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    Abstract   

  Tendons and ligaments are connective tissues that guide motion, share 
loads, and transmit forces in a manner that is unique to each as well as the 
anatomical site and biomechanical stresses to which they are subjected. 
Collagens are the major molecular components of both tendons and 
ligaments. The hierarchical structure of tendon and its functional properties 
are determined by the collagens present, as well as their supramolecular 
organization. There are 28 different types of collagen that assemble into 
a variety of supramolecular structures. The assembly of specifi c supra-
molecular structures is dependent on the interaction with other matrix 
molecules as well as the cellular elements. Multiple suprastructural assem-
blies are integrated to form the functional tendon/ligament. This chapter 
begins with a discussion of collagen molecules. This is followed by a 
definition of the supramolecular structures assembled by different 
collagen types. The general principles involved in the assembly of 
collagen-containing suprastructures are presented focusing on the 
regulation of tendon collagen fi brillogenesis. Finally, site-specifi c differ-
ences are discussed. While generalizations can be made, differences exist 
between different tendons as well as between tendons and ligaments. 
Compositional differences will impact structure that in turn will deter-
mine functional differences. Elucidation of the unique physiology 
and pathophysiology of different tendons and ligaments will require 
an appreciation of the role compositional differences have on collagen 
suprastructural assembly, tissue organization, and function.  
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2.1         Introduction 

 The composition and structure of tendons and 
ligaments play important roles in their functions. 
Tendons attach muscles to bones, and ligaments 
act to connect bone to bone across a joint space. 
Both tendons and ligaments are fi brous connective 
tissues that are composed of cells within an extra-
cellular matrix rich in collagens, proteoglycans, 
and water. However, the distinct function of 
each connective tissue is intricately linked to 
its specifi c composition and resulting structure. 
This also can be described for tendon type or 
location (e.g., axial versus limb, fl exor versus 
extensor) and for regions of tendons (e.g., mid-
substance versus enthesis). The composition of 
tendons and ligaments allows these connective 
tissues to help guide motion, to resist abnormal 
displacement of bones and center the actions of 
several muscles, and to share load and distribute 
force. The general compositions of tendons and 
ligaments are similar. Both are composed of 
water (50–60 % for tendons and 60–70 % for 
ligaments), collagens (70–80 % dry weight for 
tendons and more than 80 % for ligaments), 
and proteoglycans, including small leucine-rich 
proteoglycans [ 1 ]. The collagens present and 
the supramolecular structures assembled play 
signifi cant roles in the function of these musculo-
skeletal connective tissues. Tendons are hierar-
chical structures with structure and function 
being closely linked (Fig.  2.1 ). Tendons are 
composed primarily of collagen fi brils. Bundles 
of fi brils are organized as fi bers. Fibers are 
grouped together with tenocytes as fascicles, which 
are surrounded by a cellular, loose connective 
tissue, the endotenon. The outer edge of a bundle 
of fascicles comprising the tendon is demarcated 

by a contiguous epitenon cover. Structure and 
composition of such collagen- rich tissues allow 
for tendons and ligaments to be relatively compliant 
at low energy, low loading forces, yet to increase 
in stiffness with increasing forces and loads.

   This chapter provides an overview of collagens 
with a focus on tendons and ligaments. The fi rst 
section provides an overview of collagens focus-
ing on those collagens found within tendons 
and ligaments. This is followed by a discussion 
of collagen synthesis, fi bril assembly, as well as 
fi bril growth, and maturation from the assembly 
of protofi brils to the organization of fi brils into 
mature fi bers. Finally, the tissue structure and 
function of the collagen-rich extracellular matrix 
of connective tissues like tendons and ligaments 
are discussed in the context of differing roles for 
the collagens in musculoskeletal physiology.  

2.2     Collagens 

 Collagens are proteins that are major components 
of the extracellular matrix of connective tissues. 
Members of the collagen family are trimers. They 
have at least one collagenous or COL domain as 
well as non-collagenous or NC domains. The 
number and structure of COL and NC domains 
are dependent upon the specifi c collagen type. 
The importance of these domains will be dis-
cussed. Among the genomes of vertebrates and 
higher invertebrates, there are 28 distinct collagen 
glycoproteins that are encoded by at least 45 
genes. These collagens have been given Roman 
numeral designations (I–XXVIII) in chronologi-
cal order of discovery, and they are classifi ed by 
type based on domain structure and their supra-
structural organization. For each collagen type, 
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each genetically distinct alpha chain is designated 
by Arabic numerals. The alpha chains of one col-
lagen type are unique from the alpha chains of 
another collagen type. Each distinct alpha chain is 
encoded by a different gene, and each distinct 
alpha chain has its own primary (domain) struc-
ture which contributes to the classifi cation by col-
lagen type. For example, the human α1(I) chain is 
encoded by the  COL1A1  gene and the mouse 
α1(II) chain by the  Col2a1  gene. Collagens can be 
homotrimeric; that is, they are composed of three 
identical alpha chains, like [α1(II)] 3  for collagen 
II. However, collagens also can be heterotrimeric, 
comprised of alpha chains encoded by different 
genes of the same collagen type, like [α1(I)] 
[α2(I)] 2  for collagen I. Moreover, it is possible for 
a single collagen type to have multiple chain com-
positions, like [α1(V)] [α2(V)] 2 , [α1(V)] [α2(V)] 
[α3(V)], or [α1(V)] 3  for collagen V. 

 Collagens may be grouped into classes based 
upon their suprastructural organization (Table  2.1 ). 
Some collagens are fi bril-forming; for example, 
collagens I, II, and III. These collagens form 
fi brils with a distinct 67 nm periodicity. There are 
also Fibril-Associated Collagens with Interrupted 
Triple helices (FACIT) collagens that associate 
with collagen fi brils and interact with collagenous 

and non-collagenous proteins. Collagens in each 
category have their own specialized function 
and contribute to higher order tissue structures. 
As collagens from various categories assemble 
together with varying abundance and with co-
polymerization with other non-collagenous 
macromolecules, they contribute to a tissue 
suprastructure and thus to its function. Likewise, 
with development and growth as well as repair 
and remodeling, the relative abundance and 
localization of different collagenous and non-
collagenous macromolecules are major determinants 
of the structure and function of that tissue. This is 
certainly true of tendons and ligaments.

   In tendons and ligaments, greater than 90 % of 
the connective tissue is composed of collagen 
I [ 1 ]. While collagen I is the predominant collagen 
in these tissues, other collagen types and non- 
collagenous macromolecules add diversity to the 
matrix and regulate just how fi bril and fi ber 
assembly occurs. This ultimately leads to tissue- 
specifi c structure and organization. As is the case 
with tendons by type, location, and even by 
zone within each tendon, collagen-containing 
suprastructures function differently based upon 
their complex macromolecular compositions 
that include other collagen types as well as 

  Fig. 2.1     Hierarchical 
structure of tendon . 
Tendons are hierarchical 
structures composed 
primarily of collagen 
fi brils. Triple helical 
collagen molecules 
assemble to form fi brils. 
Fibrils bundle together to 
form fi bers. Within the 
mature tendon, fi bers are 
grouped together with 
tenocytes within fascicles 
that are surrounded by a 
cellular, loose connective 
tissue, the endotenon. The 
outer edge of a bundle 
of fascicles is the epitenon; 
it contiguously covers the 
outside of the tendon       
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non- collagenous components. These additional 
macromolecules may be substantial or only 
occur in minute quantities. However, typically 
the architecture and function of tendons and 
ligaments are determined by the composite struc-
ture of collagen suprastructures. In the following 
section, the collagens contributing to the supra-
structural organization of tendons and ligaments 
will be reviewed.  

