
Chapter 22

Beyond NDVI: Extraction of Biophysical

Variables From Remote Sensing Imagery

J.G.P.W. Clevers

22.1 Introduction

By sight humans can use visible differences in the reflection of the sunlight to

recognize vegetation colour. Part of the reflected radiation observed with remote

sensing (RS) techniques coincides with the part visible to the human eye. When

looking at the electromagnetic (EM) spectrum used for optical RS, visible light

(VIS) constitutes the first range of wavelengths. In the VIS, ranging from 0.4 to

0.7 μm, various pigments, such as chlorophyll (green), xanthophyll (yellow), and

carotene (orange), influence the reflection. This reflectance is a characteristic of an

object and it is often plotted against wavelength. It is called the spectral signature.

In most plant species two types of chlorophyll (a and b) determine the reflection,

mainly by absorption of blue and red light and to a lesser degree of green light

(cf. Fig. 22.1). The energy in these spectral bands is used for the displacement of

electrons and initiates the synthesis of carbohydrates from atmospheric CO2

and absorbed groundwater. Green-yellow chlorophyll a is present in all photo-

synthesizing plants. Higher plants and green algae contain blue-green chlorophyll

b, although in small quantities. Both chlorophylls absorb the visible light to a large

extent, and have two absorption peaks: one in the blue (approx. 0.45 μm) and one in

the red (approx. 0.65 μm) region of the EM spectrum. As a result of this and also of

the hypersensitivity of the eye to green, vegetation reveals itself to the eye in

various shades of green. Subsequently, the peak of the reflectance in the VIS occurs

at approx. 0.54 μm. Spectral measurements in the VIS thus may provide informa-

tion on pigment concentrations of vegetation, although the signal coming from

vegetation is relatively low due to the large absorption. This strong absorption also

causes that in the VIS the reflectance of only the top canopy layer determines the

total reflectance of a vegetation canopy. Soils do not show this strong absorption
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due to pigments and therefore they mostly show a strong contrast with green

vegetation in the VIS. As a result, spectral measurements in the VIS not only

provide information on pigments, but also on the percentage of soil covered by

vegetation (fCover) and properties related to this quantity, such as the fraction of

absorbed photosynthetically active radiation (fAPAR).

The second range of wavelengths from 0.7 to 1.3 μm (near-infrared radiation,

NIR) is mainly determined by the absence of absorption by pigments (see Fig. 22.1).

This means that the radiation passes through the leaf (the leaf is transparent) or that

it is reflected. Approximately 50 % of the NIR radiation is reflected by the leaf.

However, this percentage varies widely for different plant species. It has been

established for this range of wavelengths that a leaf becomes very transparent if

the air channels between the cells of the leaf are filled with fluid. This gave reason to

a theory that reflection takes place in the leaf at the transition of air and cell walls

(Knipling 1970). Since a green leaf hardly absorbs any NIR radiation, leaves or

canopy layers under the top layer contribute significantly to the total measured

reflectance. This multiple reflectance denotes the NIR reflectance to be particularly

suitable for estimating the so-called leaf area index (LAI) (“counting the number of

leaf-layers”).

In the third region of wavelengths ranging from 1.3 to 2.5 μm (called middle-

infrared (MIR) or shortwave infrared (SWIR)), a great deal of radiation is absorbed

by water in the cells (see Fig. 22.1). The figure shows that the major absorption

peaks fall at 1.90 and 1.40 μm. It should be pointed out that weak absorption bands

of water also occur at 1.20 and 0.97 μm.
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Fig. 22.1 Typical spectral reflectance curves for dry soil, wet soil and vegetation. 1: 0.54 μm;

2: 0.65 μm; 3: 0.97 μm; 4: 1.20 μm; 5: 1.40 μm; 6: 1.90 μm
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Clevers (1999) has shown that the VIS can be considered as one region

providing information for estimating plant properties. Since spectral bands (either

narrow-band or broad-band) mutually are highly correlated, there is little added

value to be expected by combining spectral bands in indices based on just the VIS.

The NIR is another principal region for estimating vegetation properties. Again,

spectral bands in the NIR are highly correlated and little added value is to be

expected by combining spectral bands in just the NIR. A third region is the SWIR,

which mainly provides information on water content in vegetation studies, and the

same conclusion can be drawn as for the VIS and NIR. Clevers (1999) showed that

there is a fourth region that may provide significant information on vegetation

properties, in addition to the mentioned three regions. This is the so-called red-edge

region exhibiting a steep rise in plant reflectance between 0.67 and 0.78 μm.

