Directed Safe Zone
method takes this into account by leveraging the knowledge it has about the rays
direction. When computing the clouds, the method finds the safest distance for each
face of the voxel, allowing the rays to skip a larger distance depending upon which
face it emerges from. This requires six times the memory, one for every face, to
store the variables for the skip in each direction. When a ray leaves a voxel, the face
it emerges from is determined. A lookup is performed to find the minimum safe
distance the ray can travel based on the face that the ray emerges. This allows the
ray to skip an even greater distance because there could be more empty space on
one side of a voxel than the other. The performance of this method at its worst is
again equal to the 3DDDA method because the minimum safe distance in all
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directions is the proximity cloud distance. Similar to Proximity Clouds, the goal of
Directed Safe Zones is to travel through the scene at a faster rate. Also see [1] for
more explanation.

2.3 Slicing Extent Technique

A different approach to the grid is the Slicing Extent Technique (SET) developed in
1987 [5]. The SET method projects three-dimensional space into two so the grid
method is done on a 2D plane. The slicing is done by taking perpendicular slices to
the x-axis, perpendicular to the y, and perpendicular to z. Each two dimensional
slice is then divided into cells. The ray traversal occurs when the ray moves from
one two dimensional cell to another along the path of the ray.

2.4 Modified Slicing Extent Technique—MSET

The MSET method is an extension of the SET method for dividing up rays [5].
The SET method has a couple of shortcomings that the MSET improved upon. The
first is slices are proportional to the number of objects. This would result in an
unmanageable amount of slices, which made traversal time consuming. The second
was the usage of floating point operations to traverse the slices. MSET evenly
spaces the slices along the axis similar to the 3DDDA method. This allows for
faster 3DDDA grid traversal. MSET takes into account the direction of the ray as
well. When the object list inside of a cell is built, it breaks them up based on what
direction the ray can hit it. The example is rays traveling up and down through the
cell can only intersect with objects above and below the cell, not left and right. This
method’s ability to predict the size of the data structure will make it ideal for porting
to the GPU in the future. The Directed Safe Zones, Slicing Extent Technique, Dual
Extent, and MSET methods were not tested in this paper but warrant further
research in the future, because in our experiments, as described in [4], DSZ methods
outperformed the Proximity Clouds method, based on both experiments and the-
oretical analysis.

2.5 GPU Computing

Graphical Processing Units have become common in most computers today. They
have been around since the 1980s with the goal of speeding up a rendering process
for the system. This allows for better processing by freeing up the CPU from
rendering by having dedicated hardware to draw to the screens. GPUs are built with
many processing cores that run in parallel. The recent trend has been that the GPU

292 R. Thomas and S.K. Semwal



manufacturers are providing APIs for traditional processing on the GPU rather than
just graphics rendering. Object hierarchy methods such as k-d tress [6] and BVHs
[7] are used for these implementations. But the above mentioned approaches are
based on partitioning the object space and may not be suitable for ray tracing a 3D
volume data-set, such as that available from CT/MRI slices or even the visible
human project. This is because volume data does not have any objects to build the
object hierarchies on.

GPU computing has been growing over the previous few years. Supercomputers
like performance can be provided on our desktop with multiple GPUs. In our
implementation, the 3DDDA algorithm remains the same when ran on the GPU or
the CPU. Proximity Clouds were allowed a different approach on the GPU. The
principles of the algorithm remain the same but are rewritten using a parallel
processing implementation. The benefit is the simplified loop, which allows the
distance calculations to be run simultaneously while building the Proximity Clouds.
These adjustments allow Dynamic Proximity Clouds implementation.

Modern day CPUs generally have two to four cores on the standard desktops and
up to sixteen cores on server CPUs. A device running on the GPU has the potential to
have thirty-two threads on a single core. Threading is also made easier in languages
such as CUDA. This provides a massive amount of computing power in the average
consumer computer. There are three main libraries that allow processing on the
GPU: Microsoft’s DirectCompute (which is bundled with DirectX 11), OpenCL, and
Nvidia’s CUDA library. We have used CUDA for our implementation.

