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    Abstract  

  Collagens are the most abundant components of the extracellular matrix 
and many types of soft tissues. Elastin is another major component of 
certain soft tissues, such as arterial walls and ligaments. Many other mol-
ecules, though lower in quantity, function as essential components of the 
extracellular matrix in soft tissues. Some of these are reviewed in this 
chapter. Besides their basic structure, biochemistry and physiology, their 
roles in disorders of soft tissues are discussed only briefl y as most chapters 
in this volume deal with relevant individual compounds. Fibronectin with 
its muldomain structure plays a role of “master organizer” in matrix 
assembly as it forms a bridge between cell surface receptors, e.g., integ-
rins, and compounds such collagen, proteoglycans and other focal adhe-
sion molecules. It also plays an essential role in the assembly of fi brillin-1 
into a structured network. Laminins contribute to the structure of the extra-
cellular matrix (ECM) and modulate cellular functions such as adhesion, 
differentiation, migration, stability of phenotype, and resistance towards 
apoptosis. Though the primary role of fi brinogen is in clot formation, after 
conversion to fi brin by thrombin, it also binds to a variety of compounds, 
particularly to various growth factors, and as such fi brinogen is a player in 
cardiovascular and extracellular matrix physiology. Elastin, an insoluble 
polymer of the monomeric soluble precursor tropoelastin, is the main 
component of elastic fi bers in matrix tissue where it provides elastic recoil 
and resilience to a variety of connective tissues, e.g., aorta and ligaments. 
Elastic fibers regulate activity of TGFβs through their association 
with fi brillin microfi brils. Elastin also plays a role in cell adhesion, cell 
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migration, and has the ability to participate in cell signaling. Mutations in 
the elastin gene lead to cutis laxa. Fibrillins represent the predominant 
core of the microfi brils in elastic as well as non- elastic extracellular 
matrixes, and interact closely with tropoelastin and integrins. Not only do 
microfi brils provide structural integrity of specifi c organ systems, but they 
also provide a scaffold for elastogenesis in elastic tissues. Fibrillin is 
important for the assembly of elastin into elastic fi bers. Mutations in the 
fi brillin-1 gene are closely associated with Marfan syndrome. Fibulins are 
tightly connected with basement membranes, elastic fi bers and other com-
ponents of extracellular matrix and participate in formation of elastic 
fi bers. Tenascins are ECM polymorphic glycoproteins found in many con-
nective tissues in the body. Their expression is regulated by mechanical 
stress both during development and in adulthood. Tenascins mediate both 
infl ammatory and fi brotic processes to enable effective tissue repair and 
play roles in pathogenesis of Ehlers-Danlos, heart disease, and regenera-
tion and recovery of musculo- tendinous tissue. One of the roles of throm-
bospondin 1 is activation of TGFβ. Increased expression of thrombospondin 
and TGFβ activity was observed in fi brotic skin disorders such as keloids 
and scleroderma. Cartilage oligomeric matrix protein (COMP) or throm-
bospondin- 5 is primarily present in the cartilage. High levels of COMP are 
present in fi brotic scars and systemic sclerosis of the skin, and in tendon, 
especially with physical activity, loading and post-injury. It plays a role in 
vascular wall remodeling and has been found in atherosclerotic plaques as 
well.  
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     The connective tissue in general is comprised of 
three groups of proteins: collagens, proteogly-
cans, and a variety of different glycoproteins. In 
addition to the main weight-bearing structural 
proteins of connective tissue – the fi bril forming 
collagens (discussed in the Chap.   2     by 
Mienaltowski and Birk) – as well as the often 
hydrophilic role of proteoglycan proteins (dis-
cussed in the Chap.   4     on proteoglycans by 
Halper, and the Chap.   13        on Animal Models by 
Birk), growth factors (discussed in Chap.   5     by 
Halper), other proteins are also important for 
structure and signaling within the matrix tissue 
of the body. Several of these proteins are cur-
rently being identifi ed as having several impor-
tant functions in the developmental phase of the 
tissue, where these molecules can act as media-

tors of signaling or structural changes in the 
matrix tissue. Further, many of the glycoproteins 
have been demonstrated to play important roles 
not only during normal tissue physiology, but 
also in response to maintaining tissue homeosta-
sis and responding and adapting to perturbations 
such as mechanical loading/unloading, or tissue 
damage and subsequent regeneration. Further, 
several of them are important for pathological 
tissue response, e.g., in cancer, fi brosis or con-
nective tissue anomalies. Of interest as far as the 
adaptation of these glycoproteins is, that several 
of them – including collagens and proteoglycans 
– can be modulated in their level of expression 
and synthesis by the degree of mechanical load-
ing that the specifi c tissue exposed to mechani-
cal loading senses [ 1 ]. In the following pages 
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some basic information about these glycopro-
teins is provided. However, as already mentioned 
above, because many of these glycoproteins are 
active participants in the pathogenesis of a vari-
ety of soft tissue diseases they will be discussed 
rather briefl y in this chapter as they are also 
described in several chapters dealing with spe-
cifi c disorders of soft tissues. 

3.1     Fibronectin 

 Fibronectin (FN) is a widely distributed multido-
main glycoprotein present in most extracellular 
matrices (ECM). It has a molecular weight of 
230–270 kD, and can, in addition to its presence 
in the extracellular matrix, also be detected at 
substantial concentrations in plasma. Fibronectin 
is composed of types I, II, and III repeating units 
(FNI, FNII and FNIII). Two intramolecular disul-
fi de bonds are formed within type I and type II 
modules to stabilize the folded structure. Type III 
modules are formed by seven-stranded β-barrel 
structures that lack disulfi des [ 2 ,  3 ]. The FN units 
or domains mediate self-assembly and ligand 
binding for collagen/gelatin, integrins, heparin, 
fi bronectin, and other extracellular molecules [ 4 ]. 
The 500-kDa FN dimer is formed through a pair 
of anti-parallel disulfi de bonds at the C terminus. 
FN exists in multiple isoforms generated by alter-
native splicing. The single FN gene transcript 
encodes 12 isoforms in rodents and cows, and 20 
isoforms in humans. Alternative splicing occurs 
by exon skipping at EIIIA/EDA and EIIIB/EDB 
and by exon subdivision at the V region/IIICS. 
Fibronectin is secreted in the form of soluble 
inactive dimers with disulfi de bonds that must be 
activated by interaction with α5β1 and other 
integrins [ 5 ,  6 ]. 

