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Abstract In 1985, David Makinson, together with Carlos Alchourron and Peter
Gärdenfors published an article, the now renowned “AGM paper”, that gave rise to
an entire new area of research: Belief Revision. The AGM paper set the stage for
studying belief revision and provided the first fundamental results in the area. There
was however one aspect of belief revision that was not addressed in the AGM paper:
iterated belief revision. Since 1985, there have been numerous attempts to tackle this
problem. In this chapter, we shall review some of the most influential approaches to
the problem of iterated belief revision, and discuss their strengths and shortcomings.
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1 Introduction

Almost three decades ago, David Makinson, together with Carlos Alchourron and
Peter Gärdenfors published their classical work on the logic of theory change, the
renowned “AGM paper” Alchourron et al. (1985). From this paper the area of Belief
Revision was born and hundreds of future publications drew inspiration from it and
contributed to the development of the field. Yet in this survey we will not focus on
what the AGM did do, but rather on what it left out: iterated belief revision.

Let us set the stage with an example. Vasiliki is an archeologist participating in an
excavation of an ancient temple near Athens. One day her trowel hits on an ancient
Greek vase. The vase is a typical third century BC Greek vase. The design, the
painting, the archeological layer it was discovered in, all confirm without doubt that
the vase was made in Greece some 2300 years ago. The big surprise however came
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when Vasiliki looked inside the vase. A small stone tablet with Maya script inscribed
on it was lying inside! The discovery was mind-blowing. To the young enthusiastic
archeologist, eager to make a name for herself, this was without doubt concrete proof
that Columbus was not the first European to reach America. The ancient Greeks had
beat him by 1800 years! History books had to be rewritten! Vasiliki spent the night
thinking of all the changes that had to be made in our theories about ancient Greeks
(and perhaps ancient Mayas).

The theory developed by Alchourron, Gärdenfors, and Makinson, was designed
to address precisely these kind of scenarios. A rational agent receives new reliable
information ϕ that (in principle) contradicts her initial belief set K ; the agent is thus
forced to move to a new belief set K ∗ ϕ containing ϕ. Moreover, the new belief set
K ∗ ϕ has to be a rational change to K given ϕ. The inner workings of the transition
from K to K ∗ ϕ are studied and formalized in the AGM paper, setting the stage for
a plethora of exciting results to follow over the next three decades.

Yet, Vasiliki’s story doesn’t end here. The next day, Vasiliki tells her friend
Margarita of her discovery. Margarita was more cautious in her reaction. She tells
Vasiliki that the local museum is hosting an exhibition of ancient Mayan artifacts,
and that this may have something to do with her tablet. Still, Vasiliki refuses to make
the connection, and holds on to her theory of an ancient Greek Columbus. Yet her
theory survived only another few hours. On the 8 o’clock news that evening Vasiliki
finds out that the police had arrested a man who had confessed to having stolen an
ancient Greek vase and a Maya tablet from the local museum, both of which he had
hidden in a hole he dug at the very spot Vasiliki made her discovery.

Surprising as it may sound, the AGM paper doesn’t cater for Vasiliki’s later
revision. At first, this seems very strange. Since the AGM framework formalizes
correctly one-step belief revision, why can’t we use the AGMmodels for a sequence
of revisions, simply by treating such a sequence as a series of one-step revisions?
The short answer is that by doing so, we are essentially assuming that each one-step
revision in the series is independent from the rest, thus failing to capture the fact that
all these one-step revisions are performed by the same rational agent, and therefore
have to be related. The way that these one-step revisions are related to one-another
is a hot topic that has led to many interesting proposals, the most influential of which
we shall review in this survey.1

2 Preliminaries

Let us first fix some notation and terminology. Throughout this article we shall be
working with a propositional language L in which the agent’s beliefs as well as the
new information will be expressed.2 Sometimes we shall refer to L as the object
language.

1 There is some overlap between this article and an earlier survey of ours on belief revision Peppas
(2008).
2 We note that this assumption is made only to simplify the exposition; many of the approaches
discussed herein can work, at least technically, in a more general setting.
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For a set of sentences � of L , we denote by Cn(�) the set of all logical
consequences of �, i.e. Cn(�) = {ϕ ∈ L: � � ϕ}. A theory K of L is any set
of sentences of L closed under �, i.e. K = Cn(K ). We shall denote the set of all
theories of L by �L . A theory K of L is complete iff for all sentences ϕ ∈ L , ϕ ∈ K
or ¬ϕ ∈ K . We shall denote the set of all consistent complete theories of L by �L .
For a set of sentences � of L , [�] denotes the set of all consistent complete theories
of L that contain �. Often we shall use the notation [ϕ] for a sentence ϕ ∈ L , as an
abbreviation of [{ϕ}]. For a theory K and a set of sentences � of L , we shall denote
by K + � the closure under � of K ∪ �, i.e. K + � = Cn(K ∪ �). For a sentence
ϕ ∈ L we shall often write K +ϕ as an abbreviation of K +{ϕ}. Finally, the symbols
� and ⊥ will be used to denote an arbitrary (but fixed) tautology and contradiction
of L respectively.

3 The AGM Postulates for Belief Revision

In the AGM paradigm the process of belief revision is modeled as a function ∗
mapping a theory K and a sentence ϕ to a new theory K ∗ ϕ. Of course certain
constraints need to be imposed on ∗ in order for it to capture the notion of rational
belief revision correctly. A guiding intuition in formulating these constraints has
been the principle of minimal change according to which a rational agent ought to
change her beliefs as little as possible in order to (consistently) accommodate the
new information.

In Gärdenfors (1984), a set of eight postulates, known as the AGM postulates for
belief revision,3 which are now widely regarded to have captured much of what is
the essence of rational belief revision:

(K ∗ 1) K ∗ ϕ is a theory of L .
(K ∗ 2) ϕ ∈ K ∗ ϕ.
(K ∗ 3) K ∗ ϕ ⊆ K + ϕ.
(K ∗ 4) If ¬ϕ 	∈ K then K + ϕ ⊆ K ∗ ϕ.
(K ∗ 5) If ϕ is consistent then K ∗ ϕ is also consistent.
(K ∗ 6) If � ϕ ↔ ψ then K ∗ ϕ = K ∗ ψ .
(K ∗ 7) K ∗ (ϕ ∧ ψ) ⊆ (K ∗ ϕ) + ψ .
(K ∗ 8) If ¬ψ 	∈ K ∗ ϕ then (K ∗ ϕ) + ψ ⊆ K ∗ (ϕ ∧ ψ).

Any function ∗ : �L × L �→ �L satisfying the AGM postulates for revision
(K ∗1)–(K ∗8) is called an AGM revision function . The first six postulates (K ∗1)–
(K ∗6) are known as the basic AGM postulates (for revision), while (K ∗7)–(K ∗8)
are called the supplementary AGM postulates.

