
Chapter 3
Identifying Driver Mutations in Cancer

Jack P. Hou and Jian Ma

Abstract A key question in cancer genomics is how to distinguish ‘‘driver’’
mutations, which contribute to tumorigenesis, from functionally neutral ‘‘passen-
ger’’ mutations. Driver mutation is critically important for understanding the
molecular mechanisms of cancer development and progression, which will ulti-
mately help tailor more targeted and effective treatments for patients. In this
chapter, we introduce recent developments in computational methods for identi-
fying driver mutations. We summarize existing methods into several major cate-
gories and discuss challenges in discovering the whole spectrum of driver
mutations in cancer for future computational and systems biology studies.
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3.1 Introduction

3.1.1 What is Driver Mutation?

Rapid advances in next-generation sequencing technologies have paved the way
for comprehensive analysis for large numbers of cancer genomes (Stratton 2013).
Through these advances, scientists have uncovered a large number of genetic
mutations and other alterations (e.g., copy number changes, epigenetic changes,
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and structural variations) pertaining to cancer (Green et al. 2011). To understand
the significant alterations that cause cancer is to discover the source of carcino-
genesis—information that we can utilize to improve treatments for patients.
However, the complexity of cancer and the tremendous amount of genomic data
remain a daunting obstacle for us to fully understand cancer mutations. Cancer
cells may often exhibit hundreds upon thousands of different mutations and other
alterations in its genome that affect a wide array of genes representing many
diverse functions. However, the vast majority of these genes do not have a sig-
nificant impact on tumorigenesis (Hanahan and Weinberg 2011). A key question in
cancer genomics is how to distinguish ‘‘driver’’ mutations, which contribute to
tumorigenesis (Greenman et al. 2007), from functionally neutral ‘‘passenger’’
mutations. Such driver mutations (e.g., point mutations or copy number changes)
are critically important to elucidate key biological pathways that are perturbed in
cells and eventually lead to proliferation, angiogenesis, or metastasis (Hanahan
and Weinberg 2011).

Detecting driver mutations is necessary for understanding the molecular
mechanisms of carcinogenesis. Determining the driver will also aid in verifying
and discovering new prognostic and diagnostic markers in cancer as well as
therapeutic targets for potential cancer drugs. Therefore, recently in the field of
computational cancer genomics, many researchers have developed computational
methods to identify driver mutations (Zhang et al. 2013). Overall, these methods
have different underlying principles to achieve similar goals. We can group these
different methods that identify driver mutations in cancer into four broad
categories:

• Sequence-Based Approaches: methods that assess the functional impact a
mutation has on the candidate driver gene and its protein product (Kumar et al.
2009; Adzhubei et al. 2010; Yue et al. 2006; Reva et al. 2011; Gonzalez-Perez
et al. 2012; Gonzalez-Perez and Lopez-Bigas 2012) (i.e. MutationAssessor,
SIFT, Polyphen2, TransFic, SNPs3D, Oncodrive-FM).

• Machine Learning-Based Approaches: methods that use machine-learning
algorithms to model existing knowledge of drivers and passengers to classify
driver mutations (Hanahan and Weinberg 2011; Adzhubei et al. 2010; Carter
et al. 2009; Bromberg and Rost 2007; Douville et al. 2013) (i.e. CHASM,
Polyphen2, SNAP, CRAVAT).

• Frequency-Based Approaches: methods that differentiate drivers and passengers
by the number of mutations seen in the candidate driver gene in contrast to the
expected number of mutations from functionally neutral passengers (Boca et al.
2010; Dees et al. 2012; Reimand and Bader 2013; Lawrence et al. 2013) (i.e.
MutSig, ActiveDriver, MuSiC).

• Pathway-Based Approaches: methods that identify drivers based on the impact a
mutated gene would have on gene interactions and biological pathways (Wendl
et al. 2011; Ciriello et al. 2012; Vandin et al. 2012; Ng et al. 2012; Bashashati
et al. 2012) (i.e. MEMo, Dendrix, DriverNet, PARADIGM-Shift).
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The methods described above all excel in explaining some of the biological
properties associated with driver mutations (Zhang et al. 2013). Unfortunately, no
model exists that can identify all the driver mutations in any given cancer with
great accuracy and precision, and many existing models tend to disagree with each
other (Zhang et al. 2013). Because of this, there is no computational gold standard
for driver mutations in cancer (Tran et al. 2012). In this chapter, we will discuss in
detail the methods associated with each of the four broad categories. We will also
introduce the strengths and potential limitations of each method.

3.1.2 Properties of Driver Mutations

As stated earlier, driver mutations differ from passenger mutations in that drivers
will actively alter a cell’s function to display tumorigenic properties, hence
‘‘driving’’ the cancer, whereas passenger mutations simply occur by happenstance.
Not providing functions that ‘‘drive’’ the cancer, passenger mutations are simply
along for the ride. Drivers can have a wide variety of functions and operate on a
variety of mechanisms; however, all drivers provide selective advantage to a mutant
cell, allowing it to thrive, grow, and most importantly, divide rapidly to out-compete
the non-mutant cells (Bunz 2008). The selective advantage, illustrated in review by
Hanahan and Weinberg fall under one of six functions, called ‘‘hallmarks’’ of cancer
cells: (1) Sustaining Proliferative Signaling, (2) Evading Growth Suppressors,
(3) Resisting Cell Death, (4) Enabling Replicative Immortality, (5) Inducing
Angiogenesis, and (6) Invasion and Metastasis (Hanahan and Weinberg 2011).