 Fibronectin is widely expressed in embryos 
and adults, especially in regions of active mor-
phogenesis, cell migration and infl ammation. 
Tumor cells contain in general reduced levels of 
fi bronectin, whereas fi bronectin levels are high 
in tissues undergoing repair (i.e., wound healing) 
and/or fi brosis. In the process of matrix assem-
bly, multivalent ECM proteins are induced to 

self- associate and to interact with other ECM 
proteins to form fi brillar networks. Matrix 
assembly is usually initiated by ECM glycopro-
teins binding to cell surface receptors, such as 
fi bronectin dimers binding to α5β1 integrin. 
Receptor binding stimulates fi bronectin self-
association mediated by the N-terminal assem-
bly domain and organizes the actin cytoskeleton 
to promote cell contractility. Fibronectin con-
formational changes expose additional binding 
sites that participate in fi bril formation and in 
conversion of fi brils into a stabilized, insoluble 
form. Once assembled, the FN matrix impacts 
tissue organization by contributing to the assem-
bly of other ECM proteins. Fibronectin plays an 
important role in fi brillogenesis in regard to ini-
tiation, progression and maturation of matrix 
assembly. The prominent role of fi bronectin in 
matrix assembly lies in fi bronectin ability, 
enabled by its multidomain structure, to bind 
simultaneously to cell surface receptors, e.g., 
integrins, and to collagen, proteoglycans and 
other focal adhesion molecules [ 7 ]. This property 
also makes it possible to mediate the assembly 
of several extracellular matrix protein, includ-
ing type I and III collagen, thrombospondin- 1 
and microfi brils [ 4 ]. Fibronectin is also called a 
“master organizer” by some investigators [ 4 ,  8 ]. 
Perhaps more important in the context of this 
volume is to emphasize the role fi bronectin plays 
in the assembly of fi brillin-1 into a structured 
network (see below).  

3.2     Laminin 

 Laminins are a family of large multidomain, 
heterotrimeric glycoproteins with molecular 
weights of 500–800 kDa, located in the basement 
membrane. Sixteen trimeric isoforms have been 
described in mouse and human tissues, and these 
isoforms vary in their cell and tissue specifi city. 
In general, each laminin isoform consists of three 
chains, α, β, and γ, and each isoform exists in 
fi ve, four, and three genetically distinct forms, 
respectively [ 9 – 11 ]. Most vertebrates have fi ve α, 
three γ and three to six β genes [ 11 ]. The large 
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range in size is due to variability in the chain size: 
the α chains are the largest (M r  ~200–400 kDa), 
both the β and γ chains range in size from 120 to 
200 kDa. In addition, all forms of these three 
chains are highly glycosylated, some have gly-
cosaminoglycan chains attached [ 9 ,  11 ]. 
Homologous tandem repeats of structural motifs 
are incorporated in all laminins, with more simi-
larities between β and γ chains. Laminins are 
cross- or T-shaped molecules with two or three 
short arms and one long arm. The short arms con-
sist of N-terminal parts of one of the three chains 
and they contain laminin-type epidermal growth 
factor-like (LE) repeats [ 11 ] The long arm con-
tains portions of all three chains [ 9 ]. Common to 
all laminins is a coiled- coil domain with about 80 
heptad sequence repeats at or close to the 
C-terminal end. This coiled-coil domain bears 
homology to segments of β and γ chains and is 
responsible for proper assembly of the trimer [ 11 , 
 12 ]. Assembly of the laminin molecule is also 
controlled to some extent by proteolytic process-
ing prior to laminin binding to its receptors [ 11 ]. 

 Laminins adhere to cells primarily via binding 
of the G domain of the α chains to integrins, dys-
troglycan, or sulfated glycolipids. The N-terminal 
globular domains of the α1 and α2 chains as well 
as the globular domains VI (LN) of the α5 chains 
can bind to several integrin isoforms (α1β1, 
α2β1, α3β1, and αVβ3). This process enables cell 
binding on both ends of laminins containing the 
three α chains. The laminin γ2 chain has been 
reported to bind α2β1 integrin. The N-terminal 
globular domains of some α-chains can also bind 
sulfatides. This type of binding may also link the 
laminin molecules to the cell surface. Laminins 
contribute to the structure of the ECM and infl uence 
associated cells in regards to adhesion, differen-
tiation, migration, stability of phenotype, and 
resistance towards apoptosis. Laminin molecules 
interact not only with collagen type IV, integrins 
and dystroglycans but also with other compo-
nents of the basal membrane matrix, and thus 
contribute to the overall structure. They can also 
interact with components in the underlying inter-
stitial stroma. The cellular effects of laminins are 
mediated largely via ligand binding to cell 
membrane receptors, and this signaling can alter 

transcription levels of genes and even infl uence 
chromatin remodeling of gene promoters. The 
insoluble network formed by laminin and type IV 
collagen plays a structural and functional role in 
the basement membrane and cells associated 
with it. Though at this point we do not know to 
what extent, if any, laminins play a role in the 
pathogenesis of connective and soft tissue dis-
eases it is clear that they contribute to normal 
function of tendons, blood vessels and other con-
nective soft tissues. For example, this network 
participates in transmission of the contractile 
force from the skeletal muscle to the tendons 
[ 13 ]. A decrease in laminin in the basement 
membrane covering the outermost aspect of the 
tendon was identifi ed in type IV collagen defi -
cient mice. This was accompanied by formation 
of spontaneous tendon adhesions [ 14 ]. That lami-
nins are, indeed, required for proper healing of 
tendons and other connective tissues, such as 
cornea, has been shown by Molloy et al. [ 15 ] and 
Sato et al. [ 16 ], respectively. There is some evi-
dence indicating increased expression of β2 chain 
of laminin in ascending aorta in patients with 
Marfan syndrome [ 17 ]. 

