
Chapter 1
Nanoplasmonics: From Present into Future

Mark I. Stockman

Abstract A review of nanoplasmonics is given. This includes fundamentals,
nanolocalization of optical energy and hot spots, ultrafast nanoplasmonics and control
of the spatiotemporal nanolocalization of optical fields, and quantum nanoplasmon-
ics (spaser and gain plasmonics). This chapter reviews both fundamental theoretical
ideas in nanoplasmonics and selected experimental developments. It is designed both
for specialists in the field and general physics readership.
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1.1 Introduction

1.1.1 Preamble

This is a review chapter on fundamentals of nanoplasmonics. Admittedly, the selec-
tion of the included subjects reflects the interests and expertise of the author.

We have made a conscious decision not to include such important and highly devel-
oped subject as SERS (Surface Enhanced Raman Scattering). The reason is that this
subject is too large and too specialized for this chapter. There is an extensive liter-
ature devoted to SERS. This includes both reviews and original publications—see,
e.g., Refs. [1–5] and a representative collective monograph [6]. Another important
subject that we do not include in this review is the extraordinary transmission of light
through subwavelength holes—there are extensive literature and excellent reviews
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on this subject—see, e.g., [7–11]. Also, due to limitations of time and space we do not
cover systematically a subject of particular interest to us: the adiabatic nanoconcen-
tration of optical energy [12]. There are many important experimental developments
and promising applications of this phenomenon [12–22]. This field by itself is large
enough to warrant a dedicated review. We only briefly touch this subject in Sect. 1.4.5.

Another important class of questions that we leave mostly outside of this review
chapter are concerned with applications of nanoplasmonics. Among this applications
are sensing, biomedical diagnostics, labels for biomedical research, nanoantennas
for light-emitting diodes, etc. There exist a significant number of reviews on the
applications of nanopalsmonics, of which we mention just a few below, see also
a short feature article [23]. Especially promising and important are applications to
cancer treatment [24, 25], sensing and solar energy conversion to electricity [26],
and photo-splitting of hydrogen [27] and water [28] (“artificial photosynthesis” for
solar production of clean fuels).

Presently, nanoplasmonics became a highly developed and advanced science.
It would have been an impossible task to review even a significant part of it. We
select some fundamental subjects in plasmonics of high and general interest. We
hope that our selection reflects the past, shows the modern state, and provides an
attempt to glimpse into the future. Specifically, our anticipation is that the ultrafast
nanoplasmonics, nanoplasmonics in strong field, and the spaser as a necessary active
element will be prominently presented in this future. On the other hand, it is still just
a glimpse into it.

1.1.2 Composition of the Chapter

In Sect. 1.2, we present an extended introduction to nanoplasmonics. Then we
consider selected subfields of nanoplasmonics in more detail. Nanoplasmonics is
presently a rather developed science with a number of effects and rich applications
[23]. In the center of our interest and, in our opinion, the central problem of nanoplas-
monics is control and monitoring of the localization of optical energy in space on
the nanometer scale and in time on the femtosecond or even attosecond scale.

In Sect. 1.3, we consider ultimately small nanoplasmonic systems with size less or
on the order of skin depth ls where we employ the so-called quasistatic approximation
to describe in an analytical form the nanolocalized optical fields, their eigenmodes
and hot spots, and introduce the corresponding Green’s functions and solutions. This
section is focused on the spatial nanoconcentration of the local optical fields.

In Sect. 1.4 we present ideas and results of ultrafast nanoplasmonics and coherent
control of nanoscale localization of the optical fields, including control in time with
femtosecond resolution. We will describe both theoretical ideas and some experi-
mental results.

One of the most important problems of the nanoplasmonics, where only recently
solutions and first experimental results have been obtained, is the active and gain
nanoplasmonics. Its major goal is to create nanoscale quantum generators and
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amplifiers of optical energy. In Sect. 1.5, we present theory and a significant number
of experimental results available to date regarding the spaser and related polaritonic
spasers (nanolasers or plasmonic lasers). We also consider a related problem of loss
compensation in metamaterials.

1.2 Basics of Nanoplasmonics

1.2.1 Fundamentals

Nanoplasmonics is a branch of optical condensed matter science devoted to optical
phenomena on the nanoscale in nanostructured metal systems. A remarkable prop-
erty of such systems is their ability to keep the optical energy concentrated on the
nanoscale due to modes called surface plasmons (SPs). It is well known [29] and
reviewed below in this chapter that the existence of SPs depends entirely on the fact
that dielectric function εm has a negative real part, Re εm < 0. The SPs are well
pronounced as resonances when the losses are small enough, i.e., Im εm � −Re εm .
This is a known property of a good plasmonic metal, valid, e.g., for silver in the most
of the visible region. We will call a substance a good plasmonic metal if these two
properties

Re εm < 0, Im εm � −Re εm (1.1)

are satisfied simultaneously.
There is a limit to which an electromagnetic wave can be concentrated. We

immediately note that, as we explain below, nanoplasmonics is about concentration
of electromechanical energy at optical frequencies (in contrast to electromagnetic
energy) on the nanoscale.

The scale of the concentration of electromagnetic energy is determined by the
wavelength and can be understood from Fig. 1.1a. Naively, let us try to achieve the
strongest light localization using two parallel perfect mirrors forming an ideal Fabry-
Perot resonator. A confined wave (resonator mode) should propagate normally to the
surface of the mirrors. In this case, its electric field E is parallel to the surface of the
mirror. The ideal mirror can be thought of as a metal with a zero skin depth that does
not allow the electric field of the wave E to penetrate inside. Therefore the field is
zero inside the mirror and, due to the Maxwell boundary conditions, must be zero on
the surface of the mirror. The same condition should be satisfied at the surface of the
second mirror. Thus, length L of this Fabry-Perot cavity should be equal an integer
number n of the half-wavelengths of light in the inner dielectric, L = nλ/2. The
minimum length of this resonator is, obviously λ/2. This implies that light cannot be
confined tighter than to a length of λ/2 in each direction, with the minimum modal
volume of λ3/8.
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Fig. 1.1 a Localization of optical fields by ideal mirrors and b by a gold nanoparticle. c Schematic
of charge separation

One may think that it is impossible to achieve a localization of the optical energy
to smaller volume than λ3/8 by any means, because the ideal mirrors provide the
best confinement of electromagnetic waves. There are two implied assumptions:
(i) The optical energy is electromagnetic energy, and (ii) The best confinement is
provided by ideal mirrors. Both these assumptions must be abandoned to achieve
nanolocalization of optical energy.

Consider a nanoplasmonic system whose size is less than or comparable to the
skin depth

ls = λ

[
Re

( −ε2
m

εm + εd

)1/2
]−1

, (1.2)

where λ = λ/(2π) = ω/c is the reduced vacuum wavelength. For single-valence
plasmonic metals (silver, gold, copper, alkaline metals) ls ≈ 25 nm in the entire
optical region.

For such a plasmonic nanosystem with R � ls , the optical electric field penetrates
the entire system and drives oscillations of the metal electrons. The total energy of
the system in this case is a sum of the potential energy of the electrons in the elec-
tric field and their mechanical kinetic energy. While the magnetic field is present,
non-relativistic electrons’ interaction with it is weak proportional to a small para-
meter vF/c ∼ α ∼ 10−2, where vF is the electron speed at the Fermi surface, c
is speed of light, and α = e2/�c is the fine structure constant. Thus in this limit,
which is conventionally called quasistatic, the effects of the magnetic component of
the total energy is relatively small. Hence, this total energy is mostly electromechan-
ical (and not electromagnetic) energy. [At this point, it may be useful to refer to
Eq. (1.107), which expresses the Brillouin formula for total energy E of a system in
such a quasistatic case.] This is why the wavelength, which determines the length
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scale of the energy exchange between the electric and magnetic components of an
electromagnetic wave, does not define the limit of the spatial localization of energy.
Because the size of the system R is smaller than any electromagnetic length scale,
of which smallest is ls, it is R that defines the spatial scale of the optical energy
localization. Thus the optical fields are confined on the nanoscale, and their spatial
distribution scales with the system’s size. This physical picture is at the heart of the
nanoplasmonics.

Consider as an example a gold nanosphere of radius R < ls, e.g., R ∼ 10 nm,
subjected to a plane electromagnetic wave, as shown in Fig. 1.1b. The field penetrates
the metal and causes displacement of electrons with respect to the lattice resulting in
the opposite charges appearing at the opposing surfaces, as illustrated in Fig. 1.1c.
The attraction of these charges causes a restoring force that along with the (effective)
mass of the electrons defines an electromechanical oscillator called a SP. When the
frequency ωsp of this SP is close to the frequency of the excitation light wave, a
resonance occurs leading to the enhanced local field at the surface, as illustrated in
Fig. 1.1b.

This resonant enhancement has also an adverse side: loss of energy always asso-
ciated with a resonance. The rate of this loss is proportional to Im εm [30]. This leads
to a finite lifetime of SPs. The decay rate of the plasmonic field γ is ∝ (Im εm)−1. In
fact, it is given below in this chapter as Eq. (1.49) in Sect. 1.3.4. This expression has
originally been obtained in Ref. [31] and is also reproduced below for convenience,

γ = Im s(ω)

∂Re s(ω)
∂ω

≈ Im εm(ω)

∂Reεm (ω)
∂ω

, (1.3)

where

s(ω) = εd

εd − εm(ω)
(1.4)

is Bergman’s spectral parameter [29]. Note that γ does not explicitly depend on the
system geometry but only on the optical frequency ω and the permittivities. However,
the system’s geometry determines the SP frequency ω and, thus, implicitly enters
these equations. The approximate equality in Eq. (1.3) is valid for relatively small
relaxation rates, γ � ω. Apart from γ, an important parameter is the so-called quality
factor

Q = ω

2γ
≈ ω

∂Reεm (ω)
∂ω

2Im εm(ω)
(1.5)

The quality factor determines how many optical periods free SP oscillations occur
before field decays. It also shows how many times the local optical field at the surface
of a plasmonic nanoparticle exceeds the external field.

Note that another definition of the quality factor, which is often used, is

Q = −Re εm(ω)

Im εm(ω)
. (1.6)
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Fig. 1.2 a Quality factor Q for silver and b for gold calculated according to Eq. (1.5) (red) and
Eq. (1.6) (blue) as a function of frequency ω

The SP quality factors Q calculated according to Eqs. (1.5)–(1.6) for gold and
silver using the permittivity data of Ref. [32] are shown in Fig. 1.2. The Q-factors
found from these two definitions agree reasonably well in the red to near-infrared
(near-ir) region but not in the yellow to blue region of the visible spectrum. The
reason is that these two definitions would be equivalent if metals’ permittivity were
precisely described by a Drude-type formula Re εm(ω) = −ω2

p/ω
2, where ωp is the

bulk plasma frequency; �ωp ≈ 9 eV for one-electron metals such as silver, copper,
gold, and alkaline metals. This formula is reasonably well applicable in the red and
longer wavelength part of the spectrum, but not in the yellow to blue part where the
D-band transitions are important. Note that silver is a much better plasmonic metal
than gold: its Q-factor is several-fold of that of gold.

The finite skin depth of real metals leads to an effect related to nanoplasmonic
confinement: a phase shift Δϕ for light reflected from a metal mirror deviates from
a value of Δϕ = π characteristic of an ideal metal. As suggested in Ref. [33], this
allows for ultrasmall cavities whose length L � λ. While generally this is a valid
idea, there two problems with Ref. [33] that affect the validity of its specific results.
First, the Fresnel reflection formulas used in this article to calculate Δϕ are only valid
for infinite surfaces but not for the “nanomirrors” in a nanocavity. Second, Eq. (1.1)
of this article expressing Q is incorrect: it contains in the denominator a quantity
∂ [ωImεm(ω)]/∂ω instead of 2Im εm(ω) as in Eq. (1.5). The correct expression [30]
for Ohmic losses defining the Q-factor, which we reproduce as Eq. (1.108), is pro-
portional to Im εm(ω) as in Eq. (1.5) and not to ∂ [ωImεm(ω)]/∂ω, which constitutes
a significant difference.

The lifetime τ of the SPs is related to the spectral width as

τ = 1

2γ
. (1.7)

Note that the SP spectral width γ, quality factor Q, and lifetime τ depend explic-
itly only on frequency ω and the type of the metal (permittivity εm) but not on
the nanosystem’s geometry or surrounding dielectric. However, this geometry and
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Fig. 1.3 a Lifetime τ of SPs for silver and b for gold calculated according to Eq. (1.7) as a function
of frequency ω

the ambient-dielectric permittivity εd do affect the modal frequency and enter the
corresponding Eqs. (1.3), (1.5), and (1.7) implicitly via ω.

The dependence of the SP lifetime τ on frequency ω calculated for gold and
silver using permittivity [32] is illustrated in Fig. 1.3. This lifetime is in the range
10–60 fs for silver and 1–10 fs for gold in the plasmonic region. These data show that
nanoplasmonic phenomena are ultrafast (femtosecond).

However, the fastest linear response time τc of SPs, as any other linear response
system, depends not on the relaxation time but solely on the bandwidth. In fact, it can
be calculated as a quarter period (i.e., a time interval between zero and the maximum
field) of the beating between the extreme spectral components of the plasmonic
oscillations,

τc = 1

4

2π

Δω
, (1.8)

where Δω is the spectral bandwidth of the plasmonic spectrum. For gold and silver,
this bandwidth is the entire optical spectrum, i.e., �Δω ≈ 3.5 eV. If aluminum is
included among system’s plasmonic metals, this bandwidth is increased to �Δω ≈
9 eV. This yields this coherent reaction time τc ∼ 100 as. Thus nanoplasmonics is
potentially attosecond science.

While the characteristic size of a nanoplasmonic system should be limited from
the top by the skin depth, R � ls , it is also limited from the bottom by the so called
nonlocality length lnl—see, e.g., [34, 35]. This nonlocality length is the distance that
an electron with the Fermi velocity vF moves in space during a characteristic period
of the optical field,

lnl ∼ vF/ω ∼ 1 nm, (1.9)

where an estimate is shown for the optical spectral region. For metal nanoparti-
cles smaller than lnl , the spatial dispersion of the dielectric response function and
the related Landau damping cause broadening and disappearance of SP resonances
[34, 35].
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Thus, we have arrived at the basic understanding of the qualitative features of
nanoplasmonics. Consider a plasmonic nanosystem whose size R satisfies a condition
lnl � R � ls . This nanosystem is excited by an external field in resonance. In this
case, the local optical field in the vicinity of such a nanosystem is enhanced by a
factor ∼Q, which does not depend on R. The spatial extension of the local field
scales with the size of the nanosystem ∝ R. This is because R � ls , and ls is the
smallest electromagnetic length; thus there is no length in the system that R can
be comparable to. When the external field changes, the local field relaxes with the
relaxation time Q/ω that does not depend on R; the lifetimes of the SP are in the
femtosecond range.

In many cases of fundamental and applied significance, the size of a nanosystem
can be comparable to or even greater than ls but still subwavelength, λ � R � ls .
In such a case, the coupling to far-field radiation and radiative losses may greatly
increase as we will discuss below in Sects. 1.2.2 and 1.2.3. Another important sub-
field of nanoplasmonics that is related to extended systems is the surface plasmon
polaritons—see, e.g., a collective monograph [36]. We consider some polaritonic
phenomena relevant to coherent control below in Sect. 1.4.5.

1.2.2 Nanoantennas

Consider a molecule situated in the near-field of a metal plasmonic nanosystem. Such
a molecule interacts not with the external field but with the local optical field E(r)
at its location r. The interactions Hamiltonian of such a molecule with the optical
field is H ′ = −E(r)d, where d is the dipole operator of this molecule. Note that a
modal expansion of the quantized local field operator is given below in this chapter
by Eq. (1.64).

Consequently, the enhanced local fields cause enhancement of radiative and non-
radiative processes in which such a molecule participate. In particular, the rates
of both the excitation and emission are enhanced proportionality to the local field
intensity, i.e., by a factor of ∼Q2. This effect is often referred to as nanoantenna
effect [37–64] in analogy with the common radio-frequency antennas. For the recent
review of the concept and applications of optical nanoantennas see Ref. [65]. Cur-
rently, the term nanoantenna or optical antenna is used so widely that it has actually
became synonymous with the entire field of nanoplasmonics: any enhancement in
nanoplasmonic systems is called a nanoantenna effect.

General remarks about the terms “nanoantenna” or “optical antenna” are due. The
term “antenna” has originated in the conventional radio-frequency technology where
it is used in application to receivers for devices that convert the wave energy of far-
field radio waves into local (near-field) electric power used to drive the input circuitry.
For transmitters, antennas perform the inverse transformation: from the local field
electric power to that of the emitted radio waves. Due to the general properties of
time reversal symmetry there is no principal difference between the receiving and
transmitting antennas: any receiving antenna can work as a transmitting one and
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vice versa. The mechanism of the efficiency enhancement in the radio frequency
range is a combination of spatial focusing (e.g., for parabolic antennas) and resonant
enhancement (e.g., for a dipole antenna). In all cases, the size of the radio antenna is
comparable to or greater than the wavelength. Thus one may think that a receiving
antenna collects energy from a large geometric cross and concentrates it in a small,
subwalength area.

The receiving antennas in radio and microwave technology are loaded by matched
impedance loads that effectively withdraw the energy from them. This suppresses the
radiation by such antennas but simultaneously dampens their resonances and makes
them poor resonators.

In majority of cases, the optical antennas are not matched-loaded because they are
designed not to transduce energy efficiently but to create high local fields interacting
with molecules or atoms, which do not load these antennas significantly. (There
are exceptions though: for instance, the nanoantenna in Ref. [66] is loaded with an
adiabatic nanofocusing waveguide.) The unloaded antennas efficiently loose energy
to radiation (scattering), which also dampens their resonances.

A question is whether this concept of collecting energy form a large geometric
cross section is a necessary paradigm also in nanoplasmonics. The answer is no,
which is clear already from the fact that the enhancement of the rates of both the
excitation and emission of a small chromophore (molecule, rear earth ion, etc.) in
the near field of a small (R � ls) plasmonic nanoparticle is ∼Q2 and does not
depend on the nanoparticle size R. This enhancement is due to the coherent resonant
accumulation of the energy of the SPs during ∼Q plasmonic oscillations and has
nothing to do with the size of the nanoparticle. Thus such an enhancement does
not quite fit into the concept of antennas as established in the radio or microwave
technology.

Another test of the nanoantenna concept is whether the efficiency of a nanoantenna
is necessarily increased with its size. The answer to this question is generally no.
This is because for plasmonic nanoparticles, with the increase of size there is also
an increased radiative loss—see below Sect. 1.2.3. In contrast, for many types of
radio-frequency antennas (dish antennas or microwave-horn antennas, for instance),
the efficiency does increase with the size.

1.2.3 Radiative Loss

As we described above in conjunction with Fig. 1.1c, the interaction of optical radia-
tion with a nanoplasmonic system occurs predominantly via the dipole oscillations.
The radiative decay of SPs occur via spontaneous emission of photons, which is a
process that does not exist in classical physics and requires a quantum-mechanical
treatment. To find the radiative life time of a SP state quantum-mechanically, we need
to determine the transitional dipole matrix element d0p between the ground state |0〉
and a single-plasmon excited state |p〉. To carry out such a computation consistently,
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one needs to quantize the SPs, which we have originally done in Ref. [31] and present
below in Sect. 1.5.4.1.

However, there is a general way to do it without the explicit SP quantization, which
we present below in this section. We start with the general expression for polariz-
ability α of a nanosystem obtained using quantum mechanics—see. e.g., Ref. [67],
which near the plasmon frequency has a singular form,

α = 1

�

∣∣d0p
∣∣2

ω − ωsp
, (1.10)

where ωsp is the frequency of the resonant SP mode. This can compared with the cor-
responding pole expression of the polarizability of a nanoplasmonic system, which
is given below as Eq. (1.55), to find absolute value of the matrix element

∣∣d0p
∣∣.

Here, for the sake of simplicity, we will limit ourselves to a particular case of a
nanosphere whose polarizability is given by a well-known expression

α = R3 εm(ω) − εd

εm(ω) + 2εd
, (1.11)

where R is the radius of the nanosphere. The SP frequency ω = ωsp corresponds to
the pole of α, i.e., it satisfies an equation

Re εm(ωsp) = −2εd , (1.12)

where we neglect Im εm . In the same approximation, near ω = ωsp, we obtain from
Eq. (1.11),

α = −3R3εd

[(
ω − ωsp

) ∂Re εm(ωsp)

∂ωsp

]−1

. (1.13)

Comparing the two pole approximations of Eqs. (1.10) and (1.13), we obtain the
required expression for the dipole moment of a quantum transition between the
ground state and the SP state,

∣∣d0p
∣∣2 = �3R3εd

[
∂Re εm(ωsp)

∂ωsp

]−1

. (1.14)

Consider the well-known quantum-mechanical expression for the dipole-radiation
rate (see, e.g., Ref. [67]),

γ (r) = 4

3

ω3√εd

�c3

∣∣d0p
∣∣2 . (1.15)

Substituting Eq. (1.14) into (1.15), we obtain the desired expression for the quantum-
mechanical rate of the radiative decay of the SP state as
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γ (r) = 4ε
3/2
d

(
ωsp R

c

)3 [∂Re εm(ωsp)

∂ωsp

]−1

. (1.16)

Note that for losses not very large (which is the case in the entire plasmonic region
for noble metals), the Kramers-Kronig relations for εm(ω) predict [30] that

∂Re εm(ωsp)

∂ωsp
> 0, (1.17)

which guarantees that γ (r) > 0 in Eq. (1.16).
Comparing this expression to Eq. (1.3) [see also Eq. (1.49)], we immediately con-

clude that, in contrast to the internal (radiationless) loss rate γ, the radiative rate is
proportional to the volume of the system (i.e., the number of the conduction electrons
in it), which is understandable. Thus for systems small enough, the radiative rate can
be neglected. The quality factor of the SP resonance is actually defined by the total
decay rate γ (tot) [cf. Eq. (1.5)],

Q = ωsp

2γ (tot)
, γ (tot) = γ + γ (r). (1.18)

Therefore, Q is lower for larger nanoparticles, tending to a constant for small R. To
quantify it, we find a ratio

γ (tot)

γ
= 1 + 4

Im εm(ωsp)

(√
εdωsp R

c

)3

. (1.19)

We illustrate behavior of this rate ratio of the total to internal loss, γ (tot)
/
γ, in

Fig. 1.4. General conclusion is that the radiative loss for silver is not very important for
nanospheres in the true quasistatic regime, i.e., for R < ls ≈ 25 nm but is a dominant
mechanism of loss for R > 30 nm, especially in high-permittivity environments. In
contrast, for gold the radiative loss is not very important in the quasistatic regime
due to the much higher intrinsic losses, except for a case of a relatively high ambient
permittivity, εd = 5.

Though it is outside of the scope of this chapter, we would like to point out that
there is a general approach to combat radiative losses in relatively large nanoparticles.
This is related to the well-known Fano resonances originally discovered by Ugo Fano
in atomic spectra [68]. These resonances can be described in the following way. In
certain cases of optical excitation, when two quantum paths lead to the same final
quantum state of the system, the resonance peaks have specific asymmetric line
shapes due to the interference of these quantum paths.

An analogous phenomenon is also known in nanoplasmonics and metamaterials
[69–77]. It can be explained in the following way [77]. Apart from bright plasmonic
resonances with high transitional dipole moment, there are also dark ones [78],
which by themselves are not very prominent in optical spectra. However, if a bright



12 M. I. Stockman

γ (tot)/γ γ (tot)/γ

R (nm) R (nm)
20 40 60 80 100

2

4

6

8

10

10 20 30 40 50

2

4

6

8

10

(a) (b)

Fig. 1.4 Ratio of the rates of the total to internal loss, γ (tot)
/
γ, for a nanosphere as a function of its

radius R for a silver and b gold. The blue, green, and red lines correspond to the embedding dielectric
with εd = 1, 2, and 5, respectively. The computations are made at the SP frequency ωsp, which
for these value of εd is for silver �ωsp = 3.5, 3.2, 2.5 eV, and for gold �ωsp = 2.6, 2.4, 2.0 eV,
correspondingly

resonance and a dark resonance coexist in a certain spectral range—which is not
unlikely, because the bright resonances are spanning relatively wide wavelength
ranges—then their optical fields interfere. This interference significantly enhances
the manifestation of the dark resonance: it acquires strength from the bright resonance
and shows itself as an asymmetric peak-and-dip profile characteristic of a Fano
resonance. An important, albeit counterintuitive, property of the Fano resonances
is that, exactly at the frequency of the Fano dip, the hot spots of the nanolocalized
optical fields in the nanosystem are strongest. This is because at this frequency the
nanosystem emits minimal light intensity and, consequently, it does not wastefully
deplete the energy of the plasmon oscillations. This leads to a decreased radiative
loss and a high resonance quality factor.

