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Abstract The organic component of atmospheric reactive nitrogen is known to be 
important for biogeochemical cycles, climate and ecosystems, but it is still not rou-
tinely assessed in atmospheric deposition studies, and most worldwide air quality 
monitoring networks disregard it. The available jigsaw puzzle pieces of knowledge 
from diverse sources can now give a richer picture of global patterns of organic 
nitrogen deposition. This effort at data synthesis highlights the need for more data, 
but also suggests where those data gathering efforts should be focused. The devel-
opment of new analytical techniques allows long-standing conjectures about the 
nature and sources of the organic matter to be investigated, with tantalising indi-
cations of the complex interplay between natural and anthropogenic sources, and 
links between the nitrogen and carbon cycles. Atmospheric emission and deposition 
models are needed, along with new chemical process models, to let us explore ques-
tions about the role and dynamics of organic nitrogen.
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12.1  Introduction

Organic nitrogen is something of a castaway in global biogeochemistry research. 
The global monitoring networks, model developments, and environmental policies 
created in response to the serious nitrogen (N) linked issues of acid rain, eutrophica-
tion and urban pollution in recent decades have focused on emissions and deposi-
tion of inorganic reactive N species and rather ignored the organic N component. 
Organic N has long been known to be a quantitatively significant component of at-
mospheric N deposition (reviewed in Neff et al. 2002; Cornell et al. 2003). Organic 
N is known to play a role in atmospheric particle formation, affecting atmospheric 
visibility, light-scattering, and climate. It is a component of polluted fogs and smogs, 
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forms of atmospheric aerosol that are of environmental and public health concern. 
It is known to be bioavailable, a nutrient source to marine/aquatic and terrestrial en-
vironments, and to be important in the long-range transport of N. Given this knowl-
edge of its implications for biogeochemistry and ecosystem and human health, the 
fact that organic N is still not routinely measured—or even roughly factored-in to 
quantitative evaluations of N fluxes—is something of an awkward anomaly. When 
it does get mentioned, it is with the caveat that it is “still poorly understood”.

Here, I trace the recent history of organic N research, trying to highlight the new 
research directions that offer promising ways to fill in the gaps in our nitrogen bud-
gets and understanding of organic N behaviour.

12.2  Is Organic Nitrogen Really Important?

Neff et al. (2002) and Cornell et al. (2003) published reviews addressing the chem-
istry, deposition and analytical methods for determining atmospheric organic N, 
using essentially the same data drawn from nearly a century of literature. For the 
analysis presented here, that original database has been updated with reports pub-
lished over the last decade of studies of organic N in rainwater.

The quantitative significance of the organic component of atmospheric N depo-
sition has been recognised for a long time. The earliest reports relate to the Rotham-
sted Experimental Station’s long time-series of rainwater composition (Miller 1905; 
Russell and Richards 1919), where organic N (methods not described) ranged from 
2 to 50 µmol N l−1, averaging 14 µmol l−1 and contributed about a quarter of the 
total N deposited. This seems a substantial proportion of N deposition to disregard, 
but for several decades, organic N was only sporadically measured (e.g., Eriksson 
1952; Brezonik et al. 1969). Growing concerns about air quality led to some re-
newed interest. Figure 12.1 shows that published studies of organic N in rainwater 
became more frequent and geographically widespread around the time of the 1977 
Clean Air Act Amendment in the USA and the 1979 International Convention on 
Long-Range Transboundary Pollution.

Figure 12.1 also shows that organic N is consistently a significant component 
of total dissolved N in rain samples collected in all types of location—continental 
(shown in the graph as open diamond symbols), remote marine (filled triangles) 
and coastal or island (squares)—over the last 50 years. Miller’s first assessment in 
1905 that “about a quarter” of total N deposited is organic still seems to hold true. 
However, the proportion that is organic is highly variable, ranging from mere traces 
up to nearly all of the N in rainwater. The kind of sampling location (continental, 
remote marine and mixed-influence) is not itself a determinant of the quantitative 
importance of organic N. This apparently random pattern may be part of the reason 
that organic N has not been systematically analysed and monitored.

However, the global data set is growing steadily. At the last count, there were 
161 separate studies reporting organic N in wet deposition (including snow and bulk 
deposition, which include some dry deposition component). Data are now available 
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for most continents and marine environments (Table 12.1). Admittedly these data 
sets are mostly very short term, typically reporting on rain events collected over 
a period of days to weeks (indeed some studies report data based on just a couple 
of samples); the sampling locations are very sparsely distributed; and information 
about sampling and analysis protocols is still woefully limited.

