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                    It was the HC [Handsome Cognitivist]’s view that almost nothing reduces to almost 
anything else. To say that the world is so full of a number of things was, he thought, putting 
it mildly; for the HC, every day was like Christmas in Dickens, ontologically speaking. 
In fact, far from wishing to throw old things out, he was mainly interested in turning new 
things up. “Only collect”, the HC was often heard to say. (Fodor,  1985 , p. 1) 

     This book is about how we should go about modelling learners and learning in 
science education, and earlier in the book (Chap.   3    ) it was suggested that a wide 
range of entities have been posited as components of human minds – and so poten-
tially components of our models of learning. As Fodor mischievously   suggests, there 
is a sense in which the cognitive perspective invites the inclusion of a wide range of 
types of ‘things’ in minds. These entities include, inter alia, concepts, conceptions, 
schemata, mental models, etc. As I have previously observed, the challenge for the 
research programme is ‘to develop models which are capable of explaining all the 
existing empirical content of the research area (which seems to require a multilevel, 
diversely populated cognitive system) but which are still able to offer useful falsifi -
able predictions to allow empirical testing’ (Taber,  2009b , p. 318). 

        Who Ordered That? An Analogy with Particle Physics 

 Indeed the situation seems somewhat analogous to the situation in physics as the 
twentieth century proceeded, and newly discovered subatomic particles were 
regularly added to the physicists’ ‘particle zoo’. The simple model of protons, 
electrons and neutrons became supplemented by neutrinos, muons, quarks, etc. that 
physicists sought to ‘tame’ by fi nding a subsuming pattern refl ecting a simpler 
underlying order:

  The muon … was a particle beyond the standard model of physics at the time and …The 
central question “Who ordered that” was raised by I. I. Rabi when in 1947 the nature of 
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the muon as a lepton became known – a particle which differs in all its behavior from the 
electron only by its mass. Up to now, this basic question why there is a second (and third) 
generation of particles is a strong driving force behind all modern (particle) physics. 
(Jungmann,  2001 , p. 463) 

   A fundamental commitment to expecting nature to be at some level ordered and 
simple (see Chap.   15     for a consideration of scientifi c commitments and worldviews) 
directed scientists to develop testable models of what that assumed order might be. 
Whilst this programme is still active, it is widely thought that considerable progress 
has been made through following (what Lakatos,  1970  might have described as) the 
positive heuristic developed from the hard-core assumption that the messy diversity 
of the particle zoo refl ected a simpler underlying order. 

 Indeed it is possible to see modern physics as one source for development of a 
form of realism, critical realism (Bhaskar,  1975/2008 ), that considered the experi-
enced world to be real, but having an underlying nature that is only experienced 
indirectly through intermediate levels, and where science should be interested in the 
underlying level with its potentials and tendencies which are not always actualised 
in experience. Patomäki and Wight ( 2000 ) refer to the analogy of fi nding out about 
a nuclear arsenal, in that although the arsenal might (one would certainly hope) 
remain in its inert state, it is not fully understood unless the changes brought about 
by its potential use are considered. Critical realism suggests that approaches to sci-
ence that ignore the nature of this underlying level of potentials tend to confl ate two 
distinct levels – what is actually experienced and the underlying level of tendencies 
that are sometimes but not always expressed – and misjudge the nature of reality.  

    Finding Order in the Mental Zoo: Classifying 
the Cognitivist’s Collection 

 The purpose of introducing analogy is to offer potentially fruitful comparisons. The 
mental zoo of concepts, and schemata, and mental models, and intuitive theories 
and the like, represents a level of description that is useful for many purposes. 
However, throughout the book I have argued that many of these notions are problem-
atic when we use them in research in science education, because they have not been 
carefully operationalised for use within a research programme. Therefore, it is often 
possible to fi nd research reports in the peer-reviewed literature which use the same 
terms in apparently inconsistent ways (Taber,  2009b ). 

 This is perhaps to be expected given the indirect and sometimes uncertain nature 
of much of our understanding of human cognition, as suggested by the analysis 
earlier in the book. However, this also means that any attempt to set out a clear account 
of the distinctions and similarities between these terms is unlikely to be consistent 
with all uses in the research literature. My approach here will be to seek to identify 
the major distinctions that underpin the range of terms that have been employed, 
and to suggest a model for how terms might best be used in consideration of 
those distinctions. 
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 I do not intend here, then, to review all shades of meaning that have been given 
to these different terms by various authors within science education and beyond; but 
rather to suggest an approach to using terms which reflects much common 
usage, yet gives the terms different intellectual work to do in relation to what seem 
important distinctions we should make. 

 Ultimately, however, we always face the problems outlined earlier: the tendency 
to talk about cognition in the taken-for-granted lifeworld mental register and the 
diffi culty of deciding how something as abstract as knowledge can best be described 
at the cognitive system level (most useful for describing research into learning that 
can inform science education) when the underlying level of structure actually occurs 
at the physiological level (i.e. networks of connected neurons).   

    Key Distinctions 

 The fi rst distinction to emphasise is one that has already been established in the 
book, which is between knowledge  represented in  the cognitive system, with our 
 experiences of  the output of cognitive processing. This is always going to be a 
diffi cult distinction in practice because of two factors explored earlier:

•    The processes of thinking may themselves become represented in the underlying 
physical structures through which knowledge is represented, that is, our ideas 
both refl ect and modify our knowledge.  

•   Conscious awareness does not have direct access to all our knowledge and at any 
one time is only aware of a small part of our ‘explicit’ knowledge.    

    Terms Excluded as Not Representing Knowledge Elements 

 So from this way of thinking, an  idea  is best understood as the output of processing 
drawing upon knowledge represented in the cognitive system, but not in itself a 
knowledge component. ‘Having’ an idea, perhaps as a novel juxtaposition of dif-
ferent existing knowledge elements, and evaluating it as fruitful, is likely to lead to 
that idea itself becoming represented in cognitive structure (i.e. at the physical 
level certain links are established or strengthened in the association cortex) in the 
sense that it becomes more likely that the combination of elements giving rise to 
that idea will be activated in the future (i.e. activation of one of what were discrete 
elements will more readily activate the whole new ‘association’). At the mental 
level of description, we would say that we are likely to later recall the idea in cer-
tain contexts. However, the representation is not the idea, but a modifi cation to 
cognitive structure that makes it more likely the same, or a very similar, idea will 
be generated again. 
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 Similarly, the term  gestalt  is probably best not considered a knowledge element, 
but as the outcome of processing through such elements. The term gestalt was origi-
nally largely associated with perception (Koffka,  1967 ), relating to consideration of 
how in perception we are usually aware of whole patterns, not discrete sensations 
(see Chap.   4    ). That is, processing of sensory information involves pattern-detecting 
apparatus that is able to discriminate fi gures from their background and to associate 
patches of colour and edges, for example, as being discrete objects in our environment. 
This apparatus therefore represents a form of knowledge in the system. However, 
the term ‘gestalt’ referred to the output of that processing, and it would seem useful 
to use terminology that refers to the knowledge elements, the processing and the 
conscious experience of its output, separately. 

