
Chapter 17
The Role of Tissue Non-specific
Alkaline Phosphatase (TNAP)
in Neurodegenerative Diseases:
Alzheimer’s Disease in the Focus

Katherine A.B. Kellett and Nigel M. Hooper

Abstract Tissue non-specific alkaline phosphatase (TNAP) is present on neuronal
membranes and induces neuronal toxicity via tau dephosphorylation; a mechanism
which could play a role in the neuronal loss seen in Alzheimer’s disease (AD).
TNAP increases in the plasma following brain injury and cerebrovascular disease.
In this chapter we summarise our previous work which looked at changes in TNAP
activity in the brain and plasma of AD individuals and discuss whether these
changes may be reflective of neuronal loss. Our data demonstrate that TNAP
activity is significantly increased in the brain in both the sporadic and familial forms
of AD and that TNAP activity is significantly increased in the plasma in AD
patients. In addition, we describe a significant inverse correlation between plasma
TNAP activity and cognitive function in AD. Using these data we propose a model
for TNAP-induced neurodegeneration in AD resulting from tau dephosphorylation
following secretion of tau from neuronal cells.

Keywords Tau � Cognitive function � Neuronal toxicity � Plasma � Human brain

17.1 Introduction

Alzheimer’s disease (AD is the most common form of dementia and the impact of
this neurodegenerative disease is increasing as the population ages (Burns and Iliffe
2009). AD symptoms progress from mild memory problems (mild cognitive
impairment; MCI) through to severe cognitive deficits. Studies of ageing and
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cognition suggest that impairment in multiple cognitive domains may be observed
several years before a clinical diagnosis of AD is made (Matthews et al. 2007). It
has been suggested that the observed cognitive dysfunction is not qualitatively
different from that seen in normal ageing, proposing the idea that there is a con-
tinuum from normal ageing to preclinical dementia (Brayne 2007). AD is charac-
terised by the formation of extracellular amyloid plaques and intracellular
neurofibrillary tangles. Amyloid plaques are composed of amyloid-β peptide
formed from the sequential cleavage of the amyloid precursor protein (APP) by the
β-site APP cleaving enzyme-1 (BACE1) and the ϒ–secretase complex.
Neurofibrillary tangles are composed of hyperphosphorylated and aggregated tau
(Iqbal et al. 2005) and initially appear in the entorhinal cortex and hippocampus,
before the expansion of tau pathology into other neighbouring areas (Braak and
Braak 1991).

The spread of tau pathology in the Alzheimer’s brain was characterised by Braak
and Braak in 1991 and their method of scoring tau pathology is still used for
pathological analysis (Braak and Braak 1991). This characteristic spread of tau
pathology has led to the idea of tau’propagation’ or ‘infectivity’, and it has been
shown that extracellular tau aggregates can enter cells to induce misfolding of
intracellular tau (Frost et al. 2009). Different methods have been used to demon-
strate tau propagation: the injection of brain extract from mice expressing a mutated
form of human tau demonstrated that tau pathology could spread from the injection
site to neighbouring regions (Clavaguera et al. 2009); and the expression of a
human tau transgene in specific neurons showed the spread of tau from these
neurons to neighbouring, non-expressing neurons, inducing degeneration (de
Calignon et al. 2012). The propagation of tau pathology is thought to involve a
trans-synaptic mechanism, spreading along anatomically connected networks (Liu
et al. 2012) and although the mechanism of tau secretion and tau uptake are still to
be confirmed, one study has suggested that tau fibril uptake occurs via heparin
sulphate proteoglycans (Holmes et al. 2013). Tau pathology is accompanied by
neuronal loss, following which, tau can be found in the extracellular space either in
a monomeric or an aggregated form where it is assembled into extracellular ghost
tangles (Cras et al. 1995).