 Taken together laminins are not passive adhe-
sion proteins, but rather, they actively modulate 
cell behavior; infl uence differentiation, migra-
tion, and phenotype stability. They also inhibit 
apoptosis by signaling via cell membrane recep-
tors such as integrins and dystroglycan. However, 
the details of laminin signaling are still largely 
unexplored. Laminins constitute the fi rst ECM 
component appearing in the developing early 
embryo, and embryonic laminins have found an 
important use as culture matrices for stem cells. 
Other laminins are crucial for normal function of 
numerous tissues and organs, e.g., nerve, epithe-
lium, blood vessels, and kidney. The commercial 
unavailability of most laminin isoforms has ham-
pered in vitro studies. However, many isoforms 
have been offered recently by several companies 
as recombinant proteins, which may enable 
deeper insight into functional properties. Laminins 
may fi nd numerous new applications in cell biol-
ogy and cell therapy research. The vast complex-
ity of laminin effects cannot be explained solely 
by simple integrin binding and signaling [ 11 ].  
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3.3     Fibrinogen 

 Fibrinogen is a large, complex, fi brous glycoprotein 
with three pairs of polypeptide chains: Aα, Bβ 
and γ [ 18 ]. The chains are linked together by 29 
disulfi de bonds. Fibrinogen is 45 nm in length, 
with globular domains at each end and in the 
middle connected by α-helical coiled-coil rods 
and has M r  340 kDa. The E-region consisting of 
N-terminal ends of the six chains and the 
D-regions consisting of the C-terminal ends of 
the Bβ and γ chains and a portion of the Aα chain 
are separated by 3-stranded α-helical coiled- coil 
regions [ 19 ]. Both strongly and weakly bound 
calcium ions are important for maintenance of 
fi brinogen structure and functions. The fi brino-
peptides, which are in the central region, are 
cleaved by thrombin to convert soluble fi brino-
gen to insoluble fi brin polymer, via intermo-
lecular interactions of the “knobs” exposed by 
fi brinopeptide removal with “holes” always 
exposed at the ends of the molecules. Fibrin 
monomers polymerize via these specifi c and 
tightly controlled binding interactions to make 
half-staggered oligomers that lengthen into pro-
tofi brils. The protofi brils aggregate laterally to 
make fi bers, which then branch to yield a three- 
dimensional network-the fi brin clot-essential for 
hemostasis. X-ray crystallographic structures of 
portions of fi brinogen have provided some details 
on how these interactions occur. Finally, a trans-
glutaminase, Factor XIIIa, covalently binds 
specifi c glutamine residues in one fi brin mole-
cule to lysine residues in another fi brin molecule 
via isopeptide bonds, stabilizing the clot against 
mechanical, chemical, and proteolytic insults 
[ 20 ]. The gene regulation of fi brinogen synthesis 
and its assembly into multichain complexes 
proceed via a series of well-defi ned steps. 
Alternate splicing of two of the chains yields 
common variant molecular isoforms. The 
mechanical properties of clots, which can be 
quite variable, are essential to fi brin’s functions 
in hemostasis and wound healing [ 21 ]. The fi bri-
nolytic system, with the zymogen plasminogen 
binding to fi brin together with tissue-type plas-
minogen activator to promote activation to the 

active enzyme plasmin, results in digestion of 
fi brin at specifi c lysine residues. Fibrin(ogen) 
also specifi cally binds a variety of other proteins, 
including fi bronectin, albumin, thrombospondin, 
von Willebrand factor, fi bulin, fi broblast growth 
factor-2, vascular endothelial growth factor, and 
interleukin-1. Though its ability to bind to a vari-
ety of compounds, particularly to various growth 
factors makes fi brinogen a player in cardiovascu-
lar and extracellular matrix physiology [ 18 , 
 22 – 25 ], fi brinogen does not appear to play a 
specifi c role in pathogenesis of disorders dis-
cussed in this volume. 

 Studies of naturally occurring dysfi brinogen-
emias and variant molecules have increased our 
understanding of fi brinogen’s functions. Fibrinogen 
binds to activated αIIbβ3 integrin on the platelet 
surface, forming bridges responsible for platelet 
aggregation in hemostasis, and also has impor-
tant adhesive and infl ammatory functions through 
specifi c interactions with other cells [ 26 ]. 
Fibrinogen-like domains originated early in evo-
lution, and it is likely that their specifi c and 
tightly controlled intermolecular interactions are 
involved in other aspects of cellular function and 
developmental biology.  

