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   Abstract     Vanadium is an element with symbol V and atomic number 23. The vast 
majority of vanadium demand is from the steel industry, and the rest for titanium 
alloy and catalyst in chemical factory. Air pollution and water pollution by vana-
dium were recognized from early twentieth century. Increasing information on the 
toxicity and medicinal use enhanced the development of bioremediation of vana-
dium. In this chapter, the author would like to overview the history of pollution of 
vanadium, vanadium toxicity, bioaccumulation and bioremediation of vanadium.  
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1         Introduction 

  Vanadium   is an element with symbol V and atomic number 23. It is the 19th most 
abundant element in the earth’s crust (0.015–0.016 %, 150–160 ppm) (Emsley 
 1998 ; WHO  2000 ). Metallic vanadium is not found in nature, but its compounds can 
be obtained as minerals such as vanadinite (Pb 5 (VO 4 ) 3 Cl) (Fig.  1 ), a lead vanadate 
ore from which vanadium was fi rst discovered by a Mexican, Andrés Manuel del 
Río. In 1831, Nils Gabriel Sefström rediscovered this element and he called the 
element vanadium after Vanadis, an additional name of the Norse goddess Freyja, 
which represented beauty and fertility, because of beautifully colored chemical 
compounds of this element (Sefström  1831 ). Mine production including slag 
products increased year by year up to 75,000 tons in the world, about half of which 
is produced in China, followed by South Africa and Russia (Brown et al.  2014 ).

   The vast majority (92 %) of vanadium demand is from the steel industry (Parles 
 2012 ).  Vanadium   is mainly used to produce high speed and high alloy tool steels. 
Vanadium is also used in the production of titanium alloys for aerospace and indus-
trial purposes. Titanium alloys account for about 4 % of consumption in 2012 
(Parles  2012 ). Vanadium pentoxide is used as a catalyst in sulfuric acid production 
and in the manufacture of ceramics. About 3 % of global vanadium consumption is 
in petrochemical, catalyst and pollution control applications as well as ceramic pig-
ments, special glasses and other chemical industry applications. 

 In 2012, about 1 % of vanadium consumed was used in energy storage applica-
tions.  Vanadium   redox fl ow battery (Rychcik and Skyllas-Kazacos  1988 ) systems 
for grid energy storage applications and lithium battery systems incorporating vana-
dium for mobility applications are under development today with potential to have 
a signifi cant impact on future vanadium demand (Parles  2012 ). 

  Fig. 1    Vanadinite, Mibladen Atlas Mountain, Morocco.  Dark orange color        
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 In this chapter, the author would like to overview the history of studies on pollu-
tion, toxicity, bioaccumulation and bioremediation of vanadium. 

 The readers may refer to a recent book on biological and biochemical aspects on 
vanadium edited by Dr. Michibata ( 2012 ). Bioinorganic and chemical topics can be 
found in a book by Dr. Rehder ( 2008 ).  

2      Pollution   of Vanadium 

 From early twentieth century, vanadium is regarded as a pollutant. Dutton was the 
fi rst to describe vanadium poisoning, and produced a word “vanadiumism”, which 
means a chronic intoxication caused by ingestion or absorption of some forms of 
vanadium, either industrially, medicinally, or accidentally (Dutton  1911 ). In his rec-
ognition, anemia is an early symptom, and the cough is a prominent and character-
istic one. He also noted that some workers using vanadium are susceptible to 
tuberculosis. Anorexia, nausea and diarrhea indicated gastrointestinal involvement. 

2.1     Air Pollution 

 Four principal oxides are known for vanadium: vanadium monooxide (VO), vana-
dium trioxide (V 2 O 3 ), vanadium dioxide (VO 2 ) and vanadium pentoxide (V 2 O 5 ), 
which ranges +2 to +5 oxidation states.  Vanadium   pentoxide dust is known to be 
one of hard metal irritants that affect the upper respiratory tract, producing trache-
itis, bronchitis, pneumonia and pulmonary oedema (WHO  2014 ). 

 Experimental poisoning in animals indicated that accumulation does not occur 
and that acute and chronic symptoms are similar (Daniel and Lillie  1938 ). Studies 
in early 1900s on experimental administration of vanadium on animal models are 
well summarized in a review by Wyers ( 1946 ). 

 Stocks reported the relationship between atmospheric pollution in urban area and 
cancer, bronchitis and pneumonia (Stocks  1960 ). He especially noted the correla-
tion between trace elements and lung cancer.  Vanadium  ’s action as respiratory irri-
tant is signifi cant. 

