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    Abstract     This contribution addresses a number of issues related to the representation, 
use and appraisal of evidence, with a special focus on the health sciences and law. It is 
argued that evidence is a trans-disciplinary notion whose distinctive trait is its capacity 
to provide a link between some body of information and some hypothesis such infor-
mation supports or negates. As such, evidence is strictly associated with relevance, and 
like relevance it is intrinsically context-dependent. An analysis of evidence has to 
address a number of issues, including the epistemic context of reference, the general or 
particular nature of the hypothesis under scrutiny, the predictive or explanatory charac-
ter of the inference in which evidence is involved, and the stage at which a given body 
of evidence is being used within a complex inferential process. Moreover, an awareness 
of the context in which evidence is appraised recommends that all assumptions under-
lying the representation of evidence be rigorously spelled out and justifi ed case by case, 
and the ultimate aims of evidence be clearly specifi ed.  

  Keywords     Evidence   •   Scientifi c inference   •   Explanation   •   Prediction   •   Manipulation  

5.1         Foreword 

 The notion of evidence has recently become the object of increasing attention from 
researchers in various disciplines, and has generated an extensive literature devoted 
to the clarifi cation of its nature and inferential uses. 

 By contrast, evidence has only recently become a subject fi eld for philosophers 
of science. This is due to a long-standing consensus on the clear-cut distinction 
between a context of discovery and a context of justifi cation, dating back to the birth 
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of philosophy of science in connection with the Vienna and Berlin Circles. Such 
distinction is described by Hans Reichenbach as: “the well-known difference 
between the thinker’s way of fi nding this theorem and his way of presenting it 
before a public […] I shall introduce the terms  context of discovery  and  context of 
justifi cation  to mark the distinction. Then we have to say that epistemology is only 
occupied in constructing the context of justifi cation” (Reichenbach  1938 ,  1966  6    , 
6–7). The idea behind it is to keep the sociological and psychological aspects of 
theory formation separate from the precision and rigour characterizing the fi nal 
formulation of theories. While the sociological and psychological components of 
the process leading to the statement of a theory belong to the context of discovery, 
 rational reconstruction , namely the process aiming “to have thinking replaced by 
justifi able operations” ( ibid. , 7) is the object of the context of justifi cation. Logical 
empiricists identify the goal of philosophy of science with the “rational reconstruc-
tion” of scientifi c knowledge, namely the clarifi cation of the logical structure of 
science, through the analysis of its language and methods. By identifying justifi ca-
tion as the proper fi eld of application of philosophy of science they intended to leave 
discovery out of its remit; the context of discovery was then discarded from philoso-
phy of science and left to sociology, psychology and history. 

 The distinction between context of discovery and context of justifi cation goes 
hand in hand with the tenet that the theoretical side of science should be kept 
separate from its observational and experimental components. The fi nal, abstract 
formulation of theories should be analyzed apart from the process behind it, including 
the complex methodology for the collection and organization of empirical fi ndings. 
In other words, the “plane of observation,” including all that comes from observa-
tion and experimentation, is taken as given, and is not to be analyzed, like all that 
belongs to the context of discovery and not to that of justifi cation. 

 The view of theories upheld by logical empiricists, together with the distinction 
between the context of discovery and the context of justifi cation, has gradually been 
superseded by a more fl exible viewpoint according to which theory and observation 
are intertwined rather than separate, as are the contexts of discovery and justifi ca-
tion. Such a change in perspective was triggered by the pioneering work of Patrick 
Suppes who, starting with his article “Models of Data,” which appeared in  1962 , 
and in a long series of subsequent writings culminating in the monumental book 
 Representation and Invariance of Scientifi c Structures  ( 2002 ), 1  opened philosophy 
of science to the study of the context of discovery as an integral part of scientifi c 
knowledge. Suppes’s perspective marks an about-turn with respect to the received 
view developed by logical empiricists, which he contrasts with a pragmatist 
standpoint that regards theory and observation as intertwined rather than separate, 
establishes a continuity between the context of discovery and the context of 
justifi cation, and takes scientifi c theories as principles of inference useful for making 
predictions and choosing between alternative courses of action. 

 A crucial aspect of Suppes’s approach is the acknowledgment that “empirical 
structures,” namely the models organizing and describing empirical data, are objects 

1   See also the collection of papers in Suppes ( 1993 ). 
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of investigation no less important than logical structures. This opens the door to a 
whole array of issues concerning observation, experimentation, measurement, and 
statistical methodology for collecting data and assessing their bearing on scientifi c 
hypotheses. Aware of the importance of these components of scientifi c method, 
Suppes insists that philosophy of science is concerned as much with formal logic 
and set theory as with probability and statistical inference, and labels his own 
perspective “probabilistic empiricism,” to stress the crucial role played within 
epistemology by probability. 

 Suppes’s viewpoint is deeply pluralistic, in the conviction that the tendency to 
look for univocal accounts and solutions typical of logical empiricism should be 
abandoned in favour of a multi-faceted and context-sensitive view of scientifi c 
knowledge. In this spirit, Suppes calls attention to the complexity of data delivered 
by observation and experimentation. In his words: “the ‘data’ represent an abstrac-
tion from the complex practical activity of producing them. Steps of abstraction 
can be identifi ed, but at no one point is there a clear and distinct reason to exclaim, 
‘Here are the data!’” (Suppes  1988 , 30). Depending on the desired level of abstrac-
tion different pieces of information will then count as “data,” and what qualifi es as 
“relevant” will inevitably depend on a cluster of context-dependent elements. 
In what follows it will be argued that Suppes’ emphasis on the complex nature of 
data and the need to take into account the context in which one operates should be 
extended to the broader notion of evidence. 

