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Abstract Pili or fimbriae are known virulence factors that facilitate bacterial colo-
nization of specific host tissues and pathogenesis. Corynebacterium diphtheriae, 
the causative agent of pharyngeal diphtheria, harbors three pilus gene clusters enco-
ding the heterotrimeric SpaA-, SpaD-, and SpaH-type pili. The current model for 
Gram-positive pilus assembly is based on the studies of the SpaA-type pili, which 
may serve as a major virulence determinant for C. diphtheriae because they are 
specifically required for adherence to pharyngeal epithelial cells. The SpaA-type 
pilus is comprised of the shaft pilin SpaA and minor proteins SpaB and SpaC, which 
make up the base and tip of the surface structure, respectively. Pilus biogenesis 
requires tandem sortase enzymes that covalently link SpaABC monomers and sub-
sequently anchor the resulting heterotrimeric polymer to the bacterial peptidogly-
can. Here, a decade of research aimed to reveal the assembly, structure, and role of 
C. diphtheriae pili in pathogenesis is discussed.

Keywords Corynebacterium diphtheriae · Pili · Pilin motif · Pilus assembly · 
Sortase

7.1  Introduction

To successfully colonize a host, a bacterium must first adhere to target epithelial 
tissues. The repulsive force generated by similar charges present on both the bacte-
rium and target cell surfaces, however, presents a challenge (Proft and Baker 2009). 
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To overcome this, prokaryotic organisms assemble proteinaceous structures, known 
as pili or fimbriae, on the cell surface that recognize cognate host receptors. Pili are 
polymeric virulence factors required for bacterial colonization and pathogenesis. 
Their surface expression has been demonstrated to foster progression of infecti-
ous diseases that affect periodontal, urinary, gastrointestinal, and respiratory tissue 
(Sauer et al. 2000). Their importance to pathogenesis makes the surface structures 
attractive candidates for the development of vaccines and antimicrobial therapies 
(Maione et al. 2005; Soriani and Telford 2010).

Both Gram-positive and Gram-negative species of bacteria produce pili, but uti-
lize remarkably different mechanisms of assembly (Thanassi et al. 1998; Ton-That 
and Schneewind 2004). Gram-negative pili are multimeric structures comprised of 
non-covalently associated subunits that are fastened to the outer-membrane. The 
chaperone-usher pathway, responsible for the display of uropathogenic Escherichia 
coli type I and Pap pili on the surface is the best characterized example of Gram-
negative surface pilus adhesins among others including type IV pili and curli (Kline 
et al. 2010). To construct these adhesins, precursors translocated into the periplas-
mic space first associate with a designated chaperone charged with preventing pro-
tein aggregation, and the delivery of substrates to an outer membrane usher which 
catalyzes both polymerization of subunits and secretion of resulting complexes to 
the cell surface (Phan et al. 2011; Remaut et al. 2008). Pilin precursors are joined 
by a process known as ‘donor strand exchange’ in which the N-terminal extension 
of a preceding subunit fills a gap within the incomplete immunoglobulin fold of an 
incoming pilin (Sauer et al. 1999, 2002).

The study of pili expressed by Gram-positive bacteria is a relatively recent ende-
avor. These prokaryotes, unlike their Gram-negative counterparts, lack outer mem-
branes. Their cell envelopes are comprised of a single inner membrane surrounded 
by a dense layer of peptidoglycan. Sjoquist and coworkers (Sjoquist et al. 1972) 
first recognized that Gram-positives utilize their cell wall as an organelle to anchor 
proteins upon observing the Staphylococcus aureus protein A, an MSCRAMM pro-
tein known for its ability to bind to the constant region of immunoglobulins, became 
soluble only after cells were treated with lysostaphin, a peptidoglycan hydrolase. 
Decades later, Schneewind and colleagues demonstrated that cell wall anchoring of 
protein A is dependent on a C-terminal cell wall sorting signal (CWSS) comprised 
of an LPXTG motif, a hydrophobic domain, and a positively charged tail (Schnee-
wind et al. 1992). Soon afterwards, a unique transpeptidase named sortase SrtA in 
S. aureus was discovered and credited as the catalysis for a transpeptidation reaction 
that links CWSS-containing substrates like protein A to the cell wall peptidoglycan 
(Mazmanian et al. 1999, 2001). Finally, the finding that sortase mediates pilus po-
lymerization in Gram-positive bacteria was first demonstrated in Corynebacterium 
diphtheriae (Ton-That and Schneewind 2003), the causative agent of diphtheria 
(Klebs 1883).