 So from this perspective the terms ‘ideas’ and ‘gestalt’ would certainly not be 
excluded from scientifi c discourse within the research programme into learning 
in science but would not be used to describe knowledge elements represented in 
the cognitive system. Rather, they would ‘do intellectual work’ in describing the 
learner’s subjective experience of cognition.  

    Concepts as Knowledge 

 A key term used in relation to a learner’s knowledge is that of  concepts , and indeed 
key issues in science education relate to a learner’s  conceptual development  
(discussed in Chap.   14    ), and how teaching can infl uence  conceptual change  (con-
sidered in Chap.   15    ). Moreover, research into student knowledge and understanding 
is sometimes understood as investigating a learner’s  conceptual structure . 

 A problematic aspect to our understanding of concepts has been revealed by the 
work undertaken in psychology and cognitive science about the nature of conceptual 
knowledge. Much research in psychology has concerned the ability of learners to 
acquire artifi cial concepts (along the lines of being given (i) examples of different 
shapes in different colours and (ii) feedback on which are, and which are not, exam-
ples of plaks to test questions such as can the learner acquire the concept  plak = a 
blue or green shape with no curved surfaces and less than fi ve sides ). Such 
artifi cial concepts have strict rules for membership (Seger & Miller,  2010 ). Yet 
many concepts used in everyday life are not defi ned through a small set of clear 
rules. Concepts, or categories (Ashby & Maddox,  2005 ), may be formed through 
perceptual similarity and linguistic cues in the talk of others (Gelman,  2009 ). 

 Children learn the concepts of tree, car, chair, etc., and neither are they taught 
these concepts through sets of membership rules nor do they apply these concepts 
in such a way (concept learning will be discussed in more detail in next part). We rec-
ognise an object as a tree without going through a mental checklist of attributes. 

 Most such concepts are ‘fuzzy’ in that they have somewhat blurred boundaries, 
and it has been shown that for some concepts we distinguish between examples 
which seem more typical and those which are seen as somehow less good examples 
of the concept. For example, perhaps a child, or an adult for that matter, knows 
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that eels and sea horses are both types of fi sh, but is very unlikely to suggest 
them when asked for a few examples of fi sh, rather than perhaps salmon, cod, trout 
or goldfi sh. 

 However, in science classes, students can also learn about concepts that are 
tightly defi ned and do have strict membership rules. For example, the alkali metals 
do not comprise a fuzzy set, and there are clear criteria for whether or not something 
should be considered an alkali metal.  

    Two Types of Conceptual Knowledge 

 This would suggest that our conceptual knowledge is not all of the same form. Some 
of it is of the kind of lifeworld everyday concepts, refl ecting ‘the natural attitude’ 
(Schutz & Luckmann,  1973 ), that was highlighted earlier in the book as being typical 
of how we commonly talk about thinking, learning, memory, etc. However, we also 
learn what Vygotsky called academic (Vygotsky,  1934/1994 ) or scientifi c concepts, 
which are often defi nition and rule based. That is the kind of thing I referred to 
earlier as being understood in ‘technical’ terms rather than everyday terms (e.g. 
see Table   3.1    ). 

 The term ‘concept’ therefore seems to have a broad referent and to relate to 
more than one kind of knowledge element. In particular it refers to both knowledge 
that is accessible to introspection and often readily represented in propositional 
form, and that tacit knowledge that is not directly accessible, but which operates at 
preconscious levels in the cognitive system.  

    Implicit and Explicit Knowledge Elements 

 This seems to be an important distinction to make, as clearly the way we use our 
knowledge is quite different when we are able to consciously act upon it, than when 
we have to rely on tacit knowledge that we only become aware of, if at all, after the 
event. In many aspects of our lives, such tacit knowledge is extremely valuable as it 
leads to quick processing and decision-making without committing of executive 
resources that can therefore be invested elsewhere. 

 However, in the sphere of academic learning, tacit knowledge can be defi cient as 
it is infl exible and not open to justifi cation and critique. In crossing a busy road, we 
need to make the right decision quickly, but in a formal academic assessment we 
need to be able to explain and justify  why  we suggest the answers we do. It seems 
useful therefore if in our research into student learning, we distinguish between 
these two basic types of knowledge element contributing to the learner’s conceptual 
understanding of science topics.  
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    The Notion of Intuitive Theories 

 One of the terms that have been used to describe aspects of science learners’ knowledge 
is  intuitive theories . This term actually has at least two meanings in the research 
literature. So, for example, in the context of electron diffraction in crystals, it has 
been claimed in a natural science context that ‘there is need for a simple intuitive 
theory that is valid for larger crystal thicknesses’ (Van Dyck & Op de Beeck,  1996 , 
p. 99). In this context the term seems to mean a formal theory, but one that  fi ts with  
the intuitions about the process developed by scientists working in that fi eld. 

 However, in the context of science education, the term intuitive theory has been 
used in a somewhat different way (Pope & Denicolo,  1986 ). So, for example, 
Kaiser, McCloskey and Proffi tt ( 1986 , p. 67) refer to how, through frequent expe-
rience of moving objects, ‘people develop from these encounters a systematic 
intuitive theory of motion’. A key feature of this ‘intuitive theory’ is that it is 
inconsistent with the scientifi c models. The scientifi c models are based around the 
Newtonian idea of inertia, where force brings about a change in the state of 
motion. However, the common intuitive theory is based around an impetus notion, 
something that is imparted by a force, but which somehow gets ‘used up’, causing 
motion to naturally diminish (Gilbert & Zylbersztajn,  1985 ). The use of the term 
‘systematic’ by Kaiser and colleagues is quite important, as the adoption of the 
label ‘theory’ implies more than just a hunch or intuition. As McCloskey explained 
in another publication,

  Recent studies on the nature, development and application of knowledge about motion 
indicate that many people have striking misconceptions about the motion of objects in 
apparently simple circumstances. The misconceptions appear to be grounded in a systematic, 
intuitive theory of motion that is inconsistent with fundamental principles of Newtonian 
mechanics. Curiously, the intuitive theory resembles a theory of mechanics that was widely 
held by philosophers in the three centuries before Newton. (McCloskey,  1983 , p. 114) 