2.3     Fibril-Forming Collagens 

 The fi bril-forming collagen subfamily includes 
collagens I, II, III, V, XI, XXIV and XXVII. 
Collagens I, II, III, V, and XI have been found in 
tendons and in ligaments [ 1 – 3 ]. These collagens 
have a long uninterrupted triple helical domain 
(ca. 300 nm). Fibril-forming collagen genes clus-
ter into three distinct subclasses[ 4 ] and this 
carries over into functional subclasses. Collagens 
I, II and III are the most abundant proteins in the 
vertebrate body and are the bulk components of 
all collagen fi brils. Within tendons and ligaments, 

type III collagen is found in greater abundance 
during embryonic development; however, with 
maturation levels of collagen III decrease, though 
in the chicken it still persists in the endotenon 
and tendon sheath [ 5 ]. Moreover, in mature ten-
dons and ligaments of rabbits, it has been noted 
that collagen III comprises 5 % and 10 %, respec-
tively, of all collagen content [ 6 ]. Otherwise, col-
lagen I is the predominant collagen of the tendon 
and ligament mid-substance. It should be noted 
that collagen II is generally found within the 
fi brocartilaginous zone of the enthesis site for 
both tendons and ligament [ 7 ,  8 ]. Collagens V 
and XI are quantitatively minor collagens found 
co-assembled with types I, II and III; they are 
found on the surfaceome (i.e., plasma membrane 
and pericellular matrix) of tendon fi broblasts [ 9 ]. 
This fi bril-forming subclass retains portions of 
the N-terminal propeptide and is involved in the 
regulation of fi bril assembly.[ 2 ] Collagens XXIV 
and XXVII make up the third subclass and have 
differences relative to the other fi bril-forming 
collagen types including, shorter helical regions 
that are interrupted. Their structural organization 

   Table 2.1    General classifi cation of collagen types   

 Classifi cation  Collagen types  Supramolecular structure 
 Fibril-forming collagen  I, II, III  Striated fi brils 

 V, XI  Striated fi brils, retain 
N-terminal regulatory domains 

 XXIV, XXVII  Unknown 
 FACIT a  collagens  IX, XII, XIV  Associated with fi brils, other 

interactions 
 FACIT-like collagens  XVI, XIX, XXI, XXII  Interfacial regions, basement 

membrane zones 
 Network-forming collagens 
  Basement membrane  IV  Chicken wire network with 

lateral association 
  Beaded fi lament-forming  VI  Beaded fi laments, networks 
  Anchoring fi brils  VII  Laterally associated anti-parallel 

dimers 
  Hexagonal networks  VIII, X  Hexagonal lattices 
 Transmembrane collagens  XIII, XVII, XXIII, XXV  Transmembrane and shed 

soluble ecto-domains  Gliomedins, ectodysplasin 
 Multiplexin collagens 
(Endostatin–XV and -XVIII) 

 XV, XVIII  Basement membranes, cleaved 
C-terminal domains infl uence 
angiogenesis 

 Other molecules with 
collagenous domains 

 XXVI, XXVIII  Collagenous domains in 
primarily non-collagenous 
molecules 

 Acetylcholinesterase, adiponectin, C1q, 
collectins, surfactant protein, others 

   a Fibril-associated collagen with interrupted triple helix  
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and specifi c roles remain to be elucidated, and 
they have yet to be found within tendons and 
ligaments. 

 The fi bril-forming collagens are synthesized 
and secreted as procollagens. Procollagens contain 
a non-collagenous C-terminal propeptide and 
an N-terminal propeptide. The N-propeptide is 
composed of several non-collagenous domains 
and a short collagenous domain. The presence of 
the propeptides prevents premature assembly 
of collagen molecules into fi brils. The initial 
assembly of collagen into fi brils is regulated by 
the processing of the propeptides which involves 
several enzymes. The C-propeptides are processed 
by bone morphogenetic protein 1(BMP-1)/tol-
loid proteinases or furin [ 10 ,  11 ]. The processing 
of the N-propeptides involves certain members 
of the a-disintegrin-and-metalloproteinase-with- 
thrombospondin-like-motifs family (ADAMTS 
2, 3 and 14) as well as BMP-1 [ 12 ]. Propeptide 
processing enzymes have specifi city for each dif-
ferent collagen type.[ 10 ,  12 ] Propeptide process-
ing may be complete, thus leaving a collagen 
molecule with one large central triple helical 
domain and terminal, short non-collagenous 
sequences termed the telopeptides, as is the case 
for collagens I and II. However, with collagens 
III, V, and XI, processing can be incomplete, with 
the retention of a C-telopeptide and a partially 
processed N-propeptide domain, which have 
been implicated in the regulation of fi brillogene-
sis [ 13 – 17 ]. After propeptide processing, colla-
gen molecules self-assemble to form striated 
fi brils with a periodicity of 67 nm. Within each 
fi bril, collagen molecules arrange longitudinally 
in staggered array s.  Thus, a gap occurs between 
the ends of neighboring molecules, and this gap- 
overlap structure is present in all collagen fi brils 
with a 67 nm D-periodic banding pattern. This is 
presented schematically in Fig.  2.2a .

   Collagen fi brils are heterotypic. That is, they 
are assembled from mixtures of two or more 
fi bril-forming collagen types. In tendons and 
ligaments, collagens I and III are the quantitatively 
major fi bril-forming collagens with collagen II 
present within fi brocartilaginous regions. Heterotypic 
collagen fi brils of tendons and  ligaments also 
contain quantitatively minor amounts of collagens 

V and XI; as mentioned above, these regulatory 
fi bril-forming collagens are characterized by 
partial processing of N-propeptide domains. The 
N-propeptides have a fl exible or hinge domain 
(NC2) between the triple helical domain (COL1) 
and a short triple helical domain (COL2). The 
N-terminal domain (NC3) is composed of a vari-
able domain and a proline/arginine- rich protein 
(PARP) domain. Partial processing removes the 
PARP yet retains the hinge, COL2, and variable 
domains [ 18 – 20 ]. The regulatory fi bril-forming 
collagens co-assemble with the major fi bril-forming 
collagens in the heterotypic fi bril; however, the 
N-terminal domain of the regulatory fi bril forming 
collagens cannot be integrated into the staggered 
packing of the helical domains. The rigid COL2 
domain of the collagen V or XII molecule can 
project toward the fi bril surface in the gap region 
of the assembled fi bril (Fig.  2.2b ). Recent fi ndings 
have demonstrated that alteration in collagens V 
and/or XI affects tendon fi bril assembly during 
tendon development. Changes include altered fi bril 
structure, decreased fi bril number and abnormal 
fi bril and fi ber organization [ 21 ]. Thus, interactions 
between the fi brillar collagens affect the organization 
of collagen fi brils within collagen- rich tissues 
like tendons and ligaments [ 22 ].  

2.4     Fibril-Associated Collagens 
with Interrupted Triple 
Helices (FACIT) 

 FACIT collagens closely interact with fi bril- forming 
collagens. These molecules affect the surface 
properties of fi brils as well as fi bril packing. 
Collagens IX, XII, XIV and XX are FACIT col-
lagens. Type IX collagen is primarily found 
interacting with collagen II. Collagen IX is also a 
proteoglycan with covalently attached glycosami-
noglycan side chains in cartilage [ 23 ]. This is also 
true with Type XII collagen [ 24 ]. Collagens XII 
and XIV have been found throughout musculo-
skeletal connective tissues, including tendons and 
ligaments at various times during development; 
[ 25 ,  26 ] collagen XIV has been found specifi cally 
at the bone-ligament interface in bovine entheses 
[ 27 ] In general, FACIT collagens have short COL 
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domains interrupted by NC domains with an 
N-terminal NC domain that projects into the 
interfi brillar space (Fig.  2.3 ). FACIT collagens 
have two C-terminal domains NC1 and COL1 
that are believed to interact with the collagen I 
fi brils. At the N-termini of FACIT collagens, the 
large globular NC domains protrude from the 
fi bril surface [ 2 ]. FACIT collagens along the surface 
of fi brils have been shown affect fi ber suprastruc-
tures and tendon biomechanics [ 25 ,  26 ].