Postulate (K ∗ 1) says that the agent, being an ideal reasoner, remains logically
omniscient after she revises her beliefs. Postulate (K ∗ 2) says that the new infor-

3 Although these postulates where first proposed byGärdenfors alone, theywere extensively studied
in collaboration with Alchourron and Makinson (1985); thus their name.
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mation ϕ should always be included in the new belief set. (K ∗ 2) places enormous
faith on the reliability of ϕ. The new information is perceived to be so reliable that it
prevails over all previous conflicting beliefs, no matter what these beliefs might be.
Postulates (K ∗3) and (K ∗4) viewed together state that whenever the new informa-
tion ϕ does not contradict the initial belief set K , there is no reason to remove any
of the original beliefs at all; the new belief state K ∗ ϕ will contain the whole of K ,
the new information ϕ, and whatever follows from the logical closure of K and ϕ

(and nothing more). Essentially (K ∗ 3) and (K ∗ 4) express the notion of minimal
change in the limiting case where the new information is consistent with the initial
beliefs. (K ∗ 5) says that the agent should aim for consistency at any cost; the only
case where it is “acceptable” for the agent to fail is when the new information in itself
is inconsistent (in which case, because of (K ∗ 2), the agent can’t do anything about
it). (K ∗ 6) is known as the irrelevance of syntax postulate. It says that the syntax
of the new information has no effect on the revision process; all that matters is its
content (i.e. the proposition it represents). Hence, logically equivalent sentences ϕ

and ψ change a theory K in the same way.
Finally, postulates (K ∗ 7) and (K ∗ 8) are best understood taken together. They

say that for any two sentences ϕ and ψ , if in revising the initial belief set K by ϕ

one is lucky enough to reach a belief set K ∗ ϕ that is consistent with ψ , then to
produce K ∗ (ϕ ∧ ψ) all that one needs to do is to expand K ∗ ϕ with ψ ; in symbols
K ∗ (ϕ ∧ ψ) = (K ∗ ϕ) + ψ . The motivation for (K ∗ 7) and (K ∗ 8) comes again
from the principle of minimal change. The rationale is (loosely speaking) as follows:
K ∗ϕ is a minimal change of K to include ϕ and therefore there is no way to arrive at
K ∗ (ϕ ∧ ψ) from K with “less change”. In fact, because K ∗ (ϕ ∧ ψ) also includes
ψ one might have to make further changes apart from those needed to include ϕ. If
however ψ is consistent with K ∗ ϕ, these further changes can be limited to simply
adding ψ to K ∗ ϕ and closing under logical implications—no further withdrawals
are necessary.

As alreadymentioned, theAGMpostulates arewidely accepted as soundproperties
of rational belief revision. Notice however that all postulates refer to a single belief
set K ; no constraints are placed to relate future revisions with past ones.4 We will
have more to say about this in Sect. 5.

For the sake of readability from now on we shall restrict our attention only to
revision by consistent epistemic input ϕ; i.e. we assume 	� ¬ϕ. We note however
that most approaches discussed herein can also deal with the limiting case of revising
by an inconsistent sentence.

4 Epistemic Entrenchment

Suppose that two different rational agents hold the same beliefs K and they receive
the same information ϕ. Will the two agents revise K in the same way? The answer
in general is no. The reason is that extra-logical factors come into play that may lead

4 Although (K ∗ 7) and (K ∗ 8) seem to relate different belief sets, as will become apparent from
the constructive models later on, this is not really the case.
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the agents to respond differently to ϕ. Hence the AGM postulates do not determine a
single rational revision function but a whole family of them. The choice of the “right”
function for a particular scenario depends on the extra-logical factors mentioned
above (seeGärdenfors andMakinson (1988), Peppas (2008) for details). These extra-
logical factors essentially assign an epistemic value to the agent’s individual beliefs
which determine their fate during revision.

Considerations like these led Gärdenfors and Makinson (1988) to introduce the
notion of epistemic entrenchment as a means of encoding the extra-logical factors
that are relevant to belief revision. We note that originally epistemic entrenchment
was introduced as a constructive model for another type of belief change called,
belief contraction. Nevertheless because of the close connection between belief con-
traction and belief revision (see Gärdenfors and Makinson (1988), Peppas (2008)
for details), epistemic entrenchment can also be regarded as a constructive model of
belief revision and this is how we shall treat it herein.

Intuitively, the epistemic entrenchment of a belief ψ is the degree of resistance
that ψ exhibits to change: the more entrenched ψ is, the less likely it is to be swept
away during revision by some other belief ϕ. Formally, epistemic entrenchment is
defined as a preorder ≤ on L satisfying the following axioms:

(EE1) If ϕ ≤ ψ and ψ ≤ χ then ϕ ≤ χ .
(EE2) If ϕ � ψ then ϕ ≤ ψ .
(EE3) ϕ ≤ ϕ ∧ ψ or ψ ≤ ϕ ∧ ψ .
(EE4) When K is consistent, ϕ 	∈ K iff ϕ ≤ ψ for all ψ ∈ L .
(EE5) If ψ ≤ ϕ for all ψ ∈ L , then � ϕ.

Axiom (EE1) states that ≤ is transitive. (EE2) says that the stronger a belief is
logically, the less entrenched it is. At first this may seem counter-intuitive. A closer
look however will convince us otherwise. Consider two beliefs ϕ andψ both of them
members of a belief set K , and such that ϕ � ψ . Then clearly, if one decides to
give up ψ one will also have to remove ϕ (for otherwise logical closure will bring
ψ back). On the other hand it is possible to give up ϕ and retain ψ . Hence giving up
ϕ produces less epistemic loss than giving up ψ and therefore the former should be
preferred whenever a choice exists between the two. Thus axiom (EE2). For axiom
(EE3) notice that, again because of logical closure, one cannot give up ϕ∧ψ without
removing at least one of the sentences ϕ or ψ . Hence either ϕ or ψ (or even both)
is at least as vulnerable as ϕ ∧ ψ during revision. We note that from (EE1)–(EE3) it
follows that ≤ is total; i.e. for any two sentences ϕ,ψ ∈ L , ϕ ≤ ψ or ψ ≤ ϕ.

The final two axioms deal with the two ends of this total preorder ≤, i.e. with its
minimal and its maximal elements. In particular, axiom (EE4) says that in the princi-
pal case where K is consistent, all non-beliefs (i.e. all the sentences that are not in K )

are minimally entrenched; and conversely, all minimally entrenched sentences are
non-beliefs. At the other end of the entrenchment spectrum we have all tautologies,
which according to (EE5) are the only maximal elements of ≤ and therefore the
hardest to remove.

Given a belief set K and an epistemic entrenchment ≤ associated with K (which
encodes all the extra-logical factors that are relevant to belief revision), we can fully
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Fig. 1 A System of Spheres
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determine the new belief set K ∗ ϕ for any epistemic input ϕ by means of the
following condition:

(E*) ψ ∈ K ∗ ϕ iff (ϕ → ¬ψ) < (ϕ → ψ).

Loosely speaking, (E*) can be interpreted as follows: the presence of a belief ψ

in K ∗ φ is fully determined by its epistemic entrenchment relative to its negation,
under the assumption ϕ. That is, ψ ∈ K ∗ φ iff assuming ϕ, the belief ψ is more
entrenched than its negation.

From the results obtained by Gärdenfors and Makinson in (1988) it follows that
the class of revision functions induced from epistemic entrenchments via (E*) cor-
responds precisely to the family of AGM revision functions (see also Rott (1991);
Peppas andWilliams (1995)). In other words, epistemic entrenchment is a sound and
complete model of the extra-logical factors relevant to AGM revision.