   Carey and Spelke ( 1996 ), in discussing theories, whether labelled scientifi c or 
intuitive, suggest ‘theories are central knowledge systems widely available to guide 
reasoning and action’, as well as being ‘open to revision’ (p. 519). In this regard 
such ‘theories’ do not seem to be implicit knowledge structures, and indeed 
Carey and Spelke suggests that intuitive theories are distinct from what they term 
‘core knowledge structures’ on these and other characteristics. For these commenta-
tors such core knowledge structures are ‘theory-like in some, but not all, important 
ways’ (p. 515). Carey and Spelke suggest that such core systems are largely genetically 
endowed and develop naturally in the child and should be considered quite different 
from intuitive theories:

  core systems are conceptual and provide a foundation for the growth of knowledge. 
Unlike later developing theories, however, core systems are largely innate, encapsulated, 
and unchanging, arising from phylogenetically old systems built upon the output of 
innate perceptual analyzers. These differences make it unlikely that the development 
of core systems engage the same processes as the development of intuitive theories in 
childhood or the development of scientifi c theories in the history of science. (Carey & 
Spelke,  1996 , p. 520) 
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   The question of whether or not children’s informal ideas should be considered 
to be based on theory-like knowledge has been debated in the literature, and I have 
previously suggested that the research evidence based on students at different ages 
asked about various science topics suggests that the real issue is  the extent  to which 
such knowledge can be considered theory-like in particular cases (Taber,  2009b ). 
The literature suggests this varies a great deal. This would seem to be what we 
should expect if our knowledge is partly based on implicit knowledge structures 
and partly on explicit representation of propositional knowledge that is available to 
conscious inspection and development. 

 The term ‘intuitive theories’ is itself potentially unhelpful, as it would seem 
knowledge must be  either  intuitive  or  theoretical but cannot really be simultaneously 
both. Yet if intuitive theories are understood as theory-like knowledge components 
that are  developed from  intuitive knowledge, then this looks less of an oxymoron. 
Nevertheless, it is not clear that ‘intuitive theories’ earn the status of being a basic 
category of knowledge component.  

    Personal Constructs 

 The theory of personal constructs was developed by George Kelly and was very 
infl uential in early constructivist research in science education (Pope & Gilbert,  1983 ). 
Kelly devised his system for use in therapy and suggested that it tended ‘to have its 
focus of convenience in the area of human readjustment to stress’ (Kelly,  1963 , p. 12). 
However, Kelly considered that people modelled and understood the world through 
a system ‘composed of a fi nite number of dichotomous constructs’ (p. 59). That is, 
Kelly considered that people understood the world by making discriminations based 
on a set of bipolar constructs that were organised into some form of system. 

 Kelly thought that although we could often give labels to our constructs after the 
event, the process of making discriminations was not conscious or based on verbali-
sation. His clinical method of exploring clients’ construct systems involved asking 
them to make discriminations by suggesting the odd one out when shown triads of 
‘elements’, so there was no requirement to initially label the basis of the discrimina-
tion, or to rationalise why they selected a particular elements as being the one which 
did not fi t. This was an idiographic method (see Chap.   6    ): there was no assumption 
of a right response, but rather the aim was to work through enough examples to be 
able to infer the constructs that were operating. Personal constructs were then envisaged 
as largely implicit knowledge elements that allow us to parse the world without the 
need for conscious deliberation or verbal labels and defi nitions. 

 Kelly believed the system of personal constructs encompassed knowledge that 
was primarily perceptual, as well as that which would normally be thought of as 
conceptual. That is, he saw continuity in the cognitive system that operated with 
knowledge elements at different levels: so that for Kelly the same  type of operations  
would be involved in making discriminations of tone as making discriminations 
in the quality of doctoral theses. From this perspective, verbal description and 
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rationalisation of judgements would seem to be considered almost as like a veneer 
placed on the outputs of the implicit but potentially quite sophisticated system of 
personal constructs. 

 The perspective offered earlier in this book considered a great deal of cognitive 
processing to take place ‘out of mind’, and much of that to be largely automatic, 
but did leave room for the executive to direct some preconscious processing (cf. Fig. 
  7.5    ). These two descriptions could be seen as consistent, depending on precisely 
how one interprets Kelly’s distinction between the construct system and the verbal 
reporting that occurs after discriminations are made. Kelly would certainly have 
accepted that a client could censor a particular discrimination made from being 
reported to the therapist but saw the role of the constructs as central to how the 
world was understood. 

 Kelly included in his system discriminations that were not obviously bipolar, 
giving the example of discriminating red from ‘the non-redness of white, yellow, 
brown or black. Our language has no special word for this non-redness, but we have 
little diffi culty in knowing what the contrast to red hair actually is’ (p. 63). This 
suggests that personal constructs may be linked to knowledge elements that can 
identify particular features: that is, small processing units that recognise red (or 
not). Whilst Kelly’s notion of personal constructs is not universally adopted, it 
would seem to refl ect important aspects of the way knowledge is represented in the 
human cognitive system.  

    Phenomenological Primitives 

 A slightly different type of intuitive knowledge element that has been mooted as a 
key part of the cognitive system is the phenomenological primitive, or p-prim. This 
idea has been developed in particular by Andrea diSessa, who published an extended 
(if intended to be somewhat provisional) account of intuitive physics based on this 
notion in the journal  Cognition and Instruction  (diSessa,  1993 ). The term phenom-
enological primitive is a fairly accurate label for these entities, as they relate to our 
implicit interpretations of the world based on abstractions from direct experience of 
the world. From extensive interviews with physics students, diSessa set out the case 
for a wide range of these primitives. Each p-prim could be understood as abstracted 
from common experience, and then used as part of the interpretive apparatus for 
making sense of the world at a preconscious level, which then feeds into our conscious 
thinking. In other words, although diSessa’s data was largely based on elicitation 
of college students’ explanations about physics problems, that is, an advanced 
academic context, he considered that much of their thinking was built upon very 
simple primitive discriminations that matched what was perceived with common 
general patterns that had been abstracted from prior experience. 