The disadvantage which implementations face on the GPU is the memory
constraints. For a GPU implementation, usually we are limited to the available
memory on the device. This is somehow copied from the host (CPU) memory
space, but this operation can be time consuming. This could be tricky when han-
dling dynamics objects and topologies, such as for game applications. In this case,
one set of data needs to be exchanged with another modified set. This research does
not investigate acceleration techniques to buffer memory, but that would be inter-
esting question for the future [1].

3 Ray Tracing on the GPU

3.1 Implementation

The first step to setup ray tracing implementation on the GPU is to set up and run
the traditional algorithms. On the GPU the rays that emanate from the eye are
divided into grid segments and run on concurrent threads as described by threading
in CUDA. This results in a tremendous speedup from the version on the CPU. The
algorithm remains the same for the kernel drawing the spheres [1].
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3.2 3DDDA

The 3DDDA method on the GPU is similar to the version on the CPU. A grid is still
built in a similar manner. The GPU implementation has the same algorithm when
traversing the grid. It does fire many concurrent rays similar to the traditional one.
The threads then traverse the global grid. The pre-processing is done in one kernel,
and the traversing is done in another. Although explained in more details in [1],
here we briefly describe this approach.

The first step is to determine which voxels are filled and which are not. The grid
is a set size on the GPU since dynamic allocating and releasing of memory prevents
real time rendering. Each voxel is made up of a structure. Each voxel contains a
boolean to determine if it contains any spheres, an array of indices for the spheres
located in the voxel, and three integers describing the x, y, and z position. This
helps in the parallelization since the voxel array is declared as a single dimension
array.

Building the grid is done with two separate kernels. The first kernel is designed
to empty the grid. This is needed to register spheres with the correct grid cell. This
is threaded in the x and y directions. Each thread loops over the z direction setting
each cell to empty and resetting the array value to −1, which represents the end of
the list of spheres contained in the voxel. This array is static because the GPU
prefers static memory to dynamic. This can become a limitation of the system;
however, when looking at enough spheres to fill a single voxel other memory issues
may be introduced. In that case a new grid of a different size can be built or that
array can be increased. On certain cards the memory limitations may be met
building the grid and should be taken into account.

Once the grid is reset, it needs to be populated with the spheres contained in the
spheres array defined using a float3 data type. The float3 data type is defined in
CUDA and contains three floats. The min and max of the sphere is determined in
order to create a bounding box used to fill the voxels. Spheres also define a material,
which determines their reflectiveness and color. An array on the GPU defines the
spheres that are to be rendered. This global array is used to populate the voxels in a
second kernel. This kernel is a single dimensional kernel that threads on the number
of spheres. Each sphere fills the cells that are contained within its bounding box.
Once this kernel is finished the grid traversal can begin.

The final kernel in the process draws the scene. It is broken up in the same way
as traditional ray tracing, but it does not compute the collision for each sphere,
rather traversing the grid in a device function as explained in [1].

3.3 GPU Proximity Clouds

Proximity Clouds was built using a variety of distance computations. All of them
require at least an n squared algorithm to compute, usually two pass algorithm as
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described in [3] is implemented. These algorithms can be parallelized to run on the
GPU. The algorithm presented in this paper is as follow:

• The index represents the voxel that needs to determine its distance.
• The thread in the y direction represents a voxel that is not empty.
• If a thread receives a voxel that is empty, the thread returns and asks for the next

voxel.
• Once all threads in a block are completed a new block is loaded on the GPU.