Thus at the frequency of a Fano resonance, the radiative loss is significantly
suppressed. The width of the Fano resonances is ultimately determined by the internal
(Ohmic) losses described by Im εm . Summarizing, the Fano resonances enable one
using relatively large nanoplasmonic particles or plasmonic metamaterials to achieve
narrow spectral features with high local fields. These can be applied to plasmonic
sensing and to produce spasers and nanolasers—see Sect. 1.5.

1.2.4 Other Important Issues of Plasmonics in Brief

There are other very important issues and directions of investigation in plasmonics
that we will not be able to review in any details in this chapter due to the limitations
of time and space. Below we will briefly list some of them.
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1.2.4.1 Enhanced Mechanical Forces in Nanoplasmonic Systems

The resonantly enhanced local fields in the vicinity of plasmonic nanoparticles lead to
enhanced nanolocalized forces acting between the nanoparticles, see, e.g., Refs. [79–
85]. A perspective application of plasmonically-enhanced forces is optical manipu-
lation (tweezing) of micro- and nanoparticles [86–92].

Another direction of research is opened up by the recently introduced theoretically
surface-plasmon-induced drag-effect rectification (SPIDER) [93], which is based on
transfer of the linear momentum from decaying surface-plasmon polaritons (SPPs)
to the conduction electrons of a metal nanowire. The SPIDER effect bears a promise
to generate very high terahertz fields in the vicinity of the metal nanowire.

1.2.4.2 Interaction Between Electrons and Surface Plasmons

The surface plasmonics, as it is called today, originated by a prediction of electron
energy losses for an electron beam in thin metal films below the energy of the bulk
plasmons [94]. This is how coherent electronic excitations called SPPs today were
predicted. Soon after this prediction, the SPP-related energy losses were experimen-
tally confirmed [95, 96]. Presently, the electron energy loss spectroscopy (EELS) in
nanopalsmonics is a thriving field of research. We refer to a recent review [97] for
further detail.

A distinct and original direction of research is control of mechanical motion of
metal nanoparticles using electron beams [98]. It is based on the same principles
as optically-induced forces. The difference in this case is that the SP oscillations
in nanoparticles are excited locally, with an angstrom precision, by a beam of fast
electrons—see also Sect. 1.2.4.1 above.

There are other important phenomena in plasmonics based on electron-SP inter-
action called nonlocality [99]. One of them is dephasing of plasmons causing their
decay into electron-hole pairs, which is called Landau damping, contributing to
Im εm . There is necessarily a related phenomenon of spatial dispersion contributing
to Re εm . These become important for plasmonics when the size of the nanosystem
become too small, R � lnl—see Eq. (1.9). The nonlocality and Landau damping
degrade plasmonic effects. The nonlocal effects lead to an increased decay rate of
dipolar emitters at metal surfaces [34] and limits resolution of plasmonic imaging,
making the so-called “perfect” lens [100] rather imperfect [35]. In aggregates, the
nonlocality of dielectric responses causes reduction of local fields and widening of
plasmonic resonances [101]. These broadening effects have initially been taken into
account purely phenomenologically by adding an additional contribution to the width
of plasmonic resonances ∼A/τnl , where A = const [102]. Practically, if the size of
a nanoparticle is less then 3 nm, the non-local broadening of the SP resonances is
very significant; otherwise, it can be neglected in a reasonable approximation.

The above-mentioned publications [34, 35, 99, 101] on the nonlocality phenom-
ena are based on a semi-phenomenological approach where the nonlocality is treated
via applying additional boundary conditions stemming from the electron scattering
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by the boundaries of the plasmonic system. A more advanced approach to nonlocality
in nanoplasmonics, albeit treatable only for very small, R � 1 nm, nanoparticles, is
based on an ab initio quantum-chemical approach of time-dependent density func-
tional theory (usually abbreviated as TD-DFT) [103–109].

It shows that while for larger particles and relatively large spacing between them
(�1 nm), the semi-phenomenological models work quite well; for smaller nanopar-
ticles and gaps the predicted local fields are significantly smaller. This is under-
standable because in ab initio theories there are phenomena that are important in the
extremely small nanosystem such as a significant dephasing due to the stronger cou-
pling between the collective plasmon and one-particle electron degrees of freedom,
discreetness of the one-electron spectrum, spill-out of the conduction-band electrons
(extension of their wave function outside of the lattice region) and the corresponding
undescreening of the d-band electrons, and simply the discreetness of the lattice.

In the latest set of publications, e.g., [108, 109], this approach is called quantum
nanoplasmonics. We would argue that this approach is traditionally called quantum
chemistry because what is found from the TD-DFT quantum-mechanically is the
dielectric response (susceptibility or polarizability) of the nanosystems. However,
even to calculate theoretically the permittivity of a bulk method, one has to employ
quantum-mechanical many-body approaches such as the random-phase approxima-
tion, self-consistent random-phase approximation (or GW-aproximation), or TD-
DFT, etc. The only difference from the above-sited works is that for bulk metals the
size effects are absent. Therefore permittivities can be adopted from experimental
measurements such as Ref. [32, 110].

Based on the arguments of the preceding paragraph, we would reserve the therm
“quantum plasmonics” for the subfields of nanoplasmonics studying phenomena
related to quantum nature and behavior SPs and SPPs. This term has been proposed
in our 2003 paper [31] introducing the spaser as a quantum generator of nanolocalized
optical fields—see Sect. 1.5 and references sited therein. A related field of studies
devoted to quantum behavior of single SPPs also can reasonably be called quantum
plasmonics as proposed later in Refs. [111, 112].

While the decay of SP excitations is usually a parasitic phenomenon, there are
some effects that completely depend on it. One of them is the SPIDER [93] mentioned
above in Sect. 1.2.4.1. It is based on the transfer of the energy and momentum from
SPPs to the conduction electrons, which microscopically occurs through the decay
of the SPPs into electron-hole pairs leading to production of hot electrons.

Yet another range of phenomena associated with a plasmon-dephasing decay into
incoherent electron-hole pairs (Landau damping) has come to the forefront recently.
This is the plasmon-assisted and enhanced generation of a dc electric current due to
rectification in Schottky diodes involving hot electrons [61, 113–115]. This phenom-
enon is promising for applications to photodetection and solar energy conversion.
Note that the use of the Schottky contacts between the plasmonic metal and a semi-
conductor permits one to eliminate a requirement that the photon energy �ω is greater
that the band gap. This is replaced by a much weaker requirement that �ω is greater
than a significantly lower Schottky-barrier potential [116].
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1.2.4.3 Nonlinear Photoprocesses in Nanoplasmonics

As became evident from the first steps of what now is called nanoplasmonics, the
enhanced local fields in resonant metal nanosystems bring about strongly enhanced
nonlinear responses [117–120].

Nonlinear nanoplasmonics is presently a very large and developed field. Some of
its phenomena related to coherent control and spasing are discussed in Sects. 1.4, and
1.5. Here we will give a classification of the nonlinear nanoplasmonic phenomena
and provide some examples, not attempting at being comprehensive.

Nonlinearities in nanoplasmonics can occur in the nanostructured plasmonic
metal, in the embedding medium (dielectric), or in both. Correspondingly, we clas-
sify them as intrinsic, extrinsic, or combined. As an independent classification, these
nonlinearities can be classified as weak (perturbative) or strong (nonperturbative).
The perturbative nonlinearities can be coherent (or parametric), characterized by non-
linear polirizabilities [121] and incoherent such as nonlinear absorption, two-photon
fluorescence, surface-enhanced hyper-Raman scattering (SEHRS) [122], nonlinear
photo-modification, two-photon electron emission [123], etc.

Here are some examples illustrating a variety of nonlinear photoprocesses in
nanoplasmonics.

• Second-harmonic generation from nanostructured metal surfaces and metal
nanoparticles [57, 124–132] is a coherent, perturbative (second-order or three-
wave mixing), intrinsic nonlinearity.

• Enhanced four wave mixing (sum- or difference frequency generation) at metal
surfaces [133] is a coherent, perturbative (third-order or four-wave), intrinsic non-
linearity.

• Another four-wave mixing process in a hybrid plasmonic-photonic waveguide
involves nonlinearities in both metal and dielectric [134] and, therefore, is classi-
fied as a coherent, combined, perturbative third-order nonlinear process.

• An all-optical modulator consisting of a plasmonic waveguide covered with CdSe
quantum dots [135] is based on a perturbative third-order, combined nonlinearity.
To the same class belongs a nanoscale-thickness metamaterial modulator [136].

• An ultrafast all-optical modulator using polaritons in an aluminum plasmonic
waveguide is based on perturbative third-order, intrinsic nonlinearity [137]. There
are arguments that this nonlinearity is incoherent, based on interband population
transfer of carriers [137].

• Nonperturbative (strong-field), coherent, extrinsic nonlinearity is plasmon-
enhanced generation of high harmonics [138] where the enhanced nanoplasmonic
fields excite argon atoms in the surrounding medium. Spaser [31] belongs to the
same class where the nonlinearity is the saturation of the gain medium by the
coherent plasmonic field [139]. The same is true for the loss compensation by gain
[140, 141].

• Intrinsic perturbative nonlinearities in nanoplasmonics stemming from a redistrib-
ution of the electron density caused by the ponderomotive forces of nanoplasmonic
fields have been predicted for surface plasmon polaritons [93, 142]. An intrinsic
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nonperturbative nonlinear process is the predicted plasmon soliton [143] where
strong local optical fields in a plasmonic waveguide cause a significant redistrib-
ution of the conduction-electron density.

• There are also relevant strongly-nonlinear processes in non-plasmonic materials
that are based on nanolocalized fields and are very similar to those in plasmon-
ics. Among them are near-field enhanced electron acceleration from dielectric
nanospheres with intense few-cycle laser fields [144]. Another such a process is
a strong optical-field electron emission from tungsten nanotips controlled with an
attosecond precision [145].

• Finally, a recently predicted phenomenon of metallization of dielectrics by strong
optical fields [146, 147] belongs to a new class of highly-nonlinear phenomena
where strong optical fields bring a dielectric nanofilm into a plasmonic metal-like
state.

1.3 Nanolocalized Surface Plasmons (SPs) and Their Hot Spots

1.3.1 SPs as Eigenmodes

Assuming that a nanoplasmonic system is small enough, R � λ, R � ls , we employ
the so-called quasistatic approximation where the Maxwell equations reduce to the
continuity equation for electrostatic potential ϕ(r),

∂

∂r
ε(r)

∂

∂r
ϕ(r) = 0. (1.20)

The systems permittivity (dielectric function) varying in space is expressed as

ε(r) = εm(ω)Θ(r) + εd [1 − Θ(r)]. (1.21)

Here Θ(r) is the so-called characteristic function of the nanosystem, which is equal
to 1 when r belongs to the metal and 0 otherwise. We solve this equation following
the spectral theory developed in Refs. [29, 78, 148].

Consider a nanosystem excited by an external field with potential ϕ0(r) at an
optical frequency ω. This potential is created by external charges and, therefore,
satisfies the Laplace equation within the system,

∂2

∂r2 ϕ0(r) = 0. (1.22)

We present the field potential as

ϕ(r) = ϕ0(r) + ϕ1(r), (1.23)
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where ϕ1(r) is the local field.
Substituting Eq. (1.23) into (1.20) and taking Eqs. (1.21) and (1.22) into account,

we obtain a second-order elliptic equation with the right-hand side that describes the
external excitation source,

∂

∂r
Θ(r)

∂

∂r
ϕ1(r) − s(ω)

∂2

∂r2 ϕ1(r) = − ∂

∂r
Θ(r)

∂

∂r
ϕ0(r), (1.24)

where s(ω) is Bergman’s spectral parameter [29] defined by Eq. (1.4).
As a convenient basis to solve this field equation we introduce eigenmodes (SPs)

with eigenfunctions ϕn(r) and the corresponding eigenvalues, sn , where n is the full
set of indices that identify the eigenmodes. These eigenmodes are defined by the
following generalized eigenproblem,

∂

∂r
Θ(r)

∂

∂r
ϕn(r) − sn

∂2

∂r2 ϕn(r) = 0, (1.25)

where eigenfunctions ϕn(r) satisfy the homogeneous Dirichlet-Neumann boundary
conditions on a surface S surrounding the system. These we set as

ϕ1(r)|r∈S = 0, or n(r)
∂

∂r
ϕ1(r)

∣∣∣∣
r∈S

= 0, (1.26)

with n(r) denoting a normal to the surface S at a point of r. These boundary conditions
(1.26) are essential and necessary to define the eigenproblem.

From Eqs. (1.25)–(1.26) applying the Gauss theorem, we find

sn =
∫

V Θ(r)
∣∣ ∂
∂r ϕn(r)

∣∣2 d3r∫
V

∣∣ ∂
∂r ϕn(r)

∣∣2 d3r
. (1.27)

From this equation, it immediately follows that all the eigenvalues are real numbers
and

1 ≥ sn ≥ 0. (1.28)

Physically, as one can judge from Eq. (1.27), an eigenvalue of sn is the integral
fraction of the eigenmode (surface plasmon) intensity |∂ϕn(r)

/
∂r|2 that is localized

within the metal.
Because the SP eigenproblem is real, and all the eigenvalues sn are all real, the

eigenfunctions ϕn can also be chosen real, though are not required to be chosen in
such a way. Physically, it means that the quasistatic nanoplasmonic eigenproblem is
time-reversible.

For the eigenproblem (1.25)–(1.26), we can introduce a scalar product of any two
functions ψ1 and ψ2 as
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(ψ2 | ψ1) =
∫

V

[
∂

∂r
ψ∗

2 (r)
] [

∂

∂r
ψ1(r)

]
d3r, (1.29)

This construct possesses all the necessary and sufficient properties of a scalar product:
it is a binary, Hermitian self-adjoined, and positive-defined operation. It is easy
to show that the eigenfunctions of Eqs. (1.25)–(1.26) are orthogonal. They can be
normalized as

(ϕn| ϕm) = δnm, (1.30)

1.3.2 Inhomogeneous Localization of SPs and Hot Spots of Local
Fields

One of the most fundamental properties of eigenmodes is their localization. By
nature, the SP eigenmodes of small nanoplasmonic systems are localized and non-
propagating. This generally follows from the fact that the eigenproblem (1.25) is real
and has real eigenvalues, implying time-reversal invariance and, consequently, zero
current carried by any eigenmode.

From the early days of nanoplasmonics, there has been keen attention paid to
the localization of SP eigenmodes, because it was immediately clear that absence
of any characteristic wavelength of the localized SPs leads to the possibility of
their concentration in nanoscopic volumes of the space [117, 120, 149]. Many early
publications claimed that the SPs in disordered nanoplasmonics systems, e.g., fractal
clusters, experience Anderson localization [150–156].

However, a different picture of the SP localization, named inhomogeneous local-
ization, has been introduced [78, 157–160]. In this picture of inhomogeneous local-
ization, eigenmodes of very close frequencies with varying degree of localization,
from strongly localized at the minimum scale of the system to delocalized over the
entire nanosystem coexist. This phenomenon of inhomogeneous localization has
been experimentally confirmed recently [161]. The eigenmodes experiencing the
Anderson localization are dark, corresponding to dipole-forbidden transitions, and
thus can only be excited from the near field [78].

A related phenomenon is the formation of hot spots in local fields of nanoplas-
monic system that we introduced in Refs. [157, 158, 162, 163]. As characteristic of
the inhomogeneous localization, the energy is localized by different SP eigenmodes
at vastly different scales. However, it is the localization at the minimum scale that
gives the highest local fields and energy density; these tightly-localized modes are
the most conspicuous in the near-field intensity distributions as the hot spots. The
hot spots exist in all kind of nanoplasmonic system but they are especially strongly
pronounced in disordered and aperiodic systems [164].

We will illustrate the hot spots and the inhomogeneous localization of the SP
eigenmodes using the results of the original works that established the phenomena
[157, 158] using plasmonic-metal fractal clusters as objects. The model of these
fractals were the so-called cluster-cluster aggregates (CCA) [165, 166]. In Fig. 1.5,
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Fig. 1.5 Near-field intensity of eigenmodes computed for cluster-cluster aggregate (CCA) cluster.
Square of the eigenmode electric field |En|2 is displayed against the projection of the cluster for
two eigenmodes with close eigenvalues: a sn = 0.3202 and b sn = 0.3203. For silver embedding
medium with a permittivity εd ≈ 2.0, which is an approximate value for water, these modes
correspond to a blue spectral range with �ω ≈ 3.13 eV. Adapted from Ref. [157]

we show two representative eigenmodes with Bergman’s eigenvalues of sn = 0.3202
and sn = 0.3203, which are very close in frequency (the blue spectral range for the
case of silver in water). Both the eigenmodes are highly singular and are represented
by sharp peaks—hot spots—that may be separated by the distances from the mini-
mum scale of the system to the maximum scale that is on the order of the total size of
the entire system. These eigenmodes possess very different topologies but very close
eigenvalues and, consequently, have almost the same frequency �ω ≈ 3.13 eV. This
coexistence of the very different eigenmodes at the same frequency was called the
inhomogeneous localization [157, 158].

The formation of host spots by the SP eigenmodes and the inhomogeneous local-
ization of the eigenmodes are very pronounced for the fractal clusters. However, the
same phenomena also take place in all dense random plasmonic systems. Physically,
this phenomena is related to the absence of the characteristic length scale for SPs:
the smallest electromagnetic scale is the skin depth ls ≈ 25 nm, which is too large on
the scale of the system to affect the SP localization. The inhomogeneous localization
implies that eigenmodes can be localized on all scales but this localization is always
singular. The hot spots are the concentration regions of the optical energy: sharp
peaks on the minimum scale (“fine grain” size) of the system are most visible.

Note that there is a fundamental difference between the plasmonic hot spots and
their counterpart in the wave optics: speckles produced by scattering of laser light
from a random medium. In the speckle case, there is a characteristic size of the
speckles on the order of a character distance Ls between them that is determined by
diffraction:

Ls ∼ λD/A, (1.31)

where λ is wavelength of light, A is an aperture (cross-size of the coherent spot
of light on the scattering system), and D is the distance from the scatterer to the
observation screen.
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One of the plasmonic system models studied in significant detail is a random planar
composite (RPC) also called a semi-continuous metal film [78, 128, 148, 155, 161,
167–170]. This is a planar system where metal occupies a given fill fraction f of the
system’s volume. At a low f , the RPC is a system of remote randomly positioned
metal particles. For high values of f , it is an almost continuous film with rare holes in
it. For f ≈ 0.5, there are percolation phenomena: there is a large connected random
cluster of the metal extending between the boundaries of the system [171]. This
connected percolation cluster is known to possess a fractal geometry.

To consider statistical measures of the SP localization, we introduce the localiza-
tion radius Ln of an eigenmode, which is defined as the gyration radius of its electric
field intensity |En(r)|2, where

En(r) = − ∂

∂r
ϕn(r) (1.32)

is the eigenmode electric field, as

L2
n =

∫
V

r2|En(r)|2d3r −
(∫

V
r|En(r)|2d3r

)2

. (1.33)

We remind that due to Eq. (1.30), the eigenmode fields are normalized

∫
V

|En(r)|2d3r = 1, (1.34)

so Eq. (1.33) is a standard definition of the gyration radius.
In Fig. 1.6a, we show the smoothed, discretized nanostructure of one particular

sample of a RPC. This system is generated in the following way. We consider a
volume of size, in our case, 32 × 32 × 32 grid steps. In the central xz plane of this
cube we randomly fill a cell of size 2×2 grid steps with metal with some probability
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Fig. 1.6 For a planar random composite (in the xz-plane), the density of the metal component
(panel a) and all eigenmodes plotted in the coordinates of oscillator strength Fn versus localization
radius Ln (panel b)
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f (fill factor or filling factor). Then we repeat this procedure with other 2 × 2 cells
in that central xz plane. As a result, we arrive at a thin planar layer of thickness 2
grid steps in the y direction and fill factor of f in the central xz plane.

In Fig. 1.6b, we display all of the eigenmodes (SPs) of the above-described RPC
in a plot of oscillator strength Fn versus localization length Ln . These eigenmodes
are strikingly unusual.

First, there is a large number of eigenmodes with negligible oscillator strengths
Fn � 10−5. Note that the rounding-up relative error in our computations is ∼10−6,
so these eigenmodes’ oscillator strengths do not significantly differ from zero. Such
eigenmodes do not couple to the far-field electromagnetic waves, and they can be
neither observed nor excited from the far-field (wave) zone. We call them dark modes.
They can, however, be excited and observed by NSOM (near-field scanning optical
microscope) type probes in the near-field region. Such eigenmodes are also important
from the computational-mathematical point of view because they are necessary for
the completeness of the eigenmode set.

Second, in Fig. 1.6b, there also are many eigenmodes with relatively large oscilla-
tor strengths, Fn � 10−4, which we call luminous or bright modes. These do couple
efficiently to the far-zone fields.

Third, both the luminous and the dark modes have localization radii Ln with all
possible values, from zero to one half of the diagonal system size, and with very
little correlation between Fn and Ln , except for the superlocalized (zero-size) eigen-
modes that are all dark. This wide range of Ln shows that the Anderson localization
does not occur for most of the modes, including all the luminous modes. Similar to
these findings in certain respects, deviations from the simple Anderson localization
have been seen in some studies of the spatial structure of vibrational modes [172,
173], dephasing rates [174] in disordered solids induced by long-range (dipole- type)
interactions. A direct confirmation of this picture of the inhomogeneous localization
has been obtained in experiments studying fluctuations of the local density of states
of localized SPs on disordered metal films [161].

To gain more insight, we show in Fig. 1.7 the local electric field intensities |En(r)|2
for particular eigenmodes of four extreme types, all with eigenvalues very close to
sn = 0.2. As a measure of the eigenmode oscillator strength, we show a normalized
oscillator strength Fn . The data of Fig. 1.7 confirm the above-discussed absence of
correlation between the localization length and oscillator strength, and also show
that there is no correlation between the topology of the local field intensity and
the oscillator strength—compare the pairs of eigenmodes: sn = 0.1996 with sn =
0.2015, and sn = 0.2 with sn = 0.2011. Note that the large and random changes
of the intensities between the close eigenmodes evident in Fig. 1.7 is an underlying
cause of the giant fluctuations [175] and chaos [157–159] of local fields.

A fundamental property of the SP eigenmodes, whether localized or delocalized,
is that they may be thought of as consisting of hot spots. While the localized eigen-
modes possess a single tight hot spot, the delocalized ones consist of several or many
host spots. Note that the fields in the hot spots constituting a single eigenmode are
coherent. In a sense, the hot spots are somewhat analogous to speckles produced by
laser light scattered from a random system. However, such speckles are limited by
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Fig. 1.7 Hot spots: Local field intensities |En(r)|2 of eigenmodes at the surface of the system
shown in Fig. 1.6, versus spatial coordinates in the xz plane

the half-wavelength of light and cannot be smaller than that. In contrast, there is no
wavelength limitations for the SP hot spots. They are limited only by the minimum
scale of the underlying plasmonic system.

1.3.3 Retarded Green’s Function and Field Equation Solution

Retarded Green’s function Gr (r, r′;ω)of field equation (1.24), by definition, satisfies
the same equation with the Dirac δ-function on the right-hand side,

[
∂

∂r
Θ(r)

∂

∂r
− s(ω)

∂2

∂r2

]
Gr (r, r′;ω) = δ(r − r′), (1.35)

We expand this Green’s function over the eigenfunctions ϕn using the orthonor-
mality Eq. (1.30), obtaining

Gr (r, r′;ω) =
∑

n

ϕn(r) ϕn(r′)∗

s(ω) − sn
. (1.36)

This expression for Green’s function is exact (within the quasistatic approxima-
tion) and contains the maximum information on the linear responses of a nanosystem
to an arbitrary excitation field at any frequency. It satisfies all the general properties
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of Green’s functions due to the analytical form of Eq. (1.36) as an expansion over the
eigenmodes (surface plasmons). This result demonstrates separation of geometry of
a nanosystem from its material properties and the excitation field. The eigenfunctions
ϕn(r) and eigenvalues sn in Eq. (1.36) depend only on geometry of the nanosystem,
but not on its material composition or the optical excitation frequency. In contrast,
the spectral parameter s(ω) depends only on the material composition and the exci-
tation frequency, but not on the system’s geometry. One of the advantages of this
approach is in its applications to numerical computations: the eigenproblem has to be
solved only once, and then the optical responses of the nanosystem are determined
by Green’s function that can be found by a simple summation in Eq. (1.36).