3.1.3 Evolutionary Model of Cancer

The concept of driver mutations can be best explained by the clonal evolution model
of cancer. The clonal evolution model of cancer, as first presented by Peter Nowell in
1976, states that cancer neoplasms originate from a single cell, or clone (Nowell
1976). Over time, the original clone accumulates somatic mutations (Nowell 1976).
Although the vast majority of somatic mutations induced this way are functionally
neutral or damaging to the clone, in rare instances, a mutation in a hallmark gene will
be advantageous to a clone. For this reason, mutated genes with hallmark properties
are considered cancer genes (Nowell 1976). The cancer gene, with a hallmark
property, will provide the clone with a unique advantage and higher overall fitness
that allow it to survive, prosper, and out-compete other cells. This results in an
outgrowth of the clone with the new mutation called a neoplasia (Bunz 2010).

A single mutation in a cancer gene is often not enough to trigger cancer
(Knudson 1971). The vast majority of neoplasia are not equipped to sustain its
expansion and will fail to progress and eventually die, marking the end of the
particular clone (Nowell 1976; Bunz 2010). This is due to selective pressures such
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as the body’s immune system response, changes in the cellular microenvironment,
or even self-induced pressures such as a shortage of oxygen as a result from its
proliferative success (Kim et al. 2009). Just as most somatic mutations will not
lead to cancer genes, most neoplasia will not lead to cancer. However, in rare
cases, the clone will accumulate new mutations over time, some of which will lead
to the formation of new cancer genes that will provide additional growth and
fitness advantages for the clone, allowing for the clone to adapt and thrive in the
microenvironment and even spread to others (Nowell 1976; Bunz 2010).

The clonal evolution model illustrates many concepts that are required to better
understand cancer driver mutations. First, for a mutation to be considered a driver, it
must have a significant functional impact on a hallmark gene and/or biological
pathway (Hanahan and Weinberg 2011). Second, since a single cancer gene gone awry
is not enough to trigger cancer, cancers generally have multiple drivers (Torkamani
and Schork 2008). Third, although cancer is driven by multiple drivers with hallmark
properties, there are many combinations of different drivers that may lead to the
same end result of cancer (Leiserson et al. 2013). Therefore, the drivers within each
individual tumor may vary, highlighting the concept of tumor heterogeneity.

3.1.4 Types of Cancer Genes

There are two main types of cancer genes: oncogenes and tumor suppressors.
Oncogenes are genes in which a gain of function alteration contributes to the
development of cancer (Bunz 2010; Croce 2008). Genes that can become onco-
genes are considered proto-oncogenes. Mutations in oncogenes are considered
activating mutations as the oncogenic version of these genes present increased
activity, thereby being classified as Gain-of-Function mutations. Oncogenes are
generally dominant and only one mutated allele of a proto-oncogene is required for
the gene to show cancer-like properties. Examples of oncogene functions are
involved in functions such as Growth Factors, Receptor and Cytoplasmic Tyrosine
Kinases, Serine and Threonine kinases, Regulatory GTPases, and transcription
factors. Examples of oncogenes include EGFR, RAS, WNT, MYC, ERK, and
TRK (Bunz 2010; Croce 2008).

In contrast, a tumor suppressor is a gene that protects a cell from becoming
cancerous. A loss of function of a tumor suppressor through genetic alteration
contributes to the development of cancer (Bunz 2010; Sherr 2004). Mutations in
tumor suppressors are considered inactivating mutations, resulting in Loss-of-
Function mutations. Unlike oncogenes, tumor suppressors are generally recessive,
and for that reason, both alleles of a tumor suppressor are required to be inactivated
for a functional effect, i.e. the so called ‘‘two-hit’’ model (Knudson 1971). Exam-
ples of tumor-suppressor gene functions include repression of genes responsible to
continue the cell cycle, triggering apoptosis, blocking contact-inhibition, and
repairing DNA. Examples of tumor suppressors include TP53, RB1, PTEN,
BRCA1, BRCA2, PIK3CA, AKT, and APC (Bunz 2010; Sherr 2004).

36 J. P. Hou and J. Ma



3.1.5 Types of Genetic Alterations in Cancer

There are many different ways a gene can be altered. The question of where and how
a gene is altered is very crucial to assessing the impact of a particular mutation. Not
all mutations and genetic alterations will have the same impact on the gene (Bunz
2010; Yokota 2000). For example, a mutation in a coding region is more likely to
have an impact on a gene’s activity than one in a non-coding region (Kryukov et al.
2005). Even though recent studies have shown that alterations in non-coding
sequences can be impactful to cancer progression (Vinagre et al. 2013; Landa et al.
2013), most current methods in detecting drivers tend to narrow the scope in coding
regions only (Bunz 2010). Nevertheless, even in exonic regions, some types of
mutations tend to have more impact on the overall well-being of the cell than others.

The simplest and most intuitive type of genetic mutation is the point mutation.
Single base-pair substitutions refer to the replacement of a single nucleotide with
another and they can be divided into three groups: silent, missense, and nonsense
mutations. Silent mutations occur in the third ‘‘wobble’’ position of a codon (Crick
1966). Due to the redundancy of amino acid codes, silent mutations are substi-
tutions that do not occur in a change in a protein. Silent mutations generally have
the least impact, as they do not alter the primary structure of the resulting protein,
although they have been shown to have minor effects on the secondary and tertiary
structure of the resulting protein. A missense mutation occurs when the single
base-pair change results in a single amino acid change. A missense mutation can
affect all structures of the resulting protein: primary, secondary, tertiary, and
quaternary. The effects of a missense mutation depend both on the similarity of the
replacement protein to the original and the position of the mutation. A nonsense
mutation is a mutation in which the single base pair substitution transforms an
amino acid codon to a stop codon. Nonsense mutations lead to premature trun-
cation of the protein, rendering it non-functional.

In addition to point mutations, small insertions and deletions (indels) can cause
frame-shift mutations, resulting in a completely new set of codons as an indel will
shift the reading frame. Like nonsense mutations, these proteins are nonfunctional.
These faulty proteins are usually degraded and are responsible for the formation of
null alleles (Bunz 2010).