This builds the clouds in a way that can be scaled to multiple GPUs and can run
on any GPU. It is possible to run this in a single warp when sufficient threads are
available. This algorithm can take any distance computation as input to determine a
safe distance to jump. The speed of this algorithm comes from the parallelization of
the system. The first list is divided up into many different threads so they can run in
sync. The Proximity Cloud generated for the experiment consisted of a 40 × 40 × 40
grid. The list is 64,000 in length and the second list would be of equal size for the
worst case, as also explained in [1].

4 Results

The results were run on a Windows 7, 64 bit PC with 6 GB of RAM, an Intel i7
2.66 GHz processor, and an NVidia GTX 570 graphics card. The GTX 570 has 480
CUDA cores with a graphics clock of 732 MHz and a processor clock of 1464 MHz
[1]. Figure 1 shows a variety of techniques we have developed and their relation-
ships with the other existing techniques.

4.1 Clustered Spheres Performance

We started with a rendering of up to 15,000 spheres and a 20 × 20 × 20 grid. This
grid size is important because sometimes larger grid side could lead to time out when
filling the grid, as will be discussed later. This scene has the quality that the scene
had no real gaps. So we expected that the cloud and the grid would perform at the
same speed. The proximity cloud only produced a 0.3 % increase in speed, but it did
speed up traditional ray tracing by 91.8 %. For more discussion, please refers to [1].

4.2 Clustered Spheres with Large Grid

To better demonstrate the performance of a larger grid, the same scene as above was
generated using a 40 × 40 × 40 grid. Since larger grid size was used, we needed to
reduce the number of spheres. Far fewer spheres were used due to the timeout that
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can occur when building the Proximity Clouds with the addition of rendering. [1]
Once again there is not a huge distinction between the grid and the Proximity Cloud
method. This is because there are no large empty areas. There is a 6 % increase in
speed when looking at proximity clouds over the grid method, and a 79 % increase
in speed over traditional ray tracing.

4.3 Rendering Planes of Spheres

In order to showcase the advantage that has been claimed for Proximity Clouds, a
new scene was generated where two planes of spheres are created. One plane is
toward the front of the scene, while the second plane is far at the back. This allows
for a large gap between them demonstrating how Proximity Clouds increases

Fig. 1 GPU implementation towards possible real time rendering
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rendering time. The grid and Proximity Cloud methods show much faster perfor-
mance over non optimized ray tracing. The difference between proximity clouds
and the 3DDDA method is not as large as expected. This is partially due to the size
of the grid. A 40 × 40 × 40 grid can only skip the length of the grid in the best case.
This does not allow for huge performance increases when each thread is traversing
the grid simultaneously. The average increase in speed was only 6.4 % when
looking at all points on the graph, but a 94.2 % increase from the non-optimized ray
tracer was achieved. As the scene grows and becomes sparser this should only
increase as also indicated in our paper [1].

4.4 Proximity Cloud Generation Speed

The next set of data that was looked at is the speed at which Proximity Clouds can
be generated. This is based on the size of the Proximity Cloud as well as how
populated the scene is. Each test below generates spheres in random locations and
tests the speed at which the Proximity Clouds can be generated. When building a
10 × 10 × 10 grid, it can be put in a single warp. Building it only takes 1 ms, which
is a single loop through the scene. A 20 × 20 × 20 cloud is a little bigger, but it
experiences a similar behavior to the 10 × 10 × 10 cloud. Once at 350 ms it begins
to level out no matter the number of spheres added because the scene has a sphere
in every voxel in our implementation for this case.

While slower the 30 × 30 × 30 grid is still manageable. Similar to the
20 × 20 × 20 grid, the 30 × 30 × 30 builds in the same time scale. This is due to a
large number of CUDA cores working in parallel. The 30 × 30 × 30 grid requires
the same number of warps as the 20 × 20 × 20, thus completing in the same amount
of time.

The 40 × 40 × 40 grid requires multiple loops in order to build. Building the grid
takes over 1.4 s, and when built with other kernels, it has the potential of running
into the kernel timeout. These results do show that running across multiple cards
can increase the speed of Proximity Clouds so that it’s closer to the speed it takes to
build the 10 × 10 × 10 grid. The speed to build the Proximity Clouds, plus the time
to render, is still faster than the traditional ray tracer and a slight improvement over
the 3DDA method [1].