This Green’s function is called retarded because it describes responses that occur
necessarily at later time moments with respect to the forces that cause them. (Note
that this name and property have nothing to do with the electromagnetic retardation,
which is due to the finite speed of light and is absent in the quasistatic approximation.)
This property, also called Kramers-Kronig causality, is mathematically equivalent
to all singularities of Gr (r, r′;ω) as a function of complex ω being situated in the
lower half-plane. Consequently, Gr (r, r′;ω) as a function of ω satisfies the Kramers-
Kronig dispersion relations [30]. By the mere form of the spectral expansion (1.36),
this Green’s function satisfies all other exact analytical properties. This guarantees
that in numerical simulations it will possess these properties irrespectively of the
numerical precision with which the eigenproblem is solved. This insures an excep-
tional numerical stability of computational Green’s function approaches.

Once the Green’s function is found from Eq. (1.36), the local optical field potential
is found as contraction of this Green’s function with the excitation potential ϕ0(r) as

ϕ1(r) = −
∫

V
Gr (r, r′;ω)

∂

∂r′ Θ(r′) ∂

∂r′ ϕ0(r′) d3r ′. (1.37)

From Eqs. (1.23) and (1.37) using the Gauss theorem, we obtain an expression for
the field potential ϕ(r) as a functional of the external (excitation) potential ϕ0(r),

ϕ(r) = ϕ0(r) −
∫

V
ϕ0(r′) ∂

∂r′ Θ(r′) ∂

∂r′ Gr (r, r′;ω) d3r ′. (1.38)

Finally, differentiating this, we obtain a closed expression for the optical electric
field E(r) as a functional of the excitation (external) field E(0)(r) as

Eα(r) = E (0)
α (r) +

∫
V

Gr
αβ(r, r′;ω)Θ(r′)E (0)

β (r′) d3r ′, (1.39)

where α, β, . . . are Euclidean vector indices (α, β, . . . = x, y, z) with summation
over repeated indices implied; the fields are

E(r) = −∂ϕ(r)
∂r

, E(0)(r) = −∂ϕ0(r)
∂r

, (1.40)
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and the tensor (dyadic) retarded Green’s function is defined as

Gr
αβ(r, r′;ω) = ∂2

∂rα∂r ′
β

Gr (r, r′;ω). (1.41)

One of the exact properties of this Green’s function is its Hermitian symmetry,

Gr
αβ(r, r′;ω) = Gr

βα(r′, r;−ω)∗. (1.42)

If the excitation is an optical field, its wave front is flat on the scale of the nanosys-
tem, i.e., E(0) = const. Then from Eq. (1.39) we get

Eα(r) = [
δαβ + gαβ(r, ω)

]
E (0)

β , (1.43)

where the local field enhancement (tensorial) factor is a contraction of the retarded
dyadic Green’s function,

gαβ(r, ω) =
∫

V
Gr

αβ(r, r′;ω)Θ(r′) d3r ′. (1.44)

1.3.4 SP Modes as Resonances

Each physical eigenmode is described by the corresponding pole of Green’s func-
tion (1.36). Close to such a pole, Green’s function and, consequently, local fields
(1.43) become large, which describes the surface plasmon resonance of the nanosys-
tem. A complex frequency of such a resonance can be found from the position of the
corresponding pole in the complex plane of frequency,

s(ωn − iγn) = sn, (1.45)

where ωn is the real frequency of the surface plasmon, and γn is its spectral width
(relaxation rate).

Note that we presume γn > 0, i.e., a negative sign of the imaginary part of the
physical surface frequency. This a presumption, which is confirmed by the solution
presented below in this section, is based on the standard convention of the sign of an
exponential in the field temporal evolution,

En(r, t) ∝ exp
[−i(ωn − iγn)t

] ∝ exp(−γnt), (1.46)

which decays exponentially for t → +∞, as should be. The wave functions of
physical surface plasmons are the familiar eigenfunctions ϕn(r), i.e., those of the
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geometric eigenmodes. However, their physical frequencies, of course, depend on
the material composition of the system.

For weak relaxation, γn � ωn , one finds that this real surface plasmon frequency
satisfies an equation

Re[s(ωn)] = sn, (1.47)

and that the surface plasmon spectral width is expressed as

γn = Im[s(ωn)]
s′

n
, s′

n ≡ ∂Re[s(ω)]
∂ω

∣∣∣∣
ω=ωn

. (1.48)

In terms of the dielectric permittivity as functions of frequency

s′(ω) = εd

|εd − ε(ω)|2 Re
∂εm(ω)

∂ω
, γ (ω) = Imεm(ω)

Re ∂εm (ω)
∂ω

. (1.49)

This expression has been given in Sect. 1.2.1 as Eq. (1.3). Importantly, the spectral
width γ is a universal function of frequency ω and does not explicitly depend on
the eigenmode wave function ϕn(r) or system’s geometry. However, the system’s
geometry does, of course, define the plasmon eigenfrequencies ωn . This property has
been successfully used in Ref. [176] where a method of designing nanoplasmonic
systems with desired spectra has been developed. Note also that the classical SPs have
been quantized in Ref. [31] in connection with the prediction of spaser, a nanoscale
counterpart of laser (see Sect. 1.5).

As follows from Eq. (1.28), external frequency ω is within the range of the phys-
ical surface plasmon frequencies and, therefore, can be close to a surface plasmon
resonance [pole of Green’s function (1.36) as given by Eq. (1.45)] under the following
conditions

0 ≤ Re s(ω) ≤ 1, Im s(ω) � Re s(ω). (1.50)

These conditions are equivalent to

εd > 0, 0 ≤ Re εm(ω) < 0, Im εm(ω) � |Re εm(ω)| . (1.51)

These conditions, in fact, constitute a definition of a plasmonic system, i.e., a system
where a position of surface plasmon resonance can be physically approached: the
dielectric permittivity of the metal component should be negative and almost real,
while the permittivity of the second constituent (dielectric) should be positive, as
assumed.

It is useful to write down an expression for Green’s function (1.36) that is asymp-
totically valid near its poles, which can be obtained from Eqs. (1.47) and (1.48) as

Gr (r, r′;ω) = 1

s′(ω)

∑
n

ϕn(r) ϕn(r′)∗

ω − ωn + iγn
, (1.52)
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where γn is given above by Eqs. (1.48) or (1.49). This expression constitutes what
is called the singular approximation or pole approximation of the Green’s function.
When an excitation frequency is in resonance with an SP frequency, i.e., ω = ωn ,
the Green’s function (1.52) increases in magnitude by ∼ωn/γn ∼ Q times, where
the quality factor Q is given by Eq. (1.5).

Below, for the sake of reference, we give a modal expansion for the polarizability
α of a nanoplasmonic system as a tensor,

ααβ = − εd

4π

∑
n

1

sn(s − sn)
Mnα M∗

nβ, (1.53)

where the indexes α, β denote Cartesian components, and Mn is a coupling vector
defined as

Mn = −
∫

V
Θ(r)

∂ϕn(r)
∂r

d3r. (1.54)

Near a SP frequency, ω ≈ ωn , a singular part of the polarizability (1.53) acquires
a form

ααβ = − εd

4πs′
nsn

Mnα M∗
nβ

ω − ωn + iγn
. (1.55)

Also, for the reference sake, we give a general expression for the SP radiative decay
rate, γ

(r)
n . This can be obtained from Eq. (1.55) taking into account Eqs. (1.10) and

(1.15) as

γ (r)
n = ε

3/2
d ω3 |Mn|2
9πc3s′

nsn
. (1.56)

Note that |Mn|2 ∼ Vn , where Vn is the modal volume of the n-th eigenmode. Thus
Eq. (1.56) is consistent with Eq. (1.16) obtained earlier in this chapter.

1.3.5 Examples of Local Fields and Their Hot Spots

Let us give an example of local fields computed using Eq. (1.39). We start with
the results of the original publications Ref. [157, 158] where the hot spots of the
plasmonic local fields have been predicted. This prediction was made for fractal
clusters because the fractals were expected to possess highly inhomogeneous and
fluctuating local optical fields as was shown in pioneering papers in a subfield of
physical optics that today is called nanoplasmonics [117, 149, 177].

In Fig. 1.8 adapted from Ref. [157], we illustrate the local-field hot spots for a
silver CCA cluster of N = 1500 identical nanospheres embedded in water. We show
local field intensity I = |E(r, ω)|2 relative to the excitation field intensity I0 at
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Fig. 1.8 Spatial distributions of local field intensity I relative to the external intensity I0 for an
individual CCA cluster of N = 1500 silver nanospheres in water (εd = 2.0) for the frequency
�ω = 3.13 eV. The polarizations of the excitation radiation is x (a) and y (b), as indicated in the
panels. The projection of the cluster nanospheres to the xy plane is also shown. Adapted from
Ref. [157]

the surface of the silver nanospheres at a relatively high frequency �ω = 3.13 eV
corresponding to vacuum wavelength λ = 390 nm in the far blue end of the visible
spectrum. We can clearly see that the local intensity is highly non-uniform, exhibiting
pronounced singular hot spots. These hot spots are localized at the minimum scale
of the system (on the order of the radius of the nanospheres). The local intensity in
the hot spots is greatly enhanced (by a factor of up to ∼600) as one would expect
from an estimate I/I0 ∼ Q2—cf. Fig. 1.2.

This hot spotting is nothing else as random nanofocusing. It is similar in this
respect to the formation of speckles in the wave optics, as we have discussed above in
conjunction with Fig. 1.5. However, reflecting the properties of the corresponding SP
eigenmodes, there is no characteristic wavelength that limits this hot spot singularity
by defining the characteristic size Ls of the speckles, which is also a characteristic
separation between them—see Eq. (1.31).

Another property of the local fields of a great significance is the dramatic depen-
dence of the intensity distribution on the polarization: the local distributions or the
x-polarization (Fig. 1.8a) and y-polarization (panel b) are completely different. An
experimental observation of this effect has been obtained in Ref. [118] already at a
very early stage of the development of nanoplasmonics.

Note that the SP eigenmode geometry is also strongly dependent on its frequency—
see Fig. 1.5. However, in externally-excited local fields, this frequency dependence
is obscured by the resonance broadening due to the losses, as is evident from the
expression for the resonant part of the Green’s function

We will present below spectral and statistical properties of the local fields using
a model of random planar composite (RPC). A specific RPC system used in the
computation is shown in Fig. 1.9a. To improve numerical accuracy, we smooth the
unit-step characteristic function Θ(r) with a Gaussian filter with a radius of 1 grid
step: this dramatically improves numerical accuracy of a grid method that we use to
solve the eigenproblem. Such a smoothing is clearly seen in Fig. 1.9a.
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Fig. 1.9 a Geometry of nanostructured random planar composite (RPC): characteristic function
Θ(r) is displayed in the xz plane of the RPC. Axes unit is nm; thickness of the system in the y
direction (normal to its plane) is 2 nm. The fill factor is p = 0.5. Characteristic function Θ(r)
is smoothed by a Gaussian filter with a radius of 1 nm to improve numerical accuracy (shown in
the panel by the halftone density). b Local field intensity |E(r)|2 in the plane of the nanostructure
displayed relative to the excitation field intensity |E(0)|2; excitation frequency �ω = 1.55 eV;
computed using Eq. (1.38). The metal is silver embedded in the dielectric with εd = 2. c Same as
(b) but for �ω = 2.0 eV. Adapted from data computed for Ref. [178]

In Fig. 1.9b, c, we display the spatial distribution of the local field intensity |E(r)|2
in the plane of the nanostructure at the surface of the metal. These computations are
described in Ref. [178]. They are done for silver whose dielectric function is adopted
from Ref. [32]; the embedding dielectric has permittivity is set as εd = 2.0. This
intensity is plotted relative to the excitation field intensity |E0|2; thus the quantity
displayed is the enhancement factor of the local field intensity. Panel (b) shows the
intensity computed from Eq. (1.38). The maximum of the local intensity enhancement
of ≈6000 is in a reasonable agreement with the estimate ∼Q2 ∼ 104, where Q is
displayed in Fig. 1.2.

Dependence of the local fields on frequency is dramatic: cf. Figs. 1.9b, c. As
frequency increases from the near-IR (1.55 eV) to visible (2.0 eV), the distribution
becomes much more delocalized and its magnitude dramatically decreases, which
cannot be explained by some decrease of quality factor Q alone. Most importantly,
at all frequencies these near-field intensity distributions are dominated by the pro-
nounced hots spots. These are manifestation of the hot spots of the SP eigenmodes—
see Fig. 1.7.

Generally, the intensity distribution of local field intensity in Fig. 1.9b, c is highly
singular: it consists of relatively narrow peaks (hot spots [158, 163]) separated by
regions of a low intensity. This is a typical distribution of intensity in plasmonic
nanosystems, which is a reflection of the inhomogeneous localization of the SP
eigenmodes.
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1.3.6 Experimental Examples of Nanoplasmonic Hot Spots

There has been a significant number of experimental studies of near-field distributions
of optical fields in plasmonic nanostructures. In all cases, a pronounced picture
of the hots spots [157, 158] has been exhibited, see, e.g., Refs. [123, 155, 168].
The inhomogeneous localization of the SP eigenmodes (see Sect. 1.3.2), which is
inherently related to hot spots, has recently been confirmed experimentally [161].

The photoemission electron microscope (PEEM) is a powerful tool of analyzing
the distribution of the local field intensity without perturbing it in any way. In the
PEEM approach, the plasmonic nanosystem to be analyzed serves as a cathode and
an object of an electron microscope. The electron emission is caused by the local field
E(r, ω) of the plasmonic system. The photoelectrons are analyzed by the electron
optics of the PEEM that creates a magnified image of the system in “light” of the
photo-emitted electrons.

For silver, the work function W f (i.e., the minimum energy needed to excite an
electron from the Fermi surface to the zero energy that is the energy in vacuum out-
side of the metal) is approximately 4.2 eV. The highest energy of an optical quantum
(at the vacuum wavelength of 390 nm) is 3.2 eV, i.e., it is significantly less than W f .
Thus, a single optical photon cannot emit an electron from a silver surface. Such an
emission can, however, occur through two-photon absorption, leaving for the emit-
ted electron the kinetic energy at infinity of E∞ ≤ 2�ω − W f . Such a two-photon
electron photoemission is in the foundation of the so-called two-photon photoemis-
sion PEEM (or, 2PP-PEEM). On the other hand, for ultraviolet radiation (say, from
a Hg lamp), the energy of a photon is sufficient for the one-photon photoemission
PEEM (1PP-PEEM). The 2PP-PEEM electron intensity mirrors the distribution of
I2 = |E(r, ω)|4.

A model system to illustrate the hot spots used in a 2PP-PEEM experiment of
Ref. [123] is shown in Fig. 1.10a. This is a diffraction grating covered with a sil-
ver layer with roughness of a < 10 nm RMS grain size, as the scanning electron
micrograph (SEM) shows in the insert. The Hg lamp illumination (the energy of the
quantum �ω = 4.89 eV exceeds W f = 4.2 eV, thus allowing one-photon photoe-
mission, 1PP-PEEM) shows a smooth image of the underlying diffraction grating
with the resolution of the PEEM (�100 nm).

A dramatically different picture is observed in Fig. 1.10b. In this case, the irra-
diation is with femtosecond laser pulses of λ = 400 nm vacuum wavelength. The
corresponding energy of the quantum is below the work function, �ω = 3 eV <

W f = 4.2 eV. Thus the electron photoemission is two-photon. The corresponding
2PP-PEEM image in Fig. 1.10b exhibits a pronounced picture of the hot spots due
to the fact that in this case the optical frequency is in the plasmonic range. These
hot spots are localized SPs that are excited by the p-polarized radiation with a sig-
nificantly greater efficiency than by an s-polarized one. This suggests that SPPs
excitation may play a role as an intermediate process for the localized SP excita-
tion. In a full qualitative agreement with theory (see Sect. 1.3.2), these hot spots are
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Fig. 1.10 PEEM micrographs of the same region on the silver grating obtained with a 254-nm line
of a Hg lamp (1PP-PEEM) and b p-polarized 400-nm femtosecond laser excitation (2PP-PEEM).
A scanning electron micrograph (SEM) of the silver grating in (a) is superimposed with the 1PP-
PEEM image to show correspondence in the >100 nm scale topographical contrast. The surface
roughness with <10 nm RMS distribution in the SEM image, which is too fine to resolve with the
PEEM, gives rise to excitation of the localized SP modes seen as the hot spots in the 2PP-PEEM
image of (b). The blue rectangle locates the four hot spots that were used for a coherent control
experiment. Adapted from Ref. [123]

singular, highly localized, and randomly distributed in space. The local fields in these
hot spots are highly enhanced as witnessed by their dominance in the 2PP process.

Formation of the hot spots for random nanostructured plasmonic systems is a
universal phenomenon whose physics is defined by the absence of the characteristic
wavelength of the localized SPs, which localize at all available scales and whose
fields are highly singular and highest at the minimum scale [78, 157, 158, 179].

One of the most convincing and comprehensive studies of geometry and statistics
of the plasmonic hots spots is recently published Ref. [180] performed using PEEM
and semicontinuous gold film whose model is RPC. Adapted from this, in Fig. 1.11,
we show spatial distributions of the hot spots for a semicontinuous film with a fill fac-
tor (percentage of the area occupied by metal) f = 0.53. At this f , the film is close to
the percolation threshold for static conductivity. The connected clusters in such a film
have a fractal nature where we expect giant fluctuations and inhomogeneous localiza-
tion of the SP fields [157, 158]. In fact, the distributions in Fig. 1.11 do demonstrate

Au, 4 nm,  f=0.53 λ=800 nm λ=930 nm λ=970 nm

Fig. 1.11 Left column, scanning electron microscope images of the gold/glass films for the 4 nm
grain size (filling factor f = 0.53). Right, PEEM distributions corresponding to gold/glass films for
three different wavelengths. For each PEEM image, excitation wavelength λ is indicated. Adapted
from Ref. [180]
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pronounced hot-spot behavior with inhomogeneous localization, giant fluctuations
in space, where the distributions and intensities of individual hot spots strongly and
randomly change with frequency. These distributions are in a full qualitative agree-
ment with the theoretical predictions for the hot spots of local nanoplasmonic fields
[157, 158]—cf. above Figs. 1.8, 1.9.

We emphasize again that the PEEM-based observation of the plasmonic hot spots
is completely non-perturbing. The photo-emitted electrons that are used in the PEEM
fly away from the metal surface naturally, no matter whether they are used for imaging
or not.

There has also been a series of research dealing with the observation of the plas-
monic hot spots using the scanning near-field optical microscope (NSOM or SNOM)
[155, 162, 168]. In fact, the first experimental evidence of the nanoplasmonic hot
spots has been obtained [162] using an aperture-type NSOM, which is a based a
tapered optical fiber with the tip covered by a metal. A general concern about such
observation is that they are perturbative: the tip of NSOM (or nanoscope, as it is
often called) is typically much larger than a hot spot. Made of metal, it can, in prin-
ciple, modify the host spot by both shifting its resonant frequency and decreasing
the quality factor.

As an example, we present Fig. 1.12 adapted from Ref. [168]. This study is done
on the semicontinuous metal film (random planar composite, or RPC). At relatively
low values of the fill factor, f = 0.36 and f = 0.45, the local intensity distribution
I (r) shows relatively delocalized regions elongated normally to the direction of
propagation (vertical axis in the figure). These are analogous to the caustics of the
usual 3d optics. Relatively close to the percolation point, f = 0.66 and f = 0.73,
the distribution I (r) becomes highly localized exhibiting singular hot spots. The
behavior of I (r) at a relatively high fill factor of f = 0.83 again reminds that for the
low f showing delocalized caustics but not singular hot spots. This is understandable
because in this case the system is basically a smooth film with a few defects. This
film supports SPPs that are weakly scattered by the relatively few defects.

As we have discussed above in this section, NSOM measurements of hot spots are
inherently perturbative. While PEEM is nonperturbative, the spatial resolution so far
has been insufficient (due to aberrations in the electron optics and large spread of the

f=0.45 f=0.65 f=0.73 f=0.83f=0.36

Fig. 1.12 NSOM images of 4 × 4µm2 semi-continuous silver films with different metal filling
fractions f as indicated above the graphs. Local intensity distribution is displayed as a function of
the spatial coordinates in the plane of the film. The white areas correspond to higher intensities.
Adapted from Ref. [168]
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emitted electrons over their energies). Additionally, PEEM requires clean surfaces
in high vacuum.

A fundamentally different non-perturbing approach to studying nanoplasmonic
hot spots has been pioneered in Refs. [181, 182]. It is based on the so-called photon-
localization super-resolution far-field microscopy. This method of far-field super-
resolution has originally been developed in application to biological imaging [183].

This method’s fundamentals can be very briefly described as the following.
Assume that there is a single radiating chromophore (say, fluorescing molecule)
in the view field of an optical microscope. Alternatively, there may be a number of
such chromophores but their concentration should be low enough so they are resolved
separately by the microscope (i.e., the distance between these molecules are greater
than the microscope’s resolution). The center of the emission of such a single (or
separately resolved) emitter can be found with any precision that is only limited by
statistical fluctuations of the number of the recorded photons but not by the resolution
of the microscope provided that this microscope or the system under study does not
change in the course of the observation.

After the position and brightness of a given single molecule are recorded, this
molecule is naturally bleached. Then another molecule comes into the hot spot and
its position and brightness are recorded until it is bleached. The process is repeated
until the distribution of the brightness of emitters is built with a sufficient statistical
precision.

It is assumed that the emission brightness of a single chromophore is proportional
to the local field intensity of the hot spot at its position and that this chromophore
exerts a negligibly weak perturbation on the local field of the hot spot. Thus this
photon-localization nanoscopy is a non-perturbative method allowing one to find the
intensity distribution at the hot spot on the nanoscale limited only by the statistical
fluctuations (inversely proportional to the accumulation time) and the size of the
chromophore itself, which is negligible in realistic situations.

The results of the hot spot local intensity-distribution measurements for an alu-
minum surface are shown in Fig. 1.13a. This distribution is a narrow peak with the
width of ≈20 nm. The observed fine structure of this distribution is attributed to
statistical fluctuations [181]. The cross section through this distribution displayed in
Fig. 1.13b suggests an exponential decay of this distribution function in space with
the FWHM = 20 nm.

Very similar results are obtained for the silver colloid clusters as shown in
Figs. 1.13c, d. Note that the aluminum surface studied is nominally smooth and
contains only random roughness while the silver colloid clusters are fractals whose
density fundamentally possesses large and correlated fluctuations.



1 Nanoplasmonics: From Present into Future 33

I(r) (Arb. u.)

I(r) (Arb. u.)
900

700

500

300

0

50
25

y (nm)

103

102

I 
(A

rb
. u

.)

20 30 40 50 60
x, y (nm)

1100

700

300

00 25 50 75x (nm)

25
50

0

x (nm)
25

50
75

0

y 
(n

m
)

1000806040 02
x, y (nm)

103
I 

(A
rb

. u
.)

(a) (b)

(c) (d)

Fig. 1.13 Hot spots at the surfaces of metals measured by the photon localization method (see the
text). a, b Distribution of the local intensity for a hot spot at the surface of aluminum. The kernel
window size is 2.1 nm; this small window size makes the image appear noisy. The dye is Chromeo-
542 with excitation at 532 nm and the emission centered around 580 nm. b An exponential decay
field profile is visible, and is more evident on a log scale, shown as almost a decade of straight
line (red solid line). The blue and green curves are two cross sections of the hot spot along x
and y directions through the peak. The FWHM of the spot is ∼20 nm. c and d is the same as (a)
and (b), respectively, but for the case of a silver metal colloid cluster precipitated on a surface. A
Chromeo-642 dye (Active Motif)—whose emission centers around 660 nm—is used. Adapted from
Ref. [181]

1.4 Ultrafast Plasmonics and Coherent Control on Nanoscale

1.4.1 Introduction

The nanoplasmonic processes can potentially be the fastest in optics: their short-
est evolution times are defined by the inverse spectral width of the region of the
plasmonic resonances and are on the order of 100 as [184], see also Sect. 1.2.1. The
relaxation times of the SP excitations are also ultrashort, in the 10–100 fs range [185–
189]. See also the SP relaxation times for gold and silver displayed in Fig. 1.3. The
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nanolocalization and such ultrafast kinetics make plasmonic nanostructures promis-
ing for various applications, especially for the ultrafast computations, data control
and storage on the nanoscale.