 Recent research on pollution of vanadium mainly focuses on the global move-
ment of small particles. The United States of America and the European Union 
determined their own environmental baseline in 1971 and 1980, respectively, for 
PM10 and PM2.5. WHO fi rst determined a guideline in Europe, and then extended 
it in 2005 as a global guideline (WHO  2005 ). In Japan, original guideline was fi rst 
released in 1972, and the baseline for PM2.5 was determined in 2009. 

 Since vanadium is the major trace metal in fossil fuels (Filby and Branthaver 
 1987 ; Jacks  1976 ; Sundararaman et al.  1988 ), combustion of these materials pro-
vides an appreciable source of vanadium in the environment and can be a source for 
this heavy metal in particular materials in the air (Chen and Duce  1983 ; Duce and 
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Hoffman  1976 ; Weisel et al.  1984 ). Crude oil contains vanadium as high as 1580 
ppm, and it varies depending on the source (Barwise  1990 ).  

2.2     Water Pollution 

  Vanadium   can either be dissolved in water as ions or may become adsorbed to 
particulate matter. The concentration of vanadium in water is largely dependent on 
geographical location and ranges from 0.2 to more than 100 ppb in freshwater, and 
from 0.2 to 29 ppb in seawater (WHO  2000 ). Typical average value of vanadium is 
recognized as 1.8 ppb (35 nM) (Cole et al.  1983 ; Collier  1984 ). Concentrations of 
vanadium in drinking water may range from about 0.2 to more than 100 μg/L 
(Nordberg et al.  2011 ). The concentration of vanadium in drinking-water depends 
signifi cantly on geographical location. 

 World health organization (WHO) formulated no guidelines for vanadium in 
drinking water. US Environmental Protection Agency (EPA) did not formulate the 
limit, but designated vanadium as hazardous substances. The ministry of Health, 
Labor and Welfare, Japan, also does not determine the limit for vanadium in tap 
water, although those for other trace metal elements such as Fe, Zn, Al, Pb, Cd, Hg, 
Se, and Cr are determined. 

 A lot of toxicological studies on aquatic animals can be found in literatures for 
assessment of both acute and chronic toxicity on freshwater and marine fi shes (e.g., 
Knudtson  1979 ; Perez-Benito  2006 ; Stendahl and Sprague  1982 ). A study using 
rainbow trout suggested that hardness did not exert a major effect, and the authors 
supposed that it was because vanadium is present in water as various anions 
(Stendahl and Sprague  1982 ).   

3     Toxicity of Vanadium 

 The toxicity of vanadium, as vanadate anions, have been published from early twen-
tieth century. Studies on rodent and avian models precedes the studies on aquatic 
animals, as mentioned in the previous section. 

 Moxon et al. published several papers on the toxicity of oxy anions including 
vanadate on rats (Franke and Moxon  1936 ,  1937 ; Moxon and DuBois  1939 ). It was 
revealed that arsenic and molybdenum were slightly toxic, tellurium and vanadium 
were moderately toxic, and selenium was very toxic as they were compared at the 
50-ppm level. 

 Chicks were also used as test animals for vanadium toxicity by adding vanadium 
to the diets (Berg  1963 ,  1966 ; Hathcock et al.  1964 ; Nelson et al.  1962 ; Romoser 
et al.  1961 ). Nelson et al. showed that diets containing less than 20 ppm of vanadium 
were safe for young chicks (Nelson et al.  1962 ). Hathcock et al. examined the toxic-
ity of vanadium with a diet added by 25-ppm vanadium for 2-weeks, which caused 
a signifi cant decrease in growth rate and 90 % death in chicks (Hathcock et al.  1964 ). 
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 Acute toxicity of vanadium compounds, both +5 and +4 oxidation states (NaVO 3  
and VOSO 4 ), were examined by oral or intraperitoneal administration for rats and 
mice (Llobet and Domingo  1984 ), and LD 50  (up to 14 days) were determined. The 
dose of vanadium was 39–845 mg/kg body weight. As a result, LD 50  for V 5+  was 
2.2–3.0 times lower than that for V 4+  after oral administration, as well for intraperi-
toneal administration where the factor was 1.2–1.9 times. Reproductive toxicity of 
vanadium was also examined in mice and rats (Elbetieha and Al-Hamood  1997 ; 
Jain et al.  2007 ; Llobet et al.  1993 ; Morgan and El-Tawil  2003 ) by using several 
different salts and compounds. 

