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Abstract Antibiotic-resistant pathogenic bacteria pose a high threat to human 
health, but the environmental reservoirs of resistance genes are poorly understood. 
The origins of antibiotic resistance in the environment are relevant to human health 
because of the increasing importance of zoonotic diseases as well as the requirement 
for predicting emerging resistant pathogens. Only little is known about the antibi-
otic resistomes of the great majority of environmental bacteria, although there have 
been calls for a greater understanding of the environmental reservoirs of antibiotic 
resistance. The data on antibiotic resistance before the antibiotic era and in soil show 
how far away we are from a complete picture about the ecology of antibiotic resis-
tance genes (ARGs). Most of the natural antibiotic producers reside in soil, but soil 
is a particularly challenging habitat due to its chemical and physical heterogeneity. 
The prevalence and diversity of ARGs in the environment led to hypotheses about 
the native roles of resistance genes in natural microbial communities.

This chapter gives an overview on the occurrence of antibiotic resistance deter-
minants in different environments, discusses the environmental sources, the func-
tions and roles of resistance determinants in microbial ecology, and the ways by 
which those genes may be disseminated in response to human antibiotic use. It also 
describes molecular methodologies used to study antibiotic resistance dissemina-
tion in the environment and attempts to assess the risks associated with resistance 
spread in the environment for human health.
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7.1  Introduction

Antibiotics are probably the most successful family of drugs so far developed for 
improving human health. Besides this fundamental application, antimicrobials have 
also been used for preventing and treating animals and plants infections, as well 
as for promoting growth in animal farming (Martinez 2009; Cabello 2006; Singer 
et al. 2003; McManus et al. 2002; Smith et al. 2002). All these applications caused 
the release of large amounts of antibiotics in natural ecosystems. However, little is 
known on the overall effects of antibiotics on the population dynamics of the mi-
crobiosphere (Martinez 2009; Sarmah et al. 2006). Large amounts of the antibiotics 
administered for therapeutic reasons are only partially metabolized. They are dis-
charged along with the excreta from humans and animals to sewage treatment plants 
and those used in animal husbandry are directly released without any treatment into 
the environment, particularly to waters or soils.

It is well accepted that antibiotics at therapeutic concentrations select for re-
sistant microbes; however, there is only scarce information and in some cases, 
contradictory data are available on the effect of antibiotics at subtherapeutic con-
centrations or concentrations below the minimal inhibitory concentrations (MICs; 
Rodríguez-Rojas et al. 2013; Andersson and Hughes 2012; Hughes and Andersson 
2012; Gullberg et al. 2011; Liu et al. 2011).

The debate on what was originally the major role of antibiotics in the environ-
ment is even more controversial: One well-accepted argument is that their role in 
nature is to inhibit microbial competitors. An alternative hypothesis states that an-
tibiotics could be primarily signal molecules that shape the structure of microbial 
communities (Martinez 2009; Fajardo and Martinez 2008; Yim et al. 2007; Linares 
et al. 2006). Under this view, antimicrobials will have a hermetic effect, beneficial 
at low concentrations that are likely found in most natural ecosystems, and harmful 
at the high concentrations used for therapeutic reasons (Martinez 2009; Davies et al. 
2006; Calabrese 2005).

For decades, the general opinion of medical doctors, clinicians, and scientists 
was that antibiotic resistance and the occurrence of the associated genetic determi-
nants are a problem restricted to hospitals and health-care centers. Only recently 
it has been recognized that antibiotic-resistant microorganisms and the associated 
resistance determinants are ubiquitous and are also present in pristine environments 
which have never been in contact with antimicrobials (Allen et al. 2010), as evi-
denced clearly by the detection of antibiotic resistance determinants in soils con-
served in a frozen state from the pre-antibiotic era (Knapp et al. 2011; Knapp et al. 
2010).

Additionally, it has been stated that some genetic elements that serve to resist high 
concentrations of antimicrobials have distinct functional roles (e.g., cell homeosta-
sis, signal trafficking, metabolic enzymes, etc.) in their original hosts (Martinez et al. 
2009; Martinez 2009; Martinez et al. 2007). The strong increase of antimicrobial 
concentrations in natural ecosystems, as a consequence of human activities (human 
antibiotic therapy, farming), might have shifted the original functions of antimicrobi-
als and resistance determinants to the threatening role they nowadays play in hos-
pitals or farms (Martinez 2009, 2008). These changes might influence not just the 
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selection of antibiotic-resistant bacteria, but also the structure of the natural bacterial 
populations and may as well change the physiology of bacteria (Martinez 2009).

The chapter will focus on the antibiotic resistance problem in the environment 
and the major sources of pollution by antibiotic resistance determinants and suggest 
ways to relieve the problem. Furthermore, we will give an overview on the major 
ways of antibiotic resistance spread in the environment and try to assess the risks as-
sociated with the occurrence and spread of resistance determinants for human health.

7.2  The Antibiotic Resistance Problem

7.2.1  State of the Art of the Problem

It is now well accepted that antibiotic resistance genes (ARGs) are found every-
where, in clinical settings, tertiary care centers, pets, wildlife, surface waters, and 
soils, basically in all locations which have been or are in contact with microbes. The 
major mechanisms conferring resistance to antibiotics are also known (Fig. 7.1). 
Concentrations of ARGs and the classes of antibiotics to which they confer resis-
tance differ between sites. One thumb rule which holds true for most locations is: 
The closer the environment is to anthropogenic influence, the higher the incidence 
is of antibiotic-resistant bacteria and the prevalence of the respective ARGs. The 
major ways of antibiotic resistance spread in the environment are also known. How-
ever, their contribution in different habitats and between different microbes varies 
considerably and is still a cause for debates in the scientific community.

Ways to slow down the development of antibiotic resistance include: (i) prudent 
use of antibiotics in therapy (human and animals); (ii) worldwide ban of all anti-
microbials which are generally used in human therapy from growth promotion in 
animal husbandry; (iii) strong worldwide reduction of the use of antibiotics in aqua-
culture and mariculture; (iv) separation and separated treatment of hospital waste 
and wastewater (ww) from sewage; (v) application of treated or at least partially 
treated ww for crop irrigation (never without any treatment); and (vi) application of 
advanced technologies for water purification for drinking water purposes.

The World Health Organization (WHO) and many national health authorities 
are now aware of the problem of the occurrence as well as of the dissemination of 
antibiotic resistance in the environment. However, to efficiently tackle the problem 
and to install countermeasures, systematic studies are required worldwide to assess 
the impact of ARGs in the environment on human health.

7.2.2  Relationship to Antibiotic Usage

Antibiotic utilization for clinical or farming purposes selects for resistant microor-
ganisms (Martinez 2009; Livermore 2005; Teuber 2001). Thus, it can be predicted 
that residues from hospitals or farms contain both types of pollutants: antibiotics 



M. Broszat and E. Grohmann128

and ARGs. Nevertheless, the fate of both types of pollutants is most likely different. 
Several antibiotics are natural compounds that have been in contact with environ-
mental bacteria for millions of years and are thus biodegradable; some can even serve 
as food resource for several microorganisms (Martinez 2009; Dantas et al. 2008). 
Synthetic antibiotics such as quinolones can be more refractory to biodegradation. 