 Suppes is not alone in heralding a context-sensitive approach to epistemology. In 
recent years a similar tendency has been embraced by a number of authors including 
Bas van Fraassen — to whose work the present volume is devoted. Both Suppes and 
van Fraassen paid great attention to measurement, as well as to the relationships 
between models of data and theoretical models. In addition to physics, the main 
focus of van Fraassen’s research, Suppes addressed learning theory and more 
recently the structure of the brain. By contrast, the present contribution focusses on 
the health sciences and law, two fi elds attracting growing attention on the part of 
those interested in foundational issues.  

5.2     Evidence as a Multi-disciplinary Subject 

 According to the Oxford Dictionary, evidence is “anything that gives reason for 
believing something; that makes clear or proves something.” Evidence can consist 
of information of various kinds including empirical data coming from observation 
and experiment, images, oral reports, recordings, and materials of different sorts. 
All such types of evidence raise serious problems of collection, representation and 
interpretation. The awareness of the role played by evidence in the process of estab-
lishing and assessing hypotheses in all branches of science, and also in everyday 
life, is the focus of lively debate among researchers active in several fi elds. 

 The jurist William Twining, a leading protagonist in that debate, maintains that 
“all disciplines that have important empirical elements are connected to a shared 
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family of problems about evidence and inference. Apart from its theoretical interest 
(as a contribution to human understanding) evidence is of great practical importance 
in many spheres of practical decision-making and risk management. In particular, 
multi-disciplinary study of evidence focuses attention on such questions as: (i) What 
features of evidence are common across disciplines and what features are special? 
(ii) What concepts, methods and insights developed in one discipline are transfer-
able to others? (iii) What concepts are not transferable? Why? (iv) Can we develop 
general concepts, methods and insights that apply to evidence in all or nearly all 
contexts?” (Twining  2003 , 97). Such questions are the core of extensive research 
done in recent years fostering the conviction that evidence is a “multi- disciplinary 
subject in its own right” ( ibid. , 99), and one can speak of a  science of evidence . 2  
This conviction goes hand in hand with the awareness that both the production and 
interpretation of evidence raise peculiar problems within different contexts. While 
in some scientifi c fi elds, such as physics, one relies on “hard” data, often collected 
according to protocols approved by the scientifi c community, in others, like medi-
cine and law, what counts as evidence “cannot be restricted to ‘hard’ scientifi c data” 
( ibid. , 96). 

 In an attempt to identify the trans-disciplinary nature of evidence, Twining 
claims that “at its core, evidence as a multi-disciplinary subject is about inferential 
reasoning” ( ibid. , 97). In other words, the distinctive trait of evidence is identifi ed 
with its capacity to provide a relation between some body of information and some 
hypothesis that is supported or negated by it. As such, evidence is strictly associated 
with the notion of  relevance . 

 The analysis of evidence has to take into account a number of issues, includ-
ing the epistemic context of reference, the general or particular nature of the 
hypothesis under scrutiny, the predictive or explanatory character of the infer-
ence in which evidence is involved, and the stage at which a given body of evi-
dence is being used within a complex inferential process. In the course of an 
insightful discussion of the use of evidence in the realm of law, Twining main-
tains that “in considering problems of evidence and inference three distinctions 
are crucial: the difference between  past-directed  and  future-directed  inquiries; 
the distinction between  particular  and  general  inquiries; and the distinction 
between  hypothesis formation  and  hypothesis testing ” ( ibid. , 103; italics added). 
Twining’s distinctions are crucial, and bear directly on the discussion developed 
in the following sections. 

 Also important with regard to evidence is  classifi cation . This is strongly empha-
sized by David Schum, a pioneer of the science of evidence, who claims that “being 
able to classify evidence on inferential grounds has many useful consequences. This 
allows us to discuss some very general properties of evidence and to meaning-
fully compare the meaning of evidence in different evidential reasoning tasks and 

2   Questions of this kind have been the focus of the interdisciplinary research supported by 
Leverhulme Foundation “Evidence, inference and enquiry: Towards an integrated science of 
evidence,” carried out between 2004 and 2007 under the guidance of the statistician Philip Dawid. 
This research project led to the publication of Dawid et al. eds. ( 2011b ). 
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within a given particular inferential task” (Schum  2011 , 13). Schum puts forward a 
“substance- blind classifi cation of evidence” meant to apply to the analysis of 
 evidence independently of its particular content, and therefore in a trans-disciplinary 
fashion. Schum distinguishes three major dimensions of evidence:  relevance , 
 credibility , and  inferential force or weight . The relevance dimension has to do with 
the bearing of evidence upon the hypothesis that has to be proved or disproved. 
In that connection, evidence can be  direct  or  indirect , depending on whether it can 
be related to the hypothesis by a “defensible argument or chain of reasoning,” in 
which case it is direct, or “it bears upon the strength or weakness of links in a chain 
of reasoning set up by directly relevant evidence” ( ibid. , 20), in which case it is 
indirect. The credibility dimension has to do with how those who evaluate evidence 
stand in relation to it. In other words, it concerns the question: “can we believe that 
the event(s) reported in the evidence actually occurred?” ( ibid. , 21). Schum regards 
this as the most complex aspect of evidence because “we must ask different 
credibility- related questions for different kinds of evidence we have” ( ibidem ). A fi rst 
distinction that matters in connection with this dimension of evidence is between 
 tangible  and  testimonial  evidence, where the fi rst can be examined directly, while 
the second is reported by testimonies. These two kinds of evidence obviously raise 
a number of problems such as authenticity, reliability and accuracy in the case of 
tangible evidence; competence, veracity and credibility in the case of testimonial 
evidence, where the credibility of a witness also involves his veracity, objectivity 
and observational ability. No less complex is the assessment of the inferential force 
or  weight  of evidence. Part of the problem is that there is no general consensus 
on how weight should be defi ned and assessed. A number of different views and 
methods have been developed by statisticians belonging to different schools, but as 
Schum remarked “no single view says all there is to be said about the force or 
weight of evidence” ( ibid ., 23) because this would require other elements to be 
considered in addition to statistical measures. In fact “the force or weight of evidence 
depends on assessments made regarding the other two evidence credentials: 
relevance and credibility” ( ibidem ). For instance, one would have to consider the 
strength of the links of a chain of reasoning brought to sustain the relevance of a 
given body of evidence for a certain hypothesis, or the credibility of its source. 