In addition to the above-mentioned main spectral regions for deriving vegetation

properties, some specific regions related to specific absorption features may be of

interest. This is, e.g., used by applying spectroscopy in soil mineralogy. In dry

vegetation samples information on nitrogen can be obtained in the SWIR region.

E.g., at 1.51 μm an absorption feature occurs due to the first overtone of the N-H band

vibration and at 2.18 μm an absorption feature occurs due to the second overtone

(Curran 1989). In living plant material these features are obscured by the absorption

effects of water. Only the minor water absorption features at 0.97 and 1.20 μm are

features that provide specific information on vegetation that is detectable from a

remote sensing point of view (see Sect. 22.4.4).

To describe the relationship between spectral measurements and biophysical and

chemical variables of vegetation both statistical and physical approaches have been

used. As an example of statistical methods, numerous indices have been developed

for estimating leaf and canopy properties (Myneni et al. 1995a). Radiative transfer

(RT) models are highly suitable for studying the relationship between biophysical

variables and reflectance or vegetation indices (VIs) and to study the effect of

sources of variability (Combal et al. 2003). Subsequently, RT models may be used

to determine ‘universal’ VIs that are site and species independent by calibrating VIs

on large simulated datasets. A good index would be an index only sensitive to the

variable of interest and not to other variables (cf. Verrelst et al. 2008). Section 22.2

provides some remarks on using radiative transfer models, whereas Sect. 22.3 gives

an overview of the field of vegetation index development.

22.2 Radiative Transfer Models

A number of physically-based models, which account for the interactions of

incident radiation with vegetation canopies, have been developed. Radiative trans-

fer (RT) models have been used both in forward and inverse mode. In forward

mode, RT model simulation allows validation and intercomparison of different

RT model implementations (Myneni et al. 1995b) and sensitivity studies of

canopy variables relative to diverse observation specifications, for an improved

understanding of the RS signals and an optimized instrument design for future Earth
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observation systems (Bacour et al. 2002). For the retrieval of vegetation properties, RT

models need to be invertedwith RS data as input. For a successful inversion, one has to

choose an appropriate and well-validated RT model that matches the spatial scale

and correctly represents the RT of the observed target (Pinty and Verstraete 1992).

Models are traditionally being developed at the leaf and at the canopy level. Leaf

RT models physically simulate reflectance and transmittance of plant leaves, which

can be used by canopy level RT models to compute phase functions for multiple

scattering. Canopy RT models can be classified either based on their dimensionality

or based on the RT solution. In terms of dimensionality, there are two types of

models: (i) one-dimensional (1D) models that require homogeneity in the horizontal

dimension, such as turbid medium models, and (ii) three-dimensional (3D) models

that handle heterogeneity and discontinuity in both horizontal and vertical dimen-

sions (like needed for modeling forests), such as geometric-optical or hybridmodels.

The latter combine features from turbid medium and geometric models.

The combined PROSPECT leaf optical properties model and SAIL canopy

bidirectional reflectance model, also referred to as PROSAIL, is the most popular

RT model to study plant canopy spectral and directional reflectance in the solar

domain (Jacquemoud et al. 2009). The PROSPECT model is a radiative transfer

model for individual leaves. It simulates leaf spectral reflectance and leaf spectral

transmittance as a function of leaf chlorophyll content (Cab), leaf water content

(Cw) and a leaf structure parameter (N ). PROSPECT is also including leaf dry

matter (Cdm) as a simplification for the leaf biochemistry (protein, cellulose, lignin).

The one-layer SAIL radiative transfer model simulates canopy reflectance as a

function of canopy parameters (leaf reflectance and transmittance, LAI and leaf

inclination angle distribution), soil reflectance, ratio of diffuse/direct irradiation and

solar/view geometry (solar zenith angle, zenith view angle and sun-view azimuth

angle). It also takes the hot spot effect into account by considering the relative leaf

size. This hot spot is a peak in the directional reflectance commonly observed in

vegetation canopies when the sun and observer are at the same position, meaning

that no shadows are observed. The output of the PROSPECT model can be used

directly as input into the SAIL model. As a result, these models can be used as a

combined PROSPECT-SAIL model.

Deriving biophysical properties from PROSAIL is feasible due to the relatively

small number of input variables required for PROSAIL (Jacquemoud et al. 2000).