Fig. 7.1  Mechanisms of antibiotic resistance in a Gram-negative bacterium (adapted from Allen 
et al. 2010). a Impermeable barriers. Some bacteria are intrinsically resistant to certain antibiotics 
( blue squares) because they have an impermeable membrane or lack the target of the antibiotic.  
b Multidrug resistance efflux pumps. These pumps secrete antibiotics from the cell. Some trans-
porters, such as those of the resistance–nodulation–cell division family ( pink), can pump antibiot-
ics directly outside the cell, whereas others, such as those of the major facilitator superfamily ( red), 
secrete them into the periplasm. c Resistance mutations. These mutations modify the target protein, 
for example, by disabling the antibiotic-binding site but leaving the cellular functionality of the 
protein intact. Specific examples include mutations in the gyrase ( green), which cause resistance 
to fluoroquinolones, in RNA polymerase subunit B ( orange), which cause resistance to rifampicin, 
and in the 30S ribosomal subunit protein S12 (encoded by rpsL; yellow), which cause resistance 
to streptomycin. d Inactivation of the antibiotic. Inactivation can occur by covalent modification 
of the antibiotic, such as that catalyzed by acetyltransferases ( purple) acting on aminoglycoside 
antibiotics, or by degradation of the antibiotic, such as that catalyzed by β-lactamases ( brown) act-
ing on β-lactam antibiotics. Ac, acetyl group
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Recent work has shown that the binding of quinolones to soil and sediments delays 
their biodegradation (Martinez 2009). Nevertheless, ww treatment of quinolone-
polluted waters efficiently removes these antibiotics through biodegradation and 
photodegradation (Sukul and Spiteller 2007). Consistent with these data, it has been 
demonstrated that most antibiotics are usually below detection limits in ground wa-
ter samples, although they are more stable upon adsorption to sediments (Hirsch 
et al. 1999; Halling-Sorensen et al. 1998). Due to this fact, sediment samples from 
antibiotic-polluted environments contain higher antibiotic concentrations than wa-
ter samples from the same site (Martinez 2009; Kim and Carlson 2007). The fact 
that antibiotics are degraded in natural ecosystems does not mean that they are not 
relevant pollutants, as the degradation process is slow at low temperatures in winter 
(Martinez 2009; Dolliver and Gupta 2008). Furthermore, some environments suffer 
a constant release of antibiotics (e.g., hospital effluents and farm residues); they are 
constantly polluted irrespective of antibiotic degradation. The consequence is that 
the organisms are continuously exposed to antibiotics at subtherapeutic concentra-
tions (Martinez 2009; Lindberg et al. 2007). Since sub-inhibitory concentrations of 
antibiotics can trigger specific transcriptional responses in bacteria (summarized in 
Martinez 2009), the presence of antibiotics will necessarily modify the metabolic 
activity of the microorganisms present in these polluted environments. However, in 
any case, the fate of antibiotics in natural ecosystems is their degradation (Pei et al. 
2006) in such a way that if the utilization of a given antibiotic is banned, it will 
sooner or later disappear as a pollutant from natural ecosystems.

In contrast, antibiotic resistance determinants present in gene transfer units on 
mobile genetic elements such as plasmids or integrative conjugative elements (ICEs) 
are auto-replicative elements that can be maintained in microbial populations unless 
they confer a fitness cost to the recipient bacteria (Martinez 2009). Some studies have 
clearly shown that reducing the antibiotic load in natural environments may reduce 
the amount of pollutant ARGs, e.g., it has been shown that sewage dilution in river 
waters reduced the number of plasmid-encoded ARGs in Escherichia coli (Martinez 
2009; Gonzalo et al. 1989). In another well-known example, the ban of the utiliza-
tion of some antibiotics in farming has significantly reduced antibiotic resistance in 
animals and its transfer to humans (Martinez 2009; Aarestrup et al. 2001). However, 
unfortunately the situation is not that simple. It has been observed that even though 
the incidence of antibiotic resistance declines, the decline is slow and part of the 
resistant population remains (Andersson 2003), a situation which is consistent with 
predictions based on mathematical models (Levin 2002). Furthermore, the presence 
of the same ARGs currently present in human pathogens has been reported in eco-
systems without a history of antibiotic contamination (Pallecchi et al. 2008). These 
ecosystems include remote human and animal populations without known antibiotic 
exposure which can present a high prevalence of resistance despite not receiving any 
antibiotic (Bartoloni et al. 2009; Martinez 2009; Grenet et al. 2004; Gilliver et al. 
1999). This indicates that ARGs can be resilient to elimination even in the absence 
of antibiotic selective pressure (Salyers and Amabile-Cuevas 1997). Several effi-
cient mechanisms exist that allow the maintenance and the spread of ARGs in the 
environment. Thus, as opposed to antibiotic contaminations, pollution by antibiotic 
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resistance determinants will not necessarily disappear even if the release of ARGs in 
the environment is stopped (Martinez 2009). Sources and movement of ARGs in the 
environment are summarized in Fig. 7.2.

7.3  Environments of Particular Concern: Major Sources 
of Antibiotic Resistance Genes

We will focus here, by choice, on natural environments under anthropogenic in-
fluence and on anthropogenic environments excluding hospitals and health-care 
centers as a plethora of excellent articles are available on antibiotic resistances in 
hospitals and on their impact on human health (Arias and Murray 2012; Hollenbeck 
and Rice 2012; Yezli and Li 2012; Gould 2008; Witte et al. 2008; Koch et al. 2004; 
Klare et al. 2003). Additionally, we will consider the influence of the increased 
mobility of the human population on the spread of infectious diseases and resistant 
microbes. Wilson published an excellent review article on the traveler and emerg-
ing infections (Wilson 2003). The movement of populations shapes the patterns and 
distribution of infectious diseases globally. The consequences of travel are seen in 
the traveler and in places and populations visited and may persist long after travel. 
The traveler can be seen as an interactive biological unit who picks up processes, 
and carries and drops off microbial genetic material (Wilson 2003). Travelers can 
also be seen as couriers who inadvertently transfer pathogens and microbial genetic 
material to regions where researchers can perform detailed analyses that can help to 
map the location and movement of strains, genotypes, and resistance patterns. The 

Fig. 7.2  Sources and movement of ARGs in the environment (adapted from Allen et al. 2010). 
ARGs exist naturally in the environment owing to a range of selective pressures in nature. Humans 
have applied additional selective pressure for ARGs because of the large quantities of antibiotics 
that we produce, consume, and apply in medicine and agriculture. Physical and biological forces 
also cause widespread dissemination of ARGs throughout many environments
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connectedness and mobility in today’s world facilitate the emergence of infectious 
diseases in humans and also in animals and plants. Population size and density favor 
spread of many infections. The rapid generation time of microbes and their adapt-
ability to changes in the physico-chemical and immunological environment will 
pose continuing challenges to mankind (Wilson 2003).

Travelers regularly and effectively move antibiotic-resistant bacteria across bor-
ders (Wilson 2003; Okeke and Edelman 2001; Harnett et al. 1998; Slavin et al. 
1996; Brown and Linham 1988). In 1987, Murray and co-workers examined fecal 
specimens from persons before, during, and after traveling to Mexico (Murray et al. 
1990). They observed that resistance in E. coli increased to multiple antibiotics, 
including ampicillin, trimethoprim-sulfamethoxazole, sulfonamides, and chloram-
phenicol, in association with travel. This occurred even in persons who had taken 
no antibiotics. A multidrug-resistant methicillin-resistant Staphylococcus aureus ( S. 
aureus; MRSA) clone is thought to have spread from Brazil to Portugal, presum-
ably carried by one or more persons who were colonized or infected (Wilson 2003; 
Aires de Sousa et al. 1998). An ARG may emerge once on a single plasmid and 
subsequently be carried to multiple locations, where it may continue to spread, e.g., 
a gentamicin-resistance gene appears to have been spread on a conjugative plasmid 
(O′Brien et al. 1985). Highly resistant bacteria carried by travelers can also spread 
after the travelers had returned home, particularly in a clinical setting (Wilson 2003; 
M′Zali et al. 1997).

The industrialization of food animal production, specifically the widespread use 
of antimicrobials, not only increased pressure on microbial populations, but also 
changed the ecosystems in which antimicrobials and bacteria interact. Davis and 
colleagues defined industrial food animal production (IFAP) as an anthropogenic 
ecosystem (Davis et al. 2011).

7.3.1  Farms: Spread of Antibiotic Resistance  
Genes in the Food Chain

Today, the magnitude of human impacts on natural systems makes consideration of 
anthropogenic changes to ecosystems important. Agriculture is one such activity, 
because it inherently creates anthropogenic ecosystems (Jackson and Piper 1989), 
which are defined as collections of organisms and physical structures under hu-
man control and manipulation (Davis et al. 2011). The adoption of an industrialized 
model in modern food animal production (Martinez 2002) has been successful in 
increasing global food production, but it also has intensified its impact through 
the expansion of anthropogenic ecosystems (Tilman et al. 2002; Jackson and Piper 
1989). Davis and coworkers argued that IFAP creates anthropogenic ecosystems 
wherein the use of antibiotics inevitably selects for antibiotic resistance in bacte-
rial populations within animal hosts and the environment. Consequently, this al-
ters microbial communities (microbiomes) and the collection of available mobile 
resistance determinants (resistome) dispersed into the surrounding ecosystems  
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(Davis et al. 2011; Wright 2007, 2010; Martinez 2009). Davis and colleagues have 
studied the role of anthropogenic ecosystems on the emergence of drug-resistant 
bacteria from agricultural environments on the example of US industrial poultry 
production. The anthropogenic ecosystems generated by IFAP practices have exten-
sive direct impacts on the microbial ecology of poultry hosts and the environment, 
and probably have indirect impacts on consumers through poultry products (Davis 
et al. 2011). In nature, microorganisms are known to both produce and develop 
resistance to antimicrobials, resulting in a set of complex interactions now thought 
to contribute to the signaling and regulation in natural microbial ecosystems (Davis 
et al. 2011; Aminov 2009). However, the extent and magnitude of antimicrobial 
use in IFAP far exceed, in volume and impact, those of naturally occurring antimi-
crobials (Davis et al. 2011; Martinez 2009; Kumar 2005). The US Food and Drug 
Administration (FDA) reported that 13 million kg of antimicrobials were sold 
or distributed for use in food-producing animals during 2009 (FDA report 2010). 
Particularly, the practice of using nontherapeutic concentrations of broad-spectrum 
antimicrobials to feed (Baurhoo et al. 2009) creates an ideal environment for select-
ing individual bacterial cells or populations that have acquired resistance through 
mutations or horizontal gene transfer (HGT) (Love et al. 2011; Lees et al. 2006).