   The FACIT-like collagens have features in 
common with FACIT collagen, though they are 
structurally and functionally unique. This FACIT- 
like group includes collagens XVI, XIX, XXI and 
XXII, yet their roles in musculoskeletal connec-
tive tissues have yet to be elucidated [ 28 – 32 ].  

2.5     Basement Membrane 
Collagen 

 Collagen IV is considered a basement membrane 
collagen. It is the collagenous component of an 
integrated network of several matrix molecules 
that form an extracellular matrix that defi nes the 

interface between tissues [ 33 ,  34 ], including to 
some extent musculoskeletal tissues, particularly 
those that are adjacent to or fed by vasculature. 
For example, vasculature is found along the 
sheath, paratenon, and epitenon of tendons in a 
tendon-specifi c manner and basically along the 
“epiligament,” or surrounding surface layer of 
tissue for ligaments [ 1 ]. Throughout the body, 
there are diverse networks of basement mem-
branes composed of many macromolecules that 
are anatomical site-dependent. Likewise, there 
are several subtypes of collagen IV which are 
composed of different stoichiometries of 6 collagen 
IV-encoding genes COL4A1 through COL4A6 
reviewed by Khoshnoodi et al. [ 35 ].  

2.6     Beaded Filament-Forming 
Collagen 

 Collagen VI is ubiquitous within connective tis-
sue; it is found as an extensive fi lamentous net-
work with collagen fi brils, and is often enriched 
in pericellular regions. Collagen VI can be 
assembled into several different tissue forms, 

  Fig. 2.2     Fibril-forming collagens . ( a ) Fibril-forming 
collagens are synthesized as procollagens. Procollagens 
contain a central COL domain and fl anking propeptide 
N-and C-terminal NC domains. Propeptides are pro-
cessed and the resulting collagen molecules assemble to 
form striated fi brils. Each fi brillar collagen molecule is 
approximately 300 nm (4.4D) in length and 1.5 nm in 
diameter. Within the fi bril, the collagen molecules are 
staggered N to C in a pattern that gives rise to the 
D-periodic repeat. At the bottom of the panel, a 
D-periodic collagen fi bril from tendon is presented. The 

characteristic alternating light and dark pattern represents the 
respective overlap and gap regions of the fi bril. ( b ) Collagen 
fi brils are heterotypic. That is, they are co-assembled 
from quantitatively major fi bril-forming collagens (e.g., 
I, II, or III) and regulatory fi bril-forming collagens (V or 
XI). Regulatory fi bril-forming collagens have a partially 
processed N-terminal propeptide, retaining a non-collag-
enous domain that must be in/on the gap region/fi bril 
surface. The heterotypic interaction is involved in nucle-
ation of fi bril assembly (This fi gure has been adapted 
from Birk and Bruckner [ 131 ])       
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including beaded microfi brils, broad banded 
structures and hexagonal networks [ 36 – 38 ]. 
Collagen VI interacts with many extracellular 
molecules including: collagens I, II, IV, XIV; 
microfi bril-associated glycoprotein (MAGP-1); 
perlecan; decorin and biglycan; hyaluronan, hep-
arin and fi bronectin, as well as integrins and 
the cell-surface proteoglycan NG2. Based on the 
tissue- localization and large number of potential 
interactions, collagen VI has been proposed to 
integrate different components of the extracellu-
lar matrix, including cells [ 39 ]. Collagen VI also 
may infl uence cell proliferation, apoptosis, 
migration, and differentiation. Thus, collagen VI 
is involved in the development of tissue-specifi c 
extracellular matrices, repair processes and in the 
maintenance of tissue homeostasis. In musculo-
skeletal tissue, collagen VI has proven to be 
essential; mutations have been shown to cause 
various forms of muscular dystrophy as well as 
proximal joint contractures involving tendons in 

humans[ 40 – 43 ] ( See also Chap.     12       by Bushby ). 
In tendons, when collagen VI is removed via null 
 Col6a1  mouse model, tenocyte expression 
changes due to a lack of cell-matrix interactions 
[ 42 ]. In tendons, the absence of collagen VI results 
in increases in fi bril density, signifi cant reductions 
in load and stiffness, increased matrix metallo-
proteinase activity, and overall dysfunctional 
regulation of fi brillogenesis [ 42 ]. 

 Collagen VI is commonly formed as a hetero-
trimer composed of α1(VI), α2(VI) and α3(VI) 
chains [ 39 ,  44 ]. Each monomer has a 105 nm tri-
ple helical domain with fl anking N- and C-terminal 
globular domains. The α3(VI) chain of the hetero-
trimer can be processed extracellularly. In addi-
tion, structural heterogeneity is introduced by 
alternative splicing of domains, primarily of the 
α3(VI) N–terminal domain. Three additional α 
chains of type VI collagen have been described, 
α4(VI), α5(VI), α6(VI); these chains have high 
homology with the α3(VI) chain and may form 

  Fig. 2.3     FACIT collagens associate with fi brils . ( a ) The 
domain structures of FACIT collagens found in tendons and 
ligaments are illustrated. Note that all FACITs have alterna-
tive spliced variants, and collagen XII can have glycosami-
noglycan chains attached covalently. The FACIT collagens 
have 2-3 COL domains and 3-4 NC domains with a large 

N-terminal NC domain that projects into the inter-fi brillar 
space. ( b ) The FACIT collagens all associate with the sur-
face of collagen fi brils, including N-truncated isoforms due 
to alternative splicing in collagen XII. Collagen XII is capa-
ble of other non-fi bril interactions (not shown) (This fi gure 
has been adapted from Birk and Bruckner [ 131 ])       
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additional isoforms [ 45 ,  46 ]. The supramolecular 
assembly of collagen VI begins intracellularly 
(Fig.  2.4 ). Two collagen VI monomers assemble 
in a lateral, anti-parallel fashion to form a dimer; 
the monomers are staggered by 30 nm with the 
C-terminal domains interacting with the helical 
domains. The resulting overlap generates a central 
75 nm helical domain fl anked by a non-over-
lapped region with the N– and C-globular 
domains, each about 30 nm. The C-terminal 
domain-helical domain interactions are stabilized 
by disulfi de bonds near the ends of each over-
lapped region [ 47 ]. The overlapped helices form 
into a supercoil of the two monomers in the central 
region [ 48 ]. Two dimers then align to form, tetra-

mers, also intracellularly. The tetramers are 
secreted and associate end-to-end to form beaded 
fi laments extracellularly. The newly formed thin, 
beaded fi laments (3–10 nm) have a periodicity of 
approximately 100 nm; they laterally associate to 
form beaded microfi brils [ 36 ], and they are found 
in hexagonal lattices [ 49 ]. The broad banded 
fi brils represent continued lateral growth of 
beaded microfi brils and/or lateral association of 
preformed beaded microfi brils. In contrast, hex-
agonal lattices are formed via end-to-end interac-
tions of tetramers in a non-linear fashion [ 49 ].

   Like fi brillar collagen structures, collagen 
VI-rich supramolecular aggregates are composite 
structures with other integrated molecules that 

  Fig. 2.4     Assembly of collagen VI suprastructures . 
Collagen VI monomers have a C-terminal NC domain, 
a central triple helical domain, and an N-terminal NC 
domain. The monomers assemble N-C to form dimers. 
Tetramers assemble from two dimers aligned in-register. 
The tetramers are secreted and form the building blocks 

of 3 different collagen VI suprastructures: beaded fi la-
ments, broad banded fi brils and hexagonal lattices. 
These suprastructures form via end-to- end interactions 
of tetramers and varying degrees of lateral association 
(This fi gure has been adapted from Birk and Bruckner 
[ 131 ])       
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modulate the functional properties of the ultimate 
suprastructure. For example, biglycan interactions 
with the collagen VI tetramer induced formation 
of hexagonal lattices, instead of beaded microfi -
brils; though, decorin, which binds to the same 
site, was less effective in inducing hexagonal 
lattice formation [ 49 ]. Thus, analogous to fi bril 
formation, the interaction of small leucine- rich 
proteoglycans with collagen VI can infl uence the 
structure of the tissue aggregate and therefore its 
function. The interaction of collagens with such 
molecules in a multitude of ways allows for the 
assembly of different suprastructures in adjacent 
regions or tissues with different functions, even 
sometimes as simply as with the addition or 
removal of non-collagenous molecules.  