 Having said that, it should be added that evidence has a lot to do with statistics. 
As stated by Leonard Jimmie Savage: “statistics consists in trying to understand 
data and to obtain more understandable data” (Savage  1977 , 4). Statisticians devel-
oped a vast array of statistical methods for collecting and organizing evidence 
(descriptive statistics), for inferring various kinds of conclusions from evidence 
(inferential statistics), and for testing hypotheses against data. Granted that statisti-
cians prompted powerful and useful tools, their application raises myriad problems. 
As emphasised by C. G. G. Aitken: “scientifi c evidence requires considerable care 
in its interpretation. There are problems concerned with the random variation natu-
rally associated with scientifi c observations. There are problems concerned with the 
defi nition of a suitable reference population against which concepts of rarity or 
commonality may be assessed. There are problems concerned with the choice of a 
measure of the value of evidence” (Aitken  1995 , 4). Evidence is often employed to 
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specify causal knowledge that goes beyond mere statistical correlations. It is vital to 
acknowledge that this requires assumptions that should be based on solid grounds 
and justifi ed case by case. 

 Also worth noting is the fact that exploiting and accumulating evidence may 
sometimes involve ethical issues. This is obviously true in the realm of medicine. 
Experimenting the effi cacy of a new treatment, for example, requires careful evalu-
ation of potential risks, which often proves problematic. In order to test the safety 
and effi cacy of a new treatment researchers carry out experiments, usually applying 
randomization techniques. The adoption of randomization in medicine is itself the 
object of ongoing debate, (see for instance Worrall  2006 ) but even apart from that 
the evaluation of the risks faced by individuals who agree to undergo experimental 
treatments depends on myriad factors that need to be considered with great care. 
This holds both for the risks to which the individuals who accept to undergo experi-
ments are exposed, and for the risks to which the population at large is exposed once 
a drug is made available or a surgical treatment enters medical practice. In order to 
answer questions like: “What are the risks of a potential new treatment for liver 
cancer? Are the risks outweighed by the potential clinical benefi ts? What dose of the 
treatment is best?” (Rid and Wendler  2010 , 151), one has to assess the possibility to 
generalize the results of experiments. Obviously, this procedure involves not only 
technical, but also ethical and practical issues that can only be appraised within a 
given context. 3   

5.3     Evidence in the Health Sciences 4  

 The health sciences cover a diversifi ed range of sub-disciplines including epidemi-
ology, clinical medicine, pathology, anatomy, and so on, all of which pursue differ-
ent purposes. Epidemiology is involved with devising practices to avoid or reduce 
the risk of spreading diseases, while clinical medicine aims at diagnosis and ther-
apy, and pathological anatomy aims at reaching knowledge of the human body that 
can explain the insurgence of diseases. To such tasks there corresponds a nonuni-
form involvement with prediction, manipulation, and explanation, which is usually 
taken in its causal meaning as knowledge of the mechanisms responsible for dis-
eases. The accomplishment of all of these conceptual operations obviously needs to 
be supported by evidence. The health sciences make extensive use of statistical 
relationships, but often evidence concerning single individuals is also required, for 
instance to adjust some therapy to a given patient. The distinction between informa-
tion regarding whole populations and information regarding individuals is therefore 
of the utmost importance in this setting. 

3   See for instance a recent issue of the journal  Law, Probability, and Risk , 9 ( 2010 ), n. 3–4, entirely 
devoted to “Risk and probability in bioethics.” 
4   This section benefi ts from joint work with Raffaella Campaner. 
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 The foundations of the health sciences are the object of growing concern for 
philosophers of science. Among those who have made substantial contributions to 
the debate on the topic Federica Russo and Jon Williamson argue in the course of a 
discussion of the nature of causality in medicine that “the health sciences make 
causal claims on the basis of evidence  both  of physical mechanisms, and of proba-
bilistic dependencies” (Russo and Williamson  2007 , 157). So far so good, but they 
go on to claim that “there are not two varieties of cause but two types of evidence” 
( ibid. , 166). The two kinds of evidence that matter in medicine according to Russo 
and Williamson are  probabilistic  and  mechanistic  (see also Russo and Williamson 
 2011 ). While it is undeniable that both mechanistic and probabilistic evidence play 
a fundamental role in the establishment and assessment of causal hypotheses in the 
health sciences, this classifi cation cannot be taken as exhaustive because there is 
at least one more kind of evidence that matters, namely  manipulative evidence . 
Moreover, probabilistic and mechanistic evidence should be seen as complementary 
rather than opposed. According to a vast literature dating back to the 1970s and 
constantly growing ever since, mechanisms can be conceived in probabilistic terms, 
so that probabilistic evidence expressed by means of correlations can and often does 
suggest mechanisms. As Salmon clearly stated, the identifi cation of mechanisms 
requires more than statistical correlations, but these represent the fi rst step in the 
search for mechanisms. Evidence of correlations is apt to direct interventions that 
may prove useful to fi nd out about mechanisms, which suggests that evidence can 
be of a manipulative kind. 