This important study has launched subsequent investigations of pili expressed 
by Streptococcus agalactiae, Streptococcus pyogenes, Streptococcus pneumoniae, 
Enterococcus faecalis, Bacillus cereus, and Actinomyces oris (Lauer et al. 2005; 
Mora et al. 2005; Barocchi et al. 2006; LeMieux et al. 2006; Dramsi et al. 2006; 
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Rosini et al. 2006; Nallapareddy et al. 2006; Budzik et al. 2007; Mishra et al. 2007), 
establishing C. diphtheriae as a model system for the biogenesis of Gram-positive 
pili (Mandlik et al. 2008b). This chapter will review the most current knowledge 
available regarding pilus expression, structure, and sortase-mediated assembly in 
C. diphtheriae, as well as the role of pili in establishing disease. Pilus assembly is a 
worthy research endeavor as it will expand our understanding of the infection pro-
cess potentially leading to the development of new antibiotics or vaccines.

7.2  Pili and Pilus Gene Clusters of Corynebacterium 
diphtheriae

Gram-positive pili were first observed in 1968 on the surface of Corynebacterium 
renale using electron microscopy (Yanagawa et al. 1968). Subsequent protein ana-
lysis revealed that these structures were remarkably different compared to those 
expressed by Gram-negative bacteria. The integrity of pili isolated from the cell 
surface, for example, was highly resistant to heat boiling (Kumazawa and Yanaga-
wa 1972). Pili were also observed in many Gram-positive bacteria, such as Actino-
myces viscosus and Actinomyces naeslundii (Girard and Jacius 1974). These pili 
are required for interbacterial adhesion and bacterial attachment to host surfaces 
(Yeung 1999). Despite a flurry of research activities in this area for decades, the 
mechanism of pilus assembly was not revealed until recently.

In 2003, Ton-That and Schneewind surveyed the available genome of C. diph-
theriae NCTC13129 (Cerdeno-Tarraga et al. 2003), a toxin-producing clinical 
isolate, for open reading frames (ORFs) encoding sortase homologs and CWSS-
containing proteins (Ton-That and Schneewind 2003). They revealed three gene 
clusters encoding a total of nine surface proteins with the LPXTG motif, termed 
SpaA-I (Spa for sortase-mediated pilus assembly), and five sortases (SrtA-E). 
In addition, a sixth sortase encoding gene named srtF was found elsewhere in 
the genome (Fig. 7.1). Polyclonal antibodies raised against purified Spa proteins 
were used to label immobilized cells, followed by staining with IgG-conjugated 
gold particles, and subsequent detection by electron microscopy. This methodo-
logy revealed three distinct pilus structures assembled on the cell surface of C. 
diphtheriae, designated as SpaA-, SpaD-, and SpaH-type pili based on the major 
pilin (Ton-That and Schneewind 2003; Gaspar and Ton-That 2006; Swierczynski 
and Ton-That 2006). Each pilus is composed of a shaft pilin that displays a tip 
pilin and is interspersed by a minor pilin also forming the pilus base; for exam-
ple, the SpaA-type pilus is made of the shaft pilin SpaA, the tip pilin SpaC and 
the pilus base SpaB (Ton-That and Schneewind 2003; Mandlik et al. 2008a). Pili 
observed were typically smaller than those seen on the surface of Gram-negati-
ve bacteria, ranging from 1–2 μm in length and 1–2 nm in width (Ton-That and 
Schneewind 2003). Unlike Gram-negative pili, these pili are covalently linked, 
evident by their resistance to hot SDS and formic acid treatment (Ton-That and 
Schneewind 2003). Overexpression of shaft pilins resulted in exceedingly long 
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pili (Swierczynski and Ton-That 2006; Ton-That and Schneewind 2003), indica-
ting pilus polymerization is a stoichiometric process. Deletion  of a sortase gene 
within a pilus gene cluster, i.e. srtA within the SpaA-type locus, resulted in the 
abrogation of pilus polymers, thus designating pilin-specific sortases responsible 
for assembling specific pilin subunits (Mandlik et al. 2008b).