 So, for example, young children may come to realise that a lot of phenomena fi t 
a pattern that might be labelled ‘dying away’, that is the magnitude of some qualities 
seem to diminish with time. The signifi cance is that the abstraction becomes part of 
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the intuitive model of how the world is, and the basis of implicit explanations. That 
is, if a novel phenomenon is understood to fi t the ‘dying away’ pattern, then it does 
not pose a ‘problem’ for the cognitive system, as it fi ts within the existing model of 
how the world is. Dying away is treated as a natural effect, that is, one that does 
not need more explanation. That of course represents the ‘natural attitude’ (Schutz & 
Luckmann,  1973 ), not the scientifi c attitude, and in learning science students have 
to learn to question the natural mechanisms of the world that lead to these patterns. 
Yet many phenomena make sense to us intuitively since they are recognised as 
matching patterns that we have come to accept as common to experience. 

 A key problem with p-prims from the perspective of learning science is that they 
seem to only work to discriminate what fi ts prior patterns from novel phenomena, 
and so contrasting phenomena can equally fi t (different) p-prims, making them of 
limited explanatory value. So if a person has a p-prim that we might label ‘dying 
away’ and another we might label ‘building up’, then both these patterns would 
intuitively seem natural and needing no further explanation. Simply  recognising  
that something diminishing is dying away, or that something increasing is building 
up, would ‘satisfy’ this level of the cognitive system as what was being observed 
made sense in terms of existing expectations of how the world is. Students asked to 
explain phenomena will often respond that certain things are just ‘natural’, just the 
way things are, refl ecting how in everyday life we do not see many familiar events 
as inviting explanation as we have become comfortable in accepting them as how 
the world is (Watts & Taber,  1996 ). 

 Research exploring school learners’ thinking about chemical phenomena 
identifi ed a set of potential intuitive knowledge elements that partially fi tted with 
diSessa’s scheme (Taber & García Franco,  2010 ) but also having some distinct 
features – suggesting research across different domains may help refi ne an account 
of commonly acquired p-prims. P-prims seem very similar to what Vygotsky 
labelled as a ‘potential’ concept which ‘is an embodiment of a rule that situations 
having some features in common will produce similar impressions’ and ‘result from 
a series of isolating abstractions of such a primitive nature that they are present 
in some degree not only in very young children but even in animals’ (Vygotsky, 
 1934/1986 , p. 137).  

    Intuitive Rules 

 Stavy and Tirosh have suggested that one source of many of the reported student 
‘alternative conceptions, preconceptions, and misconceptions in science and math-
ematics’ may be the application by the student of what they term ‘intuitive rules’ 
(Stavy & Tirosh,  2000 , p. vii), which they consider to be ‘expressions of the natural 
tendency of our cognitive systems to extrapolate’ (p. 87). 

 Stavy and Tirosh ( 2000 ) report three examples of intuitive rules that they identify 
as being found in students’ reasoning across a wide range of contexts: ‘more A – more 
B’, ‘same A – same B’ and ‘Everything can be divided’. These types of general 
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intuitive rules would seem to be the kind of primitive cognitive element that diSessa 
has described as p-prims and will here be assumed to be subsumed into the same 
class of knowledge element in the cognitive system.  

    P-Prims and Gestalts 

 Sometimes the term gestalt is used in a way quite similar to diSessa’s notion of 
p-prims. So the ‘experiential gestalt of causation’ proposed by Lakoff and Johnson 
( 1980a ), and applied in the context of science learning by Andersson ( 1986 ), set out 
how causality in the world can often be understood in terms of a common pattern or 
‘a “prototypical” or “paradigmatic” case of direct causation’ (Lakoff & Johnson, 
p. 479) which involves an ‘agent’ acting on a ‘patient’ to bring about some change 
in it. This would seem to be the kind of pattern recognition assigned to p-prims, and 
in keeping with the use of ‘gestalt’ elsewhere, it may make sense to consider the 
‘gestalt’ to be  the perceived pattern , due to the operation of an underling implicit 
knowledge element that is part of cognitive structure (i.e. the p-prim). That is, the 
gestalt is experienced due to the activation of the p-prim. 

 Watts and Taber ( 1996 ) used the idea of an ‘explanatory gestalt of essence’ to 
describe how it is that often, when asked for explanations in interviews, students 
would soon reach a point where they replied that something was ‘just natural’ – that 
is the way things were. Watts and Taber found that students varied in the extent to 
which they would offer layers of explanation before reaching this point, but some-
times students were clearly satisfi ed with recognising something as being naturally 
the way things were and so not needing further explanation before they exhausted 
the depth of explanation expected in the school or college science curriculum. 

 Ultimately science aims to fi nd out the ways things naturally are, and so there is 
nothing wrong in principle in reaching such a point in a succession of explanations. 
However, science looks for underlying patterns that have explanatory value across a 
wide range of phenomena, whereas the natural attitude is to simply accept as natural 
anything that fi ts one of the available familiar patterns (i.e. p-prims). The explanatory 
gestalt of essence, the recognition that that is just the way things are, would again 
seem to be a way of describing the learners’ subjective experience, which  draws 
upon  implicit knowledge elements, such as p-prims. So these mooted gestalts would 
seem to be related to, but ontologically different to, p-prims.  

    Explicit Knowledge 

 Whereas implicit knowledge elements are considered to do their work out of the 
purview and control of consciousness, explicit knowledge is directly accessible and 
open to deliberation. Earlier in the book, when considering memory, it was suggested 
that there is declarative memory, and non-declarative memory that includes both 
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procedural memory and ‘implicit’ learning that takes place without conscious 
awareness. Procedural memory is associated with motor function and allows us to 
build up routines of motor actions to carry out complex tasks such as tying shoe-
laces or focusing a microscope. Some of this is at the level where it is open to 
conscious awareness and control. These elements are probably not the smallest 
‘grain size’ and draw upon more primary, encapsulated knowledge elements, 
which we consciously build up into routines. 

 So there is parallel within this branch of cognition with declarative knowledge 
discussed below, in that it has both implicit and explicit components. However, the 
focus here is on conceptual learning, so the nature of procedural knowledge will not 
be developed in any detail here. 

 Declarative memory refers to representation of factual information that is accessible 
to consciousness and includes both episodic and more generalised semantic memory. 
By defi nition declarative memory refers to representations of past experience that 
can be reported verbally as they are consciously accessible, although that does 
not mean that these declarative memories are themselves representations of verbal 
information. So one’s memory of a signifi cant past event may well include imagery, 
for example. However, as one is able to access the memory leading to a conscious 
experience, that experience can be reported verbally. 