 The crucial role played by evidence provided by manipulations has been pointed 
out by various authors including Paul Thagard, who in the course of a discussion 
of the hypothesis that Helicobacter pylori causes ulcers emphasizes the relevance 
of evidence from manipulative interventions, namely evidence that “eradicating 
bacteria cures ulcers” (Thagard  1998 , 132) for the acceptance of that hypothesis 
(for more on this see Campaner  2011 , 12). 

 Evidence in the health sciences is also discussed by Jeremy Howick, Paul Glasziou 
and Jeffrey Aronson, who speak of “evidence hierarchies” and distinguish among 
 direct evidence  “from studies (randomized and non-randomized) that a probabilistic 
association between intervention and outcome is causal and not spurious,”  mechanis-
tic evidence  “for the alleged causal process that connects the intervention and the 
outcome,” and  parallel evidence  “that supports the causal hypothesis suggested in 
a study, with related studies that have similar results” (Howick et al.  2009 , 186). 
The authors also mention  evidence for mechanisms  to refer to evidence provided by 
statistical correlations that hints at the existence of some mechanism. 

 The same point is emphasized by epidemiologist Paolo Vineis, who calls atten-
tion to the fact that preventive measures in epidemiology are sometimes achieved 
“in the absence of any clue as to the biological causes or mechanisms of action” 
(Vineis and Ghisleni  2004 , 203). 

 To sum up, both  manipulative  and  mechanistic  evidence are essential to medical 
research and practice, where they are deeply intertwined. Probabilistic evidence 
qualifi es as transversal rather than opposite with respect to other kinds of evidence, 
and the same holds for direct and indirect (or parallel) evidence. 
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 The distinction between manipulative and mechanistic evidence is paralleled by 
the distinction between two similar concepts of causality coexisting in a number of 
recent accounts, including those put forward by James Woodward, Stuart Glennan, 
Peter Machamer, Lindley Darden and Carl Craver (see Woodward  2003 ,  2004 ; 
Glennan  2002 ,  2010 ; Machamer et al.  2000 ). The author of the present pages also 
endorsed a pluralistic view of causality apt to accommodate both of these notions 
and suggested they could be combined within the “perspectival” approach of Huw 
Price, which relates causality to the agent’s perspective, holding that to call  A  a 
cause of  B  is to regard  A  as a potential means for achieving the end  B  (see Price    
 1991 ,  2007 ). Price’s epistemic approach can be taken to provide a broad philosophical 
framework that “in order to become a fl esh and blood theory of causality […] has to 
be substantiated by more specifi c accounts” (Galavotti  2001 , 8. See also    Galavotti 
 2008 ). The nature of such accounts will inevitably depend on the context, more 
particularly on the aims of the enquiry being conducted and on the kind of evidence 
available. The perspectival viewpoint is fully compatible with the idea that whenever 
mechanistic evidence is available on that ground mechanistic hypotheses and 
models can be devised. 

 While playing a fundamental role, causal analysis in medicine is characterized 
by a high degree of complexity. A case study that gives an idea of such a complex-
ity is provided by deep brain stimulation (DBS), a therapeutic technique employed 
to suppress tremors in patients with advanced Parkinson’s disease. 5  DBS consists 
in a surgical operation which inserts components for electric stimulation, targeted 
mainly at the subthalamic nucleus or the globus pallidus. High-frequency stimula-
tion produced by the electrodes causes a functional block of the anatomic structure, 
and, by blocking electrical signals from targeted areas in the brain, reduces the 
hyperactivity responsible for Parkinson’s disease symptoms. Remarkably positive 
long-term effects and advantages are largely documented, whereas side-effects and 
complications are rare and disturbances are transient. Diffi culties are mainly due to 
the complexity of the phenomenon under examination, and are amplifi ed by the 
reactions of patients: a wide range of strictly personal aspects, such as the confor-
mation of the skull, age, possible reactions to drugs, psychological attitude, and 
others, are regarded as responsible for a marked variability in responses. Such dif-
fi culties notwithstanding, DBS is being increasingly employed for Parkinson’s and 
a number of other diseases such as dystonia, Tourette syndrome, depression and 
obsessive compulsive disorder. While DBS is effective in many cases, details are 
largely unknown about  why  it is so and what the  exact processes  are. In other 
words, researchers have not managed to decipher  how  DBS brings about its effects. 
Thus DBS exemplifi es a case in which therapy not only precedes but contributes to 
the discovery of mechanistic details. While “the precise mechanisms of action for 
DBS remain uncertain, […] mapping the effects of this causal intervention is likely 
to help us unravel the fundamental mechanisms of human brain function” 

5   This example, which I owe to Raffaella Campaner, is discussed in more detail in Campaner and 
Galavotti ( 2007 ,  2012 ). 
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(Kringelbach et al.  2007 , 623), and to clarify fundamental issues such as the 
 functional anatomy of selected brain circuits and the relationships between activity 
in those circuits and behaviour. It is worthwhile stressing that such a technique is 
leading to progress in elucidating not only the neural mechanisms directly underly-
ing the effects of DBS, but also the fundamental brain functions affected in the 
targeted brain disorders. In the absence of mechanistic knowledge, causation can 
be conceived of as manipulation, both for practical and heuristic purposes. So 
Kringelbach et al. ( 2007 ) explicitly speak of “the causal and interventional nature” 
of DBS, and discuss various different hypotheses that have been put forward to 
account for the underlying mechanism. 