A recent pangenomic study of 13 C. diphtheriae clinical isolates revealed he-
terogeneity within pilus gene clusters (Trost et al. 2012). All strains were found 
to harbor at least two distinct pilus forms with the SpaA-type pili being the most 
common followed by SpaD-type. Few isolates expressed SpaH-type pili. Interes-
tingly, genes within clusters appeared to have co-evolved. Among all strains tes-
ted, the genes encoding SpaABC pilins and their respective sortase were found to 
be conserved-type specific sortase and pilins (Fig. 7.2), while components of the 
SpaD-type and SpaH-type were found to be highly divergent in comparison. One 
strain in particular, the vaccine strain Park-William No. 8 (PW8) contains a spaD 
cluster with multiple intact and disrupted spaD, spaE, spaF, srtE, and srtB genes, 
indicating that it was the target of mobile DNA elements. The maintenance of the 
spa locus throughout evolution underscores its importance for the bacterium’s abili-
ty to cause disease. SpaA-type pili specifically facilitate corynebacterial adherence 
to human pharyngeal epithelial cells, the major site for corynebacterial infection 
(Mandlik et al. 2007). This specific adherence is attributed to the two minor pilins 
of SpaA-type pili, SpaB and SpaC (Mandlik et al. 2007). Maintenance of these 
genes is important since mutations affecting SpaA/B/C or SrtA would compromise 
the fitness of these bacteria. PW8 appears to be an exception as it harbors a frame-
shift mutation within spaC preventing the tip pilin from being fully translated (Trost 
et al. 2012). Interestingly, this correlates with overall decreased virulence compared 
to other isolates (Iwaki et al. 2010). Low conservation of the spaD and spaH loci 
suggests that mutations in these regions are better tolerated because they are less 
important to establishing C. diphtheriae infection. Indeed, adherence assays have 
demonstrated that while SpaA-type pili target pharyngeal epithelial cells, SpaD 
and SpaH pili preferentially mediate binding to laryngeal and lung epithelial cells 
(Mandlik et al. 2007).

7.3  The Archetype SpaA-type Pili: Conserved Pilin 
Elements and the Mechanism of Sortase-Mediated 
Pilus Assembly

The SpaA-type pilus, encoded by the gene locus spaA-srtA-spaB-spaC (Ton-That 
and Schneewind 2003), serves as a model of pilus assembly in Gram-positive bac-
teria. As mentioned above, immuno-electron microscopic analysis, in combina-
tion with genetics and biochemical methods, revealed that SpaA forms the pilus 
shaft, with SpaC located at the tip. SpaB was observed along the pilus structures 
(Ton-That and Schneewind 2003) and also at the pilus base (Mandlik et al. 2008a). 
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Consistent with the role of sortase in pilus assembly, a mutant lacking srtA failed to 
assemble SpaA pili on the cell surface (Ton-That and Schneewind 2003).

Like all other pilins, SpaA/B/C contain an N-terminal signal peptide and a C-
terminal CWSS for sortase recognition and cleavage (Ton-That and Schneewind 
2003). Sequence comparison between corynebacterial major pilin proteins, i.e. 
SpaA, SpaD and SpaH, with the putative shaft pilins of many Gram-positive bacteria 
revealed several conserved elements, including the pilin motif WxxxVxVYPK and 
the E-box LXET, which harbor conserved lysine and glutamic acid residues (bold), 

Fig. 7.2  Electron micrographs of Corynebacterium diphtheriae NCTC13129 and a toxige-
nic strain. a Corynebacterial cells were immobilized on nickel carbon-coated grids and viewed 
by an electron microscopy after staining with 1 % uranyl acetate. b–d Cells of C. diphtheriae 
NCTC13129 b, its isogenic strain over-expressing the pilin shaft SpaA c, and a clinical isolate 
from Russia (CDC1737; (Popovic et al. 1996)) d were immobilized on nickel carbon-coated grids, 
stained with antibodies against SpaA (α-SpaA), followed by goat anti-rabbit IgG conjugated to 
18 nm gold particles, and stained with 1 % uranyl acetate before electron microscopy. Bars indicate 
0.5 μm
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respectively (Ton-That and Schneewind 2003; Ton-That et al. 2004b). Mutations al-
tering lysine (K190) in the SpaA pilin motif to alanine or arginine completely abro-
gated pilus assembly (Ton-That and Schneewind 2003), whereas similar mutations 
of the glutamic acid residue (E446) in the E-box did not dramatically affect pilus 
polymerization. Instead, these mutations resulted in fragmented SpaA polymers and 
failed incorporation of SpaB into the SpaA pili (Ton-That et al. 2004b). While it was 
apparent that the pilin motif is involved in pilus polymerization, it was not clear 
how the E-box participates in pilus assembly.

Compelling evidence that the pilin motif is essential for pilus polymerization 
and that both the pilin motif and the LPXTG motif are sufficient and necessary for 
this transpeptidation, was provided by an experiment in which sortase-mediated 
polymerization of a hybrid protein was studied (Ton-That et al. 2004b). A region 
containing the N-terminal signal peptide and the pilin motif of SpaA was fused to 
the mature domain of staphylococcal enterotoxin B (SEB) at its amino-terminus, 
whereas its C-terminus was linked to the SpaA-CWSS. This fusion protein was ex-
pressed in strains lacking spaA or srtA. Remarkably, SEB polymers were observed 
by immunoblotting with the ΔspaA mutant but not with the ΔsrtA mutant. A similar 
phenotype was also observed in a strain harboring a mutation in the lysine residue 
of the SpaA pilin motif, i.e. K190A. The results have established the specific role 
of pilin-specific sortase and critical elements for pilus assembly in Gram-positive 
bacteria (see below).

