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Chapter 13
The Energy Requirements of Percid Fish 
in Culture

Anders Alanärä and Åsa Strand

Abstract  In commercial aquaculture, knowledge about and means for predicting 
growth rates, feed intake and energy requirements of the farmed animal in different 
conditions is essential for the viability of the enterprise. As percid fish species are 
relatively new in culture, there are no models available to estimate the energy 
requirement of the cultured fish, which in turn limits the opportunities to calculate 
the required daily feed allowance. Classical bioenergy budgets are often used to 
describe energy intake in relation to different energy expenditures of fish by quanti-
fying steps where energy expenditures occur. However, in commercial aquaculture 
the objective is to optimize the output (growth) in relation to the energy intake, e.g. 
where energy expenditures occur is less important. In this chapter, we put together 
data from the scientific literature to produce an alternative model for prediction of 
the daily growth and energy need of percid fish in general and Eurasian perch (Perca 
fluviatilis L.) in particular. A practice for calculating the daily feed allowance is 
presented where local rearing conditions can be taken into account. This makes the 
model applicable to commercial enterprises and may improve feed management, 
fish growth and thus economics of the fish farms. This chapter also discusses how 
factors such as season and culture conditions influence the energy requirements and 
energy expenditures of the percid fish.
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13.1  �Introduction

There is a long tradition to utilize energetic principles for calculation of the daily 
feed allowances of farm animals (MacEwan 1945; Bull and Carroll 1946; Lloyd 
et al. 1978). For livestock, the extent of nutritional knowledge is well developed,
while in contrast, in aquaculture feed rations are based on growth rate estimates 
rather than the actual energy requirements of the cultured fish. As the energy expen-
ditures of fish vary with local conditions, many culture operations end up with poor 
feed efficiency. Feed remains as one of the largest costs in semi-intensive and inten-
sive aquaculture (Riepe 1997; Cho and Bureau 1998; Dunning et al. 1998), there-
fore inefficient feed management will have a negative impact on farm economics. 
Overfeeding fish also leads to an increased environmental load, increased cost for 
water reconditioning and reduced welfare of the fish. It is thus necessary to optimize 
feeding to improve the economic and environmental sustainability of aquaculture.

In this chapter we will present an alternative scheme for constructing species 
specific models on energy requirements and growth of fish in culture, using the 
Eurasian perch (Perca fluviatilis) as an example species. These models may be 
used for production planning and daily feed allowance purposes in commercial 
rearing situations.

13.2  �The Energy Requirements of Percids

Traditionally the energy requirements of fish has been estimated by constructing 
complete energy budgets, balancing energy intake against energy expenditures such 
as faecal production, nitrogen excretion, metabolism and growth (Brett and Groves
1979; Brafield 1985; Jobling 1994; De Silva and Anderson 1995). Despite improve-
ments in methodology, this approach is often associated with several potential 
sources of error (Jobling 1983, 1994; Brafield 1985; Talbot 1985) and many of the 
developed energy budgets have been proven to be inaccurate when tested (Cui and 
Wootton 1989; Ney 1993; Cui and Xie 2000). Alanärä et al. (2001) have developed 
an alternative model for estimation of the daily energy requirements and calculation 
of feed budgets for fish in culture. The model is based on two major components; 
(A) the daily growth increment (TWi, g·d−1) of the fish and (B) the amount of digest-
ible energy needed (DEN, kJ DE) to obtain one unit of biomass gain (g) of the fish.

Component A is retrieved by constructing a species specific growth model. The 
most commonly used estimate of fish growth is the specific growth rate (SGR;
Ricker 1979). SGR is expressed mathematically as:

	
SGR = ( )ln ln /W t2 1 100– ·W ∆

	
(13.1)

where W2 is the final weight (g), W1 is the initial weight (g) and Δt is the number of 
days between weightings. The form of the equation assumes that fish weight 
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increases exponentially. However, this assumption is only valid for young fish cul-
tured for short periods of time, and consequently, SGR is not suitable for reporting
growth of large fish or longer culture periods (Hopkins 1992). Furthermore, as an
organism increases in size, the rate of its metabolic activities slows down (Brett 
1979; Brett and Groves 1979; Jobling 1994) and as a result, the relative growth rate 
will decrease. Any growth increment (in real terms) is also smaller for a large indi-
vidual. Thus, SGR will decrease as the size of the fish increases (Brett 1979; Iwama 
and Tautz 1981; Jobling 1983, 1994). Moreover, as fish are ectothermic animals, the 
ambient water temperature will affect metabolic rates of the fish, with increasing 
metabolic rates at increasing temperatures (Brett and Groves 1979; Jobling 1994, 
1997; De Silva and Anderson 1995). Consequently, at high temperatures the relative 
growth rate will be higher than at low temperatures, and SGR will therefore increase
with increasing temperature (Brett 1979; Jobling 1994; Wootton 1998). The tem-
perature and size dependence of SGR make data collection for model construction
very time consuming and labour demanding, and as a consequence, only a few mod-
els describing SGR for fish in culture are available (Alanärä et al. 2001). Strand et al.
(2011a, b) studied the effect of temperature (8–27 °C) and body size (20–180 g) on 
SGR in Eurasian perch. As predicted, SGR was highly affected by both variables.
The optimal temperature for growth was found to be around 23 °C, which is similar 
to other studies on Eurasian perch (Mélard et al. 1996; Kestemont et al. 2003).

To reduce the problem of body size and temperature, the thermal unit growth 
coefficient (TGC) was developed by Iwama and Tautz (1981) and later modified by 
Cho (1990). TGC is expressed mathematically as:

	
TGC = ( ) ( )( ) ( )W W T t2

1 3
1
1 3 1000/ / /– · ·∆

	
(13.2)

where T is the water temperature (°C). Instead of using the logarithm of the fish 
weight (lnW) for calculating growth rate as SGR does, TGC uses a power function
(W(1/3)). This mathematical adjustment provides a better fit of the growth coefficient 
to the actual growth pattern of the fish (Cho 1992). Thus, due to the power function 
and the inclusion of temperature, TGC is thought to be less affected by body size of
the fish (Kaushik 1995, 1998; Bureau et al. 2000) and temperature (Azevedo et al. 
1998; Cho and Bureau 1998; Bureau et al. 2000; Bailey and Alanärä 2006) than 
SGR. In addition, the TGC coefficient predicts growth over time quite accurately
(Bureau et al. 2000). Consequently, in contrast to the complex SGR models, TGC
data collected for fish of a given size at one temperature may ideally be used to 
predict the weight increment of fish at other sizes and temperatures. In a number of 
experiments on Eurasian perch, Strand et al. (2011a, b) showed that TGC responded
in a similar way as SGR to both temperature and body size. TGC, however, was
more or less unaffected by temperature within the range of 17–23 °C (Fig. 13.1). 
The relationship between body size (W; 20–180 g) and TGC within this range can
be expressed as (Strand et al. 2011b):

	 TGC = +0 373 8 024. . /W 	 (13.3)
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Component B is retrieved by quantifying the amount of digestible energy needed 
to produce one unit of weight gain. According to Cho et al. (1982), the principles of 
bioenergetics were applied to fish already in 1914 by Ege and Krogh (1914) and 
several years later by Ivlev (1939), and Cui and Xie (2000) states that the first bio-
energetic model for fish was developed by Kitchell et al. (1974). Models based on 
similar principles had been proposed earlier by other researchers (Ursin 1967; Kerr 
1971), but the model developed by Kitchell et al. (1974), is probably the most influ-
ential (Cui and Xie 2000). The simplest form of a bioenergetic model can be derived 
from the basics of bioenergetics: “any change in body weight results from the differ-
ence between what enters the body and what leaves it” (Jobling 1997). Growth can
thus be expressed as the net energy gain obtained when all energy expenditures are 
subtracted from the total energy ingested. To provide a more detailed view of the 
energy budget, the energy expenditures can be divided into smaller units and the 
energy budget can then be expressed as:

	 I F E M G= + + + 	 (13.4)

where I is the energy content of the ingested feed, F is the energy lost in faeces, E is
the energy lost to excretion, M is the energy lost in metabolism and G is the energy
retained as growth and gonad production (Brett and Groves 1979; Jobling 1994; De 
Silva and Anderson 1995).