5 Future Work

GPUs have permeated the graphics industry and we expect their usage to only grow
more. One area to extend this work is to use some form of Cellular Automata for
implementing dynamic changes in the scene because the changes usually are
localized. Cellular Automata [8, 9] could implement multi-level interactions and
emergence of diseases [10, 11]. Complex Systems science [12] has been applied to
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model events occurring in nature. Works by Prigogine [13], in thermodynamics,
and earlier work by Poincare’s on sensitivity of dynamical systems to initial con-
ditions provide the basis for complex systems research for Cellular Automata
research. Limitations of simulating organic life by using computational models
have been discussed before, these include (i) brittleness [14] of the computational
medium, and (ii) the limitations of reductionist approaches to model organic life,
which is well documented in [15]. Because Cellular Automata uses local interac-
tions, not the reductionist approaches, it could provide a suitable platform to model
organic behavior such as cancerous growth patterns. Local interactions, usually
implemented for every cell, could create subtle interactions mimicking organic
behavior. Many examples, such as flocking, and 3D games have shown remarkable
variety of emergence when a cell’s next state is based on consulting nearby voxels.
For example twenty-seven cells could be consulted for (3 × 3 × 3 = 27; 26
immediate vicinity, and 1 itself) to decide the next state. Different non-linear and
dynamics pattern could emerge using different local interactions strategies [16].

Volume Data provides one-to-one correspondence for use by a Cellular
Automata. The Visible Human Project supported (1989–2000) by US National
Library of Medicine (NLM) provides a detailed volume data of human body. The
process created a very detailed database of volume data 1 mm apart for the male
cadaver with 1871 slices, which when stacked create a 3D grid of volume. This
created 40 GB of static 3D grid data which might have to be ray traced, or variation
of ray tracing called ray-casting could be used. 3D Morphing techniques [17], and
for medical applications [18, 19] have been implemented using cellular automata on
volume data. However, real-time manipulation of such large data is not possible
with the computer systems of today, yet GPU computing provides a promising
research direction. The rise of GPU computing has been growing over the previous
few years. GPU computing allows for parallelization of algorithms when the
algorithm allows for it. The 3DDDA traversal algorithm remains the same when run
on the GPU and the CPU. Proximity Clouds are allowed a different approach on the
GPU. The traditional algorithms proposed can be mapped on the GPU. The prin-
ciples of the algorithm are the same but now are rewritten using a parallel pro-
cessing implementation. The benefit is the loop is simplified allowing the distance
calculations to be run simultaneously while building the Proximity Clouds.

6 Conclusion

Dynamic Proximity Clouds were achieved by dividing the problem into several
kernels and allowing the GPU to compute each section. Each generated scene
consisted of building a blank voxel grid, filling the grid with the spheres, computing
the Proximity Clouds, rendering, and updating the positions of the objects. This
allowed for a nice animation when the number of spheres was manageable, but can
quickly become choppy, i.e. non real-time, due to the size of the grid.
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On average it took 1.44 s to generate the clouds, which sometimes had the
potential to reach the timeout of the GPU. The 3DDDA provided the largest per-
formance gain in terms of overall speed but was slower when it came to rendering
using Proximity Clouds. This algorithm can be run across multiple GPUs providing
real time rendering, but new ways should be addressed, perhaps increasing the
speed across a single GPU. By running it in parallel, it is possible to build the
Proximity Clouds in a single cycle. The speed increase between the Proximity
Clouds and 3DDDA on the GPU demonstrates that more investigation is needed to
come up with better traversal methods. Continued parallelization of the algorithm
will only result in a better speedup. Finally, cloud computing could provide better
and novel solutions to this interesting problem.
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