3.4     Elastin 

 Elastin is an insoluble polymer of the monomeric 
soluble precursor tropoelastin. Elastin is the main 
component of elastic fi bers in matrix tissue, and 
as such it is the main contributor to the elasticity 
of these fi bers [ 27 ,  28 ]. Tropoelastin is encoded 
by a single human gene and is secreted as an 
~60 kDa unglycosylated protein by a variety of 
cells, including fi broblasts, endothelial and smooth 
muscle cells, chondrocytes and  keratinocytes 
[ 28 ]. The splicing of the primary tropoelastin 
transcript is tissue-specifi c, and thus allows for 
conformational and functional adjustment for 
each location [ 29 ]. The primary tropoelastin 
sequence is an arrangement of hydrophobic 
domains rich in valine, proline and glycine, 
providing elasticity to the fi nal product, elastin. 
These hydrophobic domains alternate with 
hydrophilic domains which contain lysine residues 
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whose role it is to stabilize elastin microfi brils by 
cross-linking [ 30 – 32 ]. However, before this can 
occur tropoelastin units are chaperoned to the 
extracellular surface [ 33 ] where they coacervate 
[ 34 ] into protein-dense spherules [ 35 ] which then 
undergo cross-linking and fi bril assembly. Ninety 
per cent of the fi nal product, i.e., of an elastic 
fi ber, consists of a central amorphous core of 
elastin surrounded by a layer of microfi brils com-
posed mostly of glycoprotein fi brillin, but also of 
many other proteins, among them fi bulins, colla-
gen VIII, and emilins with microfi brils as well 
[ 29 ,  36 ]. Proteoglycans, including biglycan [ 37 ] 
and glycosaminoglycan heparan sulfate [ 38 ] have 
been detected within the elastic core. Moreover, 
it has been shown that the presence of sulfated 
proteoglycans within the extracellular matrix 
regulates elastin assembly [ 39 ]. In addition, water 
plays an important role not just in the three 
dimensional organization of elastin molecules 
but also in the fi nal degree of hydration and elas-
ticity [ 38 ]. Elastic fi bers form an interconnecting 
fenestrated network of lamellae in the arterial 
media. The lamellae are layers of elastic fi bers 
surrounded by circumferentially oriented smooth 
muscle cells and collagen fi bers [ 40 ]. 

 The high content of hydrophobic amino acids 
makes elastin one of the most chemically resistant 
and durable proteins in the entire body [ 41 ]. It is 
distributed throughout the body in the form of 
tissue-specifi c elastic networks [ 28 ]. Elastin con-
taining fi bers provide elastic recoil in tissues 
where repetitive distention and relaxation is a 
requirement for their function, and is found typi-
cally in skin, lungs, ligaments, tendons and vascu-
lar tissues [ 42 ]. The relative content of elastin can 
vary from around a few percent in skin, to more 
than 70 % in some ligament structures in the ani-
mal kingdom. Elastic fi bers are essential for 
proper function of at least three areas. As a major 
structural component elastic fi bers provide elastic 
recoil and resilience to a variety of connective tis-
sues, e.g., aorta and ligaments. Elastic fi bers regu-
late activity of TGFβs through their association 
with fi brillin microfi brils. In addition, elastin also 
plays a role in cell adhesion, cell migration, sur-
vival and differentiation, and can, to some extent, 
act as a chemotactic agent [ 27 ,  29 ]. Elastin, and 

for that matter tropoelastin as well, is also a 
signaling molecule. Tropoelastin inhibits prolif-
eration of arterial smooth muscle cells, induces 
the formation and organization of actin stress 
fi bers and acts as a chemotactic agent [ 43 ]. 

 Elastin and collagen are the dominant com-
ponents of the ECM in large elastic arteries, 
such as aorta [ 40 ]. The two compounds play 
different, but complementary roles in arterial 
physiology: reversible extensibility during 
cycling loading is provided by elastin [ 40 ,  44 ], 
whereas strength and the ability to withstand 
high pressure is the responsibility of collagen 
[ 40 ,  45 ]. The assembly of elastic fi bers pro-
ceeds only during tissue development, and 
cedes with maturation so older tendons contain 
less elastin then young tendons [ 46 ,  47 ]. In 
effect that means that with aging the stiffness 
of arterial wall increases due to degradation 
and fragmentation of elastic fi bers [ 40 ,  48 ]. 
Matrix metalloproteinases (MMPs) are just 
some of the proteases participating in this 
destructive process [ 40 ,  49 ]. Increased levels 
of MMP-1 and MMP-9 have been detected in 
aortic aneurysms [ 50 ]. Local blockage of MMP 
activities in animal models either by TIMP-1 
[ 51 ], inhibition of MMP-2 by calpain-1 inhibi-
tion [ 52 ], or by doxycycline, an inhibitor of 
MMPs [ 53 ] shows potential treatment venues. 
Whether they can be utilized for treatment of 
even prevention of complications of Marfan 
syndrome or related disorders remains to be 
seen. It is thought that production of collagen 
increases to compensate for the elastin defi cit, 
however, this pushes the arterial wall towards 
increased stiffness [ 40 ]. Increased elastin pro-
duction has been documented in some animal 
models of hypertension, but it is either not high 
enough [ 54 ] or the new elastin fi bers are not 
assembled properly [ 55 ]. 

 Elastin gene mutations can be divided into 
two groups [ 40 ]. Autosomal dominant supraval-
vular aortic stenosis is a representative of the fi rst 
group. Besides aortic stenosis, patients develop 
hypertension, increased arterial stiffness leading 
to congestive heart failure [ 40 ]. Hypertrophy and 
hyperplasia of smooth muscle cells in the media 
of the affected arteries is due to fragmentation of 
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elastic lamellae and changes in ECM composition 
[ 56 ]. This pathology is due to loss of function 
mutations in the elastin ( ELN ) gene [ 57 ]. 
Consequently, the mutant elastin protein is 
nonfunctional and does not interfere with the 
production and assembly of normal, functional 
elastin in heterozygous individuals who are then 
less affected than homozygous people [ 40 ]. 

 An autosomal dominant form of cutis laxa 
belongs to the second group which encompasses 
disorders resulting from missense mutation, usually 
near the 3′ end of the transcript [ 40 ,  58 ,  59 ]. Cutis 
laxa and related disorders are described in more 
detail in Chap.   11     by Eva Morava et al. The 
mutant elastin interferes with normal assembly, 
metabolism and function of elastic fi bers [ 59 ]. 