In principle, inversion is performed by minimizing the difference between simu-

lated and measured reflectance based on some sort of cost function and possible

constraints for the model input variables (either set to an a priori value or allowed to

vary within a plausible range). For the inversion process, a wide range of minimi-

zation techniques have been used: classical iterative optimization, simulated

annealing, genetic algorithms, look-up tables, Monte-Carlo Markov chains and

generalized likelihood uncertainty estimation. However, classical iterative optimi-

zation techniques, look-up tables and neural networks have been the most widely

used (Liang 2004). Although the number of input variables is limited, we mostly

still are dealing with an underdetermined problem since the number of unknowns to

be estimated is larger than the number of independent spectral observations (even in
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case of hyperspectral sensors). Use of constraints then becomes necessary. Another

problem is the ill-posedness of the inversion, meaning that different combinations

of input variables yield the same spectral model output. Regularization techniques

are then required for obtaining stable solutions. An overview of the state-of-the art

is provided by Baret and Buis (2008). For deriving biophysical variables first the

top-of-canopy (TOC) is ascertained. Inversion of TOC observations has proven to

be successful in the last decades, enabling the production of high level data products

(Garrigues et al. 2008). Recently, Laurent et al. (2011) demonstrated the direct use

of measured top-of atmosphere (TOA) radiance data to estimate forest biophysical

and biochemical variables, by using a coupled canopy–atmosphere radiative trans-

fer model. Advantages of this approach are that no atmospheric correction is needed

and that atmospheric, adjacency, topography, and surface directional effects can be

directly and more accurately included in the forward modelling.

22.3 Vegetation Indices

Many investigations have been conducted to assess vegetation characteristics, such

as biomass and LAI, by means of combinations of reflectances in various spectral

bands. Such a combination of reflectance values, the vegetation index (VI), also

serves to correct for undesirable influences of varying soil reflectance or atmo-

spheric conditions on the results. These kinds of disturbances are particularly

undesirable in spatial and multitemporal analyses. Most commonly used VIs are

based on red and NIR spectral bands, because the large difference between red and

NIR reflectance of dense green vegetation is a unique feature. Generally, indices are

divided into ratio and orthogonal indices. Whereas ratio-based indices are calcu-

lated independently of soil reflectance properties, orthogonal indices refer to a base

line specific for the soil background. More recently, indices have emerged that can

be considered hybrid versions of the classic ratio and orthogonal indices.

The first investigations into vegetation indices concerned the NIR/red ratio by

Rouse et al. (1974, 1973). Rouse and his colleagues found this ratio to be suitable –

when applied to satellite data – for the estimation of crop characteristics owing to a

partial correction for the solar position and atmospheric influence. They also used

the normalized vegetation index for the same purpose. Often, this type of vegetation

index is called the normalized difference vegetation index (NDVI):

NDVI ¼ NIR� redð Þ
NIRþ redð Þ ð22:1Þ

In order to find an index independent of the influence of the soil, Richardson and

Wiegand (1977) introduced the so-called perpendicular vegetation index (PVI):

PVI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

redv � redsð Þ2 þ NIRv � NIRsð Þ2
q

ð22:2Þ
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where subscripts v and s refer to the vegetation and the underlying bare soil,

respectively. The increase in the amount of vegetation agreed with the offset of

the reflectances perpendicular (orthogonal) to a so-called soil line in a NIR-red

feature space plot.

A similar approach for suppressing variations of the soil influence has been

developed by Kauth and Thomas (1976). They applied a linear transformation to the

four-dimensional data space of Landsat MSS measurements of agricultural regions

with various soil types, called the tasselled cap transformation. This transformation of

the four Landsat-1 MSS bands resulted in a so-called brightness index dominated by

soil differences and a so-called greenness index dominated by green vegetation:

Soil brightness ¼ 0:43�MSS4þ 0:63�MSS5þ 0:59�MSS6þ 0:26
�MSS7 ð22:3Þ

Greenness ¼ �0:29�MSS4� 0:56�MSS5þ 0:60�MSS6 þ 0:49
�MSS7 ð22:4Þ

MSS4: 0.5–0.6 μm, MSS5: 0.6–0.7 μm, MSS6: 0.7–0.8 μm, MSS7: 0.8–1.1 μm.

Later the tasselled cap transformation was also applied to the spectral bands of

the Landsat Thematic Mapper (Crist and Cicone 1984). The soil brightness can be

considered as a multidimensional soil line and the greenness is orthogonal to this

soil line, in essence similar to the PVI concept.