2.7     Network-Forming Collagens 

 Collagens VIII and X are closely related short 
chain collagens, with comparable gene and protein 
structures [ 39 ,  50 ]. While collagen VIII is not 
typically found in musculoskeletal tissues, collagen 
X has a very restricted distribution, found only in 
hypertrophic cartilage. This collagen is a homotri-
mer composed of α1(X) chains and the supramo-
lecular form is a hexagonal lattice [ 51 ]. Collagen 
X was recently reviewed [ 52 ].  

2.8     Transmembrane Collagens 

 Transmembrane collagens include collagens XIII, 
XVII, XXIII, and XXV. They are all homotrimers 
and contain an N-terminal cytoplasmic domain 
and a large C-terminal domain containing multiple 
COL domains with NC interruptions providing 
fl exibility. Transmembrane collagens are so classi-
fi ed because they have a hydrophobic membrane 
spanning domain. Between this domain and an 
adjacent extracellular linker domain is the fi rst 
COL domain involved in trimerization which is 
also subject to proteolytic cleavage generating a 
shed extracellular domain. Of the transmembrane 
collagens, collagen XIII is found in musculoskel-
etal tissues, particularly in myotendinous and 
neuromuscular junctions [ 53 ,  54 ].  

2.9     Procollagen Synthesis, 
Collagen Fibril Assembly, 
Growth and Maturation 

 Collagen synthesis, assembly, and maturation 
require a sequence of well controlled intracellular 
and extracellular events. Collagen genes are 
transcribed from DNA into mRNA within the 
nucleus. Transcripts are transported out of the 
nucleus and translated into procollagen mono-
mers, which are post-translationally modifi ed in 
the rough endoplasmic reticulum prior to assembly 
into procollagen triple helices. The extent of 
these modifi cations is affected by the rate of 
triple helix formation, which is in turn affected 
by the primary structure of the alpha chain pro-
peptides. For example, point mutations in the 
Gly-X- Y sequence may result in altered molecular 
properties for that chain as well as dysfunctional 
regulation of chain selection, helix formation, or 
post-translational modifi cation. These molecules 
are then secreted as procollagens, which prevents 
premature molecular assembly into suprastruc-
tures. Procollagens are then processed extracel-
lularly, in most cases, and require collagen 
type-specifi c metalloproteinases. Processing may, 
however, begin during the transport of newly 
synthesized procollagens to the cell surface [ 55 , 
 56 ]. Processed collagen triples helices are then 
cross-linked. The relationship between protein 
structure and triple helix assembly and collagen 
fi bril formation will be discussed below, as well 
as the growth and maturation of fi brils in tendons 
and ligaments.  

2.10     Triple Helix Assembly 
and the Impact of Primary 
Structure on Secondary, 
Tertiary, and Quaternary 
Structures 

 After collagen pre-pro-peptides have been trans-
lated, they are directed into the lumen of the rough 
endoplasmic reticulum (RER). Modifi cations in 
the pre-pro-peptide include cleavage of the 
N-terminal signal for transport to the RER so that 
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it becomes a propeptide, or a pro- alpha chain 
[ 57 ]. Pro-alpha chains undergo hydroxylation of 
prolyl and lysyl residues followed by glycosyl-
ation of hydroxylysyl residues. Three pro-alpha 
chains will trimerize; this involves the selection 
and alignment of appropriate alpha chains with 
subsequent assembly into specific trimeric 
collagen molecules [ 58 ]. Trimerization is initiated 
through interactions among the non-collagenous 
trimerization domains of alpha chains at their 
C-termini in the RER [ 57 ]. 

 The primary amino acid sequence of collagen 
alpha chains affects the protein structure at all 
other levels. The primary structure of the collagen 
alpha chain features a COL domain that will 
coil into a left-handed helix lacking intra-chain 
hydrogen bonds. Three alpha chains will super-
coil to form a triple helix. This parallel, right- 
handed superhelix is stabilized by inter-chain 
hydrogen bonds that are almost perpendicular 
to the triple helical axis. Because of the imino 
acid content, collagen polypeptides assume an 
elongated polyproline II-like helix with all 
peptide bonds in the  trans  confi guration. The 
pitch of the polyproline II helix in collagenous 
polypeptides corresponds to three amino acids, 
almost exactly. Steric constraints require that 
only glycine, the smallest amino acid, can occupy 
the positions at the center of the triple helix. 
Thus, the triple helical domains have a repeating 
(Gly-X-Y) n  structure with the X and Y positions 
being any of the 21 proteinogenic amino acids 
of the universal genetic code. However, the X 
and Y positions are typically occupied by proline 
and hydroxyproline, which are necessary for 
helix formation and stability, respectively. 
Replacement of the glycine residues with other 
amino acids interrupts the triple helix motif and 
causes the rod-like structures to have rigid 
kinks or fl exible hinges [ 59 ,  60 ]. This occurs in 
many collagen types with primary structures 
containing more than one helical domain thus 
providing fl exibility, e.g., in collagen V. However, 
the substitution of glycine residues also may be 
the result of missense mutations in collagen 
genes and manifest as the underlying etiology 
for mild or severe, systemic connective tissue 
diseases [ 61 ,  62 ]. 

 As post-translational modifi cation and triple 
helix assembly occur concomitantly, once initi-
ated, trimerization must be controlled to allow 
for alpha chain post-translational events like 
hydroxylation and glycosylation to occur. After 
or as collagen alpha chains are translated, amino 
acids within the triple helical domains of each 
chain can be modifi ed. Co-translational modifi -
cation of these domains includes hydroxylation 
and glycosylation. Collagen polypeptides contain 
two unique amino acids, hydroxyproline and 
hydroxylysine, which are important downstream 
for triple helix stability and glycosylation, 
respectively. As the propeptides are synthesized, 
these unique amino acids are introduced by 
enzymatic hydroxylation of almost all prolyl- and 
some of the lysyl residues in the Y-positions. 
Hydroxyproline residues are important in triple 
helix stability. The 4-trans hydroxyl group assists 
in directing the free hydroxyproline, similar to 
that of Y-hydroxyproline in collagen triple 
helices. The forced integration of proline into 
Y-positions absorbs more ring deformation when 
compared with physiological hydroxylated 
collagen [ 63 ,  64 ]. Collagens are further modifi ed 
post-translationally after secretion and during 
aggregate assembly. 

 Fibril structure also is affected by post- 
translational glycosylation of collagens. Covalent 
modifi cations occurring after polypeptide syn-
thesis are important in collagens and have an 
impact on fi bril assembly [ 65 – 67 ]. The circum-
ference of collagen triple helical domains is 
affected by the extent of hydroxylation of lysyl 
residues and subsequent galactosylation and 
glucosyl- galactosylation of hydroxylysyl residues. 
Intermolecular center-to-center distances correlate 
with the extent of glycosylation, particularly if 
post-translational modifi cations affect those 
regions of polypeptides situated in overlap regions 
of the fi bril. The extent of glycosylation of 
hydroxylysine modifi cations can be manipulated 
by features such as increased enzyme activity lev-
els[ 68 ] and disease-causing mutations [ 62 ]. Rates 
of procollagen triple helix formation can be 
substantially reduced in the rough endoplasmic 
reticulum by collagen mutations. Over- modifi cation 
leads to compromised fi brillar organization. Yet 
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different extents of glycosylation can serve as a 
physiological mode of regulation in normal 
native tissue, particularly when levels of post-
translational modifi cation are tissue- specifi c and 
thus contribute to the structural properties of 
tissues. Intrafi brillar water also has been shown 
to affect the molecular organization of collagen 
fi brils. As variable amounts of water are incorpo-
rated within the fi brils, intermolecular distances 
between lateral or longitudinal neighbors have 
been shown to differ [ 69 ,  70 ]. When collagen 
fi brils are dried, their D-periodicity shortens 
intermolecular lateral distances reduce. 