 Imagistic memory has been given most attention in the science education litera-
ture, but of course other sensory modes may provide experiences of memories that 
we can verbalise. We may hear the voices of others not present (e.g. in sleep), and 
Proust used memory evoked by a smell as a key device in for his novel  À la recherche 
du temps perdu  (translated as  In search of lost time  or  Remembrance of things past ). 
However, the visual mode would seem to be of particular importance in conceptual 
learning, as suggested by the incidence of eidetic memory in children and the 
conjectured visuo-spatial scratch pad as a major adjuvant of the cognitive system’s 
executive module, that is, working memory (see Chap.   5    ). 

 However, the ability to rote learn passages or prose, or technical defi nitions, 
demonstrates that some knowledge representation of verbal material can and does 
take place. Therefore, it would seem that explicit knowledge elements within 
cognitive structure that are of interest in learning science can be considered to be 
of at least two different types. This links to Bruner’s ( 1964 , p. 2) notion of three 
modes of representation:

•    Enactive: ‘a mode of representing past events through appropriate motor response’.  
•   Iconic: summarising events ‘by the selective organisation of percepts and of 

images, by the spatial, temporal and qualitative structures of the perceptual fi eld 
and their transformed images’.  

•   Symbolic: represents ‘things by design features that include remoteness and 
arbitrariness’ (i.e. words are associated with objects and events by convention).    

 Enactive representation supports what has been called here procedural knowl-
edge; imagistic memory is a form of iconic representation, and much of the 
knowledge of interest in science education concerns propositional knowledge 
represented symbolically.  
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    Propositional Knowledge Elements 

 One type of knowledge represented in the cognitive system is propositional knowl-
edge that allows us to ‘know’ such things as:

•    Atoms are very small.  
•   Horses are mammals.  
•   Energy is conserved.  
•   Potassium is more reactive than calcium.  
•   Humans have 23 pairs of chromosomes.  
•   Electromagnetic radiation is a transverse wave.    

 This type of knowledge element is often a key focus of research given the central 
role played by language in communication and formal learning.  

    Conceptions 

 The term ‘conception’, and the variants ‘misconception’, ‘alternative conception’, has 
been widely used in science education when describing aspects of students’ (inferred, 
assumed) personal knowledge. The term is widely used in phenomenography, research 
which looks to describe, analyse and understand experiences (Marton,  1981 ). In this 
context different conceptions are ‘qualitatively distinct ways’ in which what is 
objectively the same referent is understood (Anderberg,  2000 , p. 94). 

 Gilbert and Watts recommended that the term conception should be used in 
science education to focus on ‘the personalised theorising and hypothesising of 
individuals’ (Gilbert & Watts,  1983 , p. 69), as one way to distinguish between 
personal and public systems of knowledge (as discussed above, see Chap.   10    ). This 
distinction is shown in Table     11.1 .

   As suggested above (see Chap.   10    ), public knowledge is a problematic notion 
and indeed is arguably in some ways a fi ction, but nonetheless remains a useful 
fi ction as a referent. So following Gilbert and Watts, a learner may be said to have  a 
conception of  energy, or photosynthesis, or oxidation, which can be evaluated 
against (someone’s, e.g. the researcher’s) understanding of  the scientifi c concept  or 
of some curriculum model of that  concept  (cf. Fig.   1.3    ). 

   Table 11.1    Recommended use of ‘concept’ versus ‘conception’ following Gilbert and Watts 
( 1983 )   

 Term  Recommended use – to describe  Notes 

 Concept  Formal meanings as part of public 
knowledge systems 

 ‘World 3’ objects: ideals as represented 
in public knowledge systems 

 Conception  Personal understandings  ‘World 2’ objects: understandings as 
personally experienced in thinking 
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 Maintaining a distinction between the formal concept that is part of a public 
system of knowledge and an individual’s personal conceptions might help clarify 
reports in science education. However, in practice there is widespread use of the 
term concept to refer to both formal concepts and the versions of those concepts 
formed by individuals, that is, their conceptions. The literature includes many 
examples of references to concept formation and acquisition (i.e. the appearance of 
new conceptions in individuals) and conceptual (rather than concept ion al) develop-
ment, conceptual (rather than concept ion al) change and conceptual (rather than 
concept ion al) structure. These topics will be discussed in Chap.   15    . 

 Ezcurdia ( 1998 ) suggests that ‘concept’/‘conception’ can refer to the distinction 
between possession and mastery of a concept. That is, for Ezcurdia, ‘one can possess 
a concept without having an appropriate conception, without mastering it’ (p. 188). 
This approach may be especially helpful for the conceptions that learners have that 
are considered to be versions of normative concepts. So, as an example, in a secondary 
science class it could be said that all the students had acquired the concept of a 
metal, but that their specifi c conceptions varied considerably, or that a learner 
acquired a concept of a metal, and that same concept developed as his conception of 
metal changed (see Chap.   15    ). In the present chapter, the term  conception  is used 
to refer to aspects of the learner’s personal system of knowledge representation (see 
Fig.  11.1 ), following Gilbert and Watts.

  Fig. 11.1    A model typology of the main types of knowledge components represented in cognitive 
structure       
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       Schemata 

 A term that has not been so widely used in science education research but is com-
monly used to describe aspects of an individual’s knowledge in psychological and 
cognitive science is schemata. A schema refers to a knowledge  structure  represented 
in memory: for example, ‘the information that is required if a learner is to be able to 
solve problems [such that] if the required information (knowledge components) and 
the relationships among these knowledge components is incomplete then the learner 
will not be able to effi ciently and effectively solve problems requiring this knowl-
edge’ (Merrill,  2000 , p. 245). Schemata, then, are envisaged to be more complex 
knowledge representations than individual conceptions and indeed are perhaps not 
best understood as knowledge ‘elements’ but more, if we draw on an analogy from 
chemistry, as ‘compounds’ of knowledge elements. 

 Problem-solving involves more than just applying routine knowledge as in 
completing exercises and requires some novelty in task response by the problem-
solver (see Chap.   7    ). So genuine problem-solving requires the learner to coordinate 
existing knowledge components into a more complex structure, that is, to  construct  
a schema. However, the way the term schema is often used, it is also applied to 
schemata that have previously been compiled and therefore have some permanent 
‘structural integrity’ within cognitive structure: so, in effect, once a schema has been 
constructed, that construction can be retained if it is then applied suffi ciently to 
develop strong associations between the component elements (see Chap.   5    ). 

 So, for example, if a secondary school student is asked to complete a word 
 equation, such as (the example used in Chap.   7    )

 nitric acid + potassium hydroxide + water    

 One way that a learner might be able to correctly respond to such an item would 
be if they had rote learnt sets of word equations, including this one, and so were able 
to access the correct word equation represented in memory by matching with the 
information presented and then fi ll in the gap by comparing the incomplete word 
equation with the learnt correct one. Certainly much learning of this type goes 
on, but such learning does not require, or demonstrate, understanding of chemistry 
and is only effective for specifi c reactions where the word equations have been 
(correctly) represented in memory. 