 Knowledge of mechanisms is what researchers aim at, because once mechanisms 
are known disease can be explained on that basis. This can be done either in terms 
of a mechanism at work or in terms of a mechanism’s impairment. Moreover, mech-
anistic knowledge allows for making prediction and planning manipulation. In the 
case of manipulation, however, a distinction should be made between interventions 
to be performed at the  population level  like those planned by the epidemiologist, 
and interventions on  single individuals  like therapies (pharmaceutical, surgical, 
etc.). These two cases call for  different kinds of evidence , since the fi rst makes use 
of statistical data referred to populations, while the second also requires information 
on individual patients. 

 Causal analysis can also be conducted at different levels, so that one can have 
 general  or  type causality  (referred to populations), and  singular  or  token causality  
(referred to individuals). This distinction has a long tradition within the literature on 
causation due to statisticians. Irving John Good, for instance, grounded his theory 
of probabilistic causality on this distinction, while Philip Dawid has repeatedly 
called attention to it more recently (see Good  1961 –1962; Dawid  2000 ,  2007 ). 
The distinction lies at the basis of Salmon’s two levels of explanation, namely the 
 statistical-relevance model  according to which events are explained by locating 
them in a network of statistical relations holding between the properties relevant 
to their occurrence, and  mechanical  explanation in terms of  processes  and  inter-
actions , which is meant to explain single events by exhibiting the (probabilistic) 
mechanisms responsible for their occurrence. Salmon regards the shift from type-
level analysis to token-level analysis as relatively unproblematic. However, while 
this may be true of physics, the major field of application of Salmon’s theory, 
it surely does not hold for other disciplines, including psychology, medicine, and 
the social sciences. 6  As a matter of fact, the shift from types to tokens is highly 
problematic in the health sciences, and requires great care. 

 Evidence available in medicine often does not allow a complete description of 
the mechanisms at work, and use is made of only partially specifi ed mechanisms. 
This is emphasized by a number of authors including Peter Machamer, Lindley 
Darden and Carl Craver who speak of  mechanism schemas  and  sketches , and 

6   This is admitted by Salmon himself in ( 2002 ). For more on Salmon’s theory of explanation and 
causality see Salmon ( 1984 ,  1998 ). See also Galavotti ( 2010 ) where Salmon’s theory is discussed 
in the framework of the broader debate on explanation. 

5 On Representing Evidence



110

Donald Gillies who refers to  plausible mechanisms  (see Machamer et al.  2000 ; 
Gillies  2011 ). The search for mechanisms in medicine is usually articulated into a 
multi-level analysis requiring both mechanical and manipulative evidence, referring to 
populations as well as individuals. This is exemplifi ed by the DBS case, where use 
is made of  general (statistical) evidence  as well as  particular information , and both 
 past-directed  and  future-directed  inquiries are conducted. In fact, a multi-layered 
analysis is performed involving mechanisms at upper and lower levels (motions 
disorders, chemical defi ciencies, electrical transmission of signals), and the effects 
of manipulation across such levels are investigated. 

 As already observed, evidence can serve various purposes in the health sciences. 
In epidemiology evidence is accumulated for the sake of  prediction  and  policy inter-
ventions . Epidemiological analysis is conducted at some level of generality and 
evidence is expressed by means of statistical correlations because what matters are 
average values rather than data concerning the individual members of a population. 
Statistical correlations to be employed for prediction and interventions have to be 
 robust , namely they have to be invariant, or stable across a broad range of varying 
conditions and circumstances. The degree of robustness required from such correla-
tions will depend on the use to which the predictions obtained on their basis are to 
be put, as well as on the kind of interventions that are being planned, their cost, 
risk, urgency, and so on. By contrast,  interventions  in clinical medicine are made on 
 single patients , and in addition to statistical correlations evidence regarding indi-
viduals is needed. When the available evidence suggests that some fully or partially 
known mechanism is at work, the physician makes a diagnosis and plans a therapy. 
At that stage, in most cases additional evidence, often manipulative in kind, is 
required to adjust the therapy, or to decide upon further steps to be taken. Different 
yet again is the case of autopsy, where what is sought is an explanation of why 
somebody died requiring both general and individual information, and causal 
analysis is typically  ex-post . 