 Collagenous domains of alpha chains are 
distinctly rich in  cis -peptide bonds due to their 
high content of imino acids that favor  cis -peptide 
bond formation. Kinetically, a great deal of 
energy is required to cause  cis- peptide bonds to 
comply with triple helix formation. Isomerization 
of each  cis -peptide bond encountered is necessary 
during collagen triple helix formation which is a 
zipper- like process. Helix assembly thus involves 
a slow folding process when compared to other 
proteins [ 71 ,  72 ]. At the start of triple helix 
formation, a variable number of  cis  bonds are 
distributed throughout the still unfolded procol-
lagen polypeptides. Hence, the folding times 
required for full-length triple helix formation are 
heterogeneous depending upon kinetic obsta-
cles. In fi broblasts, the  cis  to  trans  isomerization 
of Gly-Pro-, but not X-Hyp peptide bonds, is 
catalyzed by cyclophilin B, which acts as pepti-
dyl prolyl  cis/trans -isomerase. Cyclophilin B 
can be inhibited by the immuno-suppressor 
cyclosporin A [ 73 ]. Moreover, cyclophilin B 
along with prolyl-3- hydroxylase and cartilage-
associated protein (Crtap) form a ternary com-
plex with high chaperone activity in the 
endoplasmic reticulum. Prolyl-3- hydroxylase 
introduces a single 3-Hyp-residue at the 
C-terminal end of the triple helical domain of 
nascent fi brillar procollagens. This ternary com-
plex localizes cyclophilin B-activity to the initiation 
sites for procollagen folding. This allows for 
effi cient catalytic isomerization of peptidyl-prolyl 
 cis  bonds. Such a role is supported by data 
from humans where null mutations in LEPRE1 
and CRTAP, the genes encoding human prolyl-

3-hydroxylase and Crtap, respectively, cause 
severe recessive osteogenesis imperfecta [ 74 ]. 

 Additional modifi cations occur  post- translati
onally after secretion of procollagen and during 
supramolecular assembly. Extracellular lysyl 
oxidases can convert the amino groups on some 
of the hydroxylysine- and lysine residues in the 
collagen polypeptide chain to aldehydes that 
form aldols or β-ketoamines [ 57 ]. This happens 
when the aldehydes of hydoxylysine or lysine 
residues react with aldehydes or amino groups on 
lysines, respectively, in other chains to generate 
intra- and inter-molecular covalent crosslinks 
[ 75 – 77 ]. In some cases, cross-linking of collagen 
molecules at early stages of aggregation can 
modulate the suprastructural outcome of fi brillo-
genesis or the formation of networks.  

2.11     Collagen Fibril Assembly 

 The assembly and deposition of collagen fi brils 
with tissue-specifi c structures and organizations 
involves a sequence of events that occur in both 
intracellular and extracellular compartments. 
Collagen molecules are synthesized, hydroxyl-
ated, glycosylated, assembled from three poly-
peptides, and folded in the rough endoplasmic 
reticulum. Then packaging of the trimers occurs 
in the Golgi, and transport is via specialized and 
elongated intracellular compartments with secre-
tion at the cell surface. Collagen fi brils are 
composites of different matrix molecules, and 
control of heteropolymeric mixing and trimer 
type stoichiometry begins within the intracellular 
compartments. Moreover, secretion of different 
matrix molecules and modifying enzymes occurs 
with specifi c spatial, temporal, and circumstan-
tial patterns. Therefore, the character of the 
assembled fi brillar matrix depends upon not only 
the collagen types synthesized, but on the regu-
lated interactions with procollagen processing 
enzymes, fi bril-associated molecules (e.g., pro-
teoglycans and FACITs), and adhesive glycopro-
teins. The spatial and temporal regulation of 
mixing during packaging and transport or at the 
sites of secretion provides a mechanism whereby 
limited numbers of matrix molecules can be 
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assembled to produce the diversity of structure 
and function observed across tissues. 

 Extracellularly in the developing tendon, fi bril 
assembly begins in deep recesses or channels 
defi ned by the fi broblast surface [ 55 ,  78 – 80 ]. In 
these micro-domains, protofi brils are assembled 
[ 78 ,  81 ]. These immature fi brils have small and 
uniform diameters as well as short lengths 
compared to mature fi brils. These extracellular 
channels have been shown to form at the time of 
secretion as specialized post-Golgi secretory 
compartments, fuse with the fi broblast membrane 
and are maintained due to slow membrane recy-
cling associated with the presence of the assem-
bled protofi bril [ 78 ,  81 ]. Other data also suggest 
that intracellular processing of procollagen may 
occur within elongated Golgi-to-plasma mem-
brane compartments (GPCs); this is followed by 
the extrusion of protofi brils through a cellular 
protrusion, where GPC fuse to fi broblast plasma 
membranes [ 55 ,  79 ]. Either way, protofi brils are 
ultimately present extracellularly. Once the 
protofi brils are deposited into the extracellular 
matrix, more compartmentalization occurs. That 
is, fi brils form small fi bers and then larger 
structures characteristic of the specifi c tissue 
(e.g., large fi bers in tendon). This compartmen-
talized hierarchy within the extracellular allows 
the fi broblast to exert control over the extracel-
lular steps of matrix assembly (Fig.  2.5 ).

2.12        Assembly and Growth 
of Mature Tendon 
Collagen Fibrils 

 In mature tendon, collagen fi brils are functionally 
continuous. That is, fi brils are long, though 
lengths unmeasured, and have diameters ranging 
between 20 and 500 nm depending on the tissue 
and developmental stage [ 82 – 84 ]. However, 
during tendon development collagen fi brils are 
assembled near the fi broblast surface as uniform 
and relatively short D periodic protofi brils with 
diameters in the range of 20–40 nm, lengths of 
4–12 μm, and tapered ends [ 81 ,  82 ,  85 ,  86 ]. 
The newly assembled protofi brils are deposited 
and incorporated into the developing tendon 

extracellular matrix as small bundles of fi brils or 
immature fi bers. There they are stabilized via 
interactions with macromolecules such as FACITs 
and small leucine-rich proteoglycans (Fig.  2.6 ). 
Tendon maturation continues with linear fi bril 
growth involving end overlap of the protofi brils, 
followed by lateral growth in tendons and liga-
ments. Lateral fi bril growth features the associa-
tion and fusion of fi brils laterally to generate 
larger diameter fi brils. This process involves 
molecular rearrangement of fi brils so that a cylin-
drical fi bril structure is generated. To accomplish 
this, some or all of the collagen stabilizing com-
ponents stabilizing are lost or replaced. 
Throughout this process, the number of intra- and 
intermolecular crosslinking plays an important 
role in regulation of structure turnover and stabil-
ity. Increases in stability generated by crosslink-
ing improve mechanical stability that varies by 
location within tendons and ligament and ana-
tomically throughout the body. The specifi c roles 
of collagen accretion in fi bril assembly/repair 
during regeneration remain to be elucidated. 
Moreover, contributions in tissue homeostasis 
and with normal turnover and repair are likely.

2.13        Regulation of Collagen Fibril 
Assembly and Growth 

 Regulation of collagen fi brillogenesis is tissue- 
specifi c. Within each tissue, interactions occur 
amongst many different classes of molecules, 
such as processing enzymes, heterotypic 
 fi bril- forming collagens, FACITs, and small 
leucine- rich proteoglycans (SLRPs) as well as 
other glycoproteins, such as, fi bronectin, tena-
sin X, etc. Many regulatory interactions occur 
and one way to impose some order on the discus-
sion is to consider three classes of interactions; 
molecules that act as organizers, nucleators, and 
regulators [ 87 ]. 