As can be expected, several problems arise when the different units of the 
energy budget are to be measured. So far it has not been possible to determine
all the components in the energy budget simultaneously, and often one or more 
of the major units have been estimated “by difference” to produce a balanced 
budget (Jobling 1994). Different experimental procedures will also produce dif-
fering results (Talbot 1985). Furthermore, bioenergetic studies of fish have

Fig. 13.1 The relationship between temperature and TGC for Eurasian perch of different body
sizes (circles 20 g, squares 35 g and triangles 50 g) (Data from Strand et al. 2011b)
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largely been theoretical and performed in laboratories (Knights 1985), and the 
experiments also often impose unnatural or unrealistic feeding regimes and liv-
ing conditions on the fish which exposes the fish to both acute and chronic stress 
(Talbot 1985). Despite improvements in methodology, the bioenergetic approach 
is thus often associated with measurement errors (Brafield 1985) and several of 
the developed energy budgets prove to deliver inaccurate results when tested 
(Cui and Wootton 1989; Ney 1993; Cui and Xie 2000). Thus, the experimental 
approaches used to develop energy budgets tend to produce results that are 
rarely transferable to aquaculture (Alanärä et al. 2001).

In order to construct an energy requirement model that is useful in culture situa-
tions we do not need to estimate all pathways of energy losses, but rather to measure 
the amount of energy digested and the energy allocated in terms of growth. This 
assumes that energy losses for excretion (E) and metabolism (M) are more or less 
constant when the fish are held in a specific rearing environment. In addition, by 
using the value on digestible energy content of the feed, the energy losses in faeces 
(F) is accounted for. The digestible energy needed to obtain one unit of biomass
gain (DEN; kJ DE·g−1) of fish in culture is calculated as:

	
DEN = ( ) ( )FI DE W W· –/ 2 1 	

(13.5)

where FI is the feed intake (g) and DE is the digestible energy content of the feed 
(kJ∙g−1).

The big advantage with the model developed by Alanärä et al. (2001) is that since 
the values for the different energy expenditures need not be quantified, estimates of 
DEN can be made when the fish are being raised under experimental conditions 
similar to those in commercial culture. Due to differences in rearing environment, 
however, values on DEN may differ. As will be discussed later in this chapter, the 
energy expenditures in fish farms are often related to stress caused by either sub-
optimal rearing environments or handling of the fish. Ideally, farm specific DEN 
values should be estimated.

At and below optimal temperatures for growth (i.e. 23 °C), DEN of Eurasian 
perch have been found not to be affected by temperature (Fig. 13.2, Strand et al.
2011a, b). This is in accordance with data presented by Bailey and Alanärä (2006), 
where DEN of salmonid species like rainbow trout (Oncorhynchus mykiss), 
Atlantic salmon (Salmo salar) and Arctic charr (Salvelinus alpinus) was shown to 
be unaffected by temperatures below the optimal. As standard metabolic rate of 
fish increases with increasing temperature (Brett and Groves 1979; Jobling 1994, 
1997; De Silva and Anderson 1995) so does the energy expenditures of the fish, 
and hence a connection between temperature and DEN should exist. However, at 
normal rearing temperatures the effect of metabolic costs on the overall energy 
budget is negligible. At high temperatures though, metabolic costs increases dra-
matically. Strand et al. (2011a) showed an exponential increase in energy expen-
ditures in Eurasian perch when temperature exceeded the optimal growing 
temperature (Fig. 13.2). A similar exponential effect has been shown for salmo-
nids (Bailey and Alanärä 2006).

13  The Energy Requirements of Percid Fish in Culture



358

Furthermore, the DEN value of Eurasian perch has been found to increase with
increasing body size (Strand et al. 2011b). The same relationship have been demon-
strated for different salmonid and flatfish species (Bailey and Alanärä 2006), as well 
as for cod (Gadus morhua L.; Björnsson et al. 2001). One explanation for this may 
be the allometric changes in the ratio of lipid, protein, and water storage that occurs 
with increasing size of the fish. Thus, as fish grow, the ratio of these macronutrients 
stored in the tissue changes (Jobling 2001). The storage of high-energy molecules 
of lipid is more “costly”, in terms of the energy ingested, than muscle (protein) 
growth. In addition, 1 g of lipid deposition leads to a weight increase of 1 g, whereas 
deposition of 1 g protein is associated with an additional deposition of glycogen and 
3–4 g of water. Fish that store more lipids should therefore require more energy and
gain less weight. This can be seen as a higher DEN value. The relationship between 
body size and DEN for Eurasian perch can be expressed as (Strand et al. 2011b):