 Later, more detailed studies using cell culture were conducted. Cytotoxic effects 
of vanadium on rabbit alveolar macrophages (RAM) was assessed  in vitro  with 
exposure to particulate forms of vanadium oxides in +5 or +4 oxidation state (V 2 O 5 , 
V 2 O 3  and VO 2 ) (Waters et al.  1974 ). Cell viabilities after 20-h exposure were 
reduced to 50 % by 13–33 ppm vanadium, depending on chemical species. 

 Toxicity of vanadium is related to the production of reactive oxygen species 
(ROS) that cause several damages on nucleic acids, proteins and lipids. Exposure to 
air pollution particles also cause such damages (Kadiiska et al.  1997 ).  

4     Bioaccumulation of Vanadium 

 Humans usually consume 10–60 μg of vanadium through foods daily. The mean 
vanadium concentration in the diet was reported to be 32 μg/kg and the mean daily 
intake was estimated to be 20 μg/day (WHO  2000 ). The human body is estimated to 
contain 50–200 μg of vanadium. In each organ, vanadium is present at very low 
concentrations (Underwood  2012 ). High levels of vanadium are found in marine 
organisms, such as ascidians and fan worms. On dry weight base, the vanadium 
level in a genus  Ascidia  reaches 4,000–20,000 ppm dry weight (Michibata et al. 
 1986 ). The fl y agaric mushroom ( Amanita muscaria ) also contain relatively high 
levels of vanadium (120 ppm dry weight) (Michibata  2012 ). Comprehensive survey 
of vanadium levels in marine organisms suggested that around 20 ppm dry weight 
were found in sea weeds (Fukushima et al.  2009 ). 

 Approximately 100 years ago, the German physiological chemist Dr. Martin 
Henze discovered high levels of vanadium in the blood (coelomic) cells of the ascid-
ian  Phallusia mammillata  collected from the Bay of Naples, Italy (Henze  1911 ). 
His discovery attracted the inter disciplinary attention of chemists, physiologists, 
and biochemists. 

 The greatest concentration was found in blood cells of the ascidian  Ascidia gem-
mata , at up to 350 mM (Michibata et al.  1986 ,  1991 ), which is 10 7  times that in 
seawater (35 nM) (Cole et al.  1983 ; Collier  1984 ); this is believed to be the highest 
degree of accumulation of a metal in any living organism.  Vanadium   ions are mostly 
accumulated in the vacuole of signet ring cells, which are a type of blood (coelomic) 
cell and called “vanadocytes” (Michibata et al.  1987 ; Ueki et al.  2002 ). 
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 Ongoing research during the last two decades has identifi ed many proteins 
involved in the process of accumulating and reducing vanadium in vanadocytes, 
blood plasma, and the digestive tract of ascidians. Among the proteins identifi ed so 
far, the vanadium-binding proteins (Vanabins) are most prominent. 

 Vanabins were fi rst purifi ed from blood cells of  Ascidia sydneiensis samea , 
which contained 12.8 mM vanadium in the blood cells, by anion-exchange column 
chromatography (Kanda et al.  1997 ). The related proteins and genes were identifi ed 
by ion exchange chromatography, metal ion affi nity chromatography and a expressed 
sequence tag (EST) analyses from the same species (Ueki et al.  2003a ; Yoshihara 
et al.  2005 ,  2008 ; Yamaguchi et al.  2004 ). In this species, the Vanabin family con-
sists of at least fi ve closely related proteins, Vanabins1–4 and VanabinP. All fi ve 
Vanabins possess 18 cysteine residues, and the intervals between cysteines are well-
conserved (Fig.  2 ).

   A homology search of public DNA and protein databases, using both Vanabin1 
and Vanabin2 amino acid sequences, revealed no proteins with striking similarities, 
other than those from two ascidian species,  Ciona intestinalis  and  A. gemmata . We 
identifi ed fi ve Vanabins (CiVanabin1 to CiVanabin5) from  C. intestinalis  (Trivedi 
et al.  2003 ) and two Vanabins (AgVanabin1 and AgVanabin2) in  A. gemmata  (Fig.  2 ) 
(Samino et al.  2012 ). Thus, Vanabins appear to be ubiquitous among the vanadium- 
accumulating ascidians and may hold the key to resolving the mechanism underly-
ing the highly selective and extremely high-level accumulation of vanadium ions. 