 More likely, this task will require the learner to coordinate a range of knowledge 
elements to fi nd a solution, and for many secondary students such a question presents 
a genuine problem (Taber & Bricheno,  2009 ). More advanced and successful 
students might well have developed an effective strategy for answering a question 
of this type (see Table  11.2 ), which they can routinely call upon (Taber,  2002a ).

   The approach shown in Table  11.2  is not the only approach to attempting this 
task, and if students do not know the general equations, they may rely on the 
conservation principle (that the same elements must be represented before and after 
a reaction) to see what was ‘missing’ on the product side (Taber & Bricheno,  2009 ): 
although the coordination of other knowledge would still be needed to ensure a 
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correct solution, as that principle by itself underdetermines the answer. For example, 
potassium nitrite and potassium nitride would be possible alternative answers. 

 Although schemata are composed by the coordination of other existing knowledge 
elements, they should be considered as separate components of cognitive structure 
because they can be retained as long-term associations and so in effect unitary 
components in their own right. Merill ( 2000 , p. 246) argues that ‘solving a problem 
requires the learner to not only have the appropriate knowledge representation 
(schema or knowledge structure) but he or she must also have algorithms or 
heuristics for manipulating these knowledge components in order to solve problems’. 
He argues that,

  If the learner knows the knowledge components and knowledge structure for a conceptual 
network, then he or she has a meta mental model for acquiring a conceptual network in a 
specifi c area. This meta mental model allows the learner to seek information for slots in the 
model. It provides a way for the learner to know if they have all the necessary knowledge 
components to instantiate their mental model (Merrill,  2000 , p. 246) 

   The example of completing a simple word equation in chemistry supports 
Merill’s assertion that such problem-solving, for those learners at a stage where this 
task can still be considered a problem, does require knowledge of operations – of 
what kind of knowledge to access and coordinate – as well as knowledge of the base 
domain (in this case knowledge of reactions types, reagent types, etc.). However, it 

     Table 11.2    Suggested components of a schema to identify an unknown reagent in a word equation   

 Step in strategy  Note 

 Identify the type of reaction 
represented: neutralisation, 
acid plus alkali 

 Draws upon knowledge that chemical reactions are commonly 
classifi ed into particular types, deepening upon the 
categories of reactants 

 Identifi es the reactants given as an acid and an alkali (i.e. 
classifi es type/identifi es set membership) 

 Identifi es specifi c knowledge that one such type involves the 
reaction between an acid and an alkali 

 Write out the general reaction: 
 acid  +  alkali  →  salt  + water 

 Applies knowledge that each type of reaction can be 
represented by a general equation, where the  class of 
substance  stands for particular reactants and products that 
vary in different specifi c reactions of the type 

 Recalls general form of equation for this class of reaction 
 Identifi es the missing term 

as a salt 
 Compares the general equation recalled with the presented 

example 
 Maps 
  Nitric acid: the  acid  
  Potassium hydroxide: the  alkali  
  Missing term: the  salt  
 Redefi nes task as identifying the particular salt 

 Identifi es the salt as potassium 
nitrate 

 Recalls/applies knowledge that salts have a two-part name, 
refl ecting the cation and the acid radical 

 Identifi es the cation as potassium from the alkali 
 Identifi es the acid radical as nitrate from the nitric acid 
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would seem that this ‘how to’ knowledge is also propositional (see Table  11.2 ), 
whereas it will be suggested below that the term ‘mental model’ is often reserved for 
something rather different. Arguably, in an example such as that used here, knowl-
edge of how to carry out the stages of problem-solving are a part of the schema as 
much as knowledge of the chemical substances and reactions that need to be oper-
ated on to solve the problem.  

    Visual Representations in Cognitive Structure 

 Although there is often a focus on verbal representation when discussing [sic] 
students’ science knowledge, it is clear that we are also able to recall images that 
we do not seen to construct ab initio from other kinds of representation on recall. 
We are also able to  form  images – from verbal descriptions, for example – but some 
of our memories seen to be accessed as images: the representation in cognitive 
structures when activated leads us to experience an image. 

 As suggested earlier (eidetic memory, see Chap.   5    ), it is considered that visual 
memory plays an important role in the memory of children but usually diminishes 
during development. However, some adults seem to retain strong visual ‘photo-
graphic memories’, and we all have some ability to represent visual information in 
cognitive structure.  

    Imagery as a Form of Knowledge 

 Images contain information, and so representing imagery in cognitive structure 
amounts to a form of knowledge in the system. Earlier in the book it was suggested 
that it was easier for a person to remember and reconstruct an image such as that 
showing the resonance between two canonical forms of benzene (e.g. Fig.   5.11    ) if 
they understood what the image meant, and we might imagine that in trying to 
reconstruct such an image some learners might draw upon propositional knowledge: 
I know the formula is C 6 H 6 , I know carbon has valency 4, I know it is described as 
a cyclic compound, etc. 

 However, it is equally the case that recalled images can support verbal recollections: 
mental inspection of a recalled image of, for example, the experimental set-up 
for measuring Young’s modulus of a piece of wire, could provide information to sup-
port recall of the formula for Young’s modulus, or recollection of an image of a beetle 
might be the source of recalling how many legs beetles have. In general, recall is 
supported by being able to access and coordinate both representations of images, and 
propositional knowledge, from memory (Cheng,  2011 ). Images are static, although 
they can be mentipulated in the mind. Moving beyond static images, there is the pos-
sibility of visual models that can act as mental simulations that can be ‘run’ in the 
mind, that is a form of mental model that is dynamic and visualisable.  
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    Mental Models 

 Whilst there has been relatively limited attention in the science education literature to 
students’ imagistic representations compared with their propositional knowledge, 
there has been a wide use of the term ‘mental models’ in the literature. Once again the 
point needs to be made that often such terminology is used without defi nition, and it 
is not  always  clear what researchers’ reports referring to mental models (as opposed 
to say, student conceptions) in science education contexts are meant to refer to. 

 There is quite a developed literature about mental models, which can inform the 
use of the term within science education, although even here different authors do 
not seem to agree on quite how mental models should be understood (Johnson- 
Laird,  2003b ; Merrill,  2000 ; Norman,  1983 ): as ‘a consensus view about issues such 
as the format of the mental models and the process involved in using them has not 
been reached among different research camps’ (McClary & Talanquer,  2011 , p. 397). 
So, as reported above, Merrill (p. 244) suggests that ‘a mental model consists of two 
major components: knowledge structures (schemata) and processes for using this 
knowledge (mental operations)’, but commonly mental models are understood to 
represent knowledge in non-propositional form. 