In order to obtain a more precise correction for soil background, Huete (1988)

developed the soil adjusted vegetation index (SAVI). This index was further

improved by Baret et al. (1989) yielding the transformed soil adjusted vegetation

index (TSAVI). Different researchers made further versions of the SAVI, resulting

e.g. in an adjusted TSAVI (ATSAVI), second version of SAVI (SAVI2) and a

second modified SAVI (MSAVI2) (Broge and Leblanc 2000).

A semi-empirical approach for estimating LAI of a green canopy, introduced by

Clevers (1988, 1989), resulted in the so-called weighted difference vegetation index

(WDVI). In this model it is assumed that in the multitemporal analysis the soil type

is given and the soil moisture content is the only varying property of the soil. For

estimating LAI a weighted difference between the measured NIR and red reflec-

tances was ascertained, assuming that the ratio of NIR and red reflectances of bare

soil is constant, independent of soil moisture content (which assumption is valid for

many soil types). Subsequently, this WDVI was used for estimating LAI according

to the inverse of an exponential function. Basically, the WDVI is a 2-dimensional

greenness index, and as such also strongly related to the PVI. WDVI is calculated

as:

WDVI ¼ NIR� C� red ð22:5Þ

C ¼ NIRs=reds ð22:6Þ

where subscript s again refers to soil reflectances.
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Up till now, a large set of vegetation indices have been developed, mainly for

estimating vegetation cover, LAI, biomass, pigment content, water content and

related (indirect) quantities. Various studies have compared many different indices

for estimating one of these vegetation variables (Broge and Mortensen 2002; Gong

et al. 2003; Haboudane et al. 2004; Schlerf et al. 2005; Thenkabail et al. 2002;

Zarco-Tejada et al. 2005). The performance of the various indices always is

different, depending on the specific data sets used for the study, resulting each

time in different indices as being the best one. This makes it difficult to compare the

various studies. One should always consider the theoretical background of an index,

its validity range and its purpose, and then use one index as much as possible

rendering results that are mutually comparable spatially and temporally. In the next

section focus will be on the main biophysical variables that can be estimated with

RS techniques.

22.4 Biophysical Variables

22.4.1 Chlorophyll and Nitrogen

In vegetation studies nitrogen and chlorophyll have always played an important

role. A sufficient supply of nitrogen is crucial for the biochemistry of plants since

nitrogen is an important component in proteins, nucleic acids (e.g., DNA, RNA)

and chlorophyll (a and b). Photosynthesis is the source of energy and of carbon in

all organic compounds in plants. This photosynthesis takes place in reaction centers

that contain chlorophylls. Plants having a shortage of nitrogen will have a lower

chlorophyll concentration resulting into a non-optimal photosynthesis. This results

into not only a reduced plant growth but also a reduced carbon fixation. We see that

nitrogen and chlorophyll concentrations often are highly correlated in plants

(Jongschaap and Booij 2004; Yoder and Pettigrew-Crosby 1995). Actual estimates

are relevant for many application fields ranging from local scale such as precision

farming up to global scales dealing with the global carbon cycle.

Since the VIS should be considered as one band of information, few vegetation

indices have been developed based on bands in the VIS solely. For estimating

chlorophyll content actually the main one is the photochemical reflectance index

(PRI) as developed by Gamon et al. (1990). The PRI is presented as an index for

estimating the green shift, centered near 531 nm, caused by reflectance changes

associated with the de-epoxidation of violaxanthin to zeaxanthin. As such this

provides information on canopy photosynthesis, in particular the light use effi-

ciency (Gamon et al. 1997). Recently, Garbulsky et al. (2011) provided a review of

the scientific literature on the relationship between PRI and photosynthetic effi-

ciency or related variables across a range of plant functional types and ecosystems.

However, experiences with the PRI are varying.

22 Beyond NDVI: Extraction of Biophysical Variables From Remote Sensing Imagery 369



Haboudane et al. (2002) gave a typical example how radiative transfer

(RT) models can be used for development of an index for estimating the chlorophyll

content from hyperspectral data. They established and tested the ratio of two optical

indices, namely the transformed chlorophyll absorption in reflectance index,

TCARI (Daughtry et al. 2000), and the optimized soil-adjusted vegetation index,

OSAVI (Rondeaux et al. 1996). This resulted into the TCARI/OSAVI ratio. Sim-

ilarly, the ratio of the modified chlorophyll absorption in reflectance index,

MCARI, and the OSAVI was tested, MCARI/OSAVI (Daughtry et al. 2000).

The red-edge region as mentioned before is a special region that has often been

used for estimating chlorophyll and nitrogen content at both leaf and canopy level.