Point mutations and indels are not the only form of genetic alterations that can
lead to cancer genes. An example of large-scale mutations is copy number vari-
ation (CNV). CNVs cause changes of the number of copies of a chromosomal
region. CNVs may be either amplifications, presentation of multiple copies of a
gene, or deletions, the loss of gene copies. Other examples of large-scale mutations
include chromosomal translocations, the interchange of genetic parts from
non-homologous chromosomes; chromosomal inversions, reversing sections of a
chromosome; and loss of heterozygosity, the deletion of an allele (Bunz 2008).
There are other forms of genetic alterations that are epigenetic in nature. Even
though these alterations have no effect on the genomic sequence itself (mainly
through DNA methylation and histone modification), they can sometimes have
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profound effects in tumor progression. For example, DNA methyltransferases
target CpG islands in the promoter region leading to spontaneous deamination and
lowering of gene expression by restricting transcription, effectively silencing the
gene. Promoters often are unmethylated in normal cells but hypermethylated in
cancer cells.

3.2 Overview of Computational Methods to Identify Driver
Mutations

The initial type of methods that identified driver mutations in cancer relied on
simple recurrence as a measurement. In simple recurrence, drivers and passengers
were classified by the number of times they were observed in patient populations
(Jones et al. 2008). Although this method was crucial in identifying some common
drivers such as TP53 and EGFR (Jones et al. 2008), it soon became clear that based
on the biological properties of driver mutations, several difficult challenges need to
be overcome in order to determine all of the driver mutations in cancer.

3.2.1 Challenges for Driver Mutation Identification

Many difficulties in identifying driver mutations arise from the concept of tumor
heterogeneity, the concept that no two cancer genomes will exhibit the same
mutation profiles (Stratton 2013; Pe’er and Hacohen 2011). Therefore, two
patients with the same cancer may have vastly different drivers. Additionally,
drivers and passengers may switch roles such that a driver in one patient may be a
passenger in another patient (Cooke et al. 2010). The advent of cancer subtypes
has explained some of the heterogeneity; however, it is at best a compromise.
Tumor heterogeneity contributes to the long-tail distribution of the frequency
cancer mutations. The long-tail hypothesis states that cancer is driven not only by a
few common genes that are mutated in many patients, but also many genes that are
not mutated in many patients (i.e. less frequently mutated genes) (Ding et al.
2010). This implies that there will be many rare, yet undiscovered driver mutations
that are obscured by tumor heterogeneity.

Another challenge in driver mutation identification is determining what con-
stitutes a mutation. Not all mutations are created equal, some mutations display
greater functional impact on a gene in terms of its protein structure and will be
more damaging (Kumar et al. 2009). Even genes that have functionally damaging
mutations across many patients are not necessarily drivers. Some genes have little
functionality in cancer development and progression but are mutated frequently by
chance. The most famous example of a highly recurrent passenger gene is the TTN
gene. TTN is the largest gene in the human genome, and it functions as a
molecular spring for the passive elasticity in muscle cells (Nair and Banerji 2013).
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TTN does not have a large impact in many of the flagship cancer pathways
(Lawrence et al. 2013). However, due to its large size, it is often mutated in cancer
cells due to random chance alone, confounding the results of many methods.

A third challenge is to map the biological function of potential driver mutations.
As demonstrated in the TTN example, some genes may present damaging muta-
tions but due to the gene’s function being unrelated to cancer pathways, they are
most likely to be passengers. Individual driver genes do not operate by themselves;
rather they interact with many other genes in complex biological networks
(Bashashati et al. 2012). Therefore, driver mutations must be verified by their
biological functions. A driver mutation is expected to interact with other genes in
various cancer pathways to further promote different hallmarks of cancer
(Hanahan and Weinberg 2011; Schwartzentruber et al. 2012).

3.2.2 Resources Available for Driver Mutation Identification

For researchers interested in identifying driver mutations, there exists a wealth of
publicly-available data regarding molecular signature data, compendiums on dri-
ver mutations, pathway databases, and comparison tools that all can be utilized to
achieve a greater understanding of driver mutations in cancer. Perhaps the most
comprehensive of these resources is The Cancer Genome Atlas (TCGA), a
resource of molecular alterations over large cohorts of patients representing a wide
array of cancers (Cancer Genome Atlas Research Network 2008). With regards to
curated catalogs of known somatic mutations in cancer, the Sanger Institute’s
COSMIC and the Cancer Gene Census, maintain a well-defined comprehensive list
of common mutations already identified as drivers (Bamford et al. 2004; Futreal
et al. 2004). Other tools such as Biocarta (Kim et al. 2012), NCI Pathway inter-
action Database (PID) (Schaefer et al. 2009), Reactome (Croft et al. 2011), or the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto 2000)
all provide valuable information on curated cancer pathways for evaluating
potential driver genes.

3.2.3 Summary of Different Algorithms for Driver Mutation
Identification

Name Type Website

SIFT Sequence-based http://sift.jcvi.org/
PolyPhen2 Sequence-based http://genetics.bwh.harvard.edu/pph2/

Machine learning-based;

(continued)
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(continued)

Name Type Website

MutationAssessor Sequence-based http://www.bitnos.com/info/mutation-
assessor

TransFic Sequence-based; aggregate
method

http://bg.upf.edu/transfic/help

Oncodrive-FM Sequence-based; aggregate
method

http://bg.upf.edu/group/projects/
oncodrive-fm.php

SNPs3D Sequence-based; aggregate
method

http://www.snps3d.org/

CHASM Machine learning-based http://wiki.chasmsoftware.org/
index.php/Main_Page

CRAVAT Machine learning-based;
aggregate method

http://www.cravat.us/

SNAP Machine learning-based https://rostlab.org/services/snap/
MutSig Frequency-based http://www.broadinstitute.org/cancer/

cga/mutsig
MutSigCV Frequency-based http://www.broadinstitute.org/cancer/

cga/mutsig
ActiveDriver Frequency-based http://www.baderlab.org/Software/

ActiveDriver
MuSiC Frequency-based; http://gmt.genome.wustl.edu/genome-

music/0.2/doc/Pathway-based
MEMo Pathway-based http://cbio.mskcc.org/tools/memo/
HotNet Pathway-based http://compbio.cs.brown.edu/projects/