 The notion of mental models was popularised by Norman who described how:

  In interacting with the environment, with others, and with the artifacts of technology, 
people form internal, mental models of themselves and of the things with which they are 
interacting. These modes provide predictive and explanatory power for understanding the 
interaction. (Norman,  1983 , p. 7) 

      Norman describes mental models as ‘naturally evolving models that must be 
‘functional’, in that people will continue to modify the mental model in order to get 
a workable result’. 

 Johnson-Laird suggests that people construct mental models ‘from perception, 
from imagination, and from the comprehension of language’ ( 2003b , p. 42) and 
argues that a key feature of mental models is ‘iconicity’ in that ‘a mental model has 
a structure that corresponds to the known structure of what it represents’ ( 2003a , p. 11). 
He suggests that ‘mental models can represent spatial relations, events and 
processes, and the operations of complex systems’ ( 2003a , p. 19), yet he also argues 
that ‘visual images are a special case of mental models, and many mental models do 
not yield images’ ( 2003a , p. 12) and that ‘many mental models cannot be visualized’ 
( 2003a , p. 11). This is an interesting attribute for an iconic form of representation 
and perhaps suggests that for Johnson-Laird not all mental models are part of 
explicit knowledge. 

 McClary and Talanquer ( 2011 , p. 397) suggest that a mental model is ‘a structural, 
behavioral, or functional analog of a real or imaginary object, process, event, or 
situation [that can] support understanding, reasoning, and prediction’, and they use 
the term to mean ‘dynamic internal representations that may be constructed on 
the spot to deal with the demands of a given problem or situation, although it is 
possible that in some cases mental models may be stored in long-term memory’. 
For these authors the construction and/or application of a mental model is
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  guided and constrained by the explicit and implicit cognitive resources available to any 
given individual (e.g., prior knowledge, ontological presuppositions, intuitive heuristics), as 
well as by the most salient features of the task at hand… ( 2011 , p. 397) 

   This sense of the moment-by-moment construction of mental models is something 
refl ected by Shepardson and colleagues who refer to mental models as ‘always under 
construction and based on new knowledge, ideas, conceptions, and experiences’ 
(Shepardson, Wee, Priddy, & Harbor,  2007 , p. 330). 

 It would seem there is no clear consensus on exactly how ‘mental models’ should 
be understood, but it is suggested here that what is useful about the idea is the notion 
of knowledge structures that are non-propositional, and more extensive than single 
images, and so ‘runnable’ in the sense of allowing the individual to set up an ‘input’ 
state, run the model mentally and observe a simulated process suggesting the output 
state that arises from running those initial conditions through that model. 

 In a sense, mental models seem to have a similar function to computer simulations 
of complex processes (e.g. ecological interactions) that allow learners to change 
initial conditions (e.g. population sizes) and then observe how a situation unfolds. 
In the case of the computer simulation, the outcome is observed on the computer 
monitor screen. In the case of a mental model, the simulation is imagined inside 
the mind.   

    A Model of the Ontology of Knowledge in Cognitive Structure 

 This analysis has considered the main types of entities that have been proposed as 
allowing knowledge to be represented in cognitive structure, and the key distinc-
tions between them, as well as examining how some of the terms that have been 
mooted might do useful work within science education to describe distinct aspects 
of a learner’s personal knowledge. The project here is to consider if a model can be 
offered which includes the main types of knowledge elements that are assumed in 
the literature and provide clear labels for the different components of the model. 

 Given the lack of consistency in how terms are used in different literature, the 
analyst has two options in proposing such a model: either to suggest a completely 
new set of terms with no history and so no semantic baggage or to draw upon the 
available terms and use them to do work within the model with the best fi t that 
seems possible. Given that the fi eld is already heavily populated with terms 
that although often poorly defi ned are widely used, I have chosen the latter course, and 
the outcome of the analysis developed above is represented in Fig.  11.1 . 

 So Fig.  11.1  shows the main distinctions discussed above, with conceptual 
knowledge being either implicit or explicit, and explicit knowledge being proposi-
tion or iconic. The model is set up in the form of a taxonomic dichotomous key, and 
this almost certainly simplifies the actual complexity of knowledge structures 
in cognitive structure. This is considered justifi ed in order to offer a basic system 
with the use of a limited number of categories (and terms) to describe the knowl-
edge elements that may be invoked in research on learning in science. One purpose 
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of a model is to offer a simplifi ed account that still refl ects key features of the 
complexity being modelled. The model offered here is intended to include key 
discriminations identifi ed in research, whilst being simple enough to be of value to 
those working in science education. 

 As suggested above, ‘ideas’ (or ‘thoughts’) and ‘gestalts’ may be best understood 
not as knowledge elements but as the experience of the outcomes of the operation 
of those knowledge elements: gestalts very much referring to perceptual experience 
and ideas more generally to the output of processing through the cognitive system 
(see Fig.  11.2 ).

   Figure  11.1  neither directly represents the level of the cognitive system at which 
different components occur nor how they might be related, but simply the classes 
of knowledge component in the system. These are important issues that will be 
addressed separately. 

 The scheme presented in Fig.  11.1  excludes some terms that are commonly used 
in the fi eld. So misconceptions are not included as a category, as this term inherently 
combines a reference to a type of knowledge element with a judgement about under-
standing in terms of someone else’s knowledge (see Chap.   6    ). In terms of its nature 
as  a type of knowledge element  within a cognitive system, a conception has the same 
status whether it is judged as mistaken or not by a teacher or researcher. So some 
student conceptions may be judged ‘alternative’, whilst others with similar status 
within the cognitive system will be considered canonical. In the present analysis all 
the learners’ conceptions are seen as part of a personal knowledge system which can 
only be labelled as misconceptions or alternative conceptions by someone making 
judgements from outside the system (see Chap.   10    ). 

 The scheme presented here does not distinguish between conceptions that the 
individual is strongly committed to, those that he/she has learnt but fi nds unconvinc-
ing and those that are recently formulated and are being entertained as potentially 
fruitful. Rather, it is assumed that these are all the same basic kind of knowledge 

  Fig. 11.2    Ideas and gestalts seen as experience of the outcomes of processing through available 
knowledge structures       
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element (see Chap.   6    ) yet given different weightings as representations of the external 
world within the system. This reminds us that although we might think of discrete 
knowledge components, this is certainly a simplifi cation as our conceptions are 
linked into an extended conceptual structure (considered further in the next chapter). 