4.1 System of Spheres

Building on earlier work by Lewis (1973), Grove (1988), introduced another
constructive model for belief revision based on a structure called system of spheres.
Like an epistemic entrenchment, a systemof sphere is essentially a preorder.However
the objects being ordered are no longer sentences but consistent complete theories.

Given an initial belief set K a system of spheres centered on [K ] is formally
defined as a collection S of subsets of �L , called spheres, satisfying the following
conditions (see Fig. 1)5:

(S1) S is totally ordered with respect to set inclusion; that is, if V, U ∈ S then
V ⊆ U or U ⊆ V .

(S2) The smallest sphere in S is [K ]; that is, [K ] ∈ S, and if V ∈ S then [K ] ⊆ V .
(S3) �L ∈ S (and therefore �L is the largest sphere in S).

5 Recall that �L is the set of all consistent complete theories of L , and for a theory K of L , [K ]
is the set of all consistent complete theories that contain K .
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(S4) For every ϕ ∈ L , if there is any sphere in S intersecting [ϕ] then there is also
a smallest sphere in S intersecting [ϕ].

Intuitively a system of spheres S centered on [K ] represents the relative plausi-
bility of consistent complete theories, which in this context play the role of possible
worlds: the closer a consistent complete theory is to the center of S, the more plausi-
ble it is. Conditions (S1)–(S4) are then read as follows. (S1) says that any two worlds
in S are always comparable in terms of plausibility. Condition (S2) tells us that the
most plausible worlds are those compatible with the agent’s initial belief set K .
Condition (S3) says that all worlds appear somewhere in the plausibility spectrum.
Finally condition (S4), also known as the Limit Assumption, is of a more technical
nature. It guarantees that for any consistent sentence ϕ, if one starts at the outermost
sphere�L (which clearly contains a ϕ-world) and gradually progresses towards the
center of S, one will eventually meet the smallest sphere containing ϕ-worlds.6 The
smallest sphere in S intersecting [ϕ] is denoted c(ϕ). In the limiting case where ϕ is
inconsistent, c(ϕ) is defined to be equal to �L .

Suppose now that we want to revise K by a sentence ϕ. Intuitively, the rational
thing to do is to select the most plausible ϕ-worlds and define through them the new
belief set K ∗ ϕ:

(S*) K ∗ ϕ = ⋂
(c(ϕ) ∩ [ϕ])

Condition (S*) is precisely what Grove proposed as a means of constructing a
revision function ∗ from a system of spheres S. Moreover Grove proved that the
functions so constructed coincide with the functions satisfying the AGM postulates.
Hence, like an epistemic entrenchment, a system of spheres is also a sound and
complete model of the extra-logical factors relevant to belief revision.

Notice that there is an obvious connection between systems of spheres and pre-
orders on possible worlds. In particular, let us call a preorder≤ in �L inductive iff
every non-empty subset of �L has a minimal element. For any belief set K and
system of spheres S centered on [K ] we can derive an inductive total preorder on
possible worlds ≤ as follows:

(S≤) r ≤ r ′ iff every sphere of S containing r ′ also contains r .

If ∗ is the revision function (at K ) induced from S, then it is not hard to verify
that

(≤ ∗) K ∗ ϕ = min([ϕ],≤).7

Conversely, for any theory K and inductive total preorder≤whoseminimalworlds
are all the K -worlds, we can construct by means of the condition (≤ S) below, a
system of spheres S centered on [K ] such that the revision function ∗ induced from S
at K is identical to the revision function induced from≤ at K (via condition (≤ ∗)).

6 We note that the Limit Assumption is similar to smoothness as defined by Kraus et al. (1990),
also known as stoppering in Makinson (1994).
7 For a set of possible worlds V , min(V,≤) denotes the set of minimal worlds in V with respect to
≤; i.e. min(V,≤) = {r ∈ V : for all r ′ ∈ V , if r ′ ≤ r then r ≤ r ′}.
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Fig. 2 What we need for Iterated Belief Revision

(≤ S) V ∈ S iff there is an r ∈ �L such that V = {r ′ ∈ �L : r ′ ≤ r}.
Given the inter-definability of systems of spheres and inductive total preorders,

in the rest of the article we shall switch back and forth between the two as the need
arises. Moreover, for the rest of the article, all preorders are assumed to be inductive,
unless explicitly stated otherwise.

5 The Problem of Iterated Revision

As already noted, when a rational agent performs a sequence of revisions, the
individual steps in this sequence must somehow be related. Returning to the
introductory example, the fact that Vasiliki responded to her discovery of a Maya
tablet in an ancient Greek vase by adopting the belief of an ancient-Greek-Colombus
(rather than, say, that the tablet and the vase were fake), may very well be related to
her subsequent decision to hold on to this belief evenwhen facedwith the information
of a local museum displayingMaya artifacts. Unfortunately, the AGM postulates tell
us very little about the relationship between the individual steps of a sequence of
revisions.

The problem can be expressed more formally as follows. Consider a theory K
coupledwith a structure encoding extra-logical information relevant to belief change,
say, a system of spheres S centered on [K ]. Suppose that we now receive new
information ϕ, such that ϕ 	∈ K , thus leading us to the new theory K ∗ ϕ. Notice
that K ∗ ϕ is fully determined by S and ϕ, and moreover, as Grove has shown, the
transition from the old to the new belief set satisfies the AGM postulates. So far, so
good. This however is as far as the classical AGM paradigm can take us. If at this
point we receive further evidence ψ that is inconsistent with K ∗ ϕ (but not self-
contradictory), we have no means of producing K ∗ ϕ ∗ ψ . What we are missing is a
new system of spheres S′ associated with K ∗ ϕ that would determine our revision
policy at this point (see Fig. 2).8

Presumably, the new system of spheres S′ would be a rational offspring of S and
ϕ. Even if S′ in not fully determined by S and ϕ, it should at least be constrained

8 Notice that the original system of spheres S is centered on [K ], not on [K ∗ ϕ], and therefore
cannot be used to direct further revisions.
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by them. More generally, the problem of iterated revision is the problem of formu-
lating constraints that capture the dynamics of the structure used to encode one-step
revision policies (be it a system of spheres, an epistemic entrenchment, or any other
mathematical object with a similar function). The rest of this article reviews (some
of) the best known proposals.

6 Iterated Revision with Enriched Epistemic Input

Spohn (1988), was one of the first to address the problem of iterated belief revision,
and the elegance of his solution has influenced most of the proposals that followed.
This elegance however comes with a price; to produce the new preference structure
from the old one, Spohn requires as input not only the new information ϕ, but also
the degree of firmness by which the agent accepts the new information. Let us take
a closer look at Spohn’s solution (to simplify discussion, in this section we shall
consider only revision by consistent sentences on consistent theories).