 It is worth calling attention to the assumptions that are (often tacitly) made when-
ever evidence, especially statistical evidence, is used for prediction, planning inter-
ventions, and establishing causal connections. One extensively adopted assumption is 
 invariance across different regimes , typically  observational  and  interventional  — or 
experimental (with or without randomisation). As recommended by Philip Dawid, a 
statistician who devoted great attention to the analysis of evidence, assuming invari-
ance across regimes requires great care. The issue intertwines with the distinction 
between  general  ( type ) and  singular  ( token ) causal analysis, because the task of type 
analysis, as described by Dawid, is to use past data to make choices about future 
interventions, and “this requires that we understand very clearly the real-world 
meaning of terms such ‘observational regime’ and ‘interventional regime’, since 
there are many possible varieties of such regimes” (Dawid  2007 , 529). This can only 
be accomplished with reference to the context in which one operates. As Dawid 
put it: “appropriate specifi cation of context, relevant to the specifi c purposes at hand, 
is vital to render causal questions and answers meaningful” (Dawid  2000 , 422). 
Dawid’s advice to spell out all assumptions that are made and to justify them case by 
case invokes once again the centrality of context.  
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5.4     Evidence in Law 

 The nature, role and evaluation of evidence in the realm of law is the focus of extensive 
debate. Evidence is generally employed in law to support  analysis ex-post , and has to 
do with the appraisal of  particular hypotheses . In Twining’s words: “adjudication of 
issues of fact in contested trials is typically past-directed, particular, and hypothesis 
testing” (Twining  2011 , 88). In addition, “disputed trials are typically concerned with 
inquiries into particular past events in which the hypotheses are defi ned in advance by 
law — what lawyers call ‘materiality’. Moreover, records of cases are artifi cially 
constructed units extracted from more complex and diffuse contexts. For example, 
a criminal trial may be just one event in a long-drawn out feud or other confl icts. 
These elements — particularity, pastness, materiality, and individuation of cases — 
differentiate this kind of legal material from many other inquiries in which reasoning 
from evidence is involved” ( ibid ., 88–89). A further element characterizing evidence 
in law amounts to the fact that in adjudication a decision has to be taken, and “this 
pressure for decision has led the law to develop important ideas about presumptions, 
burden of proof and standards of proof as aids to decision” ( ibidem ). 

 The study of evidence in law has benefi tted from the proliferation and refi nement 
of techniques for identifi cation by means of fi ngerprints, DNA evidence, marks on 
bullets, etc.; the ever-increasing amount of epidemiological and medical data, and 
the progress of risk analysis. The organization and appraisal of evidence is entrusted 
to forensic scientists, who make use of it for the sake of identifi cation, for instance 
to identify the source of a trace left at a murder scene. The method employed to 
accomplish this task is  comparison . Typically, evidential material found at the scene 
of a crime is compared with other evidential material found, say, on a suspect’s 
clothing, or in his car. Statistics provides the means for making such comparisons. 
As C. G. G. Aitken observed: “statistics has developed as a subject, one of whose 
main concern is the quantifi cation of the assessments of comparisons. The perfor-
mance of a new treatment, drug or fertilizer has to be compared with that of an old 
treatment, drug or fertilizer, for example. Statistics and forensic science are increas-
ingly interacting thanks to the increasing amount of available data (DNA, refractive 
index of glass fragments, chromatic coordinates measuring colour in fi bres, etc.)” 
(Aitken  1995 , 16). The goal of this kind of comparison is to help those who are in 
charge to make a judgment in a variety of situations ranging from paternity disputes 
to the judgment of innocence or guilt in case of a criminal offence. To be sure, the 
fi nal judgment is up to judges and/or jurors, and usually requires a whole array of 
considerations of a different sort, such as causal knowledge, to mention one. The 
attribution of responsibility is ruled by different standards in tort and criminal law: 
in tort law the standard is  preponderance of probability , while criminal law demands 
the BARD ( Beyond A Reasonable Doubt ) standard. How to relate the probabilistic 
representations of evidence obtained by means of statistical methods to a concept 
like the BARD principle raises delicate problems and fosters endless debate. 7  

7   These and other related issues are addressed in Redmayne ( 2001 ). 
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 A major problem lurking behind the application of statistical methods is the 
identifi cation of an appropriate  reference class . Ideally, a suitable reference class 
for base rates should be such that no relevant variables are omitted (to avoid 
confounding) and that data are carefully collected. This obviously creates a problem 
that admits of no simple and general solution, and can only be addressed in a 
context- sensitive fashion. 8  

 In the 1970s Dennis Lindley launched the adoption of Bayesian methodology 
as a tool apt to help decision-making in court. His work started a trend in the literature 
that has burgeoned ever since. At the core of Lindley’s proposal lies the  likelihood 
ratio  (LR), taken as an optimal measure of the  value of the evidence  with respect 
to competing hypotheses. The hypotheses considered can be various. For instance, 
in a paternity dispute they might sound like “the alleged father is the true father 
of the child” and “the alleged father is not the true father of the child”; and in a 
murder case one might have the following: “the material found at the crime scene 
came from a Caucasian” and “the material found at the crime scene came from 
an Afro-Caribbean”. 

 Such competing hypotheses may also be those of guilt and innocence of a defen-
dant, in which case the LR compares the weight of a given body of evidence under the 
hypothesis that a suspect has committed a crime and the alternative hypothesis that he 
did not commit that crime. Some care is needed when probability is applied to this 
kind of hypotheses. Lindley calls attention to the fact that when probability is applied 
to the hypothesis of guilt it refers “to the event that the defendant committed the crime 
with which he has been charged […] not to the judgment of guilt” (Lindley  1991 , 27). 
The  hypothesis  of guilt should not be confl ated with the  judgment  of guilt, which falls 
within the competence of judges or jurors, who ground it on a complex body of infor-
mation not reducible to mere quantitative evidence. The same point is stressed by 
Aitken, who claims that “it is very tempting when assessing evidence to try to deter-
mine a value for the probability of guilt of a suspect, or a value for the odds in favour 
of guilt and perhaps even reach a decision regarding the suspect’s guilt. However, this 
is the role of the jury and/or judge. It is not the role of the forensic scientist or statisti-
cal expert witness to give an opinion on this” (Aitken  1995 , 4). 