 For example, signifi cant increases in collagen 
fi bril diameters occur during growth and develop-
ment of tendon, and mechanical properties of the 
tendon are dependent on increases in fi bril diam-
eter seen.[ 88 ] Tendon fi broblasts express collagen 
I as the major fi bril-forming collagen with minor 
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quantities of collagen V. Thus, tendon fi brils are 
heterotypic, containing collagens I and V. 

 Collagens V and XI have been shown to 
nucleate collagen fi bril formation in self-assembly 
assays [ 89 – 92 ]. The alpha-chains of collagens V 
and XI are highly homologous; thus, these colla-
gens represent different isoforms of a single 
collagen type. A mouse model with a targeted 
deletion within the  Col5a1  gene is embryonic 

lethal due to a lack of fi bril formation in the 
mesenchyme; though collagen I is synthesized 
and secreted, protofi brils are not properly assem-
bled [ 91 ]. Similarly, in two separate mouse models 
where collagen XI is absent (cho/cho, ablated 
 Col11a1  alleles;  Col2a1 -null mice, from which 
the α3(XI) chain is derived), animals develop 
chondrodysplasia (cho) where cartilage is devoid 
of fi brils.[ 93 – 96 ] These data demonstrate a key 

  Fig. 2.5     Extracellular compartmentalization of fi bril and 
fi ber assembly by tenocytes . In the developing chicken ten-
don, extracellular compartmentalization of the different levels 
of matrix assembly is seen in both panels ( a ) and ( b ). These 
panels were generated from cross-sections of 14-day chicken 
embryo tendon cut perpendicular to the tendon axis A series 
of micro-domains are evident. Protofi brils are assembled in 
fi bril-forming channels ( arrowheads ). Protofi brils are 

deposited into the developing matrix in fi ber-forming spaces 
where fi bers coalesce to form fi bers. Fibers continue to 
become larger as a result of the aggregation of adjacent fi bers 
in a third domain. As cytoplasmic processes that defi ne fi ber-
forming compartments retract ( curved arrow ), fi bers (fi bril 
bundles) are allowed to coalesce into larger aggregates 
characteristic of mature tissue. Bar, 1 micrometer (Modifi ed 
from Birk and Linsenmayer 1994)       
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role for collagen V/XI in nucleation of assembly 
of short, small diameter protofi brils. 

 Under physiological conditions in vitro, col-
lagens I and II can self-assemble after long lag 
phases. The nucleation of fi bril formation by 
collagen V or XI provides a mechanism for the 

fi broblast to defi ne the site of fi bril formation. 
That is, the number of originating fi brils is 
controlled by the number of nucleation sites 
provided by the fi broblast. This feature is tissue-
specifi c. For example, in the cornea where smaller 
fi bril diameters are paramount to transparency, 

  Fig. 2.6     Model of the regulation of fi bril assembly. 
Model of the regulation of fi bril assembly . Fibril assembly 
involves a sequence of events. ( a ) First, nucleators (e.g., col-
lagen V and XI) initiate fi bril assembly at the fi broblast cell 
surface. Then immature, small diameter, short protofi brils 
are assembled. The nucleation process is cell directed 
involving interactions with organizers (e.g., integrins and 

syndecans) at the cell surface. ( b ) Protofi brils are deposited 
into the matrix and are stabilized by interactions with regula-
tors – other matrix components such as SLRPs and 
FACITs. ( c ) Changes in fi bril stabilization resulting from 
processing, turnover and/or displacement regulate linear and 
lateral growth to mature fi brils in a tissue-specifi c manner 
(This fi gure has been adapted from Birk and Bruckner [ 131 ])       
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collagen V is 10–20 % of the fi bril- forming col-
lagen content, and the many nucleation sites con-
tribute to many smaller diameter fi brils [ 97 ,  98 ]. 
However, in tendons where mechanical strength 
depends upon larger diameter fi brils, collagen V 
makes up 1–5 % of the fi bril-forming collagen 
content. One classic example of the collagen I/V 
interaction and its impact on structure is best seen 
in the classic form of Ehlers-Danlos Syndrome, a 
generalized connective tissue disorder where the 
majority of patients are heterozygous for muta-
tions in collagen V [ 99 ]. This disorder results in 
approximately 50 % of the normal collagen V. 
Affected patients have a dermal phenotype with 
large, structurally aberrant fi brils. Similarly, in 
the heterozygous ( Col5a1+/− ) mouse model, 
there was a reduction of 50 % in collagen V fewer 
fi brils assembled, indicating fewer nucleation 
events than the normal mice [ 91 ], a similar situa-
tion occurs in the tendon [ 21 ]. The reduction in 
nucleation sites makes collagen V a rate limiting 
molecule in this instance. The regulation of these 
collagen I/V interactions is coordinated by the 
domain structure at the sites of assembly and by 
other molecules that organize and sequester these 
interactions at the cell surface [ 9 ]. 

 The nucleation of protofi brils involves direc-
tion from cellular structures such as organelles, 
cytoskeletal components, cytoplasmic membrane 
domains, as well as organizing molecules. 
However, equally important are cell-defi ned 
extracellular domains. Without such direction, 
fi bril assembly is ineffi cient. For example, in 
monolayer cultures, in the absence of extracel-
lular matrix, procollagens are secreted freely 
into the media. Thus, organizing molecules 
provide a resource for tissue-specifi c coupling of 
fi bril assembly to the cell surface. Consequently, 
cell- directed positioning of the deposited matrix 
is possible as assembled protofi brils undock 
from the cell surface, are extruded from the cell, 
and are incorporated into the extracellular matrix 
so that nucleation sites might be re-primed for 
the next round of nucleation. 

 Cell-directed collagen fi bril assembly involves 
organizing molecules such as integrins and fi bro-
nectin. Fibronectin mediates the cell’s interaction 
with assembling collagen fi brils as well as with 

other extracellular matrix molecules. Fibronectin 
molecules assemble into fi brils via integrin inter-
actions [ 87 ,  100 ,  101 ]. The fi bronectin fi bril 
network contains multiple binding sites for 
collagen fi bril assembly. When binding sites are 
blocked in fi bronectin networks, collagen fi bril 
assembly is inhibited [ 102 ]. Moreover, modifi ca-
tions to fi bronectin-integrin interaction affect 
collagen fi bril assembly, suggesting both that the 
cytoskeleton is involved in some way with collagen 
fi bril assembly and that other direct interactions 
of integrins with other surface molecules are 
essential to fi bril assembly. 

 Once the protofi brils are assembled and 
deposited into the extracellular matrix, further 
assembly to the mature fi brils involves linear 
and lateral growth of the preformed intermedi-
ates. In tendons and ligaments, numerous mole-
cules are involved in the regulation of these 
steps. Two classes of regulatory molecules are 
the small leucine- rich proteoglycans (SLRPs) 
and the FACIT collagens. Both classes are fi bril- 
associated and molecules within each class have 
their own tissue-specifi c, temporal, and spatial 
expression patterns. Differences in expression 
patterns contribute to the differences in structure 
and function amongst tissues, including tendons 
and ligaments. 