While the pathology of AD has been extensively studied, the underlying causes
of the disease remain elusive. Less than 5 % of AD cases are inherited (Mullan et al.
1992), caused by mutations in the genes encoding APP or the presenilins in the
ϒ-secretase complex. The remaining 95 % of cases are termed sporadic AD usually
occurring after age 65 (hence often referred to as late-onset AD). The causes of
sporadic AD are less clear; although sporadic AD is not caused by dominant
mutations like familial AD (Pimplikar 2009), there may be a genetic component to
some cases of sporadic AD as indicated in recent years by genome-wide association
studies (GWAS). These studies use large cohorts to detect single nucleotide
polymorphisms (SNPs) that are related to sporadic AD. A large number of genes
have been identified by the various GWAS but nine have consistently been iden-
tified in all studies (CLU (clusterin), BIN1 (bridging integrator 1), PICALM
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(phosphatidylinositol clathrin associated lymphoid myeloid), CD2AP (CD2 asso-
ciated protein), EPHA1 (ephrin receptor A1), CR1 (complement receptor 1),
ABCA7 (ATP binding cassette transporter 7), CD33 (Myeloid cell surface antigen
CD33), and the MS4A (Membrane-spanning 4-domains subfamily A) gene cluster)
(Harold et al. 2009; Bertram and Tanzi 2010; Seshadri et al. 2010; Carrasquillo
et al. 2011; Hollingworth et al. 2011; Hu et al. 2011; Wijsman et al. 2011); it is
estimated that these genes may account for up to 50 % of sporadic AD cases
(Morgan 2011) although how the proteins that these genes encode are involved in
the initiation and/or progression of AD is still unclear.

Tissue non-specific alkaline phosphatase (TNAP) is widely expressed in the
brain including in the occipital-, frontal- and temporal lobe areas of the cerebral
cortex (Negyessy et al. 2011) (see also Chaps. 5 and 6) and also in the hippocampus
(Diez-Zaera et al. 2011; Street et al. 2013) where tau pathology initially appears.
The high TNAP expression in specific brain areas suggests links to the
thalamo-cortical connections (Fonta et al. 2004; Negyessy et al. 2011) which have
been shown to be affected in AD (Zhou et al. 2013). TNAP has been shown to have
a role in both brain development and brain function (see Chaps. 4, 14 and 18), but
does it also have a role in neurodegenerative disease? Our studies, published in
2011 (Kellett et al. 2011; Vardy et al. 2012) and reviewed here, examine the
changes in TNAP activity that occur as a result of AD.

17.2 Changes in CSF and Plasma TNAP Associated
with CNS Injury; Could Changes in Plasma TNAP
Reflect Neuronal Loss in the Brain?

Changes in cerebrospinal fluid (CSF) (Lampl et al. 1990) and plasma alkaline
phosphatase activity (Yamashita et al. 1989; Meythaler et al. 1998) occur as a result
of central nervous system injury, including non-traumatic brain injury (Meythaler
et al. 1998). The changes in TNAP in brain-damaged patients was shown to
increase as secondary brain damage developed and plasma TNAP concentration
was shown to correlate with the functional outcome (Yamashita et al. 1989). These
previous studies suggested that changes in plasma TNAP as a result of brain injury
were an indirect consequence due to liver function changes; but is this an incorrect
assumption based on the misconception that TNAP primarily reflects liver function?
Could the increase in TNAP in the plasma and CSF as a result of brain injury,
traumatic or non-traumatic, be reflective of neuronal loss? The correlation of plasma
TNAP with functional outcome would suggest that it might. Previous to our studies
on TNAP in AD, elevated alkaline phosphatase activity had been reported in
patients with neurodegenerative disease. A study contrasting AD with vascular
dementia (VD) indicated that alkaline phosphatase activity was significantly
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increased in VD compared to AD but did not, unfortunately, study these groups in
relation to age-matched controls or correlate alkaline phosphatase activity with
cognitive function (Cacabelos et al. 2004).

17.3 TNAP Activity Is Increased in the Brain
and in the Plasma in Alzheimer’s Disease

Our studies investigated the changes in TNAP activity associated with AD in both
post-mortem brain samples and in plasma samples from AD patients. In both
post-mortem brain samples and in plasma we identified the isoform of alkaline
phosphatase being measured as TNAP by using the TNAP-specific inhibitor,
levamisole.