The process of natural selection by antimicrobial use in IFAP is reflected in 
observations of antimicrobial-resistant isolates from livestock, including poultry, 
shortly after the introduction of routine use of antimicrobials as feed additives in 
the 1950s and 1960s (Davis et al. 2011; De Soet 1974; Smith 1970; Starr and Reyn-
olds 1951). As resistant populations replace susceptible populations at the com-
munity level, ARGs in one population/species are available to other populations/
species through HGT. Consequently, the development of novel multidrug-resistant 
bacteria and/or multidrug resistance conferring Mobile Genetic Elements (MGEs) 
is enabled (Davis et al. 2011; Davies and Davies 2010; Wright 2007). M′ikanatha 
and colleagues typed Salmonella cultured from retail chicken purchased in Penn-
sylvania and compared the chicken isolates with human isolates. Applying mo-
lecular methods, an identical isolate was found in a retail chicken and in a patient 
(M′ikanatha et al. 2010).

Davis and colleagues focused their review on research along the pathways that 
connect the commercial poultry intestinal microbiome with microbiomes in sur-
rounding environments. The impact of natural selection exerted by antimicrobial 
use within the intestine of individual poultry hosts can be further scaled up to the 
inter-microbiome and inter-ecosystem level (Fig. 7.3). Agricultural ecosystems in-
teract with other ecosystems directly at both local and regional levels, and more 
broadly through global movement of dusts and water (Peterson et al. 2010), as well 
as economic trade in feeds, animals, and animal waste (Davis et al. 2011; Sapkota 
et al. 2007). Although the industrial poultry house often is assumed to be biocon-
tained and biosecure, multiple pathways connect it with surrounding ecosystems 
(Silbergeld et al. 2008). These are ventilation systems required to keep crowded 
animals alive; movement of rodents (Henzler and Opitz 1992), wild birds (Leibler 
et al. 2009), and insects (Graham et al. 2009) in and out of confinement facili-
ties; and transfer of wastes (Davis et al. 2011; Graham and Nachman 2010). These 
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conditions release viable bacteria and ARGs into surrounding environments, water 
systems, and wild animal reservoirs (Davis et al. 2011; Chee-Sanford et al. 2009; 
Baquero et al. 2008; Silbergeld et al. 2008).

Genetic analysis of the US commercial broiler cecum microbiome has shown 
that it contained a wide array of ARGs and genes enabling HGT (Davis et al. 2011; 
Qu et al. 2008). Recent Canadian studies also have found widespread prevalence 
of virulence and resistance genes from Enterococcus spp., E. coli, and Clostridium 
perfringens isolated from enteric samples from conventional broilers that were fed 
antimicrobials (Davis et al. 2011; Diarra et al. 2007, 2010; Bonnet et al. 2009). Fur-
thermore, antimicrobial-treated broilers, compared to those not fed antimicrobials, 
were significantly associated with increases in the presence of ARGs and class 1 
integron genes in cecal and environmental E. coli isolates (Davis et al. 2011; Diarra 
et al. 2007). Especially class 1 integrons are known to shuffle ARGs and are known 
to be able to promote transfer of ARGs among bacteria (Davies and Davies 2010; 
Diarra et al. 2007).

Much like the chicken cecum, poultry waste contains a significant number of 
resistance integrons, particularly within gram-positive bacteria (Diarra et al. 2007; 
Nandi et al. 2004). Some resistance patterns appear to persist in bacteria even after 
cessation of antimicrobial use, for example, fluoroquinolone resistance in Campy-
lobacter (Price et al. 2007) and sulfonamide resistance in E. coli (Davis et al. 2011; 
Furtula et al. 2010).

Fig. 7.3  Potential role of antimicrobial selective pressure in the environment (from Davis et al. 
2011). Conceptual, potential role of selective pressure of antimicrobial use and other anthropo-
genic ecosystem alterations that impact microbiomes in the chicken cecum, poultry house envi-
ronment, local soil and water environments, processing plant environment, and human intestine
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Much of the impact of antimicrobial use on the environmental microbiome is 
exerted through poultry waste disposal. Application of litter onto open fields can 
impact the soil microbiome locally to regionally through run-off and air-borne 
drift. The USA has no regulatory requirements for treating animal wastes, leading 
to uncontrolled waste storage before land disposal (Davis et al. 2011; Graham and 
Nachman 2010). Simple storage methods do not affect prevalence of pathogens nor 
drug-resistant pathogens (Graham et al. 2009). Most of the antimicrobials in feeds 
pass largely unchanged through the broiler gut into the excreta (Kumar et al. 2005). 
Some antimicrobials, such as oxytetracycline and fluoroquinolone analogs, can 
persist in the soil environment with half-lives as long as 150–250 days with undi-
minished potency (Davis et al. 2011; Chee-Sanford et al. 2009; Kumar et al. 2005).

Spread of antimicrobial-resistant bacteria and resistance determinants rep-
resents the inter-ecosystem effects of antimicrobial usage in industrialized food 
animal production. Human links include vehicles, animal transport, and networks 
of social and commercial contact (Davis et al. 2011; Leibler et al. 2010; Rule 
et al. 2008). Cross-contamination of poultry during transport and at slaughter con-
tributes to greater microbial diversity in retail chicken than in live birds (Hast-
ings et al. 2011; Colles et al. 2010). Contamination during the harvest process 
can impact poultry house (Price et al. 2007) and slaughter workers (Mulders et al. 
2010), as well as retail chicken consumers in the global market (Davis et al. 2011). 
Compelling evidence for the impact of antimicrobial use in industrialized food 
animal production comes from molecular analyses of bacteria in live poultry and/
or on poultry products in conjunction with analysis of human isolates (Davis et al. 
2011; McEwen et al. 2010; Denis et al. 2009; Gupta et al. 2004). Numerous studies 
demonstrated the presence of very similar or identical ARGs (Diarra et al. 2010; 
M′ikanatha et al. 2010; Simjee et al. 2007), identical strains of antimicrobial-re-
sistant bacteria, such as MRSA (Smith and Pearson 2011; Bystroń et al. 2010), 
and related or identical resistance plasmids (McEwen et al. 2010) in humans and 
poultry (Davis et al. 2011).

Witte and coworkers performed an experiment with the antibiotic nurseothri-
cin which is not used in humans; strains resistant to it were recovered from both 
animals and farm workers (Acar and Moulin 2006; Witte et al. 1984). More recent 
studies dealing with enterococci and Enterobacteriaceae confirmed transfer of re-
sistant bacteria from animals to humans (Acar and Moulin 2006; Hershberger et al. 
2005; Aarestrup and McNicholas 2002; Frey et al. 2000; Van den Bogaard et al. 
1997).

7.3.2  Aquatic Environments

Basically, all aquatic environments can be considerably affected by pollution 
through antimicrobials, antimicrobial degradation products, by antimicrobial-resis-
tant microbes and the genes conferring antimicrobial resistance. In the following 
section, aquatic environments especially affected by the occurrence of ARGs are 
discussed.
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7.3.2.1  Aquaculture

Any agricultural or aquacultural farming operation that relies on the routine and 
regular use of antimicrobials to control losses is, on the long run, unsustainable. The 
continued usage of antimicrobials will lead to the emergence of resistance in the 
target bacteria. Thus, such a dependence on antimicrobials not only represents an 
unacceptable and imprudent use of these valuable agents, but it will almost certainly 
prove to be self-defeating (Smith 2008). In any population of farmed animals, main-
taining appropriate living conditions, employing appropriate husbandry practices, 
and using vaccines, whenever available, against enzootic or frequently encountered 
infections are the primary and most effective methods by which losses due to infec-
tious diseases can be limited (Smith 2008). However, the aim of all these prophy-
lactic procedures is to limit the occurrence of infectious disease and it is unrealistic 
to expect them to entirely prevent any occurrence of these diseases (Smith 2008). 
Thus, the inevitability that disease emergencies will occur requires that we learn 
how to use antimicrobials in such a way so as to maximize their efficacy while 
minimizing the pressure for increased frequencies of resistant strains (Smith 2008).