  Fig. 2    Amino acid sequences of the fi ve Vanabins from  Ascidia sydneiensis samea  and the two 
from  Ascidia gemmata . Conserved amino acid residues are  boxed , and the 18 cysteines in the core 
region are  numbered . Positively and negatively charged amino acids are shaded in  gray  (Reproduced 
from Samino et al.  2012 )       
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 More detailed review of the molecular mechanism of vanadium accumulation in 
ascidians can be found in publications from our research group (Michibata and Ueki 
 2010 ; Michibata et al.  2003 ,  2007 ; Ueki and Michibata  2011 ; Ueki et al.  2014 ). 

 The accumulation of vanadium is also revealed in the fan worms  Pseudopotamilla 
occelata  (Ishii et al.  1993 ) and  Perkinsiana littoralis  (Fattorini et al.  2010 ). In these 
fan worms, the concentration of vanadium is as high as 60 mM. Fan worms belong 
to the phylum Polychaeta, which is phylogenetically distant from ascidians 
(Chordata). Unlike the chordates, in fan worms, the highest level of vanadium is 
found not in blood (coelomic) cells but in the epithelial cells of the branchial crown.  

5      Bioremediation   of Vanadium 

 The decontamination of soil and water containing heavy metals from industrial 
activity is a troublesome problem. Natural or synthetic organic materials are useful 
to absorb heavy metals.  Bioremediation   strategies, using microorganisms or plants 
with metal-binding ability, have been proposed as attractive methods, because these 
are effective at low metal concentrations and are less expensive and more effi cient 
than physicochemical methods of removing heavy metals. 

5.1     Organic Materials 

 Efforts have been made from 1970s in order to process industrial waste waters by 
activated sludge. An early study succeeded in absorbing vanadium from a solution 
at the concentration of 30–40 mg/L, but it was not very effi cient (Kunz et al.  1976 ). 
Metal sludge was also tested for removal of vanadium but, as compared with other 
heavy metal ions, vanadium removal effi ciency was low (Namasivayam and 
Sangeetha  2007 ). One reason could be the behavior of vanadium in ambient envi-
ronment as an anion (protonated forms of VO 4  3− ) (Fig.  3 ) (Crans et al.  2004 ; Ueki 
et al.  2014 ).

   Chitosan is very effi cient at removing vanadium from dilute solutions (Guzman 
et al.  2002 ; Jansson-Charrier et al.  1996 ; Niu and Volesky  2003 ). Anionic metal 
complexes such anions as VO 4  

3− , CrO 4  2− , SeO 4  2−  are very effectively bound by bio-
mass types like chitosan that contains abundant amine groups (Niu and Volesky 
 2003 ). In contrast, cationic form of vanadium (VO 2+ ) is also absorbed by chitosan 
(Jansson-Charrier et al.  1996 ). Adsorption of other cationic heavy metal ions such 
as Fe 3+ , Cu 2+  and Cd 2+  using chitosan is also reported (Juang et al.  1999 ; Namdeo 
and Bajpai  2008 ; Prakash et al.  2012 ). Thus, chitosan is both effective for anions 
and cations. 

 By using plant materials, lead and vanadium were effeciently absorbed from a 
real industrial wastewater onto  Pinus sylvestris  sawdust (Kaczala et al.  2009 ). 
Removal of V 3+  and Mo 5+  from model wastewater using dried and re-hydrated bio-
mass of a sea grass  Posidonia oceanica  is reported (Pennesi et al.  2013 ).  
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5.2     Biotechnological Approaches 

 To recover heavy metals, one possible approach is the biotechnological use of 
metal-binding peptides with the ability to bind heavy metals in various living organ-
isms to improve the metal-binding abilities of microorganisms via heterologous 
expression. 