7.3.1  A Biphasic Model of Sortase-Mediated Pilus Assembly

Using a classic mutagenesis approach in which S. aureus cells failed to “sort” pro-
tein A to the bacterial cell wall were selected, Mazmanian and colleagues identified 
the first sortase gene termed srtA (Mazmanian et al. 1999), which encodes a trans-
peptidase enzyme that catalyzes cell wall anchoring of staphylococcal surface pro-
teins (Ton-That et al. 1999). Further analysis of available bacterial genomes revea-
led that sortase enzymes were conserved among Gram-positive bacteria (excluding 
Mycobacterium and Microplasma) (Comfort and Clubb 2004; Dramsi et al. 2005), 
revealing that the display of cell surface proteins in these organisms relied on a uni-
versal mechanism (Ton-That et al. 2004a).

Homologs of S. aureus SrtA are grouped into class A sortases (often collectively 
referred to as housekeeping sortases), whereas sortases involved in pilus poly-
merization, termed pilin-specific sortases like SrtA of C. diphtheriae, belong to 
class C (Comfort and Clubb 2004; Dramsi et al. 2005). There are additional sortase 
groups termed B, D, E and F. Class B sortases are involved in iron acquisition, but 
the others are less well understood (Spirig et al. 2011). It was first determined in 
C. diphtheriae that the housekeeping sortase SrtF plays an essential role in sur-
face display of pilus polymers generated by a pilin-specific sortase (Ton-That and 
Schneewind 2003; Swaminathan et al. 2007). By fractionating corynebacterial cells 
into extracelluar milieu and cell wall compartments, Swaminathan and colleagues 
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showed that deletion of srtF resulted in abundant secretion of SpaA pilus polymers 
into the culture medium, a phenotype similar to a multiple deletion mutant expres-
sing only SrtA; furthermore, a mutant strain expressing only SrtF failed to produce 
SpaA polymers (Swaminathan et al. 2007). This work has established a principle for 
a biphasic model of pilus assembly in Gram-positive bacteria, whereby pilus poly-
merization catalyzed by a pilin-specific sortase is terminated by cell wall anchoring 
of the resulting pilus polymers that is catalyzed by non-polymerizing sortase or the 
housekeeping sortase (Mandlik et al. 2008b).

According to this model using C. diphtheriae SpaABC pili as an example 
(Fig. 7.3), Spa pilin precursors are targeted to the general secretion machinery 
(Sec) via the N-terminal signal peptide for translocation into the extracellular 
space. Subunits move across the membrane until they are tethered in place by the 
C-terminal CWSS. Within the exoplasm, the pilin-specific sortase SrtA recogni-
zes the LPXTG motif of each pilin and cleaves between threonine (T) and glycine 
(G), resulting in formation of an acyl-enzyme intermediate between the catalytic 
cysteine residue of the sortase enzyme and the threonine residue of the Spa pilins. 
Polymerization of SpaA or the cross-linking of subunits SpaC to SpaA occurs 
by a nucleophilic attack of the pilin motif lysine of a neighboring SpaA-SrtA 
acyl-enzyme intermediate to the thioester linkage of the next. This process occurs 
repeatedly to construct the SpaA shaft; pilus assembly, thus, is catalyzed in a bot-
tom-up fashion with SpaC-SpaA linkage as the first transpeptidase reaction. Pilus 
polymerization is terminated when SpaB tethered the pilus base is transferred to 
the housekeeping sortase, which catalyzes cell wall anchoring of SpaB, hence the 
pilus polymers.