	 DEN = + ⋅6 422 3 407. . lnW 	 (13.6)

A literature search on the “Web of Science” for feeding trials data on Eurasian perch
and yellow perch (Perca flavescens) gave 30 articles in total. Out of that, 12 contained 
data that could be used to calculate DEN (Table 13.1). In comparison with the DEN 
model presented by Strand et al. (2011b) most values are higher than what the model 
predicts (Fig. 13.3). Eurasian perch have been shown to be rather stress sensitive when 
held in rearing facilities (see discussion below). Within the study of Strand et al.
(2011b), care was taken not to disturb and stress the fish during the experiments. The 
higher energy requirements reported in other studies may thus be the result of higher 
energy expenditures for fish kept in sub-optimal experimental conditions.

The differences in DEN between perch and salmonid species seen in Fig. 13.3 
may be related to the higher energetic costs of life in warm water. Brett and 
Groves (1979) compared values on standard metabolism for tropical, temperate 

Fig. 13.2  Data showing the exponential increase in digestible energy need as temperature exceeds 
the optimal one for growth in Eurasian perch and salmonids (Atlantic salmon and Arctic charr) 
(Data from Bailey and Alanärä 2006 and Strand et al. 2011a)
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Table 13.1 Feed efficiency (FE) and digestible energy need (DEN) for Eurasian perch and yellow
perch at different temperatures and body sizes. Values are retrieved based on feed intake data, 
digestible energy content of the feed and weight gain. Energy values of macronutrients (23.7, 36.3 
and 17.2  kJ∙g−1 for protein, fat and carbohydrates, respectively) were obtained from Brett and 
Groves (1979). Apparent digestibility coefficients (ADC) used was 0.87, 0.90 and 0.65 for protein, 
fat and carbohydrates, respectively. These data were used to calculate the digestible energy content 
of the feed in each experiment (DE)

Author Species Temperature Weight FE DE (MJ DE/kg) DEN

Xu et al. 2001 Eurasian perch 23 59 0.80 17.8 22.2
Jourdan et al. 2000 Eurasian perch 23 14 0.80 17.1 21.3
Blanchard et al. 2008 Eurasian perch 23 75 0.88 18.1 20.6
Fiogbe and
Kestemont 2003

Eurasian perch 23 3 0.54 18.1 33.5

Juell and Lekang 
2001

Eurasian perch 18 41 1.14 16.9 14.9

Mandiki et al. 2004 Eurasian perch 22 8 0.76 18.1 23.8
Mandiki et al. 2004 Eurasian perch 22 47 0.66 18.4 27.9
Mandiki et al. 2004 Eurasian perch 24 11 0.70 18.1 25.8
Mandiki et al. 2004 Eurasian perch 24 38 0.68 18.4 27.1
Kestemont et al. 
2001

Eurasian perch 23 36 0.64 18.6 29.1

Mathis et al. 2003 Eurasian perch 23 84 0.93 18.8 20.2
Twibell and Brown 
2000

Yellow perch 20 25 0.69 12.8 18.5

Twibell et al. 2001 Yellow perch 21 45 0.60 12.8 21.3
Gould et al. 2003 Yellow perch 22 497 0.48 17.8 37.5
Hart et al. 2010 Yellow perch 22 44 0.65 18.1 27.8