To start with, Spohn uses a richer structure than a system of spheres to represent
the preference information related to a belief set K . He calls this structure an ordinal
conditional function (OCF). Formally, an OCF κ is a function from the set �L of
possible worlds to the class of ordinals such that at least one world is assigned the
ordinal 0. Intuitively, κ assigns a plausibility grading to possible worlds: the larger
κ(r) is for some world r , the less plausible r is.9 This plausibility grading can easily
be extended to sentences: for any consistent sentence ϕ, we define κ(ϕ) to be the
κ-value of the most plausible ϕ-world; in symbols, κ(ϕ) = min({κ(r) : r ∈ [ϕ]}).

Clearly, the most plausible worlds of all are those whose κ-value is zero. These
worlds define the belief set that κ is related to. In particular, we shall say that the
belief set K is related to the OCF κ iff K =

⋂{r ∈ �L: κ(r) = 0}. Given a theory
K and an OCF κ related to it, Spohn can produce the revision of K by any sentence
ϕ, as well as the new ordinal conditional function related to K ∗ ϕ. The catch is, as
mentioned earlier, that apart from ϕ, its degree of firmness d is also needed as input.
The new OCF produced from κ and the pair 〈ϕ, d〉 is denoted κ ∗ 〈ϕ, d〉 and it is
defined as follows10:

(CON) κ ∗ 〈ϕ, d〉(r) =
⎧
⎨

⎩

κ(r) − κ(ϕ) if r ∈ [ϕ]

κ(r) − κ(¬ϕ) + d otherwise

Essentially condition (CON) works as follows. Starting with κ , all ϕ-worlds are
shifted “downwards” against all ¬ϕ-worlds until the most plausible of them hit the
bottom of the rank; moreover, all ¬ϕ-worlds are shifted “upwards” until the most

9 In this sense an ordinal conditional function κ is quite similar to a system of spheres S: both are
formal devices for ranking possible worlds in terms of plausibility. However κ not only tells us
which of any two worlds is more plausible; it also tells us by how much is one world more plausible
than the other.
10 The left subtraction of two ordinals α, β such that α ≥ β, is defined as the unique ordinal γ such
that α = β + γ .
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Fig. 3 Spohn’s Conditionalization

plausible of them are at distance d from the bottom (see Fig. 3). Spohn calls this
process conditionalization (more precisely, the 〈ϕ, d〉-conditionalization of κ) and
argues that is the right process for revising OCFs.

Conditionalization is indeed intuitively appealing and has many nice formal
properties, including compliance with the AGM postulates11 (see Spohn 1988, Gär-
denfors 1988, Williams 1994). Moreover notice that the restriction of κ to [ϕ] and to
[¬ϕ] remains unchanged during conditionalization, hence in this sense the principle
of minimal change is observed not only for transitions between belief sets, but also
for their associated OCFs.

There are however other ways of interpreting minimal change in the context of
iterated revision.Williams (1994) proposes the process ofadjustment as an alternative
to conditionalization. Given an OCF κ , Williams defines the 〈ϕ, d〉—adjustment of
κ , which we denote by κ◦〈ϕ, d〉, as follows:

(ADJ) κ◦〈ϕ, d〉(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if r ∈ [ϕ], d > 0, and κ(r) = κ(ϕ)

d if r ∈ [¬ϕ], and κ(r) = κ(¬ϕ) or κ(r) ≤ d

κ(r) otherwise

Adjustment minimizes changes to the grades of possible worlds in absolute terms.
To see this, notice that in the principal case where κ(ϕ) > 0 and d > 0,12 the only ϕ-
worlds that change grades are the most plausible ones (wrt κ), whose grade becomes

11 That is, given an OCF κ and any d > 0, the function ∗ defined as K ∗ ϕ =
⋂{r ∈ �L :

κ ∗ 〈ϕ, d〉(r) = 0} satisfies the AGM postulates (K ∗ 1)–(K ∗ 8).
12 This is the case where the new information ϕ contradicts the original belief set (since κ(ϕ) > 0,
the agent originally believes ¬ϕ).
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zero. Moreover, the only¬ϕ-worlds that change grades are those with grades smaller
that d, or, if no such world exists, the minimal ¬ϕ-worlds whose grade becomes d.
Like conditionalization, adjustment satisfies all AGM postulates for revision. The
process of adjustment was further developed in Williams (1996) and Benferhat et al.
(2004), with the introduction of maxi-adjustment and disjunctive maxi-adjustment
respectively.

The entire apparatus of OCFs and their dynamics (conditionalization or adjust-
ment) can be reproduced using sentences rather than possible worlds as building
blocks. To this end,Williams (1994) defined the notion of ordinal epistemic entrench-
ments functions (OEF) as a special mapping from sentences to ordinals, intended to
encode the resistance of sentences to change: the higher the ordinal assigned to
sentence, the higher the resistance of the sentence. As the name suggests, an OEF is
an enriched version of an epistemic entrenchment (in the same way that an OCF is
an enriched version of a system of spheres). Williams formulated the counterparts
of conditionalization and adjustment for OEF and proved their equivalence with the
corresponding operation on OCFs.

In Nayak (1994), Nayak took this line of work one step further. Using the original
epistemic entrenchmentmodel to encode sentences resistance to change, he considers
the general problem of epistemic entrenchment dynamics. The novelty in Nayak’s
approach is that the epistemic input is no longer a simple sentence as in AGM, or
even a sentence coupled with a degree of firmness as in OCF dynamics, but rather
another epistemic entrenchment; i.e. an initial epistemic entrenchment ≤ is revised
by another epistemic entrenchment ≤′, producing a new epistemic entrenchment
≤ ∗ ≤′. Notice that because of (EE4) (see Sect. 4), an epistemic entrenchment
uniquely determines the belief set it relates to; we shall call this set the content
of an epistemic entrenchment. Hence epistemic entrenchment revision should be
interpreted as follows. The initial epistemic entrenchment ≤ represents both the
original belief set K (defined as its content) as well as the preference structure related
to K . The input ≤′ represents prioritized evidence: the content K ′ of ≤′ describes
the new information, while the ordering on K ′ is related (but not identical) to the
relative strength of acceptance of the sentences in K ′. Finally, ≤ ∗ ≤′ encodes both
the posterior belief set as well as the preference structure associated with it.

The construction of ≤ ∗ ≤′ is motivated by what is now known as lexicographic
revision, defined in terms of systems of spheres as follows.13 Consider two systems
of spheres S and S′, with the former representing the initial belief state, and the latter
the epistemic input. Let B1, B2, B3, . . . be the bands of S, and A1, A2, . . . the bands
of S′.14 The revision of S by S′ is defined to be the system of spheres composed by
the following bands (after eliminating the empty sets): A1 ∩ B1, A1 ∩ B2, A1 ∩
B3, . . . , A2 ∩ B1, A2 ∩ B2, A2 ∩ B3, . . .

13 There is a well known connection between a system of spheres S and an epistemic entrenchment
≤. In particular, the latter can easily be constructed from the former (while preserving the induced
revision function) as follows: ϕ ≤ ψ iff c(¬ϕ) ⊆ c(¬ψ), for all contingent ϕ,ψ ∈ L .
14 Loosely speaking, the bands of a system of spheres are the sets of worlds between successive
spheres.
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Nayak’s induced operators satisfy (a generalized version of) the AGM postulates
for revision. Compared to Williams’ OEFs dynamics, Nayak’s work is closer to
the AGM tradition (both use epistemic entrenchments to represent belief states and
plausibility is represented in relative rather than absolute terms). On the other hand
however, when it comes to the modeling epistemic input, Nayak departs even further
thanWilliams from the AGMparadigm; an epistemic entrenchment (used by Nayak)
is amuchmore complex structure than aweighted sentence (usedbyWilliams),which
in turn is richer than a simple sentence (used in the original AGM paradigm).