This model has been supported with several lines of evidence. First, as discussed 
above the mutational analysis of the pilin motif and the SEB fusion protein provided 
strong evidence for the transpeptidation reaction that crosslinks pilin subunits. In-
deed, mass spectrometry analysis of native SpaA pili revealed the predicted isopep-
tide bond between SpaA subunits, which is formed between the lysine residue K190 
of the SpaA pilin motif and the threonine residue within the LPXTG motif of an ad-
jacent subunit (Kang et al. 2009). Similarly, this linkage has been also demonstrated 
in B. cereus pili using mass spectrometry (Budzik et al. 2008). Presumably, SrtA ca-
talyzes cross-linking to SpaC by a similar mechanism, as this was shown by Budzik 
and colleagues for the linkage between the tip pilin BcpB and the pilin shaft BcpA 
(Budzik et al. 2009). Second, the presence of an acyl-enzyme intermediate between 
pilin and sortase was implicated by mutational analysis of the pilin-specific sortase 
SrtA of C. diphtheriae (Guttilla et al. 2009). In this study, several truncations of the 
membrane anchor domain of SrtA were generated, and the affect of these mutations 
were analyzed by western blotting with antibodies against SpaA and SrtA. It was 
found that SrtA mutants loosely bound to the membrane were secreted into the cul-
ture medium in complex with SpaA polymers. Third, the two-step pilus assembly, 
i.e. pilus polymerization by pilin-specific sortase preceding cell wall anchoring by 
non-polymerizing sortase, is evident by the study of Swaminathan and colleagues 
with the housekeeping sortase SrtF, as described above. Finally, in agreement with 
this mode of assembly Mandlik and coworkers elegantly showed that the pilus base 
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SpaB functions as a molecular switch that terminates pilus polymerization, lea-
ding to cell wall anchoring of the resulting pilus polymer (Mandlik et al. 2008a). 
Specifically, deletion of spaB caused a similar phenotype as deletion of srtF, i.e. 
pilus secretion into the culture medium. Since SpaB is a preferred substrate of SrtF 
(Mandlik et al. 2008a), formation of a SpaB-SrtF acyl-enzyme intermediate might 
serve as the signal to end pilus polymerization and begin cell wall anchoring. For 
this to occur, it was shown that the lysine residue K139 of SpaB functions as a 
nucleotide for a transpeptidation reaction that links SpaB to the pilus base, similar 
to the transpeptidation reaction that crosslinks SpaA pilins. SrtF then catalyzes cell 
wall anchoring of SpaB-linked polymers. SpaB, thus, additionally contributes to 
control the pilus length because it serves as the rate-limiting step in polymerization 
termination. Indeed, deletion of spaB is associated with the secretion of abnormally 
long SpaA polymers into the culture medium. Significantly, studies of pilus assem-
bly in B. cereus, S. agalactiae and S. pyogenes lend further support to this two-step 
mechanism (Budzik et al. 2007; Nobbs et al. 2008; Smith et al. 2010).

7.3.2  Sortase Specificity

As aforementioned, unlike the housekeeping sortase gene srtF of C. diphtheriae 
NCTC 13129 other pilin-specific sortase genes are clustered into three loci. Pre-
vious work has shown there is no cross-activity between pilin-specific sortases of 
different loci, i.e. SrtA is solely required for the assembly of SpaA pili, whereas 
SrtB and SrtC are specific for the SpaD-type pili (Ton-That et al. 2004b; Ton-That 
and Schneewind 2003; Swaminathan et al. 2007; Gaspar and Ton-That 2006). Ho-
wever, specificity of pilin-specific sortases within a pilus type is promiscuous; for 
example, either SrtB or SrtC is sufficient to catalyze pilus polymerization of SpaDF 
pilin, but SrtB is specific for the incorporation of the minor pilin SpaE into the SpaD 
pili (Gaspar and Ton-That 2006). Intriguingly, the housekeeping sortase SrtF is able 
to catalyze cell wall anchoring of all pilus types to the cell wall peptidoglycan. A 
long standing question is how sortase specificity is determined? It appears that the 
LPXTG motif is one determining factor, as this is supported by mutational analysis 
of the SpaB CWSS (Chang et al. 2011). Like all the base pilins of C. diphtheriae, 
the SpaB CWSS contains the LAXTG motif, which has been proposed to be the pre-
ferred substrate of the housekeeping sortase SrtF (Mandlik et al. 2008a). As SpaB 
serves as a molecular switch for cell wall anchoring, it would have a greater affinity 
for SrtF than SrtA. Consistently, deletion of srtF led to increased expression of 
SpaB that failed to anchor to the cell wall (Mandlik et al. 2008a). However, when 
the LAFTG motif of SpaB was mutated to the SpaA LPXTG motif, i.e. LPLTG, the 
mutant SpaB now became a substrate of SrtA, as shown by the ability of SrtA to an-
chor SpaA pili in the absence of srtF (Chang et al. 2011). This is in agreement with 
previous studies in S. aureus that show SrtA enzymes recognize the five amino acid 
peptide LPETG, not the NPQTN peptide, which is the substrate of class B sortase 
SrtB (Mazmanian et al. 2002).