Physically it is the content at canopy level that we expect to estimate with

RS. Collins (1978) and Horler et al. (1983) were among the first researchers to

point out the importance of the red-NIR wavelength transition for vegetation

studies. Both the position and the slope of this red-edge change under stress

conditions, resulting in a shift of the slope towards shorter wavelengths (Horler

et al. 1983). As an index mostly the position of the inflexion point on the red-NIR

slope is used. This is called the red-edge position (REP), and it will be influenced by

both the LAI and the chlorophyll concentration (Clevers et al. 2001). It was shown

before to be a good estimate for chlorophyll content, but being less sensitive at

higher contents. This saturation effect is still a problem. There are various ways to

calculate this REP (Clevers et al. 2004). Guyot and Baret (1988) applied a simple

linear model to the red-infrared slope. This approach is feasible for satellite data

like obtained with the Medium Resolution Imaging Spectrometer, MERIS (Clevers

et al. 2002).

Another type of index based on the red-edge slope has been developed specif-

ically with the advent of MERIS: the MERIS terrestrial chlorophyll index, MTCI

(Dash and Curran 2004). It is proposed as a better index than the REP.

Wu et al. (2008) suggested to replace the traditional red and NIR spectral bands

in indices likeMCARI, TCARI andOSAVI by spectral bands in the red-edge region,

particularly a band at 705 nm instead of the traditional red band at 670 nm, and a

band at 750 nm instead of the band at 800 nm in the traditional MCARI and TCARI.

They found that this resulted into indices that have better linearity with chlorophyll

content and are thus more suitable. This band replacement is also consistent with

the results of the sensitivity analysis by Gitelson and Merzlyak (1996).

Gitelson et al. (2003, 2006a, b) presented a simple index based on a NIR band

and a red-edge band (e.g., at 710 nm) to estimate chlorophyll concentration: the

so-called chlorophyll index (CIred-edge ¼ R780/R710–1). He also presented a variant

using a green band instead of the red-edge band (CIgreen). Major advantage of these

latter two indices would be their linear relationship with chlorophyll and the

absence of the saturation effect as obtained with the REP indices.

Clevers and Kooistra (2012) tested the potential of the above-mentioned VIs for

retrieving canopy chlorophyll and nitrogen content. The formulae of the indices are

given in Table 22.1. Main results are summarized in Table 22.2. They showed

through PROSAIL model simulations that out of the above-mentioned VIs the

CIred-edge performed best in estimating canopy chlorophyll content showing a linear
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relationship over the full range of potential values. In contrast, highly non-linear

relationships of chlorophyll content with most traditional red-edge indices were

found. Subsequently, they performed tests with field data for sampling locations

within an extensively grazed fen meadow using ASD FieldSpec measurements and

within a potato field with a Cropscan radiometer for estimating canopy nitrogen

content. Also at these study sites the CIred-edge was found to be a good and linear

estimator of canopy nitrogen content (no chlorophyll was measured) for both the

grassland site and the potato field (Clevers and Kooistra 2012). Currently, this

approach can, e.g., be applied with MERIS, Hyperion and RapidEye data and with

the upcoming Sentinel-2 and -3 systems. An example of the relationship between

CIred-edge and nitrogen content of potatoes is shown in Fig. 22.2. For a more detailed

analysis of the data and description of results the reader is referred to Clevers and

Kooistra (2012).

22.4.2 Vegetation Cover Fraction (fCover) and fAPAR

As stated in the introduction, radiation in the VIS can be used by plants for

photosynthesis. Therefore, this is called photosynthetically active radiation

(PAR). The rate of photosynthesis can be calculated from the amount of absorbed

PAR (the APAR) and the photosynthesis-light response of individual leaves.

Table 22.1 Vegetation

indices evaluated in the study

of Clevers and Kooistra

(2012)

Index Formulation

REP 700þ 40
R670þR780ð Þ=2�R700

R740�R700

MTCI (R754 � R709)/(R709 � R681)

MCARI/OSAVI R700�R670ð Þ�0:2 R700�R550ð Þ½ � R700=R670ð Þ
1þ0:16ð Þ R800�R670ð Þ= R800þR670þ0:16ð Þ

TCARI/OSAVI 3 R700�R670ð Þ�0:2 R700�R550ð Þ R700=R670ð Þ½ �
1þ0:16ð Þ R800�R670ð Þ= R800þR670þ0:16ð Þ