  Fig. 3    Speciation diagram for aqueous vanadate solutions calculated by Visual MINTEQ ver. 3 
based on MINTEQA2 (Allison et al.  1989 ). Data are normalized to total concentration and 
expressed as molar fraction x V  vs. pH. Ionic strength: 0.45 M.  Vanadium   concentration and spe-
cies: 1 mM V V  ( a ) or 1 μM V V  ( b ). Temperature: 25 °C. Species that comprised less than 3 % are 
not shown. As compared with experimentally determined speciation diagrams (Rehder  2008 ), the 
ratios of polymeric vanadate species are relatively low (Modifi ed from Ueki et al.  2014 )       
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 Many studies have focused on metallothioneins, which are small, cysteine-rich 
proteins that are widely distributed from prokaryotes to eukaryotes. When metallo-
thioneins are expressed in the cytoplasm (He et al.  2014 ; Pazirandeh et al.  1995 ; 
Singh et al.  2008 ; Yoshida et al.  2002 ), periplasm (Mauro and Pazirandeh  2000 ; 
Pazirandeh et al.  1995 ,  1998 ) or outer membrane (Lin et al.  2010 ) of  Escherichia 
coli , the cells remove heavy metal ions, such as Cd 2+ , Hg 2+ , Pb 2+ , Cu 2+  and As 3+  from 
the culture media and accumulate them. 

 Phytochelatins(PCs) are also metal-binding cysteine-rich proteins found in 
plants and fungi, and heterologous expression of PC-synthase enhanced Cd 2+ , Cu 2+  
and As 3+  accumulation in bacteria (Sauge-Merle et al.  2003 ). Several studies have 
sought novel synthetic small peptides that enhance the bioaccumulation of specifi c 
metals (Kotrba et al.  1999 ; Mejáre et al.  1998 ; Samuelson et al.  2000 ). 

 It is well known that porin channels (exclusion size, 600 Da) exist on the outer 
membrane of gram-negative bacteria, including E. coli, and small molecules includ-
ing heavy metal cations and anions can diffuse through this type of channel in a 
rather non-specifi c manner (Benz  1988 ; Benz et al.  1985 ; Nikaido and Rosenberg 
 1983 ). 

 In my research group, it was intended to express Vanabin genes in bacteria to 
construct bioremediation system for vanadium. First study was done by using two 
Vanabin genes from  Ascidia sydneiensis samea . But unfortunately,  E. coli  cells 
expressing these Vanabins in the periplasm could not accumulate VO 2+  signifi cantly 
but absorption of Cu 2+  was around 20-fold enhanced (Table  1 ) (Ueki et al.  2003b ). A 
following study using two Vanabins from another ascidian species  A. gemmata  was 
performed. When AgVanabin2, was expressed in the periplasm of  E. coli , absorption 
of both VO 2+  and Cu 2+  were enhanced signifi cantly (Table  2 ) (Samino et al.  2012 ).

   Table 1     Bioremediation   of heavy metals by  E. coli  cells expressing Vanabins from an ascidian 
 Ascidia sydneiensis samea    

 Vanabin1  Vanabin2  MBP  TB1 

 V(IV)  3.9  7.3  4.1  3.5 
 Cu(II)  876 ± 215**  882 ± 136**  87.5 ± 22.4  43.2 ± 20.9 

  Values are given as ng mg −1  dw. 
 ** P  < 0.005  

   Table 2     Bioremediation   of heavy metals by  E. coli  cells expressing Ag Vanabins from an ascidian 
 Ascidia gemmata    

 AgVanabin1  AgVanabin2  MBP  TB1 

  Vanadium    6.25 ± 0.48  10.12 ± 0.95*  6.92 ± 0.16  7.47 ± 0.54 
 Iron  203,303 ± 4,192  251,586 ± 73,094  299,422 ± 26,428  239,257 ± 16,521 
 Copper  550.79 ± 6.50  2360.91 ± 462.05*  559.81 ± 64.19  173.62 ± 43.06 
 Cobalt  4.33 ± 0.64  4.88 ± 0.57  3.97 ± 0.20  8.23 ± 2.50 
 Nickel  25.04 ± 1.08  26.64 ± 1.53  25.12 ± 1.97  20.46 ± 1.16 
 Zinc  151.10 ± 19.45  158.72 ± 39.41  159.48 ± 17.68  145.56 ± 31.64 

   Values are given as ng mg −1  dw. 
 * P  < 0.05  
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6          Conclusion and Future Prospective 

 From early twentieth century, vanadium is regarded as a pollutant, especially in air 
exhausted from industry. Waste water management for vanadium is also recognized. 
 Bioremediation   of vanadium is mainly intended to manage waste water, since natu-
ral water does not contain hazardous level of vanadium. Cost effective method is to 
use organic non-living materials such as chitosan. Biotechnological applications 
may provide much more specifi c method to remove vanadium, but it must need to 
improve both absorption activity and the cost-effi ciency. Once these problems are 
solved, biotechnological methods may surpass the other technologies.     
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