M. E. Reardon-Robinson and H. Ton-That
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The LPXTG motif is not the only determining factor for sortase specificity. 
Evidently, both SpaA and SpaH pilins contain the LPLTG motif; however, SrtA 
cannot polymerize SpaH, and neither SrtD nor SrtE catalyzed pilus polymeriza-
tion of SpaA (Mandlik et al. 2007; Swaminathan et al. 2007). Intriguingly, cory-
nebacterial SrtD is able to polymerize FimA, the major pilin shaft of A. oris type 
2 fimbriae (Mishra et al. 2007), when FimA is expressed in C. diphtheriae (Ton-
That et al. 2004b). Phylogenetic analysis of FimA and SpaH sequences shows 
both pilins are closely related (Mishra et al. 2007). While both have the same 
LPLTG motif, several conserved elements are revealed. It is thus appealing to 
know if these elements contribute to sortase specificity. Given the proximity of 
pilin substrates and pilin-specific sortases on the membrane (Guttilla et al. 2009), 
we speculate that other domains of the CWSS sequence, i.e. hydrophobic domain 
and positively charged tail, may also be important as they are required for subs-
trate retention within the bacterial membrane (Mazmanian et al. 2001; Mandlik 
et al. 2008a).

7.3.3  Pilusosome: A Pilus Assembly Center

Sortases are membrane-bound enzymes working on the outer leaflet of the cytoplas-
mic membrane (Mazmanian et al. 1999, 2001). Both sortases and pilin substrates 
harbor an N-terminal signal peptide; thus, they are subjected to translocation across 
the membrane by the Sec machinery. Based upon the requirements of protein se-
cretion, the close proximity of sortases and their cognate substrates, specificity of 
sortase enzymes, and highly organized manner of assembly, it is hypothesized that 
secretion and pilus assembly machineries are found in close proximity and coupled. 
A hint for this conjecture came from the study of the pilus base SpaB (Mandlik 
et al. 2008a). In this study, the CWSS of SpaB was removed, hence preventing it 
from being inserted into the bacterial membrane. However, SpaB was found to be 
incorporated into the SpaA pilus structures, although these polymers were secreted 
into the extracellular milieu. This indicated that SrtA catalyzes the attachment of 
SpaB to the pilus base before completion of protein translocation suggesting that 
sortase and the secretion machinery are in close proximity and coupled. In support 
of this model, immuno-electron microscopic studies have revealed that SrtA, its 
cognate pilin substrates, and the translocation motor SecA are co-localized (Guttilla 
et al. 2009). This observation was corroborated by another study that examined 
co-localization of E. faecalis sortase and SecA (Kline et al. 2009). Interestingly, 
co-localization was shown to be dependent on a positively charged cytoplasmic 
domain within the sortase enzyme, suggesting that a retention signal may be re-
sponsible for pilusosome maintenance. An outstanding problem is how the orderly 
pilus assembly is orchestrated within the pilusosome. More experimental work is 
necessary to elucidate the apparent complex pathway of pilus assembly in Gram-
positive bacteria.
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7.4  A Structural View of Pilus Assembly

7.4.1  Three-Dimensional Structures of Pilins

The first crystal structure of Gram-positive pilins was solved using the minor pilin 
GBS52 of Streptococcus agalactiae (Krishnan et al. 2007). This pilin is comprised 
of two IgG-rev (CnaB) domains termed N1 and N2 that are joined by a short linker 
region. An in vitro experiment with recombinant GBS52 protein conjugated to fluo-
rescently labeled beads revealed that the IgG-rev (CnaB) regions of the protein were 
crucial for binding to host target tissues. This was interesting because the S. aureus 
Cna B repeat region with IgG-rev fold exhibits no adhesive properties (Rich et al. 
1998), suggestive of additional functions of the IgG-rev fold.

Shortly after, a crystallization study by the Baker group revealed similar IgG-
like domains in the shaft pilin Spy0128 of Group A Streptococcus (GAS) pili (Kang 
et al. 2007). More important is the discovery of intramolecular isopeptide bonds 
in Spy0128, a feature not previously reported in any organism (Kang et al. 2007). 
The crystal structure of Spy0128 is characterized by two IgG-like domains both 
containing an isopeptide bond formed between lysine (Lys) and aspargine (Asn) 
residues within hydrophobic regions of the structure. These linkages, confirmed 
by mass spectrometry, form autocatalytically with assistance from a nearby Asp or 
glutamate residues. These residues act as proton shuttles permitting Lys to nucleo-
philicly attack the carbonyl carbon of the Asn R-group resulting in isopeptide bond 
formation. Significantly, the thermal stability and proteolytic stability of Spy0128 
were defected in Spy0128 mutants that are devoid of the isopeptide bonds (Kang 
and Baker 2009). As more and more structures of Gram-positive pilins become 
available, it has become clear that the folding patterns of crystallized pilus proteins 
are remarkably similar, i.e. IgG-like fold, despite low amino acid identity among 
known Gram-positive pilins (see (Krishnan and Narayana 2011; Vengadesan and 
Narayana 2011) for an in-depth analysis).