 Lack of elastin in the body is fatal. Elastin 
knockout mice ( Eln−/− ) die shortly after birth 
with subendothelial cells accumulation blocking 
blood fl ow and with markedly increased arterial 
stiffness [ 40 ,  60 ]. The presence of additional 
lamellar units in heterozygous  Eln+/−  mice 
indicates an attempt to compensate and to 
remodel in a response to increased hemody-
namic stress during development [ 61 ]. Fibrillin-1 
hypomorphic mice ( mgR/mgR ) serve as a model 
of Marfan syndrome because of aneurysm for-
mation in the ascending aorta and elastolysis in 
all segments of aorta [ 62 ].  

3.5     Fibrillins 

 Because of close association of mutated fi brillin- 1 
with Marfan syndrome which is being discussed 
in detail in Chap.   6     by Cook and Ramirez, only a 
brief description of fi brillins is provided in this 
chapter. Fibrillins are a group of large extracel-
lular glycoproteins (~350 kDa) [ 29 ] that consists 
of three isoforms, fi brillin-1, -2, and -3. Fibrillin 
molecules contain 40–80 amino acid residues, 
several calcium-binding epidermal growth factor 
(cbEGF)-domains interspersed with several 
eight-cysteine-containing (TB) motifs binding 
TGFβ [ 4 ,  29 ,  63 ]. No other extracellular proteins 
contain that much cysteine as fi brillins [ 42 ]. 
Whereas fi brillin-2 and fi brillin-3 are mostly 
expressed in embryonic tissues with the exception 

of peripheral nerves and, to lesser degree, skin 
and tendon [ 64 ,  65 ] fi brillin-1 is a protein appearing 
in both embryonic and adult tissues [ 65 – 67 ]. 

 Fibrillins represent the predominant core of 
the microfi brils in elastic as well as non-elastic 
extracellular matrixes, and interact closely with 
tropoelastin and integrins, e.g., through direct 
bindings. Not only do microfi brils provide struc-
tural integrity of specifi c organ systems, but they 
also provide a scaffold for elastogenesis in elastic 
tissues such as skin, lung, and vessels [ 46 ]. Thus, 
fi brillin is important for the assembly of elastin 
into elastic fi bers. The precise arrangement of 
fi brillin within microfi brils is a matter of specula-
tion; several working models have been sug-
gested to explain the architecture of microfi brils 
[ 67 ]. It is known that different mutations in dif-
ferent regions, including the propeptide sequence 
encoded by the C-terminal domain, of the fi bril-
lin- 1 gene lead to impaired assembly of microfi -
brils in individuals with Marfan syndrome 
[ 67 – 69 ]. Robinson et al. provide an excellent, 
more comprehensive review of these issues, 
including review of self-assembly of fi brillins 
and cross-link formation in fi brillin assembly 
[ 67 ]. Besides fi brillin and elastin, the two major 
components, many other proteins participate in 
the makeup of microfi brils. As noted above fi bro-
nectin in particular plays an essential role in this 
process, more specifi cally, through binding of a 
C-terminal fi brillin-1 region with the fi bronectin 
gelatin-binding region [ 8 ]. It is interesting to note 
that homocysteinylation of fi bronectin in homo-
cystinuria reduces fi bronectin dimers to mono-
mers, and, as a consequence, impairs assembly of 
fi brillin and microfi brils. Similar impairment is 
the result of homocysteinylation of fi brillin-1 
[ 70 ]. 

 As already mentioned above, fi brillins contain 
several TGFβ-binding motifs, this feature makes 
their structure, and, in part, their function. similar 
to that of latent-TGFβ-binding proteins (or 
LTBPs) (see more in Chap.   6    ), [ 67 ]. 

 Mutations in genes for fi brillin-1 and -2 lead 
to several disorders in people: mutation in fi bril-
lin- 1 can result in autosomal dominant Marfan 
and Weill-Marchesani syndromes, mutation in 
fi brillin-2 leads to Beal syndrome [ 4 ,  67 ].  
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3.6     Fibulins 

 Fibulins are a group of seven glycoproteins that 
are expressed and secreted by many cell types 
and tissues, and that are tightly connected with 
basement membranes, elastic fi bers and other 
components of extracellular matrix. The mem-
bers of the fi bulin family are divided into class I 
and II, based on their length and domain structures 
[ 71 ]. Class II consists of short fi bulins 3, 4, 5 and 7. 
Fibulins 3–5 participate in elastic fi ber formation 
and are expressed during embryonic develop-
ment, especially in skeletal and cardiovascular 
tissues [ 71 ]. This is facilitated by Ca 2+  [ 72 ]. 
Fibulin-3 is predominantly found in mesenchyme 
that develops into cartilage and bone, fi bulin- 4 is 
markedly expressed in heart muscle, fi bulin-5 
highly in vasculature, and fi bulin-7 is highly 
expressed in teeth, placenta, hair follicles and 
cartilage. The molecules of short fi bulins contain 
tandem repeats of six cbEGF domains that are 
connected by one amino acid in a pattern similar 
to the one found in fi brillin-1 [ 73 ]. Fibulin 5 con-
tains an arginine-glycine-aspartic acid (RGD) 
motif which mediates binding to integrin recep-
tors on endothelial cells and vascular smooth 
muscle cells [ 74 ]. This step is necessary for elas-
tic fi ber assembly [ 71 ]. Fibulin-5 also inhibits 
α5β1 and α4β1 fi bronectin receptor- mediated 
downstream signaling [ 71 ]. The C-terminal fi bu-
lin module (which, by the way, is present in all 
fi bulins) contains an elastic-binding domain in 
fi bulin-5 [ 75 ]. The same module in fi bulin-5 also 
interacts with lysyl oxidase-like 1, 2 and 4 (Loxl 
1, Loxl 2 and Loxl4), enzymes playing crucial 
role in cross-linking [ 76 ,  77 ] whereas it is the 
N-terminal domain responsible for binding to 
Lox in fi bulin-4 [ 78 ]. Lysyl oxidases, including 
those binding to fi bulin-5 and -4 mediate cross-
linking of tropoelastin monomers into insoluble 
elastin polymer [ 79 ]. The binding between the 
C-terminal module of fi bulin-3 and tissue inhibi-
tor of metalloproteinase 3 is another example of 
close relationship between a short fi bulin and 
connective tissue metabolism [ 80 ]. The level of 
fi bulin-5 is particularly high in the cardiovascular 
system and lung, though fi bulin-4 is expressed in 