Smith presented estimates of antimicrobial use in the aquaculture industries of dif-
ferent countries. The estimated antimicrobial use (g/t production) differs tremendous-
ly between the listed countries. Norway and Sweden apply 1 and 2 g/t production, 
whereas Greece and Canada apply 100 and 156 g/t production, respectively. At the end 
of the list are two countries applying enormous quantities, namely Chile (200 g) and 
Vietnam (700 g) per ton production (Smith 2008). There are three methods, medicated 
feed, bath, and injection, by which antimicrobials are routinely administered to aquatic 
animals. For the majority of farmed species, administration occurs via medicated feed.

In the following section, we will focus on the negative consequences of antimi-
crobial use in aquaculture as experienced in human and public health contexts. The 
most significant public health risks associated with increased frequencies of resis-
tance due to the use of antimicrobial agents in aquaculture can be summarized by 
two major issues: (i) concerns associated with the selection of resistant variants of 
bacteria capable of inducing infections in humans that would require antimicrobial 
therapy and (ii) concerns associated with the movement of ARGs from bacteria in 
the aquatic environment to those in the terrestrial environment that are capable of 
infecting humans or other land-based animals (Smith 2008).

Selection for Resistance in Bacteria Associated with Human Disease

It has been assumed that the major risks associated with the use of antimicrobi-
als in land-based agriculture are those leading to selective enrichment of resistant 
strains of zoonotic bacteria (Smith 2008; Helmuth and Hensel 2004). There is an 
ongoing debate on the size of this risk, with some arguing that it is relatively small 
(Wassenaar 2005; Bywater 2004) and others that it might be significant (Angulo 
et al. 2004). Bacteria capable of infecting humans are found much less frequent-
ly in aquaculture than in agriculture. Thus, the risks associated to the selection of 
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resistant zoonotic bacteria by the use of antimicrobial agents will be significantly 
smaller in aquaculture than in agriculture (Smith 2008; Smith 2001).

The WHO/Food and Agriculture Organization (FAO)/World Organisation for 
Animal Health (OIE) expert working group (WHO 2013) identified two groups 
of bacteria that might be encountered in aquaculture and might also be capable of 
infecting humans, enteric pathogens such as Salmonella—due to contamination of 
aquaculture by human or animal wastes—and aquatic bacteria such as Vibrio para-
haemolyticus and V. cholerae (Smith 2008).

Selection for Transmissible Resistance

The WHO/FAO/OIE expert group reached the following conclusion: “The greatest 
potential risk to public health associated with antimicrobial use in aquaculture is the 
development of a reservoir of transferable resistance genes in bacteria in aquatic en-
vironments from which such genes can be disseminated by HGT to other bacteria and 
ultimately reach human pathogens.” There is a plethora of data available (recently 
reviewed by Sørum (2006)) demonstrating that ARGs capable of being transferred to 
terrestrial bacteria have been regularly detected in bacteria associated with disease of 
aquatic animals (Smith 2008). There are also ample data demonstrating that transmis-
sible ARGs are present in the bacteria found in the vicinity of aquaculture operations 
(Smith 2008; Miranda et al. 2003; Schmidt et al. 2001; Rhodes et al. 2000). Surpris-
ingly, there are only few papers that have convincingly linked the use of antimicro-
bials in aquaculture with an increase in the frequency of these transmissible genes. 
The available data support the hypothesis that a reservoir of transmissible ARGs will 
develop as a consequence of the use of antimicrobials in aquaculture. What is less cer-
tain is the size of this reservoir and its public health significance (Smith 2001, 2008).

Movement of Transmissible Resistances Between Terrestrial and Aquatic 
Microorganisms

Molecular studies have shown that the resistance genes in bacteria associated with 
aquaculture are significantly similar to those that have been found in terrestrial bac-
teria causing human and land-based animal disease (Smith 2008; Sørum 2006; Kim 
et al. 2004; Bolton et al. 1999). Confirmation that these genes can move between 
bacteria in these two environments has been provided through laboratory studies by 
Kruse and Sørum (1994) and Sandaa and Enger (1994), which have demonstrated 
that these genes can be transferred from aquatic to terrestrial bacteria with relatively 
high frequencies (Smith 2008).

The current monitoring and surveillance programs of the use of antimicrobials in 
aquaculture have to be considerably improved to be able to assess the impact of anti-
microbial resistance as a consequence of antimicrobial use in aquaculture on human 
health. In addition, laboratory methods used to identify resistance and to quantify the 
frequencies of resistance that result from antimicrobial use in aquaculture have to be 
harmonized to enable comparison of results from different laboratories (Smith 2008).
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7.3.2.2  Wastewater and Wastewater Treatment Systems

Urban wastewater treatment plants (UWTPs) are among the main sources for the 
release of antibiotics into the environment. The occurrence of antibiotics may pro-
mote the selection of ARGs and antibiotic-resistant bacteria, which shade health 
risks to humans and animals (Rizzo et al. 2013). Rizzo and colleagues reviewed the 
fate of antibiotic-resistant bacteria and ARGs in UWTPs, focusing on the differ-
ent processes typically included in UWTPs, e.g., mechanical, biological, physical, 
chemical, and physical–chemical processes, which may affect the fate of antibiot-
ics, antibiotic resistant bacteria, and ARGs in different ways and consequently the 
development and spread of resistance into the environment (Rizzo et al. 2013).

Over the past years, a renewed interest on the antibiotic resistance phenotypes 
in UWTPs was obvious in the scientific literature (Rizzo et al. 2013; Manaia et al. 
2012; Kümmerer 2009; Baquero et al. 2008). Human and animal commensal bac-
teria and other of environmental origin have been the major focus of the studies on 
antibiotic resistance in ww. Due to their close contact with humans and the easiness 
to isolate and identify, the fecal indicators, coliforms and enterococci, have been 
the most studied groups (Rizzo et al. 2013; Araùjo et al. 2010; Sabate et al. 2008; 
Boczek et al. 2007; Ferreira da Silva et al. 2007; Martins da Costa et al. 2006; 
Reinthaler et al. 2003). To establish a relationship between the most severe cases 
reported in clinical settings and environment, a search for the last-generation anti-
biotic resistance determinants has also been reported in UWTP studies (Rizzo et al. 
2013; Czekalski et al. 2012; Figueira et al. 2011a, b; Araùjo et al. 2010; Parsley 
et al. 2010; Szczepanowski et al. 2009; Gajan et al. 2008). In particular, the pres-
ence of MRSA, vancomycin resistant Enterococcus spp. (VRE), and gram-negative 
bacteria producing extended spectrum beta-lactamases (ESBL) has been studied.

Although the occurrence of antibiotic-resistant superbugs in the effluents may be 
an issue of particular concern, the numbers of common bacteria harboring ARGs that 
are continuously discharged in receiving waters are impressive (Galvin et al. 2010; 
Łuczkiewicz et al. 2010; Ferreira da Silva et al. 2007; Martins da Costa et al. 2006). 
The final effluent of UWTPs can discharge approximately 109–1012 colony form-
ing units (CFU) per day, per inhabitant equivalent; among these, at least 107–1010 
could have any kind of acquired antibiotic resistance (Rizzo et al. 2013; Novo and 
Manaia 2010). Moreover, these estimates only include the culturable fraction of the 
bacterial population, and might only represent 1 % of the total. Indeed, the numer-
ous unculturable bacteria dwelling in ww and related systems (sludge, biofilms) can 
host an immense number of ARGs (Rizzo et al. 2013; Szczepanowski et al. 2009). 
Szczepanowski and coworkers found, in a study performed with ww samples in Ger-
many, 140 different clinically relevant ARGs, encoding resistance to the different 
classes of antibiotics (aminoglycosides, β-lactams, chloramphenicol, fluoroquino-
lones, macrolides, rifampicin, tetracycline, trimethoprim, and sulfonamides, as well 
as efflux pumps) (Rizzo et al. 2013; Szczepanowski et al. 2009). The majority of the 
studies have focused on the selection and relative prevalence of antibiotic resistant 
bacteria and ARG transfer in UWTPs irrespective of the biological process, tech-
nology, and operating conditions. Only a few studies investigated the effects of the 
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operating parameters (Kim et al. 2007a, b, c) and different ww treatment technologies  
(summarized in Rizzo et al. 2013; Munir et al. 2011; Mezrioui and Baleux 1994) on 
the occurrence and release of ARGs and antibiotic-resistant bacteria.