A crystal structure of the C. diphtheriae shaft pilin SpaA has been also solved to 
a resolution of 1.6 A (Kang et al. 2009) (Fig. 7.4). Although the structure exhibits 
common features, like the IgG-like fold and isopeptide linkages, it has some uni-
que features that are absent from other Gram-positive pilins. The SpaA structure is 
comprised of three tandem Ig-like domains termed N-terminal (N-domain), middle 
(M-domain) and C-termimal (C-domain). Both the N and C domains exhibited an 
IgG-rev fold, while the M-domain is characterized as DEv-IgG fold or CnaA-type 
fold. Lys-199 and Asn-321 in the M-domain and Lys-363 and Asn-482 in the C-do-
main form the two intramolecular isopeptide bonds with assistance from acidic re-
sidues Asp-241 and Glu-446, respectively. Interestingly, Glu-446 is the conserved 
residue of the E-Box that involves formation of the Lys-363–Asn-462 intramole-
cular bond. Furthermore, given that the mutations of Glu-446 severely affect the 
incorporation of SpaB into the pilus structure (Ton-That et al. 2004b) and the E-Box 
is in close proximity of the SpaA LPXTG motif, it has been speculated that stabi-
lity of the C-domain conferred by the intramolecular linkage is required for SpaB 
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incorporation (Kang et al. 2009). Within the crystal, SpaA molecules are arranged 
in a head-to-toe manner in which the lysine pilin motif abuts the C-terminus of a 
neighboring protein. SpaA positioning, remarkably, is reminiscent of the proposed 
ordered assembly proposed to occur in vivo.

SpaA exhibits a number of distinguishing features compared to other known pi-
lins. First, the M-domain displays a calcium-binding site that was demonstrated to 
show high affinity as high levels of chelating agent EDTA could not remove it. The 
importance of this calcium binding site to the overall SpaA structure has not been 
explored. In addition, a disulfide bond joining two neighboring β-strands is present 
within the C-terminus, and is believed to provide additional stability to the protein 
(Kang et al. 2009). This bond, interestingly, appears to be unique to actinobacterial 
pili as similar bonds have only been detected in the major shaft pilin FimA of A. oris 
(Mishra et al. 2011). It remains to be seen if these unique features contribute to the 
stability and function of SpaA pilins.

Fig. 7.4  Crystal structure 
of the Corynebacterium 
diphtheriae shaft pilin 
SpaA. a The SpaA molecules 
are stacked end-to-end, in 
which the C-domain ( blue) 
of one SpaA molecule packs 
against the N-domain ( gold) 
of the next. The middle 
domain (M; green) contains 
a Ca2+ ion ( grey sphere). 
Residues forming isopeptide 
bonds are shown in red. The 
lysine pilin motif is labeled 
K. b Schematic representa-
tion of IgG-like folds in each 
domain with isopeptide bonds 
showing as a red bar and a 
disulfide bond as a grey bar. c 
Shown is the enlargement of 
end-to-end linkage between 
two SpaA molecules. The 10 
missing residues of the C-ter-
minus is shown with a broken 
line. Positions of lysine and 
tryptophan residues in the 
pilin motif are indicated. 
(Reprinted from (Kang et al. 
2009) with permission)
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7.4.2  Three-Dimensional Structures of Pilin-Specific 
Sortase Enzymes

Surprisingly, three-dimensional (3D) structures of neither pilin-specific sorta-
se nor the housekeeping sortase of C. diphtheriae are available, considering the 
well-studied SpaA pilus system in this organism. Nonetheless, structures of dif-
ferent sortase classes solved to date have provided some insights into the mode 
of sortase catalytic activities. The first 3D structure of sortase was solved with 
S. aureus SrtA by nuclear magnetic resonance (NMR) (Ilangovan et al. 2001). S. 
aureus SrtA folds into an eight-stranded anti-parallel β-barrel structure with the 
active site consisting of His120, Cys184 and Arg197. Based on structural, bio-
chemical and genetic analyses of S. aureus SrtA, sortase activity is dependent on 
this catalytic triad (Ilangovan et al. 2001; Ton-That et al. 2002; Zong et al. 2004). 
While the enzymatic activity of S. aureus SrtA is drastically increased by the pre-
sence of Ca2+ (Ilangovan et al. 2001), other sortase enzymes tested so far do not 
require Ca2+ for their activity.