 Not itself a probability, the LR results from comparing two probabilities, namely 
the probability of the evidence  E  given the hypothesis  H  and the probability of  E  
given the hypothesis  G :

  
LR = ( ) ( )p E H p E G| / |

   

or, to weigh a body of evidence with respect to a given hypothesis and its 
negation:

  
LR = ( ) −( )p E H p E H| / | .

   

8   The literature on statistics in law refl ects an increasing awareness of the importance of this 
problem. See for instance Taggart and Blackmon  2008 . 
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  The LR relates naturally to the notion of  relevance , in the sense that a LR of 
value 1 means the given body of evidence is irrelevant to the hypothesis, whereas a 
value that differs from 1 suggests that the given body of evidence is relevant. More 
particularly, a likelihood ratio greater than 1 indicates how much a given body of 
evidence favours the truth of a certain hypothesis against the alternative under con-
sideration, and conversely if the likelihood ratio is less than 1. A number of authors 
including Evett, Robertson and Vignaux defi ne as “weak” for adoption in court a 
likelihood ratio in the range 1–33, “fair” a ratio in the range 33–100, “good” a ratio 
in the range 100–330, “strong” a ratio in the range 330–1,000, and “very strong” a 
ratio greater than 1,000 (Robertson and Vignaux  1995 , 12. See also Evett  1991 ). 

 Although the LR has a meaning of its own, Bayesians recommend its use within 
the Bayesian framework, where it plays a crucial role in connection with the shift 
from prior to posterior probabilities. This appears evident if Bayes’ rule is expressed 
in terms of odds:

  
p H E p H E p H p H p E H p E H| / | / | / | .( ) −( )⎡⎣ ⎤⎦ = ( ) −( )⎡⎣ ⎤⎦× ( ) −( )⎡⎣ ⎤⎦    

  By considering the shift from prior to posterior probabilities one can evaluate 
how a given body of evidence is apt to infl uence the comparison between two 
hypotheses by favouring one of them against the other. A very high value of the 
LR can convert a low prior probability into a high posterior probability. Just to 
give an idea of the effect of the LR on the shift from prior to posterior probability, 
a LR = 100 would transform a prior of 0.5 into a posterior of 0.99. Supposing that 
one wanted to apply Bayes’s reasoning to the two hypotheses of guilt and innocence 
of a defendant, given a body of evidence estimated (through the LR) to be 100 
times more likely conditional on the guilt than on the innocence hypothesis, to 
obtain a posterior probability of at least 99 % — that is to say a value apt to satisfy 
the BARD standard (see Lindley  1975 ) — one would need a prior probability, 
namely the probability of guilt before that body of evidence is taken into account, 
of at least 50 %. Clearly, in case a certain trace or single item  E  were the only 
evidence, it could lead to a probability value of 99 % only if combined with a very 
strong likelihood ratio. As Dawid observed, “when  E  is the only evidence in the 
case, before  E  is admitted the suspect should be treated no differently from any 
other member of the population, and then a prior probability of guilt of even 1 in 
1,000 could be regarded as unreasonably high” (Dawid  2005b ). Obviously, fi xing 
the value of priors is a most delicate operation involving several considerations 
not amenable to quantitative analysis. For this reason, a number of authors recommend 
the application of the Bayesian method at an advanced stage of the trial. 

 Representing evidence by means of the LR proves fruitful not only in court, but 
also in medicine and many other fi elds. Obviously, the use of the LR is beset with 
diffi culties, and the same holds for Bayes’s rule, namely because there is no unique 
recipe for calculating likelihoods, precisely as there is no univocal way of fi xing 
priors. For these and other reasons a number of authors favour the adoption of the 
methods of classical statistics, like tests of signifi cance and tests of hypotheses, 
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rather than Bayesian methodology. The use of statistical methods in court is matter 
of hot debate, and the literature on the topic is constantly growing. 9  

 Regrettably, statistics have often been misused in court. A case in point is the 
widespread argument known as the  prosecutor’s fallacy . An instance of this fal-
lacy, which can take various forms, obtains when a  match probability , namely the 
probability that a given piece of evidence such as a trace left at a murder scene is 
to be ascribed to an individual taken at random from a reference population, 
is taken as the probability that the defendant is not guilty, and then the conclusion 
is drawn that the probability of his guilt is (1 –  p ). Take for instance a match prob-
ability  p  ( M | −G ) = 1/10,000,000, where  M  = a trace found at the murder scene, 
and  −G  = the defendant is not responsible for it, namely the trace was left by an 
individual chosen randomly from the reference population. The fallacy obtains by 
confusing the match probability  p  ( M | −G ) with  p  (− G  |  M ), namely the probabil-
ity that the defendant is not guilty given the piece of evidence found at the murder 
scene, and then drawing the conclusion that the probability of the defendant being 
guilty is 1–1/10,000,000. In this way a very high probability of guilt of the defen-
dant is derived from a very low probability, based on the fallacious move known 
as  transposing the conditional . 10  The prosecutor’s fallacy exemplifi es the intricacies 
that surround the adoption of probabilistic reasoning in court. As Dawid put it, 
“seemingly straightforward problems of legal reasoning can quickly lead to 
complexity, controversy and confusion” (Dawid  2005b ). 11  