The E. coli strains isolated from the effluent of an aerobic lagoon showed higher 
antibiotic resistance (35 %) than those isolated from domestic sewage (23 %). In the 
activated sludge, the percentage of antibiotic resistant strains (resistance to at least 
one antibiotic) showed seasonal changes in the inflow and outflow ww samples. 
The increase of the percentage of antibiotic-resistant strains of E. coli in the effluent 
of the aerobic lagoon was probably related to the selection of antibiotic-resistant 
strains by this treatment (Rizzo et al. 2013). Furthermore, survival experiments 
comparing E. coli strains resistant to seven antibiotics and E. coli strains susceptible 
to 15 tested antibiotics demonstrated that resistant bacteria had higher survival rates 
than susceptible ones in ww treated in lagoons (Rizzo et al. 2013).

Advanced treatments aim at improving the quality of the secondary effluent of 
ww treatment plants before disposal or reuse. Sand filtration, adsorption membranes, 
and advanced oxidation processes are among the most applied and studied advanced 
treatment technologies. In contrast to a myriad of studies available on the effect of 
advanced processes on bacteria inactivation, only very few studies exist regarding the 
effect on antibiotic resistance (summarized in Rizzo et al. 2013). Öncü and colleagues 
compared ozonation and TiO2 heterogeneous photocatalysis with conventional chlo-
rination in terms of effects on DNA structure and integrity (Öncü et al. 2011). In 
contrast to chlorine, which did not affect plasmid DNA structure at the studied doses, 
ozone and photocatalytic treatment resulted in conformational changes and the dam-
age increased with increasing oxidant doses (Rizzo et al. 2013; Öncü et al. 2011). 
This finding is of particular interest taking into consideration that most of the ARGs 
are encoded on plasmids and the most applied disinfection process in ww treatment is 
chlorination, but ultraviolet (UV) radiation also finds extended applications.

In a recent study, the inactivation of tetracycline-resistant E. coli and antibiotic-
sensitive E. coli by UV irradiation was investigated to assess their tolerance to UV 
light (Huang et al. 2013). The authors did not find any difference in the inactivation 
of tetracycline-resistant and antibiotic-sensitive E. coli after disinfection treatment. 
The general lack of data concerning the effect of UV-dependent DNA damage on an-
tibiotic resistance makes this topic worthy of investigation (Rizzo et al. 2013). Iwane 
and colleagues found out that chlorination treatment did not significantly affect the 
percentage of resistance in E. coli, randomly isolated from ww samples, to one or 
more antibiotics (from 14.7 to 14.0 %) or specifically to ampicillin (constant at 7.3 %) 
and tetracycline (from 8.0 to 6.7 %) (Rizzo et al. 2013; Iwane et al. 2001). Munir and 
coworkers investigated the effect of five different UWTPs located in Michigan, USA 
on the occurrence and release of ARGs and antibiotic-resistant bacteria into the envi-
ronment. They observed that disinfection by chlorination and UV radiation processes 
did not significantly reduce ARGs and antibiotic-resistant bacteria (Rizzo et al. 2013; 
Munir et al. 2011). In summary, in light of the available data, the effect of chlorine 
on bacterial DNA may be achieved only for high disinfectant dose compared to those 
typically used in ww disinfection (Rizzo et al. 2013; Dodd 2012).
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7.3.2.3  Other Water Environments

Zhang and coworkers recently published an excellent review on antibiotic resistance 
in water environments (Zhang et al. 2009). As a result of extensive use of human and 
veterinary antibiotics, hospital ww and livestock manure are considered as the major 
sources of environmental ARGs. ARGs can enter into aquatic environments by the di-
rect discharging of untreated ww or into sewage treatment plants through ww collection 
systems and subsequently into the environments with effluents and discharged sludge 
(Zhang et al. 2009; Auerbach et al. 2007). ARGs are transferred into soils by amending 
farm land with animal manure and processed biosludge from sewage treatment plants 
and subsequently can leach to groundwater or be carried by runoff and erosion to sur-
face waters (Yang and Carlson 2003). Surface water and shallow groundwater are com-
monly used as sources of drinking water; thus, ARGs can go through drinking water 
treatment facilities and enter into the water distribution system (Schwarz et al. 2003).

Untreated Sewage

During the past years, various bacterial species isolated from untreated sewage were 
found to contain a variety of ARGs encoding resistance to aminoglycosides, β-lactam 
antibiotics, trimethoprim, tetracyclines, and vancomycin (reviewed in Zhang et al. 
2009). Sewage receives the bacteria previously exposed to antibiotics from private 
households and hospitals and is considered as a hotspot for ARGs. ARGs enter sewage 
treatment plants with sewage water, and most of them cannot be effectively removed 
with traditional treatment processes before being released into the environment (Zhang 
et al. 2009; Auerbach et al. 2007; Volkmann et al. 2004). In addition, environmental 
conditions of activated sludge or biofilms facilitate horizontal transfer of the ARGs 
from one host to another because of the nutritional richness and high bacterial density 
and diversity (Zhang et al. 2009; Schlueter et al. 2007; Tennstedt et al. 2003).

Sewage Treatment Plant Activated Sludge and Biofilms

Several previous studies have shown that sewage treatment plants serve as impor-
tant reservoirs for various ARGs (Zhang et al. 2009; Schlueter et al. 2007; Tennstedt 
et al. 2003; Smalla and Sobecky 2002). Sewage treatment plants receive the antibi-
otic-resistant bacteria with the inflow sewage water originating from hospitals, pri-
vate households, industry, and agriculture. So, they play important roles in recom-
bination, exchange, and spread of environmental ARGs (Zhang et al. 2009; Szcz-
epanowski et al. 2004). Sewage treatment plants are known as important interfaces 
between different water bodies, such as hospital ww, domestic ww, surface water, 
and groundwater; therefore, they may facilitate gene exchange and spread between 
these environments (Zhang et al. 2009; Schlueter et al. 2007). It is also well known 
that the presence of antibiotics in sewage selects for the maintenance of ARGs con-
ferring resistance in activated sludge (Kümmerer 2003). Many ARGs, such as vanA 
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and vanB, are not effectively removed by activated sludge process commonly used 
in sewage treatment plants, as the genes are being found in both influent and efflu-
ent water (Zhang et al. 2009; Caplin et al. 2008; Iversen et al. 2002). ARGs enter 
into other water bodies with effluent water and can be transferred horizontally to the 
indigenous bacteria in these water environments (Schwartz et al. 2003).

Natural Water

Different ARGs have been found in bacterial isolates or microbial communities in 
natural waters which were not or only slightly polluted (Zhang et al. 2009; Mo-
hapatra et al. 2008; Rahman et al. 2008; Jacobs and Chenia 2007). ARGs in sur-
face water and soils can leach to groundwater close to agriculture areas of animal 
production or aquaculture. Tetracycline resistance genes encoding both ribosomal 
protection proteins and efflux pumps have been detected in the groundwater as far 
as 250 m downstream from waste lagoons of swine farms (summarized in Zhang 
et al. 2009). Besides, in fresh waters, some ARGs conferring resistance to amino-
glycosides (Heuer et al. 2002) and chloramphenicol (Dang et al. 2008) have also 
been detected in marine waters with no evidence for pollution (Zhang et al. 2009).

Sediments

It is evident that ARGs in sediments are acquired from water environments or gener-
ated and/or spread due to selection by the antibiotics present in the sediments. Sedi-
ments of aquaculture farms are important antibiotic resistance reservoirs where vari-
ous antimicrobials and ARGs are concentrated (Zhang et al. 2009; Agersø and Pe-
tersen 2007; Dalsgaard et al. 2000). Marine sediments were shown to contain many 
different tetracycline resistance genes (Rahman et al. 2008). Nonaka and colleagues 
found that the numbers of oxytetracycline-resistant bacteria increased in sediments 
around a marine aquaculture site after oxytetracycline therapy, the tet M resistance 
gene was detected in different genera of gram-positive and gram-negative bacteria 
in the sediments of this marine environment (Zhang et al. 2009; Nonaka et al. 2007).

In rivers running through pristine, urban, and agriculturally impacted areas, ARG 
detection frequency correlated with the degree of pollution by antibiotic compounds 
(Zhang et al. 2009; Pei et al. 2006; Yang and Carlson 2003).

Drinking Water

Prevalence and resistance patterns of various microbial genera from drinking water 
distribution systems have been recently reported (Zhang et al. 2009; Ram et al. 
2008; Koksal et al. 2007). Multiple antibiotic-resistant E. coli strains isolated from 
drinking water were found to carry ARGs conferring resistance to aminoglycosides, 
β-lactams, tetracyclines, and trimethoprim-sulfamethoxazole (Alpay-Karaoglu 
et al. 2007; Cernat et al. 2007), as well as class 1 integrons which are known as ARG 
shuffling units (summarized in Zhang et al. 2009; Ozgumus et al. 2007).
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To investigate possible ARG transfer from ww and surface water to the drinking 
water distribution network, Schwartz and colleagues and Obst and colleagues ana-
lyzed biofilms in hospital and municipal ww, as well as drinking water from river 
bank filtrate. They found vanA and ampC conferring resistance to vancomycin and 
ampicillin resistance, respectively, both in ww and drinking water biofilms (Zhang 
et al. 2009; Obst et al. 2006; Schwartz et al. 2003).