MCARI/OSAVI[705,750] R750�R705ð Þ�0:2 R750�R550ð Þ½ � R750=R705ð Þ
1þ0:16ð Þ R750�R705ð Þ= R750þR705þ0:16ð Þ

TCARI/OSAVI[705,750] 3 R750�R705ð Þ�0:2 R750�R550ð Þ R750=R705ð Þ½ �
1þ0:16ð Þ R750�R705ð Þ= R750þR705þ0:16ð Þ

CIred-edge (R780/R710) � 1

CIgreen (R780/R550) � 1

Rλrefers to the reflectance factor at wavelength λnm

Table 22.2 Overview

of R2 values of the linear

relationships between indices

and chlorophyll (PROSAIL)

and nitrogen (grass and

potato) content (Clevers and

Kooistra 2012)

Index PROSAIL Grass Potato

REP 0.49 0.79 0.84

MTCI 0.83 0.80 0.89

MCARI/OSAVI 0.25 0.06 0.09

TCARI/OSAVI 0.39 0.58 0.19

MCARI/OSAVI[705,750] 0.93 0.57 0.87

TCARI/OSAVI[705,750] 0.91 0.75 0.71

CIgreen 0.94 0.77 0.88

CIred-edge 0.94 0.77 0.88
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Estimating APAR over some time interval (e.g., daily APAR) requires both inci-

dent PAR and the (average) fraction of APAR by vegetation, which is called

fAPAR. Daughtry et al. (1992) showed that daily APAR may be reliably computed

from measurements of the fAPAR near solar noon and daily incident PAR. The

fAPAR is considered one of the main essential climate variables related to the

terrestrial ecosystem (WMO/IOC 2010). It is strongly correlated to the vegetation

cover fraction (fCover) (Bacour et al. 2006). fCover corresponds to the gap fraction

of vegetation either measured from above or from below in the nadir viewing

direction. fAPAR, conversely to fCover, depends on the illumination conditions.

The large contrast in reflectance between bare soil and vegetation in the VIS will

be most suitable for estimating fCover and fAPAR. Since this contrast not only

depends on the amount of vegetation but also on the moisture content of the soil, a

single band is not suitable and a vegetation index should be used. Again, due to the

strong mutual correlation of bands in the VIS, mostly a combination of VIS and

NIR bands is used. Clevers et al. (1994) showed that a linear relationship may be

assumed between WDVI or NDVI and fAPAR. External factors such as soil

brightness, diffuse/direct irradiation ratio and solar zenith angle only have a

minor influence on such a relationship between WDVI and fAPAR. Moreover, leaf

parameters such as chlorophyll content, mesophyll structure and hot spot parameter

(see Sect. 22.2) also have quite a small influence for green leaves. The leaf angle

distribution (LAD) is the main parameter influencing the relationship between

WDVI and fAPAR. So, for different LADs different regression functions should

be used. Although the relationship between NDVI and fAPAR is slightly less

N = 4.2575×CIred-edge
R² = 0.88
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Fig. 22.2 Relationship between CIred-edge and canopy nitrogen content for a potato study site in

The Netherlands (Clevers and Kooistra 2012)
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influenced by LAD and solar zenith angle, important disturbing factors are the soil

brightness and leaf chlorophyll content. Similar results have been found in other

studies (Asrar et al. 1992; Goward and Huemmrich 1992). So, the WDVI is to be

preferred over the NDVI.

22.4.3 Leaf Area Index

Leaf area index (LAI) is defined as the total one-sided green leaf area per unit

ground area and it is regarded a very important canopy characteristic because

photosynthesis takes place in the green plant organs. Moreover, it is also considered

an essential climate variable (WMO/IOC 2010). Most of the vegetation indices

mentioned in Sect. 22.2 have been used for estimating LAI. Clevers and Verhoef

(1993) have performed an extensive sensitivity analysis using a combination of the

PROSPECT leaf reflectance model and the SAIL canopy reflectance model towards

the relationship between WDVI and LAI. As expected according to the Lambert-

Beer law for light extension in a canopy, this is an exponential relationship. The

influence of external factors such as soil brightness, diffuse/direct irradiation ratio

and solar-view geometry hardly have an effect on the relationship between WDVI

and LAI. Moreover, leaf parameters such as chlorophyll content, mesophyll struc-

ture and hot spot parameter also have only a small influence for green leaves at near

nadir observation (like is the case for many satellite observations). The main

variable influencing the relationship between WDVI and LAI is the leaf angle

distribution (LAD). So, for different LADs different regression functions should

be used. An example of calibration lines for estimating LAI using the WDVI for a

range of agricultural crops in the Netherlands is provided by Bouman et al. (1992).