These and potentially many other applications require precise control over the
optical excitations of the nanostructures in time and space on the femtosecond-
nanometer scale. Such a control cannot be imposed by far-field focusing of the
optical radiation because the diffraction limits its dimension to greater than half
wavelength. In other words, the optical radiation does not have spatial degrees of
freedom on the nanoscale. There is a different class of approaches to control a system
on nanoscale based on plasmonic nanoparticles or waveguides brought to the near-
field region of the system. Among these we mention: the tips of scanning near-
field optical microscopes [190], adiabatic plasmonic waveguides [12], nanowires
[191, 192], plasmonic superlenses [193] or hyperlenses [194]. In all these cases,
massive amount of metal is brought to the vicinity of the plasmonic nanosystem,
which will produce strong perturbations of its spectrum and SP eigenmodes, cause
additional optical losses, and adversely affect the ultrafast dynamics and energy
nanolocalization in the system. This nanowaveguide approach also may not work
because of the excitation delocalization due to the strong interaction (capacitive
coupling) at the nanoscale distances for optical frequencies.

We have proposed [195] a principally different approach to ultrafast optical con-
trol on the nanoscale based on the general idea of coherent control. The coherent
control of the quantum state of atom and molecules is based on the directed interfer-
ence of the different quantum pathways of the optical excitation [196–205], which
is carried out by properly defining the phases of the corresponding excitation waves.
This coherent control can also be imposed by an appropriate phase modulation of
the excitation ultrashort (femtosecond) pulse [202, 206–208]. Shaping the polariza-
tion of a femtosecond pulse has proven to be a useful tool in controlling quantum
systems [209].

Our idea of the coherent control on the nanoscale by the phase modulation of
the excitation pulse can be explained with a schematic shown in Fig. 1.14. Phase
modulation of the excitation pulse can be thought of as changing the frequency (color)
of light as the pulse progresses in time. For the sake of argument, let us assume, as
shown in Fig. 1.14, that initially the pulse contains blue colors that gradually change
to red with the time progression. At earlier times, the dominating blue component of
the pulse will excite the SP eigenmodes with corresponding high optical frequencies.
As the pulse progresses, the lower-frequency eigenmodes are excited. It is assumed
that the total duration τp of the pulse is less than the decay (decoherence) time
τ = γ −1 of the SPs , i.e., τp � τ [for the decay rates and life times of the SPs
see Eq. (1.3) or (1.49) and Fig. 1.3]. In such a case, the SPs of different frequencies
will coexist simultaneously, and their fields will interfere. This interference depends
on the relative phases and amplitudes of the SPs of different frequencies which,
in turn, are determined by the relative phases of different spectral components of
the excitation pulse. The ultimate goal of the spatio-temporal coherent control on
the nanoscale is to have a hot spot of the local fields at a given nanosite at a given
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Fig. 1.14 Schematic of the fundamentals of the coherent control of nanoscale optical energy dis-
tribution. An excitation pulse is phase-modulated (shown by different colors changing with the
progression of the pulse), which may be qualitatively thought of as different frequencies (colors)
are incident on the nanosystem at different times, in a certain sequence. The system (a fractal cluster)
is indicated by its projection on the horizontal coordinate plane. In response to this pulse, different
SP eigenmodes are excited in a sequence. As time progresses, these eigenmodes interfere between
themselves leading to a hot spot appearing at a required position at a given time. This leads to a
large enhancement of the local field E relative to the excitation field E0

femtosecond temporal interval. Below in this chapter we show how this problem is
solved both theoretically and experimentally.

Another approach that we have proposed [210] invokes spatial modulation of the
excitation field on the microscale in a polaritonic system. This field excites SPPs
whose phases are determined by those of the original field. This determines the
wave fronts of the SPP waves that focus on the nanoscale at the targeted nanofoci at
the required times with femtosecond temporal resolution. The spatial-phase coher-
ent control of the SPPs has been demonstrated experimentally by different groups
[211, 212].

Our initial idea [195] has been subsequently developed theoretically [148, 209,
213, 214] and experimentally [123, 215–217]. In this coherent control approach, one
sends from the far-field zone a shaped pulse (generally, modulated by phase, ampli-
tude, and polarization) that excites a wide-band packet of SP excitations in the entire
nanosystem. The phases, amplitudes, and polarizations of these modes are forced by
this shaped excitation pulse in such a manner that at the required moment of time
and at the targeted nanosite, these modes’ oscillations add in phase while at the other
sites and different moments of time they interfere destructively, which brings about
the desired spatio-temporal localization.
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Theoretically, the number of the effective degrees of freedom that a shaped fem-
tosecond pulse may apply to a nanoplasmonic system can be estimated in the follow-
ing way. The number of the independent frequency bands is ∼Δω/γ, where Δω is
the bandwidth of the plasmonic system. For each such a band, there are two degrees
of freedom: amplitude and phase. Thus, the total number NDF of the degrees of
freedom for coherent control can be estimated as

NDF ∼ 2
Δω

γ
. (1.57)

For a plasmonic system with the maximum bandwidth Δω ∼ ω, and Eq. (1.57)
becomes

NDF ∼ 4Q, (1.58)

where we took into account Eq. (1.5). In the optical region for noble metals Q ∼ 100
(see Fig. 1.2), providing a rich, ∼100-dimensional space of controlling parameters.
The coherent control approach is non-invasive: in principle, it does not perturb or
change the nanosystem’s material structure in any way.

However, how to actually determine a shaped femtosecond pulse that compels
the optical fields in the nanosystem to localize at a targeted nanosite at the required
femtosecond time interval is a formidable problem to which until now there has been
no general and efficient approach. To compare, our original chirped pulses possessed
only two effective degrees of freedom (carrier frequencyω0 and chirp), which allowed
one to concentrate optical energy at the tip of a V-shape structure versus its opening
[148, 195]. Similarly, the two unmodulated pulses with the regulated delay τ between
them used in the interferometric coherent control [123, 213, 216] also possess only
two degrees of freedom (τ and ω0) and can only select one of any two local-field hot
spots against the other; it is impossible, in particular, to select one desired hot spot
against several others.

There exists another method based on the adaptive genetic algorithms [202]. How-
ever, its application to the spatial-temporal localization in nanosystem is difficult due
to the complexity of the problem. To date, the only example is the spatial concentra-
tion of the excitation on one arm of the three-pronged metal nanostar [215] where
the obtained controlling pulses are very complicated and difficult to interpret though
the nanosystem itself is rather simple. A general problem with this method is that the
adaptive genetic algorithms are actually refined trial-and-error methods; they do not
allow one to obtain the required controlling pulses as a result of the solution of a set
of deterministic equations or an application of any regular deterministic procedure
such as Green’s function integration.

1.4.2 Time-Reversal Solution for Coherent Control

Our solution of this major problem of the coherent control, which is proposed and
theoretically developed in Ref. [218], is based on an idea of time-reversal that has
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originally been proposed and used to control the focusing of acoustic waves and
microwave radiation [219–221]. Some of these studies required use of a reverberat-
ing chamber to cause multiple interactions of the waves with the system needed to
transfer the information to the far field. The electromagnetic subwavelength focus-
ing also required a subwavelength-scale metal structure (a metal wire brush) to be
positioned in the vicinity of the target system as a focusing antenna. In contrast, in
nanoplasmonics there is no need for the reverberating chamber or the metal brush
antenna, because the plasmonic nanosystem plays the roles of both of them. It con-
fines the plasmonic modes for long times relative to their oscillation periods and also
nano-localizes these modes.

1.4.3 Qualitative Description of Time-Reversal Coherent Control

The idea of the time-reversal solution of the nanoscale coherent control can be
described using a schematic of Fig. 1.15. Consider a metal plasmonic nanosystem,
indicated by blue in Fig. 1.15a, which may be embedded in a host dielectric (or

t
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Ez
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t

10 nm

z

x

y
(a)

(b)
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Fig. 1.15 a Geometry of nanosystem, initial seed oscillating dipole and its oscillation waveform.
The nanosystem as a thin nanostructured silver film is depicted in blue. A position of the oscillating
dipole that initially excites the system is indicated by a double red arrow, and its oscillation in
time is shown by a bold red waveform. b Field in the far-field zone that is generated by the system
following the excitation by the local oscillating dipole: vector {Ex (t), Ez(t)} is shown as a function
of the observation time t . The color corresponds to the instantaneous ellipticity as explained in the
text in connection with c Same as in panel (b) but for a time-reversed pulse in the far zone that is
used as an excitation pulse to drive the optical energy nanolocalization at the position of the initial
dipole
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be in vacuum). The nanosystem is excited by an external ultrafast (femtosecond)
nanosource of radiation at its surface. As such we choose an oscillating dipole indi-
cated by a double red arrow. This dipole generates a local optical electric field shown
by a bold red waveform. This field excites SP oscillations of the system in its vicin-
ity. In turn these oscillations excite other, more distant regions, and so forth until the
excitation spreads out over the entire system. The relatively long relaxation time of
these SP modes leads to the long “reverberations” of the plasmonic fields and the
corresponding far-zone optical electric field. The latter is shown in Fig. 1.15b where
one can see that a complicated vector waveform is predicted. This waveform is time
reversed, as shown in panel (c), and send back to the system as an excitation plane
wave from the far-field zone. If the entire field, in the whole space including the
near-field (evanescent) zone, were time reversed and the system would have been
completely time-reversible, which would imply the absence of any dielectric losses,
then the system would have been compelled by this field exactly to back-trace its
own evolution in time. This would have lead to the concentration of the local optical
energy exactly at the position of the initial dipole at a time corresponding to the end
of the excitation pulse.

Indeed, the system is somewhat lossy, which means that it is not exactly time
reversible. Nevertheless, these losses are small, and one may expect that they will
not fundamentally change the behavior of the system. Another problem appear to
be more significant: the evanescent fields contain the main information of the nano-
distribution of the local fields in the system, and they cannot be time reversed from
the far zone because they are exponentially small, practically lost there. However, our
idea is that the nanostructured metal system itself plays the role of the metal brush of
Ref. [221] continuously coupling the evanescent fields to the far zone. Therefore the
fields in the far zone actually contain, in their reverberations, most information about
the evanescent fields that will be regenerated in the process of the time reversal.

We will illustrate this idea by considering a random planar composite (RPC) whose
geometry is shown in gray in the center of Fig. 1.16. In specific computations, as the
plasmonic metal, we consider silver whose dielectric permittivity εm we adopt from
bulk data [32]. This system has been generated by randomly positioning 2 ×2 ×2 nm3

metal cubes on a plane, which for certainty we will consider as the xz coordinate
plane. The random system shown in the center of Fig. 1.16 has filling factor of
f = 0.5.

The interaction of a nanosystem with electromagnetic pulses is described in
Green’s function approach using quasistatic approximation [148, 195, 222]—see
Sect. 1.3.3. It is known that the optical excitation energy in random plasmonic nanos-
tructures localizes in “hot spots” whose size is on the nanoscale and is determined
by the minimum scale of the system inhomogeneities [78, 158, 159, 223]—see
Sect. 1.3.5.

Initially, to find positions of these hot spots in our system, we apply an ultra-
short near-infrared (near-ir) pulse whose spectral width was very large, covering a
frequency band from 1.1 to 1.7 eV. The pulse polarization is along the z axis (the
incidence direction is normal to the plane of the nanostructure, i.e. along the y axis).
The resulting optical electric field E is expressed in terms of the external electric
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Fig. 1.16 Schematic of plasmonic-nanosystem geometry, local fields, and pulses generated in the
far field. Central insert The geometry of a nanosystem is shown by dark gray, and the local fields
in the region surrounding it are shown by colors. The highest local field intensity is depicted by
red and the lowest intensity is indicated by blue (in the rainbow sequence of colors). Panels A–
H: The excitation waveforms in the far fields obtained as described in the text by positioning the
initial excitation dipole at the metal surface at the locations indicated by the corresponding lines.
Coordinate vectors ρ of points A–H in the xz plane are (in nm): ρ A = (11, 22), ρB = (7, 16),
ρC = (7, 14), ρD = (7, 10), ρE = (9, 7), ρF = (18, 7), ρG = (20, 9), and ρH = (24, 11). The
instantaneous degree of linear polarization ε is calculated as the eccentricity of an instantaneous
ellipse found from an fit to a curve formed by vector {Ex (t), Ey(t)} during an instantaneous optical
period. The pure circular polarization corresponds to ε = 0 and is denoted by blue-violet color; the
pure linear polarization is for ε = 1 indicated by red. The corresponding polarization color-coding
bar is shown at the left edge of the figure

field of the excitation optical wave E0 and retarded dyadic Green’s function Gr , as
given by Eqs. (1.43)–(1.44).

The hot spots are always localized at the surface of the metal, predominantly at the
periphery of the system. Their intensities found as the result of these computations are
depicted by colors in the center of Fig. 1.16. The highest local intensity is indicated
by red, and the lowest by blue in the region surrounding the metal. We have selected
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eight of these hot spots for our computations as denoted by letters A to H in the
figure.

To generate the field in the far zone, we take a point dipole and position it at a
surface of the metal at point r0 at such a hot spot, as described in the discussion of
Fig. 1.15. The near-zone field EL(r, t) generated in response to this point dipole is
found from Green’s function relation

EL(r, t) = 4π

εd

∫
dt ′Gr (r, r0; t − t ′) d(r0, t ′). (1.59)

Knowing this local electric field, we calculate the total radiating optical dipole
moment of the nanosystem in the frequency domain as

D(ω) = 1

4π

∫
d3r [εm(ω) − εd ] Θ(r)EL(r, ω). (1.60)

Here and below, the frequency- and time-domain quantities, as indicated by their
arguments ω and t , are Fourier transforms of each other. The field in the far zone
produced by this radiating dipole is given by standard electrodynamic formula—see,
e.g. Sect. 67 in Ref. [224]. The time-reversed field is generated by time-reversed
dipole DT (t) that is complex-conjugated in the frequency domain, DT (ω) = D(ω)∗.

The dependence on time of the initial excitation dipole, d(r0, t) is set as an ultra-
short Gaussian-shaped pulse of 12 fs duration with the carrier frequency �ω0 =
1.2 eV. Following the procedure described above, the fields shown in Figs. 1.15 and
1.16 have been calculated for the radiation propagating in the y direction (normal to
the plane of the nanostructure). These fields simply copy the retarded time evolution
of the emitting dipole.

At the completing stage of our calculations, the time-reversed excitation pulse is
sent back to the system as a plane wave propagating along the y direction (normal to
the nanosystem plane). To calculate the resulting local fields, we again use Green’s
function Eq. (1.43) where the shaped excitation pulse substitutes for field E0.

1.4.4 Numerical Results for Time-Reversal Coherent Control

The electric field of the excitation wave is chosen as a modulated waveform (includ-
ing amplitude, phase, and polarization modulation) that has been computed as
described above in the previous subsection. The optical excitation energy can only be
concentrated at sites where SP eigenmodes localize. For the present system, these are
the hot spots shown by color in the central insert of Fig. 1.16, labeled A–H. The cor-
responding calculated excitation waveforms are displayed in panels as vector plots
shown as functions of time {Ex (t), Ez(t)}.

There are several important features of these waveforms deserving our attention
and discussion. First, these waveforms are rather long in duration: much longer than
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the excitation-dipole 12 fs pulses. This confirms our understanding that the initial
dipole field excites local SP fields that, in a cascade manner, excite a sequence of the
system SPs, which ring down relatively long time (over 200 fs, as shown in the figure).
This long ring-down process is exactly what is required for the nanostructure to
transfer to the far-field zone the information on the near-zone local (evanescent) fields
as is suggested by our idea presented above in the introduction. The obtained fields
are by shape resembling the controlling pulses for the microwave radiation [221].
However, a fundamental difference is that in the microwave case the long ringing-
down is due to the external reverberation chamber, while for the nanoplasmonic
systems it is due to the intrinsic evolution of the highly resonant SP eigenmodes that
possess high Q-factors (setting a reverberation chamber around a nanosystem would
have been, indeed, unrealistic).

Second, one can see that the pulses in Fig. 1.16 have a very nontrivial polarization
properties ranging from the pure linear polarization (indicated by red as explained
in the caption to Fig. 1.16) to the circular polarization indicated by blue, including
all intermediate degrees of circularity. The temporal-polarization structure of pulses
A–H in Fig. 1.16 is very complicated, somewhat reminding that of Ref. [215], which
was obtained by a genetic adaptive algorithm. However, in our case these pulses
are obtained in a straightforward manner, by applying the well-known, deterministic
Green’s function of the system, which is a highly efficient and fast method.

Third, and most important, feature of the waveforms in Fig. 1.16 is that they are
highly site-specific: pulses generated by the initial dipole in different positions are
completely different. This is a very strong indication that they do transfer to the far
far-field zone the information about the complicated spatio-temporal structure of the
local, near-zone fields. This creates a pre-requisite for studying a possibility to use
these pulses for the coherently-controlled nano-targeting.

Now we turn to the crucial test of the nanofocusing induced by the excitation
pulses discussed above in conjunction with Fig. 1.16. Because of the finite time
window (T = 228 fs) used for the time reversal, all these excitation pulses end and
should cause the concentration of the optical energy (at the corresponding sites) at
the same time, t = T = 228 fs (counted from the moment the excitation pulse starts
impinging on the system). After this concentration instant, the nanofocused fields
can, in principle, disappear (dephase) during a very short period on the order of the
initial dipole pulse length, i.e. ∼12 fs. Thus this nanofocusing is a dynamic, transient
phenomenon.

Note that averaging (or, integration) of the local-field intensity I (r, t) = |E(r, t)|2
over time t would lead to the loss of the effects of the phase modulation. This is due
to a mathematical equality

∫∞
−∞ I (r, t)dt = ∫∞

−∞ |E(r, ω)|2dω/(2π), where the
spectral-phase modulation of the field certainly eliminates from the expression in
the right-hand side. Thus the averaged intensity of the local fields is determined only
by the local power spectrum of the excitation |E(r, ω)|2 and, consequently, is not
coherently controllable. Very importantly, such a cancellation does not take place for
nonlinear phenomena. In particular, two-photon processes such as two-photon fluo-
rescence or two-photon electron emission that can be considered as proportional to
the squared intensity I 2(r, t) = |E(r, t)|4 are coherently controllable even after time
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averaging (integration), as we have argued earlier [148, 213]. Note the distributions
measured in nonlinear optical experiments with the detection by the PEEM [123, 215,
216, 225] and in the fluorescence upconversion experiments [226] can be modeled
as such nonlinear processes that yield distributions 〈I n(r)〉 = ∫∞

−∞ I n(r, t)dt/T ,
where n ≥ 2. Inspired by this, we will consider below, in particular, the coherent
control of the two-photon process averaged intensity

〈
I 2(r)

〉
.

Let us investigate how precisely one can achieve the spatio-temporal focusing
of the optical excitation at a given nanosite of a plasmonic nanostructure using the
full shaping (amplitude, phase, and polarization) of the excitation pulses found from
the time-reversal method. The results for the present nanostructure, targeting sites
A–H, are shown in Fig. 1.17. For each excitation pulse, the spatial distribution of the
local field intensity is displayed for the moment of time when this local intensity
acquires its global (highest) maximum. The most important conclusion that one can
draw from comparing panels (a)–(h) is that for each pulse A–H this global maximum
corresponds to the maximum concentration of the optical energy at the corresponding
targeted nanosite A–H. This obtained spatial resolution is as good as 4 nm, which
is determined by the spatial size of inhomogeneities of the underlying plasmonic
metal nanosystem. It is very important that this localization occurs not only at the
desired nanometer-scale location but also very close to the targeted time that in our
case is t = 228 fs. Thus the full shaping of femtosecond pulses by the time reversal
is an efficient method of controlling the spatio-temporal localization of energy at the
fs–nm scale.

Let us turn to the temporal dynamics of intensity of the nanoscale local fields at
the targeted sites A–H, which is shown in Fig. 1.18a–h. As we can see, in each of
the panels there is a sharp spike of the local fields very close to the target time of
t = 228. The duration of this spike in most panels (a–f) is close to that of the initial
dipole, i.e., 12 fs. This shows a trend to the reproduction of the initial excitation state
due to the evolution of the time-reversed SP packet induced by the shaped pulses.
There is also a pedestal that shows that this reproduction is not precise, which is
expected due to the fact that the time reversal is incomplete: only the far-zone field
propagating in one direction (along the y axis) is reversed. Nevertheless, as the
discussion of Fig. 1.17 shows, this initial excitation-state reproduction is sufficient to
guarantee that the targeted (initial excitation) site develops the global maximum (in
time and space) of the local-field intensity. Interesting enough, the trend to reproduce
the initial excitation state is also witnessed by almost symmetric (with respect to
the maximum points t = 228 fs) shapes of all waveforms, which occurs in spite of
the very asymmetric shapes of the excitation waveforms (cf. Fig. 1.16).

Apart from the ultrafast (femtosecond) dynamics of the nanolocalized optical
fields discussed above in conjunction with Figs. 1.17 and 1.18, there is a considerable
interest in its the time-integrated or averaged distributions, in particular, the mean
squared intensity

〈
I 2(r)

〉
. This quantity defines the nanoscale spatial distribution of

the incoherent two-photon processes such as two-photon electron emission or two-
photon luminescence. For example, in some approximation, the spatial distribution
of the two-photon electron emission recorded by PEEM [123, 215, 216, 225] is
determined by

〈
I 2(r)

〉
.
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Fig. 1.17 Spatial distributions of the local optical field intensities at the surface of the metal nanos-
tructure. Panels a–h correspond to the excitation with pulses A–H. Each such a distribution is
displayed for the instance t at which the intensity for a given panel reaches its global maximum in
space and time. This time t is displayed at the top of the corresponding panels. The corresponding
targeted sites are indicated by arrows and labeled by the corresponding letters A–H and the coordi-
nates (x, z). No special normalization has been applied so the distribution within any given panel
is informative but not necessarily the magnitudes of the intensities between the panels
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Fig. 1.18 a–h Temporal dynamics of the local field Intensity I (r, t) = E2(r, t) at the correspond-
ing hot spots A–H. The down-arrows mark the target time t = 228 fs where the local energy
concentration is expected to occur

Now we test the spatial concentration of time-averaged mean-squared intensity〈
I 2(r)

〉
for all sites, which is displayed in Fig. 1.19. As clearly follows from this

figure, in all cases, there are leading peaks at the targeted sites. Thus the two-photon
excitation, even after the time averaging, can be concentrated at desired sites using
the coherent-control by the time-reversed shaped pulses.

We point out that there has recently been an experimental demonstration of a
coherent spatiotemporal control on the nanoscale by polarization and phase pulse
shaping [217]. The optical energy concentration at a given site on a ∼50 nm spatial
scale at a given time on a ∼100 fs temporal scale has been demonstrated. Since this
time scale is comparable to or longer than the SP dephasing time, the time-reversal
method could not have been employed.
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Fig. 1.19 Spatial distributions of the time-averaged mean-squared intensity
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in the near-

field. This represents, in particular, the spatial distribution of the two-photon excited photocurrent
density. Panels a–h correspond to the excitation with pulses A–H. The corresponding targeted sites
are indicated by arrows and labeled by the corresponding letters A–H and coordinates (x, z). No
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Nanofocus
x1 µm

y

Light beams

Fig. 1.20 Schematic of spatiotemporal coherent control on nanoscale. Adapted from Ref. [210].
Independently controlled light beams (shown by blue cones) are focused on launch pads depicted
as silver spheres that are positioned on a thick edge of a wedge. SPP wavelets generated by the
launchpads are shown by black arcs. Normal to them are rays (SPP trajectories) that are displayed by
color lines coded accordingly to their origination points. These wavefronts and trajectories converge
at the nanofocus indicated by the red dot

1.4.5 Coherent Control by Spatiotemporal Pulse Shaping

For coherent control on the nanoscale, as we have described above in Sect. 1.4,
the phase of the excitation waveform along with its polarization provide functional
degrees of freedom to control the nanoscale distribution of energy [123, 148, 195,
209, 213–215, 217, 225, 227]. Spatiotemporal pulse shaping permits one to generate
dynamically predefined waveforms modulated both in frequency and in space to
focus ultrafast pulses in the required microscopic spatial and femtosecond temporal
domains [228, 229]. Here we follow Ref. [210] that has introduced a method of
full coherent control on the nanoscale where a temporally and spatially modulated
waveform is launched in a graded nanostructured system, specifically a wedge—
see schematic of Fig. 1.20. Its propagation from the thick (macroscopic) to the thin
(nanoscopic) edge of the wedge and the concurrent adiabatic concentration provide a
possibility to focus the optical energy in nanoscale spatial and femtosecond temporal
regions.