hotnet/
Dendrix Pathway-based http://compbio.cs.brown.edu/projects/

dendrix/
DriverNet Pathway-based http://www.bioconductor.org/packages/

2.12/bioc/html/DriverNet.html
Paradigm-Shift Pathway-based http://sysbio.soe.ucsc.edu/paradigm/

tutorial/

3.3 Sequence-Based Approaches

The underlying belief in these approaches is that mutations that have functional
impact on a gene are more likely to be driver mutations in cancer. These methods
assess the functional impact of mutations by predicting the consequences, either
through evolutionary impact on conserved regions or changes in the resulting
amino acid and potential effects on the protein’s secondary and tertiary structure.
Examples of these approaches include Separating Tolerant from Intolerant (SIFT)
which performs multiple sequence alignments (MSA) to determine the evolu-
tionary impact of altered amino acids in protein homologs to predict functional
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impacts (Kumar et al. 2009); Polyphen2 combines a multiple sequence alignment
to detect mutations with a Naïve Bayes Classifier (NBC) to train the potential
functional impact (Adzhubei et al. 2010).

Results from many sequence-based approaches applied to cancer studies have
shown that mutations in driver genes tend to have a much higher functional impact
to the sequence and resulting protein structure than those of non-driver genes
(Reva et al. 2007, 2011; Gonzalez-Perez et al. 2012; Gonzalez-Perez and Lopez-
Bigas 2012). These methods also have the advantage of being able to evaluate
individual patients’ mutations to identify the drivers (Reva et al. 2007, 2011;
Bashashati et al. 2012). However, these approaches also present several drawbacks
as well. These methods are unable to separate mutations that provide a selective
advantage to the overall cell fitness (Zhang et al. 2013). By definition, only
mutations that provide a selective advantage to the tumor’s growth and survival
can be considered driver mutations (Hanahan and Weinberg 2000). Therefore,
sequence-based approaches often struggle in separating driver mutations from
passenger mutations. This drawback has prompted many groups to look into other
methods to detect driver mutations, and for this reason, sequence-based approa-
ches are not commonly used as the sole determinant of novel driver mutations
(Zhang et al. 2013; Adzhubei et al. 2010; Yue et al. 2006). Nevertheless, these
tools are widely applied as filters, comparison tools, and confirmation for more
cancer-specific driver mutation methods.

3.3.1 MutationAssessor

The aforementioned sequence-based methods are generic methods to identify
functionally relevant mutations and are not specific to cancer driver mutations.
However, some methods have shown to perform well in detecting impactful
mutations. One method is MutationAssessor, which predicts the consequence of a
mutation using a Functional Impact Score (FIS). The FIS is a metric used to
quantify a mutation’s impact on a gene by observing the evolutionary conserved
patterns from a MSA using combinatorial entropy formalism (Reva et al. 2011).

The FIS of any non-synonymous mutation can be calculated as the average of
two conservation scores: the general conservation score SC

i and the subtype con-
servation score SS

i . A mutation in a conserved region is more likely to have a
functional impact than a mutation in a non-conserved region (Henikoff and
Henikoff 1992). MutationAssessor measures the impact of a mutation from the
wild-type amino acid residue a to the mutant b using an entropy score. The general
conservation score at position i with respect to the MSA to go from SC

i a! bð Þ
therefore is:

SC
i a! bð Þ ¼ �ln

ni bð Þ þ 1
ni að Þ

� �
ð3:1Þ
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where ni að Þ is the number of sequences which display the residual a (the wild
type) at position i and ni bð Þ is the number of sequences which display the residual
b (the mutant) at position i. This change predicts the functional impact of a protein
by determining if a change in the amino acid sequence is highly conserved or not.
MutationAssessor takes one step further by assessing the entropy difference of the
particular subfamily of the observed difference SS

i a! bð Þ. The rationale of
determining subfamily impact is to model different interaction partners or sub-
strates on the background of similar, conserved biochemical or cellular function
(Sarid et al. 1987). To determine subfamilies, a clustering algorithm is used to
divide the MSA into subfamilies and the subfamily conservation score SS

i a! bð Þ
is a measure of the entropy difference between the a! b change with regards to
the subfamily that the b residual belongs.

SS
i a! bð Þ ¼ �ln

np
i bð Þ þ 1
np

i að Þ

� �
ð3:2Þ

where np
i bð Þ and np

i að Þ in equation are the residual counts of a and b with respect
to a particular subfamily p. The FIS score for MutationAssessor is simply the
average of the two aforementioned conservation scores.

MutationAssessor applied the FIS score for 10,000 mutations cataloged in
COSMIC and it was shown that genes with a high FIS score were much more
likely to become drivers (Reva et al. 2007).

3.3.2 TransFic

There have been methods that combine the predictive value of several methods to
determine the impact of genes in cancer. One example is TransFic, a method that
combines the scores from MutationAssessor, SIFT, and Polyphen2, and compares
their scores to the distribution of scores of alterations observed in genes with
similar functional annotations to select for drivers (Gonzalez-Perez et al. 2012).
The use of functional annotations in TransFic was applied to obtain a better grasp
on the function of a particular driver in question.

The process of selection is illustrated below:

1. Obtain the Functional Annotations of the gene of interest using four sources:
Gene Ontology Biological Process (GOBP) and Molecular Function (GOMF)
categories, canonical pathways (CP), and Pfam domain (Dom) (Henikoff and
Henikoff 1992; Dejongh et al. 2004; Chagoyen and Pazos 2010; Yu et al. 2012;
Punta et al. 2012).

2. Determine the alterations associated with all genes related to the most specific
functional term of the original gene of interest. This allows TransFic to not only
calculate the impact of an altered gene, but also predict its biological function.
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3. If less than 20 alterations are found, the user may choose to add other altera-
tions in genes that have similar functions as the original gene of interest. This
allows for an accurate reading of the functional impact score even with less
available input.