the outer layer of media of large blood vessels, 
and fi bulin-3 appears in capillaries, skin and the 
basement membrane [ 71 ]. The participation of 
fi bulin-5 in elastogenesis is solely due to its 
exclusive binding to tropoelastin but not to 
polymerized elastin in vitro [ 75 ]. Its role is inhi-
bition of excessive tropoelastin coacervation into 
large aggregates, and consequently this allows 
for integration of microassembles of tropoelastin 
into the microfi bril scaffolding [ 71 ]. In addition 
to fi brillins-1 and -2, as also discussed above 
earlier in this chapter under Elastin, fi bulins are 
present in microfi brils of scaffolding for elastic 
fi bers as well [ 81 ]. 

 Fibulins serve not only as structural ECM 
components, but also act as mediators of several 
cellular processes, such as cell growth, differen-
tiation, angiogenesis and tumor growth. Thus 
they serve as modulators of cellular behavior and 
function [ 82 ]. The molecular mechanism of fi bu-
lin activity is not fully explained, but high levels 
of fi bulin are often observed in cartilage, espe-
cially during development. Fibulin-1 (molecular 
weight around 100 kDa) was originally thought 
to be an intracellular molecule linking cytoskel-
etal components to β integrins, but later it was 
shown that fi bulin-1 was also present in fi bril 
matrix surrounding fi broblasts in culture as well 
as in embryos [ 83 ]. Fibulin-2 demonstrates some 
overlap with fi bulin-1, but its expression is more 
prominent in the developing heart, both aortic 
and coronary vessels [ 84 ]. Studies in animals 
lacking fi bulins demonstrate importance of these 
glycoproteins in pathogenesis of a variety of 
developmental and pathological processes, e.g., 
impaired tissue elasticity, altered vision and 
reduced vascular formation. 

 The role of fi bulins and elastin in several 
human diseases is being discussed in several 
chapters of this volume.  

3.7     Tenascins 

 Tenascins are ECM polymorphic glycoproteins 
with high molecular weights between 150 and 
380 kDa. They are a family of multimeric pro-
teins labeled as tenascin-C, -R, -W, -X and -Y 
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[ 85 – 87 ]. Tenascins are composed of identical 
subunits built from variable numbers of repeated 
domains, including heptad repeats, EGF-like 
repeats, fi bronectin type III domains and a 
C-terminal globular domain similar to that seen 
in fi brinogens. Whereas tenascin-R is predomi-
nantly found in the central nervous system, the 
other members of the tenascin family are found 
more widespread in connective and soft tissues in 
the body. With regards to tenascin-R, its expression 
is predominantly present during development of 
the CNS. Tenascin-X and –Y are predominantly 
seen in skeletal muscle connective tissue, and 
tenascin-C and –W have both been observed in a 
variety of developing tissues, and a large interest 
has been invested in these tenascins in relation to 
tumor development and growth, where they play 
important roles. 

 The fi rst described tenascin was the C isomer. 
Tenascin-C is a large monomer of M r  300 kDa, 
assembled into a hexamer. As other tenascins the 
molecule consists of a N-teminal domain, EGF- 
like repeats, several fi bronectin type II domains 
and a C-teminal fi brinogen-like globular domain 
[ 87 ]. Tenascin-C is transiently expressed in the 
mesenchyme around developing organs such as 
kidney, teeth and mammary glands. It is present 
in the periostium, ligaments, tendons, myo- 
tendinous junctions, smooth muscle and peri-
chondrium both during embryonic development 
and in adult tissues. However, expression of 
tenascin-C in the adult tissue is generally low, 
only to be transiently elevated upon tissue injury 
and often down-regulated again after tissue repair 
is complete. Although tenascin-C shares struc-
tural relationship to fi bronectin, it differs in adhe-
sive function. Where fi bronectin is adhesive in 
nature, tenascin-C is only weakly adhesive – if at 
all – for most cells, and it does in fact limit the 
fi bronectin-mediated cell spreading when the two 
proteins are combined [ 88 ]. Tenascin-C inter-
feres with cell spreading by inhibiting binding of 
fi bronectin to its co-receptor syndecan-4, and 
integrin α5β1 signaling to FAK and RhoA is also 
impaired whereby focal adhesions are dimin-
ished [ 89 – 92 ]. 

 The expression of tenascin-C is regulated by 
mechanical stress both during development and 

in adulthood, and its expression is predominantly 
present in tissues experiencing high tensile stress, 
such as ligaments, tendons and smooth muscle 
[ 93 ]. Mechanical loading of muscle induces 
tenascin-C mRNA and protein in endomysial 
fi broblasts of the affected holding muscle [ 94 ]. 
Tenascin-C was over-expressed in hypertensive 
rat arterial smooth muscle [ 95 ] and in the perios-
teum of rat ulnae loaded in vivo, but tenascin-C 
expression was low in the osteotendinous inter-
phase of immobilized rat legs [ 94 ]. Interestingly, 
elevated levels of tenascin-C were found in the 
blood of human patients with rheumatoid arthritis 
[ 96 ], and in synovial fl uid after injury to the 
human and canine knee [ 97 ]. 