This method unifies three components that individually have been developed and
experimentally tested. The coupling of the external radiation to the surface plasmon
polaritons (SPPs) propagating along the wedge occurs through an array of nanoob-
jects (nanoparticles or nanoholes) that is situated at the thick edge of the wedge.
The phases of the SPPs emitted (scattered) by individual nanoobjects are determined
by a spatio-temporal modulator. The nanofocusing of the SPPs occurs due to their
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propagation toward the nanofocus and the concurrent adiabatic concentration [12,
230, 231].

The coupling of the external radiation to SPPs and their nanofocusing have been
observed—see, e.g., Refs. [232, 233]. The second component of our approach, the
spatio-temporal coherent control of such nanofocusing has been developed [228,
229]. The third component, the adiabatic concentration of SPPs also has been
observed and extensively studied experimentally [13–16, 18, 19, 22].

The adiabatic concentration (nanofocusing) is based on adiabatic following by a
propagating SPP wave of a graded plasmonic waveguide, where the phase and group
velocities decrease while the propagating SPP wave is adiabatically transformed
into a standing, localized SP mode. A new quality that is present in this approach
is a possibility to arbitrary move the nanofocus along the nanoedge of the wedge.
Moreover, it is possible to superimpose any number of such nanofoci simultaneously
and, consequently, create any distribution of the nanolocalized fields at the thin edge
of the wedge.

To illustrate this idea of the full spatiotemporal coherent control, now let us turn to
a wedge that contains a line of nanosize scatterers (say, nanoparticles or nanoholes)
located at the thick edge and parallel to it, i.e. in the x direction in Fig. 1.20. Consider
first monochromatic light incident on these nanoparticles or nanoholes that scatter
and couple it into SPP wavelets. Every such a scatterer emits SPPs in all directions;
there is, of course, no favored directionality of the scattering.

At this point, we assume that the excitation radiation and, correspondingly, the
scattered wavelets of the SPP are coherent, and their phases vary in space along
the thick edge, i.e., in the x direction. Then the SPP wavelets emitted by different
scatterers will interfere, which in accord with the Huygens-Fresnel principle leads
to formation of a smooth wavefront of the SPP wave at some distance from the scat-
terers in the “far SPP field”, i.e., at distances much greater than the SPP wavelength
2π/kS P P .

Such wavefronts are shown in Fig. 1.20 with concave black curves. The energy of
the SPP is transferred along the rays, which are the lines normal to the wavefronts,
shown by the colored lines. By the appropriate spatial phase modulation of the
excitation radiation along the line of scatterers (in the x direction) over distances of
many SPP wavelengths, these wavefronts can be formed in such a way that the rays
intersect at a given point, forming a nanofocus at the thin (sharp) edge of the wedge,
as shown schematically in Fig. 1.20. Diffraction of the SPP waves will lead to a finite
size of this focal spot.

By changing the spatial phase profile of the excitation radiation, this focal spot can
be arbitrarily moved along the thin edge. This focusing and adiabatic concentration,
as the SPPs slow down approaching the sharp edge, will lead to the enhancement
of the intensity of the optical fields in the focal region. This dynamically-controlled
concentration of energy is a plasmonic counterpart of a large phased antenna array
(also known as an aperture synthesis antenna), widely used in radar technology
(synthetic aperture radar or SAR) and radio astronomy [234].

Now we can consider excitation by spatiotemporally shaped ultrashort pulses
independently in space. Such pulses are produced by spatio-temporal modulators



48 M. I. Stockman

[228, 229]. The field produced by them is a coherent superposition of waves with
different frequencies whose amplitudes and phases can arbitrarily vary in space and
with frequency. This modulation can be chosen so that all the frequency components
converge at the same focal spot at the same time forming an ultrashort pulse of the
nanolocalized optical fields.

As an example we consider a silver [32] nanowedge illustrated in Fig. 1.20 whose
maximum thickness is dm = 30 nm, the minimum thickness is d f = 4 nm, and whose
length (in the y direction) is L = 5µm. Trajectories calculated by the Wentzel-
Kramers-Brillouin (WKB) method in Ref. [210] for �ω = 2.5 eV are shown by
lines (color used only to guide eye); the nanofocus is indicated by a bold red dot.
In contrast to focusing by a conventional lens, the SPP rays are progressively bent
toward the wedge slope direction.

Now consider the problem of coherent control. The goal is to excite a spatiotem-
poral waveform at the thick edge of the wedge in such a way that the propagating
SPP rays converge at an arbitrary nanofocus at the sharp edge where an ultrashort
pulse is formed. To solve this problem, we use the idea of back-propagation or time-
reversal [220, 221, 235]. We generate rays at the nanofocus as an ultrashort pulse
containing just several oscillations of the optical field. Propagating these rays, we
find amplitudes and phases of the fields at the thick edge at each frequency as given
by the complex propagation phase (eikonal) Φ(ρ), where ρ is a 2-d coordinate vector
in the plane of the wedge. Then we complex conjugate the amplitudes of frequency
components, which corresponds to the time reversal. We also multiply these ampli-
tudes by exp(2Im Φ), which pre-compensates for the Ohmic losses. This provides
the required phase and amplitude modulation at the thick edge of the wedge.

We show an example of such calculations in Fig. 1.21. Panel (a) displays the
trajectories of SPPs calculated [210] by the WKB method. The trajectories for dif-
ferent frequencies are displayed by colors corresponding to their visual perception.
There is a very significant spectral dispersion: trajectories with higher frequencies
are much more curved. The spatial-frequency modulation that we have found suc-
ceeds in bringing all these rays (with different frequencies and emitted at different x
points) to the same nanofocus at the sharp edge.

The required waveforms at different x points of the thick edge of the wedge are
shown in Fig. 1.21b–d where the corresponding longitudinal electric fields are shown.
The waves emitted at large x , i.e., at points more distant from the nanofocus, should
be emitted significantly earlier to pre-compensate for the longer propagation times.
They should also have different amplitudes due to the differences in the adiabatic
compression along the different rays. Finally, there is clearly a negative chirp (gradual
decrease of frequency with time). This is due to the fact that the higher frequency
components propagate more slowly and therefore must be emitted earlier to form a
coherent ultrashort pulse at the nanofocus.

In Fig. 1.21e we display together all three of the representative waveforms at
the thick edge to demonstrate their relative amplitudes and positions in time. The
pulse at the extreme point in x (shown by blue) has the longest way to propagate and
therefore is the most advanced in time. The pulse in the middle point (shown by green)
is intermediate, and the pulse at the center (x = 0, shown by red) is last. One can
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Fig. 1.21 a Trajectories (rays) of SPP packets propagating from the thick edge to the nanofocus
displayed in the xy plane of the wedge. The frequencies of the individual rays in a packet are indicated
by color as coded by the bar at the top. b–d Spatiotemporal modulation of the excitation pulses at
the thick edge of the wedge required for nanofocusing. The temporal dependencies (waveforms) of
the electric field for the phase-modulated pulses for three points at the thick edge boundary: two
extreme points and one at the center, as indicated, aligned with the corresponding x points at panel
a. e The three excitation pulses of panels b–d (as shown by their colors), superimposed to elucidate
the phase shifts, delays, and shape changes between these pulses. The resulting ultrashort pulse at
the nanofocus is shown by the black line. The scale of the electric fields is arbitrary but consistent
throughout the figure

notice also a counterintuitive feature: the waves propagating over longer trajectories
are smaller in amplitude though one may expect the opposite to compensate for
the larger losses. The explanation is that the losses are actually insignificant for
the frequencies present in these waveforms, and the magnitudes are determined by
adiabatic concentration factor.

Figure 1.21e also shows the resulting ultrashort pulse in the nanofocus. This is
a transform-limited, Gaussian pulse. The propagation along the rays completely
compensates the initial phase and amplitude modulation, exactly as intended. As a
result, the corresponding electric field of the waveform is increased by a factor of
100. Taking the other component of the electric field and the magnetic field into
account, the corresponding increase of the energy density is by a factor ∼104 with
respect to that of the SPPs at the thick edge.

To briefly conclude, an approach [210] to full coherent control of spatiotemporal
energy localization on the nanoscale has been presented. From the thick edge of a
plasmonic metal nanowedge, SPPs are launched, whose phases and amplitudes are
independently modulated for each constituent frequency of the spectrum and at each
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spatial point of the excitation. This pre-modulates the departing SPP wave packets
in such a way that they reach the required point at the sharp edge of the nanowedge
in phase, with equal amplitudes forming a nanofocus where an ultrashort pulse with
required temporal shape is generated. This system constitutes a “nanoplasmonic por-
tal” connecting the incident light field, whose features are shaped on the microscale,
with the required point or features at the nanoscale.

1.4.6 Experimental Demonstrations of Coherent Control
on the Nanoscale

The ideas of the coherent control of the nanoscale distribution of ultrafast optical
fields both space and in time, which have been introduced theoretically in Refs. [148,
195, 210, 214, 218, 236, 237], have been investigated and confirmed experimentally.
Using the full phase and amplitude modulation of the excitation-pulse wavefront in
both polarizations (the so-called polarization pulse shaping), the experiments have
achieved both spatial control [123, 215] and spatiotemporal control [217] on nm–fs
scale.

Recently spatiotemporal nanofocusing via the adiabatic concentration along the
lines of ideas presented above in Sect. 1.4.5 has been successfully demonstrated
experimentally [21]. In this work, a shaped femtosecond pulse has been coupled by
a grating to a TM0 SPP mode on the surface of an adiabatically-tapered nanocone.
The spatiotemporal concentration of optical energy in space to a ∼10 nm region and
in time to a 15 fs duration (Fourier-transform limited, i.e., the shortest possible at a
given bandwidth). Indeed the position of the nanofocus in Ref. [21] is always the tip
of the nanocone; so the possibility of moving the nanofocus in space is not available.

The ideas of employing the spatial modulation of the excitation wavefront [210]
described above in Sect. 1.4.5 have been experimentally tested and confirmed for
continuous wave (CW) excitation [211, 212]. We will present some of these experi-
mental results below in this section.

We start with experiments on polarization-shaping coherent control that we adapt
from Ref. [215]. The corresponding experimental approach is schematically illus-
trated in Fig. 1.22. Polarization-shaped ultrashort laser pulses illuminate a planar
nanostructure, with two-photon photoemission electron microscopy (PEEM) [238]
providing the feedback signal from the nanoscale field distribution that is essential
for adaptive near-field control.

The spatial resolution of two-photon PEEM (∼50 nm) is determined by its electron
optics and is, thus, independent of the electromagnetic light-field diffraction limit.
The sensitivity of the two-photon PEEM patterns to the optical field intensities arises
from the nonlinear two-photon photoemission process whose intensity is proportional
to the time-integrated fourth power of the local electric-field amplitude. With these
elements in place, a user-specified nanoscopic optical field distribution is realized by
processing recorded photoemission patterns in an evolutionary algorithm that directs
the iterative optimization of the irradiating laser pulse shape.
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Fig. 1.22 Schematic and experimental results of coherent control with polarization shaping.
Adapted from Ref. [215]. a Schematic of the experiment. A polarization shaper for ultrashort
laser pulses controls the temporal evolution of the vectorial electric field E(t) on a femtosecond
timescale. These pulses illuminate a planar nanostructure in an ultrahigh-vacuum chamber that is
equipped with a photoemission electron microscope (PEEM). The nanostructure consists of six
circular Ag islands on an indium-tin oxide (ITO) film and a quartz substrate. A computer-controlled
charge-coupled device (CCD) camera records the photoemission image and provides a feedback
signal for an evolutionary learning algorithm. Iterative optimization of the pulse-shaper settings
leads to an increase in the fitness value and correspondingly allows control over the nanooptical
fields. b, c The optimal laser pulses, as experimentally characterized, display complex temporal
electric-field evolution for the objectives of b minimizing and d maximizing the concentration of
the excitation on the lower branch. E1 and E2 indicate the two field components that are phase-
modulated in the polarization pulse shaper in the first and second LCD layer, respectively. They
are at 45◦ angles with respect to the p-polarization. The overall time window shown is 2 ps. c The
experimental PEEM image after adaptive maximization of the upper region intensity using com-
plex polarization-shaped laser pulses (fittest individual of the final generation) shows predominant
emission from the upper region. e Photoemission after minimization of the intensity in the upper
region is concentrated in the lower region

The basic idea of the experiment is that the measured PEEM pattern identifies the
origin of ejected photoelectrons and hence the regions of high local field intensity.
A controlled variation of the PEEM pattern then proves the spatial control over the
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nanoscopic field distribution. We have already discussed such an approach above—
see Fig. 1.10 [123] and the corresponding discussion in Sect. 1.3.6.

The nanostructure used consists of circular Ag disks with 180 nm diameter and
30 nm height, fabricated by electron-beam lithography on a conductive, 40-nm-thick
indium-tin oxide (ITO) film grown on a quartz substrate. The disks are arranged into
three dimers that form the arms of a star-like shape (Fig. 1.22a, lower right). The
whole nanostructure is about 800 nm across, while the gap between two of the dimer
disks is ∼10 nm wide. After inspection by scanning-electron microscopy (SEM),
the sample is mounted in the ultrahigh-vacuum PEEM set-up. The deposition of
a small amount of caesium (∼0.1 monolayers) reduces the work function of the
Ag nanostructure to about 3.1 eV, that is, just below the threshold for two-photon
photoemission with 790 nm photons.

The PEEM pattern obtained after maximization of the photoemission from the
upper two arms of the Ag nanostructure in shown in Fig. 1.22c. It shows strong
emission from these two upper arms and almost no emission from the bottom arm.
Analogously, the photoemission after minimization of the upper part PEEM bright-
ness (Fig. 1.22e) occurs mainly in the lower area while the contribution from the
upper two arms is extremely weak. The adaptively determined solution to each opti-
mization problem has been proven to be robust with respect to slight imperfections
in the experimental nanostructures. These successful optimizations demonstrate that
polarization pulse shaping allows adaptive control of the spatial distribution of pho-
toelectrons on a subwavelength scale, and thus of the nanoscopic optical fields that
induce photoemission.

The optimally polarization-shaped laser pulses after adaptive maximization and
minimization described above are shown in Figs. 1.22b, d, respectively, as deter-
mined by dual-channel spectral interferometry [239, 240]. In this representation, the
shape of the quasi-three-dimensional figure indicates the temporal evolution of the
polarization state of the electric field, with the color representing the instantaneous
oscillation frequency. Contributions from both transverse polarization components
are visible in each of the two cases. Whereas the upper-region photoemission maxi-
mization is achieved with a comparatively simple time evolution, the corresponding
minimization requires a more complex field with varying degrees of ellipticity, ori-
entation and temporal amplitudes.

Our idea [210] of the coherent control on the nanoscale by spatial modulation
(shaping) of the excitation waveform has been developed theoretically [237] and
experimentally [211, 212]. The coherent control of nanoscale distribution of local
optical fields based on CW excitation aimed at achieving a deterministic control of
plasmonic fields by using the spatial shaping of high order beams such as Hermite-
Gaussian (HG) and Laguerre-Gaussian (LG) beams has been carried out in Ref. [211].
It has been shown experimentally that the spatial phase shaping of the excitation
field provides an additional degree of freedom to drive optical nanoantennas and
consequently control their near field response.

An example of such a deterministic coherent control is illustrated in Fig. 1.23. It
shows a double gap antenna formed by three 500 nm aligned gold bars forming two
identical 50 nm air gaps separated by 500 nm. For reference, in panel (a) it displays
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Fig. 1.23 Experimental results on spatial coherent control of nanoantennas. Adapted from
Ref. [211]. Experimental two-photon luminescence (TPL) maps recorded for a a Gaussian beam
and b, c a Hermite-Gaussian (HG10) beam whom phase shift (indicated by the vertical dashed line)
coincides with (b) the right gap and (c) the left gap

a measured two-photon luminescence (TPL) map when driving the whole antenna
with a Gaussian beam linearly polarized along the x-axis. Note that similar to what
has been discussed above in Sect. 1.4.4, in particular, in conjunction with Fig. 1.19,
the TPL reflects the time-averaged distribution of the local field intensity

〈
I 2(r)

〉
.

As we see from Fig. 1.23a and as expected, a field concentration is observed in both
gaps. Figure 1.23b, c shows TPL maps recorded when the π -phase shift of a HG10
beam coincides, respectively, with the right and left gaps. These data demonstrate
how a suitable positioning of the phase jump over the double antenna enables us to
selectively switch on and off one of the two hot-spot sites.

Even closer to the original idea [210] that a plasmonic wavefront can be shaped
and focused at a predetermined spot by a spatial phase modulation of the excita-
tion waveform incident on optically-addressable launch pads is a recent publication
[212]. This article achieves controlled launching and propagation of SPPs by spa-
tially designing the amplitude and phase of the incident light. The chosen amplitude
profile, consisting of four bright (“on”) SPP launching platforms and one central
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dark (“off”) arena, fully separates plasmonic effects from photonic effects and in
addition is the necessary starting point for later focusing and scanning experiments.
Any intensity detected inside the arena is purely plasmonic.

Adapting from Ref. [212], we present the achieved SPP focusing in Fig. 1.24.
A phase optimization loop is used to focus SPPs at a pre-chosen target. This loop
yields the optimal phase for each launching pad (“superpixel”) as well as the relative
intensity to focus. The amplitude profile is the same in all cases including the bare
gold case, with four launching areas and a central dark arena where only SPPs can
propagate. The incident polarization is diagonal in relation to the grating lines so as
to have all available angles (2π range) contributing to the focus, thereby maximizing
the numerical aperture and resolution.

Successful focusing at the center of the SPP arena is shown in Fig. 1.24a. The
structured SPP wavefront produces an intensity in the designated target that is at least
20 times higher than the average SPP background of an unstructured wavefront. The
measured size of the plasmonic focus is 420 nm, consistent with the diffraction limit
of the SPPs. The flexibility of the method (scanning the focus) is demonstrated in
Figs. 1.24b, c, which shows the SPP focus relocated without mechanical motion to
controlled positions in the plasmonic arena.

Fig. 1.24 Experiment on coherent control (dynamic focusing) of SPPs. Adapted from Ref. [212].
a Relative phases of the superpixels are optimized to focus SPPs at the center of the SPP arena. The
intensity in the target spot is purely plasmonic and 20 times higher than the average background of
an unstructured plasmonic wavefront. The focus size is diffraction limited by the detecting optics.
b, c, Demonstration of SPP focusing on freely chosen targets in the SPP arena. d Background
reference of an unstructured SPP wavefront (uniform phase profile)
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The work of Ref. [212] has fully implemented the idea of Ref. [210] on the spatial-
phase-modulation control of the SPP wavefronts to position a SPP nanofocus at a
desired location at the surface. However, it employs only CW excitation and does
not exploit a potential femtosecond temporal degree of freedom to achieve such a
nanofocusing at a predetermined moment of time as in Ref. [210].

1.5 Quantum Nanoplasmonics: Spaser and Nanoplasmonics
with Gain

1.5.1 Introduction to Spasers and Spasing

Not just a promise anymore [241], nanoplasmonics has delivered a number of impor-
tant applications: ultrasensing [242], scanning near-field optical microscopy [190,
243], SP-enhanced photodetectors [53], thermally assisted magnetic recording [244],
generation of extreme uv [138], biomedical tests [242, 245], SP-assisted thermal can-
cer treatment [246], plasmonic enhanced generation of extreme ultraviolet (EUV)
pulses [138] and extreme ultraviolet to soft x-ray (XUV) pulses [247], and many
others—see also Ref. [23].

To continue its vigorous development, nanoplasmonics needs an active device—
near-field generator and amplifier of nanolocalized optical fields, which has until
recently been absent. A nanoscale amplifier in microelectronics is the metal-oxide-
semiconductor field effect transistor (MOSFET) [248, 249], which has enabled
all contemporary digital electronics, including computers and communications and
enabled the present day technology as we know it. However, the MOSFET is lim-
ited by frequency and bandwidth to �100 GHz, which is already a limiting factor
in further technological development. Another limitation of the MOSFET is its high
sensitivity to temperature, electric fields, and ionizing radiation, which limits its use
in extreme environmental conditions and nuclear technology and warfare.

An active element of nanoplasmonics is the spaser (Surface Plasmon Amplifi-
cation by Stimulated Emission of Radiation), which was proposed [31, 250] as a
nanoscale quantum generator of nanolocalized coherent and intense optical fields.
The idea of spaser has been further developed theoretically [139–141, 251]. Spaser
effect has recently been observed experimentally [252]. Also a number of SPP spasers
(also called nanolasers) have been experimentally observed [253–256].

Spaser is a nanoplasmonic counterpart of laser: it is a quantum generator and
nanoamplifier where photons as the generated quanta are replaced by SPs. Spaser
consists of a metal nanoparticle, which plays a role of the laser cavity (resonator),
and the gain medium. Figure 1.25 schematically illustrates geometry of a spaser
introduced in the original article [31], which contains a V-shaped metal nanoparticle
surrounded by a layer of semiconductor nanocrystal quantum dots.



56 M. I. Stockman

S
ub

st
ra

te Q
ua

nt
um

 d
ot

s

M
et

al
 n

an
op

ar
tic

le
Fig. 1.25 Schematic of the spaser as originally proposed in Ref. [31]. The resonator of the spaser
is a metal nanoparticle shown as a gold V-shape. It is covered by the gain medium depicted as
nanocrystal quantum dots. This active medium is supported by a substrate

1.5.2 Spaser Fundamentals

As we have already mentioned, the spaser is a nanoplasmonic counterpart of the laser
[31, 251]. The laser has two principal elements: resonator (or cavity) that supports
photonic mode(s) and the gain (or active) medium that is population-inverted and
supplies energy to the lasing mode(s). An inherent limitation of the laser is that the
size of the laser cavity in the propagation direction is at least half wavelength and
practically more than that even for the smallest lasers developed [253, 254, 257]. In
the spaser [31] this limitation is overcome. The spasing modes are surface plasmons
(SPs) whose localization length is on the nanoscale [78] and is only limited by the
minimum inhomogeneity scale of the plasmonic metal and the nonlocality radius
[35] lnl ∼ 1 nm. So, the spaser is truly nanoscopic—its minimum total size can be
just a few nanometers.

The resonator of a spaser can be any plasmonic metal nanoparticle whose total
size R is much less than the wavelength λ and whose metal thickness is between lnl

and ls , which supports a SP mode with required frequency ωn . This metal nanopar-
ticle should be surrounded by the gain medium that overlaps with the spasing SP
eigenmode spatially and whose emission line overlaps with this eigenmode spec-
trally [31]. As an example, we consider a model of a nanoshell spaser [139, 251,
258], which is illustrated in Fig. 1.26. Panel (a) shows a silver nanoshell carrying
a single SP (plasmon population number Nn = 1) in the dipole eigenmode. It is
characterized by a uniform field inside the core and hot spots at the poles outside
the shell with the maximum field reaching ∼106 V/cm. Similarly, Fig. 1.26b shows
the quadrupole mode in the same nanoshell. In this case, the mode electric field is
non-uniform, exhibiting hot spots of ∼1.5 × 106 V/cm of the modal electric field
at the poles. These high values of the modal fields is the underlying physical reason
for a very strong feedback in the spaser. Under our conditions, the electromagnetic
retardation within the spaser volume can be safely neglected. Also, the radiation of
such a spaser is a weak effect: the decay rate of plasmonic eigenmodes is dominated
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Fig. 1.26 Schematic of spaser geometry, local fields, and fundamental processes leading to spasing.
Adapted from Ref. [139]. a Nanoshell geometry and the local optical field distribution for one SP
in an axially-symmetric dipole mode. The nanoshell has aspect ratio η = 0.95. The local field
magnitude is color-coded by the scale bar in the right-hand side of the panel. b The same as (a) but
for a quadrupole mode. c Schematic of a nanoshell spaser where the gain medium is outside of the
shell, on the background of the dipole-mode field. d The same as (c) but for the gain medium inside
the shell. e Schematic of the spasing process. The gain medium is excited and population-inverted
by an external source, as depicted by the black arrow, which produces electron-hole pairs in it.
These pairs relax, as shown by the green arrow, to form the excitons. The excitons undergo decay
to the ground state emitting SPs into the nanoshell. The plasmonic oscillations of the nanoshell
stimulates this emission, supplying the feedback for the spaser action

by the internal loss in the metal. Therefore, it is sufficient to consider only quasistatic
eigenmodes [29, 78] and not their full electrodynamic counterparts [259].

For the sake of numerical illustrations of our theory, we will use the dipole eigen-
mode (Fig. 1.26a). There are two basic ways to place the gain medium: (i) outside
the nanoshell, as shown in panel (c), and (ii) in the core, as in panel (d), which
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was originally proposed in Ref. [258]. As we have verified, these two designs lead to
comparable characteristics of the spaser. However, the placement of the gain medium
inside the core illustrated in Fig. 1.26d has a significant advantage because the hot
spots of the local field are not covered by the gain medium and are sterically available
for applications.