Figures  12.2 and 12.3 summarise the information from these studies. Organic 
N is globally ubiquitous. Average concentrations of rainwater organic N in ma-
rine locations are typically around 5 µmol l−1. Australasia and Antarctica samples 
are slightly higher. Northern hemisphere continental/land-influenced samples are 
generally about 10 µmol l−1, except for North America—the most studied region—
where concentrations average about 25 µmol l−1. In Europe and Asia, up to a quarter 
of total N is organic. Across the Americas, the proportions seem systematically dif-
ferent: more like a third of total N is organic. A speculative hypothesis is that the 
Americas combine high biogenic gas emissions from the large forested areas (e.g., 
Wiedinmyer et al. 2006) with high levels of anthropogenic NOx from car use and 
industry e.g., Benkovitz et al. 1996), providing precursors for the formation the 
organic N. In open ocean regions, organic N contributes a greater proportion of 
total N.

Table 12.1  Numbers of published studies of atmospheric organic nitrogen deposition, by geo-
graphical location
Atlantic Ocean 7 Antarctica 1
Caribbean/Central America 9 Australia/New Zealand 8
Mediterranean Sea 1 China 2
North Sea 6 Europe 33
Baltic Sea 1 Japan 3
Pacific Ocean 1 N America 82

S America 7

Fig. 12.1  Reported organic 
nitrogen in rainwater and 
bulk deposition, as a pro-
portion of total dissolved 
nitrogen (TDN), from studies 
in different types of location 
over the last 50 years. Repro-
duced with permission from 
Cornell (2011) Environmen-
tal Pollution 159, 2214–2222.
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12.3  What is Organic Nitrogen?

Another reason organic N is left out of many assessments of impacts of biogeo-
chemical perturbations is because it is so poorly characterised. Despite valiant ef-
forts in various research groups worldwide, the overall picture of the composition of 
rain and aerosol organic N in is still sketchy. It is evidently a “soup”:

Fig. 12.3  Proportions of dissolved organic (DON) and inorganic nitrogen (DIN) in rainwater or 
bulk deposition, by region. ANZ Australia and New Zealand

 

Fig. 12.2  Organic nitro-
gen (ON) concentration in 
rainwater from different geo-
graphical regions (arithmetic 
averages of data from mul-
tiple studies). ANZ Australia 
and New Zealand
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• “mainly aliphatic oxygenated compounds, a small amount of aromatics” (Reyes-
Rodriguez et al. 2009)

• peptides and dissolved free amino acids could be 20–50 % of dissolved organic 
N (Kieber et al. 2005; Matsumoto and Uematsu 2005; Mace et al. 2003a, b; 
Spitzy 1990)

• amines—but these probably contribute much less than 10 % (Calderon et al. 
2007; Gibb et al. 1999; Gorzelska et al. 1992; Mopper and Zika 1987)

• urea could account for anything from < 10 % to nearly all the organic N (Tim-
perley et al. 1985; Cornell et al. 1998, 2001; Seitzinger and Sanders 1999; Mace 
et al. 2003a, b, c), and at present, rain and aerosol data appear to show different 
patterns.

Perhaps as a result, there has been comparatively little consensus on how to measure 
it or what fractions or modes should be measured. Organic N techniques developed 
for river and seawater are used for rain and aqueous aerosol extracts, although ma-
trix and concentration differences affect the efficiency and precision of the analysis. 
Organic N is still normally defined as the difference in total measurable N before 
and after some organic-destroying treatment; the differences in treatments—UV, 
chemical oxidation, and so on—are themselves “still poorly understood”. There is 
no simple, specific, field-deployable method for organic N (perhaps the third reason 
it is not included in deposition studies). Nevertheless enough meticulous investiga-
tion is emerging to inform a consensus on sampling and analysis protocols (e.g., 
Keene et al. 2002; Scudlark et al. 1998; Cape et al. 2001).

Observation networks for other atmospheric species have expanded steadily over 
the past 30 years. As part of the Global Atmosphere Watch programme, there is 
now good continental-scale coverage of North America and Europe (e.g., the US 
National Atmospheric Deposition Program and National Trends Network, http://
nadp.sws.uiuc.edu; and the European Monitoring and Evaluation Programme http://
www.nilu.no/projects/ccc). Other GAW partners extend the worldwide sampling, 
analysis and data management infrastructure:

• Deposition of Biogeochemically Important Trace Species (DEBITS)
• US Global Precipitation Chemistry Program (GPCP)
• Canadian Air and Precipitation Monitoring Network (CAPMoN)
• Acid Deposition Monitoring Network in East Asia (EANET)

None of these address organic N deposition routinely. An exception to this general 
pattern is Fluxnet Canada, part of a worldwide programme to assess biosphere-
atmosphere carbon fluxes. Its 2003 protocols (Fluxnet Canada 2003) propose ana-
lysing for dissolved organic and inorganic N in ~10 % of the samples collected for 
dissolved organic carbon (C). Fluxnet links more than 10 national and regional 
networks, with over 540 sites, giving a fair global coverage (http://en.wikipedia.
org/wiki/File:Fluxnet_Map.jpg). If all these partners followed Fluxnet Canada’s 
example, using agreed protocols defined with the input of the organic N research 
community, the resulting organic N data would allow for clearer patterns to be es-
tablished and more detailed characterisations to be made.