7 Iterated Revision with Simple Epistemic Input

This raises the question of whether a solution to iterated revision can be produced
using only the apparatus of the original AGM framework; that is, using epistemic
entrenchments (or systems of spheres or selection functions) to model belief states,
and simple sentences to model epistemic input.

7.1 The DP Approach and its Sequels

One of the most influential proposals to this end is the work of Darwiche and Pearl
(“DP” for short), (1997). The first important feature of this work is that, contrary
to the original approach of Alchourron, Gärdenfors and Makinson (but similarly to
Spohn (1988), Williams (1994), Nayak (1994)), revision functions operate on belief
states, not on belief sets. In the present context a belief state (also referred to as an
epistemic state) is defined as a belief set coupledwith a structure that encodes relative
plausibility (e.g., an epistemic entrenchment, a system of spheres, etc.). Clearly a
belief state is a richer model that a belief set. Hence it could well be the case that two
belief states agree on their belief content (i.e. their belief sets), but behave differently
under revision because of differences in their preference structures. For ease of
presentation, and although this is not required by Darwiche and Pearl, in the rest of
this section we shall identify belief states with systems of spheres; note that given a
system of spheres S we can easily retrieve its belief content–simply notice that c(�)

is the smallest sphere of S and therefore ∩c(�) is the belief set associated with S.15

We shall denote this belief set by B(S); i.e. B(S) =∩c(�). We may sometimes abuse
notation and write for a sentence ϕ that ϕ ∈ S instead of ϕ ∈ B(S).:

15 Recall that for any sentence ψ , c(ψ) denotes the smallest sphere in S intersecting [ψ].
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With these conventions, ∗ becomes a function that maps a system of spheres S
and a sentence ϕ, to a new system of spheres S ∗ ϕ. Darwiche and Pearl reformulated
the AGM postulates accordingly to reflect the shift from belief sets to belief states16:

(S*1) S ∗ ϕ is a system of spheres.
(S*2) ϕ ∈ B(S ∗ ϕ).
(S*3) B(S ∗ ϕ) ⊆ B(S + ϕ).
(S*4) If ¬ϕ 	∈ B(S) then B(S + ϕ) ⊆ B(S ∗ ϕ).
(S*5) If ϕ is consistent then B(S ∗ ϕ) is also consistent.
(S*6) If � ϕ ↔ ψ then B(S ∗ ϕ) = B(S ∗ ψ).
(S*7) B(S ∗ (ϕ ∧ ψ)) ⊆ B((S ∗ ϕ) + ψ).
(S*8) If ¬ψ 	∈ B(S ∗ ϕ) then B((S ∗ ϕ) + ψ) ⊆ B(S ∗ (ϕ ∧ ψ)).

With this background, Darwiche and Pearl introduced four additional postulates
to regulate iterated revisions17:

(DP1) If ϕ � χ then (S ∗ χ) ∗ ϕ = S ∗ ϕ.
(DP2) If ϕ � ¬χ then (S ∗ χ) ∗ ϕ = S ∗ ϕ.
(DP3) If χ ∈ S ∗ ϕ then χ ∈ B((S ∗ χ) ∗ ϕ).
(DP4) If ¬χ 	∈ S ∗ ϕ then ¬χ 	∈ B((S ∗ χ) ∗ ϕ).

Postulate (DP1) says that if the subsequent evidence ϕ is logically stronger than
the initial evidence χ then ϕ overrides whatever changes χ may have made. (DP2)
says that if two contradictory pieces of evidence arrive sequentially one after the
other, it is the latter that will prevail. Notice that according to (DP1) and (DP2),
the latter piece of evidence ϕ prevails in a very strong sense: ϕ fully determines,
not just the next belief set, but the entire next belief state (alias system of spheres),
overriding any effects that the former piece of evidence may have had in either of
them. (DP3) says that if revising S by ϕ causes χ to be accepted in the new belief
state, then revising first by χ and then by ϕ cannot possibly block the acceptance of
χ . Finally, (DP4) captures the intuition that “no evidence can contribute to its own
demise” Darwiche and Pearl (1997); if the revision of S by ϕ does not cause the
acceptance of ¬χ , then surely this should still be the case if S is first revised by χ

before revised by ϕ.
Apart from their simplicity and intuitive appeal, postulates (DP1)–(DP4) also

have a nice characterization in terms of systems-of-spheres dynamics. First however
some more notation: for a system of spheres S, we shall denote by ≤S the preorder
induced from S by (S ≤). Moreover <S denotes the strict part of ≤S .

Darwiche and Pearl proved that there is a one-to-one correspondence between
(DP1)–(DP4) and the following constraints on system-of-spheres dynamics:

(DPS1) If r, r ′ ∈ [ϕ] then r ≤S∗φ r ′ iff r ≤S r ′.

16 It should be noted that Darwiche and Pearl use different notation, and as already mentioned,
they leave open the representation of a belief state (it is not necessarily represented as a system of
spheres).
17 Like with (S*1)–(S*8), the original formulation of (DP1)–(DP4) is slightly different. Herein we
have rephrased the Darwiche and Pearl postulates in AGM notation.
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(DPS2) If r, r ′ ∈ [¬ϕ] then r ≤S∗φ r ′ iff r ≤S r ′.
(DPS3) If r ∈ [ϕ] and r ′ ∈ [¬ϕ] then r <S r ′ entails r <S∗φ r ′.
(DPS4) If r ∈ [ϕ] and r ′ ∈ [¬ϕ] then r ≤S r ′ entails r ≤S∗φ r ′.
Theorem 1 (Darwiche and Pearl 1997). Let S be a belief state and ∗ a revision
function satisfying the (DP-modified) AGM postulates. Then ∗ satisfies (DP1)–(DP4)
iff it satisfies (DPS1)–(DPS4) respectively.

In a way, Darwiche and Pearl were forced to make the shift from belief sets
to belief states, for otherwise, as pointed out by Lehmann (1995), (DP2) would
have conflicted with the AGM postulates.18 For instance, let p, q be propositional
variables, and define K = Cn(∅) and K ′ = Cn({p}). From (K ∗ 1)–(K ∗ 8) it
follows that K ′ ∗ ¬q = K ∗ (p ∧ ¬q). Therefore, (K ′ ∗ ¬q) ∗ q = (K ∗ (p ∧
¬q))∗q. On the other hand, from (DP2) we derive that (K ′ ∗¬q)∗q = K ′ ∗q, and
similarly, (K ∗ (p ∧ ¬q)) ∗ q = K ∗ q. Moreover from (K*1)–(K*8) it follows that
K ′ ∗ q = K ′ + q = Cn({p, q}), whereas, K ∗ q = K + q = Cn({q}). Hence,
(K ′ ∗ ¬q) ∗ q 	= (K ∗ (p ∧ ¬q)) ∗ q Contradiction.