4. Calculate and normalize the SIFT, Polyphen2 and MutationAssessor scores.
The SIFT and Polyphen2 scores first undergo a logit transformation.

5. Calculate the mean, standard deviation and other summary statistics to deter-
mine the aggregate FIS score of both the gene and the potential function.

The authors compared their method to each of the individual methods that they
aggregated and found that the aggregated results that were more concordant with
COSMIC’s category of driver mutations. They tested their score with the breast
cancer driver PIKC3A and found that the impact of the mutation was more mild
than previously thought. Another software developed by the same lab was
Oncodrive-FM (Gonzalez-Perez and Lopez-Bigas 2012). Oncodrive-FM uses
SIFT and Polyphen2, along with other driver mutation software such as MutSig in
order to determine to select driver genes that present accumulated functional
impact mutations across a gene (Gonzalez-Perez and Lopez-Bigas 2012).

3.3.3 SNPs3D

SNPs3D is another sequence-based approach that attempts to combine information
from many different sources to draw conclusions (Yue et al. 2006). SNPs3D is
made up of three gene modules: one concerning the impact a non-synonymous
SNP (in our case, a point mutation in a tumor) has on the network, one that
connects genes to other related genes based on a PubMed literature search, and a
third which provides users with a literature score to measure how likely a gene is
related to certain diseases. SNPs3D is unique in that it associates literature scores
as a direct measurement to disease association (Yue et al. 2006).

SNPs3D covers the sequence-based data of a driver mutation using two
methods: the first determining the amino acid substitution’s stability on a proteins
folded state (Yue et al. 2005) and the second being a conservation score similar to
the one presented in MutationAssessor (Yue and Moult 2006). SNPs3D also links
genes together to form gene to gene interactions based on the number of PubMed
search results returning the pair of genes. It also counts abstracts from PubMed to
link a mutated gene with a disease (Stapley and Benoit 2000). Using this integrated
approach, SNPs 3D discovered candidate genes for a long list of diseases,
including around 200 potential candidates for Lung Cancer (Yue et al. 2006).
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3.4 Machine Learning-Based Methods

Machine-learning approaches operate by training a classifier on a gold standard of
driver and passenger mutations to develop a model, which is utilized to determine
the drivers and passengers of a new dataset. Generally, these methods train their
data from a catalog of missense mutations, and the classifiers themselves range
from Naïve Bayes Classifiers to Random Forests to Neural Networks. Machine-
learning based approaches have better ability to distinguish drivers from passen-
gers than methods that only consider mutation’s functional impact. Once a model
is classified, the model can be fitted to any number of patients or groups. However,
the machine-learning approaches heavily rely on a gold standard of driver and
passenger mutations as a training set, which could be problematic as there
currently is no established computational gold standard. Even though COSMIC
and the CGC have good compendium for common drivers, they do not take into
account rare drivers (Futreal et al. 2004).

3.4.1 CHASM

One example of a machine learning-based method is the Cancer-specific High-
throughput Annotation of Somatic Mutations (CHASM). CHASM seeks to iden-
tify and rank missense mutations most likely to augment tumor cell proliferation
(Carter et al. 2010). CHASM applies a Random Forest Classifier on 49 predictive
features including amino acid substitution properties, alignment-based estimates of
evolutionary conservation at the mutated position, predicted structural changes at
the mutated position and annotations from the UniProtKB feature table. The
Random Forest Algorithm is a decision tree classifier that uses a set of random
classification trees to vote on a classification of a particular mutation as ‘‘driver’’
and ‘‘passenger’’. Each tree then ‘‘votes’’ for the eventual classification of the
alteration (Carter et al. 2009, 2010; Gnad et al. 2013).

The authors selected 2,488 missense mutations breast, colorectal, and pancreatic
cancers. The driver mutations selected were from COSMIC and various biological
studies in which specific genes were demonstrated to have proliferative roles, and the
passenger mutations were computer generated via simulation with an algorithm that
recapitulates base substitutions found in brain tumors (Carter et al. 2010). The
authors reported higher sensitivities and specificities than traditional sequence-based
methods such as SIFT and Polyphen2. Additionally, when training the classifier, the
authors reported that many of the variables by themselves only explained a small
percentage of the model, which the authors used to justify their rationale behind
Random Forests. Random Forests work with each variable jointly rather than as
individuals. When applied to a GBM dataset, the authors predicted that 49 of the 607
missense mutations in the GBM dataset, or 8 %, were drivers (Carter et al. 2009).
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3.4.2 CRAVAT

A recent machine learning-based method, Cancer-Related Analysis of Variants
Toolkit (CRAVAT), seeks to provide predictive scores on the importance of somatic
alterations of in cancer genes using a variety of classifier tools (Douville et al. 2013).
CRAVAT is unique because it (1) combines the results of multiple classifiers to
hone in on both the impact of the driver and the biological function of a somatic
alteration; (2) provides a user-friendly workflow where users can submit their jobs to
the server and receive both the gene’s importance rating and a variety of PubMed
literature sources that relate to the important drivers that CRAVAT predicted; and
(3) is not limited by the size of the dataset (Douville et al. 2013).

CRAVAT uses three machine learning tools for its workflow: SnvGet,
CHASM, and VEST (Carter et al. 2009, 2013; Wong et al. 2011). CRAVAT uses
SnvGet to get classifier information for the subsequent CHASM and VEST runs.
SnvGet returns 86 pre-computed features for each alteration such as physio-
chemical properties of amino acid residues; scores derived from multiple sequence
alignments of protein or DNA; region-based amino acid sequence composition;
predicted properties of local protein structure; and annotations from the Uni-
ProtKB feature tables (Wong et al. 2011). The features are then used by CHASM
to predict whether or not the alteration in question is a driver, and then VEST
(designed by the same authors as CHASM), which also utilizes a Random Forest
classifier to determine the function impact of the predicted protein. The p-values
from both tests are aggregated to return a list of functional driver genes for the user
(Douville et al. 2013).