 The challenges posed by probabilistic reasoning and the complexity character-
izing evidence in most cases can make statistical calculations very laborious and the 
process leading from evidence to a certain conclusion remain opaque. Moreover, it 
is often problematic to make probability values obtained by experts as the result of 
inferences from complex bodies of evidence understood to those who have the 
responsibility to take decisions based on them, like jurors and judges, but also 
doctors, epidemiologists, and decision-makers operating in different fi elds. To deal 
with such diffi culties a number of techniques for the graphical representation of 
evidence and evidence-based reasoning have been developed. A landmark in the 
literature on the topic is John Henry Wigmore’s  The Science of Judicial Proof as 
Given by Logic, Psychology, and General Experience, and Illustrated in Judicial 
Trials , which appeared in  1913 . In this work, that can be traced back to the rational-
ist tradition dating back to Jeremy Bentham, Wigmore develops the so-called  chart 
method , meant as a “rigorous system that enables and requires the lawyer to identify 
and to appraise possible logical relationships that evidential data may be argued to 
have to intermediate and ultimate propositions that must be proved in a particular 

9   Some of the objections to the use of probability and statistics in court are discussed in Galavotti 
( 2012 ). For a discussion of Bayesian methods in the law see Fienberg and Finkelstein ( 1996 ). An 
interesting comparison between the Bayesian and frequentist approaches to a DNA identifi cation 
problem is to be found in Kaye ( 2008 ). 
10   For an extensive discussion of the prosecutor’s fallacy see Gigerenzer ( 2002 ). 
11   Dawid ( 2005b ) examines a few examples of the problems arising in the fi eld, and contains a 
useful list of bibliographical references. See also Dawid ( 2002 ).  
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case. It requires that the propositions and the relationships claimed to exist among 
them be articulated and recorded in a systematic manner that makes it easier to criti-
cize and appraise each step in an argument and the argument as a whole” (Anderson 
and Twining  1991 , 329–330). The chart method, subsequently revised and extended 
by Terence Anderson, William Twining, David Schum and others, starts from a 
distinction between  factum probandum , expressed by a proposition to be proved, 
and  factum probans , describing the evidence relevant to that proposition, and is meant 
to represent the inferential relationships between single pieces of circumstantial and 
testimonial evidence and  probanda . According to Dawid, a Wigmore chart “focuses 
on inference towards some ultimate probandum, emphasizes the distinction between 
occurrence and report of an event, pays particular attention to the many links in a 
chain of reasoning, and assists qualitative analysis and synthesis” (Dawid  2008 , 
143). Schum labeled the method “relational structuring” to stress its power to 
illustrate “the typically catenated, cascaded, or hierarchical nature of arguments” 
(Schum  1993 , 178). 

 An alternative method for representing the relationships between evidence 
and hypotheses of interest is given by  Bayesian networks . These are extensively 
used by forensic scientists to address complex problems involving mixed or 
indirect evidence, with the support of appropriate software. Applied to a given 
problem, like a case of disputed paternity, a Bayesian network can “describe the 
probabilistic relationships between the variables involved, enter evidence on 
some of them, and ‘propagate’ this to obtain revised probabilities for other variables” 
(Dawid  2008 , 137). In general, Bayesian networks are used to represent causal 
dependencies among variables, under appropriate assumptions. 12  As described 
by Dawid, both Wigmorean charts and Bayesian networks “organize many 
disparate items of evidence and their relationships, focus attention on required 
inputs, and support coherent narrative and argumentation” ( ibid. , 142). To be 
sure, neither of these approaches is intended to give “objective” representations 
of reality, being rather meant to reflect the viewpoint of somebody like the 
prosecutor, or the defense lawyer. 13  Typically, they are addressed to those in 
charge of making a judgement as an aid to see both the reasoning that lies 
behind a certain conclusion and the evidence brought in its favour. Moreover, 
“by using reach hierarchically structured representations human reasoners can 
overcome the limitations imposed by their limited-capacity working memory” 
(Lagnado  2011 , 202). Although graphical methods of representation have been 
developed mostly in connection with legal evidence, attempts to extend their 
application to a broader range of problems are under study. Major developments 
in that connection are likely to be achieved in the near future.  

12   For an extensive treatment of Bayesian networks and their use in forensic science see Taroni 
et al. ( 2006 ). 
13   This is emphasized in Dawid et al. ( 2011a ), which contains a detailed comparison of Bayesian 
and Wigmorean networks. 
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5.5     Concluding Remarks 

 The topic of evidence is obviously much broader than suggested here. As 
emphasized in the fi rst section, evidence is gaining increasing attention from 
researchers and decision-makers operating in fi elds other than the health sci-
ences and law. The preceding remarks were meant to give an idea of the impor-
tance of the topic and the complexity that surrounds it. If a conclusion can be 
taken from our discussion, it amounts to an acknowledgment of the centrality of 
context. More particularly, an awareness of the context in which one operates 
recommends that all assumptions underlying the representation of evidence are 
rigorously spelled out and justifi ed case by case. Similarly, the aims to which 
evidence is to be put should be specifi ed. Within the health sciences, this holds 
especially in connection with explanation, prediction, and manipulation. It is also 
important to classify the nature of the available data and clarify the nature of the 
inferential links between evidence and hypotheses.     
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