 In relation to ECM tissue damage, tenascin-C 
has been demonstrated to play different roles that 
can mediate both infl ammatory and fi brotic 
processes to enable effective tissue repair. For 
example, tenascin-C makes a prominent appear-
ance in pathological heart conditions. Though 
barely expressed in the normal adult heart its 
level increases in the heart after myocardial 
infarction, during myocarditis, hypertensive heart 
disease, to name just a few examples [ 87 ]. 
According to the current hypothesis tenascin-C is 
directly involved in ventricular remodeling 
through releasing cardiomyocytes from the 
adherence to the extracellular matrix and through 
upregulation of matrix metalloproteinases [ 87 , 
 98 ]. A high level of expression of tenascin-C in 
cardiac tissues correlates with poor patient prog-
nosis [ 99 ]. Interestingly, tenascin-C was found in 
calcifi ed aortic valve, together with matrix metal-
loproteinase- 12 where they likely contribute to 
the fragmentation of elastic fi bers [ 100 ]. 

 Tenascin-X differs from tenascin-C and -R 
in that it is less glycosylated, and that it is pres-
ent in almost all tissues, and especially widely 
expressed in developing fetal tissues. It is 
highly expressed in skeletal muscle, heart, ten-
don and skin. It plays an interesting role in rela-
tion to physical activity, as it is known to be 
upregulated in skeletal muscle in relation to 
acute mechanical loading and known to be 
present in tissues that are subjected to high 
stress [ 101 ,  102 ]. Tenascin-Y is an avian equiv-
alent of tenascin-X [ 85 ,  103 ]. 
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 Overall, tenascin proteins are found to be 
dys- regulated in many pathological conditions 
like cancer, heart- and vessel disease, as well as in 
connective tissue diseases with manifestations in 
skin, tendon and muscle like e.g., special forms 
of Ehlers-Danlos syndrome (more discussed in 
Chap.   9    ) and Dupuytren disease [ 104 ]. Further, 
tenascins have been shown to be important in 
regeneration and recovery of musculo-tendinous 
tissue, in that they possess a de-adhesive effect 
whereby they potentially can contribute to a 
coordinated tissue reorganization and build-up 
[ 105 ]. It has been suggested that they “orchestrate” 
muscle build up after injury [ 106 ]. Thus it is 
likely that tenascins are important for ensuring 
mechanical properties of weight bearing ECM as 
well as ensuring an optimal recovery of ECM 
after mechanical injury.  

3.8     Thrombospondins 

 Thrombospondins (TSPs) are a group of fi ve 
modular glycoproteins, each one of them encoded 
by a separate gene [ 107 – 109 ]. TSP-1 and TSP-2 
form group A, and TSPs 3–5 are in group B. 
Their binding to various components of the 
extracellular matrix, such as heparan sulfate 
proteoglycans, and to numerous cell membrane 
receptors enables TSPs to modulate cell func-
tions in a variety of tissues [ 107 ]. They are 
considered to be “adhesion-modulating” compo-
nents of the extracellular matrix [ 110 ]. 

 In particular, we will discuss TSP-1 and 
TSP-5 as their involvement in metabolism of the 
extracellular matrix is pertinent to issues dis-
cussed in this volume. The activation of latent 
TGFβ by TSP-1 plays an important role in 
wound healing, and also in pathogenesis of 
fi brotic processes in kidney and heart in diabetes 
[ 111 ,  112 ]. Increased expression of TSP-1 
(accompanied by increased TGFβ activity) was 
observed in fi brotic skin disorders such as 
keloids [ 113 ] and scleroderma [ 114 ]. 

 TSP-1, normally stored in platelets, is released 
from their α-granules upon injury so it can par-
ticipate in tissue repair [ 115 ]. It is a homotrimer 
of three 150 kDa subunits. Each unit is composed 

of N-terminal laminin G-like domain, and in the 
last 650 amino acids, of several EGF-like 
domains, 13 calcium-binding repeats and a globular 
L-type lectin-like domain. These regions in the 
last 650 amino acids are usually referred to as 
the C-terminal or “signature” region [ 110 ]. With 
glycosylation the size of TSP-1 balloons to stag-
gering M r  ~450 kDa [ 116 ]. Its expression in adult 
organism is minimal (except for storage pool in 
platelets) and is upregulated only as a result of 
injury [ 117 ] and/or chronic disease [ 116 ,  118 ]. 
TSP1 binds to many cell membrane receptors, 
including CD47 [ 116 ], integrins [ 119 ], heparan 
sulfate and LDL [ 120 ]. TSP-1 not only binds to 
latent TGFβ through thrombospondin repeats, 
but it also activates this growth factor [ 121 ]. It is 
thought that TSP-1 facilitates presentation of 
TGFβ to the TGFβ receptor [ 115 ]. TSP-1 was 
shown to upregulate type I collagen expression 
through its N- and C-terminal domains which 
may explain the sometimes opposing cellular 
responses stimulated by TSP-1 [ 115 ,  122 ]. TGFβ 
activity induced by TSP-1 is a normal process 
during early tissue repair, however, if TSP-1 
expression persists in later stages of wound heal-
ing fi brosis may prevail [ 115 ]. In addition, TSP-1 
regulates activity of several other growth factors, 
most notably, VEGF, EGF and PDGF. In particular, 
TSP-1 plays an important role in transactivation 
of EGF receptors in epithelial and endothelial 
cells, and thus can disrupt endothelial barrier 
[ 123 ]. Though TSP-1 has hypertensive effect on 
cardiovascular system and is known to play a role 
in pathogenesis of atherosclerosis and peripheral 
vascular disease [ 124 ], the activity is mediated 
through control of nitric oxide synthesis (and 
thus increasing arterial resistance), rather than 
through an impact on or binding to a structural 
component of the blood vessel wall [ 124 ]. TSP-2 
is involved in collagen fi bril assembly and is 
capable of inhibition of angiogenesis and pro-
tease activity, but unlike TSP-1 it does not activate 
TGFβ [ 87 ]. 