Fig. 13.3  Digestible energy need (DEN) at different body sizes. Circles are previously published 
data for Eurasian perch and squares data for yellow perch. The solid line represents the model 
developed for Eurasian perch by Strand et al. (2011b) and the hatched line represents the model for 
salmonids ( DEN W= +9 22 1 12. . *ln ) developed by Bailey and Alanärä (2006)
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and polar fishes against temperature, and concluded that warm-water adapted 
species operate at a higher metabolic maintenance level in accordance with the 
higher water temperatures. The tropical species incur an energy expenditure that 
is about 70  % higher than that for temperate species. The amount of energy 
needed to produce one unit of weight increase in Eurasian perch is 50–70 % 
higher than for salmonid species (compare values in Fig. 13.3). Thus, differ-
ences in DEN between warm-water species and cold-water species are similar 
to that Brett and Grove (1979) found for energy expenditures. The practical 
implication of this is that the feed requirements for producing one unit of fish 
gain will be higher for percids compared to salmonids. This will consequently 
influence production costs. Domestication processes and selective breeding may 
significantly reduce DEN of cultured fish. Thodesen et al. (1999) compared the 
growth and feed efficiency of a selected Atlantic salmon strain (five genera-
tions) against the offspring of the founder population over a full commercial 
rearing cycle. The results showed a 25 % improvement of DEN for the selected 
stock, indicating a possible space for development in percid fish.

By combining data on daily growth (component A) and DEN (component B), a 
model expressing the theoretical energy requirements (TER; kJ·day−1) can be devel-
oped. The model is written as:

	 TER T DEN= ⋅Wi 	 (13.7)

where TWi is the theoretical weight increment per day (g∙day−1). Figures on theo-
retical weight increment for Eurasian perch can be obtained by using the TGC
model (Eq. 13.3) or any other growth model. By using the TGC model, the expected
weight of the fish (W2, g) after a period of time can be calculated as:

	
W W T D2 1

1 3
3

1000= + ⋅ ⋅( )( )( )/ /TGC
	

(13.8)

where W1 is the initial weight, TGC the growth coefficient (value from Eq. 13.3), T 
is temperature and D is days (T and D forms the sum of temperature). TWi is then 
obtained by calculating the weight of the fish after 1 day of growth and subtracting 
the initial weight. Thus, by combining the theoretical daily weight gain and the 
DEN values, a model describing the daily theoretical energy requirement (TER, 
kJ·d−1) at different temperatures and for fish of different sizes can be expressed. For
Eurasian perch the models looks like this (Strand et al. 2011b):

	 TER = ⋅ ⋅ −0 039 0 614 0 014. . . /T W T
	 (13.9)

An example of a theoretical energy requirement chart based on Eq. 13.9 is dem-
onstrated in Table 13.2. This model by Strand et al. (2011b) corresponds well with 
data on feed requirements obtained by Mélard et  al. (1996) and Fiogbé and
Kestemont (2003) for Eurasian perch in culture conditions.
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13.3  �Daily Feed Allowance

Values on daily feed allowance given by feed companies, feeding system com-
panies or others generally lack the ability to allow adjustments to be made in 
relation to local rearing conditions. By using previous growth records or theo-
retical models (Eqs.  13.3 and 13.8), the first component in the feed budget 
model (component A; the daily weight increment), can be estimated. To obtain 
farm specific data of the daily weight increment is of high importance as these 
may vary considerably between rearing facilities (sites), strains and different 
times of the year. Growth rate data is, however, reasonable easy to collect by
regular weightings, thus this should not constitute a problem in a commercial 
culture situation. By using Eq. 13.6 or estimates of DEN based on own measure-
ments, the second component (B) in the energy requirement model is achieved. 
Values of DEN on the other hand are more difficult to obtain in practical rearing 
situations as accurate measures on feed intake are required. The value of DEN 
is probably more robust than growth rate data, and is mainly affected by poor 
rearing conditions and a stressful environment. Fish farmers should be able to
rely on expert models for DEN, i.e. like Eq.  13.6 for use in the feed budget 
model. Once both components are known, farmers can then create their own 
feed budget model or feeding chart. For evaluation of the daily feed allowance
of the fish (FA, g∙day−1), the following calculation is made:

	 FA TER n= ⋅ / DE 	 (13.10)

where n is the number of fish in the rearing unit and DE is the digestible energy 
content of the feed (kJ/kg). The feed allowance model was tested by Bailey and 
Alanärä (2001) with good results on hatchery-reared rainbow trout. In Table 13.3, 
an example is given on how the daily feed allowance for a group of Eurasian perch 
can be calculated based on the methodology described in this chapter.