Figure 22.3 shows an example of the WDVI – LAI relationship for barley from the

original WDVI paper of Clevers (1989). He applied the inverse of a special case of

the Mitscherlich function (Mitscherlich 1920) for estimating LAI:

LAI ¼ �1= / �Ln 1�WDVI=WDVI1ð Þ ð22:7Þ

22.4.4 Canopy Water

Currently, one of the main scientific issues in studying global climate change is to

understand the role of terrestrial ecosystems and the changes they may undergo.

The water cycle is one of their most important characteristics (ESA 2006). In this

respect, the canopy water content (CWC) is of interest, also in view of the water use

efficiency of plants. As stated in Sect. 22.1, the SWIR region of the EM spectrum

mainly is sensitive for canopy water. Water absorption features as a result of

absorption by O-H bonds in liquid canopy water can be found at approximately

0.97, 1.20, 1.45 and 1.95 μm (Curran 1989). The features at 1.45 and 1.95 μm are
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most pronounced. However, when using remotely sensed observations, one should

also consider water vapour in the atmosphere, which also results in several absorp-

tion bands in the infrared part of the spectrum. Main atmospheric absorption

features occur around 1.40 and 1.90 μm. As a result, those bands will result in

very noisy measurements and should not be used for remote sensing. Spectral bands

outside these main features in the shortwave infrared (SWIR) region are suited for

the remote sensing of canopy water content (Tucker 1980). Landsat Thematic

Mapper band 5 (1.55–1.75 μm) was designed because of this sensitivity to canopy

water content. Also Thematic Mapper band 7 (2.08–2.35 μm) is sensitive to canopy

water content. Various broad-band vegetation indices are based on these wave-

length regions. One of the first ones is the infrared index (II) as defined by Hardisky

et al. (1983).

The canopy water absorption features at 0.97 and 1.20 μm are not that pro-

nounced, but still clearly observable (Danson et al. 1992; Sims and Gamon 2003).

Therefore, these offer interesting possibilities for deriving information on canopy

water content. In these regions one should consider the water vapour band absorp-

tions at 0.94 and 1.14 μm when observing through the atmosphere (Gao and Goetz

1990; Iqbal 1983). One can notice that the centers of the liquid water bands (in the

canopy) are shifted to longer wavelengths as compared to the corresponding water

vapour band centers. Due to the development of imaging spectrometers, accurate
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measurements on these minor absorption features in the near-infrared (NIR) have

become feasible.

Various spectral techniques, based on the water absorption features at 0.97 and

1.20 μm, have been proposed to estimate CWC. Often these techniques are equiv-

alent to those applied to the chlorophyll absorption feature in the red part of the

electromagnetic spectrum. Thus far, approaches based on spectral indices, contin-

uum removal and derivative spectra have been studied in literature. Concerning

spectral indices, Peñuelas et al. (1993, 1996) focused on the 0.95–0.97 μm slope and

defined the so-called water band index (WI) as the ratio between the reflectance at

0.97 μm and the one at 0.90 μm (as a reference wavelength). Gao (1996) defined the

normalized difference water index (NDWI), analogously to the well-known nor-

malized difference vegetation index (NDVI), by using the 1.20 μm feature and

0.86 μm as a reference wavelength. In addition, a continuum removal approach can

be applied to the two absorption features at about 0.97 and 1.20 μm. This is a way of

normalizing the reflectance spectra (Kokaly and Clark 1999). The maximum band

depth, the area under the continuum, and the band depth normalized to the area

(Curran et al. 2001) have been used thus far for estimating foliar biochemicals like

chlorophyll. Few studies have applied this to the water absorption features at 0.97

and 1.20 μm (Kokaly et al. 2003; Stimson et al. 2005).