Our study (Vardy et al. 2012) demonstrated a significant increase in TNAP
activity in post-mortem brain samples from the hippocampus of sporadic AD
patients (Fig. 17.1a). TNAP has been shown to be present in the hippocampus
(Diez-Zaera et al. 2011; Street et al. 2013) and the increase in TNAP activity in the
AD patients compared to non-demented controls suggests a role for TNAP in the
progression of AD. In addition to analysing TNAP activity in samples from spo-
radic AD patients, we also examined post-mortem hippocampal brain samples from
familial AD patients. As in sporadic AD, TNAP activity was significantly increased
in the hippocampus of familial AD patients compared to age-matched controls

Fig. 17.1 TNAP activity is
increased in the hippocampus
in AD. TNAP activity in
hippocampal brain samples
from a sporadic AD compared
to age-matched controls and
b from familial AD compared
to age-matched controls. Data
shown as grouped scatter plot
with bar representing the
mean. Sporadic AD: n = 5 per
group; Familial AD: n = 6 per
group. *p < 0.05. (Vardy et al.
2012)
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(Fig. 17.1b). As the major risk factor for sporadic AD is age we also investigated
changes in TNAP activity in samples from an ageing cohort; the results showed that
TNAP activity does not correlate with age (r = 0.063, p = 0.853). The increase in
TNAP in both sporadic and familial AD demonstrate that the changes seen are
likely to be a consequence of AD-associated changes in the brain rather than a
primary mechanism of disease. Our data supported previous work showing that
TNAP activity is increased in temporal lobe brain samples in AD (Diaz-Hernandez
et al. 2010), demonstrating that TNAP activity is also increased in the hippocam-
pus, both in the sporadic and familial forms of the disease.

In addition to measuring TNAP activity in the brain we also designed 2 inde-
pendent studies (Kellett et al. 2011; Vardy et al. 2012) with separate cohorts to
investigate whether TNAP activity was also altered in the plasma in AD patients.
For both of these studies the two main aims were to examine plasma TNAP and to
correlate this with cognitive function. Our Leeds cohort consisted of 110 ‘probable’
AD patients, in accordance with international diagnostic criteria (National Institute
of Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease
and Related Disorders Association work group) (McKhann et al. 1984) and 110
age- and gender-matched control subjects without evidence of cognitive impairment
assessed using the Mini-Mental State Examination (MMSE) (Folstein et al. 1975).
Our OPTIMA (Oxford Project To Investigate Memory and Aging) cohort consisted
of 121 ‘probable’ (McKhann et al. 1984) or pathologically confirmed AD patients,
89 mild-cognitively impaired (MCI) patients and 180 cognitively-screened
non-demented controls assessed using the Cambridge Examination for Mental
Disorders (CAMCOG) (Roth et al. 1986). In both of these cohorts we demonstrated
that TNAP activity is significantly increased in the plasma of AD patients compared
to controls and that these changes are not a result of other underlying conditions,
such as liver, bone or inflammatory diseases (Fig. 17.2a, b). In addition, the
inclusion of MCI patients in the study (Kellett et al. 2011) identified that this
change in TNAP is evident in the early phase of cognitive impairment with raised
TNAP levels in MCI patients compared to controls but at an intermediate level to
the increase observed in the AD group (Fig. 17.2b). Plasma TNAP therefore
appears to be related to clinical diagnosis and, we therefore predicted, could be
related to cognitive function. Using the results from cognitive examinations in both
cohorts we were able to correlate TNAP activity in plasma with cognitive function
in all subjects, including controls. Interestingly, the results showed that TNAP
activity significantly inversely correlated with cognitive function in AD patients
from our Leeds cohort (rs = –0.211, p = 0.027) and significantly inversely correlated
with cognitive function in all groups in our OPTIMA cohort (AD (z = –3.61,
p = 0.0003); MCI (z = –2.49, p = 0.013); Control (z = –2.21, p = 0.027)) suggesting
that changes in plasma TNAP activity may reflect changes in cognition in any
individual. Our final analysis looked at follow-up over 5 years in our OPTIMA
cohort. The results of this analysis determined that TNAP activity remained
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significantly inversely correlated to cognition over all assessments during the 5 year
follow-up in AD patients. The analysis showed that the rate of decline is not
dependent on TNAP but that changes in TNAP reflect changes in cognitive function
in any given individual.