Table 13.2  TER (kJ·day−1) values for Eurasian perch (Perca fluviatilis L.) reared at different 
temperatures and of different sizes (based on Eq. 13.9)

Size of fish (g)

20 50 100 150 200

Temperature °C 16 3.9 6.9 10.5 13.5 16.1
18 4.4 7.7 11.8 15.2 18.1
20 4.9 8.6 13.1 16.9 20.1
22 5.4 9.5 14.5 18.5 22.1
24 5.9 10.3 15.8 20.2 24.1

13  The Energy Requirements of Percid Fish in Culture
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13.4  �Seasonal Variations in Energy Requirements and Growth

Energy requirement and growth of percid fish may vary considerably at different 
times of the year, which in turn will affect the daily feed allowance. Staffan et al.
(2005) demonstrated an increase in feed intake and growth in hatchery reared 
Eurasian perch during spring; despite constant water temperatures and day length 
(Fig. 13.4). In addition, Strand et al. (2007a) showed a corresponding decrease in 
feed intake and growth between September and November in Eurasian perch held in
constant environmental conditions (Fig. 13.4). Similar seasonal patterns have also
been noted in free living Eurasian perch (Griffiths and Kirkwood 1995). The sea-
sonal variation in feed intake has been most widely studied in salmonid species such 
as Atlantic salmon (Thorpe 1994), Arctic charr (Sæther et al. 1996), and chinook 
salmon (Oncorhynchus tshawytscha; Clarke and Blackburn 1994). Similar to
Eurasian perch, these species typically increase feeding in spring and experience a 
depression in feed intake during the autumn (Smith et al. 1993; Tveiten et al. 1996). 
These seasonal variations in appetite and growth despite constant environmental 
cues such as temperature and day length are referred to as an endogenous rhythm 
(Eriksson and Alanärä 1992).

A physiological explanation for reduced feeding during the autumn is the level 
of fat depots. It has been proposed that fish may reduce feeding once they have 
acquired sufficient energy reserves to survive the winter (Tveiten et  al. 1996). 
Furthermore, there may be an inverse relationship between body fat content and
feed intake, which would partly explain the large increase in feed intake after a long 
winter, when energy reserves are depleted (Metcalfe and Thorpe 1992; Jobling and 

Table 13.3  Example on how the daily feed allowance can be calculated for a group of Eurasian 
perch based on the methodology described in this chapter

Data

Fish size 50 g
Temperature 22 °C
Feed, digestible energy content 18 MJ per kg (or kJ per g)
Number of fish 3,000

Model Calculation Result

TGC= +0 373 8 024. . /W TGC = +0 373 8 024 50. . / 0.53

W W T D2
1 3

3

1000= + ⋅ ⋅( )( )( )/ /TGC W2
1 3

3

50 0 53 1000 22 1= + ⋅ ⋅( )( )( )/ . / 50.48 g

TWi W W= −2 1 TWi = −50 48 50. 0.48 g/d
DEN = + ⋅6 422 3 407. . lnW DEN = + ⋅6 422 3 407 50. . ln 19.8 kJ/g

TER T DEN= ⋅Wi TER = ⋅0 48 19 8. . 9.5 kJ/d

TERmod = ⋅ ⋅ −0 039 0 614 0 014. . . /T W T TERmod = ⋅ ⋅ −0 039 22 500 614 0 014 22. . . /
9.5 kJ/d

FA TER n= ⋅ / DE FA = ⋅9 5 3000 18. / 1578 g

A. Alanärä and Å. Strand
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Fig. 13.4 The growth rate (TGC) of Eurasian perch at different times of the year. Fish of the size
20–30 g were held in similar rearing conditions at 17 °C and constant day length (LD 18:6) (Circles 
represent data from Staffan et al. (2005) and squares data from Strand et al. (2007a))

Miglavs 1993; Shearer et al. 1997; Silverstein et al. 1999). If this explanation is 
valid also for the seasonal variation in feed intake and growth of percid fish needs to 
be studied further.

There is no evidence that this seasonal variation influence the digestible energy 
need of fish (Strand et al. 2007a, b, 2011a). It is more likely that it solely work on 
appetite and thereby growth. As there is strong evidence for large seasonal varia-
tions in the feeding and growth of Eurasian perch (Karås 1990; Staffan et al. 2005; 
Strand et al. 2007a, b, 2011a), any growth model used to predict the daily weight 
increase should include a seasonal factor. By doing so, the daily feed rations are 
adjusted so that the peak in growth during summer and the depression in autumn are 
accounted for.