3.4.3 Polyphen2 and SNAP

In addition to CHASM, several other machine-learning approaches have been used
to identify driver mutations. Polyphen2, as mentioned earlier as a sequence based
method, uses the Naïve Bayes Classifier (NBC) to predict functional impact,
improving on the traditional multiple sequence-based approach with knowledge
from machine learning (Adzhubei et al. 2010). The alignment output from Poly-
phen2 is used to select the features for the Naïve Bayes Classifier, which is then
used to classify them on function. The NBC works by solving the probability of a
sampling belonging to a group c from all groups C using Baye’s rule with respect
to features F1;F2 . . . Fn. The group with the highest probability that a sample could
belong is the predicted classifier.

Another method, SNAP, utilizes a neural network to predict the functional
effects of non-synonymous SNP, which can be applied to missense mutations to
predict drivers (Bromberg and Rost 2007). Both Polyphen2 and SNAP are general
functional impact algorithms that can be applied to cancer but are not necessarily
created to specifically model cancer mutations.
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3.5 Frequency-Based Methods

The third class of driver mutation identification software is methods based on
mutation frequency. In the early days of driver mutation identification, simple
recurrence was the first method to determine driver mutations. Drivers were
defined by the number of times a gene was mutated (Schwartzentruber et al. 2012).
Although many common driver mutations were detected using this method, simple
recurrence has since fallen out of favor as it does not account for (1) rare mutations
in the long tail of driver gene distribution and (2) propensity to select genes that
have a high probability due to chance to be mutated by being large or having a
high background mutation rate.

Frequency-based methods are among the most powerful methods in classifying
common driver genes and passenger genes, and these methods have been some of
the most widely-adopted and widely-utilized methods in driver mutation detection
(D’Antonio and Ciccarelli 2013). However, one drawback of frequency-based
methods is that these methods, like machine-learning based methods, require a
large amount of input data from many patients to operate.

3.5.1 MutSig

One of the most-utilized frequency-based methods is MutSig (Banerji et al. 2012).
The original MutSig assumes a single average background mutation rate, l, which
can be tailored to be category-specific: lc.

Examples of category specific criteria taken from a Lung Carcinoma study were
(1) transitions in C’s or G’s in CpG dinucleotides; (2) transversions in C’s or G’s
in CpG dinucleotides; (3) transitions in other C’s or G’s; (4) transversions in other
C’s or G’s; (5) transitions at A’s or T’s; (6) transversions in A’s or T’s; and
(7) small insertions/deletions, nonsense and splice site mutations (Lawrence et al.
2013). Then to calculate a p-value for each gene based on category-specific
background rates, a score s is calculated for each gene. The score of each gene’s
mutation significance sg is based on the binomial probability distribution given the
parameters of the number of mutations in the category nc, the number of bases
covered by those mutations Nc, and that category’s background mutation rate: lc.

sg ¼
X

c

�10� binomialðnc;Nc; lcÞ ð3:3Þ

After calculating the score, the background distributions of all the mutation rates
are convoluted and a p-value is calculated by calculating the probability that the
convoluted mutation rates can exceed the score sg. A Benjamin-Hochberg cor-
rection is used to correct for multiple testing (Lawrence et al. 2013). The authors of
the original MutSig applied the data to a Lung cancer dataset and found 450
candidate drivers that were mutated at a frequency much higher than the expected
frequency as assumed from the background mutation rate (Greulich et al. 2012).
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3.5.2 MutSigCV

Recently, a newly-published version of MutSig, MutSigCV (Lawrence et al.
2013), has been released. MutSigCV offers additional features to the original
MutSig. MutSig corrects for the extensive false positive findings of previous driver
mutation identification software by correcting for the heterogeneity of the mutation
rates among genes, the mutations rates among patients, and among the mutation
types themselves by allowing separate models for multiple types of heterogeneity.
MutSigCV also incorporates molecular properties of the gene that may co-vary
with the mutation rate of the gene into their model. Examples include gene
expression, DNA replication time, open versus closed chromatin status, local GC
content, and local gene density (Lawrence et al. 2013).

In MutSigCV, each gene is placed in a high-dimensional covariate space and the
gene’s nearest neighbors are identified to supplement information to the background
mutation rate of the gene in question. The information from the nearest neighbors of
the gene, dubbed ‘‘Bagel’’, is combined with the gene’s own mutation rates to
estimate the background mutation rate. This process, combined with category and
patient-specific background mutation rates (calculated via the original MutSig
model) provide the mutation rates used to calculate the significance of each gene.

The authors of MutSigCV analyzed 3,083 tumor normal pairs to both look for
sources of heterogeneity and for novel driver mutations. The authors found that
tissue type mutation rate are highly variable and that lung and skin cancers tend to
have high mutation rates although much of the variation can also be attributed to
the patients themselves (Lawrence et al. 2013). The authors also studied the type
of mutation present for tissue types, and found that lung cancer tended to have
more C?T mutations while melanoma patients tended to have more C?A
mutations. The regional heterogeneity was one of the most variable, meaning that
certain genes are much more likely to mutate by chance than others, and that that
mutation rates tended to coincide with gene expression and the time of DNA
replication. Taking into account this heterogeneity, the method assigned each gene
and tumor type a score, which was used to correct the background rate of muta-
tions in specific genes for specific tumors, and patients. This approach was used to
confirm common drivers, eliminate false positive drivers, and suggest possible
new drivers (Lawrence et al. 2013).