Nayak et al. (2003), proposed another way to reconcile (DP2) with the AGM
postulates that does not requiremoving away frombelief sets. It does however require
two other changes to the original formulation of belief revision. Firstly, ∗ is defined
as a unary rather than a binary function, mapping sentences to theories. That is, each
theory K is assigned its own revision function which for any sentence ϕ produces
the revision of K by ϕ. We shall denote the unary revision function assigned to K by
∗K and the result of revising K by ϕ as ∗K (ϕ). This change in notation will serve as
a reminder of the unary nature of revision functions adopted in Nayak et al. (2003)
Notice that this reformulation of revision functions does not require anymodification
to the AGM postulates, since all of them refer only to a single theory K .

The second modification to revision functions proposed in Nayak et al. (2003)
is that they are dynamic; i.e. they could change as new evidence arrives. The impli-
cations of this modification are best illustrated in the following scenario. Consider
an agent whose belief set at time t0 is K0, and who receives a sequence of new
evidence ϕ1, ϕ2, . . . , ϕn and performs the corresponding n revisions that take him at
time tn to the belief set Kn . Suppose now that it so happens that Kn = K0; i.e. after
incorporating all the new evidence, the agent ended up with the theory she started
with. Because of the dynamic nature of revision functions in Nayak et al. (2003), it is
possible that the revision function assigned to K0 at time t0 is different from the one
assigned to it at time tn . Hence although the evidence ϕ1, ϕ2, . . . , ϕn did not change
the agent’s beliefs, they did alter her attitude towards new epistemic input.

These two modifications to revision functions take care of the inconsistency
between (DP2) and the AGM postulates when applied to belief sets. There is how-
ever another problem with (DP1)–(DP4) identified in Nayak et al. (2003). Nayak
et al. argue that (DP1)–(DP4) are also too permissive; i.e. there are revision func-
tions that comply with both the AGM and DP postulates and nevertheless lead to

18 Although it should be noted that Darwiche and Pearl argue that this shift is not necessitated by
technical reasons alone; conceptual considerations also point the same way.
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counter-intuitive results. Moreover, an earlier proposal by Boutilier (1993, 1996),
which strengthens (DP1)–(DP4) still fails to block the unintended revision functions
(and introduces some problems of its own–see Darwiche and Pearl (1997)). Hence
Nayak et al. proposed the following addition to (DP1)–(DP4) instead, called the
Conjunction Postulate :

(CNJ) If χ ∧ ϕ 	� ⊥, then ∗χ

∗K (χ)(ϕ) = ∗K (χ ∧ ϕ).

Some comments on the notation in (CNJ) are in order. As usual, K denotes the
initial belief set, and ∗K the unary revision function associated with it. When K is
revised by a sentenceχ , a new theory ∗K (χ) is produced. This however is not the only
outcome of the revision of K by χ ; a new revision function associated with ∗K (χ) is
also produced. This new revision function is denoted in (CNJ) by ∗χ

∗K (χ). The need
for the superscript χ is due to the dynamic nature of ∗ (as discussed earlier, along
a sequence of revisions, the same belief set may appear more than once, each time
with a different revision function associated to it, depending on the input sequence).

Postulate (CNJ) essentially says that if two pieces of evidence χ and ϕ are con-
sistent with each other, then it makes no difference whether they arrive sequentially
or simultaneously; in both cases the revision of the initial belief set K produces the
same theory.

Nayak et al. show that (CNJ) is consistent with both AGM and DP postulates, and
it blocks the counterexamples known at the time. In fact (CNJ) is strong enough to
uniquely determine (together with (K*1)–(K*8) and (DP1)–(DP4)) the new revision
function ∗χ

∗K (χ). A construction of this new revision function from ∗K and χ is given
in Nayak et al. (2003)

Yet, some authors have argued, Zhang (2004), Jin and Thielscher (2005), that
while (DP1)–(DP4) are too permissive, the addition of (CNJ) is too radical (at least
in some cases). Accordingly, Jin and Thielscher proposed a weakening of (CNJ),
which they call the Independence postulate Jin and Thielscher (2005, 2007). The
Independence postulate is formulated within the DP framework; that is, it assumes
that belief states rather than belief sets are the primary objects of change19:

(Ind) If ¬χ 	∈ S ∗ ϕ then χ ∈ B((S ∗ χ) ∗ ϕ).

The Independence postulate, apart from performing well in indicative examples
(see Jin and Thielscher (2005)), also has a nice characterization in terms of system
of spheres dynamics:

(IndR) If r ∈ [ϕ] and r ′ ∈ [¬ϕ] then r ≤S r ′ entails r <S∗φ r ′.

Theorem 2 (Jin and Thielscher 2005). Let S be a belief state and ∗ a revision
function satisfying the (DP-modified) AGM postulates. Then ∗ satisfies (Ind) iff it
satisfies (IndR).

19 It should be noted that (Ind) was also studied independently by Booth et al. (2005), Booth and
Meyer (2006).
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The Independence postulate can be shown to be weaker than (CNJ) and in view of
Theorems 1, 2, it is clearly stronger than (DP3) and (DP4). Jin and Thielscher show
that (Ind) is consistent with the AGM and DP postulates combined.

7.2 Conflicts

Despite the popularity of the DP approach and the remedies introduced to fix its
initial problems, their is still some controversy surrounding the DP postulates. One
of the latest criticisms comes in the form of a result proving that the DP postulates are
in conflict with another important aspect of belief revision; namely, the desideratum
that beliefs that are not relevant to the new information should be immune to the
revision process.

As noted by Parikh in (1999), the AGMpostulates are too liberal in their treatment
of relevance, and hence he proposed an extra postulate called (P) to supplement them
presented below. First some notation: for any sentence x, Lx denotes the (unique)
smallest language in which x can be expressed:

(P) If K = Cn(x ∧ y), where x, y are sentences of disjoint languages Lx , L y

respectively, and moreover ϕ ∈ Lx , then K ∗ ϕ = (Cn(x) ◦ ϕ) + y, where ◦ is
a revision function over the language Lx .

Hence (P) essentially says that, if the initial belief set can be split into two parts
x and y of disjoint languages Lx and L y , then the revision of K by any epistemic
input in Lx leaves the y-part of K unaffected. Although (P) may not tell the whole
story of relevance-sensitive belief revision, it is surely an intuitive first step.

At first glance postulate (P) appears to be unrelated to iterated revision and
consequently to the DP postulates. Yet, in Peppas et al. (2008), using the seman-
tics of (P) developed in Peppas et al. (2004), proved that (P) is in conflict with each
one of the DP postulates:

Theorem 3 (Peppas et al. 2008). In the presence of the AGM postulates, postulate
(P) is inconsistent with each one of the postulates (DP1)–(DP4).

It should be noted that according to the above result, the DP postulates are in
conflict with (P) not only as a whole, but also in isolation. Of course Theorem 3 can
be interpreted as a liability for axiom (P) rather than the DP postulates. Nevertheless,
until the issue is settled, the DP postulates (and axiom (P)) remain contestable.