Danson et al. (1992) showed that the first derivative of the reflectance spectrum

corresponding to the slopes of the absorption features provides better correlations

with leaf water content than those obtained from the direct correlation with reflec-

tance. Rollin and Milton (1998) found moderate correlations between the first

derivative at the left slope of both absorption features and CWC for a grassland

site in the UK. Clevers et al. (2008) applied derivatives in a preliminary study at the

field and airborne level. These studies showed that spectral derivatives at the slopes

of the 0.97 μm and (to a lesser extent) 1.20 μm absorption feature have good

potential as predictors of CWC. Recently, Clevers et al. (2010) showed that the

first derivative of the reflectance spectrum at wavelengths corresponding to the left

slope of the minor water absorption band at 0.97 μm was highly correlated with

CWC. PROSAIL model simulations showed that it was insensitive to differences in

leaf and canopy structure, soil background and illumination and observation geom-

etry. However, these wavelengths are located close to a water vapour absorption

band at about 0.94 μm (Gao and Goetz 1990). In order to avoid interference with

absorption by atmospheric water vapour, the potential of estimating CWC using the

first derivative at the right slope of the 0.97 μm absorption feature were studied by

Clevers et al. (2010). Their results of PROSAIL simulations showed a linear

relationship between the first derivative over the 1015–1050 nm interval and

CWC. This result was confirmed, e.g., using an ASD FieldSpec spectroradiometer

for a range of grassland plots at a fen meadow. Consistency between simulation

results and actual field data confirmed the potential of using simulation results for

calibrating the relationship between the first derivative and CWC. An example of

this is provided in Fig. 22.4.
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22.5 Outlook

Within Europe the application of Earth observation data, particularly as acquired in

the reflective solar domain, is reaching a state of maturity. Especially the availabil-

ity of data will boost applications. For successful applications the user requirements

in terms of spatio-temporal continuity, consistency and quality of products have to

be fulfilled. Users require univocal numbers. Currently a multitude of satellite data

is available already, and this availability will increase enormously in the near

future. ESA has for long focused on research instruments, but is now developing

five new missions called Sentinels specifically for the operational needs of the

Copernicus programme (previously known as GMES). For land applications using

the solar reflective domain, in particular two systems are relevant. Sentinel-2

(equipped with the Multi Spectral Instrument MSI) will provide images with high

spatial, spectral and temporal resolution and it aims at ensuring continuity of

Landsat and SPOT (Système pour l’Observation de la Terre) observations. In

addition, it incorporates three new spectral bands in the red-edge region, which

are very important for retrieval of chlorophyll (Delegido et al. 2011). It has a swath

width of 290 km by applying a total field-of-view (FOV) of about 20�. Sentinel-3 is
a medium resolution land and ocean mission, to be seen as a continuation of the

Envisat mission. The Ocean and Land Color Instrument (OLCI) has a swath width

of 1,270 km (FOV of about 68�, but slightly tilted) and a spatial resolution of 300 m.

It will provide data continuity of MERIS on Envisat. Both Sentinel-2 and Sentinel-3
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missions are based on a constellation of two satellites each in order to fulfill revisit

and coverage requirements, providing robust datasets for Copernicus services.

As discussed in this chapter, RS can provide a number of key biophysical and

biochemical products of vegetation, such as the fraction of absorbed photosynthet-

ically active radiation (fAPAR), leaf area index (LAI), chlorophyll content and

water content. The first two have been identified as essential climate variables

(ECVs) by the UNFCCC and are key variables that are both used in surface process

models and retrieved from remote sensing observations in the reflective solar

domain. Various algorithms are used to derive these products, but they mostly

relate to nadir or directionally normalized observations (Baret et al. 2007). For

operational RS applications multisensor data usage will be required to increase the

number of observations within a given time period, particularly relevant in regions

with frequent cloud cover (Verger et al. 2011). This will result in an increase of

high-quality data in time-series for monitoring activities. However, instability of

retrieval algorithms to directional effects will degrade the accuracy of derived

products.

A major research item for the coming years is assessing the anisotropic reflec-

tance behavior of vegetation and soils, as described by the bidirectional reflectance

distribution function (BRDF). With the advent of remote sensing systems with

off-nadir viewing capabilities like SPOT and commercial high-spatial resolution

systems (like IKONOS, QuickBird, GeoEye and WorldView), and sensors with

wide FOV (like the OLCI on Sentinel-3) information on the BRDF characteristics

of surface features is becoming very important for the retrieval of surface param-

eters. Moreover, directional information may also be significant for sensors with a

limited FOV (like the MSI on Sentinel-2) for accurate retrieval of surface param-

eters. As a result, information on the BRDF of targets is relevant for normalizing

images taken under different illumination and/or viewing conditions (Baret

et al. 2007), but on the other hand it has been shown that multi-angular observations

provide additional information that can be used to improve the accuracy of

retrieved products (Coburn et al. 2010; Laurent et al. 2011; Verger et al. 2011).

The BRDF of surface targets contains information on structure and composition

that cannot be inferred from spectral properties alone (Barnsley et al. 1994).

As such, it provides an additional dimension to remote sensing observations.
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