3.5.3 ActiveDriver and MuSiC

Other recent methods include ActiveDriver and MuSiC (Dees et al. 2012;
Reimand and Bader 2013). ActiveDriver is a method developed to discover driver
genes in among genes with phosphorylation single nucleotide variants (pSNV).
ActiveDriver performs a hypothesis test to determine whether or not the phos-
phosite-specific mutation rate is the same as the gene-wide mutation rate for
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particular genes using generalized linear regression tests. The authors of Active-
Driver found that their approach identified many common phospho-specific drivers
such as TP53 and EGFR as well as new candidate genes in FLNB, GRM1,
POU2F1 (Reimand and Bader 2013).

MuSiC also employs the concept of selecting for genes that tend to be mutated
more than a background mutation rate in their novel test, Significantly Mutated
Gene (SMG) test. The background rate was a combination of mutated genes in the
entire sample set of all patients, mutated genes in the patient, and mutated genes
within the subgroup of the gene in question (Dees et al. 2012). MuSiC also
supplement their results using pathway analysis through the PathScan algorithm
(Wendl et al. 2011), which combines individual selection of driver genes to a
multiple-sample value using the Fisher-Lancaster approach (Wendl et al. 2011) to
determine the mutated pathway of the driver genes in their analysis.

3.6 Pathway-Based Methods

The most recent type of model to determine driver mutation relies on biological
pathways. Pathway-based models have been shown to be effective not only in
reliably determining common driver mutations, but also have been able to pinpoint
the biological pathways that could be the source of the cancer (Ciriello et al. 2013).
As a result, pathway-based methods have a unique advantage over other types of
methods in that they take into account gene interactions and potential biological
effects rather than simply viewing driver genes individually (Wu et al. 2010). For
example, a particular candidate driver gene that shows significantly more muta-
tions in cancer than in normal cells may still not be a true driver gene (Michor and
Polyak 2010). If the candidate gene does not affect a cancer pathway or does not
interact with many genes that are crucial in cancer-pathways, the candidate gene
may have no true biological connection to cancer. Pathway-based approaches
allow us to verify functional impactful candidate drivers. These methods are
sometimes used to supplement other methods as was demonstrated in the case of
ActiveDriver and MuSiC, as measure of the biological significance of their
methods (Dees et al. 2012; Reimand and Bader 2013; Wendl et al. 2011).

3.6.1 MEMo

Some pathway-based approaches are not built with specific cancer genes in mind,
but rather, these approaches are aimed at discovering driver pathways, groups of
genes that may interact together to promote tumorigenesis. Mutual Exclusivity
Modules in cancer (MEMo) serves to determine groups of genes that contribute to
tumorigenesis (Ciriello et al. 2012). These gene groups, or modules, together are
highly recurrent, have similar pathway impact in terms of biological processes, and
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also are mutually exclusive meaning that only one gene in each gene group is
mutated at a time in any given patient. This idea follows the mutual exclusivity
rule in cancer pathways, i.e., generally one mutated gene in a pathway is enough to
alter the pathway’s function. The algorithm for MEMo is described below:

1. Build binary event matrix of significantly altered genes. The binary event
matrix (B) is an n 9 m matrix where n is the number of genes in the dataset and
m is the number of samples (patients) being observed. As a binary event matrix,
a cell in the matrix Bi;j will be 0 if a gene i is altered in the sample j.

2. Build a gene network to identify gene pair interactions. This step involves the
building of a gene network that will gauge the interactions and pathways
present in cancer genes. The authors at MEMo built two gene networks: the first
being a combination Human Interaction Network based on both curated and
non-curated networks, and the second one simply based on manual curation.

3. Extract Cliques: MEMo then finds all cliques in the network. A clique is a fully
connected subgraphs such that each subgraph cannot be contained by another
fully connected subgraph.

4. Assess each clique for mutual exclusivity. The idea of this step is to determine
whether or not the clique has both highly recurrent gene alterations, and also
whether or not only one gene in the subgraph is mutated at once. MEMo tests
on whether the set of genetic alterations occurs by chance. MEMo builds a null
model by randomly permuting the event matrix, and then applies a Markov
Chain Monte Carlo method called ‘‘permutation switching’’ to randomly gen-
erate networks to find simulated cliques. The cliques are tested for mutual
exclusivity under the null model, thus allowing MEMo to determine an
empirically derived p-value to gauge the mutual exclusivity of the cliques.

The authors of MEMo discovered several mutually-exclusive modules in GBM
such as EGFR, PDGFRA, and NF1 and TP53, CDKN2A, and GLI1. One of the
genes in these modules is likely to be altered in any given patient. MEMo is a
unique approach at observing cancer as it acknowledges that although patients may
have different mutations to drive the cancer, many of those mutations have similar
biological effects eventually (Ciriello et al. 2012).

3.6.2 HotNet and Dendrix

In the spirit of finding subnetworks in cancer, Vandin et al. developed two algo-
rithms to determine the impact of mutated genes have on biological pathways:
HotNet and Dendrix (Vandin et al. 2011, 2012). HotNet algorithm combines
mutation data and protein–protein interaction network information to find sub-
networks of genes that are mutated in a significant number of cancer patient
(Vandin et al. 2011). Using mutation and gene interaction data on an undirected
graph, HotNet uses a heat diffusion algorithm where a mutated sends a ‘‘heat’’
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signature based on the number of mutations present in that gene evenly to its
neighbors such that genes with lower degrees of connectivity receive a larger
proportion of ‘‘heat’’ than those with high connectivity. The idea behind HotNet is
that genes with lower connectivity will define the boundaries of the neighborhood
(the subnetwork) as they will retain heat better, allowing HotNet to pinpoint
subnetworks.

Dendrix, on the other hand, determines driver pathways using two concepts:
Mutually Exclusivity (as demonstrated in MEMo) and coverage (recurrence).
Modeling a gene interaction network as an adjacency matrix, Dendrix finds the
submatrix within the matrix that will maximum coverage, that is, cover the most
patients while being mutually exclusive, that is not having any two genes in the
submatrix mutated simultaneously within a patient (Vandin et al. 2012). Dendrix
uses a greedy MCMC method to do so. After selecting a starter gene, Dendrix
selects the neighbor that has the most mutations without any of those mutations
being in a patient that already had a mutation in a previously selected gene. One
frequently sampled gene set from Dendrix’s application to GBM was CDKN2B,
RB1, CYP27B1 (Vandin et al. 2012).