7.3 Enriched Epistemic States

Next we turn to two approaches to Iterated Belief Revision that, while keeping the
epistemic input simple, use richer structures to model epistemic states.
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Fig. 4 Distances Between
Possible Worlds

The first is a distance-based approach by Lehmann, Magidor, and Schlechta (or
LMS for short), Lehmann et al. (2001). The LMS proposal is based on a simple and
very intuitive idea: introduce an priori notion of distance d between possible worlds,
and use d to derive the preorders associated with the initial belief set K as well as
with all future belief sets resulting from K via iterated revisions. Formally, d is a
function that maps any two possible worlds r and r ′ to a real number d(r, r ′)20 which
is to be interpreted as a measure of how far away r ′ looks from the standpoint of r .

Let us take a concrete example to illustrate the LMS approach. Suppose that the
object language L is built from two propositional variables p and q, that give rise
to four possible worlds r0 = Cn({p, q}), r1 = Cn({p, q}), r2 = Cn({p, q}), and
r3 = Cn({p, q}).21 Moreover assume that the distance d between these worlds is
the Euclidean distance between the corresponding points in Fig. 4.

Suppose that the initial belief state is r0. Then according to Fig. 4, theworld closest
to r0 is r1, followed by the worlds r2, r3 which are equidistant from r0. Hence the
preorder associated with r0 is r0 ≤ r1 ≤ r2, r3. Future preorders can likewise be
derived. If for example r0 is revised by p, the new preorder ≤′ associated with r0 ∗ p
is r2, r3 ≤′ r1 ≤′ r0.22 More generally, the preorder ≤ derived from a distance d
which is associated with a belief set K , can be defined as follows:

(d≤) r ≤ r ′ iff there is a w ∈ [K ] such that, for all w′ ∈ [K ], d(w, r) ≤ d(w′, r ′).
LMS assume very little about the properties of the distance function d. In fact

they assume even less that what are generally considered reasonable properties of
distance, committing themselves only to the following assumption:

(d1) d(r, r ′) = 0 iff r = r ′.
If in addition to (d1), d satisfies the property (d2) below, it is called symmetric:

20 Distance between possible worlds does not have to be expressed in terms of real numbers; this
is an assumption made herein for simplicity.
21 For any propositional variable x , by x we denote the negation of x .
22 The distance between a world r and a set of worlds V can be defined as the smallest distance
between r and a world in V . Hence, according to Fig. 4, the closest world to {r2, r3} is r1 followed
by r0.
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(d2) d(r, r ′) = d(r ′, r).

It can be shown that under property (d1) alone, all revision functions induced
from distance functions d satisfy the AGM postulates. The converse however is not
true; there exist AGM revision functions that cannot be constructed by any distance
function. Lehmann,Magidor, and Schlechta provided an exact characterization of the
class of AGM functions that can be constructed from distance functions. Herein we
shall present only the representation result related to symmetric distance functions,
and only for the special case of finitary propositional languages (i.e. propositional
language L built from finitely many propositional variables). For similar results on
more general cases, the reader is referred to Lehmann et al. (2001).

When the object language L is finitary, any theory K can be represented as the
logical closure of a single sentence (i.e. all theories are finitely axiomatizable). Hence
for condition (d*) below, we shall abuse notation and extend the application of the
disjunction operator to theories with the understanding that for any two theories K
and K ′, K ∨ K ′ denotes the disjunction of sentences χ and χ ′ whose logical closure
equals K and K ′ respectively.

(d *) If K0 is consistent with K1 ∗ (K0∨K2), K1 is consistent with K2 ∗ (K1∨K3),
. . . , and, Kn−1 is consistent with Kn ∗ (Kn−1 ∨ K0), then K1 is consistent
with K0 ∗ (Kn ∨ K1)

Theorem 4 (Lehmann et al. 2001). An AGM revision function ∗ can be constructed
from a symmetric distance function d over possible worlds, iff ∗ satisfies (d*).

The key feature of the LMS approach is the use of a belief-set-independent
meta-structure, namely a distance function d, to derive all preorders necessary to
guide present and future revisions. Recently, Booth and Meyer (2011) also devel-
oped such a meta-structure with similar aims, which however is quite different from
a distance function.

The basic idea in Booth and Meyer (2011), is to construct for each possible world
r , a “positive” and “negative” clone, denoted r+ and r− respectfully. The set of
all such “signed” possible worlds is denoted by �L±; moreover, �L+ and �L−
denote the sets of positively and negatively signed possible worlds respectfully (and
hence �L± = �L+ ∪ �L−).

The intuition behind signed possible worlds is given by the following passage
from Booth and Meyer (2011):

. . .whenwe compare two different worlds x and y according to preference, often we are able
to imagine different contingencies, according to whether all goes well in x and y or not. Our
idea is to associate to each world x two abstract objects x+ and x−, with the intuition that
x+ represents x in positive circumstances, while x− represents x in negative circumstances.

Against this background, Booth and Meyer introduced a preorder � over signed
worlds, which is the meta-structure alluded to above. In particular � is defined as a
total preorder in �L± such that for all possible worlds r, w,

(� 1) r+ ≺ r−
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Fig. 5 Signed Possible
Worlds

(� 2) r+ � w+ iff r− � w−

Let us call a total preorder in�L± that satisfies (� 1)–(� 2) a signed preorder.23

Signed preorders provide the model proposed by Booth and Meyer for epistemic
states.

The best way to understand a signed preorder � and its role in iterated revision is
through a graphical representation proposed inBooth andMeyer (2011). Suppose that
each possible world r is represented by a “stick” of a fixed length whose left and right
endpoints correspond to r+ and r− respectively (Fig. 5). The sticks are positioned in
such a way as to reflect the preorder � over the endpoints. For instance, from Fig.5
it follows that r+

1 ≈ r+
2 ≺ r+

3 ≺ r+
4 ≺ r+

5 , and r−
1 ≈ r−

2 ≈ r+
4 ≺ r−

3 .
From the preorder � over signed worlds, one can extract a preorder ≤ over plain

worlds, essentially by taking the projection of � over �L+. More formally, ≤ is
defined as total preorder in �L , constructed from � as follows:

(Def-≤) For all r, w ∈ �L , r ≤ w iff r+ � w+

The preorder ≤ extracted from � plays the role of a system of spheres.24 Hence,
the minimal worlds wrt ≤ define the agent’s current beliefs K , and for any epistemic
input ϕ, the revision of K by ϕ is defined as K ∗ϕ = ⋂

(min([ϕ],≤)). As for the rest
of�, it is used to determine the preorder associated with the revised belief set K ∗ ϕ.
In particular, depending on whether a world r satisfies the new evidence ϕ or not,
its plausibility relative to the new belief set K ∗ ϕ is identified with the plausibility
of its positive or negative clone respectively. More formally, let ϑϕ(r) denote r+ if
r � ϕ, and r− otherwise. Then the preorder ≤′ associated with the revised belief set
K ∗ ϕ is defined as follows:

(Def-≤′) For all r, w ∈ �L , r ≤′ w iff ϑϕ(r) � ϑϕ(w).