7.3.3  Soils Impacted by Wastewater Irrigation

Sewage treatment plant effluent and sludge application to agricultural fields are rec-
ognized as important sources of ARGs to surface waters and soils and subsequently 
into groundwater (Rizzo et al. 2013; Yang and Carlson 2003).

Dalkmann and coworkers investigated the effect of ww irrigation on the oc-
currence of antibiotics or their degradation products as well as on the prevalence 
of the corresponding ARGs in soils from the Mezquital Valley in Mexico, which 
have been irrigated with untreated ww for distinct periods of time (Dalkmann et al. 
2012). Long-term irrigation of soils with untreated ww led to an accumulation of 
antibiotics (e.g., sulfamethoxazole) and the regular input of ww increased the con-
centrations of sul1 and sul2 resistance genes in irrigated soils relative to soils under 
rain-fed agriculture.

7.4  Mechanisms of Spread and Maintenance of ARGs

There exist three major mechanisms of HGT within and among bacterial popula-
tions; all three of them contribute significantly to the horizontal dissemination and 
persistence of ARGs in the environment.

7.4.1  Conjugative Transfer

The conjugative plasmid systems are the largest and most widely distributed sub-
family of type IV secretion systems, with systems described for most species of 
the Bacteria and some members of the Archaea (Alvarez-Martinez and Christie 
2009). The overall process of conjugative DNA transfer can be dissected into three 
biochemical reactions: DNA substrate processing, substrate recruitment, and trans-
location (Alvarez-Martinez and Christie 2009; Christie et al. 2005; Schröder and 
Lanka 2005; Ding et al. 2003; Pansegrau and Lanka 1996). In the DNA processing 
reaction, DNA transfer and replication (Dtr) proteins initiate processing by bind-
ing a cognate origin of transfer ( oriT) sequence on the conjugative element. The 
Dtr proteins include a relaxase and accessory factors (for some plasmid systems, 
such as the broad-host-range plasmid pIP501, no accessory factors have been found 
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so far (Kurenbach et al. 2006; Kopec et al. 2005)) and when bound to oriT, the 
resulting DNA–protein complex is termed the relaxosome (Alvarez-Martinez and 
Christie 2009). Accompanying the nicking reaction, the relaxase remains bound to 
the 5’-end of the transferred plasmid strand (T strand). The bound relaxase, prob-
ably together with other relaxosome components, mediates recognition of the DNA 
substrate by a cognate T4SS. The relaxase guides the T strand through the trans-
location channel. In the recipient cell, the relaxase catalyzes the re-circularization 
of the T strand and may also be involved in second strand synthesis or recombina-
tion into the chromosome (Alvarez-Martinez and Christie 2009; César et al. 2006; 
Draper et al. 2005). The self-transmissible plasmids are only one of the two major 
subgroups of conjugative elements. The second group of conjugative elements, 
originally denominated “conjugative transposons” and more recently termed Inte-
grating Conjugative Elements (ICEs), is also present in many bacterial and archaeal 
species (Alvarez-Martinez and Christie 2009; Juhas et al. 2008, 2007; Burrus and 
Waldor 2004; Burrus et al. 2002). These elements are excised from the chromosome 
through the action of a recombinase/excisionase complex and followed by the for-
mation of a circular intermediate. Then, the circularized intermediate is processed 
at oriT in the same way as described for conjugative plasmids. In the recipient cell, 
ICEs reintegrate into the chromosome by homologous recombination or through 
the action of an integrase encoded by the ICE itself (Alvarez-Martinez and Chris-
tie 2009). Conjugative plasmids and ICEs are recruited to the transfer machinery 
through interactions between the relaxosome and a highly conserved adenosine tri-
phosphatase (ATPase) termed the type IV coupling protein. This protein interacts 
with the translocation channel, which consists of the mating pair formation proteins 
(Alvarez-Martinez and Christie 2009; Schröder and Lanka 2005; Christie 2004). In 
gram-negative bacteria, the mating pair formation proteins build the secretion chan-
nel as well as a pilus or other surface filaments to achieve attachment to target cells 
(Alvarez-Martinez and Christie 2009; Christie and Cascales 2005; Lawley et al. 
2003). In gram-positive bacteria, surface adhesins rather than conjugative pili me-
diate attachment (Alvarez-Martinez and Christie 2009; Grohmann et al. 2003); for 
the majority of gram-positive bacteria, the origin and nature of the surface adhesins 
or other surface located factors involved in attachment and/or recognition of the 
recipient cell have not been elucidated so far.

7.4.2  Transformation

DNA transformation is based on the uptake of free DNA from the environment 
and, therefore, does not rely on MGEs; it is only encoded by the acceptor bacte-
rium. Natural competence is the developmental state of the bacterium in which it 
is capable of taking up external DNA and of recombining this DNA into the chro-
mosome, thereby undergoing natural transformation (Seitz and Blokesch 2013). A 
wide variety of bacterial species can develop natural competence and consequently 
take up external DNA (for recent reviews, see Chen and Dubnau 2004; Lorenz 
and Wackernagel 1994). The principal steps to take up the external DNA include:  
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(i) binding of double stranded (ds) DNA outside the cell to a (pseudo-) pilus struc-
ture elaborated by the acceptor cell; (ii) extension and retraction of the pilus, driven 
by ATP-dependent motor proteins, that mediate the uptake of the ds DNA through 
the secretin pore spanning the outer membrane of the acceptor cell; (iii) binding of 
the ds DNA by the DNA-binding protein ComEA, which takes place in the peri-
plasmic space; (iv) transport across the inner membrane by ComEC concomitantly 
with the degradation of one DNA strand by a so far unidentified nuclease; (v) single 
stranded (ss) DNA reaches the cytoplasm and is immediately protected against deg-
radation by DNA processing protein A (DprA) and a single strand binding protein; 
and (vi) DprA recruits RecA, which catalyzes homologous recombination within 
the genomic DNA of the acceptor cell (Seitz and Blokesch 2013).

7.4.3  Transduction

Transduction is the process in which bacterial DNA gets erroneously packaged into 
the heads of bacteriophages. When the phage infects another bacterial cell, the pack-
aged DNA is incorporated into the new host’s genome (Roberts and Mullany 2010).

Bacteriophages are highly specific to their bacterial hosts, able to infect even af-
ter significant periods of hiatus, and reproduce rapidly when their ecosystem allows 
to. The viral genome is stored encapsulated in the protein “head” until the virion at-
taches itself to a bacterial host cell for genome insertion (Brabban et al. 2005). This 
attachment process is highly specific involving the precise recognition of cell sur-
face components, such as proteins and lipopolysaccharide elements, by specialized 
bacteriophage recognition structures. When the viral genome has been introduced 
into the host, the lifecycles of the lytic and temperate bacteriophages diverge deter-
mined by both the bacteriophage’s biology and the cellular environment. Lytic bac-
teriophages only reproduce via a lytic lifecycle, whereas temperate bacteriophages 
can either reproduce lytically or enter lysogeny. Therefore, bacteriophages are his-
torically classified based on their lifecycle (lytic vs. temperate), although finer sub-
divisions are based on their morphological characteristics (tailless vs. tailed), nature 
of the genome (e.g., DNA vs. RNA, single-stranded vs. double-stranded), and other 
factors (Brabban et al. 2005). Nowadays, it has become more common to classify 
bacteriophages at a molecular level through the comparison of specific genes with 
the well-characterized T-4-like bacteriophages (Tétart et al. 2001).

7.5  Monitoring of Occurrence of Antimicrobial 
Resistance and Spread

Based upon the knowledge that ARGs are widespread in aquatic and terrestrial en-
vironments, there is a need for the development and application of molecular meth-
ods to investigate the occurrence, spread, and fate of ARGs in the environment. 
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So far, the methods used for detection, typing, and characterization of ARGs have 
covered, but have not been limited to specific and multiplex polymerase chain reac-
tion (PCR), real-time PCR, DNA sequencing, and hybridization-based techniques, 
including microarray (Zhang et al. 2009).