3.6.3 DriverNet

One of the most recent pathway-based methods is DriverNet (Bashashati et al.
2012). DriverNet models both gene mutation events and differential expression
events of a group of patients into a bipartite graph. The algorithm then applies
pathway information to select for mutated genes that are the most well-connected
to genes that are differentially expressed. The DriverNet algorithm is a greedy
optimization algorithm aimed at determining driver genes as genes with the most
pathway impact, which they measure as genes that create the most outlying dif-
ferentially expressed genes. The greedy optimization algorithm is described below:

1. Create a bipartite graph BðVm;V0;EÞ, a graph whose vertices can be divided
into two disjoint sets Vm and V0 such that every edge connects a vertex in Vm to
one in V0. In DriverNet’s case, Vm is a mutation matrix built in a similar
fashion as MEMo’s binary event matrix. V0 is a binary n 9 m matrix where n is
the number of genes in the dataset and m is the number of samples (patients)
being observed. V0 is equal to 1 for gene i with respect to patient j if the
normalized difference between the tumor and normal expression exceeds a
certain threshold. E is an adjacency matrix representing the gene network that
connects Vm and V0 in the bipartite graph. E can be built by similar procedures
as MEMo’s adjacency matrix.

2. Let Z be the set of all connected outlying events, and z be the set of covered
outlying events (initially a null set).

50 J. P. Hou and J. Ma



3. Choose the mutated gene that contains the largest number of uncovered out-
lying expression events. Add that to the driver mutation list. Add the outlying
events to z.

4. Remove the mutated gene and its connecting edges from the bipartite graph B.
5. Stop when all connected outlying events all covered (when Z = z).

DriverNet combines gene expression, mutation information among groups of
patients, and biological pathways (Bashashati et al. 2012). The authors of Driv-
erNet tested their results in Breast Cancer and Glioblastoma datasets and found an
abundance of infrequently mutated genes: 22 in the Breast Cancer dataset and 13
in Glioblastoma. The advantage of DriverNet is that it is less dependent on
recurrence and therefore can detect rare mutation.

3.6.4 PARADIGM-Shift

PARADIGM-Shift predicts functions of driver genes as gain-of-function or loss-
of-function genes in specific cancer pathways (Ng et al. 2012). PARADIGM-Shift
has the ability to determine not only if a candidate driver is functionally impactful,
but also the type of impact that the driver gene may show. The authors utilized
PAthway Recognition Algorithm using Data Integration on Genomic Models
(PARADIGM) (Vaske et al. 2010), using gene expression and cy number change
signals as inputs to determine the impact of upstream and downstream genes of a
candidate driver. The difference activity in upstream and downstream genes of the
driver determines a gain-of-function (high downstream, low upstream activity) or
loss-of-function (high upstream, low downstream activity).

The activity score was determined by PARADIGM, which uses belief-propa-
gation on a factor graph to compute the log-posterior odds score called inferred
pathway levels (IPLs) for each gene, complex, protein family and cellular process
using gene expression, copy number and/or genetic interaction. Genes that are
more active in a tumor with more activity have positive IPL scores while genes
with less activity in the tumor than normal cells have negative IPL scores (Vaske
et al. 2009). PARADIGM-Shift runs two iterations of PARADIGM, one with the
gene of interest and its upstream genes in the pathways to measure the loss of
function score, and one with only the gene of interest and its downstream genes to
measure the gain of function score. The PARADIGM-Shift score is the difference
of the two paradigm runs. The authors of PARADIGM-Shift applied their
approach to both common, TP53, and uncommon, NFE2L2, genes to analyze the
impact (Ng et al. 2012).
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3.7 Discussion

Each of the four approaches, and the various methodologies associated with each
of the approaches, has different advantages and addresses many of the challenges
associated with driver mutations. Unfortunately, no method can solve all the
challenges, and no perfect model exists that can fully reverse engineer the clonal
evolution model of cancer and select only drivers that serve a function relating to
the hallmarks of cancer. The task of accounting for tumor heterogeneity, genetic
function, and mutation severity is indeed daunting. Many researchers, therefore,
have applied multiple methods to determine driver mutations (Adzhubei et al.
2010; Bashashati et al. 2012). The multi-step approach allows for researchers to
address multiple challenges in driver mutation identification at the same time.

In addition to the current challenges involved in driver mutation identification,
there are also many future avenues of studying driver mutations that have yet to be
identified and modeled. Some examples include analyzing the cumulative effects
of passenger mutations, accounting for intra-tumor heterogeneity, and predicting
the effects of mutations in non-coding regions.

A study from McFarland et al. found that even though a single passenger
mutation has a negligible impact on tumorigenesis, the cumulative effect of all
passengers may affect a cell’s tumor progression model in ways not explainable by
widely accepted driver mutation models (McFarland et al. 2013). Much intra-
tumor heterogeneity is also ignored by driver mutation methods as most cancer
genome sequencing project sequences a bulk tumor tissue from a population of
cancer cells. In other words, the sequencing is a simple average of the cells, and no
model exists to explain intra-tumor heterogeneity (Michor and Polyak 2010).

The methods described in this chapter are mostly only applicable to point
mutations in coding regions of the genome. As described earlier, only a small
subset of cancer mutations are point mutations. Detailed impacts of larger scale
mutations and structural rearrangements have yet to be described. Additionally,
only 2 % of the genome codes for proteins, leaving 98 % of the genome in non-
coding regions unexplained. Mutations in non-coding regions can have profound
impact on gene regulation related to cancer development and progression. Cur-
rently, no driver mutation software can systematically predict the effects of
alterations in non-coding sequences. All these challenges need to be addressed by
future computational methods.
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