 A key feature of explicit knowledge is that it can be accessed and considered, and 
a judgement made about its relevance to the problem in hand, whereas implicit 
knowledge presents conclusions and recommendations to consciousness without 
providing access to the basis on which they were reached. A well-known human 
trait is to reach a tentative decision based upon implicit knowledge and then seek 
justifi cations for that decision based on available explicit knowledge. Arguably, the 
scientifi c attitude differs not in the exclusion of the role of implicit knowledge 
(Polanyi,  1970 ) but in the extent to which explicit knowledge is used to view one’s 
‘hunches’ and intuitions critically. 

 One common term used in the fi eld is that of a conceptual framework, and I have 
not seen the need to include that in Fig.  11.1 . The term framework is used in at least 
three different ways in science education research (Taber,  2009b , pp. 188–189): 
(1) as a synonym for a conception, (2) as a more extended conceptual structure 
(most like a schema in the present analysis) or (3) a technical term used to label the 
 abstractions  developed by researchers to describe common patterns in student 
conceptualisations and so distinguish these models from the personal conceptions 
of the individual learners. 

 The fi rst sense of framework is already covered here, and the third is inherently 
excluded from being part of an individual’s knowledge structure – at least, apart from 
that of the researcher, whose personal conception it is. 

    Conceptual Frameworks and Common Alternative Conceptions 

 Yet it is important not to ignore this notion of ‘conceptual framework’, as a key area 
of research has been based around identifying, and quantifying, ‘common’ alternative 
conceptions – those conceptions that learners commonly hold which are considered 
at odds with canonical science (Duit,  2009 ). In this sense, a number of alternative 
conceptual frameworks have been referred to in this volume: such as that motion 
naturally dies away, that atoms form bonds to fi ll electron shells, that heat is a kind 
of fl uid substance. 

 It should be clear from the analysis in this volume that there are a number of 
problems that face researchers who make claims that some proportion of a population 
share a particular conception. The issue of knowing what can be taken to be canonical 
knowledge, given the elusive nature of public knowledge (Chap.   10    ) should warn 
researchers that defi nitive statements about what a scientifi c concept actually is 
should be made with caution. That is not to suggest that researchers should avoid 
seeking to compare student knowledge with canonical knowledge as such research 
is directly useful and relevant to teaching. Rather researchers need to be aware that 
at best they can have  a model of  canonical knowledge for comparison, and that 
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in reporting their work they should be explicit about what they take to be scientifi c 
and/or curriculum target knowledge and on what they base this judgement (e.g. 
Treagust,  1988 ). 

 However, it should be clear from the discussion in this volume that when we 
explore students’ conceptions of any topic in depth, we tend to fi nd nuanced, 
often complex patterns, often with idiosyncratic ranges of application, and with 
evolving levels of commitment. This means both that any simple statements 
about student conceptions (such as the examples above about motion, bonding, 
heat) are likely to considerably simplify what are often actually nuanced 
conceptualisations. 

 Yet such gross simplifi cations are often needed when we want to produce 
information of direct use in the classroom. They also allow us to categorise large 
numbers of students into a small number of categories – a range of ‘alternative 
conceptual frameworks’ (Gilbert & Watts,  1983 ). This certainly has ‘headline’ value – 
so, for example, if we inform teachers that something like 80–85 % of students are 
likely to hold impetus-like ideas of force and motion (Watts & Zylbersztajn,  1981 ), 
then this gives a clear indication of the extent of the problem – if at the cost of 
loosing much of the richness of what our research can tell us (see Chap.   6    ). It 
certainly does not mean that these students are all drawing upon precisely the 
same cognitive resources and so would always interpret and answer different questions 
in the same way. 

 In particular, where research relies upon written instruments informed by 
research reports of particular conceptions, then response patterns will often vary 
with wording, question sequence, examples used, etc. So where instruments include 
a range of items about the same conception, it is quite likely that the outcome will 
need to be reported as a range, suggesting that more respondents applied ‘the’ 
alternative conception on some items than others. 

 A particular issue links to the understanding of knowledge we have adopted here 
(see Chap.   9    ): as the range of notions a person has under current consideration as 
possibly refl ecting some aspect of how the world is, rather than only what is strongly 
committed to. Offered a range of statements refl ecting apparently contradictory 
conceptions, learners will commonly agree with logically inconsistent statements 
(see Chap.   6    ) because of the tendency to agree with different positions that seem 
feasibly convincing. So it is sometimes possible to show students agree with both 
canonical positions, and also contrary alternative positions, and if we do not bear 
this in mind then instruments designed only to fi nd level of support for one conception 
are likely to offer a distorted view. 

 The process of selecting particular positions from different students’ conceptions 
as suffi ciently distinct to be considered alternative conceptual frameworks is a 
matter of forming a model of the elicited conceptual ‘phase space’ which is in some 
way akin to factor analysis but is not supported by the statistical apparatus employed 
for that type of work. Designing instruments that can be used to survey populations 
in order to ‘assign’ student positions to the different alternative frameworks draws 
directly on these ‘metal models’. This should be borne in mind when reading and 
writing about this kind of research, which can otherwise appear to be suggesting 
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that given proportions of a population share  the same  cognitive components (the 
same conceptions). 

 The analogy here with statistical methods is that when quantitative analysis iden-
tifi es different clusters (of schools, of students, of teachers, etc. depending upon the 
study), this suggests that those within the same cluster tend to be more similar than 
those in different clusters. It certainly does not mean that those in a particular cluster 
are the same in terms of what is being measured. Research looking at common 
alternative frameworks tends to rely on qualitative analysis, but the same caveat 
applies. When different students are classed as demonstrating the same conceptual 
framework (i.e. a particular category of elicited conceptions created by the 
researcher), this should be understood to be a statement about similarities in con-
ceptual knowledge of some topic and not identify. 

 It is necessary and useful to look for general patterns of thinking that will be 
common across large number of learners in particular groups (English upper 
secondary students, Australasian chemistry undergraduates, etc.), but important to 
recognise that for such research to be meaningful, it requires careful consideration 
of the best ways to form models of the clusters of commonalities among what are 
likely idiosyncratic ways of makings sense of scientifi c topics. If this is so when it 
comes to thinking about student conceptions relating to particular topics, it is even 
more the case when we move to consider the next level of complication: how learners 
structure their knowledge elements into broader systems.                                                       
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