 Small leucine rich proteoglycans (SLRPs) are 
important regulators of linear and lateral fi bril 
growth [ 103 ]. Two classes of SLRPs are 
expressed throughout tendon growth and matura-
tion. They are divided into class I (decorin and 
biglycan) and class II (fi bromodulin and lumican). 
When the genes for these molecules are specifi -
cally targeted via single or compound SLRP 
defi cient mice, their importance in regulation of 
linear and lateral fi bril growth in tendons is 
demonstrated [ 103 – 109 ]. In tendons, decorin and 
fi bromodulin are dominant in this regulation, and 
they can be modulated by biglycan and lumican, 
respectively [ 88 ,  110 ]. A lack of decorin, bigly-
can, or fi bromodulin leads to disruptions in fi bril 
growth, resulting in larger diameter fi bers, 
structural abnormalities, and biomechanical 
alterations in the tendon [ 88 ,  104 ,  111 – 114 ]. 
Moreover, synergistic (additive) effects are seen 
between classes when compound biglycan and 
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fi bromodulin defi ciencies occur that affect fi bril 
diameters, alter tendon biomechanics, and even 
promote ectopic ossifi cation within the tendon 
[ 104 ,  111 ,  115 ]. Unlike fi bril-forming collagens, 
SLRPs regularly turnover and more easily allow 
for changes in expression to affect fi brillogenesis 
and tendon structure throughout development, 
maturation, and injury. A more detailed descrip-
tion of activities mediated by SLRPs can be 
found in Chap.   4    . 

 The regulation of linear and lateral fi bril 
growth is also affected by FACIT collagens. As 
described earlier in the chapter, FACIT collagens 
are fi bril-associated molecules with large non- 
collagenous domains. Like SLRPs, FACITs also 
demonstrate differing tissue-specifi c and temporal 
expression patterns. Collagen IX is involved in 
regulation of fi bril growth in cartilage [ 23 ]. 
Collagen XIV has recently been implicated in the 
regulation of tendon fi bril growth [ 25 ]. Targeted 
deletion of collagen XIV in mouse models dem-
onstrated a premature entrance into the fi bril 
growth stage in tendons, resulting in larger diam-
eter fi brils in early developmental stages. This 
indicates that in some tissues like tendons 
FACITs may serve as ‘gate keepers’ regulating 
the transition from protofi bril assembly to fi bril 
growth during development. In the case of collagen 
XIV, it temporarily stabilizes protofi brils to 
prevent the initiation of lateral fi bril growth. The 
large non-collagenous domain and its inter- fi brillar 
location have been long suspected to play an 
additional role in fi bril packing. Control of fi bril 
packing also would infl uence lateral associations 
necessary for growth.  

2.14     Effects of Composition 
and Structure on Function 
for Tendons and Ligaments 

 Tendons and ligaments are dense connective 
tissues composed of similar proteins and other 
macromolecules. Both tissues have a large extra-
cellular matrix to cell ratio. However, slight 
differences in content and morphology allow for 
each tissue type to function in a distinct manner. 
The composition of the extracellular matrix in 

tendon is crucial for transmitting the force that is 
generated from muscle to bone. In contrast, the 
ligament has a more passive role of attaching 
bone to bone, guiding the joints motion, and 
preventing abnormal displacement of bones; to a 
minor extent, ligaments must also withstand load 
to resist joint instability. Collagens make up 
60–70 % and 70–80 % of the dry weight for liga-
ments and tendons, respectively [ 1 ,  116 ]. The 
predominant fi bril-forming collagen of tendons 
and ligaments is collagen I; other collagens 
within tendons and ligaments include III, V, VI, 
XII, and XIV. Besides collagens, tendons and 
ligaments contain many of the macromolecules 
mentioned throughout this chapter that regulate 
fi bril assembly as well as water (60–70 % in 
 ligaments and 50–60 % in tendons) [ 116 ]. Thus, 
while the content of these tissues is quite similar, 
there are distinctions in proportional composi-
tions of water and macromolecules. Likewise, 
there are several similarities in the morphologies 
of the two tissues. Both tendons and ligaments 
have many parallel fi bers that run along the axis 
of tension and these fi bers are composed of 
mainly fi brils containing collagen I. There is also 
a “crimping” pattern in the collagen fi bers of both 
tissues. However, there are several morphologi-
cal distinctions. For example, within ligaments 
there are many regions where collagen fi bers 
intertwine with adjacent fi bers so that subsets of 
fi bers are running obliquely at a 20–30° angle 
from the other fi bers running along one axis 
[ 117 ]. These differences in composition and 
morphology are enough to contribute to the 
function of the tissues. 

 Composition of both tendons and ligaments 
contributes to the nonlinear anisotropic mechanical 
behavior that is exhibited in both tissues. An 
example load-elongation curve is depicted in 
Fig.  2.7 . When loading conditions are low, tendons 
and ligaments are relatively compliant. In the 
“toe” region of the curve, initial load is affecting 
the “crimped” collagen fi bers and any viscoelas-
tic properties provided by molecules interacting 
with the collagens. The “toe” regions of the ten-
don is smaller because most collagen fi bers are 
oriented parallel to the directions of strain and 
thus less realignment is necessary. With increasing 
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tensile loads, these tissues – tendons more so 
than ligaments – become increasingly stiffer. At 
some point, load/length, or stiffness, will follow a 
linear slope as slippage occurs within collagen 
fi brils, next between fi brils, and then until the 
point of tearing as adjacent fi bril molecules slip 
away with tensile failure (termed, ultimate load 
or point of ultimate tensile stress). As the load 
proceeds from initial strain to the point of failure, 
the area under the curve is considered the total 
energy absorbed.

   Though both tendons and ligaments are con-
sidered to exhibit a nonlinear anisotropic 
mechanical behavior, differences in their load- 
elongation curves do exist. As already mentioned, 
the morphology of the ligament allows for the 
“toe” of the curve from the initial loading to be 
longer because the crimping pattern of the 
 ligament is more greatly affected by fi brils not 
oriented exactly parallel – sometimes even per-
pendicular to the direction of the load. The stiffness 
of tendons and ligaments are also distinct. In 
humans, the elastic modulus of a tendon 
(Achilles tendon, 375 ± 102 MPa; biceps tendon, 
421 ± 212 MPa; patellar tendon, 660 ± 266 MPa) 

is generally greater than that of a ligament 
(meniscofemoral ligament, 355 ± 234 MPa; 
anterolateral bundle of the posterior cruciate 
ligament, 294 ± 115 MPa; posterior bundle of the 
posterior cruciate ligament, 150 ± 69 MPa) [ 118 , 
 119 ]. Moreover the stiffness for tendons (Achilles 
tendon 430 N/mm) is generally greater than for 
ligaments (lateral/medial collateral ligaments, 
20 N/mm; anterior cruciate ligament, ACL 
182 N/mm) [ 120 – 122 ]. Greater values for elastic 
modulus and stiffness are indicative of stiffer, 
less fl exible connective tissue that is capable of 
absorbing and transmitting more energy. In addi-
tion, the tensile strength of tendons (50–150 N/m 2 ) 
is greater than that of ligaments (26–39 N/m 2 ) 
[ 123 – 125 ]. The compositional differences and 
distinctions in stiffness and tensile strength 
between tendons and ligaments all contribute to 
the understanding of how these two connective 
tissues function. 

 Tendons and ligaments have different roles. 
Tendons center the actions of several muscles 
into one axis of stress or strain. They distribute 
contractile force of muscles to bones, and they 
provide the muscle with distance from the insertion 

  Fig. 2.7     Load-elongation curve for tendons and 
ligaments . There are three distinct regions within the 
curve which defi ne the response to tensile loading. In 
the “Toe Region,” initial load is affecting the “crimped” 
collagen fi bers and any viscoelastic properties provided 
by molecules interacting with the collagens. In the 
“Linear Region,” increasing tensile loads cause lengthening 

as the tendon or ligament becomes increasingly stiffer. 
In this region, load/elongation will ultimately follow a 
linear slope as slippage occurs within and then between 
collagen fi brils. In the “Failure Region,” load continues 
to increase until the point of tearing as adjacent fi bril 
molecules slip away to tensile failure, or complete 
rupture       
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that might mechanically benefi cial. Tendons 
store elastic energy during locomotion, and 
prevent muscle injury with viscoelasticity. The 
relative stiffness and tensile strength of tendons is 
essential for maintaining force transmission. 
Ligaments, on the other hand, guide joint motion 
by attaching adjacent bones involved. This stabi-
lizes the joint and controls the range of motion 
when load is applied. Their fl exibility, relative to 
tendons, allows for range of motion within the 
joint. Tendons are susceptible to injury from 
overuse, wear and tear, and abrupt tears or avul-
sions when great forces are applied. Ligaments, 
though fl exible, have less tensile strength and are 
prone to shear force injuries. The functions of 
tendons and ligaments are made manifest by 
thorough consideration of their composition, 
morphology, and physiology. 