7.5.1  DNA Hybridization

Molecular hybridization has been used to detect the presence/absence of specif-
ic ARGs for more than 30 years (Zhang et al. 2009; Mendez et al. 1980). Many 
improvements have been made on molecular hybridization, in particular in probe 
design and synthesis, so that the technique, especially Southern blot, is still often 
applied to distinguish different ARGs of one group (e.g., tet genes) from each other 
(Levy et al. 1999; Robert and Kenny 1986) or to prove the presence of specific 
ARGs in certain environments (Zhang et al. 2009; Malik et al. 2008; Agerso and 
Petersen 2007).

With a number of non-radiolabeled systems commercially available, radioactive 
labeling of probes is no longer a reasonable option. As an important non-radiolabeled 
method, fluorescence in situ hybridization (FISH) has been successfully established 
and implemented for clinical detection of antimicrobial resistance. The application 
of the FISH technique has been described for the rapid identification of macrolide re-
sistances due to ribosomal mutations (Rüssmann et al. 2001). Werner and coworkers 
have performed a study to assess the reliability of FISH for clinical detection of line-
zolid-resistant enterococci. They report that FISH, along with DNA probes contain-
ing locked nucleic acids with point mutation, demonstrated 100 % sensitivity for the 
detection of phenotypic linezolid resistance and even allowed detection of a single 
mutated 23S rRNA gene allele in phenotypically linezolid-susceptible enterococci 
(Werner et al. 2007). Although FISH has been often applied for clinical detection of 
antibiotic resistance, only few reports so far exist about its use in the identification of 
bacteria harboring ARGs in environmental samples (Zhang et al. 2009).

7.5.2  PCR (Simple and Multiplex PCR)

PCR assays have been widely applied in both pure cultures and environmental sam-
ples for the detection of ARGs encoding resistances to aminoglycosides (Mohapatra 
et al. 2008; Taviani et al. 2008), chloramphenicol (Dang et al. 2008), β-lactams (Ta-
viani et al. 2008), macrolides (Chen et al. 2007; Patterson et al. 2007), sulfonamides 
(Agerso and Petersen 2007), tetracycline (Jacobs and Chenia 2007), vancomycin 
(Caplin et al. 2008), and other antibiotics as summarized in Zhang et al. (2009). En-
vironmental target DNA or RNA at low concentrations can be amplified and detected 
by PCR. However, false-positive results sometimes occur in the PCR assays. These 
false-positive results can be avoided by application of a second method, namely 
Southern hybridization of PCR products labeled and used as DNA probes on plasmid 
or genomic DNA samples from strains putatively harboring antibiotic resistance 
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target genes (Zhang et al. 2009; Akinbowale et al. 2007; Ahmed et al. 2006). In 
addition, DNA sequencing is another common method to verify the PCR products 
of different ARGs (Thompson et al. 2007). To save time and effort, multiplex PCR 
methods have been developed and often used for simultaneous detection of vari-
ous environmental ARGs (summarized in Zhang et al. 2009). With various primer 
pairs in the same PCR system, multiplex PCR can amplify the DNA fragments of 
several ARGs at the same time (Gilbride et al. 2006). However, the method also has 
its drawbacks due to compromise conditions applied to simultaneously amplify dif-
ferent ARGs. This can include inhibition of the amplification of some genes and/or 
generation of false-positive results. Therefore, the cycling and reaction conditions 
of multiplex PCRs have to be carefully adjusted prior to the application on complex 
environmental samples. Despite these drawbacks, multiplex PCR is still considered a 
rapid and convenient method for the detection of multiple ARGs in isolated bacteria 
or environmental DNA (Zhang et al. 2009; Agersø et al. 2007; Gilbride et al. 2006).

7.5.3  Quantitative PCR

The quantitative real-time PCR (qPCR) is usually used to quantify target DNA on 
basis of the principle that the initial target gene concentration can be estimated by 
determining the number of amplification cycles to obtain a PCR product concentra-
tion above a certain defined threshold. Among the fluorescent reagents developed 
for qPCR, SYBR Green is the most common method used for the amplification of 
ARGs (summarized in Zhang et al. 2009). Recently, the technique has been fre-
quently used to quantify ARGs in environmental samples, including tet genes in 
beef cattle farms (Yu et al. 2005), groundwater (Mackie et al. 2006), river sediments 
(Pei et al. 2006), sewage treatment plants (Auerbach et al. 2007), sul genes in river 
sediments (Pei et al. 2006), npt genes in river water (Zhu 2007) and qnr genes in 
water and soil samples (Dalkmann et al. 2012; Siebe et al., unpublished data).

TaqMan probe has also been applied to quantify tetO, tetW, and tetQ (Smith 
et al. 2004), vanA, mecA and ampC genes (Volkmann et al. 2004) in ww and sul 
genes in ww-irrigated soils and water samples (Siebe et al., unpublished data; Dalk-
mann et al. 2012).

qPCR is not only used for the quantitative analysis of the distribution of ARGs 
in the environment, but also often applied to study the effects of environmental 
factors or treatment processes on removal of ARGs (Zhang et al. 2009), such as tet 
genes (Auerbach et al. 2007; Mackie et al. 2006), sul genes (Pei et al. 2006), and 
erm genes (Chen et al. 2007). Through qPCR, Mackie and coworkers found that the 
detection frequency of tetM, O, Q, and W genes was much higher in wells located 
closer to and down gradient from swine lagoons than in wells more distant from the 
lagoons (Mackie et al. 2006). Also by qPCR, Chen and colleagues observed that 
the abundance of erm genes in composted swine manure samples was significantly 
lower than those in swine manure, indicating that manure storage probably decreas-
es the persistence of environmental ARGs (Zhang et al. 2009; Chen et al. 2007).
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7.5.4  DNA Microarray

The DNA microarray technique is a genomic analysis technique with high through-
put, high speed, and high dedicacy. For detection of antibiotic resistances, DNA 
microarrays can provide detailed, clinically relevant information on the isolates by 
detecting the presence or absence of a large number of ARGs simultaneously in a 
single assay (Zhang et al. 2009; Gilbride et al. 2006). Microarrays allow detection 
of antibiotic resistance determinants within several hours and can be used as a time-
saving, convenient method supporting conventional resistance detection assays 
(Antwerpen et al. 2007). Although microarrays have been successfully applied to 
assess the antibiotic resistances of clinical samples, only few reports exist applying 
this technique to detect ARGs in environmental samples (Zhang et al. 2009). The 
first factor hampering its application in environmental samples is the low detection 
limit of the method, but microarray coupled with PCR can enhance the detection 
limit for environmental ARGs (Gilbride et al. 2006). Patterson and coworkers de-
signed a microarray system based on PCR amplification of 23 different tet genes 
and ten different erm genes to screen environmental samples for the presence of 
these ARGs (Patterson et al. 2007) and found that tetW, O, and Q were the most 
abundant ARGs found in swine fecal samples, and ermV and ermE were the most 
frequent ones detected in farm and garden soil samples (Zhang et al. 2009; Pat-
terson et al. 2007). Another reason for the poor application of microarray in most 
environmental samples is the complexity of the samples and the required pretreat-
ment. The presence of contaminants, such as humic substances and humic acids in 
environmental samples, inhibits DNA extraction and/or target gene amplification, 
therefore, a complicated pretreatment of environmental samples is necessary and 
crucial to get satisfactory detection results (Zhang et al. 2009; Call 2005). However, 
the microarray technique can provide a detailed description of bacterial antibiotic 
resistance and can reveal global changes in the expression of ARGs in response 
to environmental changes (Gilbride et al. 2006; Call et al. 2003). The information 
on gene expression levels can provide insights into the mechanisms of antibiotic 
resistance and into general responses of ARGs to environmental changes (Zhang 
et al. 2009).

7.5.5  Biosensors

The development of biosensors and their application for the detection of antimicro-
bials in environmental samples have made fundamental progress in the past years. 
Reder-Christ and Bendas recently summarized the applications of biosensors in 
the field of antibiotic research in an interesting review (Reder-Christ and Bendas 
2011). In general, there are two main principles for the recognition of antimicrobials 
by biosensor systems. The first one comprises the widespread use of immobilized 
RNA or DNA aptamers as recognition elements (so-called aptasensors) (Rowe et al. 
2010; Zhang et al. 2010; de-los-Santos-Alvarez et al. 2009; Kim et al. 2009). Their 
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sensitivity is comparable to that of antibodies. The second principle of antibacte-
rial recognition for bio-sensing is given by antibody-mediated binding processes. 
Those immunosensors have been widely used for antibacterial detection (summa-
rized in Reder-Christ and Bendas 2011; Cha et al. 2011; Dong et al. 2009; Giroud 
et al. 2009; Rebe Raz et al. 2008; Ionescu et al. 2007; Ferguson et al. 2002). It is 
possible either to immobilize antimicrobial-specific antibodies at the sensor surface 
to directly detect the binding of the antimicrobial or to invert the assay and detect 
the binding of antibody-spiked samples onto immobilized antimicrobials in terms 
of a competitive assay (Reder-Christ and Bendas 2011). In summary, biosensors 
are comparable to conventional methods with respect to sensitivity and specificity 
of antimicrobial detection and thus fulfill international regulatory requirements. As 
biosensors represent fast, simple, and cost-efficient methods that can be used with-
out additional sample preparation, they offer large advantages compared to con-
ventional analytical techniques and will, therefore, hold great promises for a wide 
application in the near future (Reder-Christ and Bendas 2011).