There are two features of the above approach to iterated revision, let us call it the
BM approach, that should be noted.25 Firstly, the new information ϕ is not always

23 This is not the name used in Booth and Meyer (2011). In fact the overall exposition herein is
slightly different from Booth and Meyer (2011), but the essence remains the same.
24 As already noted, a system of spheres is just another way of representing a total preorder on
possible worlds.
25 The BM approach has also been characterized axiomatically in Booth and Meyer (2011).
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included in the revised belief set K ∗ ϕ; this places the BM approach in the realm
of non-prioritized belief revision Hansson (1998). Secondly, the BM approach still
comes short of a complete solution to the problem of iterated belief revision. In
particular, notice that while the signed preorder � associated with the initial belief
set K , fully determines the system of spheres related to K , as well as the system of
spheres associated with K ∗ ϕ (for any input ϕ), it doesn’t go any further than that;
systems of spheres associated with future belief sets K ∗ ϕ ∗ ψ remain unknown.
What is needed to complete the picture is a method of cascading the signed preorder
� to future belief sets. Booth and Meyer have already made important steps in this
direction, Booth and Meyer (2011).

8 Other Approaches

The models discussed so far are among the most influential in the iterated revision
literature. Other important works on the subject are briefly presented in this section
(although the list is far from complete).

Ferme’s and Rott’s approach to iterated belief revision, Ferme and Rott (2004),
can loosely speaking be described as follows. Let ≤ be a total preorder on possible
worlds representing the agent’s initial belief state, and let ϕ be the new information
received by the agent. Like Spohn, Ferme and Rott require information about the
firmness of ϕ, in addition to ϕ itself. Unlike Spohn however, firmness is not specified
as an ordinal number (which Ferme and Rott argue is intuitively unclear), but through
a reference sentence ψ . In particular, the epistemic input comes as a pair of sentences
(ϕ, ψ) which essentially instructs the agent to revise the initial belief state ≤ in such
a way so that at the new belief state ≤′, not only is ϕ accepted, but it is accepted with
the same firmness as ψ (i.e. ϕ, ψ are equally entrenched). This can be achieved as
follows. Let r¬ψ denote any minimal ¬ψ-world wrt ≤. Ferme and Rott construct ≤′
from ≤ by moving all ¬ϕ-worlds to the left of r¬ψ , at the same layer as r¬ψ .26 The
approach is intuitively appealing and hasmany nice features. At the same time, it also
has a number of shortcomings (for example, the preorders tend to become coarser,
which among other things entails that one “can never build up an informative belief
state from the state of complete ignorance” Ferme and Rott (2004)).

In Delgrande and Schaub (2003), propose a constructive approach to belief revi-
sion that includes a solution to the problem of iterated revision as a by-product. In
particular, for a theory K and a sentence ϕ, the revision of K by ϕ is constructed as
follows. Firstly, a new theory K ′ is built from K by replacing every atom p with a
new atom p′. Observe that ϕ is consistent with K ′ (even if it is inconsistent with K )

since the two are expressed in terms of disjoint languages. Starting with the (consis-
tent) set K ′ ∪ {ϕ}, one goes through the list of original atoms p and corresponding
new atoms p′, progressively adding assertions of the form p ≡ p′ for as long as

26 That is, all ¬ϕ-worlds that are initially strictly more plausible than r¬ψ , are placed at the same
level as r¬ψ .
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consistency is maintained. Let us denote by E Q a maximal set of such assertions
p ≡ p′ that can be consistently added to K ′ ∪ {ϕ}. Delgrande and Schaub define the
revision of K by ϕ as the projection of Cn(K ′ ∪{ϕ}∪{E Q}) to the original language
of K . If there is more than one maximal set of assertions E Q that is consistent with
K ′ ∪ {ϕ}, we can either use one of them (chosen by a selection function), or take the
intersection of Cn(K ′ ∪ {ϕ} ∪ {E Q}) for all such E Qs. The former is called choice
revision and the latter skeptical revision.27 Observe that since K ∗ ϕ is defined for
every K and ϕ, this approach provides a solution both for one-step and for iterated
belief revision.

In Delgrande et al. (2006), take a different approach to iterated revision. Given an
initial belief baseϕ0, and a sequenceof observationsϕ1;ϕ2; . . . ;ϕn , the revisionofϕ0
by the sequence is defined as theprioritized mergingof themultiset {(ϕ0, r0), (ϕ1, r1),
. . . , (ϕn, rn)}, where each ri represents the reliability degree of the corresponding
sentence ϕi . Observe that in the special case where r0 < r1 < · · · < rn , prioritized
merging conforms with an assumption widely used in the iterated revision literature:
recent observations are assumed to have priority over earlier ones. Delgrande, Dubois
and Lang prove that most of the well known postulates for iterated revision (except
(DP2)) are consequences of the postulate they propose for prioritized merging.

All theworks discussed so far assume that the agent under consideration is situated
in a staticworld. Recently, iterated belief revision has also been studied in the context
of a dynamic environment. In particular, consider an agent operating in a world that
changes due to actions taken by the agent herself or by other agents. Let us denote
by K the agent’s beliefs about the initial state of the world. If the agent is informed
of an action that brought about ϕ, she has to modify K accordingly via a process
known as belief update.28 Moreover, in addition to actions that change the state of the
world (ontic actions), there are also sensing actions, throughwhich the agent acquires
information about the world without changing it. The effects of sensing actions are
modeled in terms of belief revision. We note that some sensing actions can indirectly
reveal information about pastworld states, leading to an interesting interplay between
alternating revisions and updates. Such scenarios have been studied by Hunter and
Delgrande (2005, 2007), as well as by Shapiro et al. (2000) (the latter in the context
of situation calculus).

In a different direction, considerations related to iterated belief revision are starting
to be studied in a dynamic epistemic logic setting Baltag and Smets (2009). Finally,
there is also important work on iterated contraction (see for example Chopra et al.
(2008), Ramachandran et al. (2012)).

27 It should be noted that the selection function employed in choice revision, does not depend on
the initial belief set K .
28 See Katsuno and Mendelzon (1991) for a formal treatment of belief update and its difference
from belief revision.
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9 Conclusion

Important steps have been made towards a general solution to the problem of iterated
revision. On the other hand, there is still some controversy over the appropriateness
of the proposed approaches and no signs of convergence towards a “standard” model
(like AGM is for one-step revision).

Part of the reason for this has to do with the lack of consensus over the “right”
input for iterated revision. As we have seen in this survey, input can vary from being
a plain sentence, to a sentence coupled with an ordinal number, to an entire preorder
on sentences.29

A second source of difficulty in the way that most proposals in the literature
approach the problem of iterated revision is the following. To solve the problem of
iterated revision (regardless of the type of input we employ) one will ultimately have
to specify a relationship between the meta-structure U that guides one-step revisions
at the initial time-point, with the meta-structure U ′ resulting after revision.30 Any
solution that uniquely determines U ′ from U and the epistemic input, runs the risk of
not being general enough. On the other hand, if U ′ in not fully determined from U
and the epistemic input, then a meta-meta-structure is needed to select between the
different options for U ′. This however leads to a vicious circle since one would then
have to develop a model for the dynamics of the meta-meta-structures (with similar
problems to confront).

Clearly, there are still important pieces missing from the puzzle of iterated belief
revision. One should treat this as an opportunity rather than a liability: exciting new
results on the subject are waiting to be discovered!
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