 While tendons and ligaments possess charac-
teristics that might distinguish one connective 
tissue from another, each of these tissue types 
also differs by anatomical location. For example, 
features of an Achilles tendon are not identical to 
those of a fl exor digitorus profundus tendon or a 
patellar tendon. Likewise, characteristics of an 
anterior cruciate ligament are not identical to 
those of a medial collateral ligament. In addition, 
within each tendon and ligament, there are zones 
where composition changes. For example, liga-
ments can be divided into ligament mid- substance, 
fi brocartilage, mineralized fi brocartilage, and 
bone. Similarly, tendons have musculotendinous 
junctions, mid-substance, fi brocartilage, and 
mineralized fi brocartilage to the enthesis. In the 
following sections, differences in collagen structure 
and physiology will be described by anatomic 
location and by zone.  

2.15     Effect of Anatomical 
Location on Tendons 
and Ligaments 

 While most tendons and ligaments are generally 
composed of the same content described through-
out the chapter, there are slight differences in 
gross structure and content that might better 
allow the tendon to function at its anatomical 

location [ 1 ]. Tendons like that of the fl exor 
digitorus profundus are round and contain the 
typical parallel bundles of collagen fi bers. 
However, tendons such as those in the rotator cuff 
are fl at, layered, and multi-directional; each 
tendon contains parallel collagen fi bers as well as 
fi bers that interdigitate obliquely with fi bers from 
other tendons within the rotator cuff [ 126 ]. 
Rotator cuff tendons also contain more proteo-
glycans throughout than the typical round ten-
dons; additional proteoglycans are believed to be 
aggrecan and SLRP biglycan [ 127 ]. A study of 
ovine tendons and ligaments demonstrated in an 
extracellular matrix analysis that each tendon 
(long digital extensor tendon, superfi cial digital 
fl exor tendon, patellar tendon) and ligament (lat-
eral collateral ligament, medial collateral liga-
ment, posterior cruciate ligament, anterior 
cruciate ligament) had its own unique range for 
matrix compositions when examining water, gly-
cosaminoglycan, and collagen content [ 116 ]. 
Moreover, each tendon and ligament demon-
strates its own collagen organizational and 
mechanical features [ 116 ]. Gross anatomical dif-
ferences in tendon and ligament size and shape 
occur as these connective tissues: traverse areas 
with limited space (e.g., within the wrist), cen-
tralize the force of several muscles (e.g., the 
Achilles tendon), or manage multi-directional 
forces and movements by intertwining collagen 
fi bers with fi bers of nearby connective tissues 
associated with tension in another axis (e.g., cru-
ciate ligaments and rotator cuff tendons). The 
precise composition and structural arrangement 
of each tendon and ligament provides specifi c 
mechanical properties to allow that connective 
tissue to function. Thus, to some extent, each ten-
don and ligament has its own unique features.  

2.16     Roles of Collagens 
in Transition from 
Midsubstance to Enthesis 
in Tendons and Ligaments 

 Much of what has been described in this chap-
ter to this point has covered the tendon and liga-
ment mid-substance. The transition of tendons 
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and ligaments toward entheses are associated 
with changes in their composition and organi-
zation. There is a transition from tendinous and 
ligamentous material to bone (Fig.  2.8 ). These 
transition sites are not simple discreet units; 
instead, there is more of a gradient of molecular 
differences from mid-substance to bone. That 
said, one can identify general zones: mid-substance, 
fi brocartilage, calcifi ed fi brocartilage, and bone 
[ 128 ]. The fi rst zone consists of mid-substance 
or tendon proper; its composition has been 
described throughout the chapter. Basically, 
this zone contains collagen I-rich fi bers that 
are aligned parallel to one another along the 
axis of strain, as well as a small amount of col-
lagens V, VI, XII, and XIV, decorin, and other 
matrix macromolecules. The second zone is best 
characterized as fi brocartilage. It is predomi-
nantly composed of collagens II and III with 
minor amounts of collagens I, IX, and X, as well 

as aggrecan and decorin [ 129 ]. The composi-
tion of the second zone departs from that of the 
tendon or ligament-midsubstance. The third zone 
contains mineralized or calcifi ed fi brocartilage. It 
is primarily composed of collagen II with signifi -
cant amounts of collagen X and aggrecan [ 130 ]. 
The fourth zone is characterized as bone; it is 
predominantly composed of collagen I as well as 
components typically found within bone. The 
continuity of the enthesis is an effi cient way to 
transfer and buffer loads applied between mus-
cle, tendon, and bone or from bone to bone. The 
structure and composition of the region from 
mid-substance to fi brocartilage accommodates 
loads along the axis of the tendon, while the 
region with mineralized fi brocartilage and bone 
zones manages complex multidirectional forces 
that occur nearer to the bone [ 130 ]. The gradation 
of this transitional structure is diffi cult to repli-
cate in surgery with native of engineered grafts.

  Fig. 2.8     Transition zones . This illustration demonstrates 
the transition from fi brous tissue to bone at a ligament 
insertion. The tissue transitions from ligament to 
fibrocartilage. Increases in the level of calcifi cation are 
noted in the compositional gradient closer to insertion; 
this compositional change is demarcated by a tidemark ( T ) 
which traces the interface between non-calcifi ed fi bro-

cartilage and the next zone, calcifi ed fi brocartilage. 
Calcifi ed fi brocartilage interdigitates with the underlying 
subchondral bone to complete the insertion. Structures of 
note within the illustration include: ligament fi broblasts 
(LF), fi brocartilage chondrocytes (Ch), osteoblasts (Ob), 
Sharpey’s fi bers (SF), and blood vessels (BV) (This fi gure 
has been adapted from Place et al. [ 132 ])       
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2.17        Summary 

 The functions of tendons and ligaments depend 
greatly upon their extracellular matrices, par-
ticularly the collagen that comprises 70–80 % 
of their dry weight. Collagens found within 
tendons and ligaments belong to several subfami-
lies that can be grouped by their predominant 
suprastructural forms; these include: fi bril-
forming, FACIT, basement membrane, and 
beaded fi lament- forming collagens. The many 
collagens provide considerable diversity for 
the functional extracellular matrix suprastruc-
tures. This diversity is further compounded by 
the numbers of different alpha chains formed; 
by alternative splicing; as well as by the many 
types of post-translational modifi cations. 
Overall it is the suprastructural organization of 
these collagen molecules that provides tissue-
specifi c structure and function, particularly to 
tendons and ligaments. These suprastructures 
are macromolecular heteropolymers containing 
different collagens and other fi bril-associated 
molecules. Within tendons and ligaments, the 
assembly of these collagen suprastructures 
relies upon the primary structures of these mol-
ecules that contain domains that will affect 
downstream secondary, tertiary, and quater-
nary structures. Clearly the content and organi-
zation of these connective tissues affect how 
they function in absorbing and transmitting 
forces as well in maintaining stability. While 
generalizations can be made for both connec-
tive tissues, current studies demonstrate that 
differences exist between different tendons as 
well as between tendons and ligaments. Each 
tissue’s basic composition and structure will 
affect its unique physiology. Thus, while an 
understanding of how collagen is assembled 
and organized is critical for tendon and liga-
ment repair and regeneration, it is also essen-
tial to focus on how these general mechanisms 
generate unique structures that will determine 
each tissue’s distinct features and functional 
properties.     
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