13.5  �Culture Conditions Affecting Energy Requirements 
and Growth

Fish held in culture are sensitive to disturbance, and feeding activity and growth
may be severely reduced by exposure of the fish to stressful events such as cleaning 
of tanks (Head and Malison 2000; Kestemont and Baras 2001), inappropriate feed-
ing regimes (Brännäs et al. 2001) or rearing environments (Malison and Held 1992; 
Brännäs et al. 2001; Papoutsoglou et al. 2000, 2005), handling (Acerete et al. 2004; 
Jentoft et al. 2005) and social dominance hierarchies (Brännäs et al. 2001). Culture 
management should therefore aim to optimize the farming environment to maxi-
mise growth and welfare of the fish.

13  The Energy Requirements of Percid Fish in Culture
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Percid fish have been found to be disturbed by ordinary farming procedures such 
as handling (Acerete et al. 2004; Jentoft et al. 2005), cleaning of tanks and shadows 
created by human activities near tanks (Acerete et  al. 2004; Jentoft et  al. 2005). 
Strand et al. (2007a) subjected juvenile Eurasian perch to daily disturbance either 
by creating shadows over the tanks three times daily (moderate disturbance), or by 
cleaning the tanks with a brush once daily in addition to creation of shadows (severe 
disturbance). Both types of disturbance caused significantly lower feed intake and 
growth rate (up to approximately 50 %) for groups with disturbed fish compared to 
control groups. This is in accordance with data calculated from Jentoft et al. (2005) 
where disturbance of Eurasian perch and rainbow trout reduced weight increase of 
the fish by 46 and 27 %, respectively. In the study performed by Strand et al. (2007a), 
disturbed fish also demonstrated up to 40 % higher energy expenditures than the 
undisturbed fish. It was formerly believed that the reduced feed intake was the rea-
son for the lower growth rate demonstrated by a stressed organism (Pickering 1993; 
Jobling 1994). However, the data presented by Strand et al. (2007a) show that fish 
exposed to disturbances also experienced increased energy expenditures compared 
to undisturbed fish. This is further supported by results obtained for other species 
such as rainbow trout (Barton and Schreck 1987) and largemouth bass (Micropterus 
salmoides; Rice 1990). Brief disturbance caused these species to increase metabolic 
rate by 25 % and 20 % for rainbow trout and largemouth bass, respectively. The 
20 % reduction in metabolic rate for largemouth bass was also calculated to reduce 
weight increase by about 40 %.

One way to reduce stress in culture is to keep the fish in a suitable culture envi-
ronment. Fish may demonstrate a preference for a specific background colour,
probably to decrease their conspicuousness (Bradner and McRobert 2001), and in 
general, dark tank colours are preferred by most species (Brännäs et al. 2001). 
However, Strand et al. (2007b) found no effect of either tank colour (black, grey 
and white) or light intensity on energy expenditures of juvenile Eurasian perch. 
However, a clear difference in body colour of the fish was noted, with dark, almost 
black, perch coming from the black tanks and very pale perch coming from the 
white tanks. This is similar to the findings of other perch studies (Parker 1948; 
Mairesse et al. 2005). The lack of effect of tank colour on energy expenditures of 
the fish thus indicates that the capacity of perch to change body colour in accor-
dance with its background may reduce the problem of conspicuousness and thus 
reduce a potential source of stress for the fish. This is in agreement with results 
obtained by Staffan (2004), who performed an experiment in which perch juve-
niles could move freely between two tanks of different colours, but did not show 
general preferences for any specific colour.

Tank colour, however, does affect feed intake and growth rate of perch kept at 
low light intensities, with reduced efficiency in tanks with darker walls (Strand et al.
2007b). The higher feed intake and corresponding higher growth rates in light, com-
pared to in dark tanks, are suggested to be an effect of higher visibility of feed in 
light tanks, resulting from higher contrast between the feed and the tank’s back-
ground. At high light intensity, however, the effect of tank colour was reduced and 
feed intake and growth rates were similar for all groups (Strand et al. 2007b). The 
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importance of a high contrast between the food object and the background has been 
previously demonstrated in studies on the effect of turbidity on feeding success in 
fish (Fiksen et al. 1998; Utne-Palm 1999).
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