Note that any l-multipole mode of a spherical particle is, indeed, 2l + 1-times
degenerate. This may make the spasing mode to be polarization unstable, like in
lasers without polarizing elements. In reality, the polarization may be clamped and
become stable due to deviations from the perfect spherical symmetry, which exist
naturally or can be introduced deliberately. More practical shape for a spaser may
be a nanorod, which has a mode with the stable polarization along the major axis.
However, a nanorod is a more complicated geometry for theoretical treatment, and
we will consider it elsewhere.

The level diagram of the spaser gain medium and the plasmonic metal nanoparticle
is displayed in Fig. 1.26e along with a schematic of the relevant energy transitions
in the system. The gain medium chromophores may be semiconductor nanocrystal
quantum dots [31, 260], dye molecules [261, 262], rare-earth ions [258], or electron-
hole excitations of an unstructured semiconductor [253, 257]. For certainty, we will
use a semiconductor-science language of electrons and holes in quantum dots.

The pump excites electron-hole pairs in the chromophores (Fig. 1.26e), as indi-
cated by the vertical black arrow, which relax to form excitons. The excitons consti-
tute the two-level systems that are the donors of energy for the SP emission into the
spasing mode. In vacuum, the excitons would recombine emitting photons. However,
in the spaser geometry, the photoemission is strongly quenched due to the resonance
energy transfer to the SP modes, as indicated by the red arrows in the panel. The prob-
ability of the radiativeless energy transfer to the SPs relative to that of the radiative
decay (photon emission) is given by the so-called Purcell factor

∼λ3 Q

R3 � 1, (1.61)

where R is a characteristic size of the spaser metal core. Thus this radiativeless energy
transfer to the spaser mode is the dominant process whose probability is by orders
of magnitude greater than that of the free-space (far-field) emission.

The plasmons already in the spaser mode create the high local fields that excite
the gain medium and stimulate more emission to this mode, which is the feedback
mechanism. If this feedback is strong enough, and the life time of the spaser SP
mode is long enough, then an instability develops leading to the avalanche of the
SP emission in the spasing mode and spontaneous symmetry breaking, establishing
the phase coherence of the spasing state. Thus the establishment of spasing is a
non-equilibrium phase transition, as in the physics of lasers.
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1.5.3 Brief Overview of Latest Progress in Spasers

After the original theoretical proposal and prediction of the spaser [31], there has
been an active development in this field, both theoretical and experimental. There
has also been a US patent issued on spaser [250].

Among theoretical developments, a nanolens spaser has been proposed [263],
which possesses a nanofocus (“the hottest spot”) of the local fields. In Refs. [31,
263], the necessary condition of spasing has been established on the basis of the
perturbation theory.

There have been theories published describing the SPP spasers (or, “nanolasers” as
sometimes they are called) phenomenologically, on the basis of classic linear electro-
dynamics by considering the gain medium as a dielectric with a negative imaginary
part of the permittivity, e.g., [258]. Very close fundamentally and technically are
works on the loss compensation in metamaterials [264–267]. Such linear-response
approaches do not take into account the nature of the spasing as a non-equilibrium
phase transition, at the foundation of which is spontaneous symmetry breaking:
establishing coherence with an arbitrary but sustained phase of the SP quanta in the
system [139]. Spaser is necessarily a deeply-nonlinear (nonperturbative) phenom-
enon where the coherent SP field always saturates the gain medium, which eventually
brings about establishment of the stationary (or, continuous wave, CW) regime of
the spasing [139]. This leads to principal differences of the linear-response results
from the microscopic quantum-mechanical theory in the region of spasing, as we
discuss below in conjunction with Fig. 1.29.

There has also been a theoretical publication on a bowtie spaser (nanolaser) with
electrical pumping [268]. It is based on balance equations and only the CW spasing
generation intensity is described. Yet another theoretical development has been a
proposal of the lasing spaser [269], which is made of a plane array of spasers.

There have also been a theoretical proposal of a spaser (“nanolaser”) consisting
of a metal nanoparticle coupled to a single chromophore [270]. In this paper, a
dipole–dipole interaction is illegitimately used at very small distances r where it has
a singularity (diverging for r → 0), leading to a dramatically overestimated coupling
with the SP mode. As a result, a completely unphysical prediction of CW spasing due
to single chromophore has been obtained [270]. In contrast, our theory [139] is based
on the full (exact) field of the spasing SP mode without the dipole (or, any multipole)
approximation. As our results of Sect. 1.5.5 below show, hundreds of chromophores
per metal nanoparticle are realistically requited for the spasing even under the most
favorable conditions.

There has been a vigorous experimental investigation of the spaser and the con-
cepts of spaser. Stimulated emission of SPPs has been observed in a proof-of-
principle experiment using pumped dye molecules as an active (gain) medium [261].
There have also been later experiments that demonstrated strong stimulated emission
compensating a significant part of the SPP loss [262, 271–274]. As a step toward
the lasing spaser, the first experimental demonstration has been reported of a partial
compensation of the Joule losses in a metallic photonic metamaterial using optically
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pumped PbS semiconductor quantum dots [260]. There have also been experimental
investigations reporting the stimulated emission effects of SPs in plasmonic metal
nanoparticles surrounded by gain media with dye molecules [275, 276].

The full loss compensation and amplification of the long-range SPPs at λ =
882 nm in a gold nanostrip waveguide with a dyes solution as a gain medium has
been observed [277]. Another example of full loss compensation has recently been
obtained for thin (∼20 nm thickness) gold stripes (width ∼1µm) surrounded by a
gain medium containing donor–acceptor with a Fögrster energy transfer to increase
the Stokes shift and decrease absorption at the probe frequency.

At the present time, there have been a number of the successful experimental
observations of the spaser and SPP spasers (the so-called nanolasers). An electrically-
pumped nanolaser with semiconductor gain medium have been demonstrated [253]
where the lasing modes are SPPs with a one-dimensional confinement to a ∼50 nm
size. Other electrically-pumped nanolasers (SPP spasers) have recently been fab-
ricated and their lasing observed based on a diode with an intrinsic InGaAs gain
media and silver nanocavities as plasmonic cores [278–280]. The latest of these
nanolasers [280] operates at a room temperature and has a relatively small cavity
volume Vc ≈ 0.67λ3, where vacuum wavelength λ = 1591 nm. This volume is
still much larger than the modal volumes of the spasers with tighter confinement,
especially SP-mode spasers—see below.

A nanolaser with an optically-pumped semiconductor gain medium and a hybrid
semiconductor/metal (CdS/Ag) SPP waveguide has been demonstrated with an
extremely tight transverse (two-dimensional) mode confinement to ∼10 nm size
[254]. This has been followed by the development of CdS/Ag nanolasers gener-
ating a visible single mode at a room temperature with a tight one-dimensional
confinement (∼20 nm) and a two-dimensional confinement in the plane of the struc-
ture to an area ∼1µm2 [255]. A highly efficient SPP spaser in the communication
range (λ = 1.46µm) with an optical pumping based on a gold film and an InGaAs
semiconductor quantum-well gain medium has recently been reported [256].

Another class of spasers observed are random spasers comprised of a rough metal
nanofilm as a plasmonic component and a dye-doped polymeric film as a gain medium
[281]. The spasing in such systems competes with loss compensation for SPPs prop-
agating at the interface—see also Sect. 1.5.7.

Historically, the first spaser observed was a nanoparticle spaser [252]. This spaser
is a chemically synthesized gold nanosphere of radius 7 nm surrounded by a dielec-
tric shell of a 21 nm outer radius containing immobilized dye molecules. Under
nanosecond optical pumping in the absorption band of the dye, this spaser develops
a relatively narrow-spectrum and intense visible emission that exhibits a pronounced
threshold in pumping intensity. The observed characteristics of this spaser are in
an excellent qualitative agreement and can be fully understood on the basis of the
corresponding theoretical results described below in Sect. 1.5.5.
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1.5.3.1 Nanospaser with Semiconductor Gain Media

It is of both fundamental and applied importance to develop nanoscale-size spasers
(nanospasers) with semiconductor gain media. The photochemical and electrochem-
ical stability of the semiconductor gain media is the main attraction of such a
design. Belonging to this class, spasers have recently been fabricated and their oper-
ation observed, comprised of a InGaN-core/InN-shell semiconductor-nanorod gain
medium and silver film as a plasmonic component [282, 283]. They generate on
ocalized SP modes. One of these [283] is a nanospaser with a deeply sub-wavelength
mode size based on an epitaxial silver nanofilm [283]. Such a design bears a promise
of practical applications due to its stability and small modal volume leading to high
operational speed—see below Sect. 1.5.6.

In Fig. 1.27, we display geometry of this InGaN-core/InN-shell nanorod spaser
and properties of its spasing mode. The active region of the spaser (Fig. 1.27a, left
panel) is a core-shell nanocylinder with a 30-nm diameter core of InGaN surrounded
by think shell if GaN. The latter is a wide band-gap semiconductor that plays a
role of insulator. The active nanorod is separated by the metal by a 5-nm layer of
silica. The plasmonic component of this spaser is a flat layer of epitaxial silver.
The high monocrystalline quality of the silver film is instrumental in reducing the
threshold of the spaser and increasing its output. The calculated intensity for the
spasing eigenmode is shown in the right panel of Fig. 1.27a. Similar to the gap
modes introduced in Ref. [284], this eigenmode is concentrated in the thin layer of
a low-permittivity dielectric (silica) between the two high-permittivity media: GaN
and silver. The modal fields do penetrate sufficiently into the gain medium providing
the feedback necessary for the spaser functioning.

Under 8.3 kW/cm2 optical pumping with frequency above the band gap of InGaN,
a series of the emission spectra of a single spaser is displayed in Fig. 1.27b, At a
room temperature, T = 300 K, the emission is a spontaneous fluorescence in a wide
yellow–green spectral band near the band gap of InGaN. The first evidence of the
spasing appears at T = 120 K as a small notch at the green side of the spectrum.
As the temperature decreases to T = 8 K, the narrow line at λ ≈ 500 nm becomes
dominant and narrow. This change of the spectrum over the threshold is in a qualitative
agreement with theory—see below Sect. 1.5.5 and, in particular, Figs. 1.29d–f.

The light–line (L–L) line is the dependence of the light intensity out (the intensity
of the radiation emitted by the spaser within the linewidth spectral range) versus the
intensity of the pumping radiation. The theoretical prediction for the spaser is that
after reaching the spasing threshold, the L–L line becomes linear with universally
unit slope—see Fig. 1.29a and its discussion in Sect. 1.5.5.

The experimentally obtained L–L line of the nanorod spaser shown in Fig. 1.27c
is in an excellent agreement with this prediction. Note that this figure is presented
in the double-logarithmic scale. There are two curves in this figure taken at different
temperatures, which are similar though at a lower temperature the intensity out is
higher and the threshold is lower. The parts of the curves at lower pumping intensities
are also unit-slope straight lines corresponding to spontaneous fluorescence. With the
increased intensity, the curves enter a transitional regime of amplified spontaneous
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Fig. 1.27 InGaN nanospaser and its properties. a Schematics of geometry of InGaN/GaN core-
shell nanospaser (left) and theoretical intensity of its spasing eigenmode. b Series of emission
spectra: Temperature-dependent spasing behavior from 8 to 300 K. The spasing threshold at 140 K
is clearly visible. c The L–L (light–light) plots at the main lasing peak (510 nm) are shown with
the corresponding linewidth-narrowing behavior when the spaser is measured at 8 K (red) and 78 K
(blue), with lasing thresholds of 2.1 and 3.7 kW/cm2, respectively. d Second-order photon corre-
lation function g(2)(τ ) measured at 8 K. The upper curve is recorded below the spasing threshold,
and the lower above the threshold. Adapted from Ref. [283]

emission where the slopes are greater than one. The regime of developed spasing
takes place at high intensities where the L–L curves become unit-slope straight lines
without a saturation. As have already been mentioned above, this is a universal
behavior.
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This universal unsaturable behavior can be very simply understood qualitatively—
cf. Ref. [285]. The excitation rate Ṅe of the upper spasing level is linearly proportional
to pumping intensity Ip, Ṅe = σe Ip, where σe is the total excitation cross section into
the conduction band of the semiconductor gain medium. In the developed spasing
regime, plasmon population Nn of the spasing eigenmode becomes large, asymptoti-
cally Nn → ∞. Correspondingly, the stimulated decay rate, which is ∝ Nn , becomes
large and dominates over any spontaneous decay rate. Thus, all the excitation events
to the conduction band end up with the emission of a SP into the spasing mode
whose SP population becomes Nn = Ṅe/γn , where γn is the SP decay rate—see
above Eq. (1.48). Finally, radiation rate Ṅr for a spaser becomes

Ṅr = σeγ
(r)

/
γn, (1.62)

where γ (r) is the SP radiative decay rate, which for a plasmonic metal sphere is given
by Eq. (1.16) and in, general case, by Eq. (1.56). Of course. in reality the straight-line,
unsaturable L–L curves will end when the pumping intensities become so high that
the nonlinearity in the spaser metal develops (including, but not limited to, thermal
nonlinearity), or optical breakdown occurs, or heat production will physically damage
the spaser.

As theory shows (see below Sect. 1.5.6.1 and Fig. 1.30a), under steady pumping,
the generating spaser reaches its stationary regime within ∼100 fs. Correspondingly,
we expect that any fluctuation in the emission radiated by the generating spaser
relaxes back to the mean level within the same time. A measure of the fluctuations
of the spaser-radiation intensity I (t) with time t is the second-order autocorrelation
function

g(2)(τ ) = 〈I (t + τ)I (t)〉
〈I (t)〉2 , (1.63)

where τ is the delay time, and 〈· · · 〉 denotes quantum-mechanical (theory) or tem-
poral (experiment) averaging.

Experimentally, g(2)(τ ) has been measured for a single spaser in Ref. [283]. The
result is reproduced in Fig. 1.27d. The upper curve is recorded below the spasing
threshold; at the zero delay, it shows a peak, which is characteristic of incoherent
radiation. If such radiation is produced by many independent emitters, it has Gaussian
statistics, and the peak value should be g(2)(0) = 2—this effect was introduced
by Hanbury Brown and Twiss and used by them for stellar interferometry [286].
For the upper curve of Fig. 1.27d, g(2)(0) is significantly less. This may be due to
various reasons, in particular, insufficient temporal resolution of the photodetection
or partial coherence between the individual emitters of the gain medium induced by
their interaction via plasmonic fields.

In sharp contrast, above the spasing threshold, the autocorrelation function in
Fig. 1.27d is a constant at all delays. As we have already pointed out this is due to
the fact that after an emission of a photon, the number of plasmons in the spaser
is restored within ∼100 fs, while the temporal resolution of the photodetection in



64 M. I. Stockman

Ref. [283] is Δτ � 100 ps, i.e., three orders of magnitude coarser. The physical
reason for g(2)(τ ) = const is that the spaser under steady-state pumping tends to
keep a constant plasmon population. After the emission of a photon, this population
is decreased by one. However, very rapidly, within ∼100 fs, it restores to the pre-
emission level. This transitional restoration process is too fast and the photodetectors
of Ref. [283] miss it, producing g(2)(τ ) = const.

1.5.4 Equations of Spaser

1.5.4.1 Quantum Density Matrix Equations (Optical Bloch Equations)
for Spaser

The SP eigenmodes ϕn(r) are described by a wave equation (1.25) [31, 78]. The
electric field operator of the quantized SPs is an operator [31]

Ê(r) = −
∑

n

An∇ϕn(r)(ân + â†
n), An =

(
4π�sn

εds′
n

)1/2

, (1.64)

where â†
n and ân are the SP creation and annihilation operators, −∇ϕn(r) = En(r)

is the modal field of an nth mode, and s′
n = Re [ds(ωn)/dωn]. Note that we have

corrected a misprint in Ref. [31] by replacing the coefficient 2π by 4π .
The spaser Hamiltonian has the form

Ĥ = Ĥg + �

∑
n

ωnâ†
nân −

∑
p

Ê(rp)d̂(p), (1.65)

where Ĥg is the Hamiltonian of the gain medium, p is a number (label) of a gain
medium chromophore, rp is its coordinate vector, and d̂(p) is its dipole moment
operator. In this theory, we treat the gain medium quantum mechanically but the
SPs quasiclassically, considering ân as a classical quantity (c-number) an with time
dependence as an = a0n exp(−iωt), where a0n is a slowly-varying amplitude. The
number of coherent SPs per spasing mode is then given by Np = |a0n|2. This
approximation neglects the quantum fluctuations of the SP amplitudes. However,
when necessary, we will take into account these quantum fluctuations, in particular,
to describe the spectrum of the spaser.

Introducing ρ(p) as the density matrix of a pth chromophore, we can find its
equation of motion in a conventional way by commutating it with the Hamiltonian
(1.65) as

i�ρ̇(p) = [ρ(p), Ĥ ], (1.66)

where the dot denotes temporal derivative. We use the standard rotating wave approx-
imation (RWA), which only takes into account the resonant interaction between the
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optical field and chromophores. We denote |1〉 and |2〉 as the ground and excited
states of a chromophore, with the transition |2〉 � |1〉 resonant to the spasing plas-
mon mode n. In this approximation, the time dependence of the nondiagonal elements
of the density matrix is

(
ρ(p)

)
12 = ρ̄

(p)
12 exp(iωt), and

(
ρ(p)

)
21 = ρ̄

(p)∗
12 exp(−iωt),

where ρ̄
(p)
12 is an amplitude slowly varying in time, which defines the coherence

(polarization) for the |2〉 � |1〉 spasing transition in a pth chromophore of the gain
medium.

Introducing a rate constant Γ12 to describe the polarization relaxation and a dif-
ference n(p)

21 = ρ
(p)
22 −ρ

(p)
11 as the population inversion for this spasing transition, we

derive an equation of motion for the non-diagonal element of the density matrix as

˙̄ρ(p)
12 = − [i (ω − ω12) + Γ12] ρ̄

(p)
12 + ia0nn(p)

21 Ω̃
(p)∗
12 , (1.67)

where
Ω̃

(p)
12 = −And(p)

12 ∇ϕn(rp)/� (1.68)

is the one-plasmon Rabi frequency for the spasing transition in a pth chromophore,
and d(p)

12 is the corresponding transitional dipole element. Note that always d(p)
12 is

either real or can be made real by a proper choice of the quantum state phases, making
the Rabi frequency Ω̃

(p)
12 also a real quantity.

An equation of motion for n p
21 can be found in a standard way by commutating

it with Ĥ . To provide conditions for the population inversion (n p
21 > 0), we imply

existence of a third level. For simplicity, we assume that it very rapidly decays into
the excited state |2〉 of the chromophore, so its own populations is negligible. It is
pumped by an external source from the ground state (optically or electrically) with
some rate that we will denote g. In this way, we obtain the following equation of
motion:

˙̄n(p)
21 = −4Im

[
a0n ρ̄

(p)
12 Ω̃

(p)
21

]
− γ2

(
1 + n(p)

21

)
+ g

(
1 − n(p)

21

)
, (1.69)

where γ2 is the decay rate |2〉 → |1〉.
The stimulated emission of the SPs is described as their excitation by the coherent

polarization of the gain medium. The corresponding equation of motion can be
obtained using Hamiltonian (1.65) and adding the SP relaxation with a rate of γn as

ȧ0n = [
i (ω − ωn) − γn

]
a0n + ia0n

∑
p

ρ
(p)∗
12 Ω̃

(p)
12 . (1.70)

As an important general remark, the system of Eqs. (1.67), (1.69), and (1.70)
is highly nonlinear: each of these equations contains a quadratic nonlinearity: a
product of the plasmon-field amplitude a0n by the density matrix element ρ12 or
population inversion n21. Altogether, this is a six-order nonlinearity. This nonlinearity
is a fundamental property of the spaser equations, which makes the spaser generation
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always an essentially nonlinear process that involves a noneqilibrium phase transition
and a spontaneous symmetry breaking: establishment of an arbitrary but sustained
phase of the coherent SP oscillations.

A relevant process is spontaneous emission of SPs by a chromophore into a spasing
SP mode. The corresponding rate γ

(p)
2 for a chromophore at a point rp can be found

in a standard way using the quantized field (1.64) as

γ
(p)
2 = 2

A2
n

�γn

∣∣d12∇ϕn(rp)
∣∣2 (Γ12 + γn)2

(ω12 − ωn)2 + (Γ12 + γn)2 . (1.71)

As in Schawlow-Towns theory of laser-line width [287], this spontaneous emission
of SPs leads to the diffusion of the phase of the spasing state. This defines width γs

of the spasing line as

γs =
∑

p

(
1 + n(p)

21

)
γ

(p)
2

2(2Np + 1)
. (1.72)

This width is small for a case of developed spasing when Np � 1. However, for
Np ∼ 1, the predicted width may be too high because the spectral diffusion theory
assumes that γs � γn . To take into account this limitation in a simplified way,
we will interpolate to find the resulting spectral width Γs of the spasing line as
Γs = (

γ −2
n + γ −2

s

)−1/2
.

We will also examine the spaser as a bistable (logical) amplifier. One of the ways
to set the spaser in such a mode is to add a saturable absorber. This is described by
the same Eqs. (1.67)–(1.70) where the chromophores belonging to the absorber are
not pumped by the external source directly, i.e., for them in Eq. (1.69) one has to set
g = 0.

Numerical examples are given for a silver nanoshell where the core and the exter-
nal dielectric have the same permittivity of εd = 2; the permittivity of silver is adopted
from Ref. [32]. The following realistic parameters of the gain medium are used (unless
indicated otherwise): d12 = 1.5 × 10−17 esu, �Γ12 = 10 meV, γ2 = 4 × 1012 s−1

(this value takes into account the spontaneous decay into SPs), and density of the
gain medium chromophores is nc = 2.4 × 1020 cm−3, which is realistic for dye
molecules but may be somewhat high for semiconductor quantum dots that were
proposed as the chromophores [31] and used in experiments [260]. We will assume a
dipole SP mode and chromophores situated in the core of the nanoshell as shown in
Fig. 1.26d. This configuration are of advantage both functionally (because the region
of the high local fields outside the shell is accessible for various applications) and
computationally (the uniformity of the modal fields makes the summation of the
chromophores trivial, thus greatly facilitating numerical procedures).
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1.5.4.2 Equations for CW Regime

Physically, the spaser action is a result of spontaneous symmetry breaking when the
phase of the coherent SP field is established from the spontaneous noise. Mathemat-
ically, the spaser is described by homogeneous differential Eqs. (1.67)–(1.70). These
equations become homogeneous algebraic equations for the CW case. They always
have a trivial, zero solution. However, they may also possess a nontrivial solution
describing spasing. An existence condition of such a nontrivial solution is

(ωs − ωn + iγn)−1 × (ωs − ω21 + iΓ12)
−1
∑

p

∣∣∣Ω̃(p)
12

∣∣∣2 n(p)
21 = −1. (1.73)

The population inversion of a pth chromophore n(p)
21 is explicitly expressed as

n(p)
21 = (g − γ2) ×

{
g + γ2 + 4Nn

∣∣∣Ω̃(p)
12

∣∣∣2 /
[
(ωs − ω21)

2 + Γ 2
12

]}−1

. (1.74)

From the imaginary part of Eq. (1.73) we immediately find the spasing frequency ωs ,

ωs = (γnω21 + Γ12ωn) / (γn + Γ12) , (1.75)

which generally does not coincide with either the gain transition frequency ω21 or
the SP frequency ωn , but is between them (this is a frequency walk-off phenomenon
similar to that of laser physics). Substituting Eq. (1.75) back into (1.73)–(1.74), we
obtain a system of equations

(γn + Γ12)
2

γnΓ12
[
(ω21 − ωn)2 + (Γ12 + γn)2] ×

∑
p

∣∣∣Ω̃(p)
12

∣∣∣2 n(p)
21 = 1, (1.76)

n(p)
21 = (g − γ2) ×

⎡
⎢⎣g + γ2 +

4Nn

∣∣∣Ω̃(p)
12

∣∣∣2 (Γ12 + γn)

(ω12 − ωn)2 + (Γ12 + γn)2

⎤
⎥⎦

−1

. (1.77)

This system defines the stationary (CW-generation) number of SPs per spasing mode,
Nn .