 However, there is at least one syndrome where 
a mutation in a gene encoding an enzyme respon-
sible for proper TSP-1 function leads to structural 
changes which form the basis of the so called 
Peters Plus syndrome. This syndrome is an 
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autosomal recessive disorder phenotypically 
characterized by eye defects, short stature, devel-
opmental delay and cleft lip due to a mutation of 
a gene encoding a β1,3-glucosyltransferase 
which adds a glucose to  O -linked fucose (and 
producing a rare glucose-β 1,3-fucose disaccha-
ride) and which is responsible for glycosylation 
of thrombospondin type 1 repeats [ 125 ,  126 ]. 
Beside TSP-1, properdin, F-spondin, some 
members of a-disintegrin-and-metalloproteinase-
with- thrombospondin-like-motifs family (ADAMTS-
13 and ADAMTSL-1) carry the same disaccharide 
[ 125 ,  126 ]. Heart defects, such as hypoplastic left 
heart syndrome [ 127 ], patent ductus arteriosus, 
and atrial septal defect are present is some variants 
[ 128 ]. Though the eye involvement is usually 
characterized by anterior eye chamber defects 
leading to glaucoma [ 125 ,  128 ], corneal pathol-
ogy has been recognized in some cases as well, 
and then it consists of intracorneal fi brosis [ 129 ] 
and keratolenticular adhesions [ 125 ,  128 ].  

3.9     Cartilage Oligomeric 
Matrix Protein (COMP) 
or Thrombospondin-5 

 COMP or thrombospondin-5 belongs to the family 
of 5 extracellular calcium- and glycosaminoglycan- 
binding proteins that play a role predominantly 
during development, angiogenesis and wound 
healing. It consists of fi ve identical subunits that 
are linked together at their N-terminal pentamer-
ization end to result in an almost “star-like” 
structure and has M r  ~524 kDa [ 130 ]. COMP 
shares a conserved multidomain architecture in 
its C-terminal region with TSP-1 [ 110 ]. It also 
contains eight calmodulin units, four EGF-like 
repeats, and a globular C-terminal domain [ 130 , 
 131 ], and the 5 “arms” have on their C-terminal 
end high affi nity binding sites for type I, II and 
IX collagen [ 132 ,  133 ], and for fi bronectin [ 134 ]. 
Thrombospondin-5/COMP is present primarily 
in cartilage, and has been suggested to be important 
in relation to cartilage turnover and pathogenesis 
of osteoarthritis [ 135 ]. It is also expressed in 
other connective tissues like tendon, especially if 
the tissue has undergone strenuous mechanical 

loading [ 136 ,  137 ]. The exact role of COMP in 
the fi bril formation and assembly in the extracel-
lular matrix is becoming better understood, and it 
is thought that COMP facilitates the joining of 
collagen molecules during formation of fi bril 
structures [ 137 ,  138 ]. It has been shown that high 
levels of COMP are present in fi brotic scars and 
systemic sclerosis of the skin [ 136 ,  139 ]. It has 
been suggested that a very high concentration of 
COMP can in fact inhibit collagen fi bril forma-
tion [ 115 ]. 

 COMP is expressed in normal tendon where 
its mRNA is confi ned to tenocytes and the protein 
itself was located in the normally aligned fi ber 
structures together with type I collagen. Virtually 
no COMP (and no type I collagen), but only type 
III collagen was found in the normal endotenon 
[ 137 ]. Physical activity leads to increased expres-
sion of COMP, at least in the equine tendon [ 136 ], 
as do pathological processes. High levels of 
COMP were identifi ed in the synovial fl uid 
obtained from the sheaths of the equine superfi cial 
digital fl exor tendons diagnosed with synovitis 
[ 140 ]. Likewise, injury to superfi cial digital 
fl exor tendons leads to increased expression of 
COMP, and type I and III collagens in the endo-
tenon and high levels of all three molecules can 
be visualized in the injured and granulation tissue 
[ 137 ]. Rock et al. have shown that COMP promotes 
attachment of ligament cells and chondrocytes to 
components of the extracellular matrix using two 
mechanisms which involve CD47 and integrins. 
Such data indicate an important role for COMP 
in formation of structural scaffolding, an essen-
tial step in cell attachment to the extracellular 
matrix and in matrix-cell signaling [ 131 ]. 

 In addition, new data indicate that COMP, and 
its degradation by ADAMTS-7, plays an impor-
tant role in vascular remodeling [ 141 ]. COMP 
has been found in atherosclerotic plaques and 
lesions forming in arteries undergoing re-stenosis 
[ 142 ], together with SLRPs, such as decorin 
[ 143 ]. It has been suggested that COMP pro-
motes differentiation of vascular smooth muscle 
cells and that binding and degradation of COMP 
by ADAMTS-7 in injured arteries enables migra-
tion of vascular smooth muscle cells and neo-
intima formation. The hope is that ADAMTS-7 
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may be suitable as a therapeutic agent in combat-
ing restenosis of atherosclerotic blood vessels 
after angioplasties and related procedures [ 141 ]. 
More recent study from the same laboratory 
shows that COMP inhibits vascular smooth mus-
cle calcifi cation by interacting with bone mor-
phogenetic protein-2 and that the COMP in 
atherosclerotic arteries story is a little bit more 
complicated than initially thought [ 144 ]. 

 Though COMP has been involved in metab-
olism of multiple tissues, including cartilage, 
tendons and blood vessels the only mutations in 
the COMP gene known to be responsible for 
pathological conditions so far identifi ed are 
those affecting the skeleton, such as pseudoa-
chondroplasia and multiple epiphyseal dysplasia 
[ 131 ,  145 ].     
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