Fig. 17.2 TNAP activity in plasma is significantly increased in AD. a In our Leeds cohort TNAP
activity was significantly increased in AD compared to age-matched controls (mean ± SEM:
17.88 ± 0.603 and 15.97 ± 0.596 nmol/min/ml, respectively, p = 0.018); data represented in an
error bar graph showing adjusted mean ± SEM, n = 110 per group (Vardy et al. 2012). b In our
OPTIMA cohort, TNAP activity was significantly increase in AD compared to control (median
(lower quartile, upper quartile): 165.5 (139.5, 195.8) and 149.5 (130.0, 178.0), respectively,
p = 0.005). TNAP activity in MCI patients was at a level in between the control and AD groups
(164.0 (129.0, 196.0)) but was not significantly different from either the control or AD group. Data
represented in a box and whisker plot showing data from initial patient assessment, control
n = 180, MCI n = 89, AD n = 121 (Kellett et al. 2011)
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17.4 TNAP as a Marker of AD?

While TNAP activity is increased in the plasma and correlates with cognitive
function in all groups (control, MCI and AD), our observations in post-mortem
brain samples indicate that changes in TNAP are not correlated with age and are
therefore not a result of the normal ageing process. These changes in the brain are a
consequence of the disease process, reflective, therefore, of AD-associated changes.
However, the correlation of plasma TNAP activity with cognitive function in all
groups would suggest that changes in the plasma may also be reflective of a process
occurring in all subjects irrespective of diagnosis. What is unclear is whether the
increase in plasma TNAP activity is reflective of increased brain TNAP or whether
there is a related systemic change in TNAP activity. While there is an increase in
plasma TNAP activity in AD the mean values in the AD and control cohorts
remained in the clinically ‘normal’ range (10-140 IU/l); in contrast, in traumatic
brain injury, plasma alkaline phosphatase activity has been shown to increase above
200 IU/l (Yamashita et al. 1989). From these data it could therefore be concluded
that TNAP could reflect brain injury and perhaps neuronal loss, with acute increases
following traumatic brain injury and long-term low-level changes in AD.
Unfortunately, however, as plasma TNAP activity remains within the ‘normal’
range it could not be used as a predictive or diagnostic biomarker for AD. There is,
however, scope to further investigate TNAP as a marker for AD progression and/or
effectiveness of therapeutic intervention within an individual patient, or perhaps, to
further investigate plasma TNAP measurement in combination with other plasma
proteins that have been shown to correlate with cognitive function for a combined
AD marker.

17.5 TNAP and Tau in AD

TNAP has been shown to have a specific role in the neurotoxic events causing AD
as a result of its action on hyperphosphorylated tau (See Chap. 18). TNAP can
dephosphorylate the extracellular hyperphosphorylated tau that surrounds the
neurons (Fig. 17.3). This dephosphorylated tau is an agonist for M1 and M3
muscarinic receptors and its action causes a sustained calcium influx into the cell
which is neurotoxic and ultimately results in neuronal loss (Gomez-Ramos et al.
2008; Diaz-Hernandez et al. 2010). This mechanism linking TNAP activity to tau
dephosphorylation and the resulting neuronal loss provides evidence of a direct role
for TNAP in the progression of AD. The neurotoxic effects resulting from tau
dephosphorylated by TNAP suggests that TNAP activity in the brain may therefore
be reflective of neuronal loss. Interestingly, it was also noted that activation of
muscarinic receptors by dephosphorylated tau increases TNAP expression
(Diaz-Hernandez et al. 2010) (Fig. 17.3). This suggests a positive feedback loop to
drive tau dephosphorylation by increased TNAP expression, possibly driven by the
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increased formation of hyperphosphorylated tau seen in AD. This increase in tau
dephosphorylation, however, promotes neurotoxicity via its action on muscarinic
receptors. Together, the evidence from our work (Kellett et al. 2011) and others
(Diaz-Hernandez et al. 2010) that TNAP activity is increased in the brain regions
affected in AD supports a role for TNAP in AD, suggesting that with AD pro-
gression, brain TNAP activity increases alongside tau levels, causing an increase in
neuronal loss and a decline in cognitive function.

17.6 Conclusions

In conclusion, our work has demonstrated an increase in brain and plasma TNAP
activity in AD and has shown that this change in TNAP activity inversely correlates
with cognitive function. A direct link between TNAP activity and tau provides a
mechanism for increased neurotoxicity and neuronal loss in the AD brain which
would correspond to the resulting decline in cognition seen in AD and inversely
correlated to TNAP activity. Taken together these results suggest that changes in
TNAP activity may reflect neuronal loss in AD.
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