Classes of sortase vary in terms of tertiary structure, but the overall shape of 
the transpeptidase enzymes is conserved. They all contain the core β-barrel and 
have a similar configuration of the active site (Spirig et al. 2011). However, 3D 
structures of class C sortases reveal a unique feature that is the presence of a “lid”, 
first identified in S. pneumoniae pilin-specific sortases SrtC1 and SrtC3 (Manza-
no et al. 2008). The lid, comprised of a flexible hinge region, a leucine (Leu), and 
DPW motif hovers over the catalytic triad and surrounding hydrophobic pocket. 
It has been hypothesized that the lid provides stability to this region as the Asp 
(D) of the DPW motif has been shown to interact with the reactive residue Arg of 
the His-Cys-Arg triad. In support of this, deletion of the lid region within the S. 
pneumoniae SrtC-1 led to protein instability (Manzano et al. 2009). Furthermore, 
mutations of the Asp and Trp residues abrogate pilus polymerization, presuma-
bly due to instability of the sortase enzyme (Manzano et al. 2009). In contrast, 
studies in A. oris and S. agalactiae showed that mutations of the DWP motif did 
not affect pilus polymerization (Cozzi et al. 2011; Wu et al. 2012). Intriguing-
ly, Khare and colleagues crystallized the S. agalactiae pilin-specific SrtC1 along 
with an isogenic mutant in which the lid anchor sequence replaced with IPNTG, 
the sorting signal of the pilin shaft GBS80 (Vengadesan et al. 2011), in place of 
KDPYS, the lid anchor region of SrtC1. While the mutation did not affect the en-
zyme integrity or overall structure, the mutant SrtC1 lacked electron density for 
the introduced ‘IPNTG’ motif exhibited differences around the active site region, 
speculating the active site and the lid may play a role in sortase specificity (Khare 
et al. 2011). Thus, it would be revealing to have co-structures of the pilin-specific 
sortase SrtC1 and its cognate substrate.
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7.5  Cellular Adhesion and Tissue Tropism  
of Corynebacterium diphtheriae Pili

More than three decades ago, C. renale expressing pili were observed to aggultinate 
trypsinized sheep erythrocytes which could be blocked with anti-pili serum (Honda 
and Yanagawa 1974). Later, it was also shown that C. renale pili mediated attach-
ment to mammalian cells (Honda and Yanagawa 1975), thus demonstrating that the 
pili were important for adhesion. Not much was known about adhesive properties of 
C. diphtheriae pili, except for one study that showed haemagglutination of some C. 
diphtheriae strains associated with the presence of pili (Ermolayev et al. 1987). Un-
til recently, Mandlik and colleagues employed a battery of sortase and pilin mutants 
to examine the ability of C. diphtheriae to adhere to different epithelial cells (Mand-
lik et al. 2007). The SpaA-type pilus was found to bind specifically to pharyngeal 
epithelial cells, the major site of corynebacterial infection, whereas the SpaD- and 
SpaH-type pili displayed certain binding specificity to epithelial laryngeal and lung 
cells, respectively. The specific binding of SpaA pili to pharyngeal epithelial cells is 
attributed to the minor pilins SpaB and SpaC. This was supported by drastic reduc-
tion in binding to pharyngeal epithelial cells by a mutant that lacks spaB and spaC, 
as compared to strain expressing all three pilins (Mandlik et al. 2007). Secondly, 
it was demonstrated that latex beads coated with SpaB or SpaC protein adhered to 
pharyngeal epithelial cells, while those conjugated to SpaA did not. More recently, 
it was shown that a dimer formed between SpaB and SpaC was observed on the bac-
terial cell surface (Fig. 7.3), leading to the speculation that long-range adhesion can 
be mediated by long pilus fibers, while monomeric and heteromeric pilins provide 
a close surface contact with host cells (Chang et al. 2011). It is also possible that 
the differential binding mediated by various forms of pili and pilins may contribute 
to efficient delivery of virulence factors such as diphtheria toxin (Mandlik et al. 
2008b).

7.6  Concluding Remarks

Klebs first identified C. diphtheriae as the causative agent of diphtheria in 1883. 
Since that time, studies focusing on this organism have advanced our understanding 
of bacterial pathogenesis by contributing to the mechanistic elucidation of diph-
theria, as well as the development of diphtheria vaccines. Genomic studies of C. 
diphtheriae and subsequent investigations of C. diphtheriae covalently-linked pili 
have expanded our knowledge regarding the arsenal of corynebacterial virulence 
determinants. We now know the SpaA pilus is the major adhesin that targets cory-
nebacteria to pharyngeal epithelial cells, the main site of infection. Work remains 
to be seen whether SpaA pili contribute to the establishment of the deadly disease. 
As pili are a common feature of many Gram-positive bacteria and the mode of pi-
lus assembly is conserved, understanding pilus biogenesis, structural biology, and 
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pilus-mediated pathogenesis will facilitate the development of antimicrobial agents 
and new vaccines in an era of rampant antimicrobial resistance.
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