12 Assessment and Characterisation of the Organic Component of Atmospheric …  
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12.4  What Can We Say About Its Role?

In developing global N budgets and process understanding, we are often really only 
considering three-quarters of the real picture. As a result of data sparseness and poor 
characterisation, the role of organic N in ecosystems and Earth system processes 
remains much less clear than for other species. With the exception of the gas-phase 
organic nitrates, important in secondary organic aerosol formation processes, de-
position and atmospheric chemistry models have only cursory representations of 
organic N and its multiphase behaviour. We have limited options for testing hypoth-
eses about its sources, behaviour and consequences.

Understanding this invisible quarter of deposited N would help in understand-
ing nutrient enrichment, especially for coastal zones and forest and bog ecosystems 
where concerns about exceedance of critical loads of atmospheric pollution are se-
rious. It is implicated in “renoxification” processes, where reservoir species such 
as peroxyacytyl nitrate (PAN) transport NOx-derived anthropogenic N over long 
distances, extending the range of adverse impacts of pollution. Much more needs to 
be known about its behaviour in association with particulate matter, perhaps play-
ing an important role in aerosol and cloud formation (e.g. Zhang and Anastasio 
2001). Russell et al. (2003) and Sandroni et al. (2007) report significant deposition 
of “insoluble N” in atmospheric aerosol, strongly associated with anthropogenic 
emissions, raising new questions about bioavailability.

The question of the balance of anthropogenic and natural sources for organic N 
is still wide open. Part of the reasoning in the original Rothamsted studies for disre-
garding organic N was their assessment that it was likely to be from locally recycled 
natural material, and they were focusing on known anthropogenic additions. The 
pattern that is emerging in the literature now is that organic N (as seen in rain and 
aerosol) is a nexus of biogenic and anthropogenic emissions. Contributory processes 
are the reactions of biogenic C compounds with NOx (most recently, Goldstein et al. 
2009); reactions of soot with NOx and ammonia (Chang and Novakov 1975); and 
even the action of methane oxidiser bacteria on fossil fuel leaks (Davis et al. 1964). 
Isotopic studies so far (Cornell et al. 1995; Russell et al. 1998; Kelly et al. 2005; 
Chen 2008) have not untangled the pattern of sources; if anything, new results are 
adding to the perplexity. Huygens et al. (2005) describe method improvements for 
15N analysis in total dissolved N in aquatic samples, using pre-combustion and an 
elemental analyser for sample introduction, but overall, robust separation methods 
for organic 15N analysis remain a challenge.

New analytical techniques are being applied to aerosol and rain analysis that will 
enrich this picture. Methods include Fourier Transform-Ion Cyclotron Resonance-
Mass Spectrometry (Altieri et al. 2009; Koch and Dittmar 2006), giving elemental 
compositions of N-containing compounds with positive and negative ion detec-
tion. These studies confirm that much of what we see as organic-N are actually 
not N-rich compounds, and indicate that reduced N species, rather than oxidised 
forms, are important contributors. They offer scope for improved fingerprinting, 
say for thermogenic compounds. Time-of-Flight mass spectrometry (Bruns et al. 
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2010) enables steadily improved identification of multifunctional compounds, and 
single-particle methods (e.g., laser ablation) give information on composition and 
formation (e.g., internally or externally mixed systems). Developments in nuclear 
magnetic resonance mean that bulk matter can be better characterised into known 
biogenic and anthropogenic compounds. For example, Herckes et al. (2007) show 
that in fog, biogenic organic C is important, while the organic N includes amines, 
nitrate esters, peptides and nitroso compounds—direct evidence of a complex, poly-
disperse “soup”.

12.5  Next Steps

The indications in recent research that organic N is the product of mixed anthropo-
genic and biogenic sources may not be surprising from a chemical point of view, but 
it presents new challenges for global-scale assessment and any model-based projec-
tions. The impetus in modelling for improved understanding of the climate system 
is focusing attention on multi-phase atmospheric processes (particularly secondary 
aerosol formation) and representations of the dynamic coupling of nitrogen and 
other key elements with the C cycle. A key challenge is the attribution of climatic 
changes, natural system variability and anthropogenic perturbation to the patterns 
and trends being observed. What we already know about organic N brings a differ-
ent perspective to processes such as biomass burning, deforestation or afforestation, 
and changing energy sources, which are seen as carbon issues. We need tools that 
will enable us to explore climate and biogeochemical feedbacks, which in turn re-
quires a rethink of research method design. Organic N is one instance where model 
development and process understanding is still constrained by a shortage of data 
and an unmet need for an overarching synthesis.
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