Since n(p)
21 ≤ 1, from Eqs. (1.76), (1.77) we immediately obtain a necessary con-

dition of the existence of spasing,

(γn + Γ12)
2

γnΓ12
[
(ω21 − ωn)2 + (Γ12 + γn)2] ∑

p

∣∣∣Ω̃(p)
12

∣∣∣2 ≥ 1. (1.78)
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This expression is fully consistent with Ref. [31]. The following order of magni-
tude estimate of this spasing condition has a transparent physical meaning and is of
heuristic value,

d2
12 QNc

�Γ12Vn
� 1, (1.79)

where Q = ω/γn is the quality factor of SPs, Vn is the volume of the spasing SP
mode, and Nc is the of number of the gain medium chromophores within this volume.
Deriving this estimate, we have neglected the detuning, i.e., set ω21 − ωn = 0. We
also used the definitions of An of Eq. (1.64) and Ω̃

(p)
12 given by Eq. (1.68), and the

estimate |∇ϕn(r)|2 ∼ 1/V following from the normalization of the SP eigenmodes∫ |∇ϕn(r)|2 d3r = 1 of Ref. [78]. The result of Eq. (1.79) is, indeed, in agreement
with Ref. [31] where it was obtained in different notations.

It follows from Eq. (1.79) that for the existence of spasing it is beneficial to have a
high quality factor Q, a high density of the chromophores, and a large transition dipole
(oscillator strength) of the chromophore transition. The small modal volume Vn (at
a given number of the chromophores Nc) is beneficial for this spasing condition:
physically, it implies strong feedback in the spaser. Note that for the given density of
the chromophores nc = Nc/Vn , this spasing condition does not explicitly depend on
the spaser size, which opens up a possibility of spasers of a very small size limited
from the bottom by only the nonlocality radius lnl ∼ 1 nm. Another important
property of Eq. (1.79) is that it implies the quantum-mechanical nature of spasing
and spaser amplification: this condition essentially contains the Planck constant �

and, thus, does not have a classical counterpart. Note that in contrast to lasers, the
spaser theory and Eqs. (1.78), (1.79) in particular do not contain speed of light, i.e.,
they are quasistatic.

Now we will examine the spasing condition and reduce it to a requirement for the
gain medium. First, we substitute all the definitions and assume the perfect resonance
between the generating SP mode and the gain medium, i.e., ωn = ω21. As a result,
we obtain from Eq. (1.78),

4π

3

sn |d12|2
�γnΓ12εds′

n

∫
V

[1 − Θ(r)] |En(r)|2 d3r ≥ 1, (1.80)

where the integral is extended over the volume V of the system, and the Θ-function
takes into account a simplifying realistic assumption that the gain medium occupies
the entire space free from the core’s metal. We also assume that the orientations of
the transition dipoles d(p)

12 are random and average over them, which results in the
factor of 3 in the denominator in Eq. (1.80). From Eqs. (1.27) and (1.34), it follows
that ∫

V
[1 − Θ(r)] |En(r)|2 d3r = 1 − sn . (1.81)
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Next, we give approximate expressions for the spectral parameter (1.4), which are
very accurate for the realistic case of Q � 1,

Im s(ω) = s2
n

εd
Im εm(ω) = 1

Q
sn (1 − sn) , (1.82)

where definition (1.6) is used. Taking into account Eqs. (1.47), (1.48) and (1.81),
(1.82), we obtain from Eq. (1.80) a necessary condition of spasing at a frequency
ω as

4π

3

|d12|2 nc [1 − Re s(ω)]

�Γ12Re s(ω)Im εm(ω)
≥ 1, (1.83)

For the sake of comparison, consider a continuous gain medium comprised of the
same chromophores as the gain shell of the spaser. Its gain g (whose dimensionality
is cm−1) is given by a standard expression

g = 4π

3

ω

c

√
εd |d12|2 nc

�Γ12
. (1.84)

Substituting it into Eq. (1.83), we obtain the spasing criterion in terms of the gain as

g ≥ gth, gth = ω

c
√

εd

Re s(ω)

1 − Re s(ω)
Im εm(ω), (1.85)

where gth has a meaning of the threshold gain needed for spasing. Importantly, this
gain depends only on the dielectric properties of the system and spasing frequency
but not on the geometry of the system or the distribution of the local fields of the
spasing mode (hot spots, etc.) explicitly. However note that the system’s geometry
(along with the permittivities) does define the spasing frequencies.

In Figs. 1.28a, b, correspondingly, we illustrate the analytical expression (1.85)
for gold and silver embedded in a dielectric with εd = 2 (simulating a light glass)
and εd = 10 (simulating a semiconductor), correspondingly. These are computed
from Eq. (1.85) assuming that the metal core is embedded into the gain medium with
the real part of the dielectric function equal to εd . As we see from Fig. 1.28, the
spasing is possible for silver in the near-ir communication range and the adjacent red
portion of the visible spectrum for a gain g < 3000 cm−1 (regions below the red line
in Fig. 1.28), which is realistically achievable with direct band-gap semiconductors
(DBDSs).

1.5.5 Spaser in CW Mode

The “spasing curve” (a counterpart of the light–light curve, or L–L curve, for lasers),
which is the dependence of the coherent SP population Nn on the excitation rate



70 M. I. Stockman

1 1.5 2 2.5 3 3.5

5000

10000

15000

20000

25000

30000

1 1.5 2 2.5 3 3.5

5000

10000

15000

20000

25000

30000

g th
 (

cm
-1

)

g th
 (

cm
-1

)

G
ol

d

Si
lv

er

 (eV)  (eV)

G
ol

d

Si
lv

er

d=2 d=10

(a) (b)

Fig. 1.28 Threshold gain for spasing gth for silver and gold, as indicated in the graphs, as a function
of the spasing frequency ω. The red line separates the area gth < 3×103 cm−1, which can relatively
easily be achieved with direct band-gap semiconductors (DBGSs). The real part of the gain medium
permittivity is denoted in the corresponding panels as εd

g, obtained by solving Eqs. (1.76), (1.77), is shown in Fig. 1.29a for four types of
the silver nanoshells with the frequencies of the spasing dipole modes as indicated,
which are in the range from near-ir (�ωs = 1.2 eV) to mid-visible (�ωs = 2.2 eV).
In all cases, there is a pronounced threshold of the spasing at an excitation rate
gth ∼ 1012 s−1. Soon after the threshold, the dependence Nn(g) becomes linear,
which means that every quantum of excitation added to the active medium with
a high probability is stimulated to be emitted as a SP, adding to the coherent SP
population.

While this is similar to conventional lasers, there is a dramatic difference for the
spaser. In lasers, a similar relative rate of the stimulated emission is achieved at a
photon population of ∼1018–1020, while in the spaser the SP population is Nn � 100.
This is due to the much stronger feedback in spasers because of the much smaller
modal volume Vn—see discussion of Eq. (1.79). The shape of the spasing curves of
Fig. 1.29a (the well-pronounced threshold with the linear dependence almost imme-
diately above the threshold) is in a qualitative agreement with the experiment [252].

The population inversion number n21 as a function of the excitation rate g is
displayed in Fig. 1.29b for the same set of frequencies (and with the same color
coding) as in panel (a). Before the spasing threshold, n21 increases with g to become
positive with the onset of the population inversion just before the spasing threshold.
For higher g, after the spasing threshold is exceeded, the inversion n21 becomes
constant (the inversion clamping). The clamped levels of the inversion are very low,
n21 ∼ 0.01, which again is due to the very strong feedback in the spaser.

The spectral width Γs of the spaser generation is due to the phase diffusion of the
quantum SP state caused by the noise of the spontaneous emission of the SPs into
the spasing mode, as described by Eq. (1.72). This width is displayed in Fig. 1.29c
as a function of the pumping rate g. At the threshold, Γs is that of the SP line γn

but for stronger pumping, as the SPs accumulate in the spasing mode, it decreases
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Fig. 1.29 Spaser SP population and spectral characteristics in the stationary state. The computations
are done for a silver nanoshell with the external radius R2 = 12 nm; the detuning of the gain medium
from the spasing SP mode is � (ω21 − ωn) = −0.02 eV. The other parameters are indicated in
Sect. 1.5.4. a Number Nn of plasmons per spasing mode as a function of the excitation rate g (per
one chromophore of the gain medium). Computations are done for the dipole eigenmode with the
spasing frequencies ωs as indicated, which were chosen by the corresponding adjustment of the
nanoshell aspect ratio. b Population inversion n12 as a function of the pumping rate g. The color
coding of the lines is the same as in panel (a). c The spectral width Γs of the spasing line (expressed
as �Γs in meV) as a function of the pumping rate g. The color coding of the lines is the same as in
panel (a). d–f Spectra of the spaser for the pumping rates g expressed in the units of the threshold
rate gth , as indicated in the panels. The curves are color coded and scaled as indicated

∝ N−1
n , as given by Eq. (1.72). This decrease of Γs reflects the higher coherence of

the spasing state with the increased number of SP quanta and, correspondingly, lower
quantum fluctuations. As we have already mentioned, this is similar to the lasers as
described by the Schawlow-Townes theory [287].
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The developed spasing in a dipole SP mode will show itself in the far field as an
anomalously narrow and intense radiation line. The shape and intensity of this line
in relation to the lines of the spontaneous fluorescence of the isolated gain medium
and its SP-enhanced fluorescence line in the spaser is illustrated in Figs. 1.29d–f.
Note that for the system under consideration, there is a 20 meV red shift of the
gain medium fluorescence with respect to the SP line center. It is chosen so to
illustrate the spectral walk-off of the spaser line. For one percent in the excitation rate
above the threshold of the spasing (panel d), a broad spasing line (red color) appears
comparable in intensity to the SP-enhanced spontaneous fluorescence line (blue
color). The width of this spasing line is approximately the same as of the fluorescence,
but its position is shifted appreciably (spectral walk-off) toward the isolated gain
medium line (green color). For the pumping twice more intense (panel e), the spaser-
line radiation dominates, but its width is still close to that of the SP line due to
significant quantum fluctuations of the spasing state phase. Only when the pumping
rate is an order of magnitude above the threshold, the spaser line strongly narrows
(panel f), and it also completely dominates the spectrum of the radiation. This is a
regime of small quantum fluctuations, which is desired in applications.

These results in the spasing region are different in the most dramatic way from pre-
vious phenomenological models, which are based on linear electrodynamics where
the gain medium that has negative imaginary part of its permittivity plus lossy metal
nanosystem, described purely electrodynamically [258, 265]. For instance, in a “toy
model” [265], the width of the resonance line tends to zero at the threshold of spasing
and then broadens up again. This distinction of the present theory is due the nature
of the spasing as a spontaneous symmetry breaking (nonequilibrium phase transition
with a randomly established but sustained phase) leading to the establishment of a
coherent SP state. This non-equilibrium phase transition to spasing and the spasing
itself are contained in the present theory due to the fact that the fundamental equations
of the spasing (1.67), (1.69), and (1.70) are nonlinear, as we have already discussed
above in conjunction with these equations—see the text after Eq. (1.70). The pre-
vious publications on gain compensation by loss [258, 265, 267] based on linear
electrodynamic equations do not contain spasing. Therefore, they are not applicable
in the region of the complete loss compensation and spasing, though their results are
presented for that region.

1.5.6 Spaser as Ultrafast Quantum Nanoamplifier

1.5.6.1 Problem of Setting Spaser as an Amplifier

As we have already mentioned in Sect. 1.5.1, a fundamental and formidable problem
is that, in contrast to the conventional lasers and amplifiers in quantum electronics,
the spaser has an inherent feedback that typically cannot be removed. Such a spaser
will develop generation and accumulation of the macroscopic number of coherent
SPs in the spasing mode. This leads to the population inversion clamping in the CW



1 Nanoplasmonics: From Present into Future 73

regime at a very low level—cf. Fig. 1.29b. This CW regime corresponds to the net
amplification equal zero, which means that the gain exactly compensates the loss,
which condition is expressed by Eq. (1.76). This is a consequence of the nonlinear
gain saturation. This holds for any stable CW generator (including any spaser or
laser) and precludes using them as amplifiers.

There are several ways to set a spaser as a quantum amplifier. One of them is
to reduce the feedback, i.e., to allow some or most of the SP energy in the spaser
to escape from the active region, so the spaser will not generate in the region of
amplification. Such a root has successfully been employed to build a SPP plasmonic
amplifier on the long-range plasmon polaritons [277]. A similar root for the SP spasers
would be to allow some optical energy to escape either by a near-field coupling or
by a radiative coupling to far-field radiation. The near-field coupling approach is
promising for building integrated active circuits out of the spasers. Another root has
been used in Ref. [288], which employed symmetric SPP modes in a thin gold strip.
Such modes have much lower loss that the antisymmetric modes at the expense of
much weaker confinement (transverse modal area ∼λ2). The lower loss allows one
to use the correspondingly lower gain and, therefore, avoid both spasing at localized
SP modes and random lasing due to back-scattering from gold imperfections.

Following Ref. [139], we consider here two distinct approaches for setting the
spasers as quantum nanoamplifiers. The first is a transient regime based on the fact
that the establishment of the CW regime and the consequent inversion clamping and
the total gain vanishing require some time that is determined mainly by the rate of
the quantum feedback and depends also on the relaxation rates of the SPs and the
gain medium. After the population inversion is created by the onset of pumping and
before the spasing spontaneously develops, as we show below in this section, there
is a time interval of approximately 250 fs, during which the spaser provides usable
(and as predicted, quite high) amplification—see Sect. 1.5.6.2 below.

The second approach to set the spaser as a logical quantum nanoamplifier is a
bistable regime that is achieved by introducing a saturable absorber into the active
region, which prevents the spontaneous spasing. Then injection of a certain above-
threshold amount of SP quanta will saturate the absorber and initiate the spasing.
Such a bistable quantum amplifier will be considered in Sect. 1.5.6.3.

The temporal behavior of the spaser has been found by direct numerical solu-
tion of Eqs. (1.67)–(1.70). This solution is facilitated by the fact that in the model
under consideration all the chromophores experience the same local field inside the
nanoshell, and there are only two types of such chromophores: belonging to the gain
medium and the saturable absorber, if it is present.

1.5.6.2 Monostable Spaser as a Nanoamplifier in Transient Regime

Here we consider a monostable spaser in a transient regime. This implies that no
saturable absorber is present. We will consider two pumping regimes: stationary and
pulse.
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Starting with the stationary regime, we assume that the pumping at a rate (per
one chromophore) of g = 5 × 1012 s−1 starts at a moment of time t = 0 and stays
constant after that. Immediately at t = 0, a certain number of SPs are injected into
the spaser. We are interested in its temporal dynamics from this moment on.

The dynamical behavior of the spaser under this pumping regime is illustrated in
Figs. 1.30a, b. As we see, the spaser, which starts from an arbitrary initial population
Nn , rather rapidly, within a few hundred femtoseconds approaches the same station-
ary (“logical”) level. At this level, an SP population of Nn = 67 is established, while
the inversion is clamped at a low level of n21 = 0.02. On the way to this station-
ary state, the spaser experiences relaxation oscillations in both the SP numbers and
inversion, which have a trend to oscillate out of phase (compare panels a and b). This
temporal dynamics of the spaser is quite complicated and highly nonlinear (unhar-
monic). It is controlled not by a single relaxation time but by a set of the relaxation
rates. Clearly, among these are the energy transfer rate from the gain medium to the
SPs and the relaxation rates of the SPs and the chromophores.

In this mode, the main effect of the initial injection of the SPs (described theo-
retically as different initial values of Nn) is in the interval of time it is required for
the spaser to reach the final (CW) state. For very small Nn , which in practice can
be supplied by the noise of the spontaneous SP emission into the mode, this time is
approximately 250 fs (cf.: the corresponding SP relaxation time is less then 50 fs). In
contrast, for the initial values of Nn = 1–5, this time shortens to 150 fs.

Now consider the second regime: pulse pumping. The gain-medium population
of the spaser is inverted at t = 0 to saturation with a short (much shorter than 100 fs)
pump pulse. Simultaneously, at t = 0, some number of plasmons are injected (say,
by an external nanoplasmonic circuitry). In response, the spaser should produce an
amplified pulse of the SP excitation. Such a function of the spaser is illustrated in
Figs. 1.30c, d.

As we see from panel (c), independently from the initial number of SPs, the spaser
always generates a series of SP pulses, of which only the first pulse is large (at or
above the logical level of Nn ∼ 100). (An exception is a case of little practical
importance when the initial Nn = 120 exceeds this logical level, when two large
pulses are produced.) The underlying mechanism of such a response is the rapid
depletion of the inversion seen in panel (d), where energy is dissipated in the metal
of the spaser. The characteristic duration of the SP pulse ∼100 fs is defined by this
depletion, controlled by the energy transfer and SP relaxation rates. This time is
much shorter than the spontaneous decay time of the gain medium. This acceleration
is due to the stimulated emission of the SPs into the spasing mode (which can be
called a “stimulated Purcell effect”). There is also a pronounced trend: the lower is
initial SP population Nn , the later the spaser produces the amplified pulse. In a sense,
this spaser functions as a pulse-amplitude to time-delay converter.
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Fig. 1.30 Ultrafast dynamics of spaser. a For monostable spaser (without a saturable absorber),
dependence of SP population in the spasing mode Nn on time t . The spaser is stationary pumped
at a rate of g = 5 × 1012 s−1. The color-coded curves correspond to the initial conditions with
the different initial SP populations, as shown in the graphs. b The same as (a) but for the temporal
behavior of the population inversion n21. c Dynamics of a monostable spaser (no saturable absorber)
with the pulse pumping described as the initial inversion n21 = 0.65. Coherent SP population Nn is
displayed as a function of time t . Different initial populations are indicated by color-coded curves.
d The same as (c) but for the corresponding population inversion n21. e The same as (a) but for
bistable spaser with the saturable absorber in concentration na = 0.66nc. f The same as (b) but for
the bistable spaser. g The same as (e) but for the pulse pumping with the initial inversion n21 = 0.65.
h The same as (g) but for the corresponding population inversion n21
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1.5.6.3 Bistable Spaser with Saturable Absorber as an Ultrafast
Nanoamplifier

Now let us consider a bistable spaser as a quantum threshold (or, logical) nanoam-
plifier. Such a spaser contains a saturable absorber mixed with the gain medium with
parameters indicated at the end of Sect. 1.5.4.1 and the concentration of the saturable
absorber na = 0.66nc. This case of a bistable spaser amplifier is of a particular inter-
est because in this regime the spaser comes as close as possible in its functioning
to the semiconductor-based (mostly, MOSFET-based) digital nanoamplifiers. As in
the previous subsection, we will consider two cases: the stationary and short-pulse
pumping.

We again start with the case of the stationary pumping at a rate of g = 5×1012 s−1.
We show in Figs. 1.30e, f the dynamics of such a spaser. For a small initial population
Nn = 5 × 10−3 simulating the spontaneous noise, the spaser is rapidly (faster than
in 50 fs) relaxing to the zero population (panel e), while its gain-medium population
is equally rapidly approaching a high level (panel f) n21 = 0.65 that is defined by the
competition of the pumping and the enhanced decay into the SP mode (the purple
curves). This level is so high because the spasing SP mode population vanishes
and the stimulated emission is absent. After reaching this stable state (which one can
call, say, “logical zero”), the spaser stays in it indefinitely long despite the continuing
pumping.

In contrast, for initial values Nn of the SP population large enough (for instance,
for Nn = 5, as shown by the blue curves in Figs. 1.30e, f), the spaser tends to the
“logical one” state where the stationary SP population reaches the value of Nn ≈ 60.
Due to the relaxation oscillations, it actually exceeds this level within a short time
of �100 fs after the seeding with the initial SPs. As the SP population Nn reaches
its stationary (CW) level, the gain medium inversion n21 is clamped down at a low
level of a few percent, as typical for the CW regime of the spaser. This “logical one”
state salso persists indefinitely, as long as the inversion is supported by the pumping.

There is a critical curve (separatrix) that divide the two stable dynamics types
(leading to the logical levels of zero and one). For the present set of parameters this
separatrix starts with the initial population of Nn ≈ 1. For a value of the initial Nn

slightly below 1, the SP population Nn experiences a slow (hundreds fs in time)
relaxation oscillation but eventually relaxes to zero (Fig. 1.30e, black curve), while
the corresponding chromophore population inversion n21 relaxes to the high value
n21 = 0.65 (panel f, black curve). In contrast, for a value of Nn slightly higher than 1
(light blue curves in panels e and f), the dynamics is initially close to the separaratrix
but eventually the initial slow dynamics tends to the high SP population and low
chromophore inversion through a series of the relaxation oscillations. The dynamics
close to the separatrix is characterized by a wide range of oscillation times due to its
highly nonlinear character. The initial dynamics is slowest (the “decision stage” of
the bistable spaser that lasts �1 ps). The “decision time” is diverging infinitesimally
close to the separatrix, as is characteristic of any threshold (logical) amplifier.

The gain (amplification coefficient) of the spaser as a logical amplifier is the
ratio of the high CW level to the threshold level of the SP population Nn . For this
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specific spaser with the chosen set of parameters, this gain is ≈60, which is more
than sufficient for the digital information processing. Thus this spaser can make
a high-gain, ∼10 THz-bandwidth logical amplifier or dynamical memory cell with
excellent prospects of applications.

The last but not the least regime to consider is that of the pulse pumping in the
bistable spaser. In this case, the population inversion (n21 = 0.65) is created by a
short pulse at t = 0 and simultaneously initial SP population Nn is created. Both are
simulated as the initial conditions in Eqs. (1.67)–(1.70). The corresponding results
are displayed in Figs. 1.30g, h.

When the initial SP population exceeds the critical one of Nn = 1 (the blue,
green, and red curves), the spaser responds with generating a short (duration less
than 100 fs) pulse of the SP population (and the corresponding local fields) within
a time �100 fs (panel g). Simultaneously, the inversion is rapidly (within ∼100 fs)
exhausted (panel h).

In contrast, when the initial SP population Nn is less than the critical one (i.e., Nn <

1 in this specific case), the spaser rapidly (within a time �100 fs) relaxes as Nn → 0
through a series of realaxation oscillations—see the black and magenta curves in
Fig. 1.30g. The corresponding inversion decays in this case almost exponentially
with a characteristic time ∼1 ps determined by the enhanced energy transfer to the
SP mode in the metal—see the corresponding curves in panel (h). Note that the SP
population decays faster when the spaser is above the generation threshold due to the
stimulated SP emission leading to the higher local fields and enhanced relaxation.

1.5.7 Compensation of Loss by Gain and Spasing

1.5.7.1 Introduction to Loss Compensation by Gain

A problem for many applications of plasmonics and metamaterials is posed by losses
inherent in the interaction of light with metals. There are several ways to bypass,
mitigate, or overcome the detrimental effects of these losses, which we briefly discuss
below.

(i) The most common approach consists in employing effects where the losses are
not fundamentally important such as surface plasmon polariton (SPP) propa-
gation used in sensing [23], ultramicroscopy [16, 19], and solar energy con-
version [26]. For realistic losses, there are other effects and applications that
are not prohibitively suppressed by the losses and useful, in particular, sensing
based on SP resonances and surface enhanced Raman scattering (SERS) [23,
178, 242, 289, 290].

(ii) Another promising idea is to use superconducting plasmonics to dramatically
reduce losses [74, 291–293]. However, this is only applicable for frequencies
below the superconducting gaps, i.e., in the terahertz region.
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(iii) Yet another proposed direction is using highly doped semiconductors where
the Ohmic losses can be significantly lower due to much lower free carrier
concentrations [294]. However, a problem with this approach may lie in the fact
that the usefulness of plasmonic modes depends not on the loss per se but on
the quality factor Q, which for doped semiconductors may not be higher than
for the plasmonic metals.

(iv) One of the alternative approaches to low-loss plasmonic metamaterials is based
on our idea of the spaser: it is using a gain to compensate the dielectric (Ohmic)
losses [295, 296]. In this case the gain medium is included into the metamate-
rials. It surrounds the metal plasmonic component in the same manner as in the
spasers. The idea is that the gain will provide quantum amplification compen-
sating the loss in the metamaterials quite analogously to the spasers.

We will consider theory of the loss compensation in the plasmonic metamaterials
using gain [140, 141]. Below we show that the full compensation or overcompensa-
tion of the optical loss in a dense resonant gain metamaterial leads to an instability
that is resolved by its spasing (i.e., by becoming a generating spaser). We further
show analytically that the conditions of the complete loss compensation by gain and
the threshold condition of spasing—see Eqs. (1.83) and (1.85)—are identical. Thus
the full compensation (overcompensation) of the loss by gain in such a metamater-
ial will cause spasing. This spasing limits (clamps) the gain—see Sect. 1.5.5—and,
consequently, inhibits the complete loss compensation (overcompensation) at any
frequency.