7.6  Risk Assessment of Antibiotic Resistance Spread

Several reviews with the intention to assess the impact of the occurrence and spread 
of clinically relevant bacteria and/or ARGs in the environment on human health 
have been published recently. Most of them deal with ww habitats (Varela and Ma-
naia 2013), ww treatment plants (Rizzo et al. 2013), and aquaculture (Smith 2008). 
Bacteria in ww habitats play a plethora of different roles; the beneficial ones include 
their participation in the waste degradation processes (those will not be reviewed 
here) and the harmful ones with potential impact on human health include the car-
riage and potential spread of virulence genes and ARGs.

Several chemical contaminants present in the ww (heavy metals, disinfectants 
and antibiotics) may select for these bacteria and/or their genes (Varela and Manaia 
2013). Worldwide studies showed that treated ww can contain antibiotic-resistant 
bacteria or genes encoding virulence or antimicrobial resistance, demonstrating that 
treatment processes may fail to eliminate efficiently these bio-pollutants. The con-
tamination of the surrounding environment, such as rivers and lakes receiving ww 
treatment plant effluents, has also been documented in several studies (summarized 
in Varela and Manaia 2013). The current state of the art suggests that still only 
part of the antibiotic resistance and virulence potential in ww is known, as well as 
only some of the factors that trigger their maintenance and spread in the environ-
ment (Varela and Manaia 2013). Although there is much uncertainty concerning the 
transmission of ARGs or virulence genes from ww bacteria to human commensal 
and pathogenic bacteria, the current knowledge recommends the application of the 
precautionary principle regarding the discharge and particularly the reuse of ww. 
Varela and Manaia recommended going one step further in relation to the current 
recommendations (APHA 1995; Council Directive 91/271/EEC 1991). They ur-
gently recommended the regular detection and quantification of ARGs or virulence 
genes, as well as the presence of heavy metals or antimicrobial residues in ww-
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impacted areas. Furthermore, the assessment of negative impacts due to long-term 
exposures to the discharge of treated ww should be a priority (Varela and Manaia 
2013). The accumulation of apparently very small concentrations of harmful bacte-
ria, genetic determinants encoding for ARGs or virulence genes or micropollutants 
may generate measurable and relevant effects after some years as demonstrated by 
Dalkmann et al. (2012) and Aleem et al. (2003). It is also important to consider that 
risk assessments carried out in one world region cannot be simply used or trans-
posed to regions with distinct geological and climate conditions, since it cannot be 
taken for granted that conditions such as temperature, precipitation, insolation, or 
properties of the soil will not interfere with the accumulation of potential hazardous 
pollutants discharged by ww treatment plants (Varela and Manaia 2013).

Recently Rizzo and colleagues published a comprehensive review on UWTPs 
as hotspots for antibiotic-resistant bacteria and ARG spread into the environment 
(Rizzo et al. 2013). They concluded that in spite of intense efforts made over the 
past years to find solutions to control antibiotic resistance spread in the environ-
ment, there are still important gaps to fill in. In particular, it is important to: (i) 
improve risk assessment studies to allow accurate estimates about the maximum 
abundance of antibiotic resistant bacteria in UWTP effluents that would not pose 
risks for human and environmental health and (ii) elucidate the factors and mecha-
nisms that drive maintenance and selection of antibiotic resistance in ww habitats 
(Rizzo et al. 2013). The final objective should be to implement ww treatment tech-
nologies that are able to assure the production of UWTP effluents with an accept-
able level of antibiotic resistant bacteria (Rizzo et al. 2013). In the opinion of Rizzo 
and colleagues, one of the most important questions to address to advance towards 
ww treatment plants generating effluents with an acceptable level of bio-pollutants 
would be the setup of a public database with information on ww habitats such as: 
(i) antibiotic resistant bacteria and their phylogenetic lineages; (ii) ARG and respec-
tive nucleotide sequences and genetic environment as well as (iii) sampled sites 
and their major characteristics. Such a public database would represent a valuable 
tool to a better understanding of antibiotic resistance ecology and control measures 
(Rizzo et al. 2013).

Recently, Smith published an interesting review on antimicrobial resistance in 
aquaculture. Appropriate antimicrobial therapy represents one of the most effective 
management responses to emergencies associated with infectious disease epizoot-
ics. The use of these agents, however, has the potential to increase the frequencies of 
bacterial resistance and this would result in a negative impact on the subsequent use 
of these antimicrobials to control infectious disease in aquaculture. It is also possi-
ble that the enrichment of resistant bacteria or ARGs could negatively influence the 
use of antimicrobials to control diseases in humans and other land-based animals 
(Smith 2008). Attempts to apply formal risk analysis to this problem have failed due 
to the extreme diversity of aquaculture and the general shortage of relevant data. 
Smith argued that not only do we lack relevant data to perform this exercise but we 
also lack validated methods to collect those data in the first place (Smith 2008). Due 
to the lack of any significant risk assessment, current attempts at risk management 
are focused on the development of lists of critically important antimicrobials for the 



7 Spread of Antibiotic Resistance in the Environment: Impact on Human Health 149

various users of these agents. Smith argued that studies of gene ecology and models 
of gene flow in the environment are urgently needed if we should be able to evalu-
ate this risk management approach, to predict its consequences or to generate more 
appropriate strategies (Smith 2008).

The two most valuable outcomes that can be expected from any risk assessment 
are the definition of rational, evidence-based risk mitigation strategies and the iden-
tification of the future requirements for additional research (Smith 2008). A risk 
assessment should enable the identification of key areas where intervention could 
minimize the risk. The identification of these key areas would consequently allow 
the development of effective risk mitigation strategies. To the extent that risk analy-
sis can provide some estimate on the size or significance of a risk, it will also pro-
vide us the basis for a cost–benefit analysis of any intervention (Smith 2008). Smith 
concluded that we urgently need to develop evidence-based management strategies 
that will enable us to minimize the impact of bacterial resistance, selected by the 
aquacultural use of antimicrobials, both on the control of diseases encountered in 
aquaculture itself and in those encountered in humans and land-based agriculture 
(Smith 2008).

7.7  Conclusions and Perspectives

Bacteria resistant to antimicrobials are widespread. Humans, animals, and envi-
ronmental habitats are all reservoirs where bacterial communities live that contain 
bacteria that are susceptible to antimicrobials and others that are resistant (Acar and 
Moulin 2006). Farm ecosystems offer a particular environment in which resistant 
bacteria and ARGs can emerge, amplify, and spread. Dissemination can occur via 
the food chain and via several other pathways, such as sewage and manuring of 
agricultural fields. Ecological, epidemiological, molecular, and mathematical ap-
proaches are currently used to study the origin and expansion of the antimicrobial 
resistance problem and its relationship to antibiotic usage (Acar and Moulin 2006). 
Prudent and responsible use of antibiotics is an essential part of an ethical approach 
to improving animal health, food safety, and consequently human health (Acar and 
Moulin 2006). The responsible use of antibiotics during research is vital, but to fully 
contribute to the containment of antimicrobial resistance, prudent and responsible 
use must also be part of good management practices at all levels of farm life (land-
based and aquaculture) and human antibiotic therapy.

ARGs can flow among different biological units of different hierarchical lev-
els, such as integrons, transposons, plasmids, clones, species, or genetic exchange 
communities (Baquero 2012). Baquero argued that metagenomics would be the 
best-suited tool to explore the presence of ARGs in all these biological and evolu-
tionary units, and to identify possible “high risk associations.” He is in favor of a 
multilayered metagenomic epidemiology approach which can help to understand 
and eventually predict and apply intervention strategies aiming to limit antibiotic 
resistance (Baquero 2012).
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Another valuable approach would be the more frequent application of biosen-
sors particularly destined to detect and quantify antibiotics and their degradation 
products in environmental samples (summarized in Reder-Christ and Bendas 2011).

The combination of both, sensitive and quantitative detection of antibiotic re-
sistance determinants as well as of the corresponding antibiotics, would present a 
valuable innovative approach whose data could feed the modeling approaches that 
are urgently required to predict the spread of ARGs in certain habitats sufficiently 
well in advance to act and implement countermeasures.
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