1.5.7.2 Permittivity of Nanoplasmonic Metamaterial

We will consider, for certainty, an isotropic and uniform metamaterial that, by def-
inition, in a range of frequencies ω can be described by the effective permittivity
ε̄(ω) and permeability μ̄(ω). We will concentrate below on the loss compensation
for the optical electric responses; similar consideration with identical conclusions
for the optical magnetic responses is straightforward. Our theory is applicable for
the true three-dimensional (3d) metamaterials whose size is much greater than the
wavelength λ (ideally, an infinite metamaterial).

Consider a small piece of such a metamaterial with sizes much greater that the
unit cell but much smaller than λ. Such a piece is a metamaterial itself. Let us subject
this metamaterial to a uniform electric field E(ω) = −∇φ(r, ω) oscillating with
frequency ω. Note that E(ω) is the amplitude of the macroscopic electric field inside
the metamaterial. We will denote the local field at a point r inside this metamaterial
as e(r, ω) = −∇ϕ(r, ω). We assume standard boundary conditions

ϕ(r, ω) = φ(r, ω), (1.86)

for r belonging to the surface S of the volume under consideration.
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To present our results in a closed form, we first derive a homogenization formula
used in Ref. [297] (see also references cited therein). By definition, the electric
displacement in the volume V of the metamaterial is given by a formula

D(r, ω) = 1

V

∫
V

ε(r, ω)e(r, ω)dV, (1.87)

where ε(r, ω) is a position-dependent permittivity. This can be identically expressed
(by multiplying and dividing by the conjugate of the macroscopic field E∗) and,
using the Gauss theorem, transformed to a surface integral as

D = 1

V E∗(ω)

∫
V

E∗(ω)ε(r, ω)e(r, ω)dV

= 1

V E∗(ω)

∫
S
φ∗(r, ω)ε(r, ω)e(r, ω)dS, (1.88)

where we took into account the Maxwell continuity equation ∇ [ε(r, ω)e(r, ω)] = 0.
Now, using the boundary conditions of Eq. (1.86), we can transform it back to the
volume integral as

D = 1

V E∗(ω)

∫
S
ϕ∗(r)ε(r, ω)e(r, ω)dS

= 1

V E∗(ω)

∫
V

ε(r, ω) |e(r, ω)|2 dV . (1.89)

From the last equality, we obtain the required homogenization formula as an expres-
sion for the effective permittivity of the metamaterial:

ε̄(ω) = 1

V |E(ω)|2
∫

V
ε(r, ω) |e(r, ω)|2 dV . (1.90)

1.5.7.3 Plasmonic Eigenmodes and Effective Resonant Permittivity
of Metamaterials

This piece of the metamaterial with the total size R � λ can be treated in the
quasistatic approximation. The local field inside the nanostructured volume V of the
metamaterial is given by the eigenmode expansion [78, 148, 218]

e(r, ω) = E(ω) −
∑

n

an

s(ω) − sn
En(r), (1.91)

an = E(ω)

∫
V

θ(r)En(r)dV,
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where we remind that E(ω) is the macroscopic field. In the resonance, ω = ωn , only
one term at the pole of in Eq. (1.91) dominates, and it becomes

e(r, ω) = E(ω) + i
an

Im s(ωn)
En(r). (1.92)

The first term in this equation corresponds to the mean (macroscopic) field and the
second one describes the deviations of the local field from the mean field containing
contributions of the hot spots [158]. The mean root square ratio of the second term
(local field) to the first (mean field) is estimated as

∼ f

Im s(ωn)
= f Q

sn(1 − sn)
, (1.93)

where we took into account that, in accord with Eq. (1.34), En ∼ V −1/2, and

f = 1

V

∫
V

θ(r)dV, (1.94)

where f is the metal fill factor of the system, and Q is the plasmonic quality factor.
Deriving expression (1.93), we have also taken into account an equality Im s(ωn) =
sn(1 − sn)/Q, which is valid in the assumed limit of the high quality factor, Q � 1
(see the next paragraph).

For a good plasmonic metal Q � 1—see Fig. 1.2. For most metal-containing
metamaterials, the metal fill factor is not small, typically f � 0.5. Thus, keeping
Eq. (1.28) in mind, it is very realistic to assume the following condition

f Q

sn(1 − sn)
� 1. (1.95)

If so, the second (local) term of the field (1.92) dominates and, with a good precision,
the local field is approximately the eigenmode’s field:

e(r, ω) = i
an

Im s(ωn)
En(r). (1.96)

Substituting this into Eq. (1.90), we obtain a homogenization formula

ε̄(ω) = bn

∫
V

ε(r, ω) [En(r)]2 dV, (1.97)

where bn > 0 is a real positive coefficient whose specific value is

bn = 1

3V

(
Q
∫

V θ(r)En(r)dV

sn (1 − sn)

)2

(1.98)



1 Nanoplasmonics: From Present into Future 81

Using Eqs. (1.97) and (1.27), (1.34), it is straightforward to show that the effective
permittivity (1.97) simplifies exactly to

ε̄(ω) = bn [snεm(ω) + (1 − sn)εh(ω)] . (1.99)

1.5.8 Conditions of Loss Compensation by Gain and Spasing

In the case of the full inversion (maximum gain) and in the exact resonance, the host
medium permittivity acquires the imaginary part describing the stimulated emission
as given by the standard expression

εh(ω) = εd − i
4π

3

|d12|2 nc

�Γ12
, (1.100)

where εd = Re εh , d12 is a dipole matrix element of the gain transition in a chro-
mophore center of the gain medium, Γ12 is a spectral width of this transition, and nc

is the concentration of these centers (these notations are consistent with those used
above in Sects. 1.5.4.1–1.5.6.3). Note that if the inversion is not maximum, then this
and subsequent equations are still applicable if one sets as the chromophore concen-
tration nc the inversion density: nc = n2 −n1, where n2 and n1 are the concentrations
of the chromophore centers of the gain medium in the upper and lower states of the
gain transition, respectively.

The condition for the full electric loss compensation in the metamaterial and
amplification (overcompensation) at the resonant frequency ω = ωn is

Im ε̄(ω) ≤ 0 (1.101)

Taking Eq. (1.99) into account, this reduces to

snIm εm(ω) − 4π

3

|d12|2 nc(1 − sn)

�Γ12
≤ 0. (1.102)

Finally, taking into account Eqs. (1.28), (1.47) and that Im εm(ω) > 0, we obtain
from Eq. (1.102) the condition of the loss (over)compensation as

4π

3

|d12|2 nc [1 − Re s(ω)]

�Γ12Re s(ω)Im εm(ω)
≥ 1, (1.103)

where the strict inequality corresponds to the overcompensation and net amplifica-
tion. In Eq. (1.100) we have assumed non-polarized gain transitions. If these transi-
tions are all polarized along the excitation electric field, the concentration nc should
be multiplied by a factor of 3.
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Equation (1.103) is a fundamental condition, which is precise [assuming that the
requirement (1.95) is satisfied, which is very realistic for metamaterials] and general.
Moreover, it is fully analytical and, actually, very simple. Remarkably, it depends
only on the material characteristics and does not contain any geometric properties
of the metamaterial system or the local fields. (Note that the system’s geometry
does affect the eigenmode frequencies and thus enters the problem implicitly.) In
particular, the hot spots, which are prominent in the local fields of nanostructures
[78, 158], are completely averaged out due to the integrations in Eqs. (1.90) and
(1.97).

The condition (1.103) is completely non-relativistic (quasistatic)—it does not
contain speed of light c, which is characteristic of also of the spaser. It is useful to
express this condition also in terms of the total stimulated emission cross section
σe(ω) (where ω is the central resonance frequency) of a chromophore of the gain
medium as

cσe(ω)
√

εdnc [1 − Re s(ω)]

ωRe s(ω)Im εm(ω)
≥ 1. (1.104)

We see that Eq. (1.103) exactly coincides with a spasing condition expressed by
Eq. (1.83). This brings us to an important conclusion: the full compensation (over-
compensation) of the optical losses in a metamaterial [which is resonant and dense
enough to satisfy condition (1.95)] and the spasing occur under precisely the same
conditions.

We have considered above in Sect. 1.5.4.2 the conditions of spasing, which are
equivalent to (1.104). These are given by one of equivalent conditions of Eqs. (1.83),
(1.85), (1.103). It is also illustrated in Fig. 1.28. We stress that exactly the same
conditions are for the full loss compensation (overcompensation) of a dense resonant
plasmonic metamaterial with gain.

We would like also to point out that the criterion given by the equivalent conditions
of Eqs. (1.83), (1.85), (1.103), or (1.104) is derived for localized SPs, which are
describable in the quasistatic approximation, and is not directly applicable to the
propagating plasmonic modes (SPPs). However, we expect that very localized SPPs,
whose wave vector k � ls , can be described by these conditions because they are,
basically, quasistatic. For instance, the SPPs on a thin metal wire of a radius R � ls
are described by a dispersion relation [12]

k ≈ 1

R

[
− εm

2εd

(
ln

√
−4εm

εd
− γ

)]−1/2

, (1.105)

where γ ≈ 0.57721 is the Euler constant. This relation is obviously quasistatic
because it does not contain speed of light c.
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1.5.8.1 Discussion of Spasing and Loss Compensation by Gain

This fact of the equivalence of the full loss compensation and spasing is intimately
related to the general criteria of the thermodynamic stability with respect to small
fluctuations of electric and magnetic fields—see Chap. IX of Ref. [30],

Im ε̄(ω) > 0, Im μ̄(ω) > 0, (1.106)

which must be strict inequalities for all frequencies for electromagnetically stable
systems. For systems in thermodynamic equilibrium, these conditions are automati-
cally satisfied.

However, for the systems with gain, the conditions (1.106) can be violated, which
means that such systems can be electromagnetically unstable. The first of conditions
(1.106) is opposite to Eqs. (1.101) and (1.103). This has a transparent meaning: the
electrical instability of the system is resolved by its spasing.

The significance of these stability conditions for gain systems can be elucidated
by the following gedanken experiment. Take a small isolated piece of such a meta-
material (which is a metamaterial itself). Consider that it is excited at an optical
frequency ω either by a weak external optical field E or acquires such a field due to
fluctuations (thermal or quantum). The energy density E of such a system is given
by the Brillouin formula [30]

E = 1

16π

∂ωRe ε̄

∂ω
|E|2 . (1.107)

Note that for the energy of the system to be definite, it is necessary to assume that the
loss is not too large, |Re ε̄| � Im ε̄. This condition is realistic for many metamaterials,
including all potentially useful ones.

The internal optical energy-density loss per unit time Q (i.e., the rate of the heat-
density production in the system) is [30]

Q = ω

8π
Im ε̄ |E|2 . (1.108)

Assume that the internal (Ohmic) loss dominates over other loss mechanisms such
as the radiative loss, which is also a realistic assumption since the Ohmic loss is very
large for the experimentally studied systems and the system itself is very small (the
radiative loss rate is proportional to the volume of the system). In such a case of the
dominating Ohmic losses, we have dE /dt = Q. Then Eqs. (1.107) and (1.108) can
be resolved together yielding the energy E and electric field |E| of this system to
evolve with time t exponentially as

|E| ∝ √
E ∝ e−Γ t , Γ = ωIm ε̄

/
∂(ωRe ε̄)

∂ω
. (1.109)
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We are interested in a resonant case when the metamaterial possesses a resonance
at some eigenfrequency ωn ≈ ω. For this to be true, the system’s behavior must be
plasmonic, i.e., Re ε̄(ω) < 0. Then the dominating contribution to ε̄ comes from a
resonant SP eigenmode n with a frequency ωn ≈ ω. In such a case, the dielectric
function [78] ε̄(ω) has a simple pole at ω = ωn . As a result, ∂ (ωRe ε̄) /∂ω ≈
ω∂Re ε̄/∂ω and, consequently, Γ = γn , where γn is the SP decay rate given by
Eqs. (1.3) or (1.48), and the metal dielectric function εm is replaced by the effective
permittivity ε̄ of the metamaterial. Thus, Eq. (1.109) is fully consistent with the
spectral theory of SPs—see Sect. 1.3.4.

If the losses are not very large so that energy of the system is meaningful, the
Kramers-Kronig causality requires [30] that ∂(ωRe ε̄)/∂ω > 0. Thus, Im ε̄ < 0 in
Eq. (1.109) would lead to a negative decrement,

Γ < 0, (1.110)

implying that the initial small fluctuation starts exponentially grow in time in its field
and energy, which is an instability. Such an instability is indeed not impossible: it
will result in spasing that will eventually stabilize |E| and E at finite stationary (CW)
levels of the spaser generation.

Note that the spasing limits (clamps) the gain and population inversion making the
net gain to be precisely zero [139] in the stationary (continuous wave or CW) regime
see Sect. 1.5.6 and Fig. 1.29b. Above the threshold of the spasing, the population
inversion of the gain medium is clamped at a rather low level n21 ∼ 1 %. The
corresponding net amplification in the CW spasing regime is exactly zero, which is
a condition for the CW regime. This makes the complete loss compensation and its
overcompensation impossible in a dense resonant metamaterial where the feedback
is created by the internal inhomogeneities (including its periodic structure) and the
facets of the system.

Because the loss (over) compensation condition (1.103), which is also the spasing
condition, is geometry-independent, it is useful to illustrate it for commonly used
plasmonic metals, gold and silver whose permittivity we adopt from Ref. [32]. For
the gain medium chromophores, we will use a reasonable set of parameters: Γ12 =
5 × 1013 s−1 and d12 = 4.3 × 10−18 esu. The results of computations are shown
in Fig. 1.31. (Note that this figure expresses a condition of spasing equivalent to
that of Fig. 1.28). For silver as a metal and nc = 6 × 1018 cm−3, the corresponding
lower (black) curve in panel (a) does not reach the value of 1, implying that no
full loss compensation is achieved. In contrast, for a higher but still very realistic
concentration of nc = 2.9 × 1019 cm−3, the upper curve in Fig. 1.31a does cross
the threshold line in the near-infrared region. Above the threshold area, there will be
the instability and the onset of the spasing. As Fig. 1.31b demonstrates, for gold the
spasing occurs at higher, but still realistic, chromophore concentrations.
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Fig. 1.31 Spasing criterion as a function of optical frequency ω. The straight line (red on line)
represents the threshold for the spasing and full loss compensation, which take place for the curve
segments above it. a Computations for silver. The chromophore concentration is nc = 6×1018 cm−3

for the lower curve (black) and nc = 2.9 × 1019 cm−3 for the upper curve (blue on line). The black
diamond shows the value of the spasing criterion for the conditions of Ref. [262]—see the text.
b Computations for gold. The chromophore concentration is nc = 3 × 1019 cm−3 for the lower
curve (black) and nc = 2 × 1020 cm−3 for the upper curve (blue on line)

1.5.8.2 Discussion of Published Research on Spasing and Loss Compensations

Now let us discuss the implications of these results for the research published recently
on the gain metamaterials. To carry out a quantitative comparison with Ref. [267],
we turn to Fig. 1.31a where the lower (black) curve corresponds to the nominal value
of nc = 6 × 1018 cm−3 used in Ref. [267]. There is no full loss compensation and
spasing. This is explained by the fact that Ref. [267] uses, as a close inspection
shows, the gain dipoles parallel to the field (this is equivalent to increasing nc by a
factor of 3) and the local field enhancement [this is equivalent to increasing nc by
a factor of (εh + 2)/3. Because the absorption cross section of dyes is measured
in the appropriate host media (liquid solvents or polymers), it already includes the
Lorentz local-field factor. To compare to the results of Ref. [267], we increase in
our formulas the concentration nc of the chromophores by a factor of εh + 2 to
nc = 2.9×1019 cm−3, which corresponds to the upper curve in Fig. 1.31a. This curve
rises above the threshold line exactly in the same (infra)red region as in Ref. [267].

This agreement of the threshold frequencies between our analytical theory and
numerical theory [267] is not accidental: inside the region of stability (i.e., in the
absence of spasing) both theories should and do give close results, provided that the
gain-medium transition alignment is taken into account, and the local field-factor is
incorporated. However, above the threshold (in the region of the overcompensation),
there should be spasing causing the population inversion clamping and zero net gain,
and not a loss compensation.

The complete loss compensation is stated in a recent experimental paper [298],
where the system is actually a nanofilm rather than a 3d metamaterial, to which
our theory would have been applicable. For the Rhodamine 800 dye used with
extinction cross section [299] σ = 2 × 10−16 cm2 at 690 nm in concentration
nc = 1.2 × 1019 cm−3, realistically assuming εd = 2.3, for frequency �ω = 1.7 eV,
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we calculate from Eq. (1.104) a point shown by the magenta solid circle in Fig. 1.31a,
which is significantly above the threshold. Because in such a nanostructure the local
fields are very non-uniform and confined near the metal similar to the spaser, they
likewise cause a feedback. The condition of Eq. (1.95) is likely to be well-satisfied
for Ref. [298]. Thus, the system may spase, which would cause the clamping of
inversion and loss of gain.

In contrast to these theoretical arguments, there is no evidence of spasing indicated
in the experiment [298], which can be explained by various factors. Among them,
the system of Ref. [298] is a gain-plasmonic nanofilm and not a true 3d material.
This system is not isotropic. Also, the size of the unit cell a ≈280 nm is significantly
greater than the reduced wavelength λ, which violates the quasistatic conditions and
makes the possibility of homogenization and considering this system as an optical
metamaterial problematic. This circumstance may lead to an appreciable spatial
dispersion. It may also cause a significant radiative loss and prevent spasing for
some modes.

We would also like to point out that the fact that the unit cell of the negative-
refracting (or, double-negative) metamaterial of Ref. [298] is relatively large, a ≈
280 nm, is not accidental. As follows from theoretical consideration of Ref. [300],
optical magnetism and, consequently, negative refraction for metals is only possible
if the minimum scale of the conductor feature (the diameter d of the nanowire)
is greater then the skin depth, d � ls ≈ 25 nm, which allows one to circumvent
Landau-Lifshitz’s limitation on the existence of optical magnetism [30, 300]. Thus,
a ring-type resonator structure would have a size �2ls (two wires forming a loop)
and still the same diameter for the hole in the center, which comes to the total
of �4ls ≈ 100 nm. Leaving the same distance between the neighboring resonator
wires, we arrive at an estimate of the size of the unit cell a � 8ls = 200 nm, which is,
indeed, the case for Ref. [298] and other negative-refraction “metamaterials” in the
optical region. This makes our theory not directly applicable to them. Nevertheless,
if the spasing condition (1.83) [or (1.85), or (1.104)] is satisfied, the system still may
spase on the hot-spot defect modes.

In an experimental study of the lasing spaser [260], a nanofilm of PbS quantum
dots (QDs) was positioned over a two-dimensional metamaterial consisting of an
array of negative split ring resonators. When the QDs were optically pumped, the
system exhibited an increase of the transmitted light intensity on the background of a
strong luminescence of the QDs but apparently did not reach the lasing threshold. The
polarization-dependent loss compensation was only ∼1 %. Similarly, for an array of
split ring resonators over a resonant quantum well, where the inverted electron-hole
population was excited optically [301], the loss compensation did not exceed ∼8 %.
The relatively low loss compensation in these papers may be due either to random
spasing and/or spontaneous or amplified spontaneous emission enhanced by this
plasmonic array, which reduces the population inversion.

A dramatic example of possible random spasing is presented in Ref. [262]. The
system studied was a Kretschmann-geometry SPP setup [302] with an added ∼1µm
polymer film containing Rodamine 6G dye in the nc = 1.2 × 1019 cm−3 concen-
tration. When the dye was pumped, there was outcoupling of radiation in a range
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of angles. This was a threshold phenomenon with the threshold increasing with the
Kretschmann angle. At the maximum of the pumping intensity, the widest range of
the outcoupling angles was observed, and the frequency spectrum at every angle
narrowed to a peak near a single frequency �ω ≈ 2.1 eV.

These observations of Ref. [262] can be explained by the spasing where the
feedback is provided by roughness of the metal. At the high pumping, the localized
SPs (hots spots), which possess the highest threshold, start to spase in a narrow
frequency range around the maximum of the spasing criterion—the left-hand side of
Eq. (1.103). Because of the sub-wavelength size of these hot spots, the Kretschmann
phase-matching condition is relaxed, and the radiation is outcoupled into a wide
range of angles.

The SPPs of Ref. [262] excited by the Kretschmann coupling are short-range SPPs,
very close to the antisymmetric SPPs. They are localized at subwavelength distances
from the surface, and their wave length in the plane is much shorter the ω/c. Thus
they can be well described by the quasistatic approximation and the present theory
is applicable to them. Substituting the above-given parameters of the dye and the
extinction cross section σe = 4×10−16 cm2 into Eq. (1.104), we obtain a point shown
by the black diamond in Fig. 1.31, which is clearly above the threshold, supporting our
assertion of the spasing. Likewise, the amplified spontaneous emission and, possibly
spasing, appear to have prevented the full loss compensation in a SPP system of
Ref. [274]. Note that recently, random spasing for rough surfaces surrounded by dye
gain media was shown experimentally in two independent observations [281, 303].

Note that the long-range SPPs of Ref. [277] are localized significantly weaker (at
distances ∼λ) than those excited in Kretschmann geometry. Thus the long-range
SPPs experience a much weaker feedback, and the amplification instead of the
spasing can be achieved. Generally, the long-range SPPs are fully electromagnetic
(non-quasistatic) and are not describable in the present theory. Similarly, relatively
weakly confined, full electromagnetic are symmetric SPP modes on thin gold strips
in Ref. [288] where the amplification has been demonstrated.

As we have already discussed in conjunction with Fig. 1.28, the spasing is readily
achievable with the gain medium containing common DBGSs or dyes. There have
been numerous experimental observations of the spaser. Among them is a report of a
SP spaser with a 7-nm gold nanosphere as its core and a laser dye in the gain medium
[252], observations of the SPP spasers (also known as nanolasers) with silver as a
plasmonic-core metal and DBGS as the gain medium with a 1d confinement [253,
256], a tight 2d confinement [254], and a 3d confinement [255]. There also has been a
report on observation of a SPP microcylinder spaser [304]. A high efficiency room-
temperature semiconductor spaser with a DBGS InGaAS gain medium operating
near 1.5µm (i.e., in the communication near-ir range) has been reported [256].

The research and development in the area of spasers as quantum nano-generators
is very active and will undoubtedly lead to further rapid advances. The next in line
is the spaser as an ultrafast nanoamplifier, which is one of the most important tasks
in nanotechnology.

In contrast to this success and rapid development in the field of spasing and
spasers, there has so far been a comparatively limited progress in the field of loss
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compensation by gain in metamaterials, which is based on the same principles of
quantum amplification as the spaser. This status exists despite a significant effort
in this direction and numerous theoretical publications, e.g., [267, 305]. There has
been so far a single, not yet confirmed independently, observation of the full loss
compensation in a plasmonic metamaterial with gain [298].

In large periodic metamaterials, plasmonic modes generally are propagating
waves (SPPs) that satisfy Bloch theorem [306] and are characterized by quasi-
wavevector k. These are propagating waves except for the band edges where
ka = ±π , where a is the lattice vector. At the band edges, the group velocity
vg of these modes is zero, and these modes are localized, i.e., they are SPs. Their
wave function is periodic with period 2a, which may be understood as a result of
the Bragg reflection from the crystallographic planes. Within this 2a period, these
band-edge modes can, indeed, be treated quasistatically because 2a � ls, λ. If any
of the band-edge frequencies is within the range of compensation [where the condi-
tion (1.83) [or, (1.85)] is satisfied], the system will spase. In fact, at the band edge,
this metamaterial with gain is similar to a distributed feedback (DFB) laser [307].
It actually is a DFB spaser, which, as all the DFB lasers, generates in a band-edge
mode.

Moreover, not only the SPPs, which are exactly at the band edge, will be localized.
Due to unavoidable disorder caused by fabrication defects in metamaterials, there
will be scattering of the SPPs from these defects. Close to the band edge, the group
velocity becomes small, vg → 0. Because the scattering cross section of any wave is
∝ v−2

g , the corresponding SPPs experience Anderson localization [308]. Also, there
always will be SPs nanolocalized at the defects of the metamaterial, whose local
fields are hot spots—see Fig. 1.10 and, generally, Sect. 1.3.5 and the publications
referenced therein. Each of such hot spots within the bandwidth of conditions (1.83)
or (1.85) will be a generating spaser, which clamps the inversion and precludes the
full loss compensation.

Note that for a 2d metamaterial (metasurface), the amplification of the spontaneous
emission and spasing may occur in SPP modes propagating in plane of the structure,
unlike the signal that propagates normally to it as in Ref. [298].
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